Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133 {
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142 again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158 }
159
160 #define EVENT_OWNER_KERNEL ((void *) -1)
161
162 static bool is_kernel_event(struct perf_event *event)
163 {
164 return event->owner == EVENT_OWNER_KERNEL;
165 }
166
167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
171
172 /*
173 * branch priv levels that need permission checks
174 */
175 #define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
179 enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183 };
184
185 /*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
189 struct static_key_deferred perf_sched_events __read_mostly;
190 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
192
193 static atomic_t nr_mmap_events __read_mostly;
194 static atomic_t nr_comm_events __read_mostly;
195 static atomic_t nr_task_events __read_mostly;
196 static atomic_t nr_freq_events __read_mostly;
197 static atomic_t nr_switch_events __read_mostly;
198
199 static LIST_HEAD(pmus);
200 static DEFINE_MUTEX(pmus_lock);
201 static struct srcu_struct pmus_srcu;
202
203 /*
204 * perf event paranoia level:
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
207 * 1 - disallow cpu events for unpriv
208 * 2 - disallow kernel profiling for unpriv
209 */
210 int sysctl_perf_event_paranoid __read_mostly = 1;
211
212 /* Minimum for 512 kiB + 1 user control page */
213 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214
215 /*
216 * max perf event sample rate
217 */
218 #define DEFAULT_MAX_SAMPLE_RATE 100000
219 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
227 static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229
230 static void update_perf_cpu_limits(void)
231 {
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
235 do_div(tmp, 100);
236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237 }
238
239 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
241 int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255 }
256
257 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262 {
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
269
270 return 0;
271 }
272
273 /*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279 #define NR_ACCUMULATED_SAMPLES 128
280 static DEFINE_PER_CPU(u64, running_sample_length);
281
282 static void perf_duration_warn(struct irq_work *w)
283 {
284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285 u64 avg_local_sample_len;
286 u64 local_samples_len;
287
288 local_samples_len = __this_cpu_read(running_sample_length);
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
294 avg_local_sample_len, allowed_ns >> 1,
295 sysctl_perf_event_sample_rate);
296 }
297
298 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300 void perf_sample_event_took(u64 sample_len_ns)
301 {
302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
305
306 if (allowed_ns == 0)
307 return;
308
309 /* decay the counter by 1 average sample */
310 local_samples_len = __this_cpu_read(running_sample_length);
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
313 __this_cpu_write(running_sample_length, local_samples_len);
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
322 if (avg_local_sample_len <= allowed_ns)
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
332 update_perf_cpu_limits();
333
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
340 }
341
342 static atomic64_t perf_event_id;
343
344 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351 static void update_context_time(struct perf_event_context *ctx);
352 static u64 perf_event_time(struct perf_event *event);
353
354 void __weak perf_event_print_debug(void) { }
355
356 extern __weak const char *perf_pmu_name(void)
357 {
358 return "pmu";
359 }
360
361 static inline u64 perf_clock(void)
362 {
363 return local_clock();
364 }
365
366 static inline u64 perf_event_clock(struct perf_event *event)
367 {
368 return event->clock();
369 }
370
371 static inline struct perf_cpu_context *
372 __get_cpu_context(struct perf_event_context *ctx)
373 {
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375 }
376
377 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379 {
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383 }
384
385 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387 {
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391 }
392
393 #ifdef CONFIG_CGROUP_PERF
394
395 static inline bool
396 perf_cgroup_match(struct perf_event *event)
397 {
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
417 }
418
419 static inline void perf_detach_cgroup(struct perf_event *event)
420 {
421 css_put(&event->cgrp->css);
422 event->cgrp = NULL;
423 }
424
425 static inline int is_cgroup_event(struct perf_event *event)
426 {
427 return event->cgrp != NULL;
428 }
429
430 static inline u64 perf_cgroup_event_time(struct perf_event *event)
431 {
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436 }
437
438 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439 {
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449 }
450
451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452 {
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456 }
457
458 static inline void update_cgrp_time_from_event(struct perf_event *event)
459 {
460 struct perf_cgroup *cgrp;
461
462 /*
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
465 */
466 if (!is_cgroup_event(event))
467 return;
468
469 cgrp = perf_cgroup_from_task(current, event->ctx);
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
475 }
476
477 static inline void
478 perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
480 {
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
490 return;
491
492 cgrp = perf_cgroup_from_task(task, ctx);
493 info = this_cpu_ptr(cgrp->info);
494 info->timestamp = ctx->timestamp;
495 }
496
497 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500 /*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
506 static void perf_cgroup_switch(struct task_struct *task, int mode)
507 {
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
528
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
550 WARN_ON_ONCE(cpuctx->cgrp);
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
557 */
558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
563 }
564 }
565
566 local_irq_restore(flags);
567 }
568
569 static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
571 {
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
575 rcu_read_lock();
576 /*
577 * we come here when we know perf_cgroup_events > 0
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
580 */
581 cgrp1 = perf_cgroup_from_task(task, NULL);
582
583 /*
584 * next is NULL when called from perf_event_enable_on_exec()
585 * that will systematically cause a cgroup_switch()
586 */
587 if (next)
588 cgrp2 = perf_cgroup_from_task(next, NULL);
589
590 /*
591 * only schedule out current cgroup events if we know
592 * that we are switching to a different cgroup. Otherwise,
593 * do no touch the cgroup events.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
597
598 rcu_read_unlock();
599 }
600
601 static inline void perf_cgroup_sched_in(struct task_struct *prev,
602 struct task_struct *task)
603 {
604 struct perf_cgroup *cgrp1;
605 struct perf_cgroup *cgrp2 = NULL;
606
607 rcu_read_lock();
608 /*
609 * we come here when we know perf_cgroup_events > 0
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
612 */
613 cgrp1 = perf_cgroup_from_task(task, NULL);
614
615 /* prev can never be NULL */
616 cgrp2 = perf_cgroup_from_task(prev, NULL);
617
618 /*
619 * only need to schedule in cgroup events if we are changing
620 * cgroup during ctxsw. Cgroup events were not scheduled
621 * out of ctxsw out if that was not the case.
622 */
623 if (cgrp1 != cgrp2)
624 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
625
626 rcu_read_unlock();
627 }
628
629 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
630 struct perf_event_attr *attr,
631 struct perf_event *group_leader)
632 {
633 struct perf_cgroup *cgrp;
634 struct cgroup_subsys_state *css;
635 struct fd f = fdget(fd);
636 int ret = 0;
637
638 if (!f.file)
639 return -EBADF;
640
641 css = css_tryget_online_from_dir(f.file->f_path.dentry,
642 &perf_event_cgrp_subsys);
643 if (IS_ERR(css)) {
644 ret = PTR_ERR(css);
645 goto out;
646 }
647
648 cgrp = container_of(css, struct perf_cgroup, css);
649 event->cgrp = cgrp;
650
651 /*
652 * all events in a group must monitor
653 * the same cgroup because a task belongs
654 * to only one perf cgroup at a time
655 */
656 if (group_leader && group_leader->cgrp != cgrp) {
657 perf_detach_cgroup(event);
658 ret = -EINVAL;
659 }
660 out:
661 fdput(f);
662 return ret;
663 }
664
665 static inline void
666 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
667 {
668 struct perf_cgroup_info *t;
669 t = per_cpu_ptr(event->cgrp->info, event->cpu);
670 event->shadow_ctx_time = now - t->timestamp;
671 }
672
673 static inline void
674 perf_cgroup_defer_enabled(struct perf_event *event)
675 {
676 /*
677 * when the current task's perf cgroup does not match
678 * the event's, we need to remember to call the
679 * perf_mark_enable() function the first time a task with
680 * a matching perf cgroup is scheduled in.
681 */
682 if (is_cgroup_event(event) && !perf_cgroup_match(event))
683 event->cgrp_defer_enabled = 1;
684 }
685
686 static inline void
687 perf_cgroup_mark_enabled(struct perf_event *event,
688 struct perf_event_context *ctx)
689 {
690 struct perf_event *sub;
691 u64 tstamp = perf_event_time(event);
692
693 if (!event->cgrp_defer_enabled)
694 return;
695
696 event->cgrp_defer_enabled = 0;
697
698 event->tstamp_enabled = tstamp - event->total_time_enabled;
699 list_for_each_entry(sub, &event->sibling_list, group_entry) {
700 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
701 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
702 sub->cgrp_defer_enabled = 0;
703 }
704 }
705 }
706 #else /* !CONFIG_CGROUP_PERF */
707
708 static inline bool
709 perf_cgroup_match(struct perf_event *event)
710 {
711 return true;
712 }
713
714 static inline void perf_detach_cgroup(struct perf_event *event)
715 {}
716
717 static inline int is_cgroup_event(struct perf_event *event)
718 {
719 return 0;
720 }
721
722 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
723 {
724 return 0;
725 }
726
727 static inline void update_cgrp_time_from_event(struct perf_event *event)
728 {
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733 }
734
735 static inline void perf_cgroup_sched_out(struct task_struct *task,
736 struct task_struct *next)
737 {
738 }
739
740 static inline void perf_cgroup_sched_in(struct task_struct *prev,
741 struct task_struct *task)
742 {
743 }
744
745 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
746 struct perf_event_attr *attr,
747 struct perf_event *group_leader)
748 {
749 return -EINVAL;
750 }
751
752 static inline void
753 perf_cgroup_set_timestamp(struct task_struct *task,
754 struct perf_event_context *ctx)
755 {
756 }
757
758 void
759 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
760 {
761 }
762
763 static inline void
764 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
765 {
766 }
767
768 static inline u64 perf_cgroup_event_time(struct perf_event *event)
769 {
770 return 0;
771 }
772
773 static inline void
774 perf_cgroup_defer_enabled(struct perf_event *event)
775 {
776 }
777
778 static inline void
779 perf_cgroup_mark_enabled(struct perf_event *event,
780 struct perf_event_context *ctx)
781 {
782 }
783 #endif
784
785 /*
786 * set default to be dependent on timer tick just
787 * like original code
788 */
789 #define PERF_CPU_HRTIMER (1000 / HZ)
790 /*
791 * function must be called with interrupts disbled
792 */
793 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
794 {
795 struct perf_cpu_context *cpuctx;
796 int rotations = 0;
797
798 WARN_ON(!irqs_disabled());
799
800 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
801 rotations = perf_rotate_context(cpuctx);
802
803 raw_spin_lock(&cpuctx->hrtimer_lock);
804 if (rotations)
805 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
806 else
807 cpuctx->hrtimer_active = 0;
808 raw_spin_unlock(&cpuctx->hrtimer_lock);
809
810 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
811 }
812
813 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814 {
815 struct hrtimer *timer = &cpuctx->hrtimer;
816 struct pmu *pmu = cpuctx->ctx.pmu;
817 u64 interval;
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
827 interval = pmu->hrtimer_interval_ms;
828 if (interval < 1)
829 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830
831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
832
833 raw_spin_lock_init(&cpuctx->hrtimer_lock);
834 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
835 timer->function = perf_mux_hrtimer_handler;
836 }
837
838 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
839 {
840 struct hrtimer *timer = &cpuctx->hrtimer;
841 struct pmu *pmu = cpuctx->ctx.pmu;
842 unsigned long flags;
843
844 /* not for SW PMU */
845 if (pmu->task_ctx_nr == perf_sw_context)
846 return 0;
847
848 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
849 if (!cpuctx->hrtimer_active) {
850 cpuctx->hrtimer_active = 1;
851 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
852 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
853 }
854 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
855
856 return 0;
857 }
858
859 void perf_pmu_disable(struct pmu *pmu)
860 {
861 int *count = this_cpu_ptr(pmu->pmu_disable_count);
862 if (!(*count)++)
863 pmu->pmu_disable(pmu);
864 }
865
866 void perf_pmu_enable(struct pmu *pmu)
867 {
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!--(*count))
870 pmu->pmu_enable(pmu);
871 }
872
873 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
874
875 /*
876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877 * perf_event_task_tick() are fully serialized because they're strictly cpu
878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879 * disabled, while perf_event_task_tick is called from IRQ context.
880 */
881 static void perf_event_ctx_activate(struct perf_event_context *ctx)
882 {
883 struct list_head *head = this_cpu_ptr(&active_ctx_list);
884
885 WARN_ON(!irqs_disabled());
886
887 WARN_ON(!list_empty(&ctx->active_ctx_list));
888
889 list_add(&ctx->active_ctx_list, head);
890 }
891
892 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
893 {
894 WARN_ON(!irqs_disabled());
895
896 WARN_ON(list_empty(&ctx->active_ctx_list));
897
898 list_del_init(&ctx->active_ctx_list);
899 }
900
901 static void get_ctx(struct perf_event_context *ctx)
902 {
903 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
904 }
905
906 static void free_ctx(struct rcu_head *head)
907 {
908 struct perf_event_context *ctx;
909
910 ctx = container_of(head, struct perf_event_context, rcu_head);
911 kfree(ctx->task_ctx_data);
912 kfree(ctx);
913 }
914
915 static void put_ctx(struct perf_event_context *ctx)
916 {
917 if (atomic_dec_and_test(&ctx->refcount)) {
918 if (ctx->parent_ctx)
919 put_ctx(ctx->parent_ctx);
920 if (ctx->task)
921 put_task_struct(ctx->task);
922 call_rcu(&ctx->rcu_head, free_ctx);
923 }
924 }
925
926 /*
927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928 * perf_pmu_migrate_context() we need some magic.
929 *
930 * Those places that change perf_event::ctx will hold both
931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
932 *
933 * Lock ordering is by mutex address. There are two other sites where
934 * perf_event_context::mutex nests and those are:
935 *
936 * - perf_event_exit_task_context() [ child , 0 ]
937 * __perf_event_exit_task()
938 * sync_child_event()
939 * put_event() [ parent, 1 ]
940 *
941 * - perf_event_init_context() [ parent, 0 ]
942 * inherit_task_group()
943 * inherit_group()
944 * inherit_event()
945 * perf_event_alloc()
946 * perf_init_event()
947 * perf_try_init_event() [ child , 1 ]
948 *
949 * While it appears there is an obvious deadlock here -- the parent and child
950 * nesting levels are inverted between the two. This is in fact safe because
951 * life-time rules separate them. That is an exiting task cannot fork, and a
952 * spawning task cannot (yet) exit.
953 *
954 * But remember that that these are parent<->child context relations, and
955 * migration does not affect children, therefore these two orderings should not
956 * interact.
957 *
958 * The change in perf_event::ctx does not affect children (as claimed above)
959 * because the sys_perf_event_open() case will install a new event and break
960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961 * concerned with cpuctx and that doesn't have children.
962 *
963 * The places that change perf_event::ctx will issue:
964 *
965 * perf_remove_from_context();
966 * synchronize_rcu();
967 * perf_install_in_context();
968 *
969 * to affect the change. The remove_from_context() + synchronize_rcu() should
970 * quiesce the event, after which we can install it in the new location. This
971 * means that only external vectors (perf_fops, prctl) can perturb the event
972 * while in transit. Therefore all such accessors should also acquire
973 * perf_event_context::mutex to serialize against this.
974 *
975 * However; because event->ctx can change while we're waiting to acquire
976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
977 * function.
978 *
979 * Lock order:
980 * task_struct::perf_event_mutex
981 * perf_event_context::mutex
982 * perf_event_context::lock
983 * perf_event::child_mutex;
984 * perf_event::mmap_mutex
985 * mmap_sem
986 */
987 static struct perf_event_context *
988 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
989 {
990 struct perf_event_context *ctx;
991
992 again:
993 rcu_read_lock();
994 ctx = ACCESS_ONCE(event->ctx);
995 if (!atomic_inc_not_zero(&ctx->refcount)) {
996 rcu_read_unlock();
997 goto again;
998 }
999 rcu_read_unlock();
1000
1001 mutex_lock_nested(&ctx->mutex, nesting);
1002 if (event->ctx != ctx) {
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1005 goto again;
1006 }
1007
1008 return ctx;
1009 }
1010
1011 static inline struct perf_event_context *
1012 perf_event_ctx_lock(struct perf_event *event)
1013 {
1014 return perf_event_ctx_lock_nested(event, 0);
1015 }
1016
1017 static void perf_event_ctx_unlock(struct perf_event *event,
1018 struct perf_event_context *ctx)
1019 {
1020 mutex_unlock(&ctx->mutex);
1021 put_ctx(ctx);
1022 }
1023
1024 /*
1025 * This must be done under the ctx->lock, such as to serialize against
1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027 * calling scheduler related locks and ctx->lock nests inside those.
1028 */
1029 static __must_check struct perf_event_context *
1030 unclone_ctx(struct perf_event_context *ctx)
1031 {
1032 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1033
1034 lockdep_assert_held(&ctx->lock);
1035
1036 if (parent_ctx)
1037 ctx->parent_ctx = NULL;
1038 ctx->generation++;
1039
1040 return parent_ctx;
1041 }
1042
1043 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1044 {
1045 /*
1046 * only top level events have the pid namespace they were created in
1047 */
1048 if (event->parent)
1049 event = event->parent;
1050
1051 return task_tgid_nr_ns(p, event->ns);
1052 }
1053
1054 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1055 {
1056 /*
1057 * only top level events have the pid namespace they were created in
1058 */
1059 if (event->parent)
1060 event = event->parent;
1061
1062 return task_pid_nr_ns(p, event->ns);
1063 }
1064
1065 /*
1066 * If we inherit events we want to return the parent event id
1067 * to userspace.
1068 */
1069 static u64 primary_event_id(struct perf_event *event)
1070 {
1071 u64 id = event->id;
1072
1073 if (event->parent)
1074 id = event->parent->id;
1075
1076 return id;
1077 }
1078
1079 /*
1080 * Get the perf_event_context for a task and lock it.
1081 * This has to cope with with the fact that until it is locked,
1082 * the context could get moved to another task.
1083 */
1084 static struct perf_event_context *
1085 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1086 {
1087 struct perf_event_context *ctx;
1088
1089 retry:
1090 /*
1091 * One of the few rules of preemptible RCU is that one cannot do
1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093 * part of the read side critical section was irqs-enabled -- see
1094 * rcu_read_unlock_special().
1095 *
1096 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097 * side critical section has interrupts disabled.
1098 */
1099 local_irq_save(*flags);
1100 rcu_read_lock();
1101 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1102 if (ctx) {
1103 /*
1104 * If this context is a clone of another, it might
1105 * get swapped for another underneath us by
1106 * perf_event_task_sched_out, though the
1107 * rcu_read_lock() protects us from any context
1108 * getting freed. Lock the context and check if it
1109 * got swapped before we could get the lock, and retry
1110 * if so. If we locked the right context, then it
1111 * can't get swapped on us any more.
1112 */
1113 raw_spin_lock(&ctx->lock);
1114 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1115 raw_spin_unlock(&ctx->lock);
1116 rcu_read_unlock();
1117 local_irq_restore(*flags);
1118 goto retry;
1119 }
1120
1121 if (!atomic_inc_not_zero(&ctx->refcount)) {
1122 raw_spin_unlock(&ctx->lock);
1123 ctx = NULL;
1124 }
1125 }
1126 rcu_read_unlock();
1127 if (!ctx)
1128 local_irq_restore(*flags);
1129 return ctx;
1130 }
1131
1132 /*
1133 * Get the context for a task and increment its pin_count so it
1134 * can't get swapped to another task. This also increments its
1135 * reference count so that the context can't get freed.
1136 */
1137 static struct perf_event_context *
1138 perf_pin_task_context(struct task_struct *task, int ctxn)
1139 {
1140 struct perf_event_context *ctx;
1141 unsigned long flags;
1142
1143 ctx = perf_lock_task_context(task, ctxn, &flags);
1144 if (ctx) {
1145 ++ctx->pin_count;
1146 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1147 }
1148 return ctx;
1149 }
1150
1151 static void perf_unpin_context(struct perf_event_context *ctx)
1152 {
1153 unsigned long flags;
1154
1155 raw_spin_lock_irqsave(&ctx->lock, flags);
1156 --ctx->pin_count;
1157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1158 }
1159
1160 /*
1161 * Update the record of the current time in a context.
1162 */
1163 static void update_context_time(struct perf_event_context *ctx)
1164 {
1165 u64 now = perf_clock();
1166
1167 ctx->time += now - ctx->timestamp;
1168 ctx->timestamp = now;
1169 }
1170
1171 static u64 perf_event_time(struct perf_event *event)
1172 {
1173 struct perf_event_context *ctx = event->ctx;
1174
1175 if (is_cgroup_event(event))
1176 return perf_cgroup_event_time(event);
1177
1178 return ctx ? ctx->time : 0;
1179 }
1180
1181 /*
1182 * Update the total_time_enabled and total_time_running fields for a event.
1183 * The caller of this function needs to hold the ctx->lock.
1184 */
1185 static void update_event_times(struct perf_event *event)
1186 {
1187 struct perf_event_context *ctx = event->ctx;
1188 u64 run_end;
1189
1190 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1191 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1192 return;
1193 /*
1194 * in cgroup mode, time_enabled represents
1195 * the time the event was enabled AND active
1196 * tasks were in the monitored cgroup. This is
1197 * independent of the activity of the context as
1198 * there may be a mix of cgroup and non-cgroup events.
1199 *
1200 * That is why we treat cgroup events differently
1201 * here.
1202 */
1203 if (is_cgroup_event(event))
1204 run_end = perf_cgroup_event_time(event);
1205 else if (ctx->is_active)
1206 run_end = ctx->time;
1207 else
1208 run_end = event->tstamp_stopped;
1209
1210 event->total_time_enabled = run_end - event->tstamp_enabled;
1211
1212 if (event->state == PERF_EVENT_STATE_INACTIVE)
1213 run_end = event->tstamp_stopped;
1214 else
1215 run_end = perf_event_time(event);
1216
1217 event->total_time_running = run_end - event->tstamp_running;
1218
1219 }
1220
1221 /*
1222 * Update total_time_enabled and total_time_running for all events in a group.
1223 */
1224 static void update_group_times(struct perf_event *leader)
1225 {
1226 struct perf_event *event;
1227
1228 update_event_times(leader);
1229 list_for_each_entry(event, &leader->sibling_list, group_entry)
1230 update_event_times(event);
1231 }
1232
1233 static struct list_head *
1234 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1235 {
1236 if (event->attr.pinned)
1237 return &ctx->pinned_groups;
1238 else
1239 return &ctx->flexible_groups;
1240 }
1241
1242 /*
1243 * Add a event from the lists for its context.
1244 * Must be called with ctx->mutex and ctx->lock held.
1245 */
1246 static void
1247 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1248 {
1249 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1250 event->attach_state |= PERF_ATTACH_CONTEXT;
1251
1252 /*
1253 * If we're a stand alone event or group leader, we go to the context
1254 * list, group events are kept attached to the group so that
1255 * perf_group_detach can, at all times, locate all siblings.
1256 */
1257 if (event->group_leader == event) {
1258 struct list_head *list;
1259
1260 if (is_software_event(event))
1261 event->group_flags |= PERF_GROUP_SOFTWARE;
1262
1263 list = ctx_group_list(event, ctx);
1264 list_add_tail(&event->group_entry, list);
1265 }
1266
1267 if (is_cgroup_event(event))
1268 ctx->nr_cgroups++;
1269
1270 list_add_rcu(&event->event_entry, &ctx->event_list);
1271 ctx->nr_events++;
1272 if (event->attr.inherit_stat)
1273 ctx->nr_stat++;
1274
1275 ctx->generation++;
1276 }
1277
1278 /*
1279 * Initialize event state based on the perf_event_attr::disabled.
1280 */
1281 static inline void perf_event__state_init(struct perf_event *event)
1282 {
1283 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1284 PERF_EVENT_STATE_INACTIVE;
1285 }
1286
1287 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1288 {
1289 int entry = sizeof(u64); /* value */
1290 int size = 0;
1291 int nr = 1;
1292
1293 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1294 size += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1297 size += sizeof(u64);
1298
1299 if (event->attr.read_format & PERF_FORMAT_ID)
1300 entry += sizeof(u64);
1301
1302 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1303 nr += nr_siblings;
1304 size += sizeof(u64);
1305 }
1306
1307 size += entry * nr;
1308 event->read_size = size;
1309 }
1310
1311 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1312 {
1313 struct perf_sample_data *data;
1314 u16 size = 0;
1315
1316 if (sample_type & PERF_SAMPLE_IP)
1317 size += sizeof(data->ip);
1318
1319 if (sample_type & PERF_SAMPLE_ADDR)
1320 size += sizeof(data->addr);
1321
1322 if (sample_type & PERF_SAMPLE_PERIOD)
1323 size += sizeof(data->period);
1324
1325 if (sample_type & PERF_SAMPLE_WEIGHT)
1326 size += sizeof(data->weight);
1327
1328 if (sample_type & PERF_SAMPLE_READ)
1329 size += event->read_size;
1330
1331 if (sample_type & PERF_SAMPLE_DATA_SRC)
1332 size += sizeof(data->data_src.val);
1333
1334 if (sample_type & PERF_SAMPLE_TRANSACTION)
1335 size += sizeof(data->txn);
1336
1337 event->header_size = size;
1338 }
1339
1340 /*
1341 * Called at perf_event creation and when events are attached/detached from a
1342 * group.
1343 */
1344 static void perf_event__header_size(struct perf_event *event)
1345 {
1346 __perf_event_read_size(event,
1347 event->group_leader->nr_siblings);
1348 __perf_event_header_size(event, event->attr.sample_type);
1349 }
1350
1351 static void perf_event__id_header_size(struct perf_event *event)
1352 {
1353 struct perf_sample_data *data;
1354 u64 sample_type = event->attr.sample_type;
1355 u16 size = 0;
1356
1357 if (sample_type & PERF_SAMPLE_TID)
1358 size += sizeof(data->tid_entry);
1359
1360 if (sample_type & PERF_SAMPLE_TIME)
1361 size += sizeof(data->time);
1362
1363 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1364 size += sizeof(data->id);
1365
1366 if (sample_type & PERF_SAMPLE_ID)
1367 size += sizeof(data->id);
1368
1369 if (sample_type & PERF_SAMPLE_STREAM_ID)
1370 size += sizeof(data->stream_id);
1371
1372 if (sample_type & PERF_SAMPLE_CPU)
1373 size += sizeof(data->cpu_entry);
1374
1375 event->id_header_size = size;
1376 }
1377
1378 static bool perf_event_validate_size(struct perf_event *event)
1379 {
1380 /*
1381 * The values computed here will be over-written when we actually
1382 * attach the event.
1383 */
1384 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1385 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1386 perf_event__id_header_size(event);
1387
1388 /*
1389 * Sum the lot; should not exceed the 64k limit we have on records.
1390 * Conservative limit to allow for callchains and other variable fields.
1391 */
1392 if (event->read_size + event->header_size +
1393 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1394 return false;
1395
1396 return true;
1397 }
1398
1399 static void perf_group_attach(struct perf_event *event)
1400 {
1401 struct perf_event *group_leader = event->group_leader, *pos;
1402
1403 /*
1404 * We can have double attach due to group movement in perf_event_open.
1405 */
1406 if (event->attach_state & PERF_ATTACH_GROUP)
1407 return;
1408
1409 event->attach_state |= PERF_ATTACH_GROUP;
1410
1411 if (group_leader == event)
1412 return;
1413
1414 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1415
1416 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1417 !is_software_event(event))
1418 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1419
1420 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1421 group_leader->nr_siblings++;
1422
1423 perf_event__header_size(group_leader);
1424
1425 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1426 perf_event__header_size(pos);
1427 }
1428
1429 /*
1430 * Remove a event from the lists for its context.
1431 * Must be called with ctx->mutex and ctx->lock held.
1432 */
1433 static void
1434 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1435 {
1436 struct perf_cpu_context *cpuctx;
1437
1438 WARN_ON_ONCE(event->ctx != ctx);
1439 lockdep_assert_held(&ctx->lock);
1440
1441 /*
1442 * We can have double detach due to exit/hot-unplug + close.
1443 */
1444 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1445 return;
1446
1447 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1448
1449 if (is_cgroup_event(event)) {
1450 ctx->nr_cgroups--;
1451 cpuctx = __get_cpu_context(ctx);
1452 /*
1453 * if there are no more cgroup events
1454 * then cler cgrp to avoid stale pointer
1455 * in update_cgrp_time_from_cpuctx()
1456 */
1457 if (!ctx->nr_cgroups)
1458 cpuctx->cgrp = NULL;
1459 }
1460
1461 ctx->nr_events--;
1462 if (event->attr.inherit_stat)
1463 ctx->nr_stat--;
1464
1465 list_del_rcu(&event->event_entry);
1466
1467 if (event->group_leader == event)
1468 list_del_init(&event->group_entry);
1469
1470 update_group_times(event);
1471
1472 /*
1473 * If event was in error state, then keep it
1474 * that way, otherwise bogus counts will be
1475 * returned on read(). The only way to get out
1476 * of error state is by explicit re-enabling
1477 * of the event
1478 */
1479 if (event->state > PERF_EVENT_STATE_OFF)
1480 event->state = PERF_EVENT_STATE_OFF;
1481
1482 ctx->generation++;
1483 }
1484
1485 static void perf_group_detach(struct perf_event *event)
1486 {
1487 struct perf_event *sibling, *tmp;
1488 struct list_head *list = NULL;
1489
1490 /*
1491 * We can have double detach due to exit/hot-unplug + close.
1492 */
1493 if (!(event->attach_state & PERF_ATTACH_GROUP))
1494 return;
1495
1496 event->attach_state &= ~PERF_ATTACH_GROUP;
1497
1498 /*
1499 * If this is a sibling, remove it from its group.
1500 */
1501 if (event->group_leader != event) {
1502 list_del_init(&event->group_entry);
1503 event->group_leader->nr_siblings--;
1504 goto out;
1505 }
1506
1507 if (!list_empty(&event->group_entry))
1508 list = &event->group_entry;
1509
1510 /*
1511 * If this was a group event with sibling events then
1512 * upgrade the siblings to singleton events by adding them
1513 * to whatever list we are on.
1514 */
1515 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1516 if (list)
1517 list_move_tail(&sibling->group_entry, list);
1518 sibling->group_leader = sibling;
1519
1520 /* Inherit group flags from the previous leader */
1521 sibling->group_flags = event->group_flags;
1522
1523 WARN_ON_ONCE(sibling->ctx != event->ctx);
1524 }
1525
1526 out:
1527 perf_event__header_size(event->group_leader);
1528
1529 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1530 perf_event__header_size(tmp);
1531 }
1532
1533 /*
1534 * User event without the task.
1535 */
1536 static bool is_orphaned_event(struct perf_event *event)
1537 {
1538 return event && !is_kernel_event(event) && !event->owner;
1539 }
1540
1541 /*
1542 * Event has a parent but parent's task finished and it's
1543 * alive only because of children holding refference.
1544 */
1545 static bool is_orphaned_child(struct perf_event *event)
1546 {
1547 return is_orphaned_event(event->parent);
1548 }
1549
1550 static void orphans_remove_work(struct work_struct *work);
1551
1552 static void schedule_orphans_remove(struct perf_event_context *ctx)
1553 {
1554 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1555 return;
1556
1557 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1558 get_ctx(ctx);
1559 ctx->orphans_remove_sched = true;
1560 }
1561 }
1562
1563 static int __init perf_workqueue_init(void)
1564 {
1565 perf_wq = create_singlethread_workqueue("perf");
1566 WARN(!perf_wq, "failed to create perf workqueue\n");
1567 return perf_wq ? 0 : -1;
1568 }
1569
1570 core_initcall(perf_workqueue_init);
1571
1572 static inline int pmu_filter_match(struct perf_event *event)
1573 {
1574 struct pmu *pmu = event->pmu;
1575 return pmu->filter_match ? pmu->filter_match(event) : 1;
1576 }
1577
1578 static inline int
1579 event_filter_match(struct perf_event *event)
1580 {
1581 return (event->cpu == -1 || event->cpu == smp_processor_id())
1582 && perf_cgroup_match(event) && pmu_filter_match(event);
1583 }
1584
1585 static void
1586 event_sched_out(struct perf_event *event,
1587 struct perf_cpu_context *cpuctx,
1588 struct perf_event_context *ctx)
1589 {
1590 u64 tstamp = perf_event_time(event);
1591 u64 delta;
1592
1593 WARN_ON_ONCE(event->ctx != ctx);
1594 lockdep_assert_held(&ctx->lock);
1595
1596 /*
1597 * An event which could not be activated because of
1598 * filter mismatch still needs to have its timings
1599 * maintained, otherwise bogus information is return
1600 * via read() for time_enabled, time_running:
1601 */
1602 if (event->state == PERF_EVENT_STATE_INACTIVE
1603 && !event_filter_match(event)) {
1604 delta = tstamp - event->tstamp_stopped;
1605 event->tstamp_running += delta;
1606 event->tstamp_stopped = tstamp;
1607 }
1608
1609 if (event->state != PERF_EVENT_STATE_ACTIVE)
1610 return;
1611
1612 perf_pmu_disable(event->pmu);
1613
1614 event->state = PERF_EVENT_STATE_INACTIVE;
1615 if (event->pending_disable) {
1616 event->pending_disable = 0;
1617 event->state = PERF_EVENT_STATE_OFF;
1618 }
1619 event->tstamp_stopped = tstamp;
1620 event->pmu->del(event, 0);
1621 event->oncpu = -1;
1622
1623 if (!is_software_event(event))
1624 cpuctx->active_oncpu--;
1625 if (!--ctx->nr_active)
1626 perf_event_ctx_deactivate(ctx);
1627 if (event->attr.freq && event->attr.sample_freq)
1628 ctx->nr_freq--;
1629 if (event->attr.exclusive || !cpuctx->active_oncpu)
1630 cpuctx->exclusive = 0;
1631
1632 if (is_orphaned_child(event))
1633 schedule_orphans_remove(ctx);
1634
1635 perf_pmu_enable(event->pmu);
1636 }
1637
1638 static void
1639 group_sched_out(struct perf_event *group_event,
1640 struct perf_cpu_context *cpuctx,
1641 struct perf_event_context *ctx)
1642 {
1643 struct perf_event *event;
1644 int state = group_event->state;
1645
1646 event_sched_out(group_event, cpuctx, ctx);
1647
1648 /*
1649 * Schedule out siblings (if any):
1650 */
1651 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1652 event_sched_out(event, cpuctx, ctx);
1653
1654 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1655 cpuctx->exclusive = 0;
1656 }
1657
1658 struct remove_event {
1659 struct perf_event *event;
1660 bool detach_group;
1661 };
1662
1663 static void ___perf_remove_from_context(void *info)
1664 {
1665 struct remove_event *re = info;
1666 struct perf_event *event = re->event;
1667 struct perf_event_context *ctx = event->ctx;
1668
1669 if (re->detach_group)
1670 perf_group_detach(event);
1671 list_del_event(event, ctx);
1672 }
1673
1674 /*
1675 * Cross CPU call to remove a performance event
1676 *
1677 * We disable the event on the hardware level first. After that we
1678 * remove it from the context list.
1679 */
1680 static int __perf_remove_from_context(void *info)
1681 {
1682 struct remove_event *re = info;
1683 struct perf_event *event = re->event;
1684 struct perf_event_context *ctx = event->ctx;
1685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1686
1687 raw_spin_lock(&ctx->lock);
1688 event_sched_out(event, cpuctx, ctx);
1689 if (re->detach_group)
1690 perf_group_detach(event);
1691 list_del_event(event, ctx);
1692 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1693 ctx->is_active = 0;
1694 cpuctx->task_ctx = NULL;
1695 }
1696 raw_spin_unlock(&ctx->lock);
1697
1698 return 0;
1699 }
1700
1701 /*
1702 * Remove the event from a task's (or a CPU's) list of events.
1703 *
1704 * CPU events are removed with a smp call. For task events we only
1705 * call when the task is on a CPU.
1706 *
1707 * If event->ctx is a cloned context, callers must make sure that
1708 * every task struct that event->ctx->task could possibly point to
1709 * remains valid. This is OK when called from perf_release since
1710 * that only calls us on the top-level context, which can't be a clone.
1711 * When called from perf_event_exit_task, it's OK because the
1712 * context has been detached from its task.
1713 */
1714 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1715 {
1716 struct perf_event_context *ctx = event->ctx;
1717 struct remove_event re = {
1718 .event = event,
1719 .detach_group = detach_group,
1720 };
1721
1722 lockdep_assert_held(&ctx->mutex);
1723
1724 event_function_call(event, __perf_remove_from_context,
1725 ___perf_remove_from_context, &re);
1726 }
1727
1728 /*
1729 * Cross CPU call to disable a performance event
1730 */
1731 int __perf_event_disable(void *info)
1732 {
1733 struct perf_event *event = info;
1734 struct perf_event_context *ctx = event->ctx;
1735 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1736
1737 /*
1738 * If this is a per-task event, need to check whether this
1739 * event's task is the current task on this cpu.
1740 *
1741 * Can trigger due to concurrent perf_event_context_sched_out()
1742 * flipping contexts around.
1743 */
1744 if (ctx->task && cpuctx->task_ctx != ctx)
1745 return -EINVAL;
1746
1747 raw_spin_lock(&ctx->lock);
1748
1749 /*
1750 * If the event is on, turn it off.
1751 * If it is in error state, leave it in error state.
1752 */
1753 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1754 update_context_time(ctx);
1755 update_cgrp_time_from_event(event);
1756 update_group_times(event);
1757 if (event == event->group_leader)
1758 group_sched_out(event, cpuctx, ctx);
1759 else
1760 event_sched_out(event, cpuctx, ctx);
1761 event->state = PERF_EVENT_STATE_OFF;
1762 }
1763
1764 raw_spin_unlock(&ctx->lock);
1765
1766 return 0;
1767 }
1768
1769 void ___perf_event_disable(void *info)
1770 {
1771 struct perf_event *event = info;
1772
1773 /*
1774 * Since we have the lock this context can't be scheduled
1775 * in, so we can change the state safely.
1776 */
1777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 update_group_times(event);
1779 event->state = PERF_EVENT_STATE_OFF;
1780 }
1781 }
1782
1783 /*
1784 * Disable a event.
1785 *
1786 * If event->ctx is a cloned context, callers must make sure that
1787 * every task struct that event->ctx->task could possibly point to
1788 * remains valid. This condition is satisifed when called through
1789 * perf_event_for_each_child or perf_event_for_each because they
1790 * hold the top-level event's child_mutex, so any descendant that
1791 * goes to exit will block in sync_child_event.
1792 * When called from perf_pending_event it's OK because event->ctx
1793 * is the current context on this CPU and preemption is disabled,
1794 * hence we can't get into perf_event_task_sched_out for this context.
1795 */
1796 static void _perf_event_disable(struct perf_event *event)
1797 {
1798 struct perf_event_context *ctx = event->ctx;
1799
1800 raw_spin_lock_irq(&ctx->lock);
1801 if (event->state <= PERF_EVENT_STATE_OFF) {
1802 raw_spin_unlock_irq(&ctx->lock);
1803 return;
1804 }
1805 raw_spin_unlock_irq(&ctx->lock);
1806
1807 event_function_call(event, __perf_event_disable,
1808 ___perf_event_disable, event);
1809 }
1810
1811 /*
1812 * Strictly speaking kernel users cannot create groups and therefore this
1813 * interface does not need the perf_event_ctx_lock() magic.
1814 */
1815 void perf_event_disable(struct perf_event *event)
1816 {
1817 struct perf_event_context *ctx;
1818
1819 ctx = perf_event_ctx_lock(event);
1820 _perf_event_disable(event);
1821 perf_event_ctx_unlock(event, ctx);
1822 }
1823 EXPORT_SYMBOL_GPL(perf_event_disable);
1824
1825 static void perf_set_shadow_time(struct perf_event *event,
1826 struct perf_event_context *ctx,
1827 u64 tstamp)
1828 {
1829 /*
1830 * use the correct time source for the time snapshot
1831 *
1832 * We could get by without this by leveraging the
1833 * fact that to get to this function, the caller
1834 * has most likely already called update_context_time()
1835 * and update_cgrp_time_xx() and thus both timestamp
1836 * are identical (or very close). Given that tstamp is,
1837 * already adjusted for cgroup, we could say that:
1838 * tstamp - ctx->timestamp
1839 * is equivalent to
1840 * tstamp - cgrp->timestamp.
1841 *
1842 * Then, in perf_output_read(), the calculation would
1843 * work with no changes because:
1844 * - event is guaranteed scheduled in
1845 * - no scheduled out in between
1846 * - thus the timestamp would be the same
1847 *
1848 * But this is a bit hairy.
1849 *
1850 * So instead, we have an explicit cgroup call to remain
1851 * within the time time source all along. We believe it
1852 * is cleaner and simpler to understand.
1853 */
1854 if (is_cgroup_event(event))
1855 perf_cgroup_set_shadow_time(event, tstamp);
1856 else
1857 event->shadow_ctx_time = tstamp - ctx->timestamp;
1858 }
1859
1860 #define MAX_INTERRUPTS (~0ULL)
1861
1862 static void perf_log_throttle(struct perf_event *event, int enable);
1863 static void perf_log_itrace_start(struct perf_event *event);
1864
1865 static int
1866 event_sched_in(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx)
1869 {
1870 u64 tstamp = perf_event_time(event);
1871 int ret = 0;
1872
1873 lockdep_assert_held(&ctx->lock);
1874
1875 if (event->state <= PERF_EVENT_STATE_OFF)
1876 return 0;
1877
1878 event->state = PERF_EVENT_STATE_ACTIVE;
1879 event->oncpu = smp_processor_id();
1880
1881 /*
1882 * Unthrottle events, since we scheduled we might have missed several
1883 * ticks already, also for a heavily scheduling task there is little
1884 * guarantee it'll get a tick in a timely manner.
1885 */
1886 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 perf_log_throttle(event, 1);
1888 event->hw.interrupts = 0;
1889 }
1890
1891 /*
1892 * The new state must be visible before we turn it on in the hardware:
1893 */
1894 smp_wmb();
1895
1896 perf_pmu_disable(event->pmu);
1897
1898 perf_set_shadow_time(event, ctx, tstamp);
1899
1900 perf_log_itrace_start(event);
1901
1902 if (event->pmu->add(event, PERF_EF_START)) {
1903 event->state = PERF_EVENT_STATE_INACTIVE;
1904 event->oncpu = -1;
1905 ret = -EAGAIN;
1906 goto out;
1907 }
1908
1909 event->tstamp_running += tstamp - event->tstamp_stopped;
1910
1911 if (!is_software_event(event))
1912 cpuctx->active_oncpu++;
1913 if (!ctx->nr_active++)
1914 perf_event_ctx_activate(ctx);
1915 if (event->attr.freq && event->attr.sample_freq)
1916 ctx->nr_freq++;
1917
1918 if (event->attr.exclusive)
1919 cpuctx->exclusive = 1;
1920
1921 if (is_orphaned_child(event))
1922 schedule_orphans_remove(ctx);
1923
1924 out:
1925 perf_pmu_enable(event->pmu);
1926
1927 return ret;
1928 }
1929
1930 static int
1931 group_sched_in(struct perf_event *group_event,
1932 struct perf_cpu_context *cpuctx,
1933 struct perf_event_context *ctx)
1934 {
1935 struct perf_event *event, *partial_group = NULL;
1936 struct pmu *pmu = ctx->pmu;
1937 u64 now = ctx->time;
1938 bool simulate = false;
1939
1940 if (group_event->state == PERF_EVENT_STATE_OFF)
1941 return 0;
1942
1943 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1944
1945 if (event_sched_in(group_event, cpuctx, ctx)) {
1946 pmu->cancel_txn(pmu);
1947 perf_mux_hrtimer_restart(cpuctx);
1948 return -EAGAIN;
1949 }
1950
1951 /*
1952 * Schedule in siblings as one group (if any):
1953 */
1954 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1955 if (event_sched_in(event, cpuctx, ctx)) {
1956 partial_group = event;
1957 goto group_error;
1958 }
1959 }
1960
1961 if (!pmu->commit_txn(pmu))
1962 return 0;
1963
1964 group_error:
1965 /*
1966 * Groups can be scheduled in as one unit only, so undo any
1967 * partial group before returning:
1968 * The events up to the failed event are scheduled out normally,
1969 * tstamp_stopped will be updated.
1970 *
1971 * The failed events and the remaining siblings need to have
1972 * their timings updated as if they had gone thru event_sched_in()
1973 * and event_sched_out(). This is required to get consistent timings
1974 * across the group. This also takes care of the case where the group
1975 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 * the time the event was actually stopped, such that time delta
1977 * calculation in update_event_times() is correct.
1978 */
1979 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 if (event == partial_group)
1981 simulate = true;
1982
1983 if (simulate) {
1984 event->tstamp_running += now - event->tstamp_stopped;
1985 event->tstamp_stopped = now;
1986 } else {
1987 event_sched_out(event, cpuctx, ctx);
1988 }
1989 }
1990 event_sched_out(group_event, cpuctx, ctx);
1991
1992 pmu->cancel_txn(pmu);
1993
1994 perf_mux_hrtimer_restart(cpuctx);
1995
1996 return -EAGAIN;
1997 }
1998
1999 /*
2000 * Work out whether we can put this event group on the CPU now.
2001 */
2002 static int group_can_go_on(struct perf_event *event,
2003 struct perf_cpu_context *cpuctx,
2004 int can_add_hw)
2005 {
2006 /*
2007 * Groups consisting entirely of software events can always go on.
2008 */
2009 if (event->group_flags & PERF_GROUP_SOFTWARE)
2010 return 1;
2011 /*
2012 * If an exclusive group is already on, no other hardware
2013 * events can go on.
2014 */
2015 if (cpuctx->exclusive)
2016 return 0;
2017 /*
2018 * If this group is exclusive and there are already
2019 * events on the CPU, it can't go on.
2020 */
2021 if (event->attr.exclusive && cpuctx->active_oncpu)
2022 return 0;
2023 /*
2024 * Otherwise, try to add it if all previous groups were able
2025 * to go on.
2026 */
2027 return can_add_hw;
2028 }
2029
2030 static void add_event_to_ctx(struct perf_event *event,
2031 struct perf_event_context *ctx)
2032 {
2033 u64 tstamp = perf_event_time(event);
2034
2035 list_add_event(event, ctx);
2036 perf_group_attach(event);
2037 event->tstamp_enabled = tstamp;
2038 event->tstamp_running = tstamp;
2039 event->tstamp_stopped = tstamp;
2040 }
2041
2042 static void task_ctx_sched_out(struct perf_event_context *ctx);
2043 static void
2044 ctx_sched_in(struct perf_event_context *ctx,
2045 struct perf_cpu_context *cpuctx,
2046 enum event_type_t event_type,
2047 struct task_struct *task);
2048
2049 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 struct perf_event_context *ctx,
2051 struct task_struct *task)
2052 {
2053 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 if (ctx)
2055 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 if (ctx)
2058 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059 }
2060
2061 static void ___perf_install_in_context(void *info)
2062 {
2063 struct perf_event *event = info;
2064 struct perf_event_context *ctx = event->ctx;
2065
2066 /*
2067 * Since the task isn't running, its safe to add the event, us holding
2068 * the ctx->lock ensures the task won't get scheduled in.
2069 */
2070 add_event_to_ctx(event, ctx);
2071 }
2072
2073 /*
2074 * Cross CPU call to install and enable a performance event
2075 *
2076 * Must be called with ctx->mutex held
2077 */
2078 static int __perf_install_in_context(void *info)
2079 {
2080 struct perf_event *event = info;
2081 struct perf_event_context *ctx = event->ctx;
2082 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2083 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2084 struct task_struct *task = current;
2085
2086 perf_ctx_lock(cpuctx, task_ctx);
2087 perf_pmu_disable(cpuctx->ctx.pmu);
2088
2089 /*
2090 * If there was an active task_ctx schedule it out.
2091 */
2092 if (task_ctx)
2093 task_ctx_sched_out(task_ctx);
2094
2095 /*
2096 * If the context we're installing events in is not the
2097 * active task_ctx, flip them.
2098 */
2099 if (ctx->task && task_ctx != ctx) {
2100 if (task_ctx)
2101 raw_spin_unlock(&task_ctx->lock);
2102 raw_spin_lock(&ctx->lock);
2103 task_ctx = ctx;
2104 }
2105
2106 if (task_ctx) {
2107 cpuctx->task_ctx = task_ctx;
2108 task = task_ctx->task;
2109 }
2110
2111 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2112
2113 update_context_time(ctx);
2114 /*
2115 * update cgrp time only if current cgrp
2116 * matches event->cgrp. Must be done before
2117 * calling add_event_to_ctx()
2118 */
2119 update_cgrp_time_from_event(event);
2120
2121 add_event_to_ctx(event, ctx);
2122
2123 /*
2124 * Schedule everything back in
2125 */
2126 perf_event_sched_in(cpuctx, task_ctx, task);
2127
2128 perf_pmu_enable(cpuctx->ctx.pmu);
2129 perf_ctx_unlock(cpuctx, task_ctx);
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * Attach a performance event to a context
2136 *
2137 * First we add the event to the list with the hardware enable bit
2138 * in event->hw_config cleared.
2139 *
2140 * If the event is attached to a task which is on a CPU we use a smp
2141 * call to enable it in the task context. The task might have been
2142 * scheduled away, but we check this in the smp call again.
2143 */
2144 static void
2145 perf_install_in_context(struct perf_event_context *ctx,
2146 struct perf_event *event,
2147 int cpu)
2148 {
2149 lockdep_assert_held(&ctx->mutex);
2150
2151 event->ctx = ctx;
2152 if (event->cpu != -1)
2153 event->cpu = cpu;
2154
2155 event_function_call(event, __perf_install_in_context,
2156 ___perf_install_in_context, event);
2157 }
2158
2159 /*
2160 * Put a event into inactive state and update time fields.
2161 * Enabling the leader of a group effectively enables all
2162 * the group members that aren't explicitly disabled, so we
2163 * have to update their ->tstamp_enabled also.
2164 * Note: this works for group members as well as group leaders
2165 * since the non-leader members' sibling_lists will be empty.
2166 */
2167 static void __perf_event_mark_enabled(struct perf_event *event)
2168 {
2169 struct perf_event *sub;
2170 u64 tstamp = perf_event_time(event);
2171
2172 event->state = PERF_EVENT_STATE_INACTIVE;
2173 event->tstamp_enabled = tstamp - event->total_time_enabled;
2174 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2175 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2176 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2177 }
2178 }
2179
2180 /*
2181 * Cross CPU call to enable a performance event
2182 */
2183 static int __perf_event_enable(void *info)
2184 {
2185 struct perf_event *event = info;
2186 struct perf_event_context *ctx = event->ctx;
2187 struct perf_event *leader = event->group_leader;
2188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2189 int err;
2190
2191 /*
2192 * There's a time window between 'ctx->is_active' check
2193 * in perf_event_enable function and this place having:
2194 * - IRQs on
2195 * - ctx->lock unlocked
2196 *
2197 * where the task could be killed and 'ctx' deactivated
2198 * by perf_event_exit_task.
2199 */
2200 if (!ctx->is_active)
2201 return -EINVAL;
2202
2203 raw_spin_lock(&ctx->lock);
2204 update_context_time(ctx);
2205
2206 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2207 goto unlock;
2208
2209 /*
2210 * set current task's cgroup time reference point
2211 */
2212 perf_cgroup_set_timestamp(current, ctx);
2213
2214 __perf_event_mark_enabled(event);
2215
2216 if (!event_filter_match(event)) {
2217 if (is_cgroup_event(event))
2218 perf_cgroup_defer_enabled(event);
2219 goto unlock;
2220 }
2221
2222 /*
2223 * If the event is in a group and isn't the group leader,
2224 * then don't put it on unless the group is on.
2225 */
2226 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2227 goto unlock;
2228
2229 if (!group_can_go_on(event, cpuctx, 1)) {
2230 err = -EEXIST;
2231 } else {
2232 if (event == leader)
2233 err = group_sched_in(event, cpuctx, ctx);
2234 else
2235 err = event_sched_in(event, cpuctx, ctx);
2236 }
2237
2238 if (err) {
2239 /*
2240 * If this event can't go on and it's part of a
2241 * group, then the whole group has to come off.
2242 */
2243 if (leader != event) {
2244 group_sched_out(leader, cpuctx, ctx);
2245 perf_mux_hrtimer_restart(cpuctx);
2246 }
2247 if (leader->attr.pinned) {
2248 update_group_times(leader);
2249 leader->state = PERF_EVENT_STATE_ERROR;
2250 }
2251 }
2252
2253 unlock:
2254 raw_spin_unlock(&ctx->lock);
2255
2256 return 0;
2257 }
2258
2259 void ___perf_event_enable(void *info)
2260 {
2261 __perf_event_mark_enabled((struct perf_event *)info);
2262 }
2263
2264 /*
2265 * Enable a event.
2266 *
2267 * If event->ctx is a cloned context, callers must make sure that
2268 * every task struct that event->ctx->task could possibly point to
2269 * remains valid. This condition is satisfied when called through
2270 * perf_event_for_each_child or perf_event_for_each as described
2271 * for perf_event_disable.
2272 */
2273 static void _perf_event_enable(struct perf_event *event)
2274 {
2275 struct perf_event_context *ctx = event->ctx;
2276
2277 raw_spin_lock_irq(&ctx->lock);
2278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2279 raw_spin_unlock_irq(&ctx->lock);
2280 return;
2281 }
2282
2283 /*
2284 * If the event is in error state, clear that first.
2285 *
2286 * That way, if we see the event in error state below, we know that it
2287 * has gone back into error state, as distinct from the task having
2288 * been scheduled away before the cross-call arrived.
2289 */
2290 if (event->state == PERF_EVENT_STATE_ERROR)
2291 event->state = PERF_EVENT_STATE_OFF;
2292 raw_spin_unlock_irq(&ctx->lock);
2293
2294 event_function_call(event, __perf_event_enable,
2295 ___perf_event_enable, event);
2296 }
2297
2298 /*
2299 * See perf_event_disable();
2300 */
2301 void perf_event_enable(struct perf_event *event)
2302 {
2303 struct perf_event_context *ctx;
2304
2305 ctx = perf_event_ctx_lock(event);
2306 _perf_event_enable(event);
2307 perf_event_ctx_unlock(event, ctx);
2308 }
2309 EXPORT_SYMBOL_GPL(perf_event_enable);
2310
2311 static int _perf_event_refresh(struct perf_event *event, int refresh)
2312 {
2313 /*
2314 * not supported on inherited events
2315 */
2316 if (event->attr.inherit || !is_sampling_event(event))
2317 return -EINVAL;
2318
2319 atomic_add(refresh, &event->event_limit);
2320 _perf_event_enable(event);
2321
2322 return 0;
2323 }
2324
2325 /*
2326 * See perf_event_disable()
2327 */
2328 int perf_event_refresh(struct perf_event *event, int refresh)
2329 {
2330 struct perf_event_context *ctx;
2331 int ret;
2332
2333 ctx = perf_event_ctx_lock(event);
2334 ret = _perf_event_refresh(event, refresh);
2335 perf_event_ctx_unlock(event, ctx);
2336
2337 return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(perf_event_refresh);
2340
2341 static void ctx_sched_out(struct perf_event_context *ctx,
2342 struct perf_cpu_context *cpuctx,
2343 enum event_type_t event_type)
2344 {
2345 struct perf_event *event;
2346 int is_active = ctx->is_active;
2347
2348 ctx->is_active &= ~event_type;
2349 if (likely(!ctx->nr_events))
2350 return;
2351
2352 update_context_time(ctx);
2353 update_cgrp_time_from_cpuctx(cpuctx);
2354 if (!ctx->nr_active)
2355 return;
2356
2357 perf_pmu_disable(ctx->pmu);
2358 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2359 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2360 group_sched_out(event, cpuctx, ctx);
2361 }
2362
2363 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2364 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2365 group_sched_out(event, cpuctx, ctx);
2366 }
2367 perf_pmu_enable(ctx->pmu);
2368 }
2369
2370 /*
2371 * Test whether two contexts are equivalent, i.e. whether they have both been
2372 * cloned from the same version of the same context.
2373 *
2374 * Equivalence is measured using a generation number in the context that is
2375 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2376 * and list_del_event().
2377 */
2378 static int context_equiv(struct perf_event_context *ctx1,
2379 struct perf_event_context *ctx2)
2380 {
2381 lockdep_assert_held(&ctx1->lock);
2382 lockdep_assert_held(&ctx2->lock);
2383
2384 /* Pinning disables the swap optimization */
2385 if (ctx1->pin_count || ctx2->pin_count)
2386 return 0;
2387
2388 /* If ctx1 is the parent of ctx2 */
2389 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2390 return 1;
2391
2392 /* If ctx2 is the parent of ctx1 */
2393 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2394 return 1;
2395
2396 /*
2397 * If ctx1 and ctx2 have the same parent; we flatten the parent
2398 * hierarchy, see perf_event_init_context().
2399 */
2400 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2401 ctx1->parent_gen == ctx2->parent_gen)
2402 return 1;
2403
2404 /* Unmatched */
2405 return 0;
2406 }
2407
2408 static void __perf_event_sync_stat(struct perf_event *event,
2409 struct perf_event *next_event)
2410 {
2411 u64 value;
2412
2413 if (!event->attr.inherit_stat)
2414 return;
2415
2416 /*
2417 * Update the event value, we cannot use perf_event_read()
2418 * because we're in the middle of a context switch and have IRQs
2419 * disabled, which upsets smp_call_function_single(), however
2420 * we know the event must be on the current CPU, therefore we
2421 * don't need to use it.
2422 */
2423 switch (event->state) {
2424 case PERF_EVENT_STATE_ACTIVE:
2425 event->pmu->read(event);
2426 /* fall-through */
2427
2428 case PERF_EVENT_STATE_INACTIVE:
2429 update_event_times(event);
2430 break;
2431
2432 default:
2433 break;
2434 }
2435
2436 /*
2437 * In order to keep per-task stats reliable we need to flip the event
2438 * values when we flip the contexts.
2439 */
2440 value = local64_read(&next_event->count);
2441 value = local64_xchg(&event->count, value);
2442 local64_set(&next_event->count, value);
2443
2444 swap(event->total_time_enabled, next_event->total_time_enabled);
2445 swap(event->total_time_running, next_event->total_time_running);
2446
2447 /*
2448 * Since we swizzled the values, update the user visible data too.
2449 */
2450 perf_event_update_userpage(event);
2451 perf_event_update_userpage(next_event);
2452 }
2453
2454 static void perf_event_sync_stat(struct perf_event_context *ctx,
2455 struct perf_event_context *next_ctx)
2456 {
2457 struct perf_event *event, *next_event;
2458
2459 if (!ctx->nr_stat)
2460 return;
2461
2462 update_context_time(ctx);
2463
2464 event = list_first_entry(&ctx->event_list,
2465 struct perf_event, event_entry);
2466
2467 next_event = list_first_entry(&next_ctx->event_list,
2468 struct perf_event, event_entry);
2469
2470 while (&event->event_entry != &ctx->event_list &&
2471 &next_event->event_entry != &next_ctx->event_list) {
2472
2473 __perf_event_sync_stat(event, next_event);
2474
2475 event = list_next_entry(event, event_entry);
2476 next_event = list_next_entry(next_event, event_entry);
2477 }
2478 }
2479
2480 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2481 struct task_struct *next)
2482 {
2483 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2484 struct perf_event_context *next_ctx;
2485 struct perf_event_context *parent, *next_parent;
2486 struct perf_cpu_context *cpuctx;
2487 int do_switch = 1;
2488
2489 if (likely(!ctx))
2490 return;
2491
2492 cpuctx = __get_cpu_context(ctx);
2493 if (!cpuctx->task_ctx)
2494 return;
2495
2496 rcu_read_lock();
2497 next_ctx = next->perf_event_ctxp[ctxn];
2498 if (!next_ctx)
2499 goto unlock;
2500
2501 parent = rcu_dereference(ctx->parent_ctx);
2502 next_parent = rcu_dereference(next_ctx->parent_ctx);
2503
2504 /* If neither context have a parent context; they cannot be clones. */
2505 if (!parent && !next_parent)
2506 goto unlock;
2507
2508 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2509 /*
2510 * Looks like the two contexts are clones, so we might be
2511 * able to optimize the context switch. We lock both
2512 * contexts and check that they are clones under the
2513 * lock (including re-checking that neither has been
2514 * uncloned in the meantime). It doesn't matter which
2515 * order we take the locks because no other cpu could
2516 * be trying to lock both of these tasks.
2517 */
2518 raw_spin_lock(&ctx->lock);
2519 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2520 if (context_equiv(ctx, next_ctx)) {
2521 /*
2522 * XXX do we need a memory barrier of sorts
2523 * wrt to rcu_dereference() of perf_event_ctxp
2524 */
2525 task->perf_event_ctxp[ctxn] = next_ctx;
2526 next->perf_event_ctxp[ctxn] = ctx;
2527 ctx->task = next;
2528 next_ctx->task = task;
2529
2530 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2531
2532 do_switch = 0;
2533
2534 perf_event_sync_stat(ctx, next_ctx);
2535 }
2536 raw_spin_unlock(&next_ctx->lock);
2537 raw_spin_unlock(&ctx->lock);
2538 }
2539 unlock:
2540 rcu_read_unlock();
2541
2542 if (do_switch) {
2543 raw_spin_lock(&ctx->lock);
2544 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2545 cpuctx->task_ctx = NULL;
2546 raw_spin_unlock(&ctx->lock);
2547 }
2548 }
2549
2550 void perf_sched_cb_dec(struct pmu *pmu)
2551 {
2552 this_cpu_dec(perf_sched_cb_usages);
2553 }
2554
2555 void perf_sched_cb_inc(struct pmu *pmu)
2556 {
2557 this_cpu_inc(perf_sched_cb_usages);
2558 }
2559
2560 /*
2561 * This function provides the context switch callback to the lower code
2562 * layer. It is invoked ONLY when the context switch callback is enabled.
2563 */
2564 static void perf_pmu_sched_task(struct task_struct *prev,
2565 struct task_struct *next,
2566 bool sched_in)
2567 {
2568 struct perf_cpu_context *cpuctx;
2569 struct pmu *pmu;
2570 unsigned long flags;
2571
2572 if (prev == next)
2573 return;
2574
2575 local_irq_save(flags);
2576
2577 rcu_read_lock();
2578
2579 list_for_each_entry_rcu(pmu, &pmus, entry) {
2580 if (pmu->sched_task) {
2581 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2582
2583 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2584
2585 perf_pmu_disable(pmu);
2586
2587 pmu->sched_task(cpuctx->task_ctx, sched_in);
2588
2589 perf_pmu_enable(pmu);
2590
2591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2592 }
2593 }
2594
2595 rcu_read_unlock();
2596
2597 local_irq_restore(flags);
2598 }
2599
2600 static void perf_event_switch(struct task_struct *task,
2601 struct task_struct *next_prev, bool sched_in);
2602
2603 #define for_each_task_context_nr(ctxn) \
2604 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2605
2606 /*
2607 * Called from scheduler to remove the events of the current task,
2608 * with interrupts disabled.
2609 *
2610 * We stop each event and update the event value in event->count.
2611 *
2612 * This does not protect us against NMI, but disable()
2613 * sets the disabled bit in the control field of event _before_
2614 * accessing the event control register. If a NMI hits, then it will
2615 * not restart the event.
2616 */
2617 void __perf_event_task_sched_out(struct task_struct *task,
2618 struct task_struct *next)
2619 {
2620 int ctxn;
2621
2622 if (__this_cpu_read(perf_sched_cb_usages))
2623 perf_pmu_sched_task(task, next, false);
2624
2625 if (atomic_read(&nr_switch_events))
2626 perf_event_switch(task, next, false);
2627
2628 for_each_task_context_nr(ctxn)
2629 perf_event_context_sched_out(task, ctxn, next);
2630
2631 /*
2632 * if cgroup events exist on this CPU, then we need
2633 * to check if we have to switch out PMU state.
2634 * cgroup event are system-wide mode only
2635 */
2636 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2637 perf_cgroup_sched_out(task, next);
2638 }
2639
2640 static void task_ctx_sched_out(struct perf_event_context *ctx)
2641 {
2642 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2643
2644 if (!cpuctx->task_ctx)
2645 return;
2646
2647 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2648 return;
2649
2650 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2651 cpuctx->task_ctx = NULL;
2652 }
2653
2654 /*
2655 * Called with IRQs disabled
2656 */
2657 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2658 enum event_type_t event_type)
2659 {
2660 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2661 }
2662
2663 static void
2664 ctx_pinned_sched_in(struct perf_event_context *ctx,
2665 struct perf_cpu_context *cpuctx)
2666 {
2667 struct perf_event *event;
2668
2669 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2670 if (event->state <= PERF_EVENT_STATE_OFF)
2671 continue;
2672 if (!event_filter_match(event))
2673 continue;
2674
2675 /* may need to reset tstamp_enabled */
2676 if (is_cgroup_event(event))
2677 perf_cgroup_mark_enabled(event, ctx);
2678
2679 if (group_can_go_on(event, cpuctx, 1))
2680 group_sched_in(event, cpuctx, ctx);
2681
2682 /*
2683 * If this pinned group hasn't been scheduled,
2684 * put it in error state.
2685 */
2686 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2687 update_group_times(event);
2688 event->state = PERF_EVENT_STATE_ERROR;
2689 }
2690 }
2691 }
2692
2693 static void
2694 ctx_flexible_sched_in(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx)
2696 {
2697 struct perf_event *event;
2698 int can_add_hw = 1;
2699
2700 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2701 /* Ignore events in OFF or ERROR state */
2702 if (event->state <= PERF_EVENT_STATE_OFF)
2703 continue;
2704 /*
2705 * Listen to the 'cpu' scheduling filter constraint
2706 * of events:
2707 */
2708 if (!event_filter_match(event))
2709 continue;
2710
2711 /* may need to reset tstamp_enabled */
2712 if (is_cgroup_event(event))
2713 perf_cgroup_mark_enabled(event, ctx);
2714
2715 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2716 if (group_sched_in(event, cpuctx, ctx))
2717 can_add_hw = 0;
2718 }
2719 }
2720 }
2721
2722 static void
2723 ctx_sched_in(struct perf_event_context *ctx,
2724 struct perf_cpu_context *cpuctx,
2725 enum event_type_t event_type,
2726 struct task_struct *task)
2727 {
2728 u64 now;
2729 int is_active = ctx->is_active;
2730
2731 ctx->is_active |= event_type;
2732 if (likely(!ctx->nr_events))
2733 return;
2734
2735 now = perf_clock();
2736 ctx->timestamp = now;
2737 perf_cgroup_set_timestamp(task, ctx);
2738 /*
2739 * First go through the list and put on any pinned groups
2740 * in order to give them the best chance of going on.
2741 */
2742 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2743 ctx_pinned_sched_in(ctx, cpuctx);
2744
2745 /* Then walk through the lower prio flexible groups */
2746 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2747 ctx_flexible_sched_in(ctx, cpuctx);
2748 }
2749
2750 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type,
2752 struct task_struct *task)
2753 {
2754 struct perf_event_context *ctx = &cpuctx->ctx;
2755
2756 ctx_sched_in(ctx, cpuctx, event_type, task);
2757 }
2758
2759 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2760 struct task_struct *task)
2761 {
2762 struct perf_cpu_context *cpuctx;
2763
2764 cpuctx = __get_cpu_context(ctx);
2765 if (cpuctx->task_ctx == ctx)
2766 return;
2767
2768 perf_ctx_lock(cpuctx, ctx);
2769 perf_pmu_disable(ctx->pmu);
2770 /*
2771 * We want to keep the following priority order:
2772 * cpu pinned (that don't need to move), task pinned,
2773 * cpu flexible, task flexible.
2774 */
2775 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2776
2777 if (ctx->nr_events)
2778 cpuctx->task_ctx = ctx;
2779
2780 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2781
2782 perf_pmu_enable(ctx->pmu);
2783 perf_ctx_unlock(cpuctx, ctx);
2784 }
2785
2786 /*
2787 * Called from scheduler to add the events of the current task
2788 * with interrupts disabled.
2789 *
2790 * We restore the event value and then enable it.
2791 *
2792 * This does not protect us against NMI, but enable()
2793 * sets the enabled bit in the control field of event _before_
2794 * accessing the event control register. If a NMI hits, then it will
2795 * keep the event running.
2796 */
2797 void __perf_event_task_sched_in(struct task_struct *prev,
2798 struct task_struct *task)
2799 {
2800 struct perf_event_context *ctx;
2801 int ctxn;
2802
2803 for_each_task_context_nr(ctxn) {
2804 ctx = task->perf_event_ctxp[ctxn];
2805 if (likely(!ctx))
2806 continue;
2807
2808 perf_event_context_sched_in(ctx, task);
2809 }
2810 /*
2811 * if cgroup events exist on this CPU, then we need
2812 * to check if we have to switch in PMU state.
2813 * cgroup event are system-wide mode only
2814 */
2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2816 perf_cgroup_sched_in(prev, task);
2817
2818 if (atomic_read(&nr_switch_events))
2819 perf_event_switch(task, prev, true);
2820
2821 if (__this_cpu_read(perf_sched_cb_usages))
2822 perf_pmu_sched_task(prev, task, true);
2823 }
2824
2825 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2826 {
2827 u64 frequency = event->attr.sample_freq;
2828 u64 sec = NSEC_PER_SEC;
2829 u64 divisor, dividend;
2830
2831 int count_fls, nsec_fls, frequency_fls, sec_fls;
2832
2833 count_fls = fls64(count);
2834 nsec_fls = fls64(nsec);
2835 frequency_fls = fls64(frequency);
2836 sec_fls = 30;
2837
2838 /*
2839 * We got @count in @nsec, with a target of sample_freq HZ
2840 * the target period becomes:
2841 *
2842 * @count * 10^9
2843 * period = -------------------
2844 * @nsec * sample_freq
2845 *
2846 */
2847
2848 /*
2849 * Reduce accuracy by one bit such that @a and @b converge
2850 * to a similar magnitude.
2851 */
2852 #define REDUCE_FLS(a, b) \
2853 do { \
2854 if (a##_fls > b##_fls) { \
2855 a >>= 1; \
2856 a##_fls--; \
2857 } else { \
2858 b >>= 1; \
2859 b##_fls--; \
2860 } \
2861 } while (0)
2862
2863 /*
2864 * Reduce accuracy until either term fits in a u64, then proceed with
2865 * the other, so that finally we can do a u64/u64 division.
2866 */
2867 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2868 REDUCE_FLS(nsec, frequency);
2869 REDUCE_FLS(sec, count);
2870 }
2871
2872 if (count_fls + sec_fls > 64) {
2873 divisor = nsec * frequency;
2874
2875 while (count_fls + sec_fls > 64) {
2876 REDUCE_FLS(count, sec);
2877 divisor >>= 1;
2878 }
2879
2880 dividend = count * sec;
2881 } else {
2882 dividend = count * sec;
2883
2884 while (nsec_fls + frequency_fls > 64) {
2885 REDUCE_FLS(nsec, frequency);
2886 dividend >>= 1;
2887 }
2888
2889 divisor = nsec * frequency;
2890 }
2891
2892 if (!divisor)
2893 return dividend;
2894
2895 return div64_u64(dividend, divisor);
2896 }
2897
2898 static DEFINE_PER_CPU(int, perf_throttled_count);
2899 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2900
2901 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2902 {
2903 struct hw_perf_event *hwc = &event->hw;
2904 s64 period, sample_period;
2905 s64 delta;
2906
2907 period = perf_calculate_period(event, nsec, count);
2908
2909 delta = (s64)(period - hwc->sample_period);
2910 delta = (delta + 7) / 8; /* low pass filter */
2911
2912 sample_period = hwc->sample_period + delta;
2913
2914 if (!sample_period)
2915 sample_period = 1;
2916
2917 hwc->sample_period = sample_period;
2918
2919 if (local64_read(&hwc->period_left) > 8*sample_period) {
2920 if (disable)
2921 event->pmu->stop(event, PERF_EF_UPDATE);
2922
2923 local64_set(&hwc->period_left, 0);
2924
2925 if (disable)
2926 event->pmu->start(event, PERF_EF_RELOAD);
2927 }
2928 }
2929
2930 /*
2931 * combine freq adjustment with unthrottling to avoid two passes over the
2932 * events. At the same time, make sure, having freq events does not change
2933 * the rate of unthrottling as that would introduce bias.
2934 */
2935 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2936 int needs_unthr)
2937 {
2938 struct perf_event *event;
2939 struct hw_perf_event *hwc;
2940 u64 now, period = TICK_NSEC;
2941 s64 delta;
2942
2943 /*
2944 * only need to iterate over all events iff:
2945 * - context have events in frequency mode (needs freq adjust)
2946 * - there are events to unthrottle on this cpu
2947 */
2948 if (!(ctx->nr_freq || needs_unthr))
2949 return;
2950
2951 raw_spin_lock(&ctx->lock);
2952 perf_pmu_disable(ctx->pmu);
2953
2954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2955 if (event->state != PERF_EVENT_STATE_ACTIVE)
2956 continue;
2957
2958 if (!event_filter_match(event))
2959 continue;
2960
2961 perf_pmu_disable(event->pmu);
2962
2963 hwc = &event->hw;
2964
2965 if (hwc->interrupts == MAX_INTERRUPTS) {
2966 hwc->interrupts = 0;
2967 perf_log_throttle(event, 1);
2968 event->pmu->start(event, 0);
2969 }
2970
2971 if (!event->attr.freq || !event->attr.sample_freq)
2972 goto next;
2973
2974 /*
2975 * stop the event and update event->count
2976 */
2977 event->pmu->stop(event, PERF_EF_UPDATE);
2978
2979 now = local64_read(&event->count);
2980 delta = now - hwc->freq_count_stamp;
2981 hwc->freq_count_stamp = now;
2982
2983 /*
2984 * restart the event
2985 * reload only if value has changed
2986 * we have stopped the event so tell that
2987 * to perf_adjust_period() to avoid stopping it
2988 * twice.
2989 */
2990 if (delta > 0)
2991 perf_adjust_period(event, period, delta, false);
2992
2993 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2994 next:
2995 perf_pmu_enable(event->pmu);
2996 }
2997
2998 perf_pmu_enable(ctx->pmu);
2999 raw_spin_unlock(&ctx->lock);
3000 }
3001
3002 /*
3003 * Round-robin a context's events:
3004 */
3005 static void rotate_ctx(struct perf_event_context *ctx)
3006 {
3007 /*
3008 * Rotate the first entry last of non-pinned groups. Rotation might be
3009 * disabled by the inheritance code.
3010 */
3011 if (!ctx->rotate_disable)
3012 list_rotate_left(&ctx->flexible_groups);
3013 }
3014
3015 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3016 {
3017 struct perf_event_context *ctx = NULL;
3018 int rotate = 0;
3019
3020 if (cpuctx->ctx.nr_events) {
3021 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3022 rotate = 1;
3023 }
3024
3025 ctx = cpuctx->task_ctx;
3026 if (ctx && ctx->nr_events) {
3027 if (ctx->nr_events != ctx->nr_active)
3028 rotate = 1;
3029 }
3030
3031 if (!rotate)
3032 goto done;
3033
3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035 perf_pmu_disable(cpuctx->ctx.pmu);
3036
3037 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3038 if (ctx)
3039 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3040
3041 rotate_ctx(&cpuctx->ctx);
3042 if (ctx)
3043 rotate_ctx(ctx);
3044
3045 perf_event_sched_in(cpuctx, ctx, current);
3046
3047 perf_pmu_enable(cpuctx->ctx.pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 done:
3050
3051 return rotate;
3052 }
3053
3054 #ifdef CONFIG_NO_HZ_FULL
3055 bool perf_event_can_stop_tick(void)
3056 {
3057 if (atomic_read(&nr_freq_events) ||
3058 __this_cpu_read(perf_throttled_count))
3059 return false;
3060 else
3061 return true;
3062 }
3063 #endif
3064
3065 void perf_event_task_tick(void)
3066 {
3067 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3068 struct perf_event_context *ctx, *tmp;
3069 int throttled;
3070
3071 WARN_ON(!irqs_disabled());
3072
3073 __this_cpu_inc(perf_throttled_seq);
3074 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3075
3076 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3077 perf_adjust_freq_unthr_context(ctx, throttled);
3078 }
3079
3080 static int event_enable_on_exec(struct perf_event *event,
3081 struct perf_event_context *ctx)
3082 {
3083 if (!event->attr.enable_on_exec)
3084 return 0;
3085
3086 event->attr.enable_on_exec = 0;
3087 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3088 return 0;
3089
3090 __perf_event_mark_enabled(event);
3091
3092 return 1;
3093 }
3094
3095 /*
3096 * Enable all of a task's events that have been marked enable-on-exec.
3097 * This expects task == current.
3098 */
3099 static void perf_event_enable_on_exec(int ctxn)
3100 {
3101 struct perf_event_context *ctx, *clone_ctx = NULL;
3102 struct perf_event *event;
3103 unsigned long flags;
3104 int enabled = 0;
3105 int ret;
3106
3107 local_irq_save(flags);
3108 ctx = current->perf_event_ctxp[ctxn];
3109 if (!ctx || !ctx->nr_events)
3110 goto out;
3111
3112 /*
3113 * We must ctxsw out cgroup events to avoid conflict
3114 * when invoking perf_task_event_sched_in() later on
3115 * in this function. Otherwise we end up trying to
3116 * ctxswin cgroup events which are already scheduled
3117 * in.
3118 */
3119 perf_cgroup_sched_out(current, NULL);
3120
3121 raw_spin_lock(&ctx->lock);
3122 task_ctx_sched_out(ctx);
3123
3124 list_for_each_entry(event, &ctx->event_list, event_entry) {
3125 ret = event_enable_on_exec(event, ctx);
3126 if (ret)
3127 enabled = 1;
3128 }
3129
3130 /*
3131 * Unclone this context if we enabled any event.
3132 */
3133 if (enabled)
3134 clone_ctx = unclone_ctx(ctx);
3135
3136 raw_spin_unlock(&ctx->lock);
3137
3138 /*
3139 * Also calls ctxswin for cgroup events, if any:
3140 */
3141 perf_event_context_sched_in(ctx, ctx->task);
3142 out:
3143 local_irq_restore(flags);
3144
3145 if (clone_ctx)
3146 put_ctx(clone_ctx);
3147 }
3148
3149 void perf_event_exec(void)
3150 {
3151 int ctxn;
3152
3153 rcu_read_lock();
3154 for_each_task_context_nr(ctxn)
3155 perf_event_enable_on_exec(ctxn);
3156 rcu_read_unlock();
3157 }
3158
3159 struct perf_read_data {
3160 struct perf_event *event;
3161 bool group;
3162 int ret;
3163 };
3164
3165 /*
3166 * Cross CPU call to read the hardware event
3167 */
3168 static void __perf_event_read(void *info)
3169 {
3170 struct perf_read_data *data = info;
3171 struct perf_event *sub, *event = data->event;
3172 struct perf_event_context *ctx = event->ctx;
3173 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3174 struct pmu *pmu = event->pmu;
3175
3176 /*
3177 * If this is a task context, we need to check whether it is
3178 * the current task context of this cpu. If not it has been
3179 * scheduled out before the smp call arrived. In that case
3180 * event->count would have been updated to a recent sample
3181 * when the event was scheduled out.
3182 */
3183 if (ctx->task && cpuctx->task_ctx != ctx)
3184 return;
3185
3186 raw_spin_lock(&ctx->lock);
3187 if (ctx->is_active) {
3188 update_context_time(ctx);
3189 update_cgrp_time_from_event(event);
3190 }
3191
3192 update_event_times(event);
3193 if (event->state != PERF_EVENT_STATE_ACTIVE)
3194 goto unlock;
3195
3196 if (!data->group) {
3197 pmu->read(event);
3198 data->ret = 0;
3199 goto unlock;
3200 }
3201
3202 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3203
3204 pmu->read(event);
3205
3206 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3207 update_event_times(sub);
3208 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3209 /*
3210 * Use sibling's PMU rather than @event's since
3211 * sibling could be on different (eg: software) PMU.
3212 */
3213 sub->pmu->read(sub);
3214 }
3215 }
3216
3217 data->ret = pmu->commit_txn(pmu);
3218
3219 unlock:
3220 raw_spin_unlock(&ctx->lock);
3221 }
3222
3223 static inline u64 perf_event_count(struct perf_event *event)
3224 {
3225 if (event->pmu->count)
3226 return event->pmu->count(event);
3227
3228 return __perf_event_count(event);
3229 }
3230
3231 /*
3232 * NMI-safe method to read a local event, that is an event that
3233 * is:
3234 * - either for the current task, or for this CPU
3235 * - does not have inherit set, for inherited task events
3236 * will not be local and we cannot read them atomically
3237 * - must not have a pmu::count method
3238 */
3239 u64 perf_event_read_local(struct perf_event *event)
3240 {
3241 unsigned long flags;
3242 u64 val;
3243
3244 /*
3245 * Disabling interrupts avoids all counter scheduling (context
3246 * switches, timer based rotation and IPIs).
3247 */
3248 local_irq_save(flags);
3249
3250 /* If this is a per-task event, it must be for current */
3251 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3252 event->hw.target != current);
3253
3254 /* If this is a per-CPU event, it must be for this CPU */
3255 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3256 event->cpu != smp_processor_id());
3257
3258 /*
3259 * It must not be an event with inherit set, we cannot read
3260 * all child counters from atomic context.
3261 */
3262 WARN_ON_ONCE(event->attr.inherit);
3263
3264 /*
3265 * It must not have a pmu::count method, those are not
3266 * NMI safe.
3267 */
3268 WARN_ON_ONCE(event->pmu->count);
3269
3270 /*
3271 * If the event is currently on this CPU, its either a per-task event,
3272 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3273 * oncpu == -1).
3274 */
3275 if (event->oncpu == smp_processor_id())
3276 event->pmu->read(event);
3277
3278 val = local64_read(&event->count);
3279 local_irq_restore(flags);
3280
3281 return val;
3282 }
3283
3284 static int perf_event_read(struct perf_event *event, bool group)
3285 {
3286 int ret = 0;
3287
3288 /*
3289 * If event is enabled and currently active on a CPU, update the
3290 * value in the event structure:
3291 */
3292 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3293 struct perf_read_data data = {
3294 .event = event,
3295 .group = group,
3296 .ret = 0,
3297 };
3298 smp_call_function_single(event->oncpu,
3299 __perf_event_read, &data, 1);
3300 ret = data.ret;
3301 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3302 struct perf_event_context *ctx = event->ctx;
3303 unsigned long flags;
3304
3305 raw_spin_lock_irqsave(&ctx->lock, flags);
3306 /*
3307 * may read while context is not active
3308 * (e.g., thread is blocked), in that case
3309 * we cannot update context time
3310 */
3311 if (ctx->is_active) {
3312 update_context_time(ctx);
3313 update_cgrp_time_from_event(event);
3314 }
3315 if (group)
3316 update_group_times(event);
3317 else
3318 update_event_times(event);
3319 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3320 }
3321
3322 return ret;
3323 }
3324
3325 /*
3326 * Initialize the perf_event context in a task_struct:
3327 */
3328 static void __perf_event_init_context(struct perf_event_context *ctx)
3329 {
3330 raw_spin_lock_init(&ctx->lock);
3331 mutex_init(&ctx->mutex);
3332 INIT_LIST_HEAD(&ctx->active_ctx_list);
3333 INIT_LIST_HEAD(&ctx->pinned_groups);
3334 INIT_LIST_HEAD(&ctx->flexible_groups);
3335 INIT_LIST_HEAD(&ctx->event_list);
3336 atomic_set(&ctx->refcount, 1);
3337 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3338 }
3339
3340 static struct perf_event_context *
3341 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3342 {
3343 struct perf_event_context *ctx;
3344
3345 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3346 if (!ctx)
3347 return NULL;
3348
3349 __perf_event_init_context(ctx);
3350 if (task) {
3351 ctx->task = task;
3352 get_task_struct(task);
3353 }
3354 ctx->pmu = pmu;
3355
3356 return ctx;
3357 }
3358
3359 static struct task_struct *
3360 find_lively_task_by_vpid(pid_t vpid)
3361 {
3362 struct task_struct *task;
3363 int err;
3364
3365 rcu_read_lock();
3366 if (!vpid)
3367 task = current;
3368 else
3369 task = find_task_by_vpid(vpid);
3370 if (task)
3371 get_task_struct(task);
3372 rcu_read_unlock();
3373
3374 if (!task)
3375 return ERR_PTR(-ESRCH);
3376
3377 /* Reuse ptrace permission checks for now. */
3378 err = -EACCES;
3379 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3380 goto errout;
3381
3382 return task;
3383 errout:
3384 put_task_struct(task);
3385 return ERR_PTR(err);
3386
3387 }
3388
3389 /*
3390 * Returns a matching context with refcount and pincount.
3391 */
3392 static struct perf_event_context *
3393 find_get_context(struct pmu *pmu, struct task_struct *task,
3394 struct perf_event *event)
3395 {
3396 struct perf_event_context *ctx, *clone_ctx = NULL;
3397 struct perf_cpu_context *cpuctx;
3398 void *task_ctx_data = NULL;
3399 unsigned long flags;
3400 int ctxn, err;
3401 int cpu = event->cpu;
3402
3403 if (!task) {
3404 /* Must be root to operate on a CPU event: */
3405 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3406 return ERR_PTR(-EACCES);
3407
3408 /*
3409 * We could be clever and allow to attach a event to an
3410 * offline CPU and activate it when the CPU comes up, but
3411 * that's for later.
3412 */
3413 if (!cpu_online(cpu))
3414 return ERR_PTR(-ENODEV);
3415
3416 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3417 ctx = &cpuctx->ctx;
3418 get_ctx(ctx);
3419 ++ctx->pin_count;
3420
3421 return ctx;
3422 }
3423
3424 err = -EINVAL;
3425 ctxn = pmu->task_ctx_nr;
3426 if (ctxn < 0)
3427 goto errout;
3428
3429 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3430 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3431 if (!task_ctx_data) {
3432 err = -ENOMEM;
3433 goto errout;
3434 }
3435 }
3436
3437 retry:
3438 ctx = perf_lock_task_context(task, ctxn, &flags);
3439 if (ctx) {
3440 clone_ctx = unclone_ctx(ctx);
3441 ++ctx->pin_count;
3442
3443 if (task_ctx_data && !ctx->task_ctx_data) {
3444 ctx->task_ctx_data = task_ctx_data;
3445 task_ctx_data = NULL;
3446 }
3447 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3448
3449 if (clone_ctx)
3450 put_ctx(clone_ctx);
3451 } else {
3452 ctx = alloc_perf_context(pmu, task);
3453 err = -ENOMEM;
3454 if (!ctx)
3455 goto errout;
3456
3457 if (task_ctx_data) {
3458 ctx->task_ctx_data = task_ctx_data;
3459 task_ctx_data = NULL;
3460 }
3461
3462 err = 0;
3463 mutex_lock(&task->perf_event_mutex);
3464 /*
3465 * If it has already passed perf_event_exit_task().
3466 * we must see PF_EXITING, it takes this mutex too.
3467 */
3468 if (task->flags & PF_EXITING)
3469 err = -ESRCH;
3470 else if (task->perf_event_ctxp[ctxn])
3471 err = -EAGAIN;
3472 else {
3473 get_ctx(ctx);
3474 ++ctx->pin_count;
3475 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3476 }
3477 mutex_unlock(&task->perf_event_mutex);
3478
3479 if (unlikely(err)) {
3480 put_ctx(ctx);
3481
3482 if (err == -EAGAIN)
3483 goto retry;
3484 goto errout;
3485 }
3486 }
3487
3488 kfree(task_ctx_data);
3489 return ctx;
3490
3491 errout:
3492 kfree(task_ctx_data);
3493 return ERR_PTR(err);
3494 }
3495
3496 static void perf_event_free_filter(struct perf_event *event);
3497 static void perf_event_free_bpf_prog(struct perf_event *event);
3498
3499 static void free_event_rcu(struct rcu_head *head)
3500 {
3501 struct perf_event *event;
3502
3503 event = container_of(head, struct perf_event, rcu_head);
3504 if (event->ns)
3505 put_pid_ns(event->ns);
3506 perf_event_free_filter(event);
3507 kfree(event);
3508 }
3509
3510 static void ring_buffer_attach(struct perf_event *event,
3511 struct ring_buffer *rb);
3512
3513 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3514 {
3515 if (event->parent)
3516 return;
3517
3518 if (is_cgroup_event(event))
3519 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3520 }
3521
3522 static void unaccount_event(struct perf_event *event)
3523 {
3524 if (event->parent)
3525 return;
3526
3527 if (event->attach_state & PERF_ATTACH_TASK)
3528 static_key_slow_dec_deferred(&perf_sched_events);
3529 if (event->attr.mmap || event->attr.mmap_data)
3530 atomic_dec(&nr_mmap_events);
3531 if (event->attr.comm)
3532 atomic_dec(&nr_comm_events);
3533 if (event->attr.task)
3534 atomic_dec(&nr_task_events);
3535 if (event->attr.freq)
3536 atomic_dec(&nr_freq_events);
3537 if (event->attr.context_switch) {
3538 static_key_slow_dec_deferred(&perf_sched_events);
3539 atomic_dec(&nr_switch_events);
3540 }
3541 if (is_cgroup_event(event))
3542 static_key_slow_dec_deferred(&perf_sched_events);
3543 if (has_branch_stack(event))
3544 static_key_slow_dec_deferred(&perf_sched_events);
3545
3546 unaccount_event_cpu(event, event->cpu);
3547 }
3548
3549 /*
3550 * The following implement mutual exclusion of events on "exclusive" pmus
3551 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3552 * at a time, so we disallow creating events that might conflict, namely:
3553 *
3554 * 1) cpu-wide events in the presence of per-task events,
3555 * 2) per-task events in the presence of cpu-wide events,
3556 * 3) two matching events on the same context.
3557 *
3558 * The former two cases are handled in the allocation path (perf_event_alloc(),
3559 * __free_event()), the latter -- before the first perf_install_in_context().
3560 */
3561 static int exclusive_event_init(struct perf_event *event)
3562 {
3563 struct pmu *pmu = event->pmu;
3564
3565 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3566 return 0;
3567
3568 /*
3569 * Prevent co-existence of per-task and cpu-wide events on the
3570 * same exclusive pmu.
3571 *
3572 * Negative pmu::exclusive_cnt means there are cpu-wide
3573 * events on this "exclusive" pmu, positive means there are
3574 * per-task events.
3575 *
3576 * Since this is called in perf_event_alloc() path, event::ctx
3577 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3578 * to mean "per-task event", because unlike other attach states it
3579 * never gets cleared.
3580 */
3581 if (event->attach_state & PERF_ATTACH_TASK) {
3582 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3583 return -EBUSY;
3584 } else {
3585 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3586 return -EBUSY;
3587 }
3588
3589 return 0;
3590 }
3591
3592 static void exclusive_event_destroy(struct perf_event *event)
3593 {
3594 struct pmu *pmu = event->pmu;
3595
3596 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3597 return;
3598
3599 /* see comment in exclusive_event_init() */
3600 if (event->attach_state & PERF_ATTACH_TASK)
3601 atomic_dec(&pmu->exclusive_cnt);
3602 else
3603 atomic_inc(&pmu->exclusive_cnt);
3604 }
3605
3606 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3607 {
3608 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3609 (e1->cpu == e2->cpu ||
3610 e1->cpu == -1 ||
3611 e2->cpu == -1))
3612 return true;
3613 return false;
3614 }
3615
3616 /* Called under the same ctx::mutex as perf_install_in_context() */
3617 static bool exclusive_event_installable(struct perf_event *event,
3618 struct perf_event_context *ctx)
3619 {
3620 struct perf_event *iter_event;
3621 struct pmu *pmu = event->pmu;
3622
3623 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3624 return true;
3625
3626 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3627 if (exclusive_event_match(iter_event, event))
3628 return false;
3629 }
3630
3631 return true;
3632 }
3633
3634 static void __free_event(struct perf_event *event)
3635 {
3636 if (!event->parent) {
3637 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3638 put_callchain_buffers();
3639 }
3640
3641 perf_event_free_bpf_prog(event);
3642
3643 if (event->destroy)
3644 event->destroy(event);
3645
3646 if (event->ctx)
3647 put_ctx(event->ctx);
3648
3649 if (event->pmu) {
3650 exclusive_event_destroy(event);
3651 module_put(event->pmu->module);
3652 }
3653
3654 call_rcu(&event->rcu_head, free_event_rcu);
3655 }
3656
3657 static void _free_event(struct perf_event *event)
3658 {
3659 irq_work_sync(&event->pending);
3660
3661 unaccount_event(event);
3662
3663 if (event->rb) {
3664 /*
3665 * Can happen when we close an event with re-directed output.
3666 *
3667 * Since we have a 0 refcount, perf_mmap_close() will skip
3668 * over us; possibly making our ring_buffer_put() the last.
3669 */
3670 mutex_lock(&event->mmap_mutex);
3671 ring_buffer_attach(event, NULL);
3672 mutex_unlock(&event->mmap_mutex);
3673 }
3674
3675 if (is_cgroup_event(event))
3676 perf_detach_cgroup(event);
3677
3678 __free_event(event);
3679 }
3680
3681 /*
3682 * Used to free events which have a known refcount of 1, such as in error paths
3683 * where the event isn't exposed yet and inherited events.
3684 */
3685 static void free_event(struct perf_event *event)
3686 {
3687 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3688 "unexpected event refcount: %ld; ptr=%p\n",
3689 atomic_long_read(&event->refcount), event)) {
3690 /* leak to avoid use-after-free */
3691 return;
3692 }
3693
3694 _free_event(event);
3695 }
3696
3697 /*
3698 * Remove user event from the owner task.
3699 */
3700 static void perf_remove_from_owner(struct perf_event *event)
3701 {
3702 struct task_struct *owner;
3703
3704 rcu_read_lock();
3705 owner = ACCESS_ONCE(event->owner);
3706 /*
3707 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3708 * !owner it means the list deletion is complete and we can indeed
3709 * free this event, otherwise we need to serialize on
3710 * owner->perf_event_mutex.
3711 */
3712 smp_read_barrier_depends();
3713 if (owner) {
3714 /*
3715 * Since delayed_put_task_struct() also drops the last
3716 * task reference we can safely take a new reference
3717 * while holding the rcu_read_lock().
3718 */
3719 get_task_struct(owner);
3720 }
3721 rcu_read_unlock();
3722
3723 if (owner) {
3724 /*
3725 * If we're here through perf_event_exit_task() we're already
3726 * holding ctx->mutex which would be an inversion wrt. the
3727 * normal lock order.
3728 *
3729 * However we can safely take this lock because its the child
3730 * ctx->mutex.
3731 */
3732 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3733
3734 /*
3735 * We have to re-check the event->owner field, if it is cleared
3736 * we raced with perf_event_exit_task(), acquiring the mutex
3737 * ensured they're done, and we can proceed with freeing the
3738 * event.
3739 */
3740 if (event->owner)
3741 list_del_init(&event->owner_entry);
3742 mutex_unlock(&owner->perf_event_mutex);
3743 put_task_struct(owner);
3744 }
3745 }
3746
3747 static void put_event(struct perf_event *event)
3748 {
3749 struct perf_event_context *ctx;
3750
3751 if (!atomic_long_dec_and_test(&event->refcount))
3752 return;
3753
3754 if (!is_kernel_event(event))
3755 perf_remove_from_owner(event);
3756
3757 /*
3758 * There are two ways this annotation is useful:
3759 *
3760 * 1) there is a lock recursion from perf_event_exit_task
3761 * see the comment there.
3762 *
3763 * 2) there is a lock-inversion with mmap_sem through
3764 * perf_read_group(), which takes faults while
3765 * holding ctx->mutex, however this is called after
3766 * the last filedesc died, so there is no possibility
3767 * to trigger the AB-BA case.
3768 */
3769 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3770 WARN_ON_ONCE(ctx->parent_ctx);
3771 perf_remove_from_context(event, true);
3772 perf_event_ctx_unlock(event, ctx);
3773
3774 _free_event(event);
3775 }
3776
3777 int perf_event_release_kernel(struct perf_event *event)
3778 {
3779 put_event(event);
3780 return 0;
3781 }
3782 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3783
3784 /*
3785 * Called when the last reference to the file is gone.
3786 */
3787 static int perf_release(struct inode *inode, struct file *file)
3788 {
3789 put_event(file->private_data);
3790 return 0;
3791 }
3792
3793 /*
3794 * Remove all orphanes events from the context.
3795 */
3796 static void orphans_remove_work(struct work_struct *work)
3797 {
3798 struct perf_event_context *ctx;
3799 struct perf_event *event, *tmp;
3800
3801 ctx = container_of(work, struct perf_event_context,
3802 orphans_remove.work);
3803
3804 mutex_lock(&ctx->mutex);
3805 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3806 struct perf_event *parent_event = event->parent;
3807
3808 if (!is_orphaned_child(event))
3809 continue;
3810
3811 perf_remove_from_context(event, true);
3812
3813 mutex_lock(&parent_event->child_mutex);
3814 list_del_init(&event->child_list);
3815 mutex_unlock(&parent_event->child_mutex);
3816
3817 free_event(event);
3818 put_event(parent_event);
3819 }
3820
3821 raw_spin_lock_irq(&ctx->lock);
3822 ctx->orphans_remove_sched = false;
3823 raw_spin_unlock_irq(&ctx->lock);
3824 mutex_unlock(&ctx->mutex);
3825
3826 put_ctx(ctx);
3827 }
3828
3829 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3830 {
3831 struct perf_event *child;
3832 u64 total = 0;
3833
3834 *enabled = 0;
3835 *running = 0;
3836
3837 mutex_lock(&event->child_mutex);
3838
3839 (void)perf_event_read(event, false);
3840 total += perf_event_count(event);
3841
3842 *enabled += event->total_time_enabled +
3843 atomic64_read(&event->child_total_time_enabled);
3844 *running += event->total_time_running +
3845 atomic64_read(&event->child_total_time_running);
3846
3847 list_for_each_entry(child, &event->child_list, child_list) {
3848 (void)perf_event_read(child, false);
3849 total += perf_event_count(child);
3850 *enabled += child->total_time_enabled;
3851 *running += child->total_time_running;
3852 }
3853 mutex_unlock(&event->child_mutex);
3854
3855 return total;
3856 }
3857 EXPORT_SYMBOL_GPL(perf_event_read_value);
3858
3859 static int __perf_read_group_add(struct perf_event *leader,
3860 u64 read_format, u64 *values)
3861 {
3862 struct perf_event *sub;
3863 int n = 1; /* skip @nr */
3864 int ret;
3865
3866 ret = perf_event_read(leader, true);
3867 if (ret)
3868 return ret;
3869
3870 /*
3871 * Since we co-schedule groups, {enabled,running} times of siblings
3872 * will be identical to those of the leader, so we only publish one
3873 * set.
3874 */
3875 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3876 values[n++] += leader->total_time_enabled +
3877 atomic64_read(&leader->child_total_time_enabled);
3878 }
3879
3880 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3881 values[n++] += leader->total_time_running +
3882 atomic64_read(&leader->child_total_time_running);
3883 }
3884
3885 /*
3886 * Write {count,id} tuples for every sibling.
3887 */
3888 values[n++] += perf_event_count(leader);
3889 if (read_format & PERF_FORMAT_ID)
3890 values[n++] = primary_event_id(leader);
3891
3892 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893 values[n++] += perf_event_count(sub);
3894 if (read_format & PERF_FORMAT_ID)
3895 values[n++] = primary_event_id(sub);
3896 }
3897
3898 return 0;
3899 }
3900
3901 static int perf_read_group(struct perf_event *event,
3902 u64 read_format, char __user *buf)
3903 {
3904 struct perf_event *leader = event->group_leader, *child;
3905 struct perf_event_context *ctx = leader->ctx;
3906 int ret;
3907 u64 *values;
3908
3909 lockdep_assert_held(&ctx->mutex);
3910
3911 values = kzalloc(event->read_size, GFP_KERNEL);
3912 if (!values)
3913 return -ENOMEM;
3914
3915 values[0] = 1 + leader->nr_siblings;
3916
3917 /*
3918 * By locking the child_mutex of the leader we effectively
3919 * lock the child list of all siblings.. XXX explain how.
3920 */
3921 mutex_lock(&leader->child_mutex);
3922
3923 ret = __perf_read_group_add(leader, read_format, values);
3924 if (ret)
3925 goto unlock;
3926
3927 list_for_each_entry(child, &leader->child_list, child_list) {
3928 ret = __perf_read_group_add(child, read_format, values);
3929 if (ret)
3930 goto unlock;
3931 }
3932
3933 mutex_unlock(&leader->child_mutex);
3934
3935 ret = event->read_size;
3936 if (copy_to_user(buf, values, event->read_size))
3937 ret = -EFAULT;
3938 goto out;
3939
3940 unlock:
3941 mutex_unlock(&leader->child_mutex);
3942 out:
3943 kfree(values);
3944 return ret;
3945 }
3946
3947 static int perf_read_one(struct perf_event *event,
3948 u64 read_format, char __user *buf)
3949 {
3950 u64 enabled, running;
3951 u64 values[4];
3952 int n = 0;
3953
3954 values[n++] = perf_event_read_value(event, &enabled, &running);
3955 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3956 values[n++] = enabled;
3957 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3958 values[n++] = running;
3959 if (read_format & PERF_FORMAT_ID)
3960 values[n++] = primary_event_id(event);
3961
3962 if (copy_to_user(buf, values, n * sizeof(u64)))
3963 return -EFAULT;
3964
3965 return n * sizeof(u64);
3966 }
3967
3968 static bool is_event_hup(struct perf_event *event)
3969 {
3970 bool no_children;
3971
3972 if (event->state != PERF_EVENT_STATE_EXIT)
3973 return false;
3974
3975 mutex_lock(&event->child_mutex);
3976 no_children = list_empty(&event->child_list);
3977 mutex_unlock(&event->child_mutex);
3978 return no_children;
3979 }
3980
3981 /*
3982 * Read the performance event - simple non blocking version for now
3983 */
3984 static ssize_t
3985 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3986 {
3987 u64 read_format = event->attr.read_format;
3988 int ret;
3989
3990 /*
3991 * Return end-of-file for a read on a event that is in
3992 * error state (i.e. because it was pinned but it couldn't be
3993 * scheduled on to the CPU at some point).
3994 */
3995 if (event->state == PERF_EVENT_STATE_ERROR)
3996 return 0;
3997
3998 if (count < event->read_size)
3999 return -ENOSPC;
4000
4001 WARN_ON_ONCE(event->ctx->parent_ctx);
4002 if (read_format & PERF_FORMAT_GROUP)
4003 ret = perf_read_group(event, read_format, buf);
4004 else
4005 ret = perf_read_one(event, read_format, buf);
4006
4007 return ret;
4008 }
4009
4010 static ssize_t
4011 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4012 {
4013 struct perf_event *event = file->private_data;
4014 struct perf_event_context *ctx;
4015 int ret;
4016
4017 ctx = perf_event_ctx_lock(event);
4018 ret = __perf_read(event, buf, count);
4019 perf_event_ctx_unlock(event, ctx);
4020
4021 return ret;
4022 }
4023
4024 static unsigned int perf_poll(struct file *file, poll_table *wait)
4025 {
4026 struct perf_event *event = file->private_data;
4027 struct ring_buffer *rb;
4028 unsigned int events = POLLHUP;
4029
4030 poll_wait(file, &event->waitq, wait);
4031
4032 if (is_event_hup(event))
4033 return events;
4034
4035 /*
4036 * Pin the event->rb by taking event->mmap_mutex; otherwise
4037 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4038 */
4039 mutex_lock(&event->mmap_mutex);
4040 rb = event->rb;
4041 if (rb)
4042 events = atomic_xchg(&rb->poll, 0);
4043 mutex_unlock(&event->mmap_mutex);
4044 return events;
4045 }
4046
4047 static void _perf_event_reset(struct perf_event *event)
4048 {
4049 (void)perf_event_read(event, false);
4050 local64_set(&event->count, 0);
4051 perf_event_update_userpage(event);
4052 }
4053
4054 /*
4055 * Holding the top-level event's child_mutex means that any
4056 * descendant process that has inherited this event will block
4057 * in sync_child_event if it goes to exit, thus satisfying the
4058 * task existence requirements of perf_event_enable/disable.
4059 */
4060 static void perf_event_for_each_child(struct perf_event *event,
4061 void (*func)(struct perf_event *))
4062 {
4063 struct perf_event *child;
4064
4065 WARN_ON_ONCE(event->ctx->parent_ctx);
4066
4067 mutex_lock(&event->child_mutex);
4068 func(event);
4069 list_for_each_entry(child, &event->child_list, child_list)
4070 func(child);
4071 mutex_unlock(&event->child_mutex);
4072 }
4073
4074 static void perf_event_for_each(struct perf_event *event,
4075 void (*func)(struct perf_event *))
4076 {
4077 struct perf_event_context *ctx = event->ctx;
4078 struct perf_event *sibling;
4079
4080 lockdep_assert_held(&ctx->mutex);
4081
4082 event = event->group_leader;
4083
4084 perf_event_for_each_child(event, func);
4085 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4086 perf_event_for_each_child(sibling, func);
4087 }
4088
4089 struct period_event {
4090 struct perf_event *event;
4091 u64 value;
4092 };
4093
4094 static void ___perf_event_period(void *info)
4095 {
4096 struct period_event *pe = info;
4097 struct perf_event *event = pe->event;
4098 u64 value = pe->value;
4099
4100 if (event->attr.freq) {
4101 event->attr.sample_freq = value;
4102 } else {
4103 event->attr.sample_period = value;
4104 event->hw.sample_period = value;
4105 }
4106
4107 local64_set(&event->hw.period_left, 0);
4108 }
4109
4110 static int __perf_event_period(void *info)
4111 {
4112 struct period_event *pe = info;
4113 struct perf_event *event = pe->event;
4114 struct perf_event_context *ctx = event->ctx;
4115 u64 value = pe->value;
4116 bool active;
4117
4118 raw_spin_lock(&ctx->lock);
4119 if (event->attr.freq) {
4120 event->attr.sample_freq = value;
4121 } else {
4122 event->attr.sample_period = value;
4123 event->hw.sample_period = value;
4124 }
4125
4126 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4127 if (active) {
4128 perf_pmu_disable(ctx->pmu);
4129 event->pmu->stop(event, PERF_EF_UPDATE);
4130 }
4131
4132 local64_set(&event->hw.period_left, 0);
4133
4134 if (active) {
4135 event->pmu->start(event, PERF_EF_RELOAD);
4136 perf_pmu_enable(ctx->pmu);
4137 }
4138 raw_spin_unlock(&ctx->lock);
4139
4140 return 0;
4141 }
4142
4143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4144 {
4145 struct period_event pe = { .event = event, };
4146 u64 value;
4147
4148 if (!is_sampling_event(event))
4149 return -EINVAL;
4150
4151 if (copy_from_user(&value, arg, sizeof(value)))
4152 return -EFAULT;
4153
4154 if (!value)
4155 return -EINVAL;
4156
4157 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4158 return -EINVAL;
4159
4160 pe.value = value;
4161
4162 event_function_call(event, __perf_event_period,
4163 ___perf_event_period, &pe);
4164
4165 return 0;
4166 }
4167
4168 static const struct file_operations perf_fops;
4169
4170 static inline int perf_fget_light(int fd, struct fd *p)
4171 {
4172 struct fd f = fdget(fd);
4173 if (!f.file)
4174 return -EBADF;
4175
4176 if (f.file->f_op != &perf_fops) {
4177 fdput(f);
4178 return -EBADF;
4179 }
4180 *p = f;
4181 return 0;
4182 }
4183
4184 static int perf_event_set_output(struct perf_event *event,
4185 struct perf_event *output_event);
4186 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4187 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4188
4189 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4190 {
4191 void (*func)(struct perf_event *);
4192 u32 flags = arg;
4193
4194 switch (cmd) {
4195 case PERF_EVENT_IOC_ENABLE:
4196 func = _perf_event_enable;
4197 break;
4198 case PERF_EVENT_IOC_DISABLE:
4199 func = _perf_event_disable;
4200 break;
4201 case PERF_EVENT_IOC_RESET:
4202 func = _perf_event_reset;
4203 break;
4204
4205 case PERF_EVENT_IOC_REFRESH:
4206 return _perf_event_refresh(event, arg);
4207
4208 case PERF_EVENT_IOC_PERIOD:
4209 return perf_event_period(event, (u64 __user *)arg);
4210
4211 case PERF_EVENT_IOC_ID:
4212 {
4213 u64 id = primary_event_id(event);
4214
4215 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4216 return -EFAULT;
4217 return 0;
4218 }
4219
4220 case PERF_EVENT_IOC_SET_OUTPUT:
4221 {
4222 int ret;
4223 if (arg != -1) {
4224 struct perf_event *output_event;
4225 struct fd output;
4226 ret = perf_fget_light(arg, &output);
4227 if (ret)
4228 return ret;
4229 output_event = output.file->private_data;
4230 ret = perf_event_set_output(event, output_event);
4231 fdput(output);
4232 } else {
4233 ret = perf_event_set_output(event, NULL);
4234 }
4235 return ret;
4236 }
4237
4238 case PERF_EVENT_IOC_SET_FILTER:
4239 return perf_event_set_filter(event, (void __user *)arg);
4240
4241 case PERF_EVENT_IOC_SET_BPF:
4242 return perf_event_set_bpf_prog(event, arg);
4243
4244 default:
4245 return -ENOTTY;
4246 }
4247
4248 if (flags & PERF_IOC_FLAG_GROUP)
4249 perf_event_for_each(event, func);
4250 else
4251 perf_event_for_each_child(event, func);
4252
4253 return 0;
4254 }
4255
4256 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4257 {
4258 struct perf_event *event = file->private_data;
4259 struct perf_event_context *ctx;
4260 long ret;
4261
4262 ctx = perf_event_ctx_lock(event);
4263 ret = _perf_ioctl(event, cmd, arg);
4264 perf_event_ctx_unlock(event, ctx);
4265
4266 return ret;
4267 }
4268
4269 #ifdef CONFIG_COMPAT
4270 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4271 unsigned long arg)
4272 {
4273 switch (_IOC_NR(cmd)) {
4274 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4275 case _IOC_NR(PERF_EVENT_IOC_ID):
4276 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4277 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4278 cmd &= ~IOCSIZE_MASK;
4279 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4280 }
4281 break;
4282 }
4283 return perf_ioctl(file, cmd, arg);
4284 }
4285 #else
4286 # define perf_compat_ioctl NULL
4287 #endif
4288
4289 int perf_event_task_enable(void)
4290 {
4291 struct perf_event_context *ctx;
4292 struct perf_event *event;
4293
4294 mutex_lock(&current->perf_event_mutex);
4295 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4296 ctx = perf_event_ctx_lock(event);
4297 perf_event_for_each_child(event, _perf_event_enable);
4298 perf_event_ctx_unlock(event, ctx);
4299 }
4300 mutex_unlock(&current->perf_event_mutex);
4301
4302 return 0;
4303 }
4304
4305 int perf_event_task_disable(void)
4306 {
4307 struct perf_event_context *ctx;
4308 struct perf_event *event;
4309
4310 mutex_lock(&current->perf_event_mutex);
4311 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4312 ctx = perf_event_ctx_lock(event);
4313 perf_event_for_each_child(event, _perf_event_disable);
4314 perf_event_ctx_unlock(event, ctx);
4315 }
4316 mutex_unlock(&current->perf_event_mutex);
4317
4318 return 0;
4319 }
4320
4321 static int perf_event_index(struct perf_event *event)
4322 {
4323 if (event->hw.state & PERF_HES_STOPPED)
4324 return 0;
4325
4326 if (event->state != PERF_EVENT_STATE_ACTIVE)
4327 return 0;
4328
4329 return event->pmu->event_idx(event);
4330 }
4331
4332 static void calc_timer_values(struct perf_event *event,
4333 u64 *now,
4334 u64 *enabled,
4335 u64 *running)
4336 {
4337 u64 ctx_time;
4338
4339 *now = perf_clock();
4340 ctx_time = event->shadow_ctx_time + *now;
4341 *enabled = ctx_time - event->tstamp_enabled;
4342 *running = ctx_time - event->tstamp_running;
4343 }
4344
4345 static void perf_event_init_userpage(struct perf_event *event)
4346 {
4347 struct perf_event_mmap_page *userpg;
4348 struct ring_buffer *rb;
4349
4350 rcu_read_lock();
4351 rb = rcu_dereference(event->rb);
4352 if (!rb)
4353 goto unlock;
4354
4355 userpg = rb->user_page;
4356
4357 /* Allow new userspace to detect that bit 0 is deprecated */
4358 userpg->cap_bit0_is_deprecated = 1;
4359 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4360 userpg->data_offset = PAGE_SIZE;
4361 userpg->data_size = perf_data_size(rb);
4362
4363 unlock:
4364 rcu_read_unlock();
4365 }
4366
4367 void __weak arch_perf_update_userpage(
4368 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4369 {
4370 }
4371
4372 /*
4373 * Callers need to ensure there can be no nesting of this function, otherwise
4374 * the seqlock logic goes bad. We can not serialize this because the arch
4375 * code calls this from NMI context.
4376 */
4377 void perf_event_update_userpage(struct perf_event *event)
4378 {
4379 struct perf_event_mmap_page *userpg;
4380 struct ring_buffer *rb;
4381 u64 enabled, running, now;
4382
4383 rcu_read_lock();
4384 rb = rcu_dereference(event->rb);
4385 if (!rb)
4386 goto unlock;
4387
4388 /*
4389 * compute total_time_enabled, total_time_running
4390 * based on snapshot values taken when the event
4391 * was last scheduled in.
4392 *
4393 * we cannot simply called update_context_time()
4394 * because of locking issue as we can be called in
4395 * NMI context
4396 */
4397 calc_timer_values(event, &now, &enabled, &running);
4398
4399 userpg = rb->user_page;
4400 /*
4401 * Disable preemption so as to not let the corresponding user-space
4402 * spin too long if we get preempted.
4403 */
4404 preempt_disable();
4405 ++userpg->lock;
4406 barrier();
4407 userpg->index = perf_event_index(event);
4408 userpg->offset = perf_event_count(event);
4409 if (userpg->index)
4410 userpg->offset -= local64_read(&event->hw.prev_count);
4411
4412 userpg->time_enabled = enabled +
4413 atomic64_read(&event->child_total_time_enabled);
4414
4415 userpg->time_running = running +
4416 atomic64_read(&event->child_total_time_running);
4417
4418 arch_perf_update_userpage(event, userpg, now);
4419
4420 barrier();
4421 ++userpg->lock;
4422 preempt_enable();
4423 unlock:
4424 rcu_read_unlock();
4425 }
4426
4427 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4428 {
4429 struct perf_event *event = vma->vm_file->private_data;
4430 struct ring_buffer *rb;
4431 int ret = VM_FAULT_SIGBUS;
4432
4433 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4434 if (vmf->pgoff == 0)
4435 ret = 0;
4436 return ret;
4437 }
4438
4439 rcu_read_lock();
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
4442 goto unlock;
4443
4444 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4445 goto unlock;
4446
4447 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4448 if (!vmf->page)
4449 goto unlock;
4450
4451 get_page(vmf->page);
4452 vmf->page->mapping = vma->vm_file->f_mapping;
4453 vmf->page->index = vmf->pgoff;
4454
4455 ret = 0;
4456 unlock:
4457 rcu_read_unlock();
4458
4459 return ret;
4460 }
4461
4462 static void ring_buffer_attach(struct perf_event *event,
4463 struct ring_buffer *rb)
4464 {
4465 struct ring_buffer *old_rb = NULL;
4466 unsigned long flags;
4467
4468 if (event->rb) {
4469 /*
4470 * Should be impossible, we set this when removing
4471 * event->rb_entry and wait/clear when adding event->rb_entry.
4472 */
4473 WARN_ON_ONCE(event->rcu_pending);
4474
4475 old_rb = event->rb;
4476 spin_lock_irqsave(&old_rb->event_lock, flags);
4477 list_del_rcu(&event->rb_entry);
4478 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4479
4480 event->rcu_batches = get_state_synchronize_rcu();
4481 event->rcu_pending = 1;
4482 }
4483
4484 if (rb) {
4485 if (event->rcu_pending) {
4486 cond_synchronize_rcu(event->rcu_batches);
4487 event->rcu_pending = 0;
4488 }
4489
4490 spin_lock_irqsave(&rb->event_lock, flags);
4491 list_add_rcu(&event->rb_entry, &rb->event_list);
4492 spin_unlock_irqrestore(&rb->event_lock, flags);
4493 }
4494
4495 rcu_assign_pointer(event->rb, rb);
4496
4497 if (old_rb) {
4498 ring_buffer_put(old_rb);
4499 /*
4500 * Since we detached before setting the new rb, so that we
4501 * could attach the new rb, we could have missed a wakeup.
4502 * Provide it now.
4503 */
4504 wake_up_all(&event->waitq);
4505 }
4506 }
4507
4508 static void ring_buffer_wakeup(struct perf_event *event)
4509 {
4510 struct ring_buffer *rb;
4511
4512 rcu_read_lock();
4513 rb = rcu_dereference(event->rb);
4514 if (rb) {
4515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4516 wake_up_all(&event->waitq);
4517 }
4518 rcu_read_unlock();
4519 }
4520
4521 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4522 {
4523 struct ring_buffer *rb;
4524
4525 rcu_read_lock();
4526 rb = rcu_dereference(event->rb);
4527 if (rb) {
4528 if (!atomic_inc_not_zero(&rb->refcount))
4529 rb = NULL;
4530 }
4531 rcu_read_unlock();
4532
4533 return rb;
4534 }
4535
4536 void ring_buffer_put(struct ring_buffer *rb)
4537 {
4538 if (!atomic_dec_and_test(&rb->refcount))
4539 return;
4540
4541 WARN_ON_ONCE(!list_empty(&rb->event_list));
4542
4543 call_rcu(&rb->rcu_head, rb_free_rcu);
4544 }
4545
4546 static void perf_mmap_open(struct vm_area_struct *vma)
4547 {
4548 struct perf_event *event = vma->vm_file->private_data;
4549
4550 atomic_inc(&event->mmap_count);
4551 atomic_inc(&event->rb->mmap_count);
4552
4553 if (vma->vm_pgoff)
4554 atomic_inc(&event->rb->aux_mmap_count);
4555
4556 if (event->pmu->event_mapped)
4557 event->pmu->event_mapped(event);
4558 }
4559
4560 /*
4561 * A buffer can be mmap()ed multiple times; either directly through the same
4562 * event, or through other events by use of perf_event_set_output().
4563 *
4564 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4565 * the buffer here, where we still have a VM context. This means we need
4566 * to detach all events redirecting to us.
4567 */
4568 static void perf_mmap_close(struct vm_area_struct *vma)
4569 {
4570 struct perf_event *event = vma->vm_file->private_data;
4571
4572 struct ring_buffer *rb = ring_buffer_get(event);
4573 struct user_struct *mmap_user = rb->mmap_user;
4574 int mmap_locked = rb->mmap_locked;
4575 unsigned long size = perf_data_size(rb);
4576
4577 if (event->pmu->event_unmapped)
4578 event->pmu->event_unmapped(event);
4579
4580 /*
4581 * rb->aux_mmap_count will always drop before rb->mmap_count and
4582 * event->mmap_count, so it is ok to use event->mmap_mutex to
4583 * serialize with perf_mmap here.
4584 */
4585 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4586 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4587 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4588 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4589
4590 rb_free_aux(rb);
4591 mutex_unlock(&event->mmap_mutex);
4592 }
4593
4594 atomic_dec(&rb->mmap_count);
4595
4596 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4597 goto out_put;
4598
4599 ring_buffer_attach(event, NULL);
4600 mutex_unlock(&event->mmap_mutex);
4601
4602 /* If there's still other mmap()s of this buffer, we're done. */
4603 if (atomic_read(&rb->mmap_count))
4604 goto out_put;
4605
4606 /*
4607 * No other mmap()s, detach from all other events that might redirect
4608 * into the now unreachable buffer. Somewhat complicated by the
4609 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4610 */
4611 again:
4612 rcu_read_lock();
4613 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4614 if (!atomic_long_inc_not_zero(&event->refcount)) {
4615 /*
4616 * This event is en-route to free_event() which will
4617 * detach it and remove it from the list.
4618 */
4619 continue;
4620 }
4621 rcu_read_unlock();
4622
4623 mutex_lock(&event->mmap_mutex);
4624 /*
4625 * Check we didn't race with perf_event_set_output() which can
4626 * swizzle the rb from under us while we were waiting to
4627 * acquire mmap_mutex.
4628 *
4629 * If we find a different rb; ignore this event, a next
4630 * iteration will no longer find it on the list. We have to
4631 * still restart the iteration to make sure we're not now
4632 * iterating the wrong list.
4633 */
4634 if (event->rb == rb)
4635 ring_buffer_attach(event, NULL);
4636
4637 mutex_unlock(&event->mmap_mutex);
4638 put_event(event);
4639
4640 /*
4641 * Restart the iteration; either we're on the wrong list or
4642 * destroyed its integrity by doing a deletion.
4643 */
4644 goto again;
4645 }
4646 rcu_read_unlock();
4647
4648 /*
4649 * It could be there's still a few 0-ref events on the list; they'll
4650 * get cleaned up by free_event() -- they'll also still have their
4651 * ref on the rb and will free it whenever they are done with it.
4652 *
4653 * Aside from that, this buffer is 'fully' detached and unmapped,
4654 * undo the VM accounting.
4655 */
4656
4657 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4658 vma->vm_mm->pinned_vm -= mmap_locked;
4659 free_uid(mmap_user);
4660
4661 out_put:
4662 ring_buffer_put(rb); /* could be last */
4663 }
4664
4665 static const struct vm_operations_struct perf_mmap_vmops = {
4666 .open = perf_mmap_open,
4667 .close = perf_mmap_close, /* non mergable */
4668 .fault = perf_mmap_fault,
4669 .page_mkwrite = perf_mmap_fault,
4670 };
4671
4672 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4673 {
4674 struct perf_event *event = file->private_data;
4675 unsigned long user_locked, user_lock_limit;
4676 struct user_struct *user = current_user();
4677 unsigned long locked, lock_limit;
4678 struct ring_buffer *rb = NULL;
4679 unsigned long vma_size;
4680 unsigned long nr_pages;
4681 long user_extra = 0, extra = 0;
4682 int ret = 0, flags = 0;
4683
4684 /*
4685 * Don't allow mmap() of inherited per-task counters. This would
4686 * create a performance issue due to all children writing to the
4687 * same rb.
4688 */
4689 if (event->cpu == -1 && event->attr.inherit)
4690 return -EINVAL;
4691
4692 if (!(vma->vm_flags & VM_SHARED))
4693 return -EINVAL;
4694
4695 vma_size = vma->vm_end - vma->vm_start;
4696
4697 if (vma->vm_pgoff == 0) {
4698 nr_pages = (vma_size / PAGE_SIZE) - 1;
4699 } else {
4700 /*
4701 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4702 * mapped, all subsequent mappings should have the same size
4703 * and offset. Must be above the normal perf buffer.
4704 */
4705 u64 aux_offset, aux_size;
4706
4707 if (!event->rb)
4708 return -EINVAL;
4709
4710 nr_pages = vma_size / PAGE_SIZE;
4711
4712 mutex_lock(&event->mmap_mutex);
4713 ret = -EINVAL;
4714
4715 rb = event->rb;
4716 if (!rb)
4717 goto aux_unlock;
4718
4719 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4720 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4721
4722 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4723 goto aux_unlock;
4724
4725 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4726 goto aux_unlock;
4727
4728 /* already mapped with a different offset */
4729 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4730 goto aux_unlock;
4731
4732 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4733 goto aux_unlock;
4734
4735 /* already mapped with a different size */
4736 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4737 goto aux_unlock;
4738
4739 if (!is_power_of_2(nr_pages))
4740 goto aux_unlock;
4741
4742 if (!atomic_inc_not_zero(&rb->mmap_count))
4743 goto aux_unlock;
4744
4745 if (rb_has_aux(rb)) {
4746 atomic_inc(&rb->aux_mmap_count);
4747 ret = 0;
4748 goto unlock;
4749 }
4750
4751 atomic_set(&rb->aux_mmap_count, 1);
4752 user_extra = nr_pages;
4753
4754 goto accounting;
4755 }
4756
4757 /*
4758 * If we have rb pages ensure they're a power-of-two number, so we
4759 * can do bitmasks instead of modulo.
4760 */
4761 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4762 return -EINVAL;
4763
4764 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4765 return -EINVAL;
4766
4767 WARN_ON_ONCE(event->ctx->parent_ctx);
4768 again:
4769 mutex_lock(&event->mmap_mutex);
4770 if (event->rb) {
4771 if (event->rb->nr_pages != nr_pages) {
4772 ret = -EINVAL;
4773 goto unlock;
4774 }
4775
4776 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4777 /*
4778 * Raced against perf_mmap_close() through
4779 * perf_event_set_output(). Try again, hope for better
4780 * luck.
4781 */
4782 mutex_unlock(&event->mmap_mutex);
4783 goto again;
4784 }
4785
4786 goto unlock;
4787 }
4788
4789 user_extra = nr_pages + 1;
4790
4791 accounting:
4792 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4793
4794 /*
4795 * Increase the limit linearly with more CPUs:
4796 */
4797 user_lock_limit *= num_online_cpus();
4798
4799 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4800
4801 if (user_locked > user_lock_limit)
4802 extra = user_locked - user_lock_limit;
4803
4804 lock_limit = rlimit(RLIMIT_MEMLOCK);
4805 lock_limit >>= PAGE_SHIFT;
4806 locked = vma->vm_mm->pinned_vm + extra;
4807
4808 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4809 !capable(CAP_IPC_LOCK)) {
4810 ret = -EPERM;
4811 goto unlock;
4812 }
4813
4814 WARN_ON(!rb && event->rb);
4815
4816 if (vma->vm_flags & VM_WRITE)
4817 flags |= RING_BUFFER_WRITABLE;
4818
4819 if (!rb) {
4820 rb = rb_alloc(nr_pages,
4821 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4822 event->cpu, flags);
4823
4824 if (!rb) {
4825 ret = -ENOMEM;
4826 goto unlock;
4827 }
4828
4829 atomic_set(&rb->mmap_count, 1);
4830 rb->mmap_user = get_current_user();
4831 rb->mmap_locked = extra;
4832
4833 ring_buffer_attach(event, rb);
4834
4835 perf_event_init_userpage(event);
4836 perf_event_update_userpage(event);
4837 } else {
4838 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4839 event->attr.aux_watermark, flags);
4840 if (!ret)
4841 rb->aux_mmap_locked = extra;
4842 }
4843
4844 unlock:
4845 if (!ret) {
4846 atomic_long_add(user_extra, &user->locked_vm);
4847 vma->vm_mm->pinned_vm += extra;
4848
4849 atomic_inc(&event->mmap_count);
4850 } else if (rb) {
4851 atomic_dec(&rb->mmap_count);
4852 }
4853 aux_unlock:
4854 mutex_unlock(&event->mmap_mutex);
4855
4856 /*
4857 * Since pinned accounting is per vm we cannot allow fork() to copy our
4858 * vma.
4859 */
4860 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4861 vma->vm_ops = &perf_mmap_vmops;
4862
4863 if (event->pmu->event_mapped)
4864 event->pmu->event_mapped(event);
4865
4866 return ret;
4867 }
4868
4869 static int perf_fasync(int fd, struct file *filp, int on)
4870 {
4871 struct inode *inode = file_inode(filp);
4872 struct perf_event *event = filp->private_data;
4873 int retval;
4874
4875 mutex_lock(&inode->i_mutex);
4876 retval = fasync_helper(fd, filp, on, &event->fasync);
4877 mutex_unlock(&inode->i_mutex);
4878
4879 if (retval < 0)
4880 return retval;
4881
4882 return 0;
4883 }
4884
4885 static const struct file_operations perf_fops = {
4886 .llseek = no_llseek,
4887 .release = perf_release,
4888 .read = perf_read,
4889 .poll = perf_poll,
4890 .unlocked_ioctl = perf_ioctl,
4891 .compat_ioctl = perf_compat_ioctl,
4892 .mmap = perf_mmap,
4893 .fasync = perf_fasync,
4894 };
4895
4896 /*
4897 * Perf event wakeup
4898 *
4899 * If there's data, ensure we set the poll() state and publish everything
4900 * to user-space before waking everybody up.
4901 */
4902
4903 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4904 {
4905 /* only the parent has fasync state */
4906 if (event->parent)
4907 event = event->parent;
4908 return &event->fasync;
4909 }
4910
4911 void perf_event_wakeup(struct perf_event *event)
4912 {
4913 ring_buffer_wakeup(event);
4914
4915 if (event->pending_kill) {
4916 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4917 event->pending_kill = 0;
4918 }
4919 }
4920
4921 static void perf_pending_event(struct irq_work *entry)
4922 {
4923 struct perf_event *event = container_of(entry,
4924 struct perf_event, pending);
4925 int rctx;
4926
4927 rctx = perf_swevent_get_recursion_context();
4928 /*
4929 * If we 'fail' here, that's OK, it means recursion is already disabled
4930 * and we won't recurse 'further'.
4931 */
4932
4933 if (event->pending_disable) {
4934 event->pending_disable = 0;
4935 __perf_event_disable(event);
4936 }
4937
4938 if (event->pending_wakeup) {
4939 event->pending_wakeup = 0;
4940 perf_event_wakeup(event);
4941 }
4942
4943 if (rctx >= 0)
4944 perf_swevent_put_recursion_context(rctx);
4945 }
4946
4947 /*
4948 * We assume there is only KVM supporting the callbacks.
4949 * Later on, we might change it to a list if there is
4950 * another virtualization implementation supporting the callbacks.
4951 */
4952 struct perf_guest_info_callbacks *perf_guest_cbs;
4953
4954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4955 {
4956 perf_guest_cbs = cbs;
4957 return 0;
4958 }
4959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4960
4961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4962 {
4963 perf_guest_cbs = NULL;
4964 return 0;
4965 }
4966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4967
4968 static void
4969 perf_output_sample_regs(struct perf_output_handle *handle,
4970 struct pt_regs *regs, u64 mask)
4971 {
4972 int bit;
4973
4974 for_each_set_bit(bit, (const unsigned long *) &mask,
4975 sizeof(mask) * BITS_PER_BYTE) {
4976 u64 val;
4977
4978 val = perf_reg_value(regs, bit);
4979 perf_output_put(handle, val);
4980 }
4981 }
4982
4983 static void perf_sample_regs_user(struct perf_regs *regs_user,
4984 struct pt_regs *regs,
4985 struct pt_regs *regs_user_copy)
4986 {
4987 if (user_mode(regs)) {
4988 regs_user->abi = perf_reg_abi(current);
4989 regs_user->regs = regs;
4990 } else if (current->mm) {
4991 perf_get_regs_user(regs_user, regs, regs_user_copy);
4992 } else {
4993 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4994 regs_user->regs = NULL;
4995 }
4996 }
4997
4998 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4999 struct pt_regs *regs)
5000 {
5001 regs_intr->regs = regs;
5002 regs_intr->abi = perf_reg_abi(current);
5003 }
5004
5005
5006 /*
5007 * Get remaining task size from user stack pointer.
5008 *
5009 * It'd be better to take stack vma map and limit this more
5010 * precisly, but there's no way to get it safely under interrupt,
5011 * so using TASK_SIZE as limit.
5012 */
5013 static u64 perf_ustack_task_size(struct pt_regs *regs)
5014 {
5015 unsigned long addr = perf_user_stack_pointer(regs);
5016
5017 if (!addr || addr >= TASK_SIZE)
5018 return 0;
5019
5020 return TASK_SIZE - addr;
5021 }
5022
5023 static u16
5024 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5025 struct pt_regs *regs)
5026 {
5027 u64 task_size;
5028
5029 /* No regs, no stack pointer, no dump. */
5030 if (!regs)
5031 return 0;
5032
5033 /*
5034 * Check if we fit in with the requested stack size into the:
5035 * - TASK_SIZE
5036 * If we don't, we limit the size to the TASK_SIZE.
5037 *
5038 * - remaining sample size
5039 * If we don't, we customize the stack size to
5040 * fit in to the remaining sample size.
5041 */
5042
5043 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5044 stack_size = min(stack_size, (u16) task_size);
5045
5046 /* Current header size plus static size and dynamic size. */
5047 header_size += 2 * sizeof(u64);
5048
5049 /* Do we fit in with the current stack dump size? */
5050 if ((u16) (header_size + stack_size) < header_size) {
5051 /*
5052 * If we overflow the maximum size for the sample,
5053 * we customize the stack dump size to fit in.
5054 */
5055 stack_size = USHRT_MAX - header_size - sizeof(u64);
5056 stack_size = round_up(stack_size, sizeof(u64));
5057 }
5058
5059 return stack_size;
5060 }
5061
5062 static void
5063 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5064 struct pt_regs *regs)
5065 {
5066 /* Case of a kernel thread, nothing to dump */
5067 if (!regs) {
5068 u64 size = 0;
5069 perf_output_put(handle, size);
5070 } else {
5071 unsigned long sp;
5072 unsigned int rem;
5073 u64 dyn_size;
5074
5075 /*
5076 * We dump:
5077 * static size
5078 * - the size requested by user or the best one we can fit
5079 * in to the sample max size
5080 * data
5081 * - user stack dump data
5082 * dynamic size
5083 * - the actual dumped size
5084 */
5085
5086 /* Static size. */
5087 perf_output_put(handle, dump_size);
5088
5089 /* Data. */
5090 sp = perf_user_stack_pointer(regs);
5091 rem = __output_copy_user(handle, (void *) sp, dump_size);
5092 dyn_size = dump_size - rem;
5093
5094 perf_output_skip(handle, rem);
5095
5096 /* Dynamic size. */
5097 perf_output_put(handle, dyn_size);
5098 }
5099 }
5100
5101 static void __perf_event_header__init_id(struct perf_event_header *header,
5102 struct perf_sample_data *data,
5103 struct perf_event *event)
5104 {
5105 u64 sample_type = event->attr.sample_type;
5106
5107 data->type = sample_type;
5108 header->size += event->id_header_size;
5109
5110 if (sample_type & PERF_SAMPLE_TID) {
5111 /* namespace issues */
5112 data->tid_entry.pid = perf_event_pid(event, current);
5113 data->tid_entry.tid = perf_event_tid(event, current);
5114 }
5115
5116 if (sample_type & PERF_SAMPLE_TIME)
5117 data->time = perf_event_clock(event);
5118
5119 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5120 data->id = primary_event_id(event);
5121
5122 if (sample_type & PERF_SAMPLE_STREAM_ID)
5123 data->stream_id = event->id;
5124
5125 if (sample_type & PERF_SAMPLE_CPU) {
5126 data->cpu_entry.cpu = raw_smp_processor_id();
5127 data->cpu_entry.reserved = 0;
5128 }
5129 }
5130
5131 void perf_event_header__init_id(struct perf_event_header *header,
5132 struct perf_sample_data *data,
5133 struct perf_event *event)
5134 {
5135 if (event->attr.sample_id_all)
5136 __perf_event_header__init_id(header, data, event);
5137 }
5138
5139 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5140 struct perf_sample_data *data)
5141 {
5142 u64 sample_type = data->type;
5143
5144 if (sample_type & PERF_SAMPLE_TID)
5145 perf_output_put(handle, data->tid_entry);
5146
5147 if (sample_type & PERF_SAMPLE_TIME)
5148 perf_output_put(handle, data->time);
5149
5150 if (sample_type & PERF_SAMPLE_ID)
5151 perf_output_put(handle, data->id);
5152
5153 if (sample_type & PERF_SAMPLE_STREAM_ID)
5154 perf_output_put(handle, data->stream_id);
5155
5156 if (sample_type & PERF_SAMPLE_CPU)
5157 perf_output_put(handle, data->cpu_entry);
5158
5159 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5160 perf_output_put(handle, data->id);
5161 }
5162
5163 void perf_event__output_id_sample(struct perf_event *event,
5164 struct perf_output_handle *handle,
5165 struct perf_sample_data *sample)
5166 {
5167 if (event->attr.sample_id_all)
5168 __perf_event__output_id_sample(handle, sample);
5169 }
5170
5171 static void perf_output_read_one(struct perf_output_handle *handle,
5172 struct perf_event *event,
5173 u64 enabled, u64 running)
5174 {
5175 u64 read_format = event->attr.read_format;
5176 u64 values[4];
5177 int n = 0;
5178
5179 values[n++] = perf_event_count(event);
5180 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5181 values[n++] = enabled +
5182 atomic64_read(&event->child_total_time_enabled);
5183 }
5184 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5185 values[n++] = running +
5186 atomic64_read(&event->child_total_time_running);
5187 }
5188 if (read_format & PERF_FORMAT_ID)
5189 values[n++] = primary_event_id(event);
5190
5191 __output_copy(handle, values, n * sizeof(u64));
5192 }
5193
5194 /*
5195 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5196 */
5197 static void perf_output_read_group(struct perf_output_handle *handle,
5198 struct perf_event *event,
5199 u64 enabled, u64 running)
5200 {
5201 struct perf_event *leader = event->group_leader, *sub;
5202 u64 read_format = event->attr.read_format;
5203 u64 values[5];
5204 int n = 0;
5205
5206 values[n++] = 1 + leader->nr_siblings;
5207
5208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5209 values[n++] = enabled;
5210
5211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5212 values[n++] = running;
5213
5214 if (leader != event)
5215 leader->pmu->read(leader);
5216
5217 values[n++] = perf_event_count(leader);
5218 if (read_format & PERF_FORMAT_ID)
5219 values[n++] = primary_event_id(leader);
5220
5221 __output_copy(handle, values, n * sizeof(u64));
5222
5223 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5224 n = 0;
5225
5226 if ((sub != event) &&
5227 (sub->state == PERF_EVENT_STATE_ACTIVE))
5228 sub->pmu->read(sub);
5229
5230 values[n++] = perf_event_count(sub);
5231 if (read_format & PERF_FORMAT_ID)
5232 values[n++] = primary_event_id(sub);
5233
5234 __output_copy(handle, values, n * sizeof(u64));
5235 }
5236 }
5237
5238 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5239 PERF_FORMAT_TOTAL_TIME_RUNNING)
5240
5241 static void perf_output_read(struct perf_output_handle *handle,
5242 struct perf_event *event)
5243 {
5244 u64 enabled = 0, running = 0, now;
5245 u64 read_format = event->attr.read_format;
5246
5247 /*
5248 * compute total_time_enabled, total_time_running
5249 * based on snapshot values taken when the event
5250 * was last scheduled in.
5251 *
5252 * we cannot simply called update_context_time()
5253 * because of locking issue as we are called in
5254 * NMI context
5255 */
5256 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5257 calc_timer_values(event, &now, &enabled, &running);
5258
5259 if (event->attr.read_format & PERF_FORMAT_GROUP)
5260 perf_output_read_group(handle, event, enabled, running);
5261 else
5262 perf_output_read_one(handle, event, enabled, running);
5263 }
5264
5265 void perf_output_sample(struct perf_output_handle *handle,
5266 struct perf_event_header *header,
5267 struct perf_sample_data *data,
5268 struct perf_event *event)
5269 {
5270 u64 sample_type = data->type;
5271
5272 perf_output_put(handle, *header);
5273
5274 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5275 perf_output_put(handle, data->id);
5276
5277 if (sample_type & PERF_SAMPLE_IP)
5278 perf_output_put(handle, data->ip);
5279
5280 if (sample_type & PERF_SAMPLE_TID)
5281 perf_output_put(handle, data->tid_entry);
5282
5283 if (sample_type & PERF_SAMPLE_TIME)
5284 perf_output_put(handle, data->time);
5285
5286 if (sample_type & PERF_SAMPLE_ADDR)
5287 perf_output_put(handle, data->addr);
5288
5289 if (sample_type & PERF_SAMPLE_ID)
5290 perf_output_put(handle, data->id);
5291
5292 if (sample_type & PERF_SAMPLE_STREAM_ID)
5293 perf_output_put(handle, data->stream_id);
5294
5295 if (sample_type & PERF_SAMPLE_CPU)
5296 perf_output_put(handle, data->cpu_entry);
5297
5298 if (sample_type & PERF_SAMPLE_PERIOD)
5299 perf_output_put(handle, data->period);
5300
5301 if (sample_type & PERF_SAMPLE_READ)
5302 perf_output_read(handle, event);
5303
5304 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5305 if (data->callchain) {
5306 int size = 1;
5307
5308 if (data->callchain)
5309 size += data->callchain->nr;
5310
5311 size *= sizeof(u64);
5312
5313 __output_copy(handle, data->callchain, size);
5314 } else {
5315 u64 nr = 0;
5316 perf_output_put(handle, nr);
5317 }
5318 }
5319
5320 if (sample_type & PERF_SAMPLE_RAW) {
5321 if (data->raw) {
5322 u32 raw_size = data->raw->size;
5323 u32 real_size = round_up(raw_size + sizeof(u32),
5324 sizeof(u64)) - sizeof(u32);
5325 u64 zero = 0;
5326
5327 perf_output_put(handle, real_size);
5328 __output_copy(handle, data->raw->data, raw_size);
5329 if (real_size - raw_size)
5330 __output_copy(handle, &zero, real_size - raw_size);
5331 } else {
5332 struct {
5333 u32 size;
5334 u32 data;
5335 } raw = {
5336 .size = sizeof(u32),
5337 .data = 0,
5338 };
5339 perf_output_put(handle, raw);
5340 }
5341 }
5342
5343 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5344 if (data->br_stack) {
5345 size_t size;
5346
5347 size = data->br_stack->nr
5348 * sizeof(struct perf_branch_entry);
5349
5350 perf_output_put(handle, data->br_stack->nr);
5351 perf_output_copy(handle, data->br_stack->entries, size);
5352 } else {
5353 /*
5354 * we always store at least the value of nr
5355 */
5356 u64 nr = 0;
5357 perf_output_put(handle, nr);
5358 }
5359 }
5360
5361 if (sample_type & PERF_SAMPLE_REGS_USER) {
5362 u64 abi = data->regs_user.abi;
5363
5364 /*
5365 * If there are no regs to dump, notice it through
5366 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5367 */
5368 perf_output_put(handle, abi);
5369
5370 if (abi) {
5371 u64 mask = event->attr.sample_regs_user;
5372 perf_output_sample_regs(handle,
5373 data->regs_user.regs,
5374 mask);
5375 }
5376 }
5377
5378 if (sample_type & PERF_SAMPLE_STACK_USER) {
5379 perf_output_sample_ustack(handle,
5380 data->stack_user_size,
5381 data->regs_user.regs);
5382 }
5383
5384 if (sample_type & PERF_SAMPLE_WEIGHT)
5385 perf_output_put(handle, data->weight);
5386
5387 if (sample_type & PERF_SAMPLE_DATA_SRC)
5388 perf_output_put(handle, data->data_src.val);
5389
5390 if (sample_type & PERF_SAMPLE_TRANSACTION)
5391 perf_output_put(handle, data->txn);
5392
5393 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5394 u64 abi = data->regs_intr.abi;
5395 /*
5396 * If there are no regs to dump, notice it through
5397 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5398 */
5399 perf_output_put(handle, abi);
5400
5401 if (abi) {
5402 u64 mask = event->attr.sample_regs_intr;
5403
5404 perf_output_sample_regs(handle,
5405 data->regs_intr.regs,
5406 mask);
5407 }
5408 }
5409
5410 if (!event->attr.watermark) {
5411 int wakeup_events = event->attr.wakeup_events;
5412
5413 if (wakeup_events) {
5414 struct ring_buffer *rb = handle->rb;
5415 int events = local_inc_return(&rb->events);
5416
5417 if (events >= wakeup_events) {
5418 local_sub(wakeup_events, &rb->events);
5419 local_inc(&rb->wakeup);
5420 }
5421 }
5422 }
5423 }
5424
5425 void perf_prepare_sample(struct perf_event_header *header,
5426 struct perf_sample_data *data,
5427 struct perf_event *event,
5428 struct pt_regs *regs)
5429 {
5430 u64 sample_type = event->attr.sample_type;
5431
5432 header->type = PERF_RECORD_SAMPLE;
5433 header->size = sizeof(*header) + event->header_size;
5434
5435 header->misc = 0;
5436 header->misc |= perf_misc_flags(regs);
5437
5438 __perf_event_header__init_id(header, data, event);
5439
5440 if (sample_type & PERF_SAMPLE_IP)
5441 data->ip = perf_instruction_pointer(regs);
5442
5443 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5444 int size = 1;
5445
5446 data->callchain = perf_callchain(event, regs);
5447
5448 if (data->callchain)
5449 size += data->callchain->nr;
5450
5451 header->size += size * sizeof(u64);
5452 }
5453
5454 if (sample_type & PERF_SAMPLE_RAW) {
5455 int size = sizeof(u32);
5456
5457 if (data->raw)
5458 size += data->raw->size;
5459 else
5460 size += sizeof(u32);
5461
5462 header->size += round_up(size, sizeof(u64));
5463 }
5464
5465 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5466 int size = sizeof(u64); /* nr */
5467 if (data->br_stack) {
5468 size += data->br_stack->nr
5469 * sizeof(struct perf_branch_entry);
5470 }
5471 header->size += size;
5472 }
5473
5474 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5475 perf_sample_regs_user(&data->regs_user, regs,
5476 &data->regs_user_copy);
5477
5478 if (sample_type & PERF_SAMPLE_REGS_USER) {
5479 /* regs dump ABI info */
5480 int size = sizeof(u64);
5481
5482 if (data->regs_user.regs) {
5483 u64 mask = event->attr.sample_regs_user;
5484 size += hweight64(mask) * sizeof(u64);
5485 }
5486
5487 header->size += size;
5488 }
5489
5490 if (sample_type & PERF_SAMPLE_STACK_USER) {
5491 /*
5492 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5493 * processed as the last one or have additional check added
5494 * in case new sample type is added, because we could eat
5495 * up the rest of the sample size.
5496 */
5497 u16 stack_size = event->attr.sample_stack_user;
5498 u16 size = sizeof(u64);
5499
5500 stack_size = perf_sample_ustack_size(stack_size, header->size,
5501 data->regs_user.regs);
5502
5503 /*
5504 * If there is something to dump, add space for the dump
5505 * itself and for the field that tells the dynamic size,
5506 * which is how many have been actually dumped.
5507 */
5508 if (stack_size)
5509 size += sizeof(u64) + stack_size;
5510
5511 data->stack_user_size = stack_size;
5512 header->size += size;
5513 }
5514
5515 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5516 /* regs dump ABI info */
5517 int size = sizeof(u64);
5518
5519 perf_sample_regs_intr(&data->regs_intr, regs);
5520
5521 if (data->regs_intr.regs) {
5522 u64 mask = event->attr.sample_regs_intr;
5523
5524 size += hweight64(mask) * sizeof(u64);
5525 }
5526
5527 header->size += size;
5528 }
5529 }
5530
5531 void perf_event_output(struct perf_event *event,
5532 struct perf_sample_data *data,
5533 struct pt_regs *regs)
5534 {
5535 struct perf_output_handle handle;
5536 struct perf_event_header header;
5537
5538 /* protect the callchain buffers */
5539 rcu_read_lock();
5540
5541 perf_prepare_sample(&header, data, event, regs);
5542
5543 if (perf_output_begin(&handle, event, header.size))
5544 goto exit;
5545
5546 perf_output_sample(&handle, &header, data, event);
5547
5548 perf_output_end(&handle);
5549
5550 exit:
5551 rcu_read_unlock();
5552 }
5553
5554 /*
5555 * read event_id
5556 */
5557
5558 struct perf_read_event {
5559 struct perf_event_header header;
5560
5561 u32 pid;
5562 u32 tid;
5563 };
5564
5565 static void
5566 perf_event_read_event(struct perf_event *event,
5567 struct task_struct *task)
5568 {
5569 struct perf_output_handle handle;
5570 struct perf_sample_data sample;
5571 struct perf_read_event read_event = {
5572 .header = {
5573 .type = PERF_RECORD_READ,
5574 .misc = 0,
5575 .size = sizeof(read_event) + event->read_size,
5576 },
5577 .pid = perf_event_pid(event, task),
5578 .tid = perf_event_tid(event, task),
5579 };
5580 int ret;
5581
5582 perf_event_header__init_id(&read_event.header, &sample, event);
5583 ret = perf_output_begin(&handle, event, read_event.header.size);
5584 if (ret)
5585 return;
5586
5587 perf_output_put(&handle, read_event);
5588 perf_output_read(&handle, event);
5589 perf_event__output_id_sample(event, &handle, &sample);
5590
5591 perf_output_end(&handle);
5592 }
5593
5594 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5595
5596 static void
5597 perf_event_aux_ctx(struct perf_event_context *ctx,
5598 perf_event_aux_output_cb output,
5599 void *data)
5600 {
5601 struct perf_event *event;
5602
5603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5604 if (event->state < PERF_EVENT_STATE_INACTIVE)
5605 continue;
5606 if (!event_filter_match(event))
5607 continue;
5608 output(event, data);
5609 }
5610 }
5611
5612 static void
5613 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5614 struct perf_event_context *task_ctx)
5615 {
5616 rcu_read_lock();
5617 preempt_disable();
5618 perf_event_aux_ctx(task_ctx, output, data);
5619 preempt_enable();
5620 rcu_read_unlock();
5621 }
5622
5623 static void
5624 perf_event_aux(perf_event_aux_output_cb output, void *data,
5625 struct perf_event_context *task_ctx)
5626 {
5627 struct perf_cpu_context *cpuctx;
5628 struct perf_event_context *ctx;
5629 struct pmu *pmu;
5630 int ctxn;
5631
5632 /*
5633 * If we have task_ctx != NULL we only notify
5634 * the task context itself. The task_ctx is set
5635 * only for EXIT events before releasing task
5636 * context.
5637 */
5638 if (task_ctx) {
5639 perf_event_aux_task_ctx(output, data, task_ctx);
5640 return;
5641 }
5642
5643 rcu_read_lock();
5644 list_for_each_entry_rcu(pmu, &pmus, entry) {
5645 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5646 if (cpuctx->unique_pmu != pmu)
5647 goto next;
5648 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5649 ctxn = pmu->task_ctx_nr;
5650 if (ctxn < 0)
5651 goto next;
5652 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5653 if (ctx)
5654 perf_event_aux_ctx(ctx, output, data);
5655 next:
5656 put_cpu_ptr(pmu->pmu_cpu_context);
5657 }
5658 rcu_read_unlock();
5659 }
5660
5661 /*
5662 * task tracking -- fork/exit
5663 *
5664 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5665 */
5666
5667 struct perf_task_event {
5668 struct task_struct *task;
5669 struct perf_event_context *task_ctx;
5670
5671 struct {
5672 struct perf_event_header header;
5673
5674 u32 pid;
5675 u32 ppid;
5676 u32 tid;
5677 u32 ptid;
5678 u64 time;
5679 } event_id;
5680 };
5681
5682 static int perf_event_task_match(struct perf_event *event)
5683 {
5684 return event->attr.comm || event->attr.mmap ||
5685 event->attr.mmap2 || event->attr.mmap_data ||
5686 event->attr.task;
5687 }
5688
5689 static void perf_event_task_output(struct perf_event *event,
5690 void *data)
5691 {
5692 struct perf_task_event *task_event = data;
5693 struct perf_output_handle handle;
5694 struct perf_sample_data sample;
5695 struct task_struct *task = task_event->task;
5696 int ret, size = task_event->event_id.header.size;
5697
5698 if (!perf_event_task_match(event))
5699 return;
5700
5701 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5702
5703 ret = perf_output_begin(&handle, event,
5704 task_event->event_id.header.size);
5705 if (ret)
5706 goto out;
5707
5708 task_event->event_id.pid = perf_event_pid(event, task);
5709 task_event->event_id.ppid = perf_event_pid(event, current);
5710
5711 task_event->event_id.tid = perf_event_tid(event, task);
5712 task_event->event_id.ptid = perf_event_tid(event, current);
5713
5714 task_event->event_id.time = perf_event_clock(event);
5715
5716 perf_output_put(&handle, task_event->event_id);
5717
5718 perf_event__output_id_sample(event, &handle, &sample);
5719
5720 perf_output_end(&handle);
5721 out:
5722 task_event->event_id.header.size = size;
5723 }
5724
5725 static void perf_event_task(struct task_struct *task,
5726 struct perf_event_context *task_ctx,
5727 int new)
5728 {
5729 struct perf_task_event task_event;
5730
5731 if (!atomic_read(&nr_comm_events) &&
5732 !atomic_read(&nr_mmap_events) &&
5733 !atomic_read(&nr_task_events))
5734 return;
5735
5736 task_event = (struct perf_task_event){
5737 .task = task,
5738 .task_ctx = task_ctx,
5739 .event_id = {
5740 .header = {
5741 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5742 .misc = 0,
5743 .size = sizeof(task_event.event_id),
5744 },
5745 /* .pid */
5746 /* .ppid */
5747 /* .tid */
5748 /* .ptid */
5749 /* .time */
5750 },
5751 };
5752
5753 perf_event_aux(perf_event_task_output,
5754 &task_event,
5755 task_ctx);
5756 }
5757
5758 void perf_event_fork(struct task_struct *task)
5759 {
5760 perf_event_task(task, NULL, 1);
5761 }
5762
5763 /*
5764 * comm tracking
5765 */
5766
5767 struct perf_comm_event {
5768 struct task_struct *task;
5769 char *comm;
5770 int comm_size;
5771
5772 struct {
5773 struct perf_event_header header;
5774
5775 u32 pid;
5776 u32 tid;
5777 } event_id;
5778 };
5779
5780 static int perf_event_comm_match(struct perf_event *event)
5781 {
5782 return event->attr.comm;
5783 }
5784
5785 static void perf_event_comm_output(struct perf_event *event,
5786 void *data)
5787 {
5788 struct perf_comm_event *comm_event = data;
5789 struct perf_output_handle handle;
5790 struct perf_sample_data sample;
5791 int size = comm_event->event_id.header.size;
5792 int ret;
5793
5794 if (!perf_event_comm_match(event))
5795 return;
5796
5797 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5798 ret = perf_output_begin(&handle, event,
5799 comm_event->event_id.header.size);
5800
5801 if (ret)
5802 goto out;
5803
5804 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5805 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5806
5807 perf_output_put(&handle, comm_event->event_id);
5808 __output_copy(&handle, comm_event->comm,
5809 comm_event->comm_size);
5810
5811 perf_event__output_id_sample(event, &handle, &sample);
5812
5813 perf_output_end(&handle);
5814 out:
5815 comm_event->event_id.header.size = size;
5816 }
5817
5818 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5819 {
5820 char comm[TASK_COMM_LEN];
5821 unsigned int size;
5822
5823 memset(comm, 0, sizeof(comm));
5824 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5825 size = ALIGN(strlen(comm)+1, sizeof(u64));
5826
5827 comm_event->comm = comm;
5828 comm_event->comm_size = size;
5829
5830 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5831
5832 perf_event_aux(perf_event_comm_output,
5833 comm_event,
5834 NULL);
5835 }
5836
5837 void perf_event_comm(struct task_struct *task, bool exec)
5838 {
5839 struct perf_comm_event comm_event;
5840
5841 if (!atomic_read(&nr_comm_events))
5842 return;
5843
5844 comm_event = (struct perf_comm_event){
5845 .task = task,
5846 /* .comm */
5847 /* .comm_size */
5848 .event_id = {
5849 .header = {
5850 .type = PERF_RECORD_COMM,
5851 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5852 /* .size */
5853 },
5854 /* .pid */
5855 /* .tid */
5856 },
5857 };
5858
5859 perf_event_comm_event(&comm_event);
5860 }
5861
5862 /*
5863 * mmap tracking
5864 */
5865
5866 struct perf_mmap_event {
5867 struct vm_area_struct *vma;
5868
5869 const char *file_name;
5870 int file_size;
5871 int maj, min;
5872 u64 ino;
5873 u64 ino_generation;
5874 u32 prot, flags;
5875
5876 struct {
5877 struct perf_event_header header;
5878
5879 u32 pid;
5880 u32 tid;
5881 u64 start;
5882 u64 len;
5883 u64 pgoff;
5884 } event_id;
5885 };
5886
5887 static int perf_event_mmap_match(struct perf_event *event,
5888 void *data)
5889 {
5890 struct perf_mmap_event *mmap_event = data;
5891 struct vm_area_struct *vma = mmap_event->vma;
5892 int executable = vma->vm_flags & VM_EXEC;
5893
5894 return (!executable && event->attr.mmap_data) ||
5895 (executable && (event->attr.mmap || event->attr.mmap2));
5896 }
5897
5898 static void perf_event_mmap_output(struct perf_event *event,
5899 void *data)
5900 {
5901 struct perf_mmap_event *mmap_event = data;
5902 struct perf_output_handle handle;
5903 struct perf_sample_data sample;
5904 int size = mmap_event->event_id.header.size;
5905 int ret;
5906
5907 if (!perf_event_mmap_match(event, data))
5908 return;
5909
5910 if (event->attr.mmap2) {
5911 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5912 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5913 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5914 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5915 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5916 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5917 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5918 }
5919
5920 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5921 ret = perf_output_begin(&handle, event,
5922 mmap_event->event_id.header.size);
5923 if (ret)
5924 goto out;
5925
5926 mmap_event->event_id.pid = perf_event_pid(event, current);
5927 mmap_event->event_id.tid = perf_event_tid(event, current);
5928
5929 perf_output_put(&handle, mmap_event->event_id);
5930
5931 if (event->attr.mmap2) {
5932 perf_output_put(&handle, mmap_event->maj);
5933 perf_output_put(&handle, mmap_event->min);
5934 perf_output_put(&handle, mmap_event->ino);
5935 perf_output_put(&handle, mmap_event->ino_generation);
5936 perf_output_put(&handle, mmap_event->prot);
5937 perf_output_put(&handle, mmap_event->flags);
5938 }
5939
5940 __output_copy(&handle, mmap_event->file_name,
5941 mmap_event->file_size);
5942
5943 perf_event__output_id_sample(event, &handle, &sample);
5944
5945 perf_output_end(&handle);
5946 out:
5947 mmap_event->event_id.header.size = size;
5948 }
5949
5950 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5951 {
5952 struct vm_area_struct *vma = mmap_event->vma;
5953 struct file *file = vma->vm_file;
5954 int maj = 0, min = 0;
5955 u64 ino = 0, gen = 0;
5956 u32 prot = 0, flags = 0;
5957 unsigned int size;
5958 char tmp[16];
5959 char *buf = NULL;
5960 char *name;
5961
5962 if (file) {
5963 struct inode *inode;
5964 dev_t dev;
5965
5966 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5967 if (!buf) {
5968 name = "//enomem";
5969 goto cpy_name;
5970 }
5971 /*
5972 * d_path() works from the end of the rb backwards, so we
5973 * need to add enough zero bytes after the string to handle
5974 * the 64bit alignment we do later.
5975 */
5976 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5977 if (IS_ERR(name)) {
5978 name = "//toolong";
5979 goto cpy_name;
5980 }
5981 inode = file_inode(vma->vm_file);
5982 dev = inode->i_sb->s_dev;
5983 ino = inode->i_ino;
5984 gen = inode->i_generation;
5985 maj = MAJOR(dev);
5986 min = MINOR(dev);
5987
5988 if (vma->vm_flags & VM_READ)
5989 prot |= PROT_READ;
5990 if (vma->vm_flags & VM_WRITE)
5991 prot |= PROT_WRITE;
5992 if (vma->vm_flags & VM_EXEC)
5993 prot |= PROT_EXEC;
5994
5995 if (vma->vm_flags & VM_MAYSHARE)
5996 flags = MAP_SHARED;
5997 else
5998 flags = MAP_PRIVATE;
5999
6000 if (vma->vm_flags & VM_DENYWRITE)
6001 flags |= MAP_DENYWRITE;
6002 if (vma->vm_flags & VM_MAYEXEC)
6003 flags |= MAP_EXECUTABLE;
6004 if (vma->vm_flags & VM_LOCKED)
6005 flags |= MAP_LOCKED;
6006 if (vma->vm_flags & VM_HUGETLB)
6007 flags |= MAP_HUGETLB;
6008
6009 goto got_name;
6010 } else {
6011 if (vma->vm_ops && vma->vm_ops->name) {
6012 name = (char *) vma->vm_ops->name(vma);
6013 if (name)
6014 goto cpy_name;
6015 }
6016
6017 name = (char *)arch_vma_name(vma);
6018 if (name)
6019 goto cpy_name;
6020
6021 if (vma->vm_start <= vma->vm_mm->start_brk &&
6022 vma->vm_end >= vma->vm_mm->brk) {
6023 name = "[heap]";
6024 goto cpy_name;
6025 }
6026 if (vma->vm_start <= vma->vm_mm->start_stack &&
6027 vma->vm_end >= vma->vm_mm->start_stack) {
6028 name = "[stack]";
6029 goto cpy_name;
6030 }
6031
6032 name = "//anon";
6033 goto cpy_name;
6034 }
6035
6036 cpy_name:
6037 strlcpy(tmp, name, sizeof(tmp));
6038 name = tmp;
6039 got_name:
6040 /*
6041 * Since our buffer works in 8 byte units we need to align our string
6042 * size to a multiple of 8. However, we must guarantee the tail end is
6043 * zero'd out to avoid leaking random bits to userspace.
6044 */
6045 size = strlen(name)+1;
6046 while (!IS_ALIGNED(size, sizeof(u64)))
6047 name[size++] = '\0';
6048
6049 mmap_event->file_name = name;
6050 mmap_event->file_size = size;
6051 mmap_event->maj = maj;
6052 mmap_event->min = min;
6053 mmap_event->ino = ino;
6054 mmap_event->ino_generation = gen;
6055 mmap_event->prot = prot;
6056 mmap_event->flags = flags;
6057
6058 if (!(vma->vm_flags & VM_EXEC))
6059 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6060
6061 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6062
6063 perf_event_aux(perf_event_mmap_output,
6064 mmap_event,
6065 NULL);
6066
6067 kfree(buf);
6068 }
6069
6070 void perf_event_mmap(struct vm_area_struct *vma)
6071 {
6072 struct perf_mmap_event mmap_event;
6073
6074 if (!atomic_read(&nr_mmap_events))
6075 return;
6076
6077 mmap_event = (struct perf_mmap_event){
6078 .vma = vma,
6079 /* .file_name */
6080 /* .file_size */
6081 .event_id = {
6082 .header = {
6083 .type = PERF_RECORD_MMAP,
6084 .misc = PERF_RECORD_MISC_USER,
6085 /* .size */
6086 },
6087 /* .pid */
6088 /* .tid */
6089 .start = vma->vm_start,
6090 .len = vma->vm_end - vma->vm_start,
6091 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6092 },
6093 /* .maj (attr_mmap2 only) */
6094 /* .min (attr_mmap2 only) */
6095 /* .ino (attr_mmap2 only) */
6096 /* .ino_generation (attr_mmap2 only) */
6097 /* .prot (attr_mmap2 only) */
6098 /* .flags (attr_mmap2 only) */
6099 };
6100
6101 perf_event_mmap_event(&mmap_event);
6102 }
6103
6104 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6105 unsigned long size, u64 flags)
6106 {
6107 struct perf_output_handle handle;
6108 struct perf_sample_data sample;
6109 struct perf_aux_event {
6110 struct perf_event_header header;
6111 u64 offset;
6112 u64 size;
6113 u64 flags;
6114 } rec = {
6115 .header = {
6116 .type = PERF_RECORD_AUX,
6117 .misc = 0,
6118 .size = sizeof(rec),
6119 },
6120 .offset = head,
6121 .size = size,
6122 .flags = flags,
6123 };
6124 int ret;
6125
6126 perf_event_header__init_id(&rec.header, &sample, event);
6127 ret = perf_output_begin(&handle, event, rec.header.size);
6128
6129 if (ret)
6130 return;
6131
6132 perf_output_put(&handle, rec);
6133 perf_event__output_id_sample(event, &handle, &sample);
6134
6135 perf_output_end(&handle);
6136 }
6137
6138 /*
6139 * Lost/dropped samples logging
6140 */
6141 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6142 {
6143 struct perf_output_handle handle;
6144 struct perf_sample_data sample;
6145 int ret;
6146
6147 struct {
6148 struct perf_event_header header;
6149 u64 lost;
6150 } lost_samples_event = {
6151 .header = {
6152 .type = PERF_RECORD_LOST_SAMPLES,
6153 .misc = 0,
6154 .size = sizeof(lost_samples_event),
6155 },
6156 .lost = lost,
6157 };
6158
6159 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6160
6161 ret = perf_output_begin(&handle, event,
6162 lost_samples_event.header.size);
6163 if (ret)
6164 return;
6165
6166 perf_output_put(&handle, lost_samples_event);
6167 perf_event__output_id_sample(event, &handle, &sample);
6168 perf_output_end(&handle);
6169 }
6170
6171 /*
6172 * context_switch tracking
6173 */
6174
6175 struct perf_switch_event {
6176 struct task_struct *task;
6177 struct task_struct *next_prev;
6178
6179 struct {
6180 struct perf_event_header header;
6181 u32 next_prev_pid;
6182 u32 next_prev_tid;
6183 } event_id;
6184 };
6185
6186 static int perf_event_switch_match(struct perf_event *event)
6187 {
6188 return event->attr.context_switch;
6189 }
6190
6191 static void perf_event_switch_output(struct perf_event *event, void *data)
6192 {
6193 struct perf_switch_event *se = data;
6194 struct perf_output_handle handle;
6195 struct perf_sample_data sample;
6196 int ret;
6197
6198 if (!perf_event_switch_match(event))
6199 return;
6200
6201 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6202 if (event->ctx->task) {
6203 se->event_id.header.type = PERF_RECORD_SWITCH;
6204 se->event_id.header.size = sizeof(se->event_id.header);
6205 } else {
6206 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6207 se->event_id.header.size = sizeof(se->event_id);
6208 se->event_id.next_prev_pid =
6209 perf_event_pid(event, se->next_prev);
6210 se->event_id.next_prev_tid =
6211 perf_event_tid(event, se->next_prev);
6212 }
6213
6214 perf_event_header__init_id(&se->event_id.header, &sample, event);
6215
6216 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6217 if (ret)
6218 return;
6219
6220 if (event->ctx->task)
6221 perf_output_put(&handle, se->event_id.header);
6222 else
6223 perf_output_put(&handle, se->event_id);
6224
6225 perf_event__output_id_sample(event, &handle, &sample);
6226
6227 perf_output_end(&handle);
6228 }
6229
6230 static void perf_event_switch(struct task_struct *task,
6231 struct task_struct *next_prev, bool sched_in)
6232 {
6233 struct perf_switch_event switch_event;
6234
6235 /* N.B. caller checks nr_switch_events != 0 */
6236
6237 switch_event = (struct perf_switch_event){
6238 .task = task,
6239 .next_prev = next_prev,
6240 .event_id = {
6241 .header = {
6242 /* .type */
6243 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6244 /* .size */
6245 },
6246 /* .next_prev_pid */
6247 /* .next_prev_tid */
6248 },
6249 };
6250
6251 perf_event_aux(perf_event_switch_output,
6252 &switch_event,
6253 NULL);
6254 }
6255
6256 /*
6257 * IRQ throttle logging
6258 */
6259
6260 static void perf_log_throttle(struct perf_event *event, int enable)
6261 {
6262 struct perf_output_handle handle;
6263 struct perf_sample_data sample;
6264 int ret;
6265
6266 struct {
6267 struct perf_event_header header;
6268 u64 time;
6269 u64 id;
6270 u64 stream_id;
6271 } throttle_event = {
6272 .header = {
6273 .type = PERF_RECORD_THROTTLE,
6274 .misc = 0,
6275 .size = sizeof(throttle_event),
6276 },
6277 .time = perf_event_clock(event),
6278 .id = primary_event_id(event),
6279 .stream_id = event->id,
6280 };
6281
6282 if (enable)
6283 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6284
6285 perf_event_header__init_id(&throttle_event.header, &sample, event);
6286
6287 ret = perf_output_begin(&handle, event,
6288 throttle_event.header.size);
6289 if (ret)
6290 return;
6291
6292 perf_output_put(&handle, throttle_event);
6293 perf_event__output_id_sample(event, &handle, &sample);
6294 perf_output_end(&handle);
6295 }
6296
6297 static void perf_log_itrace_start(struct perf_event *event)
6298 {
6299 struct perf_output_handle handle;
6300 struct perf_sample_data sample;
6301 struct perf_aux_event {
6302 struct perf_event_header header;
6303 u32 pid;
6304 u32 tid;
6305 } rec;
6306 int ret;
6307
6308 if (event->parent)
6309 event = event->parent;
6310
6311 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6312 event->hw.itrace_started)
6313 return;
6314
6315 rec.header.type = PERF_RECORD_ITRACE_START;
6316 rec.header.misc = 0;
6317 rec.header.size = sizeof(rec);
6318 rec.pid = perf_event_pid(event, current);
6319 rec.tid = perf_event_tid(event, current);
6320
6321 perf_event_header__init_id(&rec.header, &sample, event);
6322 ret = perf_output_begin(&handle, event, rec.header.size);
6323
6324 if (ret)
6325 return;
6326
6327 perf_output_put(&handle, rec);
6328 perf_event__output_id_sample(event, &handle, &sample);
6329
6330 perf_output_end(&handle);
6331 }
6332
6333 /*
6334 * Generic event overflow handling, sampling.
6335 */
6336
6337 static int __perf_event_overflow(struct perf_event *event,
6338 int throttle, struct perf_sample_data *data,
6339 struct pt_regs *regs)
6340 {
6341 int events = atomic_read(&event->event_limit);
6342 struct hw_perf_event *hwc = &event->hw;
6343 u64 seq;
6344 int ret = 0;
6345
6346 /*
6347 * Non-sampling counters might still use the PMI to fold short
6348 * hardware counters, ignore those.
6349 */
6350 if (unlikely(!is_sampling_event(event)))
6351 return 0;
6352
6353 seq = __this_cpu_read(perf_throttled_seq);
6354 if (seq != hwc->interrupts_seq) {
6355 hwc->interrupts_seq = seq;
6356 hwc->interrupts = 1;
6357 } else {
6358 hwc->interrupts++;
6359 if (unlikely(throttle
6360 && hwc->interrupts >= max_samples_per_tick)) {
6361 __this_cpu_inc(perf_throttled_count);
6362 hwc->interrupts = MAX_INTERRUPTS;
6363 perf_log_throttle(event, 0);
6364 tick_nohz_full_kick();
6365 ret = 1;
6366 }
6367 }
6368
6369 if (event->attr.freq) {
6370 u64 now = perf_clock();
6371 s64 delta = now - hwc->freq_time_stamp;
6372
6373 hwc->freq_time_stamp = now;
6374
6375 if (delta > 0 && delta < 2*TICK_NSEC)
6376 perf_adjust_period(event, delta, hwc->last_period, true);
6377 }
6378
6379 /*
6380 * XXX event_limit might not quite work as expected on inherited
6381 * events
6382 */
6383
6384 event->pending_kill = POLL_IN;
6385 if (events && atomic_dec_and_test(&event->event_limit)) {
6386 ret = 1;
6387 event->pending_kill = POLL_HUP;
6388 event->pending_disable = 1;
6389 irq_work_queue(&event->pending);
6390 }
6391
6392 if (event->overflow_handler)
6393 event->overflow_handler(event, data, regs);
6394 else
6395 perf_event_output(event, data, regs);
6396
6397 if (*perf_event_fasync(event) && event->pending_kill) {
6398 event->pending_wakeup = 1;
6399 irq_work_queue(&event->pending);
6400 }
6401
6402 return ret;
6403 }
6404
6405 int perf_event_overflow(struct perf_event *event,
6406 struct perf_sample_data *data,
6407 struct pt_regs *regs)
6408 {
6409 return __perf_event_overflow(event, 1, data, regs);
6410 }
6411
6412 /*
6413 * Generic software event infrastructure
6414 */
6415
6416 struct swevent_htable {
6417 struct swevent_hlist *swevent_hlist;
6418 struct mutex hlist_mutex;
6419 int hlist_refcount;
6420
6421 /* Recursion avoidance in each contexts */
6422 int recursion[PERF_NR_CONTEXTS];
6423 };
6424
6425 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6426
6427 /*
6428 * We directly increment event->count and keep a second value in
6429 * event->hw.period_left to count intervals. This period event
6430 * is kept in the range [-sample_period, 0] so that we can use the
6431 * sign as trigger.
6432 */
6433
6434 u64 perf_swevent_set_period(struct perf_event *event)
6435 {
6436 struct hw_perf_event *hwc = &event->hw;
6437 u64 period = hwc->last_period;
6438 u64 nr, offset;
6439 s64 old, val;
6440
6441 hwc->last_period = hwc->sample_period;
6442
6443 again:
6444 old = val = local64_read(&hwc->period_left);
6445 if (val < 0)
6446 return 0;
6447
6448 nr = div64_u64(period + val, period);
6449 offset = nr * period;
6450 val -= offset;
6451 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6452 goto again;
6453
6454 return nr;
6455 }
6456
6457 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6458 struct perf_sample_data *data,
6459 struct pt_regs *regs)
6460 {
6461 struct hw_perf_event *hwc = &event->hw;
6462 int throttle = 0;
6463
6464 if (!overflow)
6465 overflow = perf_swevent_set_period(event);
6466
6467 if (hwc->interrupts == MAX_INTERRUPTS)
6468 return;
6469
6470 for (; overflow; overflow--) {
6471 if (__perf_event_overflow(event, throttle,
6472 data, regs)) {
6473 /*
6474 * We inhibit the overflow from happening when
6475 * hwc->interrupts == MAX_INTERRUPTS.
6476 */
6477 break;
6478 }
6479 throttle = 1;
6480 }
6481 }
6482
6483 static void perf_swevent_event(struct perf_event *event, u64 nr,
6484 struct perf_sample_data *data,
6485 struct pt_regs *regs)
6486 {
6487 struct hw_perf_event *hwc = &event->hw;
6488
6489 local64_add(nr, &event->count);
6490
6491 if (!regs)
6492 return;
6493
6494 if (!is_sampling_event(event))
6495 return;
6496
6497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6498 data->period = nr;
6499 return perf_swevent_overflow(event, 1, data, regs);
6500 } else
6501 data->period = event->hw.last_period;
6502
6503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6504 return perf_swevent_overflow(event, 1, data, regs);
6505
6506 if (local64_add_negative(nr, &hwc->period_left))
6507 return;
6508
6509 perf_swevent_overflow(event, 0, data, regs);
6510 }
6511
6512 static int perf_exclude_event(struct perf_event *event,
6513 struct pt_regs *regs)
6514 {
6515 if (event->hw.state & PERF_HES_STOPPED)
6516 return 1;
6517
6518 if (regs) {
6519 if (event->attr.exclude_user && user_mode(regs))
6520 return 1;
6521
6522 if (event->attr.exclude_kernel && !user_mode(regs))
6523 return 1;
6524 }
6525
6526 return 0;
6527 }
6528
6529 static int perf_swevent_match(struct perf_event *event,
6530 enum perf_type_id type,
6531 u32 event_id,
6532 struct perf_sample_data *data,
6533 struct pt_regs *regs)
6534 {
6535 if (event->attr.type != type)
6536 return 0;
6537
6538 if (event->attr.config != event_id)
6539 return 0;
6540
6541 if (perf_exclude_event(event, regs))
6542 return 0;
6543
6544 return 1;
6545 }
6546
6547 static inline u64 swevent_hash(u64 type, u32 event_id)
6548 {
6549 u64 val = event_id | (type << 32);
6550
6551 return hash_64(val, SWEVENT_HLIST_BITS);
6552 }
6553
6554 static inline struct hlist_head *
6555 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6556 {
6557 u64 hash = swevent_hash(type, event_id);
6558
6559 return &hlist->heads[hash];
6560 }
6561
6562 /* For the read side: events when they trigger */
6563 static inline struct hlist_head *
6564 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6565 {
6566 struct swevent_hlist *hlist;
6567
6568 hlist = rcu_dereference(swhash->swevent_hlist);
6569 if (!hlist)
6570 return NULL;
6571
6572 return __find_swevent_head(hlist, type, event_id);
6573 }
6574
6575 /* For the event head insertion and removal in the hlist */
6576 static inline struct hlist_head *
6577 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6578 {
6579 struct swevent_hlist *hlist;
6580 u32 event_id = event->attr.config;
6581 u64 type = event->attr.type;
6582
6583 /*
6584 * Event scheduling is always serialized against hlist allocation
6585 * and release. Which makes the protected version suitable here.
6586 * The context lock guarantees that.
6587 */
6588 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6589 lockdep_is_held(&event->ctx->lock));
6590 if (!hlist)
6591 return NULL;
6592
6593 return __find_swevent_head(hlist, type, event_id);
6594 }
6595
6596 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6597 u64 nr,
6598 struct perf_sample_data *data,
6599 struct pt_regs *regs)
6600 {
6601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6602 struct perf_event *event;
6603 struct hlist_head *head;
6604
6605 rcu_read_lock();
6606 head = find_swevent_head_rcu(swhash, type, event_id);
6607 if (!head)
6608 goto end;
6609
6610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6611 if (perf_swevent_match(event, type, event_id, data, regs))
6612 perf_swevent_event(event, nr, data, regs);
6613 }
6614 end:
6615 rcu_read_unlock();
6616 }
6617
6618 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6619
6620 int perf_swevent_get_recursion_context(void)
6621 {
6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6623
6624 return get_recursion_context(swhash->recursion);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6627
6628 inline void perf_swevent_put_recursion_context(int rctx)
6629 {
6630 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6631
6632 put_recursion_context(swhash->recursion, rctx);
6633 }
6634
6635 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6636 {
6637 struct perf_sample_data data;
6638
6639 if (WARN_ON_ONCE(!regs))
6640 return;
6641
6642 perf_sample_data_init(&data, addr, 0);
6643 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6644 }
6645
6646 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6647 {
6648 int rctx;
6649
6650 preempt_disable_notrace();
6651 rctx = perf_swevent_get_recursion_context();
6652 if (unlikely(rctx < 0))
6653 goto fail;
6654
6655 ___perf_sw_event(event_id, nr, regs, addr);
6656
6657 perf_swevent_put_recursion_context(rctx);
6658 fail:
6659 preempt_enable_notrace();
6660 }
6661
6662 static void perf_swevent_read(struct perf_event *event)
6663 {
6664 }
6665
6666 static int perf_swevent_add(struct perf_event *event, int flags)
6667 {
6668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6669 struct hw_perf_event *hwc = &event->hw;
6670 struct hlist_head *head;
6671
6672 if (is_sampling_event(event)) {
6673 hwc->last_period = hwc->sample_period;
6674 perf_swevent_set_period(event);
6675 }
6676
6677 hwc->state = !(flags & PERF_EF_START);
6678
6679 head = find_swevent_head(swhash, event);
6680 if (WARN_ON_ONCE(!head))
6681 return -EINVAL;
6682
6683 hlist_add_head_rcu(&event->hlist_entry, head);
6684 perf_event_update_userpage(event);
6685
6686 return 0;
6687 }
6688
6689 static void perf_swevent_del(struct perf_event *event, int flags)
6690 {
6691 hlist_del_rcu(&event->hlist_entry);
6692 }
6693
6694 static void perf_swevent_start(struct perf_event *event, int flags)
6695 {
6696 event->hw.state = 0;
6697 }
6698
6699 static void perf_swevent_stop(struct perf_event *event, int flags)
6700 {
6701 event->hw.state = PERF_HES_STOPPED;
6702 }
6703
6704 /* Deref the hlist from the update side */
6705 static inline struct swevent_hlist *
6706 swevent_hlist_deref(struct swevent_htable *swhash)
6707 {
6708 return rcu_dereference_protected(swhash->swevent_hlist,
6709 lockdep_is_held(&swhash->hlist_mutex));
6710 }
6711
6712 static void swevent_hlist_release(struct swevent_htable *swhash)
6713 {
6714 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6715
6716 if (!hlist)
6717 return;
6718
6719 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6720 kfree_rcu(hlist, rcu_head);
6721 }
6722
6723 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6724 {
6725 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6726
6727 mutex_lock(&swhash->hlist_mutex);
6728
6729 if (!--swhash->hlist_refcount)
6730 swevent_hlist_release(swhash);
6731
6732 mutex_unlock(&swhash->hlist_mutex);
6733 }
6734
6735 static void swevent_hlist_put(struct perf_event *event)
6736 {
6737 int cpu;
6738
6739 for_each_possible_cpu(cpu)
6740 swevent_hlist_put_cpu(event, cpu);
6741 }
6742
6743 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6744 {
6745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6746 int err = 0;
6747
6748 mutex_lock(&swhash->hlist_mutex);
6749 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6750 struct swevent_hlist *hlist;
6751
6752 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6753 if (!hlist) {
6754 err = -ENOMEM;
6755 goto exit;
6756 }
6757 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758 }
6759 swhash->hlist_refcount++;
6760 exit:
6761 mutex_unlock(&swhash->hlist_mutex);
6762
6763 return err;
6764 }
6765
6766 static int swevent_hlist_get(struct perf_event *event)
6767 {
6768 int err;
6769 int cpu, failed_cpu;
6770
6771 get_online_cpus();
6772 for_each_possible_cpu(cpu) {
6773 err = swevent_hlist_get_cpu(event, cpu);
6774 if (err) {
6775 failed_cpu = cpu;
6776 goto fail;
6777 }
6778 }
6779 put_online_cpus();
6780
6781 return 0;
6782 fail:
6783 for_each_possible_cpu(cpu) {
6784 if (cpu == failed_cpu)
6785 break;
6786 swevent_hlist_put_cpu(event, cpu);
6787 }
6788
6789 put_online_cpus();
6790 return err;
6791 }
6792
6793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6794
6795 static void sw_perf_event_destroy(struct perf_event *event)
6796 {
6797 u64 event_id = event->attr.config;
6798
6799 WARN_ON(event->parent);
6800
6801 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6802 swevent_hlist_put(event);
6803 }
6804
6805 static int perf_swevent_init(struct perf_event *event)
6806 {
6807 u64 event_id = event->attr.config;
6808
6809 if (event->attr.type != PERF_TYPE_SOFTWARE)
6810 return -ENOENT;
6811
6812 /*
6813 * no branch sampling for software events
6814 */
6815 if (has_branch_stack(event))
6816 return -EOPNOTSUPP;
6817
6818 switch (event_id) {
6819 case PERF_COUNT_SW_CPU_CLOCK:
6820 case PERF_COUNT_SW_TASK_CLOCK:
6821 return -ENOENT;
6822
6823 default:
6824 break;
6825 }
6826
6827 if (event_id >= PERF_COUNT_SW_MAX)
6828 return -ENOENT;
6829
6830 if (!event->parent) {
6831 int err;
6832
6833 err = swevent_hlist_get(event);
6834 if (err)
6835 return err;
6836
6837 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6838 event->destroy = sw_perf_event_destroy;
6839 }
6840
6841 return 0;
6842 }
6843
6844 static struct pmu perf_swevent = {
6845 .task_ctx_nr = perf_sw_context,
6846
6847 .capabilities = PERF_PMU_CAP_NO_NMI,
6848
6849 .event_init = perf_swevent_init,
6850 .add = perf_swevent_add,
6851 .del = perf_swevent_del,
6852 .start = perf_swevent_start,
6853 .stop = perf_swevent_stop,
6854 .read = perf_swevent_read,
6855 };
6856
6857 #ifdef CONFIG_EVENT_TRACING
6858
6859 static int perf_tp_filter_match(struct perf_event *event,
6860 struct perf_sample_data *data)
6861 {
6862 void *record = data->raw->data;
6863
6864 /* only top level events have filters set */
6865 if (event->parent)
6866 event = event->parent;
6867
6868 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6869 return 1;
6870 return 0;
6871 }
6872
6873 static int perf_tp_event_match(struct perf_event *event,
6874 struct perf_sample_data *data,
6875 struct pt_regs *regs)
6876 {
6877 if (event->hw.state & PERF_HES_STOPPED)
6878 return 0;
6879 /*
6880 * All tracepoints are from kernel-space.
6881 */
6882 if (event->attr.exclude_kernel)
6883 return 0;
6884
6885 if (!perf_tp_filter_match(event, data))
6886 return 0;
6887
6888 return 1;
6889 }
6890
6891 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6892 struct pt_regs *regs, struct hlist_head *head, int rctx,
6893 struct task_struct *task)
6894 {
6895 struct perf_sample_data data;
6896 struct perf_event *event;
6897
6898 struct perf_raw_record raw = {
6899 .size = entry_size,
6900 .data = record,
6901 };
6902
6903 perf_sample_data_init(&data, addr, 0);
6904 data.raw = &raw;
6905
6906 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6907 if (perf_tp_event_match(event, &data, regs))
6908 perf_swevent_event(event, count, &data, regs);
6909 }
6910
6911 /*
6912 * If we got specified a target task, also iterate its context and
6913 * deliver this event there too.
6914 */
6915 if (task && task != current) {
6916 struct perf_event_context *ctx;
6917 struct trace_entry *entry = record;
6918
6919 rcu_read_lock();
6920 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6921 if (!ctx)
6922 goto unlock;
6923
6924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6925 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6926 continue;
6927 if (event->attr.config != entry->type)
6928 continue;
6929 if (perf_tp_event_match(event, &data, regs))
6930 perf_swevent_event(event, count, &data, regs);
6931 }
6932 unlock:
6933 rcu_read_unlock();
6934 }
6935
6936 perf_swevent_put_recursion_context(rctx);
6937 }
6938 EXPORT_SYMBOL_GPL(perf_tp_event);
6939
6940 static void tp_perf_event_destroy(struct perf_event *event)
6941 {
6942 perf_trace_destroy(event);
6943 }
6944
6945 static int perf_tp_event_init(struct perf_event *event)
6946 {
6947 int err;
6948
6949 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6950 return -ENOENT;
6951
6952 /*
6953 * no branch sampling for tracepoint events
6954 */
6955 if (has_branch_stack(event))
6956 return -EOPNOTSUPP;
6957
6958 err = perf_trace_init(event);
6959 if (err)
6960 return err;
6961
6962 event->destroy = tp_perf_event_destroy;
6963
6964 return 0;
6965 }
6966
6967 static struct pmu perf_tracepoint = {
6968 .task_ctx_nr = perf_sw_context,
6969
6970 .event_init = perf_tp_event_init,
6971 .add = perf_trace_add,
6972 .del = perf_trace_del,
6973 .start = perf_swevent_start,
6974 .stop = perf_swevent_stop,
6975 .read = perf_swevent_read,
6976 };
6977
6978 static inline void perf_tp_register(void)
6979 {
6980 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6981 }
6982
6983 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6984 {
6985 char *filter_str;
6986 int ret;
6987
6988 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6989 return -EINVAL;
6990
6991 filter_str = strndup_user(arg, PAGE_SIZE);
6992 if (IS_ERR(filter_str))
6993 return PTR_ERR(filter_str);
6994
6995 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6996
6997 kfree(filter_str);
6998 return ret;
6999 }
7000
7001 static void perf_event_free_filter(struct perf_event *event)
7002 {
7003 ftrace_profile_free_filter(event);
7004 }
7005
7006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7007 {
7008 struct bpf_prog *prog;
7009
7010 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7011 return -EINVAL;
7012
7013 if (event->tp_event->prog)
7014 return -EEXIST;
7015
7016 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7017 /* bpf programs can only be attached to u/kprobes */
7018 return -EINVAL;
7019
7020 prog = bpf_prog_get(prog_fd);
7021 if (IS_ERR(prog))
7022 return PTR_ERR(prog);
7023
7024 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7025 /* valid fd, but invalid bpf program type */
7026 bpf_prog_put(prog);
7027 return -EINVAL;
7028 }
7029
7030 event->tp_event->prog = prog;
7031
7032 return 0;
7033 }
7034
7035 static void perf_event_free_bpf_prog(struct perf_event *event)
7036 {
7037 struct bpf_prog *prog;
7038
7039 if (!event->tp_event)
7040 return;
7041
7042 prog = event->tp_event->prog;
7043 if (prog) {
7044 event->tp_event->prog = NULL;
7045 bpf_prog_put(prog);
7046 }
7047 }
7048
7049 #else
7050
7051 static inline void perf_tp_register(void)
7052 {
7053 }
7054
7055 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7056 {
7057 return -ENOENT;
7058 }
7059
7060 static void perf_event_free_filter(struct perf_event *event)
7061 {
7062 }
7063
7064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7065 {
7066 return -ENOENT;
7067 }
7068
7069 static void perf_event_free_bpf_prog(struct perf_event *event)
7070 {
7071 }
7072 #endif /* CONFIG_EVENT_TRACING */
7073
7074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7075 void perf_bp_event(struct perf_event *bp, void *data)
7076 {
7077 struct perf_sample_data sample;
7078 struct pt_regs *regs = data;
7079
7080 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7081
7082 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7083 perf_swevent_event(bp, 1, &sample, regs);
7084 }
7085 #endif
7086
7087 /*
7088 * hrtimer based swevent callback
7089 */
7090
7091 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7092 {
7093 enum hrtimer_restart ret = HRTIMER_RESTART;
7094 struct perf_sample_data data;
7095 struct pt_regs *regs;
7096 struct perf_event *event;
7097 u64 period;
7098
7099 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7100
7101 if (event->state != PERF_EVENT_STATE_ACTIVE)
7102 return HRTIMER_NORESTART;
7103
7104 event->pmu->read(event);
7105
7106 perf_sample_data_init(&data, 0, event->hw.last_period);
7107 regs = get_irq_regs();
7108
7109 if (regs && !perf_exclude_event(event, regs)) {
7110 if (!(event->attr.exclude_idle && is_idle_task(current)))
7111 if (__perf_event_overflow(event, 1, &data, regs))
7112 ret = HRTIMER_NORESTART;
7113 }
7114
7115 period = max_t(u64, 10000, event->hw.sample_period);
7116 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7117
7118 return ret;
7119 }
7120
7121 static void perf_swevent_start_hrtimer(struct perf_event *event)
7122 {
7123 struct hw_perf_event *hwc = &event->hw;
7124 s64 period;
7125
7126 if (!is_sampling_event(event))
7127 return;
7128
7129 period = local64_read(&hwc->period_left);
7130 if (period) {
7131 if (period < 0)
7132 period = 10000;
7133
7134 local64_set(&hwc->period_left, 0);
7135 } else {
7136 period = max_t(u64, 10000, hwc->sample_period);
7137 }
7138 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7139 HRTIMER_MODE_REL_PINNED);
7140 }
7141
7142 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7143 {
7144 struct hw_perf_event *hwc = &event->hw;
7145
7146 if (is_sampling_event(event)) {
7147 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7148 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7149
7150 hrtimer_cancel(&hwc->hrtimer);
7151 }
7152 }
7153
7154 static void perf_swevent_init_hrtimer(struct perf_event *event)
7155 {
7156 struct hw_perf_event *hwc = &event->hw;
7157
7158 if (!is_sampling_event(event))
7159 return;
7160
7161 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7162 hwc->hrtimer.function = perf_swevent_hrtimer;
7163
7164 /*
7165 * Since hrtimers have a fixed rate, we can do a static freq->period
7166 * mapping and avoid the whole period adjust feedback stuff.
7167 */
7168 if (event->attr.freq) {
7169 long freq = event->attr.sample_freq;
7170
7171 event->attr.sample_period = NSEC_PER_SEC / freq;
7172 hwc->sample_period = event->attr.sample_period;
7173 local64_set(&hwc->period_left, hwc->sample_period);
7174 hwc->last_period = hwc->sample_period;
7175 event->attr.freq = 0;
7176 }
7177 }
7178
7179 /*
7180 * Software event: cpu wall time clock
7181 */
7182
7183 static void cpu_clock_event_update(struct perf_event *event)
7184 {
7185 s64 prev;
7186 u64 now;
7187
7188 now = local_clock();
7189 prev = local64_xchg(&event->hw.prev_count, now);
7190 local64_add(now - prev, &event->count);
7191 }
7192
7193 static void cpu_clock_event_start(struct perf_event *event, int flags)
7194 {
7195 local64_set(&event->hw.prev_count, local_clock());
7196 perf_swevent_start_hrtimer(event);
7197 }
7198
7199 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7200 {
7201 perf_swevent_cancel_hrtimer(event);
7202 cpu_clock_event_update(event);
7203 }
7204
7205 static int cpu_clock_event_add(struct perf_event *event, int flags)
7206 {
7207 if (flags & PERF_EF_START)
7208 cpu_clock_event_start(event, flags);
7209 perf_event_update_userpage(event);
7210
7211 return 0;
7212 }
7213
7214 static void cpu_clock_event_del(struct perf_event *event, int flags)
7215 {
7216 cpu_clock_event_stop(event, flags);
7217 }
7218
7219 static void cpu_clock_event_read(struct perf_event *event)
7220 {
7221 cpu_clock_event_update(event);
7222 }
7223
7224 static int cpu_clock_event_init(struct perf_event *event)
7225 {
7226 if (event->attr.type != PERF_TYPE_SOFTWARE)
7227 return -ENOENT;
7228
7229 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7230 return -ENOENT;
7231
7232 /*
7233 * no branch sampling for software events
7234 */
7235 if (has_branch_stack(event))
7236 return -EOPNOTSUPP;
7237
7238 perf_swevent_init_hrtimer(event);
7239
7240 return 0;
7241 }
7242
7243 static struct pmu perf_cpu_clock = {
7244 .task_ctx_nr = perf_sw_context,
7245
7246 .capabilities = PERF_PMU_CAP_NO_NMI,
7247
7248 .event_init = cpu_clock_event_init,
7249 .add = cpu_clock_event_add,
7250 .del = cpu_clock_event_del,
7251 .start = cpu_clock_event_start,
7252 .stop = cpu_clock_event_stop,
7253 .read = cpu_clock_event_read,
7254 };
7255
7256 /*
7257 * Software event: task time clock
7258 */
7259
7260 static void task_clock_event_update(struct perf_event *event, u64 now)
7261 {
7262 u64 prev;
7263 s64 delta;
7264
7265 prev = local64_xchg(&event->hw.prev_count, now);
7266 delta = now - prev;
7267 local64_add(delta, &event->count);
7268 }
7269
7270 static void task_clock_event_start(struct perf_event *event, int flags)
7271 {
7272 local64_set(&event->hw.prev_count, event->ctx->time);
7273 perf_swevent_start_hrtimer(event);
7274 }
7275
7276 static void task_clock_event_stop(struct perf_event *event, int flags)
7277 {
7278 perf_swevent_cancel_hrtimer(event);
7279 task_clock_event_update(event, event->ctx->time);
7280 }
7281
7282 static int task_clock_event_add(struct perf_event *event, int flags)
7283 {
7284 if (flags & PERF_EF_START)
7285 task_clock_event_start(event, flags);
7286 perf_event_update_userpage(event);
7287
7288 return 0;
7289 }
7290
7291 static void task_clock_event_del(struct perf_event *event, int flags)
7292 {
7293 task_clock_event_stop(event, PERF_EF_UPDATE);
7294 }
7295
7296 static void task_clock_event_read(struct perf_event *event)
7297 {
7298 u64 now = perf_clock();
7299 u64 delta = now - event->ctx->timestamp;
7300 u64 time = event->ctx->time + delta;
7301
7302 task_clock_event_update(event, time);
7303 }
7304
7305 static int task_clock_event_init(struct perf_event *event)
7306 {
7307 if (event->attr.type != PERF_TYPE_SOFTWARE)
7308 return -ENOENT;
7309
7310 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7311 return -ENOENT;
7312
7313 /*
7314 * no branch sampling for software events
7315 */
7316 if (has_branch_stack(event))
7317 return -EOPNOTSUPP;
7318
7319 perf_swevent_init_hrtimer(event);
7320
7321 return 0;
7322 }
7323
7324 static struct pmu perf_task_clock = {
7325 .task_ctx_nr = perf_sw_context,
7326
7327 .capabilities = PERF_PMU_CAP_NO_NMI,
7328
7329 .event_init = task_clock_event_init,
7330 .add = task_clock_event_add,
7331 .del = task_clock_event_del,
7332 .start = task_clock_event_start,
7333 .stop = task_clock_event_stop,
7334 .read = task_clock_event_read,
7335 };
7336
7337 static void perf_pmu_nop_void(struct pmu *pmu)
7338 {
7339 }
7340
7341 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7342 {
7343 }
7344
7345 static int perf_pmu_nop_int(struct pmu *pmu)
7346 {
7347 return 0;
7348 }
7349
7350 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7351
7352 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7353 {
7354 __this_cpu_write(nop_txn_flags, flags);
7355
7356 if (flags & ~PERF_PMU_TXN_ADD)
7357 return;
7358
7359 perf_pmu_disable(pmu);
7360 }
7361
7362 static int perf_pmu_commit_txn(struct pmu *pmu)
7363 {
7364 unsigned int flags = __this_cpu_read(nop_txn_flags);
7365
7366 __this_cpu_write(nop_txn_flags, 0);
7367
7368 if (flags & ~PERF_PMU_TXN_ADD)
7369 return 0;
7370
7371 perf_pmu_enable(pmu);
7372 return 0;
7373 }
7374
7375 static void perf_pmu_cancel_txn(struct pmu *pmu)
7376 {
7377 unsigned int flags = __this_cpu_read(nop_txn_flags);
7378
7379 __this_cpu_write(nop_txn_flags, 0);
7380
7381 if (flags & ~PERF_PMU_TXN_ADD)
7382 return;
7383
7384 perf_pmu_enable(pmu);
7385 }
7386
7387 static int perf_event_idx_default(struct perf_event *event)
7388 {
7389 return 0;
7390 }
7391
7392 /*
7393 * Ensures all contexts with the same task_ctx_nr have the same
7394 * pmu_cpu_context too.
7395 */
7396 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7397 {
7398 struct pmu *pmu;
7399
7400 if (ctxn < 0)
7401 return NULL;
7402
7403 list_for_each_entry(pmu, &pmus, entry) {
7404 if (pmu->task_ctx_nr == ctxn)
7405 return pmu->pmu_cpu_context;
7406 }
7407
7408 return NULL;
7409 }
7410
7411 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7412 {
7413 int cpu;
7414
7415 for_each_possible_cpu(cpu) {
7416 struct perf_cpu_context *cpuctx;
7417
7418 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7419
7420 if (cpuctx->unique_pmu == old_pmu)
7421 cpuctx->unique_pmu = pmu;
7422 }
7423 }
7424
7425 static void free_pmu_context(struct pmu *pmu)
7426 {
7427 struct pmu *i;
7428
7429 mutex_lock(&pmus_lock);
7430 /*
7431 * Like a real lame refcount.
7432 */
7433 list_for_each_entry(i, &pmus, entry) {
7434 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7435 update_pmu_context(i, pmu);
7436 goto out;
7437 }
7438 }
7439
7440 free_percpu(pmu->pmu_cpu_context);
7441 out:
7442 mutex_unlock(&pmus_lock);
7443 }
7444 static struct idr pmu_idr;
7445
7446 static ssize_t
7447 type_show(struct device *dev, struct device_attribute *attr, char *page)
7448 {
7449 struct pmu *pmu = dev_get_drvdata(dev);
7450
7451 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7452 }
7453 static DEVICE_ATTR_RO(type);
7454
7455 static ssize_t
7456 perf_event_mux_interval_ms_show(struct device *dev,
7457 struct device_attribute *attr,
7458 char *page)
7459 {
7460 struct pmu *pmu = dev_get_drvdata(dev);
7461
7462 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7463 }
7464
7465 static DEFINE_MUTEX(mux_interval_mutex);
7466
7467 static ssize_t
7468 perf_event_mux_interval_ms_store(struct device *dev,
7469 struct device_attribute *attr,
7470 const char *buf, size_t count)
7471 {
7472 struct pmu *pmu = dev_get_drvdata(dev);
7473 int timer, cpu, ret;
7474
7475 ret = kstrtoint(buf, 0, &timer);
7476 if (ret)
7477 return ret;
7478
7479 if (timer < 1)
7480 return -EINVAL;
7481
7482 /* same value, noting to do */
7483 if (timer == pmu->hrtimer_interval_ms)
7484 return count;
7485
7486 mutex_lock(&mux_interval_mutex);
7487 pmu->hrtimer_interval_ms = timer;
7488
7489 /* update all cpuctx for this PMU */
7490 get_online_cpus();
7491 for_each_online_cpu(cpu) {
7492 struct perf_cpu_context *cpuctx;
7493 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7494 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7495
7496 cpu_function_call(cpu,
7497 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7498 }
7499 put_online_cpus();
7500 mutex_unlock(&mux_interval_mutex);
7501
7502 return count;
7503 }
7504 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7505
7506 static struct attribute *pmu_dev_attrs[] = {
7507 &dev_attr_type.attr,
7508 &dev_attr_perf_event_mux_interval_ms.attr,
7509 NULL,
7510 };
7511 ATTRIBUTE_GROUPS(pmu_dev);
7512
7513 static int pmu_bus_running;
7514 static struct bus_type pmu_bus = {
7515 .name = "event_source",
7516 .dev_groups = pmu_dev_groups,
7517 };
7518
7519 static void pmu_dev_release(struct device *dev)
7520 {
7521 kfree(dev);
7522 }
7523
7524 static int pmu_dev_alloc(struct pmu *pmu)
7525 {
7526 int ret = -ENOMEM;
7527
7528 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7529 if (!pmu->dev)
7530 goto out;
7531
7532 pmu->dev->groups = pmu->attr_groups;
7533 device_initialize(pmu->dev);
7534 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7535 if (ret)
7536 goto free_dev;
7537
7538 dev_set_drvdata(pmu->dev, pmu);
7539 pmu->dev->bus = &pmu_bus;
7540 pmu->dev->release = pmu_dev_release;
7541 ret = device_add(pmu->dev);
7542 if (ret)
7543 goto free_dev;
7544
7545 out:
7546 return ret;
7547
7548 free_dev:
7549 put_device(pmu->dev);
7550 goto out;
7551 }
7552
7553 static struct lock_class_key cpuctx_mutex;
7554 static struct lock_class_key cpuctx_lock;
7555
7556 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7557 {
7558 int cpu, ret;
7559
7560 mutex_lock(&pmus_lock);
7561 ret = -ENOMEM;
7562 pmu->pmu_disable_count = alloc_percpu(int);
7563 if (!pmu->pmu_disable_count)
7564 goto unlock;
7565
7566 pmu->type = -1;
7567 if (!name)
7568 goto skip_type;
7569 pmu->name = name;
7570
7571 if (type < 0) {
7572 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7573 if (type < 0) {
7574 ret = type;
7575 goto free_pdc;
7576 }
7577 }
7578 pmu->type = type;
7579
7580 if (pmu_bus_running) {
7581 ret = pmu_dev_alloc(pmu);
7582 if (ret)
7583 goto free_idr;
7584 }
7585
7586 skip_type:
7587 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7588 if (pmu->pmu_cpu_context)
7589 goto got_cpu_context;
7590
7591 ret = -ENOMEM;
7592 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7593 if (!pmu->pmu_cpu_context)
7594 goto free_dev;
7595
7596 for_each_possible_cpu(cpu) {
7597 struct perf_cpu_context *cpuctx;
7598
7599 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7600 __perf_event_init_context(&cpuctx->ctx);
7601 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7602 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7603 cpuctx->ctx.pmu = pmu;
7604
7605 __perf_mux_hrtimer_init(cpuctx, cpu);
7606
7607 cpuctx->unique_pmu = pmu;
7608 }
7609
7610 got_cpu_context:
7611 if (!pmu->start_txn) {
7612 if (pmu->pmu_enable) {
7613 /*
7614 * If we have pmu_enable/pmu_disable calls, install
7615 * transaction stubs that use that to try and batch
7616 * hardware accesses.
7617 */
7618 pmu->start_txn = perf_pmu_start_txn;
7619 pmu->commit_txn = perf_pmu_commit_txn;
7620 pmu->cancel_txn = perf_pmu_cancel_txn;
7621 } else {
7622 pmu->start_txn = perf_pmu_nop_txn;
7623 pmu->commit_txn = perf_pmu_nop_int;
7624 pmu->cancel_txn = perf_pmu_nop_void;
7625 }
7626 }
7627
7628 if (!pmu->pmu_enable) {
7629 pmu->pmu_enable = perf_pmu_nop_void;
7630 pmu->pmu_disable = perf_pmu_nop_void;
7631 }
7632
7633 if (!pmu->event_idx)
7634 pmu->event_idx = perf_event_idx_default;
7635
7636 list_add_rcu(&pmu->entry, &pmus);
7637 atomic_set(&pmu->exclusive_cnt, 0);
7638 ret = 0;
7639 unlock:
7640 mutex_unlock(&pmus_lock);
7641
7642 return ret;
7643
7644 free_dev:
7645 device_del(pmu->dev);
7646 put_device(pmu->dev);
7647
7648 free_idr:
7649 if (pmu->type >= PERF_TYPE_MAX)
7650 idr_remove(&pmu_idr, pmu->type);
7651
7652 free_pdc:
7653 free_percpu(pmu->pmu_disable_count);
7654 goto unlock;
7655 }
7656 EXPORT_SYMBOL_GPL(perf_pmu_register);
7657
7658 void perf_pmu_unregister(struct pmu *pmu)
7659 {
7660 mutex_lock(&pmus_lock);
7661 list_del_rcu(&pmu->entry);
7662 mutex_unlock(&pmus_lock);
7663
7664 /*
7665 * We dereference the pmu list under both SRCU and regular RCU, so
7666 * synchronize against both of those.
7667 */
7668 synchronize_srcu(&pmus_srcu);
7669 synchronize_rcu();
7670
7671 free_percpu(pmu->pmu_disable_count);
7672 if (pmu->type >= PERF_TYPE_MAX)
7673 idr_remove(&pmu_idr, pmu->type);
7674 device_del(pmu->dev);
7675 put_device(pmu->dev);
7676 free_pmu_context(pmu);
7677 }
7678 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7679
7680 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7681 {
7682 struct perf_event_context *ctx = NULL;
7683 int ret;
7684
7685 if (!try_module_get(pmu->module))
7686 return -ENODEV;
7687
7688 if (event->group_leader != event) {
7689 /*
7690 * This ctx->mutex can nest when we're called through
7691 * inheritance. See the perf_event_ctx_lock_nested() comment.
7692 */
7693 ctx = perf_event_ctx_lock_nested(event->group_leader,
7694 SINGLE_DEPTH_NESTING);
7695 BUG_ON(!ctx);
7696 }
7697
7698 event->pmu = pmu;
7699 ret = pmu->event_init(event);
7700
7701 if (ctx)
7702 perf_event_ctx_unlock(event->group_leader, ctx);
7703
7704 if (ret)
7705 module_put(pmu->module);
7706
7707 return ret;
7708 }
7709
7710 static struct pmu *perf_init_event(struct perf_event *event)
7711 {
7712 struct pmu *pmu = NULL;
7713 int idx;
7714 int ret;
7715
7716 idx = srcu_read_lock(&pmus_srcu);
7717
7718 rcu_read_lock();
7719 pmu = idr_find(&pmu_idr, event->attr.type);
7720 rcu_read_unlock();
7721 if (pmu) {
7722 ret = perf_try_init_event(pmu, event);
7723 if (ret)
7724 pmu = ERR_PTR(ret);
7725 goto unlock;
7726 }
7727
7728 list_for_each_entry_rcu(pmu, &pmus, entry) {
7729 ret = perf_try_init_event(pmu, event);
7730 if (!ret)
7731 goto unlock;
7732
7733 if (ret != -ENOENT) {
7734 pmu = ERR_PTR(ret);
7735 goto unlock;
7736 }
7737 }
7738 pmu = ERR_PTR(-ENOENT);
7739 unlock:
7740 srcu_read_unlock(&pmus_srcu, idx);
7741
7742 return pmu;
7743 }
7744
7745 static void account_event_cpu(struct perf_event *event, int cpu)
7746 {
7747 if (event->parent)
7748 return;
7749
7750 if (is_cgroup_event(event))
7751 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7752 }
7753
7754 static void account_event(struct perf_event *event)
7755 {
7756 if (event->parent)
7757 return;
7758
7759 if (event->attach_state & PERF_ATTACH_TASK)
7760 static_key_slow_inc(&perf_sched_events.key);
7761 if (event->attr.mmap || event->attr.mmap_data)
7762 atomic_inc(&nr_mmap_events);
7763 if (event->attr.comm)
7764 atomic_inc(&nr_comm_events);
7765 if (event->attr.task)
7766 atomic_inc(&nr_task_events);
7767 if (event->attr.freq) {
7768 if (atomic_inc_return(&nr_freq_events) == 1)
7769 tick_nohz_full_kick_all();
7770 }
7771 if (event->attr.context_switch) {
7772 atomic_inc(&nr_switch_events);
7773 static_key_slow_inc(&perf_sched_events.key);
7774 }
7775 if (has_branch_stack(event))
7776 static_key_slow_inc(&perf_sched_events.key);
7777 if (is_cgroup_event(event))
7778 static_key_slow_inc(&perf_sched_events.key);
7779
7780 account_event_cpu(event, event->cpu);
7781 }
7782
7783 /*
7784 * Allocate and initialize a event structure
7785 */
7786 static struct perf_event *
7787 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7788 struct task_struct *task,
7789 struct perf_event *group_leader,
7790 struct perf_event *parent_event,
7791 perf_overflow_handler_t overflow_handler,
7792 void *context, int cgroup_fd)
7793 {
7794 struct pmu *pmu;
7795 struct perf_event *event;
7796 struct hw_perf_event *hwc;
7797 long err = -EINVAL;
7798
7799 if ((unsigned)cpu >= nr_cpu_ids) {
7800 if (!task || cpu != -1)
7801 return ERR_PTR(-EINVAL);
7802 }
7803
7804 event = kzalloc(sizeof(*event), GFP_KERNEL);
7805 if (!event)
7806 return ERR_PTR(-ENOMEM);
7807
7808 /*
7809 * Single events are their own group leaders, with an
7810 * empty sibling list:
7811 */
7812 if (!group_leader)
7813 group_leader = event;
7814
7815 mutex_init(&event->child_mutex);
7816 INIT_LIST_HEAD(&event->child_list);
7817
7818 INIT_LIST_HEAD(&event->group_entry);
7819 INIT_LIST_HEAD(&event->event_entry);
7820 INIT_LIST_HEAD(&event->sibling_list);
7821 INIT_LIST_HEAD(&event->rb_entry);
7822 INIT_LIST_HEAD(&event->active_entry);
7823 INIT_HLIST_NODE(&event->hlist_entry);
7824
7825
7826 init_waitqueue_head(&event->waitq);
7827 init_irq_work(&event->pending, perf_pending_event);
7828
7829 mutex_init(&event->mmap_mutex);
7830
7831 atomic_long_set(&event->refcount, 1);
7832 event->cpu = cpu;
7833 event->attr = *attr;
7834 event->group_leader = group_leader;
7835 event->pmu = NULL;
7836 event->oncpu = -1;
7837
7838 event->parent = parent_event;
7839
7840 event->ns = get_pid_ns(task_active_pid_ns(current));
7841 event->id = atomic64_inc_return(&perf_event_id);
7842
7843 event->state = PERF_EVENT_STATE_INACTIVE;
7844
7845 if (task) {
7846 event->attach_state = PERF_ATTACH_TASK;
7847 /*
7848 * XXX pmu::event_init needs to know what task to account to
7849 * and we cannot use the ctx information because we need the
7850 * pmu before we get a ctx.
7851 */
7852 event->hw.target = task;
7853 }
7854
7855 event->clock = &local_clock;
7856 if (parent_event)
7857 event->clock = parent_event->clock;
7858
7859 if (!overflow_handler && parent_event) {
7860 overflow_handler = parent_event->overflow_handler;
7861 context = parent_event->overflow_handler_context;
7862 }
7863
7864 event->overflow_handler = overflow_handler;
7865 event->overflow_handler_context = context;
7866
7867 perf_event__state_init(event);
7868
7869 pmu = NULL;
7870
7871 hwc = &event->hw;
7872 hwc->sample_period = attr->sample_period;
7873 if (attr->freq && attr->sample_freq)
7874 hwc->sample_period = 1;
7875 hwc->last_period = hwc->sample_period;
7876
7877 local64_set(&hwc->period_left, hwc->sample_period);
7878
7879 /*
7880 * we currently do not support PERF_FORMAT_GROUP on inherited events
7881 */
7882 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7883 goto err_ns;
7884
7885 if (!has_branch_stack(event))
7886 event->attr.branch_sample_type = 0;
7887
7888 if (cgroup_fd != -1) {
7889 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7890 if (err)
7891 goto err_ns;
7892 }
7893
7894 pmu = perf_init_event(event);
7895 if (!pmu)
7896 goto err_ns;
7897 else if (IS_ERR(pmu)) {
7898 err = PTR_ERR(pmu);
7899 goto err_ns;
7900 }
7901
7902 err = exclusive_event_init(event);
7903 if (err)
7904 goto err_pmu;
7905
7906 if (!event->parent) {
7907 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7908 err = get_callchain_buffers();
7909 if (err)
7910 goto err_per_task;
7911 }
7912 }
7913
7914 return event;
7915
7916 err_per_task:
7917 exclusive_event_destroy(event);
7918
7919 err_pmu:
7920 if (event->destroy)
7921 event->destroy(event);
7922 module_put(pmu->module);
7923 err_ns:
7924 if (is_cgroup_event(event))
7925 perf_detach_cgroup(event);
7926 if (event->ns)
7927 put_pid_ns(event->ns);
7928 kfree(event);
7929
7930 return ERR_PTR(err);
7931 }
7932
7933 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7934 struct perf_event_attr *attr)
7935 {
7936 u32 size;
7937 int ret;
7938
7939 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7940 return -EFAULT;
7941
7942 /*
7943 * zero the full structure, so that a short copy will be nice.
7944 */
7945 memset(attr, 0, sizeof(*attr));
7946
7947 ret = get_user(size, &uattr->size);
7948 if (ret)
7949 return ret;
7950
7951 if (size > PAGE_SIZE) /* silly large */
7952 goto err_size;
7953
7954 if (!size) /* abi compat */
7955 size = PERF_ATTR_SIZE_VER0;
7956
7957 if (size < PERF_ATTR_SIZE_VER0)
7958 goto err_size;
7959
7960 /*
7961 * If we're handed a bigger struct than we know of,
7962 * ensure all the unknown bits are 0 - i.e. new
7963 * user-space does not rely on any kernel feature
7964 * extensions we dont know about yet.
7965 */
7966 if (size > sizeof(*attr)) {
7967 unsigned char __user *addr;
7968 unsigned char __user *end;
7969 unsigned char val;
7970
7971 addr = (void __user *)uattr + sizeof(*attr);
7972 end = (void __user *)uattr + size;
7973
7974 for (; addr < end; addr++) {
7975 ret = get_user(val, addr);
7976 if (ret)
7977 return ret;
7978 if (val)
7979 goto err_size;
7980 }
7981 size = sizeof(*attr);
7982 }
7983
7984 ret = copy_from_user(attr, uattr, size);
7985 if (ret)
7986 return -EFAULT;
7987
7988 if (attr->__reserved_1)
7989 return -EINVAL;
7990
7991 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7992 return -EINVAL;
7993
7994 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7995 return -EINVAL;
7996
7997 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7998 u64 mask = attr->branch_sample_type;
7999
8000 /* only using defined bits */
8001 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8002 return -EINVAL;
8003
8004 /* at least one branch bit must be set */
8005 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8006 return -EINVAL;
8007
8008 /* propagate priv level, when not set for branch */
8009 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8010
8011 /* exclude_kernel checked on syscall entry */
8012 if (!attr->exclude_kernel)
8013 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8014
8015 if (!attr->exclude_user)
8016 mask |= PERF_SAMPLE_BRANCH_USER;
8017
8018 if (!attr->exclude_hv)
8019 mask |= PERF_SAMPLE_BRANCH_HV;
8020 /*
8021 * adjust user setting (for HW filter setup)
8022 */
8023 attr->branch_sample_type = mask;
8024 }
8025 /* privileged levels capture (kernel, hv): check permissions */
8026 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8027 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8028 return -EACCES;
8029 }
8030
8031 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8032 ret = perf_reg_validate(attr->sample_regs_user);
8033 if (ret)
8034 return ret;
8035 }
8036
8037 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8038 if (!arch_perf_have_user_stack_dump())
8039 return -ENOSYS;
8040
8041 /*
8042 * We have __u32 type for the size, but so far
8043 * we can only use __u16 as maximum due to the
8044 * __u16 sample size limit.
8045 */
8046 if (attr->sample_stack_user >= USHRT_MAX)
8047 ret = -EINVAL;
8048 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8049 ret = -EINVAL;
8050 }
8051
8052 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8053 ret = perf_reg_validate(attr->sample_regs_intr);
8054 out:
8055 return ret;
8056
8057 err_size:
8058 put_user(sizeof(*attr), &uattr->size);
8059 ret = -E2BIG;
8060 goto out;
8061 }
8062
8063 static int
8064 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8065 {
8066 struct ring_buffer *rb = NULL;
8067 int ret = -EINVAL;
8068
8069 if (!output_event)
8070 goto set;
8071
8072 /* don't allow circular references */
8073 if (event == output_event)
8074 goto out;
8075
8076 /*
8077 * Don't allow cross-cpu buffers
8078 */
8079 if (output_event->cpu != event->cpu)
8080 goto out;
8081
8082 /*
8083 * If its not a per-cpu rb, it must be the same task.
8084 */
8085 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8086 goto out;
8087
8088 /*
8089 * Mixing clocks in the same buffer is trouble you don't need.
8090 */
8091 if (output_event->clock != event->clock)
8092 goto out;
8093
8094 /*
8095 * If both events generate aux data, they must be on the same PMU
8096 */
8097 if (has_aux(event) && has_aux(output_event) &&
8098 event->pmu != output_event->pmu)
8099 goto out;
8100
8101 set:
8102 mutex_lock(&event->mmap_mutex);
8103 /* Can't redirect output if we've got an active mmap() */
8104 if (atomic_read(&event->mmap_count))
8105 goto unlock;
8106
8107 if (output_event) {
8108 /* get the rb we want to redirect to */
8109 rb = ring_buffer_get(output_event);
8110 if (!rb)
8111 goto unlock;
8112 }
8113
8114 ring_buffer_attach(event, rb);
8115
8116 ret = 0;
8117 unlock:
8118 mutex_unlock(&event->mmap_mutex);
8119
8120 out:
8121 return ret;
8122 }
8123
8124 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8125 {
8126 if (b < a)
8127 swap(a, b);
8128
8129 mutex_lock(a);
8130 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8131 }
8132
8133 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8134 {
8135 bool nmi_safe = false;
8136
8137 switch (clk_id) {
8138 case CLOCK_MONOTONIC:
8139 event->clock = &ktime_get_mono_fast_ns;
8140 nmi_safe = true;
8141 break;
8142
8143 case CLOCK_MONOTONIC_RAW:
8144 event->clock = &ktime_get_raw_fast_ns;
8145 nmi_safe = true;
8146 break;
8147
8148 case CLOCK_REALTIME:
8149 event->clock = &ktime_get_real_ns;
8150 break;
8151
8152 case CLOCK_BOOTTIME:
8153 event->clock = &ktime_get_boot_ns;
8154 break;
8155
8156 case CLOCK_TAI:
8157 event->clock = &ktime_get_tai_ns;
8158 break;
8159
8160 default:
8161 return -EINVAL;
8162 }
8163
8164 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8165 return -EINVAL;
8166
8167 return 0;
8168 }
8169
8170 /**
8171 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8172 *
8173 * @attr_uptr: event_id type attributes for monitoring/sampling
8174 * @pid: target pid
8175 * @cpu: target cpu
8176 * @group_fd: group leader event fd
8177 */
8178 SYSCALL_DEFINE5(perf_event_open,
8179 struct perf_event_attr __user *, attr_uptr,
8180 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8181 {
8182 struct perf_event *group_leader = NULL, *output_event = NULL;
8183 struct perf_event *event, *sibling;
8184 struct perf_event_attr attr;
8185 struct perf_event_context *ctx, *uninitialized_var(gctx);
8186 struct file *event_file = NULL;
8187 struct fd group = {NULL, 0};
8188 struct task_struct *task = NULL;
8189 struct pmu *pmu;
8190 int event_fd;
8191 int move_group = 0;
8192 int err;
8193 int f_flags = O_RDWR;
8194 int cgroup_fd = -1;
8195
8196 /* for future expandability... */
8197 if (flags & ~PERF_FLAG_ALL)
8198 return -EINVAL;
8199
8200 err = perf_copy_attr(attr_uptr, &attr);
8201 if (err)
8202 return err;
8203
8204 if (!attr.exclude_kernel) {
8205 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8206 return -EACCES;
8207 }
8208
8209 if (attr.freq) {
8210 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8211 return -EINVAL;
8212 } else {
8213 if (attr.sample_period & (1ULL << 63))
8214 return -EINVAL;
8215 }
8216
8217 /*
8218 * In cgroup mode, the pid argument is used to pass the fd
8219 * opened to the cgroup directory in cgroupfs. The cpu argument
8220 * designates the cpu on which to monitor threads from that
8221 * cgroup.
8222 */
8223 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8224 return -EINVAL;
8225
8226 if (flags & PERF_FLAG_FD_CLOEXEC)
8227 f_flags |= O_CLOEXEC;
8228
8229 event_fd = get_unused_fd_flags(f_flags);
8230 if (event_fd < 0)
8231 return event_fd;
8232
8233 if (group_fd != -1) {
8234 err = perf_fget_light(group_fd, &group);
8235 if (err)
8236 goto err_fd;
8237 group_leader = group.file->private_data;
8238 if (flags & PERF_FLAG_FD_OUTPUT)
8239 output_event = group_leader;
8240 if (flags & PERF_FLAG_FD_NO_GROUP)
8241 group_leader = NULL;
8242 }
8243
8244 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8245 task = find_lively_task_by_vpid(pid);
8246 if (IS_ERR(task)) {
8247 err = PTR_ERR(task);
8248 goto err_group_fd;
8249 }
8250 }
8251
8252 if (task && group_leader &&
8253 group_leader->attr.inherit != attr.inherit) {
8254 err = -EINVAL;
8255 goto err_task;
8256 }
8257
8258 get_online_cpus();
8259
8260 if (flags & PERF_FLAG_PID_CGROUP)
8261 cgroup_fd = pid;
8262
8263 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8264 NULL, NULL, cgroup_fd);
8265 if (IS_ERR(event)) {
8266 err = PTR_ERR(event);
8267 goto err_cpus;
8268 }
8269
8270 if (is_sampling_event(event)) {
8271 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8272 err = -ENOTSUPP;
8273 goto err_alloc;
8274 }
8275 }
8276
8277 account_event(event);
8278
8279 /*
8280 * Special case software events and allow them to be part of
8281 * any hardware group.
8282 */
8283 pmu = event->pmu;
8284
8285 if (attr.use_clockid) {
8286 err = perf_event_set_clock(event, attr.clockid);
8287 if (err)
8288 goto err_alloc;
8289 }
8290
8291 if (group_leader &&
8292 (is_software_event(event) != is_software_event(group_leader))) {
8293 if (is_software_event(event)) {
8294 /*
8295 * If event and group_leader are not both a software
8296 * event, and event is, then group leader is not.
8297 *
8298 * Allow the addition of software events to !software
8299 * groups, this is safe because software events never
8300 * fail to schedule.
8301 */
8302 pmu = group_leader->pmu;
8303 } else if (is_software_event(group_leader) &&
8304 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8305 /*
8306 * In case the group is a pure software group, and we
8307 * try to add a hardware event, move the whole group to
8308 * the hardware context.
8309 */
8310 move_group = 1;
8311 }
8312 }
8313
8314 /*
8315 * Get the target context (task or percpu):
8316 */
8317 ctx = find_get_context(pmu, task, event);
8318 if (IS_ERR(ctx)) {
8319 err = PTR_ERR(ctx);
8320 goto err_alloc;
8321 }
8322
8323 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8324 err = -EBUSY;
8325 goto err_context;
8326 }
8327
8328 if (task) {
8329 put_task_struct(task);
8330 task = NULL;
8331 }
8332
8333 /*
8334 * Look up the group leader (we will attach this event to it):
8335 */
8336 if (group_leader) {
8337 err = -EINVAL;
8338
8339 /*
8340 * Do not allow a recursive hierarchy (this new sibling
8341 * becoming part of another group-sibling):
8342 */
8343 if (group_leader->group_leader != group_leader)
8344 goto err_context;
8345
8346 /* All events in a group should have the same clock */
8347 if (group_leader->clock != event->clock)
8348 goto err_context;
8349
8350 /*
8351 * Do not allow to attach to a group in a different
8352 * task or CPU context:
8353 */
8354 if (move_group) {
8355 /*
8356 * Make sure we're both on the same task, or both
8357 * per-cpu events.
8358 */
8359 if (group_leader->ctx->task != ctx->task)
8360 goto err_context;
8361
8362 /*
8363 * Make sure we're both events for the same CPU;
8364 * grouping events for different CPUs is broken; since
8365 * you can never concurrently schedule them anyhow.
8366 */
8367 if (group_leader->cpu != event->cpu)
8368 goto err_context;
8369 } else {
8370 if (group_leader->ctx != ctx)
8371 goto err_context;
8372 }
8373
8374 /*
8375 * Only a group leader can be exclusive or pinned
8376 */
8377 if (attr.exclusive || attr.pinned)
8378 goto err_context;
8379 }
8380
8381 if (output_event) {
8382 err = perf_event_set_output(event, output_event);
8383 if (err)
8384 goto err_context;
8385 }
8386
8387 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8388 f_flags);
8389 if (IS_ERR(event_file)) {
8390 err = PTR_ERR(event_file);
8391 goto err_context;
8392 }
8393
8394 if (move_group) {
8395 gctx = group_leader->ctx;
8396 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8397 } else {
8398 mutex_lock(&ctx->mutex);
8399 }
8400
8401 if (!perf_event_validate_size(event)) {
8402 err = -E2BIG;
8403 goto err_locked;
8404 }
8405
8406 /*
8407 * Must be under the same ctx::mutex as perf_install_in_context(),
8408 * because we need to serialize with concurrent event creation.
8409 */
8410 if (!exclusive_event_installable(event, ctx)) {
8411 /* exclusive and group stuff are assumed mutually exclusive */
8412 WARN_ON_ONCE(move_group);
8413
8414 err = -EBUSY;
8415 goto err_locked;
8416 }
8417
8418 WARN_ON_ONCE(ctx->parent_ctx);
8419
8420 if (move_group) {
8421 /*
8422 * See perf_event_ctx_lock() for comments on the details
8423 * of swizzling perf_event::ctx.
8424 */
8425 perf_remove_from_context(group_leader, false);
8426
8427 list_for_each_entry(sibling, &group_leader->sibling_list,
8428 group_entry) {
8429 perf_remove_from_context(sibling, false);
8430 put_ctx(gctx);
8431 }
8432
8433 /*
8434 * Wait for everybody to stop referencing the events through
8435 * the old lists, before installing it on new lists.
8436 */
8437 synchronize_rcu();
8438
8439 /*
8440 * Install the group siblings before the group leader.
8441 *
8442 * Because a group leader will try and install the entire group
8443 * (through the sibling list, which is still in-tact), we can
8444 * end up with siblings installed in the wrong context.
8445 *
8446 * By installing siblings first we NO-OP because they're not
8447 * reachable through the group lists.
8448 */
8449 list_for_each_entry(sibling, &group_leader->sibling_list,
8450 group_entry) {
8451 perf_event__state_init(sibling);
8452 perf_install_in_context(ctx, sibling, sibling->cpu);
8453 get_ctx(ctx);
8454 }
8455
8456 /*
8457 * Removing from the context ends up with disabled
8458 * event. What we want here is event in the initial
8459 * startup state, ready to be add into new context.
8460 */
8461 perf_event__state_init(group_leader);
8462 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8463 get_ctx(ctx);
8464
8465 /*
8466 * Now that all events are installed in @ctx, nothing
8467 * references @gctx anymore, so drop the last reference we have
8468 * on it.
8469 */
8470 put_ctx(gctx);
8471 }
8472
8473 /*
8474 * Precalculate sample_data sizes; do while holding ctx::mutex such
8475 * that we're serialized against further additions and before
8476 * perf_install_in_context() which is the point the event is active and
8477 * can use these values.
8478 */
8479 perf_event__header_size(event);
8480 perf_event__id_header_size(event);
8481
8482 perf_install_in_context(ctx, event, event->cpu);
8483 perf_unpin_context(ctx);
8484
8485 if (move_group)
8486 mutex_unlock(&gctx->mutex);
8487 mutex_unlock(&ctx->mutex);
8488
8489 put_online_cpus();
8490
8491 event->owner = current;
8492
8493 mutex_lock(&current->perf_event_mutex);
8494 list_add_tail(&event->owner_entry, &current->perf_event_list);
8495 mutex_unlock(&current->perf_event_mutex);
8496
8497 /*
8498 * Drop the reference on the group_event after placing the
8499 * new event on the sibling_list. This ensures destruction
8500 * of the group leader will find the pointer to itself in
8501 * perf_group_detach().
8502 */
8503 fdput(group);
8504 fd_install(event_fd, event_file);
8505 return event_fd;
8506
8507 err_locked:
8508 if (move_group)
8509 mutex_unlock(&gctx->mutex);
8510 mutex_unlock(&ctx->mutex);
8511 /* err_file: */
8512 fput(event_file);
8513 err_context:
8514 perf_unpin_context(ctx);
8515 put_ctx(ctx);
8516 err_alloc:
8517 free_event(event);
8518 err_cpus:
8519 put_online_cpus();
8520 err_task:
8521 if (task)
8522 put_task_struct(task);
8523 err_group_fd:
8524 fdput(group);
8525 err_fd:
8526 put_unused_fd(event_fd);
8527 return err;
8528 }
8529
8530 /**
8531 * perf_event_create_kernel_counter
8532 *
8533 * @attr: attributes of the counter to create
8534 * @cpu: cpu in which the counter is bound
8535 * @task: task to profile (NULL for percpu)
8536 */
8537 struct perf_event *
8538 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8539 struct task_struct *task,
8540 perf_overflow_handler_t overflow_handler,
8541 void *context)
8542 {
8543 struct perf_event_context *ctx;
8544 struct perf_event *event;
8545 int err;
8546
8547 /*
8548 * Get the target context (task or percpu):
8549 */
8550
8551 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8552 overflow_handler, context, -1);
8553 if (IS_ERR(event)) {
8554 err = PTR_ERR(event);
8555 goto err;
8556 }
8557
8558 /* Mark owner so we could distinguish it from user events. */
8559 event->owner = EVENT_OWNER_KERNEL;
8560
8561 account_event(event);
8562
8563 ctx = find_get_context(event->pmu, task, event);
8564 if (IS_ERR(ctx)) {
8565 err = PTR_ERR(ctx);
8566 goto err_free;
8567 }
8568
8569 WARN_ON_ONCE(ctx->parent_ctx);
8570 mutex_lock(&ctx->mutex);
8571 if (!exclusive_event_installable(event, ctx)) {
8572 mutex_unlock(&ctx->mutex);
8573 perf_unpin_context(ctx);
8574 put_ctx(ctx);
8575 err = -EBUSY;
8576 goto err_free;
8577 }
8578
8579 perf_install_in_context(ctx, event, cpu);
8580 perf_unpin_context(ctx);
8581 mutex_unlock(&ctx->mutex);
8582
8583 return event;
8584
8585 err_free:
8586 free_event(event);
8587 err:
8588 return ERR_PTR(err);
8589 }
8590 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8591
8592 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8593 {
8594 struct perf_event_context *src_ctx;
8595 struct perf_event_context *dst_ctx;
8596 struct perf_event *event, *tmp;
8597 LIST_HEAD(events);
8598
8599 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8600 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8601
8602 /*
8603 * See perf_event_ctx_lock() for comments on the details
8604 * of swizzling perf_event::ctx.
8605 */
8606 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8607 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8608 event_entry) {
8609 perf_remove_from_context(event, false);
8610 unaccount_event_cpu(event, src_cpu);
8611 put_ctx(src_ctx);
8612 list_add(&event->migrate_entry, &events);
8613 }
8614
8615 /*
8616 * Wait for the events to quiesce before re-instating them.
8617 */
8618 synchronize_rcu();
8619
8620 /*
8621 * Re-instate events in 2 passes.
8622 *
8623 * Skip over group leaders and only install siblings on this first
8624 * pass, siblings will not get enabled without a leader, however a
8625 * leader will enable its siblings, even if those are still on the old
8626 * context.
8627 */
8628 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8629 if (event->group_leader == event)
8630 continue;
8631
8632 list_del(&event->migrate_entry);
8633 if (event->state >= PERF_EVENT_STATE_OFF)
8634 event->state = PERF_EVENT_STATE_INACTIVE;
8635 account_event_cpu(event, dst_cpu);
8636 perf_install_in_context(dst_ctx, event, dst_cpu);
8637 get_ctx(dst_ctx);
8638 }
8639
8640 /*
8641 * Once all the siblings are setup properly, install the group leaders
8642 * to make it go.
8643 */
8644 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8645 list_del(&event->migrate_entry);
8646 if (event->state >= PERF_EVENT_STATE_OFF)
8647 event->state = PERF_EVENT_STATE_INACTIVE;
8648 account_event_cpu(event, dst_cpu);
8649 perf_install_in_context(dst_ctx, event, dst_cpu);
8650 get_ctx(dst_ctx);
8651 }
8652 mutex_unlock(&dst_ctx->mutex);
8653 mutex_unlock(&src_ctx->mutex);
8654 }
8655 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8656
8657 static void sync_child_event(struct perf_event *child_event,
8658 struct task_struct *child)
8659 {
8660 struct perf_event *parent_event = child_event->parent;
8661 u64 child_val;
8662
8663 if (child_event->attr.inherit_stat)
8664 perf_event_read_event(child_event, child);
8665
8666 child_val = perf_event_count(child_event);
8667
8668 /*
8669 * Add back the child's count to the parent's count:
8670 */
8671 atomic64_add(child_val, &parent_event->child_count);
8672 atomic64_add(child_event->total_time_enabled,
8673 &parent_event->child_total_time_enabled);
8674 atomic64_add(child_event->total_time_running,
8675 &parent_event->child_total_time_running);
8676
8677 /*
8678 * Remove this event from the parent's list
8679 */
8680 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8681 mutex_lock(&parent_event->child_mutex);
8682 list_del_init(&child_event->child_list);
8683 mutex_unlock(&parent_event->child_mutex);
8684
8685 /*
8686 * Make sure user/parent get notified, that we just
8687 * lost one event.
8688 */
8689 perf_event_wakeup(parent_event);
8690
8691 /*
8692 * Release the parent event, if this was the last
8693 * reference to it.
8694 */
8695 put_event(parent_event);
8696 }
8697
8698 static void
8699 __perf_event_exit_task(struct perf_event *child_event,
8700 struct perf_event_context *child_ctx,
8701 struct task_struct *child)
8702 {
8703 /*
8704 * Do not destroy the 'original' grouping; because of the context
8705 * switch optimization the original events could've ended up in a
8706 * random child task.
8707 *
8708 * If we were to destroy the original group, all group related
8709 * operations would cease to function properly after this random
8710 * child dies.
8711 *
8712 * Do destroy all inherited groups, we don't care about those
8713 * and being thorough is better.
8714 */
8715 perf_remove_from_context(child_event, !!child_event->parent);
8716
8717 /*
8718 * It can happen that the parent exits first, and has events
8719 * that are still around due to the child reference. These
8720 * events need to be zapped.
8721 */
8722 if (child_event->parent) {
8723 sync_child_event(child_event, child);
8724 free_event(child_event);
8725 } else {
8726 child_event->state = PERF_EVENT_STATE_EXIT;
8727 perf_event_wakeup(child_event);
8728 }
8729 }
8730
8731 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8732 {
8733 struct perf_event *child_event, *next;
8734 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8735 unsigned long flags;
8736
8737 if (likely(!child->perf_event_ctxp[ctxn]))
8738 return;
8739
8740 local_irq_save(flags);
8741 /*
8742 * We can't reschedule here because interrupts are disabled,
8743 * and either child is current or it is a task that can't be
8744 * scheduled, so we are now safe from rescheduling changing
8745 * our context.
8746 */
8747 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8748
8749 /*
8750 * Take the context lock here so that if find_get_context is
8751 * reading child->perf_event_ctxp, we wait until it has
8752 * incremented the context's refcount before we do put_ctx below.
8753 */
8754 raw_spin_lock(&child_ctx->lock);
8755 task_ctx_sched_out(child_ctx);
8756 child->perf_event_ctxp[ctxn] = NULL;
8757
8758 /*
8759 * If this context is a clone; unclone it so it can't get
8760 * swapped to another process while we're removing all
8761 * the events from it.
8762 */
8763 clone_ctx = unclone_ctx(child_ctx);
8764 update_context_time(child_ctx);
8765 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8766
8767 if (clone_ctx)
8768 put_ctx(clone_ctx);
8769
8770 /*
8771 * Report the task dead after unscheduling the events so that we
8772 * won't get any samples after PERF_RECORD_EXIT. We can however still
8773 * get a few PERF_RECORD_READ events.
8774 */
8775 perf_event_task(child, child_ctx, 0);
8776
8777 /*
8778 * We can recurse on the same lock type through:
8779 *
8780 * __perf_event_exit_task()
8781 * sync_child_event()
8782 * put_event()
8783 * mutex_lock(&ctx->mutex)
8784 *
8785 * But since its the parent context it won't be the same instance.
8786 */
8787 mutex_lock(&child_ctx->mutex);
8788
8789 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8790 __perf_event_exit_task(child_event, child_ctx, child);
8791
8792 mutex_unlock(&child_ctx->mutex);
8793
8794 put_ctx(child_ctx);
8795 }
8796
8797 /*
8798 * When a child task exits, feed back event values to parent events.
8799 */
8800 void perf_event_exit_task(struct task_struct *child)
8801 {
8802 struct perf_event *event, *tmp;
8803 int ctxn;
8804
8805 mutex_lock(&child->perf_event_mutex);
8806 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8807 owner_entry) {
8808 list_del_init(&event->owner_entry);
8809
8810 /*
8811 * Ensure the list deletion is visible before we clear
8812 * the owner, closes a race against perf_release() where
8813 * we need to serialize on the owner->perf_event_mutex.
8814 */
8815 smp_wmb();
8816 event->owner = NULL;
8817 }
8818 mutex_unlock(&child->perf_event_mutex);
8819
8820 for_each_task_context_nr(ctxn)
8821 perf_event_exit_task_context(child, ctxn);
8822
8823 /*
8824 * The perf_event_exit_task_context calls perf_event_task
8825 * with child's task_ctx, which generates EXIT events for
8826 * child contexts and sets child->perf_event_ctxp[] to NULL.
8827 * At this point we need to send EXIT events to cpu contexts.
8828 */
8829 perf_event_task(child, NULL, 0);
8830 }
8831
8832 static void perf_free_event(struct perf_event *event,
8833 struct perf_event_context *ctx)
8834 {
8835 struct perf_event *parent = event->parent;
8836
8837 if (WARN_ON_ONCE(!parent))
8838 return;
8839
8840 mutex_lock(&parent->child_mutex);
8841 list_del_init(&event->child_list);
8842 mutex_unlock(&parent->child_mutex);
8843
8844 put_event(parent);
8845
8846 raw_spin_lock_irq(&ctx->lock);
8847 perf_group_detach(event);
8848 list_del_event(event, ctx);
8849 raw_spin_unlock_irq(&ctx->lock);
8850 free_event(event);
8851 }
8852
8853 /*
8854 * Free an unexposed, unused context as created by inheritance by
8855 * perf_event_init_task below, used by fork() in case of fail.
8856 *
8857 * Not all locks are strictly required, but take them anyway to be nice and
8858 * help out with the lockdep assertions.
8859 */
8860 void perf_event_free_task(struct task_struct *task)
8861 {
8862 struct perf_event_context *ctx;
8863 struct perf_event *event, *tmp;
8864 int ctxn;
8865
8866 for_each_task_context_nr(ctxn) {
8867 ctx = task->perf_event_ctxp[ctxn];
8868 if (!ctx)
8869 continue;
8870
8871 mutex_lock(&ctx->mutex);
8872 again:
8873 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8874 group_entry)
8875 perf_free_event(event, ctx);
8876
8877 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8878 group_entry)
8879 perf_free_event(event, ctx);
8880
8881 if (!list_empty(&ctx->pinned_groups) ||
8882 !list_empty(&ctx->flexible_groups))
8883 goto again;
8884
8885 mutex_unlock(&ctx->mutex);
8886
8887 put_ctx(ctx);
8888 }
8889 }
8890
8891 void perf_event_delayed_put(struct task_struct *task)
8892 {
8893 int ctxn;
8894
8895 for_each_task_context_nr(ctxn)
8896 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8897 }
8898
8899 struct perf_event *perf_event_get(unsigned int fd)
8900 {
8901 int err;
8902 struct fd f;
8903 struct perf_event *event;
8904
8905 err = perf_fget_light(fd, &f);
8906 if (err)
8907 return ERR_PTR(err);
8908
8909 event = f.file->private_data;
8910 atomic_long_inc(&event->refcount);
8911 fdput(f);
8912
8913 return event;
8914 }
8915
8916 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8917 {
8918 if (!event)
8919 return ERR_PTR(-EINVAL);
8920
8921 return &event->attr;
8922 }
8923
8924 /*
8925 * inherit a event from parent task to child task:
8926 */
8927 static struct perf_event *
8928 inherit_event(struct perf_event *parent_event,
8929 struct task_struct *parent,
8930 struct perf_event_context *parent_ctx,
8931 struct task_struct *child,
8932 struct perf_event *group_leader,
8933 struct perf_event_context *child_ctx)
8934 {
8935 enum perf_event_active_state parent_state = parent_event->state;
8936 struct perf_event *child_event;
8937 unsigned long flags;
8938
8939 /*
8940 * Instead of creating recursive hierarchies of events,
8941 * we link inherited events back to the original parent,
8942 * which has a filp for sure, which we use as the reference
8943 * count:
8944 */
8945 if (parent_event->parent)
8946 parent_event = parent_event->parent;
8947
8948 child_event = perf_event_alloc(&parent_event->attr,
8949 parent_event->cpu,
8950 child,
8951 group_leader, parent_event,
8952 NULL, NULL, -1);
8953 if (IS_ERR(child_event))
8954 return child_event;
8955
8956 if (is_orphaned_event(parent_event) ||
8957 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8958 free_event(child_event);
8959 return NULL;
8960 }
8961
8962 get_ctx(child_ctx);
8963
8964 /*
8965 * Make the child state follow the state of the parent event,
8966 * not its attr.disabled bit. We hold the parent's mutex,
8967 * so we won't race with perf_event_{en, dis}able_family.
8968 */
8969 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8970 child_event->state = PERF_EVENT_STATE_INACTIVE;
8971 else
8972 child_event->state = PERF_EVENT_STATE_OFF;
8973
8974 if (parent_event->attr.freq) {
8975 u64 sample_period = parent_event->hw.sample_period;
8976 struct hw_perf_event *hwc = &child_event->hw;
8977
8978 hwc->sample_period = sample_period;
8979 hwc->last_period = sample_period;
8980
8981 local64_set(&hwc->period_left, sample_period);
8982 }
8983
8984 child_event->ctx = child_ctx;
8985 child_event->overflow_handler = parent_event->overflow_handler;
8986 child_event->overflow_handler_context
8987 = parent_event->overflow_handler_context;
8988
8989 /*
8990 * Precalculate sample_data sizes
8991 */
8992 perf_event__header_size(child_event);
8993 perf_event__id_header_size(child_event);
8994
8995 /*
8996 * Link it up in the child's context:
8997 */
8998 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8999 add_event_to_ctx(child_event, child_ctx);
9000 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9001
9002 /*
9003 * Link this into the parent event's child list
9004 */
9005 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9006 mutex_lock(&parent_event->child_mutex);
9007 list_add_tail(&child_event->child_list, &parent_event->child_list);
9008 mutex_unlock(&parent_event->child_mutex);
9009
9010 return child_event;
9011 }
9012
9013 static int inherit_group(struct perf_event *parent_event,
9014 struct task_struct *parent,
9015 struct perf_event_context *parent_ctx,
9016 struct task_struct *child,
9017 struct perf_event_context *child_ctx)
9018 {
9019 struct perf_event *leader;
9020 struct perf_event *sub;
9021 struct perf_event *child_ctr;
9022
9023 leader = inherit_event(parent_event, parent, parent_ctx,
9024 child, NULL, child_ctx);
9025 if (IS_ERR(leader))
9026 return PTR_ERR(leader);
9027 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9028 child_ctr = inherit_event(sub, parent, parent_ctx,
9029 child, leader, child_ctx);
9030 if (IS_ERR(child_ctr))
9031 return PTR_ERR(child_ctr);
9032 }
9033 return 0;
9034 }
9035
9036 static int
9037 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9038 struct perf_event_context *parent_ctx,
9039 struct task_struct *child, int ctxn,
9040 int *inherited_all)
9041 {
9042 int ret;
9043 struct perf_event_context *child_ctx;
9044
9045 if (!event->attr.inherit) {
9046 *inherited_all = 0;
9047 return 0;
9048 }
9049
9050 child_ctx = child->perf_event_ctxp[ctxn];
9051 if (!child_ctx) {
9052 /*
9053 * This is executed from the parent task context, so
9054 * inherit events that have been marked for cloning.
9055 * First allocate and initialize a context for the
9056 * child.
9057 */
9058
9059 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9060 if (!child_ctx)
9061 return -ENOMEM;
9062
9063 child->perf_event_ctxp[ctxn] = child_ctx;
9064 }
9065
9066 ret = inherit_group(event, parent, parent_ctx,
9067 child, child_ctx);
9068
9069 if (ret)
9070 *inherited_all = 0;
9071
9072 return ret;
9073 }
9074
9075 /*
9076 * Initialize the perf_event context in task_struct
9077 */
9078 static int perf_event_init_context(struct task_struct *child, int ctxn)
9079 {
9080 struct perf_event_context *child_ctx, *parent_ctx;
9081 struct perf_event_context *cloned_ctx;
9082 struct perf_event *event;
9083 struct task_struct *parent = current;
9084 int inherited_all = 1;
9085 unsigned long flags;
9086 int ret = 0;
9087
9088 if (likely(!parent->perf_event_ctxp[ctxn]))
9089 return 0;
9090
9091 /*
9092 * If the parent's context is a clone, pin it so it won't get
9093 * swapped under us.
9094 */
9095 parent_ctx = perf_pin_task_context(parent, ctxn);
9096 if (!parent_ctx)
9097 return 0;
9098
9099 /*
9100 * No need to check if parent_ctx != NULL here; since we saw
9101 * it non-NULL earlier, the only reason for it to become NULL
9102 * is if we exit, and since we're currently in the middle of
9103 * a fork we can't be exiting at the same time.
9104 */
9105
9106 /*
9107 * Lock the parent list. No need to lock the child - not PID
9108 * hashed yet and not running, so nobody can access it.
9109 */
9110 mutex_lock(&parent_ctx->mutex);
9111
9112 /*
9113 * We dont have to disable NMIs - we are only looking at
9114 * the list, not manipulating it:
9115 */
9116 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9117 ret = inherit_task_group(event, parent, parent_ctx,
9118 child, ctxn, &inherited_all);
9119 if (ret)
9120 break;
9121 }
9122
9123 /*
9124 * We can't hold ctx->lock when iterating the ->flexible_group list due
9125 * to allocations, but we need to prevent rotation because
9126 * rotate_ctx() will change the list from interrupt context.
9127 */
9128 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9129 parent_ctx->rotate_disable = 1;
9130 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9131
9132 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9133 ret = inherit_task_group(event, parent, parent_ctx,
9134 child, ctxn, &inherited_all);
9135 if (ret)
9136 break;
9137 }
9138
9139 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9140 parent_ctx->rotate_disable = 0;
9141
9142 child_ctx = child->perf_event_ctxp[ctxn];
9143
9144 if (child_ctx && inherited_all) {
9145 /*
9146 * Mark the child context as a clone of the parent
9147 * context, or of whatever the parent is a clone of.
9148 *
9149 * Note that if the parent is a clone, the holding of
9150 * parent_ctx->lock avoids it from being uncloned.
9151 */
9152 cloned_ctx = parent_ctx->parent_ctx;
9153 if (cloned_ctx) {
9154 child_ctx->parent_ctx = cloned_ctx;
9155 child_ctx->parent_gen = parent_ctx->parent_gen;
9156 } else {
9157 child_ctx->parent_ctx = parent_ctx;
9158 child_ctx->parent_gen = parent_ctx->generation;
9159 }
9160 get_ctx(child_ctx->parent_ctx);
9161 }
9162
9163 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9164 mutex_unlock(&parent_ctx->mutex);
9165
9166 perf_unpin_context(parent_ctx);
9167 put_ctx(parent_ctx);
9168
9169 return ret;
9170 }
9171
9172 /*
9173 * Initialize the perf_event context in task_struct
9174 */
9175 int perf_event_init_task(struct task_struct *child)
9176 {
9177 int ctxn, ret;
9178
9179 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9180 mutex_init(&child->perf_event_mutex);
9181 INIT_LIST_HEAD(&child->perf_event_list);
9182
9183 for_each_task_context_nr(ctxn) {
9184 ret = perf_event_init_context(child, ctxn);
9185 if (ret) {
9186 perf_event_free_task(child);
9187 return ret;
9188 }
9189 }
9190
9191 return 0;
9192 }
9193
9194 static void __init perf_event_init_all_cpus(void)
9195 {
9196 struct swevent_htable *swhash;
9197 int cpu;
9198
9199 for_each_possible_cpu(cpu) {
9200 swhash = &per_cpu(swevent_htable, cpu);
9201 mutex_init(&swhash->hlist_mutex);
9202 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9203 }
9204 }
9205
9206 static void perf_event_init_cpu(int cpu)
9207 {
9208 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9209
9210 mutex_lock(&swhash->hlist_mutex);
9211 if (swhash->hlist_refcount > 0) {
9212 struct swevent_hlist *hlist;
9213
9214 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9215 WARN_ON(!hlist);
9216 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9217 }
9218 mutex_unlock(&swhash->hlist_mutex);
9219 }
9220
9221 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9222 static void __perf_event_exit_context(void *__info)
9223 {
9224 struct remove_event re = { .detach_group = true };
9225 struct perf_event_context *ctx = __info;
9226
9227 rcu_read_lock();
9228 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9229 __perf_remove_from_context(&re);
9230 rcu_read_unlock();
9231 }
9232
9233 static void perf_event_exit_cpu_context(int cpu)
9234 {
9235 struct perf_event_context *ctx;
9236 struct pmu *pmu;
9237 int idx;
9238
9239 idx = srcu_read_lock(&pmus_srcu);
9240 list_for_each_entry_rcu(pmu, &pmus, entry) {
9241 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9242
9243 mutex_lock(&ctx->mutex);
9244 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9245 mutex_unlock(&ctx->mutex);
9246 }
9247 srcu_read_unlock(&pmus_srcu, idx);
9248 }
9249
9250 static void perf_event_exit_cpu(int cpu)
9251 {
9252 perf_event_exit_cpu_context(cpu);
9253 }
9254 #else
9255 static inline void perf_event_exit_cpu(int cpu) { }
9256 #endif
9257
9258 static int
9259 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9260 {
9261 int cpu;
9262
9263 for_each_online_cpu(cpu)
9264 perf_event_exit_cpu(cpu);
9265
9266 return NOTIFY_OK;
9267 }
9268
9269 /*
9270 * Run the perf reboot notifier at the very last possible moment so that
9271 * the generic watchdog code runs as long as possible.
9272 */
9273 static struct notifier_block perf_reboot_notifier = {
9274 .notifier_call = perf_reboot,
9275 .priority = INT_MIN,
9276 };
9277
9278 static int
9279 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9280 {
9281 unsigned int cpu = (long)hcpu;
9282
9283 switch (action & ~CPU_TASKS_FROZEN) {
9284
9285 case CPU_UP_PREPARE:
9286 case CPU_DOWN_FAILED:
9287 perf_event_init_cpu(cpu);
9288 break;
9289
9290 case CPU_UP_CANCELED:
9291 case CPU_DOWN_PREPARE:
9292 perf_event_exit_cpu(cpu);
9293 break;
9294 default:
9295 break;
9296 }
9297
9298 return NOTIFY_OK;
9299 }
9300
9301 void __init perf_event_init(void)
9302 {
9303 int ret;
9304
9305 idr_init(&pmu_idr);
9306
9307 perf_event_init_all_cpus();
9308 init_srcu_struct(&pmus_srcu);
9309 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9310 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9311 perf_pmu_register(&perf_task_clock, NULL, -1);
9312 perf_tp_register();
9313 perf_cpu_notifier(perf_cpu_notify);
9314 register_reboot_notifier(&perf_reboot_notifier);
9315
9316 ret = init_hw_breakpoint();
9317 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9318
9319 /* do not patch jump label more than once per second */
9320 jump_label_rate_limit(&perf_sched_events, HZ);
9321
9322 /*
9323 * Build time assertion that we keep the data_head at the intended
9324 * location. IOW, validation we got the __reserved[] size right.
9325 */
9326 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9327 != 1024);
9328 }
9329
9330 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9331 char *page)
9332 {
9333 struct perf_pmu_events_attr *pmu_attr =
9334 container_of(attr, struct perf_pmu_events_attr, attr);
9335
9336 if (pmu_attr->event_str)
9337 return sprintf(page, "%s\n", pmu_attr->event_str);
9338
9339 return 0;
9340 }
9341
9342 static int __init perf_event_sysfs_init(void)
9343 {
9344 struct pmu *pmu;
9345 int ret;
9346
9347 mutex_lock(&pmus_lock);
9348
9349 ret = bus_register(&pmu_bus);
9350 if (ret)
9351 goto unlock;
9352
9353 list_for_each_entry(pmu, &pmus, entry) {
9354 if (!pmu->name || pmu->type < 0)
9355 continue;
9356
9357 ret = pmu_dev_alloc(pmu);
9358 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9359 }
9360 pmu_bus_running = 1;
9361 ret = 0;
9362
9363 unlock:
9364 mutex_unlock(&pmus_lock);
9365
9366 return ret;
9367 }
9368 device_initcall(perf_event_sysfs_init);
9369
9370 #ifdef CONFIG_CGROUP_PERF
9371 static struct cgroup_subsys_state *
9372 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9373 {
9374 struct perf_cgroup *jc;
9375
9376 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9377 if (!jc)
9378 return ERR_PTR(-ENOMEM);
9379
9380 jc->info = alloc_percpu(struct perf_cgroup_info);
9381 if (!jc->info) {
9382 kfree(jc);
9383 return ERR_PTR(-ENOMEM);
9384 }
9385
9386 return &jc->css;
9387 }
9388
9389 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9390 {
9391 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9392
9393 free_percpu(jc->info);
9394 kfree(jc);
9395 }
9396
9397 static int __perf_cgroup_move(void *info)
9398 {
9399 struct task_struct *task = info;
9400 rcu_read_lock();
9401 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9402 rcu_read_unlock();
9403 return 0;
9404 }
9405
9406 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9407 {
9408 struct task_struct *task;
9409 struct cgroup_subsys_state *css;
9410
9411 cgroup_taskset_for_each(task, css, tset)
9412 task_function_call(task, __perf_cgroup_move, task);
9413 }
9414
9415 struct cgroup_subsys perf_event_cgrp_subsys = {
9416 .css_alloc = perf_cgroup_css_alloc,
9417 .css_free = perf_cgroup_css_free,
9418 .attach = perf_cgroup_attach,
9419 };
9420 #endif /* CONFIG_CGROUP_PERF */
This page took 0.211487 seconds and 6 git commands to generate.