perf: Fix task context scheduling
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 /*
130 * On task ctx scheduling...
131 *
132 * When !ctx->nr_events a task context will not be scheduled. This means
133 * we can disable the scheduler hooks (for performance) without leaving
134 * pending task ctx state.
135 *
136 * This however results in two special cases:
137 *
138 * - removing the last event from a task ctx; this is relatively straight
139 * forward and is done in __perf_remove_from_context.
140 *
141 * - adding the first event to a task ctx; this is tricky because we cannot
142 * rely on ctx->is_active and therefore cannot use event_function_call().
143 * See perf_install_in_context().
144 *
145 * This is because we need a ctx->lock serialized variable (ctx->is_active)
146 * to reliably determine if a particular task/context is scheduled in. The
147 * task_curr() use in task_function_call() is racy in that a remote context
148 * switch is not a single atomic operation.
149 *
150 * As is, the situation is 'safe' because we set rq->curr before we do the
151 * actual context switch. This means that task_curr() will fail early, but
152 * we'll continue spinning on ctx->is_active until we've passed
153 * perf_event_task_sched_out().
154 *
155 * Without this ctx->lock serialized variable we could have race where we find
156 * the task (and hence the context) would not be active while in fact they are.
157 *
158 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
159 */
160
161 static void event_function_call(struct perf_event *event,
162 int (*active)(void *),
163 void (*inactive)(void *),
164 void *data)
165 {
166 struct perf_event_context *ctx = event->ctx;
167 struct task_struct *task = ctx->task;
168
169 if (!task) {
170 cpu_function_call(event->cpu, active, data);
171 return;
172 }
173
174 again:
175 if (!task_function_call(task, active, data))
176 return;
177
178 raw_spin_lock_irq(&ctx->lock);
179 if (ctx->is_active) {
180 /*
181 * Reload the task pointer, it might have been changed by
182 * a concurrent perf_event_context_sched_out().
183 */
184 task = ctx->task;
185 raw_spin_unlock_irq(&ctx->lock);
186 goto again;
187 }
188 inactive(data);
189 raw_spin_unlock_irq(&ctx->lock);
190 }
191
192 #define EVENT_OWNER_KERNEL ((void *) -1)
193
194 static bool is_kernel_event(struct perf_event *event)
195 {
196 return event->owner == EVENT_OWNER_KERNEL;
197 }
198
199 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
200 PERF_FLAG_FD_OUTPUT |\
201 PERF_FLAG_PID_CGROUP |\
202 PERF_FLAG_FD_CLOEXEC)
203
204 /*
205 * branch priv levels that need permission checks
206 */
207 #define PERF_SAMPLE_BRANCH_PERM_PLM \
208 (PERF_SAMPLE_BRANCH_KERNEL |\
209 PERF_SAMPLE_BRANCH_HV)
210
211 enum event_type_t {
212 EVENT_FLEXIBLE = 0x1,
213 EVENT_PINNED = 0x2,
214 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
215 };
216
217 /*
218 * perf_sched_events : >0 events exist
219 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
220 */
221 struct static_key_deferred perf_sched_events __read_mostly;
222 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
223 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
224
225 static atomic_t nr_mmap_events __read_mostly;
226 static atomic_t nr_comm_events __read_mostly;
227 static atomic_t nr_task_events __read_mostly;
228 static atomic_t nr_freq_events __read_mostly;
229 static atomic_t nr_switch_events __read_mostly;
230
231 static LIST_HEAD(pmus);
232 static DEFINE_MUTEX(pmus_lock);
233 static struct srcu_struct pmus_srcu;
234
235 /*
236 * perf event paranoia level:
237 * -1 - not paranoid at all
238 * 0 - disallow raw tracepoint access for unpriv
239 * 1 - disallow cpu events for unpriv
240 * 2 - disallow kernel profiling for unpriv
241 */
242 int sysctl_perf_event_paranoid __read_mostly = 1;
243
244 /* Minimum for 512 kiB + 1 user control page */
245 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
246
247 /*
248 * max perf event sample rate
249 */
250 #define DEFAULT_MAX_SAMPLE_RATE 100000
251 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
252 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
253
254 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
255
256 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
257 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
258
259 static int perf_sample_allowed_ns __read_mostly =
260 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
261
262 static void update_perf_cpu_limits(void)
263 {
264 u64 tmp = perf_sample_period_ns;
265
266 tmp *= sysctl_perf_cpu_time_max_percent;
267 do_div(tmp, 100);
268 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
269 }
270
271 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
272
273 int perf_proc_update_handler(struct ctl_table *table, int write,
274 void __user *buffer, size_t *lenp,
275 loff_t *ppos)
276 {
277 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
278
279 if (ret || !write)
280 return ret;
281
282 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
284 update_perf_cpu_limits();
285
286 return 0;
287 }
288
289 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
290
291 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
292 void __user *buffer, size_t *lenp,
293 loff_t *ppos)
294 {
295 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
296
297 if (ret || !write)
298 return ret;
299
300 update_perf_cpu_limits();
301
302 return 0;
303 }
304
305 /*
306 * perf samples are done in some very critical code paths (NMIs).
307 * If they take too much CPU time, the system can lock up and not
308 * get any real work done. This will drop the sample rate when
309 * we detect that events are taking too long.
310 */
311 #define NR_ACCUMULATED_SAMPLES 128
312 static DEFINE_PER_CPU(u64, running_sample_length);
313
314 static void perf_duration_warn(struct irq_work *w)
315 {
316 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
317 u64 avg_local_sample_len;
318 u64 local_samples_len;
319
320 local_samples_len = __this_cpu_read(running_sample_length);
321 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
322
323 printk_ratelimited(KERN_WARNING
324 "perf interrupt took too long (%lld > %lld), lowering "
325 "kernel.perf_event_max_sample_rate to %d\n",
326 avg_local_sample_len, allowed_ns >> 1,
327 sysctl_perf_event_sample_rate);
328 }
329
330 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
331
332 void perf_sample_event_took(u64 sample_len_ns)
333 {
334 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
335 u64 avg_local_sample_len;
336 u64 local_samples_len;
337
338 if (allowed_ns == 0)
339 return;
340
341 /* decay the counter by 1 average sample */
342 local_samples_len = __this_cpu_read(running_sample_length);
343 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
344 local_samples_len += sample_len_ns;
345 __this_cpu_write(running_sample_length, local_samples_len);
346
347 /*
348 * note: this will be biased artifically low until we have
349 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
350 * from having to maintain a count.
351 */
352 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
353
354 if (avg_local_sample_len <= allowed_ns)
355 return;
356
357 if (max_samples_per_tick <= 1)
358 return;
359
360 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
361 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
362 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
363
364 update_perf_cpu_limits();
365
366 if (!irq_work_queue(&perf_duration_work)) {
367 early_printk("perf interrupt took too long (%lld > %lld), lowering "
368 "kernel.perf_event_max_sample_rate to %d\n",
369 avg_local_sample_len, allowed_ns >> 1,
370 sysctl_perf_event_sample_rate);
371 }
372 }
373
374 static atomic64_t perf_event_id;
375
376 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
377 enum event_type_t event_type);
378
379 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
380 enum event_type_t event_type,
381 struct task_struct *task);
382
383 static void update_context_time(struct perf_event_context *ctx);
384 static u64 perf_event_time(struct perf_event *event);
385
386 void __weak perf_event_print_debug(void) { }
387
388 extern __weak const char *perf_pmu_name(void)
389 {
390 return "pmu";
391 }
392
393 static inline u64 perf_clock(void)
394 {
395 return local_clock();
396 }
397
398 static inline u64 perf_event_clock(struct perf_event *event)
399 {
400 return event->clock();
401 }
402
403 static inline struct perf_cpu_context *
404 __get_cpu_context(struct perf_event_context *ctx)
405 {
406 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
407 }
408
409 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
410 struct perf_event_context *ctx)
411 {
412 raw_spin_lock(&cpuctx->ctx.lock);
413 if (ctx)
414 raw_spin_lock(&ctx->lock);
415 }
416
417 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
418 struct perf_event_context *ctx)
419 {
420 if (ctx)
421 raw_spin_unlock(&ctx->lock);
422 raw_spin_unlock(&cpuctx->ctx.lock);
423 }
424
425 #ifdef CONFIG_CGROUP_PERF
426
427 static inline bool
428 perf_cgroup_match(struct perf_event *event)
429 {
430 struct perf_event_context *ctx = event->ctx;
431 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
432
433 /* @event doesn't care about cgroup */
434 if (!event->cgrp)
435 return true;
436
437 /* wants specific cgroup scope but @cpuctx isn't associated with any */
438 if (!cpuctx->cgrp)
439 return false;
440
441 /*
442 * Cgroup scoping is recursive. An event enabled for a cgroup is
443 * also enabled for all its descendant cgroups. If @cpuctx's
444 * cgroup is a descendant of @event's (the test covers identity
445 * case), it's a match.
446 */
447 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
448 event->cgrp->css.cgroup);
449 }
450
451 static inline void perf_detach_cgroup(struct perf_event *event)
452 {
453 css_put(&event->cgrp->css);
454 event->cgrp = NULL;
455 }
456
457 static inline int is_cgroup_event(struct perf_event *event)
458 {
459 return event->cgrp != NULL;
460 }
461
462 static inline u64 perf_cgroup_event_time(struct perf_event *event)
463 {
464 struct perf_cgroup_info *t;
465
466 t = per_cpu_ptr(event->cgrp->info, event->cpu);
467 return t->time;
468 }
469
470 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
471 {
472 struct perf_cgroup_info *info;
473 u64 now;
474
475 now = perf_clock();
476
477 info = this_cpu_ptr(cgrp->info);
478
479 info->time += now - info->timestamp;
480 info->timestamp = now;
481 }
482
483 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
484 {
485 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
486 if (cgrp_out)
487 __update_cgrp_time(cgrp_out);
488 }
489
490 static inline void update_cgrp_time_from_event(struct perf_event *event)
491 {
492 struct perf_cgroup *cgrp;
493
494 /*
495 * ensure we access cgroup data only when needed and
496 * when we know the cgroup is pinned (css_get)
497 */
498 if (!is_cgroup_event(event))
499 return;
500
501 cgrp = perf_cgroup_from_task(current, event->ctx);
502 /*
503 * Do not update time when cgroup is not active
504 */
505 if (cgrp == event->cgrp)
506 __update_cgrp_time(event->cgrp);
507 }
508
509 static inline void
510 perf_cgroup_set_timestamp(struct task_struct *task,
511 struct perf_event_context *ctx)
512 {
513 struct perf_cgroup *cgrp;
514 struct perf_cgroup_info *info;
515
516 /*
517 * ctx->lock held by caller
518 * ensure we do not access cgroup data
519 * unless we have the cgroup pinned (css_get)
520 */
521 if (!task || !ctx->nr_cgroups)
522 return;
523
524 cgrp = perf_cgroup_from_task(task, ctx);
525 info = this_cpu_ptr(cgrp->info);
526 info->timestamp = ctx->timestamp;
527 }
528
529 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
530 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
531
532 /*
533 * reschedule events based on the cgroup constraint of task.
534 *
535 * mode SWOUT : schedule out everything
536 * mode SWIN : schedule in based on cgroup for next
537 */
538 static void perf_cgroup_switch(struct task_struct *task, int mode)
539 {
540 struct perf_cpu_context *cpuctx;
541 struct pmu *pmu;
542 unsigned long flags;
543
544 /*
545 * disable interrupts to avoid geting nr_cgroup
546 * changes via __perf_event_disable(). Also
547 * avoids preemption.
548 */
549 local_irq_save(flags);
550
551 /*
552 * we reschedule only in the presence of cgroup
553 * constrained events.
554 */
555
556 list_for_each_entry_rcu(pmu, &pmus, entry) {
557 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
558 if (cpuctx->unique_pmu != pmu)
559 continue; /* ensure we process each cpuctx once */
560
561 /*
562 * perf_cgroup_events says at least one
563 * context on this CPU has cgroup events.
564 *
565 * ctx->nr_cgroups reports the number of cgroup
566 * events for a context.
567 */
568 if (cpuctx->ctx.nr_cgroups > 0) {
569 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
570 perf_pmu_disable(cpuctx->ctx.pmu);
571
572 if (mode & PERF_CGROUP_SWOUT) {
573 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
574 /*
575 * must not be done before ctxswout due
576 * to event_filter_match() in event_sched_out()
577 */
578 cpuctx->cgrp = NULL;
579 }
580
581 if (mode & PERF_CGROUP_SWIN) {
582 WARN_ON_ONCE(cpuctx->cgrp);
583 /*
584 * set cgrp before ctxsw in to allow
585 * event_filter_match() to not have to pass
586 * task around
587 * we pass the cpuctx->ctx to perf_cgroup_from_task()
588 * because cgorup events are only per-cpu
589 */
590 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
591 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
592 }
593 perf_pmu_enable(cpuctx->ctx.pmu);
594 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
595 }
596 }
597
598 local_irq_restore(flags);
599 }
600
601 static inline void perf_cgroup_sched_out(struct task_struct *task,
602 struct task_struct *next)
603 {
604 struct perf_cgroup *cgrp1;
605 struct perf_cgroup *cgrp2 = NULL;
606
607 rcu_read_lock();
608 /*
609 * we come here when we know perf_cgroup_events > 0
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
612 */
613 cgrp1 = perf_cgroup_from_task(task, NULL);
614 cgrp2 = perf_cgroup_from_task(next, NULL);
615
616 /*
617 * only schedule out current cgroup events if we know
618 * that we are switching to a different cgroup. Otherwise,
619 * do no touch the cgroup events.
620 */
621 if (cgrp1 != cgrp2)
622 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
623
624 rcu_read_unlock();
625 }
626
627 static inline void perf_cgroup_sched_in(struct task_struct *prev,
628 struct task_struct *task)
629 {
630 struct perf_cgroup *cgrp1;
631 struct perf_cgroup *cgrp2 = NULL;
632
633 rcu_read_lock();
634 /*
635 * we come here when we know perf_cgroup_events > 0
636 * we do not need to pass the ctx here because we know
637 * we are holding the rcu lock
638 */
639 cgrp1 = perf_cgroup_from_task(task, NULL);
640 cgrp2 = perf_cgroup_from_task(prev, NULL);
641
642 /*
643 * only need to schedule in cgroup events if we are changing
644 * cgroup during ctxsw. Cgroup events were not scheduled
645 * out of ctxsw out if that was not the case.
646 */
647 if (cgrp1 != cgrp2)
648 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
649
650 rcu_read_unlock();
651 }
652
653 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
654 struct perf_event_attr *attr,
655 struct perf_event *group_leader)
656 {
657 struct perf_cgroup *cgrp;
658 struct cgroup_subsys_state *css;
659 struct fd f = fdget(fd);
660 int ret = 0;
661
662 if (!f.file)
663 return -EBADF;
664
665 css = css_tryget_online_from_dir(f.file->f_path.dentry,
666 &perf_event_cgrp_subsys);
667 if (IS_ERR(css)) {
668 ret = PTR_ERR(css);
669 goto out;
670 }
671
672 cgrp = container_of(css, struct perf_cgroup, css);
673 event->cgrp = cgrp;
674
675 /*
676 * all events in a group must monitor
677 * the same cgroup because a task belongs
678 * to only one perf cgroup at a time
679 */
680 if (group_leader && group_leader->cgrp != cgrp) {
681 perf_detach_cgroup(event);
682 ret = -EINVAL;
683 }
684 out:
685 fdput(f);
686 return ret;
687 }
688
689 static inline void
690 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
691 {
692 struct perf_cgroup_info *t;
693 t = per_cpu_ptr(event->cgrp->info, event->cpu);
694 event->shadow_ctx_time = now - t->timestamp;
695 }
696
697 static inline void
698 perf_cgroup_defer_enabled(struct perf_event *event)
699 {
700 /*
701 * when the current task's perf cgroup does not match
702 * the event's, we need to remember to call the
703 * perf_mark_enable() function the first time a task with
704 * a matching perf cgroup is scheduled in.
705 */
706 if (is_cgroup_event(event) && !perf_cgroup_match(event))
707 event->cgrp_defer_enabled = 1;
708 }
709
710 static inline void
711 perf_cgroup_mark_enabled(struct perf_event *event,
712 struct perf_event_context *ctx)
713 {
714 struct perf_event *sub;
715 u64 tstamp = perf_event_time(event);
716
717 if (!event->cgrp_defer_enabled)
718 return;
719
720 event->cgrp_defer_enabled = 0;
721
722 event->tstamp_enabled = tstamp - event->total_time_enabled;
723 list_for_each_entry(sub, &event->sibling_list, group_entry) {
724 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
725 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
726 sub->cgrp_defer_enabled = 0;
727 }
728 }
729 }
730 #else /* !CONFIG_CGROUP_PERF */
731
732 static inline bool
733 perf_cgroup_match(struct perf_event *event)
734 {
735 return true;
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {}
740
741 static inline int is_cgroup_event(struct perf_event *event)
742 {
743 return 0;
744 }
745
746 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
747 {
748 return 0;
749 }
750
751 static inline void update_cgrp_time_from_event(struct perf_event *event)
752 {
753 }
754
755 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
756 {
757 }
758
759 static inline void perf_cgroup_sched_out(struct task_struct *task,
760 struct task_struct *next)
761 {
762 }
763
764 static inline void perf_cgroup_sched_in(struct task_struct *prev,
765 struct task_struct *task)
766 {
767 }
768
769 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
770 struct perf_event_attr *attr,
771 struct perf_event *group_leader)
772 {
773 return -EINVAL;
774 }
775
776 static inline void
777 perf_cgroup_set_timestamp(struct task_struct *task,
778 struct perf_event_context *ctx)
779 {
780 }
781
782 void
783 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
784 {
785 }
786
787 static inline void
788 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
789 {
790 }
791
792 static inline u64 perf_cgroup_event_time(struct perf_event *event)
793 {
794 return 0;
795 }
796
797 static inline void
798 perf_cgroup_defer_enabled(struct perf_event *event)
799 {
800 }
801
802 static inline void
803 perf_cgroup_mark_enabled(struct perf_event *event,
804 struct perf_event_context *ctx)
805 {
806 }
807 #endif
808
809 /*
810 * set default to be dependent on timer tick just
811 * like original code
812 */
813 #define PERF_CPU_HRTIMER (1000 / HZ)
814 /*
815 * function must be called with interrupts disbled
816 */
817 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
818 {
819 struct perf_cpu_context *cpuctx;
820 int rotations = 0;
821
822 WARN_ON(!irqs_disabled());
823
824 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
825 rotations = perf_rotate_context(cpuctx);
826
827 raw_spin_lock(&cpuctx->hrtimer_lock);
828 if (rotations)
829 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
830 else
831 cpuctx->hrtimer_active = 0;
832 raw_spin_unlock(&cpuctx->hrtimer_lock);
833
834 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
835 }
836
837 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
838 {
839 struct hrtimer *timer = &cpuctx->hrtimer;
840 struct pmu *pmu = cpuctx->ctx.pmu;
841 u64 interval;
842
843 /* no multiplexing needed for SW PMU */
844 if (pmu->task_ctx_nr == perf_sw_context)
845 return;
846
847 /*
848 * check default is sane, if not set then force to
849 * default interval (1/tick)
850 */
851 interval = pmu->hrtimer_interval_ms;
852 if (interval < 1)
853 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
854
855 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
856
857 raw_spin_lock_init(&cpuctx->hrtimer_lock);
858 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
859 timer->function = perf_mux_hrtimer_handler;
860 }
861
862 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
863 {
864 struct hrtimer *timer = &cpuctx->hrtimer;
865 struct pmu *pmu = cpuctx->ctx.pmu;
866 unsigned long flags;
867
868 /* not for SW PMU */
869 if (pmu->task_ctx_nr == perf_sw_context)
870 return 0;
871
872 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
873 if (!cpuctx->hrtimer_active) {
874 cpuctx->hrtimer_active = 1;
875 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
876 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
877 }
878 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
879
880 return 0;
881 }
882
883 void perf_pmu_disable(struct pmu *pmu)
884 {
885 int *count = this_cpu_ptr(pmu->pmu_disable_count);
886 if (!(*count)++)
887 pmu->pmu_disable(pmu);
888 }
889
890 void perf_pmu_enable(struct pmu *pmu)
891 {
892 int *count = this_cpu_ptr(pmu->pmu_disable_count);
893 if (!--(*count))
894 pmu->pmu_enable(pmu);
895 }
896
897 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
898
899 /*
900 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
901 * perf_event_task_tick() are fully serialized because they're strictly cpu
902 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
903 * disabled, while perf_event_task_tick is called from IRQ context.
904 */
905 static void perf_event_ctx_activate(struct perf_event_context *ctx)
906 {
907 struct list_head *head = this_cpu_ptr(&active_ctx_list);
908
909 WARN_ON(!irqs_disabled());
910
911 WARN_ON(!list_empty(&ctx->active_ctx_list));
912
913 list_add(&ctx->active_ctx_list, head);
914 }
915
916 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
917 {
918 WARN_ON(!irqs_disabled());
919
920 WARN_ON(list_empty(&ctx->active_ctx_list));
921
922 list_del_init(&ctx->active_ctx_list);
923 }
924
925 static void get_ctx(struct perf_event_context *ctx)
926 {
927 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
928 }
929
930 static void free_ctx(struct rcu_head *head)
931 {
932 struct perf_event_context *ctx;
933
934 ctx = container_of(head, struct perf_event_context, rcu_head);
935 kfree(ctx->task_ctx_data);
936 kfree(ctx);
937 }
938
939 static void put_ctx(struct perf_event_context *ctx)
940 {
941 if (atomic_dec_and_test(&ctx->refcount)) {
942 if (ctx->parent_ctx)
943 put_ctx(ctx->parent_ctx);
944 if (ctx->task)
945 put_task_struct(ctx->task);
946 call_rcu(&ctx->rcu_head, free_ctx);
947 }
948 }
949
950 /*
951 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
952 * perf_pmu_migrate_context() we need some magic.
953 *
954 * Those places that change perf_event::ctx will hold both
955 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
956 *
957 * Lock ordering is by mutex address. There are two other sites where
958 * perf_event_context::mutex nests and those are:
959 *
960 * - perf_event_exit_task_context() [ child , 0 ]
961 * __perf_event_exit_task()
962 * sync_child_event()
963 * put_event() [ parent, 1 ]
964 *
965 * - perf_event_init_context() [ parent, 0 ]
966 * inherit_task_group()
967 * inherit_group()
968 * inherit_event()
969 * perf_event_alloc()
970 * perf_init_event()
971 * perf_try_init_event() [ child , 1 ]
972 *
973 * While it appears there is an obvious deadlock here -- the parent and child
974 * nesting levels are inverted between the two. This is in fact safe because
975 * life-time rules separate them. That is an exiting task cannot fork, and a
976 * spawning task cannot (yet) exit.
977 *
978 * But remember that that these are parent<->child context relations, and
979 * migration does not affect children, therefore these two orderings should not
980 * interact.
981 *
982 * The change in perf_event::ctx does not affect children (as claimed above)
983 * because the sys_perf_event_open() case will install a new event and break
984 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
985 * concerned with cpuctx and that doesn't have children.
986 *
987 * The places that change perf_event::ctx will issue:
988 *
989 * perf_remove_from_context();
990 * synchronize_rcu();
991 * perf_install_in_context();
992 *
993 * to affect the change. The remove_from_context() + synchronize_rcu() should
994 * quiesce the event, after which we can install it in the new location. This
995 * means that only external vectors (perf_fops, prctl) can perturb the event
996 * while in transit. Therefore all such accessors should also acquire
997 * perf_event_context::mutex to serialize against this.
998 *
999 * However; because event->ctx can change while we're waiting to acquire
1000 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1001 * function.
1002 *
1003 * Lock order:
1004 * task_struct::perf_event_mutex
1005 * perf_event_context::mutex
1006 * perf_event_context::lock
1007 * perf_event::child_mutex;
1008 * perf_event::mmap_mutex
1009 * mmap_sem
1010 */
1011 static struct perf_event_context *
1012 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1013 {
1014 struct perf_event_context *ctx;
1015
1016 again:
1017 rcu_read_lock();
1018 ctx = ACCESS_ONCE(event->ctx);
1019 if (!atomic_inc_not_zero(&ctx->refcount)) {
1020 rcu_read_unlock();
1021 goto again;
1022 }
1023 rcu_read_unlock();
1024
1025 mutex_lock_nested(&ctx->mutex, nesting);
1026 if (event->ctx != ctx) {
1027 mutex_unlock(&ctx->mutex);
1028 put_ctx(ctx);
1029 goto again;
1030 }
1031
1032 return ctx;
1033 }
1034
1035 static inline struct perf_event_context *
1036 perf_event_ctx_lock(struct perf_event *event)
1037 {
1038 return perf_event_ctx_lock_nested(event, 0);
1039 }
1040
1041 static void perf_event_ctx_unlock(struct perf_event *event,
1042 struct perf_event_context *ctx)
1043 {
1044 mutex_unlock(&ctx->mutex);
1045 put_ctx(ctx);
1046 }
1047
1048 /*
1049 * This must be done under the ctx->lock, such as to serialize against
1050 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1051 * calling scheduler related locks and ctx->lock nests inside those.
1052 */
1053 static __must_check struct perf_event_context *
1054 unclone_ctx(struct perf_event_context *ctx)
1055 {
1056 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1057
1058 lockdep_assert_held(&ctx->lock);
1059
1060 if (parent_ctx)
1061 ctx->parent_ctx = NULL;
1062 ctx->generation++;
1063
1064 return parent_ctx;
1065 }
1066
1067 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1068 {
1069 /*
1070 * only top level events have the pid namespace they were created in
1071 */
1072 if (event->parent)
1073 event = event->parent;
1074
1075 return task_tgid_nr_ns(p, event->ns);
1076 }
1077
1078 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1079 {
1080 /*
1081 * only top level events have the pid namespace they were created in
1082 */
1083 if (event->parent)
1084 event = event->parent;
1085
1086 return task_pid_nr_ns(p, event->ns);
1087 }
1088
1089 /*
1090 * If we inherit events we want to return the parent event id
1091 * to userspace.
1092 */
1093 static u64 primary_event_id(struct perf_event *event)
1094 {
1095 u64 id = event->id;
1096
1097 if (event->parent)
1098 id = event->parent->id;
1099
1100 return id;
1101 }
1102
1103 /*
1104 * Get the perf_event_context for a task and lock it.
1105 * This has to cope with with the fact that until it is locked,
1106 * the context could get moved to another task.
1107 */
1108 static struct perf_event_context *
1109 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1110 {
1111 struct perf_event_context *ctx;
1112
1113 retry:
1114 /*
1115 * One of the few rules of preemptible RCU is that one cannot do
1116 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1117 * part of the read side critical section was irqs-enabled -- see
1118 * rcu_read_unlock_special().
1119 *
1120 * Since ctx->lock nests under rq->lock we must ensure the entire read
1121 * side critical section has interrupts disabled.
1122 */
1123 local_irq_save(*flags);
1124 rcu_read_lock();
1125 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1126 if (ctx) {
1127 /*
1128 * If this context is a clone of another, it might
1129 * get swapped for another underneath us by
1130 * perf_event_task_sched_out, though the
1131 * rcu_read_lock() protects us from any context
1132 * getting freed. Lock the context and check if it
1133 * got swapped before we could get the lock, and retry
1134 * if so. If we locked the right context, then it
1135 * can't get swapped on us any more.
1136 */
1137 raw_spin_lock(&ctx->lock);
1138 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1139 raw_spin_unlock(&ctx->lock);
1140 rcu_read_unlock();
1141 local_irq_restore(*flags);
1142 goto retry;
1143 }
1144
1145 if (!atomic_inc_not_zero(&ctx->refcount)) {
1146 raw_spin_unlock(&ctx->lock);
1147 ctx = NULL;
1148 }
1149 }
1150 rcu_read_unlock();
1151 if (!ctx)
1152 local_irq_restore(*flags);
1153 return ctx;
1154 }
1155
1156 /*
1157 * Get the context for a task and increment its pin_count so it
1158 * can't get swapped to another task. This also increments its
1159 * reference count so that the context can't get freed.
1160 */
1161 static struct perf_event_context *
1162 perf_pin_task_context(struct task_struct *task, int ctxn)
1163 {
1164 struct perf_event_context *ctx;
1165 unsigned long flags;
1166
1167 ctx = perf_lock_task_context(task, ctxn, &flags);
1168 if (ctx) {
1169 ++ctx->pin_count;
1170 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1171 }
1172 return ctx;
1173 }
1174
1175 static void perf_unpin_context(struct perf_event_context *ctx)
1176 {
1177 unsigned long flags;
1178
1179 raw_spin_lock_irqsave(&ctx->lock, flags);
1180 --ctx->pin_count;
1181 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1182 }
1183
1184 /*
1185 * Update the record of the current time in a context.
1186 */
1187 static void update_context_time(struct perf_event_context *ctx)
1188 {
1189 u64 now = perf_clock();
1190
1191 ctx->time += now - ctx->timestamp;
1192 ctx->timestamp = now;
1193 }
1194
1195 static u64 perf_event_time(struct perf_event *event)
1196 {
1197 struct perf_event_context *ctx = event->ctx;
1198
1199 if (is_cgroup_event(event))
1200 return perf_cgroup_event_time(event);
1201
1202 return ctx ? ctx->time : 0;
1203 }
1204
1205 /*
1206 * Update the total_time_enabled and total_time_running fields for a event.
1207 * The caller of this function needs to hold the ctx->lock.
1208 */
1209 static void update_event_times(struct perf_event *event)
1210 {
1211 struct perf_event_context *ctx = event->ctx;
1212 u64 run_end;
1213
1214 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1215 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1216 return;
1217 /*
1218 * in cgroup mode, time_enabled represents
1219 * the time the event was enabled AND active
1220 * tasks were in the monitored cgroup. This is
1221 * independent of the activity of the context as
1222 * there may be a mix of cgroup and non-cgroup events.
1223 *
1224 * That is why we treat cgroup events differently
1225 * here.
1226 */
1227 if (is_cgroup_event(event))
1228 run_end = perf_cgroup_event_time(event);
1229 else if (ctx->is_active)
1230 run_end = ctx->time;
1231 else
1232 run_end = event->tstamp_stopped;
1233
1234 event->total_time_enabled = run_end - event->tstamp_enabled;
1235
1236 if (event->state == PERF_EVENT_STATE_INACTIVE)
1237 run_end = event->tstamp_stopped;
1238 else
1239 run_end = perf_event_time(event);
1240
1241 event->total_time_running = run_end - event->tstamp_running;
1242
1243 }
1244
1245 /*
1246 * Update total_time_enabled and total_time_running for all events in a group.
1247 */
1248 static void update_group_times(struct perf_event *leader)
1249 {
1250 struct perf_event *event;
1251
1252 update_event_times(leader);
1253 list_for_each_entry(event, &leader->sibling_list, group_entry)
1254 update_event_times(event);
1255 }
1256
1257 static struct list_head *
1258 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1259 {
1260 if (event->attr.pinned)
1261 return &ctx->pinned_groups;
1262 else
1263 return &ctx->flexible_groups;
1264 }
1265
1266 /*
1267 * Add a event from the lists for its context.
1268 * Must be called with ctx->mutex and ctx->lock held.
1269 */
1270 static void
1271 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1272 {
1273 lockdep_assert_held(&ctx->lock);
1274
1275 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1276 event->attach_state |= PERF_ATTACH_CONTEXT;
1277
1278 /*
1279 * If we're a stand alone event or group leader, we go to the context
1280 * list, group events are kept attached to the group so that
1281 * perf_group_detach can, at all times, locate all siblings.
1282 */
1283 if (event->group_leader == event) {
1284 struct list_head *list;
1285
1286 if (is_software_event(event))
1287 event->group_flags |= PERF_GROUP_SOFTWARE;
1288
1289 list = ctx_group_list(event, ctx);
1290 list_add_tail(&event->group_entry, list);
1291 }
1292
1293 if (is_cgroup_event(event))
1294 ctx->nr_cgroups++;
1295
1296 list_add_rcu(&event->event_entry, &ctx->event_list);
1297 ctx->nr_events++;
1298 if (event->attr.inherit_stat)
1299 ctx->nr_stat++;
1300
1301 ctx->generation++;
1302 }
1303
1304 /*
1305 * Initialize event state based on the perf_event_attr::disabled.
1306 */
1307 static inline void perf_event__state_init(struct perf_event *event)
1308 {
1309 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1310 PERF_EVENT_STATE_INACTIVE;
1311 }
1312
1313 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1314 {
1315 int entry = sizeof(u64); /* value */
1316 int size = 0;
1317 int nr = 1;
1318
1319 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1320 size += sizeof(u64);
1321
1322 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1323 size += sizeof(u64);
1324
1325 if (event->attr.read_format & PERF_FORMAT_ID)
1326 entry += sizeof(u64);
1327
1328 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1329 nr += nr_siblings;
1330 size += sizeof(u64);
1331 }
1332
1333 size += entry * nr;
1334 event->read_size = size;
1335 }
1336
1337 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1338 {
1339 struct perf_sample_data *data;
1340 u16 size = 0;
1341
1342 if (sample_type & PERF_SAMPLE_IP)
1343 size += sizeof(data->ip);
1344
1345 if (sample_type & PERF_SAMPLE_ADDR)
1346 size += sizeof(data->addr);
1347
1348 if (sample_type & PERF_SAMPLE_PERIOD)
1349 size += sizeof(data->period);
1350
1351 if (sample_type & PERF_SAMPLE_WEIGHT)
1352 size += sizeof(data->weight);
1353
1354 if (sample_type & PERF_SAMPLE_READ)
1355 size += event->read_size;
1356
1357 if (sample_type & PERF_SAMPLE_DATA_SRC)
1358 size += sizeof(data->data_src.val);
1359
1360 if (sample_type & PERF_SAMPLE_TRANSACTION)
1361 size += sizeof(data->txn);
1362
1363 event->header_size = size;
1364 }
1365
1366 /*
1367 * Called at perf_event creation and when events are attached/detached from a
1368 * group.
1369 */
1370 static void perf_event__header_size(struct perf_event *event)
1371 {
1372 __perf_event_read_size(event,
1373 event->group_leader->nr_siblings);
1374 __perf_event_header_size(event, event->attr.sample_type);
1375 }
1376
1377 static void perf_event__id_header_size(struct perf_event *event)
1378 {
1379 struct perf_sample_data *data;
1380 u64 sample_type = event->attr.sample_type;
1381 u16 size = 0;
1382
1383 if (sample_type & PERF_SAMPLE_TID)
1384 size += sizeof(data->tid_entry);
1385
1386 if (sample_type & PERF_SAMPLE_TIME)
1387 size += sizeof(data->time);
1388
1389 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1390 size += sizeof(data->id);
1391
1392 if (sample_type & PERF_SAMPLE_ID)
1393 size += sizeof(data->id);
1394
1395 if (sample_type & PERF_SAMPLE_STREAM_ID)
1396 size += sizeof(data->stream_id);
1397
1398 if (sample_type & PERF_SAMPLE_CPU)
1399 size += sizeof(data->cpu_entry);
1400
1401 event->id_header_size = size;
1402 }
1403
1404 static bool perf_event_validate_size(struct perf_event *event)
1405 {
1406 /*
1407 * The values computed here will be over-written when we actually
1408 * attach the event.
1409 */
1410 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1411 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1412 perf_event__id_header_size(event);
1413
1414 /*
1415 * Sum the lot; should not exceed the 64k limit we have on records.
1416 * Conservative limit to allow for callchains and other variable fields.
1417 */
1418 if (event->read_size + event->header_size +
1419 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1420 return false;
1421
1422 return true;
1423 }
1424
1425 static void perf_group_attach(struct perf_event *event)
1426 {
1427 struct perf_event *group_leader = event->group_leader, *pos;
1428
1429 /*
1430 * We can have double attach due to group movement in perf_event_open.
1431 */
1432 if (event->attach_state & PERF_ATTACH_GROUP)
1433 return;
1434
1435 event->attach_state |= PERF_ATTACH_GROUP;
1436
1437 if (group_leader == event)
1438 return;
1439
1440 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1441
1442 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1443 !is_software_event(event))
1444 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1445
1446 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1447 group_leader->nr_siblings++;
1448
1449 perf_event__header_size(group_leader);
1450
1451 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1452 perf_event__header_size(pos);
1453 }
1454
1455 /*
1456 * Remove a event from the lists for its context.
1457 * Must be called with ctx->mutex and ctx->lock held.
1458 */
1459 static void
1460 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462 struct perf_cpu_context *cpuctx;
1463
1464 WARN_ON_ONCE(event->ctx != ctx);
1465 lockdep_assert_held(&ctx->lock);
1466
1467 /*
1468 * We can have double detach due to exit/hot-unplug + close.
1469 */
1470 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1471 return;
1472
1473 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1474
1475 if (is_cgroup_event(event)) {
1476 ctx->nr_cgroups--;
1477 /*
1478 * Because cgroup events are always per-cpu events, this will
1479 * always be called from the right CPU.
1480 */
1481 cpuctx = __get_cpu_context(ctx);
1482 /*
1483 * If there are no more cgroup events then clear cgrp to avoid
1484 * stale pointer in update_cgrp_time_from_cpuctx().
1485 */
1486 if (!ctx->nr_cgroups)
1487 cpuctx->cgrp = NULL;
1488 }
1489
1490 ctx->nr_events--;
1491 if (event->attr.inherit_stat)
1492 ctx->nr_stat--;
1493
1494 list_del_rcu(&event->event_entry);
1495
1496 if (event->group_leader == event)
1497 list_del_init(&event->group_entry);
1498
1499 update_group_times(event);
1500
1501 /*
1502 * If event was in error state, then keep it
1503 * that way, otherwise bogus counts will be
1504 * returned on read(). The only way to get out
1505 * of error state is by explicit re-enabling
1506 * of the event
1507 */
1508 if (event->state > PERF_EVENT_STATE_OFF)
1509 event->state = PERF_EVENT_STATE_OFF;
1510
1511 ctx->generation++;
1512 }
1513
1514 static void perf_group_detach(struct perf_event *event)
1515 {
1516 struct perf_event *sibling, *tmp;
1517 struct list_head *list = NULL;
1518
1519 /*
1520 * We can have double detach due to exit/hot-unplug + close.
1521 */
1522 if (!(event->attach_state & PERF_ATTACH_GROUP))
1523 return;
1524
1525 event->attach_state &= ~PERF_ATTACH_GROUP;
1526
1527 /*
1528 * If this is a sibling, remove it from its group.
1529 */
1530 if (event->group_leader != event) {
1531 list_del_init(&event->group_entry);
1532 event->group_leader->nr_siblings--;
1533 goto out;
1534 }
1535
1536 if (!list_empty(&event->group_entry))
1537 list = &event->group_entry;
1538
1539 /*
1540 * If this was a group event with sibling events then
1541 * upgrade the siblings to singleton events by adding them
1542 * to whatever list we are on.
1543 */
1544 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1545 if (list)
1546 list_move_tail(&sibling->group_entry, list);
1547 sibling->group_leader = sibling;
1548
1549 /* Inherit group flags from the previous leader */
1550 sibling->group_flags = event->group_flags;
1551
1552 WARN_ON_ONCE(sibling->ctx != event->ctx);
1553 }
1554
1555 out:
1556 perf_event__header_size(event->group_leader);
1557
1558 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1559 perf_event__header_size(tmp);
1560 }
1561
1562 /*
1563 * User event without the task.
1564 */
1565 static bool is_orphaned_event(struct perf_event *event)
1566 {
1567 return event && !is_kernel_event(event) && !event->owner;
1568 }
1569
1570 /*
1571 * Event has a parent but parent's task finished and it's
1572 * alive only because of children holding refference.
1573 */
1574 static bool is_orphaned_child(struct perf_event *event)
1575 {
1576 return is_orphaned_event(event->parent);
1577 }
1578
1579 static void orphans_remove_work(struct work_struct *work);
1580
1581 static void schedule_orphans_remove(struct perf_event_context *ctx)
1582 {
1583 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1584 return;
1585
1586 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1587 get_ctx(ctx);
1588 ctx->orphans_remove_sched = true;
1589 }
1590 }
1591
1592 static int __init perf_workqueue_init(void)
1593 {
1594 perf_wq = create_singlethread_workqueue("perf");
1595 WARN(!perf_wq, "failed to create perf workqueue\n");
1596 return perf_wq ? 0 : -1;
1597 }
1598
1599 core_initcall(perf_workqueue_init);
1600
1601 static inline int pmu_filter_match(struct perf_event *event)
1602 {
1603 struct pmu *pmu = event->pmu;
1604 return pmu->filter_match ? pmu->filter_match(event) : 1;
1605 }
1606
1607 static inline int
1608 event_filter_match(struct perf_event *event)
1609 {
1610 return (event->cpu == -1 || event->cpu == smp_processor_id())
1611 && perf_cgroup_match(event) && pmu_filter_match(event);
1612 }
1613
1614 static void
1615 event_sched_out(struct perf_event *event,
1616 struct perf_cpu_context *cpuctx,
1617 struct perf_event_context *ctx)
1618 {
1619 u64 tstamp = perf_event_time(event);
1620 u64 delta;
1621
1622 WARN_ON_ONCE(event->ctx != ctx);
1623 lockdep_assert_held(&ctx->lock);
1624
1625 /*
1626 * An event which could not be activated because of
1627 * filter mismatch still needs to have its timings
1628 * maintained, otherwise bogus information is return
1629 * via read() for time_enabled, time_running:
1630 */
1631 if (event->state == PERF_EVENT_STATE_INACTIVE
1632 && !event_filter_match(event)) {
1633 delta = tstamp - event->tstamp_stopped;
1634 event->tstamp_running += delta;
1635 event->tstamp_stopped = tstamp;
1636 }
1637
1638 if (event->state != PERF_EVENT_STATE_ACTIVE)
1639 return;
1640
1641 perf_pmu_disable(event->pmu);
1642
1643 event->state = PERF_EVENT_STATE_INACTIVE;
1644 if (event->pending_disable) {
1645 event->pending_disable = 0;
1646 event->state = PERF_EVENT_STATE_OFF;
1647 }
1648 event->tstamp_stopped = tstamp;
1649 event->pmu->del(event, 0);
1650 event->oncpu = -1;
1651
1652 if (!is_software_event(event))
1653 cpuctx->active_oncpu--;
1654 if (!--ctx->nr_active)
1655 perf_event_ctx_deactivate(ctx);
1656 if (event->attr.freq && event->attr.sample_freq)
1657 ctx->nr_freq--;
1658 if (event->attr.exclusive || !cpuctx->active_oncpu)
1659 cpuctx->exclusive = 0;
1660
1661 if (is_orphaned_child(event))
1662 schedule_orphans_remove(ctx);
1663
1664 perf_pmu_enable(event->pmu);
1665 }
1666
1667 static void
1668 group_sched_out(struct perf_event *group_event,
1669 struct perf_cpu_context *cpuctx,
1670 struct perf_event_context *ctx)
1671 {
1672 struct perf_event *event;
1673 int state = group_event->state;
1674
1675 event_sched_out(group_event, cpuctx, ctx);
1676
1677 /*
1678 * Schedule out siblings (if any):
1679 */
1680 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1681 event_sched_out(event, cpuctx, ctx);
1682
1683 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1684 cpuctx->exclusive = 0;
1685 }
1686
1687 struct remove_event {
1688 struct perf_event *event;
1689 bool detach_group;
1690 };
1691
1692 static void ___perf_remove_from_context(void *info)
1693 {
1694 struct remove_event *re = info;
1695 struct perf_event *event = re->event;
1696 struct perf_event_context *ctx = event->ctx;
1697
1698 if (re->detach_group)
1699 perf_group_detach(event);
1700 list_del_event(event, ctx);
1701 }
1702
1703 /*
1704 * Cross CPU call to remove a performance event
1705 *
1706 * We disable the event on the hardware level first. After that we
1707 * remove it from the context list.
1708 */
1709 static int __perf_remove_from_context(void *info)
1710 {
1711 struct remove_event *re = info;
1712 struct perf_event *event = re->event;
1713 struct perf_event_context *ctx = event->ctx;
1714 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1715
1716 raw_spin_lock(&ctx->lock);
1717 event_sched_out(event, cpuctx, ctx);
1718 if (re->detach_group)
1719 perf_group_detach(event);
1720 list_del_event(event, ctx);
1721
1722 if (!ctx->nr_events && ctx->is_active) {
1723 ctx->is_active = 0;
1724 if (ctx->task) {
1725 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1726 cpuctx->task_ctx = NULL;
1727 }
1728 }
1729 raw_spin_unlock(&ctx->lock);
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * Remove the event from a task's (or a CPU's) list of events.
1736 *
1737 * CPU events are removed with a smp call. For task events we only
1738 * call when the task is on a CPU.
1739 *
1740 * If event->ctx is a cloned context, callers must make sure that
1741 * every task struct that event->ctx->task could possibly point to
1742 * remains valid. This is OK when called from perf_release since
1743 * that only calls us on the top-level context, which can't be a clone.
1744 * When called from perf_event_exit_task, it's OK because the
1745 * context has been detached from its task.
1746 */
1747 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1748 {
1749 struct perf_event_context *ctx = event->ctx;
1750 struct remove_event re = {
1751 .event = event,
1752 .detach_group = detach_group,
1753 };
1754
1755 lockdep_assert_held(&ctx->mutex);
1756
1757 event_function_call(event, __perf_remove_from_context,
1758 ___perf_remove_from_context, &re);
1759 }
1760
1761 /*
1762 * Cross CPU call to disable a performance event
1763 */
1764 int __perf_event_disable(void *info)
1765 {
1766 struct perf_event *event = info;
1767 struct perf_event_context *ctx = event->ctx;
1768 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1769
1770 /*
1771 * If this is a per-task event, need to check whether this
1772 * event's task is the current task on this cpu.
1773 *
1774 * Can trigger due to concurrent perf_event_context_sched_out()
1775 * flipping contexts around.
1776 */
1777 if (ctx->task && cpuctx->task_ctx != ctx)
1778 return -EINVAL;
1779
1780 raw_spin_lock(&ctx->lock);
1781
1782 /*
1783 * If the event is on, turn it off.
1784 * If it is in error state, leave it in error state.
1785 */
1786 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1787 update_context_time(ctx);
1788 update_cgrp_time_from_event(event);
1789 update_group_times(event);
1790 if (event == event->group_leader)
1791 group_sched_out(event, cpuctx, ctx);
1792 else
1793 event_sched_out(event, cpuctx, ctx);
1794 event->state = PERF_EVENT_STATE_OFF;
1795 }
1796
1797 raw_spin_unlock(&ctx->lock);
1798
1799 return 0;
1800 }
1801
1802 void ___perf_event_disable(void *info)
1803 {
1804 struct perf_event *event = info;
1805
1806 /*
1807 * Since we have the lock this context can't be scheduled
1808 * in, so we can change the state safely.
1809 */
1810 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1811 update_group_times(event);
1812 event->state = PERF_EVENT_STATE_OFF;
1813 }
1814 }
1815
1816 /*
1817 * Disable a event.
1818 *
1819 * If event->ctx is a cloned context, callers must make sure that
1820 * every task struct that event->ctx->task could possibly point to
1821 * remains valid. This condition is satisifed when called through
1822 * perf_event_for_each_child or perf_event_for_each because they
1823 * hold the top-level event's child_mutex, so any descendant that
1824 * goes to exit will block in sync_child_event.
1825 * When called from perf_pending_event it's OK because event->ctx
1826 * is the current context on this CPU and preemption is disabled,
1827 * hence we can't get into perf_event_task_sched_out for this context.
1828 */
1829 static void _perf_event_disable(struct perf_event *event)
1830 {
1831 struct perf_event_context *ctx = event->ctx;
1832
1833 raw_spin_lock_irq(&ctx->lock);
1834 if (event->state <= PERF_EVENT_STATE_OFF) {
1835 raw_spin_unlock_irq(&ctx->lock);
1836 return;
1837 }
1838 raw_spin_unlock_irq(&ctx->lock);
1839
1840 event_function_call(event, __perf_event_disable,
1841 ___perf_event_disable, event);
1842 }
1843
1844 /*
1845 * Strictly speaking kernel users cannot create groups and therefore this
1846 * interface does not need the perf_event_ctx_lock() magic.
1847 */
1848 void perf_event_disable(struct perf_event *event)
1849 {
1850 struct perf_event_context *ctx;
1851
1852 ctx = perf_event_ctx_lock(event);
1853 _perf_event_disable(event);
1854 perf_event_ctx_unlock(event, ctx);
1855 }
1856 EXPORT_SYMBOL_GPL(perf_event_disable);
1857
1858 static void perf_set_shadow_time(struct perf_event *event,
1859 struct perf_event_context *ctx,
1860 u64 tstamp)
1861 {
1862 /*
1863 * use the correct time source for the time snapshot
1864 *
1865 * We could get by without this by leveraging the
1866 * fact that to get to this function, the caller
1867 * has most likely already called update_context_time()
1868 * and update_cgrp_time_xx() and thus both timestamp
1869 * are identical (or very close). Given that tstamp is,
1870 * already adjusted for cgroup, we could say that:
1871 * tstamp - ctx->timestamp
1872 * is equivalent to
1873 * tstamp - cgrp->timestamp.
1874 *
1875 * Then, in perf_output_read(), the calculation would
1876 * work with no changes because:
1877 * - event is guaranteed scheduled in
1878 * - no scheduled out in between
1879 * - thus the timestamp would be the same
1880 *
1881 * But this is a bit hairy.
1882 *
1883 * So instead, we have an explicit cgroup call to remain
1884 * within the time time source all along. We believe it
1885 * is cleaner and simpler to understand.
1886 */
1887 if (is_cgroup_event(event))
1888 perf_cgroup_set_shadow_time(event, tstamp);
1889 else
1890 event->shadow_ctx_time = tstamp - ctx->timestamp;
1891 }
1892
1893 #define MAX_INTERRUPTS (~0ULL)
1894
1895 static void perf_log_throttle(struct perf_event *event, int enable);
1896 static void perf_log_itrace_start(struct perf_event *event);
1897
1898 static int
1899 event_sched_in(struct perf_event *event,
1900 struct perf_cpu_context *cpuctx,
1901 struct perf_event_context *ctx)
1902 {
1903 u64 tstamp = perf_event_time(event);
1904 int ret = 0;
1905
1906 lockdep_assert_held(&ctx->lock);
1907
1908 if (event->state <= PERF_EVENT_STATE_OFF)
1909 return 0;
1910
1911 event->state = PERF_EVENT_STATE_ACTIVE;
1912 event->oncpu = smp_processor_id();
1913
1914 /*
1915 * Unthrottle events, since we scheduled we might have missed several
1916 * ticks already, also for a heavily scheduling task there is little
1917 * guarantee it'll get a tick in a timely manner.
1918 */
1919 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1920 perf_log_throttle(event, 1);
1921 event->hw.interrupts = 0;
1922 }
1923
1924 /*
1925 * The new state must be visible before we turn it on in the hardware:
1926 */
1927 smp_wmb();
1928
1929 perf_pmu_disable(event->pmu);
1930
1931 perf_set_shadow_time(event, ctx, tstamp);
1932
1933 perf_log_itrace_start(event);
1934
1935 if (event->pmu->add(event, PERF_EF_START)) {
1936 event->state = PERF_EVENT_STATE_INACTIVE;
1937 event->oncpu = -1;
1938 ret = -EAGAIN;
1939 goto out;
1940 }
1941
1942 event->tstamp_running += tstamp - event->tstamp_stopped;
1943
1944 if (!is_software_event(event))
1945 cpuctx->active_oncpu++;
1946 if (!ctx->nr_active++)
1947 perf_event_ctx_activate(ctx);
1948 if (event->attr.freq && event->attr.sample_freq)
1949 ctx->nr_freq++;
1950
1951 if (event->attr.exclusive)
1952 cpuctx->exclusive = 1;
1953
1954 if (is_orphaned_child(event))
1955 schedule_orphans_remove(ctx);
1956
1957 out:
1958 perf_pmu_enable(event->pmu);
1959
1960 return ret;
1961 }
1962
1963 static int
1964 group_sched_in(struct perf_event *group_event,
1965 struct perf_cpu_context *cpuctx,
1966 struct perf_event_context *ctx)
1967 {
1968 struct perf_event *event, *partial_group = NULL;
1969 struct pmu *pmu = ctx->pmu;
1970 u64 now = ctx->time;
1971 bool simulate = false;
1972
1973 if (group_event->state == PERF_EVENT_STATE_OFF)
1974 return 0;
1975
1976 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1977
1978 if (event_sched_in(group_event, cpuctx, ctx)) {
1979 pmu->cancel_txn(pmu);
1980 perf_mux_hrtimer_restart(cpuctx);
1981 return -EAGAIN;
1982 }
1983
1984 /*
1985 * Schedule in siblings as one group (if any):
1986 */
1987 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1988 if (event_sched_in(event, cpuctx, ctx)) {
1989 partial_group = event;
1990 goto group_error;
1991 }
1992 }
1993
1994 if (!pmu->commit_txn(pmu))
1995 return 0;
1996
1997 group_error:
1998 /*
1999 * Groups can be scheduled in as one unit only, so undo any
2000 * partial group before returning:
2001 * The events up to the failed event are scheduled out normally,
2002 * tstamp_stopped will be updated.
2003 *
2004 * The failed events and the remaining siblings need to have
2005 * their timings updated as if they had gone thru event_sched_in()
2006 * and event_sched_out(). This is required to get consistent timings
2007 * across the group. This also takes care of the case where the group
2008 * could never be scheduled by ensuring tstamp_stopped is set to mark
2009 * the time the event was actually stopped, such that time delta
2010 * calculation in update_event_times() is correct.
2011 */
2012 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2013 if (event == partial_group)
2014 simulate = true;
2015
2016 if (simulate) {
2017 event->tstamp_running += now - event->tstamp_stopped;
2018 event->tstamp_stopped = now;
2019 } else {
2020 event_sched_out(event, cpuctx, ctx);
2021 }
2022 }
2023 event_sched_out(group_event, cpuctx, ctx);
2024
2025 pmu->cancel_txn(pmu);
2026
2027 perf_mux_hrtimer_restart(cpuctx);
2028
2029 return -EAGAIN;
2030 }
2031
2032 /*
2033 * Work out whether we can put this event group on the CPU now.
2034 */
2035 static int group_can_go_on(struct perf_event *event,
2036 struct perf_cpu_context *cpuctx,
2037 int can_add_hw)
2038 {
2039 /*
2040 * Groups consisting entirely of software events can always go on.
2041 */
2042 if (event->group_flags & PERF_GROUP_SOFTWARE)
2043 return 1;
2044 /*
2045 * If an exclusive group is already on, no other hardware
2046 * events can go on.
2047 */
2048 if (cpuctx->exclusive)
2049 return 0;
2050 /*
2051 * If this group is exclusive and there are already
2052 * events on the CPU, it can't go on.
2053 */
2054 if (event->attr.exclusive && cpuctx->active_oncpu)
2055 return 0;
2056 /*
2057 * Otherwise, try to add it if all previous groups were able
2058 * to go on.
2059 */
2060 return can_add_hw;
2061 }
2062
2063 static void add_event_to_ctx(struct perf_event *event,
2064 struct perf_event_context *ctx)
2065 {
2066 u64 tstamp = perf_event_time(event);
2067
2068 list_add_event(event, ctx);
2069 perf_group_attach(event);
2070 event->tstamp_enabled = tstamp;
2071 event->tstamp_running = tstamp;
2072 event->tstamp_stopped = tstamp;
2073 }
2074
2075 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2076 struct perf_event_context *ctx);
2077 static void
2078 ctx_sched_in(struct perf_event_context *ctx,
2079 struct perf_cpu_context *cpuctx,
2080 enum event_type_t event_type,
2081 struct task_struct *task);
2082
2083 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2084 struct perf_event_context *ctx,
2085 struct task_struct *task)
2086 {
2087 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2088 if (ctx)
2089 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2090 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2091 if (ctx)
2092 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2093 }
2094
2095 static void ctx_resched(struct perf_cpu_context *cpuctx,
2096 struct perf_event_context *task_ctx)
2097 {
2098 perf_pmu_disable(cpuctx->ctx.pmu);
2099 if (task_ctx)
2100 task_ctx_sched_out(cpuctx, task_ctx);
2101 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2102 perf_event_sched_in(cpuctx, task_ctx, current);
2103 perf_pmu_enable(cpuctx->ctx.pmu);
2104 }
2105
2106 /*
2107 * Cross CPU call to install and enable a performance event
2108 *
2109 * Must be called with ctx->mutex held
2110 */
2111 static int __perf_install_in_context(void *info)
2112 {
2113 struct perf_event_context *ctx = info;
2114 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2115 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2116
2117 if (ctx->task) {
2118 /*
2119 * If we hit the 'wrong' task, we've since scheduled and
2120 * everything should be sorted, nothing to do!
2121 */
2122 if (ctx->task != current)
2123 return 0;
2124
2125 /*
2126 * If task_ctx is set, it had better be to us.
2127 */
2128 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2129 task_ctx = ctx;
2130 }
2131
2132 perf_ctx_lock(cpuctx, task_ctx);
2133 ctx_resched(cpuctx, task_ctx);
2134 perf_ctx_unlock(cpuctx, task_ctx);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Attach a performance event to a context
2141 */
2142 static void
2143 perf_install_in_context(struct perf_event_context *ctx,
2144 struct perf_event *event,
2145 int cpu)
2146 {
2147 struct task_struct *task = NULL;
2148
2149 lockdep_assert_held(&ctx->mutex);
2150
2151 event->ctx = ctx;
2152 if (event->cpu != -1)
2153 event->cpu = cpu;
2154
2155 /*
2156 * Installing events is tricky because we cannot rely on ctx->is_active
2157 * to be set in case this is the nr_events 0 -> 1 transition.
2158 *
2159 * So what we do is we add the event to the list here, which will allow
2160 * a future context switch to DTRT and then send a racy IPI. If the IPI
2161 * fails to hit the right task, this means a context switch must have
2162 * happened and that will have taken care of business.
2163 */
2164 raw_spin_lock_irq(&ctx->lock);
2165 update_context_time(ctx);
2166 /*
2167 * Update cgrp time only if current cgrp matches event->cgrp.
2168 * Must be done before calling add_event_to_ctx().
2169 */
2170 update_cgrp_time_from_event(event);
2171 add_event_to_ctx(event, ctx);
2172 task = ctx->task;
2173 raw_spin_unlock_irq(&ctx->lock);
2174
2175 if (task)
2176 task_function_call(task, __perf_install_in_context, ctx);
2177 else
2178 cpu_function_call(cpu, __perf_install_in_context, ctx);
2179 }
2180
2181 /*
2182 * Put a event into inactive state and update time fields.
2183 * Enabling the leader of a group effectively enables all
2184 * the group members that aren't explicitly disabled, so we
2185 * have to update their ->tstamp_enabled also.
2186 * Note: this works for group members as well as group leaders
2187 * since the non-leader members' sibling_lists will be empty.
2188 */
2189 static void __perf_event_mark_enabled(struct perf_event *event)
2190 {
2191 struct perf_event *sub;
2192 u64 tstamp = perf_event_time(event);
2193
2194 event->state = PERF_EVENT_STATE_INACTIVE;
2195 event->tstamp_enabled = tstamp - event->total_time_enabled;
2196 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2197 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2198 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2199 }
2200 }
2201
2202 /*
2203 * Cross CPU call to enable a performance event
2204 */
2205 static int __perf_event_enable(void *info)
2206 {
2207 struct perf_event *event = info;
2208 struct perf_event_context *ctx = event->ctx;
2209 struct perf_event *leader = event->group_leader;
2210 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2211 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2212
2213 /*
2214 * There's a time window between 'ctx->is_active' check
2215 * in perf_event_enable function and this place having:
2216 * - IRQs on
2217 * - ctx->lock unlocked
2218 *
2219 * where the task could be killed and 'ctx' deactivated
2220 * by perf_event_exit_task.
2221 */
2222 if (!ctx->is_active)
2223 return -EINVAL;
2224
2225 perf_ctx_lock(cpuctx, task_ctx);
2226 WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2227 update_context_time(ctx);
2228
2229 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2230 goto unlock;
2231
2232 /*
2233 * set current task's cgroup time reference point
2234 */
2235 perf_cgroup_set_timestamp(current, ctx);
2236
2237 __perf_event_mark_enabled(event);
2238
2239 if (!event_filter_match(event)) {
2240 if (is_cgroup_event(event))
2241 perf_cgroup_defer_enabled(event);
2242 goto unlock;
2243 }
2244
2245 /*
2246 * If the event is in a group and isn't the group leader,
2247 * then don't put it on unless the group is on.
2248 */
2249 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2250 goto unlock;
2251
2252 ctx_resched(cpuctx, task_ctx);
2253
2254 unlock:
2255 perf_ctx_unlock(cpuctx, task_ctx);
2256
2257 return 0;
2258 }
2259
2260 void ___perf_event_enable(void *info)
2261 {
2262 __perf_event_mark_enabled((struct perf_event *)info);
2263 }
2264
2265 /*
2266 * Enable a event.
2267 *
2268 * If event->ctx is a cloned context, callers must make sure that
2269 * every task struct that event->ctx->task could possibly point to
2270 * remains valid. This condition is satisfied when called through
2271 * perf_event_for_each_child or perf_event_for_each as described
2272 * for perf_event_disable.
2273 */
2274 static void _perf_event_enable(struct perf_event *event)
2275 {
2276 struct perf_event_context *ctx = event->ctx;
2277
2278 raw_spin_lock_irq(&ctx->lock);
2279 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2280 raw_spin_unlock_irq(&ctx->lock);
2281 return;
2282 }
2283
2284 /*
2285 * If the event is in error state, clear that first.
2286 *
2287 * That way, if we see the event in error state below, we know that it
2288 * has gone back into error state, as distinct from the task having
2289 * been scheduled away before the cross-call arrived.
2290 */
2291 if (event->state == PERF_EVENT_STATE_ERROR)
2292 event->state = PERF_EVENT_STATE_OFF;
2293 raw_spin_unlock_irq(&ctx->lock);
2294
2295 event_function_call(event, __perf_event_enable,
2296 ___perf_event_enable, event);
2297 }
2298
2299 /*
2300 * See perf_event_disable();
2301 */
2302 void perf_event_enable(struct perf_event *event)
2303 {
2304 struct perf_event_context *ctx;
2305
2306 ctx = perf_event_ctx_lock(event);
2307 _perf_event_enable(event);
2308 perf_event_ctx_unlock(event, ctx);
2309 }
2310 EXPORT_SYMBOL_GPL(perf_event_enable);
2311
2312 static int _perf_event_refresh(struct perf_event *event, int refresh)
2313 {
2314 /*
2315 * not supported on inherited events
2316 */
2317 if (event->attr.inherit || !is_sampling_event(event))
2318 return -EINVAL;
2319
2320 atomic_add(refresh, &event->event_limit);
2321 _perf_event_enable(event);
2322
2323 return 0;
2324 }
2325
2326 /*
2327 * See perf_event_disable()
2328 */
2329 int perf_event_refresh(struct perf_event *event, int refresh)
2330 {
2331 struct perf_event_context *ctx;
2332 int ret;
2333
2334 ctx = perf_event_ctx_lock(event);
2335 ret = _perf_event_refresh(event, refresh);
2336 perf_event_ctx_unlock(event, ctx);
2337
2338 return ret;
2339 }
2340 EXPORT_SYMBOL_GPL(perf_event_refresh);
2341
2342 static void ctx_sched_out(struct perf_event_context *ctx,
2343 struct perf_cpu_context *cpuctx,
2344 enum event_type_t event_type)
2345 {
2346 int is_active = ctx->is_active;
2347 struct perf_event *event;
2348
2349 lockdep_assert_held(&ctx->lock);
2350
2351 if (likely(!ctx->nr_events)) {
2352 /*
2353 * See __perf_remove_from_context().
2354 */
2355 WARN_ON_ONCE(ctx->is_active);
2356 if (ctx->task)
2357 WARN_ON_ONCE(cpuctx->task_ctx);
2358 return;
2359 }
2360
2361 ctx->is_active &= ~event_type;
2362 if (ctx->task) {
2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 if (!ctx->is_active)
2365 cpuctx->task_ctx = NULL;
2366 }
2367
2368 update_context_time(ctx);
2369 update_cgrp_time_from_cpuctx(cpuctx);
2370 if (!ctx->nr_active)
2371 return;
2372
2373 perf_pmu_disable(ctx->pmu);
2374 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2375 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2376 group_sched_out(event, cpuctx, ctx);
2377 }
2378
2379 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2380 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2381 group_sched_out(event, cpuctx, ctx);
2382 }
2383 perf_pmu_enable(ctx->pmu);
2384 }
2385
2386 /*
2387 * Test whether two contexts are equivalent, i.e. whether they have both been
2388 * cloned from the same version of the same context.
2389 *
2390 * Equivalence is measured using a generation number in the context that is
2391 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2392 * and list_del_event().
2393 */
2394 static int context_equiv(struct perf_event_context *ctx1,
2395 struct perf_event_context *ctx2)
2396 {
2397 lockdep_assert_held(&ctx1->lock);
2398 lockdep_assert_held(&ctx2->lock);
2399
2400 /* Pinning disables the swap optimization */
2401 if (ctx1->pin_count || ctx2->pin_count)
2402 return 0;
2403
2404 /* If ctx1 is the parent of ctx2 */
2405 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2406 return 1;
2407
2408 /* If ctx2 is the parent of ctx1 */
2409 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2410 return 1;
2411
2412 /*
2413 * If ctx1 and ctx2 have the same parent; we flatten the parent
2414 * hierarchy, see perf_event_init_context().
2415 */
2416 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2417 ctx1->parent_gen == ctx2->parent_gen)
2418 return 1;
2419
2420 /* Unmatched */
2421 return 0;
2422 }
2423
2424 static void __perf_event_sync_stat(struct perf_event *event,
2425 struct perf_event *next_event)
2426 {
2427 u64 value;
2428
2429 if (!event->attr.inherit_stat)
2430 return;
2431
2432 /*
2433 * Update the event value, we cannot use perf_event_read()
2434 * because we're in the middle of a context switch and have IRQs
2435 * disabled, which upsets smp_call_function_single(), however
2436 * we know the event must be on the current CPU, therefore we
2437 * don't need to use it.
2438 */
2439 switch (event->state) {
2440 case PERF_EVENT_STATE_ACTIVE:
2441 event->pmu->read(event);
2442 /* fall-through */
2443
2444 case PERF_EVENT_STATE_INACTIVE:
2445 update_event_times(event);
2446 break;
2447
2448 default:
2449 break;
2450 }
2451
2452 /*
2453 * In order to keep per-task stats reliable we need to flip the event
2454 * values when we flip the contexts.
2455 */
2456 value = local64_read(&next_event->count);
2457 value = local64_xchg(&event->count, value);
2458 local64_set(&next_event->count, value);
2459
2460 swap(event->total_time_enabled, next_event->total_time_enabled);
2461 swap(event->total_time_running, next_event->total_time_running);
2462
2463 /*
2464 * Since we swizzled the values, update the user visible data too.
2465 */
2466 perf_event_update_userpage(event);
2467 perf_event_update_userpage(next_event);
2468 }
2469
2470 static void perf_event_sync_stat(struct perf_event_context *ctx,
2471 struct perf_event_context *next_ctx)
2472 {
2473 struct perf_event *event, *next_event;
2474
2475 if (!ctx->nr_stat)
2476 return;
2477
2478 update_context_time(ctx);
2479
2480 event = list_first_entry(&ctx->event_list,
2481 struct perf_event, event_entry);
2482
2483 next_event = list_first_entry(&next_ctx->event_list,
2484 struct perf_event, event_entry);
2485
2486 while (&event->event_entry != &ctx->event_list &&
2487 &next_event->event_entry != &next_ctx->event_list) {
2488
2489 __perf_event_sync_stat(event, next_event);
2490
2491 event = list_next_entry(event, event_entry);
2492 next_event = list_next_entry(next_event, event_entry);
2493 }
2494 }
2495
2496 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2497 struct task_struct *next)
2498 {
2499 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2500 struct perf_event_context *next_ctx;
2501 struct perf_event_context *parent, *next_parent;
2502 struct perf_cpu_context *cpuctx;
2503 int do_switch = 1;
2504
2505 if (likely(!ctx))
2506 return;
2507
2508 cpuctx = __get_cpu_context(ctx);
2509 if (!cpuctx->task_ctx)
2510 return;
2511
2512 rcu_read_lock();
2513 next_ctx = next->perf_event_ctxp[ctxn];
2514 if (!next_ctx)
2515 goto unlock;
2516
2517 parent = rcu_dereference(ctx->parent_ctx);
2518 next_parent = rcu_dereference(next_ctx->parent_ctx);
2519
2520 /* If neither context have a parent context; they cannot be clones. */
2521 if (!parent && !next_parent)
2522 goto unlock;
2523
2524 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2525 /*
2526 * Looks like the two contexts are clones, so we might be
2527 * able to optimize the context switch. We lock both
2528 * contexts and check that they are clones under the
2529 * lock (including re-checking that neither has been
2530 * uncloned in the meantime). It doesn't matter which
2531 * order we take the locks because no other cpu could
2532 * be trying to lock both of these tasks.
2533 */
2534 raw_spin_lock(&ctx->lock);
2535 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2536 if (context_equiv(ctx, next_ctx)) {
2537 /*
2538 * XXX do we need a memory barrier of sorts
2539 * wrt to rcu_dereference() of perf_event_ctxp
2540 */
2541 task->perf_event_ctxp[ctxn] = next_ctx;
2542 next->perf_event_ctxp[ctxn] = ctx;
2543 ctx->task = next;
2544 next_ctx->task = task;
2545
2546 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2547
2548 do_switch = 0;
2549
2550 perf_event_sync_stat(ctx, next_ctx);
2551 }
2552 raw_spin_unlock(&next_ctx->lock);
2553 raw_spin_unlock(&ctx->lock);
2554 }
2555 unlock:
2556 rcu_read_unlock();
2557
2558 if (do_switch) {
2559 raw_spin_lock(&ctx->lock);
2560 task_ctx_sched_out(cpuctx, ctx);
2561 raw_spin_unlock(&ctx->lock);
2562 }
2563 }
2564
2565 void perf_sched_cb_dec(struct pmu *pmu)
2566 {
2567 this_cpu_dec(perf_sched_cb_usages);
2568 }
2569
2570 void perf_sched_cb_inc(struct pmu *pmu)
2571 {
2572 this_cpu_inc(perf_sched_cb_usages);
2573 }
2574
2575 /*
2576 * This function provides the context switch callback to the lower code
2577 * layer. It is invoked ONLY when the context switch callback is enabled.
2578 */
2579 static void perf_pmu_sched_task(struct task_struct *prev,
2580 struct task_struct *next,
2581 bool sched_in)
2582 {
2583 struct perf_cpu_context *cpuctx;
2584 struct pmu *pmu;
2585 unsigned long flags;
2586
2587 if (prev == next)
2588 return;
2589
2590 local_irq_save(flags);
2591
2592 rcu_read_lock();
2593
2594 list_for_each_entry_rcu(pmu, &pmus, entry) {
2595 if (pmu->sched_task) {
2596 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2597
2598 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2599
2600 perf_pmu_disable(pmu);
2601
2602 pmu->sched_task(cpuctx->task_ctx, sched_in);
2603
2604 perf_pmu_enable(pmu);
2605
2606 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2607 }
2608 }
2609
2610 rcu_read_unlock();
2611
2612 local_irq_restore(flags);
2613 }
2614
2615 static void perf_event_switch(struct task_struct *task,
2616 struct task_struct *next_prev, bool sched_in);
2617
2618 #define for_each_task_context_nr(ctxn) \
2619 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2620
2621 /*
2622 * Called from scheduler to remove the events of the current task,
2623 * with interrupts disabled.
2624 *
2625 * We stop each event and update the event value in event->count.
2626 *
2627 * This does not protect us against NMI, but disable()
2628 * sets the disabled bit in the control field of event _before_
2629 * accessing the event control register. If a NMI hits, then it will
2630 * not restart the event.
2631 */
2632 void __perf_event_task_sched_out(struct task_struct *task,
2633 struct task_struct *next)
2634 {
2635 int ctxn;
2636
2637 if (__this_cpu_read(perf_sched_cb_usages))
2638 perf_pmu_sched_task(task, next, false);
2639
2640 if (atomic_read(&nr_switch_events))
2641 perf_event_switch(task, next, false);
2642
2643 for_each_task_context_nr(ctxn)
2644 perf_event_context_sched_out(task, ctxn, next);
2645
2646 /*
2647 * if cgroup events exist on this CPU, then we need
2648 * to check if we have to switch out PMU state.
2649 * cgroup event are system-wide mode only
2650 */
2651 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2652 perf_cgroup_sched_out(task, next);
2653 }
2654
2655 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2656 struct perf_event_context *ctx)
2657 {
2658 if (!cpuctx->task_ctx)
2659 return;
2660
2661 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2662 return;
2663
2664 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2665 }
2666
2667 /*
2668 * Called with IRQs disabled
2669 */
2670 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2671 enum event_type_t event_type)
2672 {
2673 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2674 }
2675
2676 static void
2677 ctx_pinned_sched_in(struct perf_event_context *ctx,
2678 struct perf_cpu_context *cpuctx)
2679 {
2680 struct perf_event *event;
2681
2682 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2683 if (event->state <= PERF_EVENT_STATE_OFF)
2684 continue;
2685 if (!event_filter_match(event))
2686 continue;
2687
2688 /* may need to reset tstamp_enabled */
2689 if (is_cgroup_event(event))
2690 perf_cgroup_mark_enabled(event, ctx);
2691
2692 if (group_can_go_on(event, cpuctx, 1))
2693 group_sched_in(event, cpuctx, ctx);
2694
2695 /*
2696 * If this pinned group hasn't been scheduled,
2697 * put it in error state.
2698 */
2699 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2700 update_group_times(event);
2701 event->state = PERF_EVENT_STATE_ERROR;
2702 }
2703 }
2704 }
2705
2706 static void
2707 ctx_flexible_sched_in(struct perf_event_context *ctx,
2708 struct perf_cpu_context *cpuctx)
2709 {
2710 struct perf_event *event;
2711 int can_add_hw = 1;
2712
2713 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2714 /* Ignore events in OFF or ERROR state */
2715 if (event->state <= PERF_EVENT_STATE_OFF)
2716 continue;
2717 /*
2718 * Listen to the 'cpu' scheduling filter constraint
2719 * of events:
2720 */
2721 if (!event_filter_match(event))
2722 continue;
2723
2724 /* may need to reset tstamp_enabled */
2725 if (is_cgroup_event(event))
2726 perf_cgroup_mark_enabled(event, ctx);
2727
2728 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2729 if (group_sched_in(event, cpuctx, ctx))
2730 can_add_hw = 0;
2731 }
2732 }
2733 }
2734
2735 static void
2736 ctx_sched_in(struct perf_event_context *ctx,
2737 struct perf_cpu_context *cpuctx,
2738 enum event_type_t event_type,
2739 struct task_struct *task)
2740 {
2741 int is_active = ctx->is_active;
2742 u64 now;
2743
2744 lockdep_assert_held(&ctx->lock);
2745
2746 if (likely(!ctx->nr_events))
2747 return;
2748
2749 ctx->is_active |= event_type;
2750 if (ctx->task) {
2751 if (!is_active)
2752 cpuctx->task_ctx = ctx;
2753 else
2754 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2755 }
2756
2757 now = perf_clock();
2758 ctx->timestamp = now;
2759 perf_cgroup_set_timestamp(task, ctx);
2760 /*
2761 * First go through the list and put on any pinned groups
2762 * in order to give them the best chance of going on.
2763 */
2764 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2765 ctx_pinned_sched_in(ctx, cpuctx);
2766
2767 /* Then walk through the lower prio flexible groups */
2768 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2769 ctx_flexible_sched_in(ctx, cpuctx);
2770 }
2771
2772 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2773 enum event_type_t event_type,
2774 struct task_struct *task)
2775 {
2776 struct perf_event_context *ctx = &cpuctx->ctx;
2777
2778 ctx_sched_in(ctx, cpuctx, event_type, task);
2779 }
2780
2781 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2782 struct task_struct *task)
2783 {
2784 struct perf_cpu_context *cpuctx;
2785
2786 cpuctx = __get_cpu_context(ctx);
2787 if (cpuctx->task_ctx == ctx)
2788 return;
2789
2790 perf_ctx_lock(cpuctx, ctx);
2791 perf_pmu_disable(ctx->pmu);
2792 /*
2793 * We want to keep the following priority order:
2794 * cpu pinned (that don't need to move), task pinned,
2795 * cpu flexible, task flexible.
2796 */
2797 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2798 perf_event_sched_in(cpuctx, ctx, task);
2799 perf_pmu_enable(ctx->pmu);
2800 perf_ctx_unlock(cpuctx, ctx);
2801 }
2802
2803 /*
2804 * Called from scheduler to add the events of the current task
2805 * with interrupts disabled.
2806 *
2807 * We restore the event value and then enable it.
2808 *
2809 * This does not protect us against NMI, but enable()
2810 * sets the enabled bit in the control field of event _before_
2811 * accessing the event control register. If a NMI hits, then it will
2812 * keep the event running.
2813 */
2814 void __perf_event_task_sched_in(struct task_struct *prev,
2815 struct task_struct *task)
2816 {
2817 struct perf_event_context *ctx;
2818 int ctxn;
2819
2820 /*
2821 * If cgroup events exist on this CPU, then we need to check if we have
2822 * to switch in PMU state; cgroup event are system-wide mode only.
2823 *
2824 * Since cgroup events are CPU events, we must schedule these in before
2825 * we schedule in the task events.
2826 */
2827 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2828 perf_cgroup_sched_in(prev, task);
2829
2830 for_each_task_context_nr(ctxn) {
2831 ctx = task->perf_event_ctxp[ctxn];
2832 if (likely(!ctx))
2833 continue;
2834
2835 perf_event_context_sched_in(ctx, task);
2836 }
2837
2838 if (atomic_read(&nr_switch_events))
2839 perf_event_switch(task, prev, true);
2840
2841 if (__this_cpu_read(perf_sched_cb_usages))
2842 perf_pmu_sched_task(prev, task, true);
2843 }
2844
2845 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2846 {
2847 u64 frequency = event->attr.sample_freq;
2848 u64 sec = NSEC_PER_SEC;
2849 u64 divisor, dividend;
2850
2851 int count_fls, nsec_fls, frequency_fls, sec_fls;
2852
2853 count_fls = fls64(count);
2854 nsec_fls = fls64(nsec);
2855 frequency_fls = fls64(frequency);
2856 sec_fls = 30;
2857
2858 /*
2859 * We got @count in @nsec, with a target of sample_freq HZ
2860 * the target period becomes:
2861 *
2862 * @count * 10^9
2863 * period = -------------------
2864 * @nsec * sample_freq
2865 *
2866 */
2867
2868 /*
2869 * Reduce accuracy by one bit such that @a and @b converge
2870 * to a similar magnitude.
2871 */
2872 #define REDUCE_FLS(a, b) \
2873 do { \
2874 if (a##_fls > b##_fls) { \
2875 a >>= 1; \
2876 a##_fls--; \
2877 } else { \
2878 b >>= 1; \
2879 b##_fls--; \
2880 } \
2881 } while (0)
2882
2883 /*
2884 * Reduce accuracy until either term fits in a u64, then proceed with
2885 * the other, so that finally we can do a u64/u64 division.
2886 */
2887 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2888 REDUCE_FLS(nsec, frequency);
2889 REDUCE_FLS(sec, count);
2890 }
2891
2892 if (count_fls + sec_fls > 64) {
2893 divisor = nsec * frequency;
2894
2895 while (count_fls + sec_fls > 64) {
2896 REDUCE_FLS(count, sec);
2897 divisor >>= 1;
2898 }
2899
2900 dividend = count * sec;
2901 } else {
2902 dividend = count * sec;
2903
2904 while (nsec_fls + frequency_fls > 64) {
2905 REDUCE_FLS(nsec, frequency);
2906 dividend >>= 1;
2907 }
2908
2909 divisor = nsec * frequency;
2910 }
2911
2912 if (!divisor)
2913 return dividend;
2914
2915 return div64_u64(dividend, divisor);
2916 }
2917
2918 static DEFINE_PER_CPU(int, perf_throttled_count);
2919 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2920
2921 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2922 {
2923 struct hw_perf_event *hwc = &event->hw;
2924 s64 period, sample_period;
2925 s64 delta;
2926
2927 period = perf_calculate_period(event, nsec, count);
2928
2929 delta = (s64)(period - hwc->sample_period);
2930 delta = (delta + 7) / 8; /* low pass filter */
2931
2932 sample_period = hwc->sample_period + delta;
2933
2934 if (!sample_period)
2935 sample_period = 1;
2936
2937 hwc->sample_period = sample_period;
2938
2939 if (local64_read(&hwc->period_left) > 8*sample_period) {
2940 if (disable)
2941 event->pmu->stop(event, PERF_EF_UPDATE);
2942
2943 local64_set(&hwc->period_left, 0);
2944
2945 if (disable)
2946 event->pmu->start(event, PERF_EF_RELOAD);
2947 }
2948 }
2949
2950 /*
2951 * combine freq adjustment with unthrottling to avoid two passes over the
2952 * events. At the same time, make sure, having freq events does not change
2953 * the rate of unthrottling as that would introduce bias.
2954 */
2955 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2956 int needs_unthr)
2957 {
2958 struct perf_event *event;
2959 struct hw_perf_event *hwc;
2960 u64 now, period = TICK_NSEC;
2961 s64 delta;
2962
2963 /*
2964 * only need to iterate over all events iff:
2965 * - context have events in frequency mode (needs freq adjust)
2966 * - there are events to unthrottle on this cpu
2967 */
2968 if (!(ctx->nr_freq || needs_unthr))
2969 return;
2970
2971 raw_spin_lock(&ctx->lock);
2972 perf_pmu_disable(ctx->pmu);
2973
2974 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2975 if (event->state != PERF_EVENT_STATE_ACTIVE)
2976 continue;
2977
2978 if (!event_filter_match(event))
2979 continue;
2980
2981 perf_pmu_disable(event->pmu);
2982
2983 hwc = &event->hw;
2984
2985 if (hwc->interrupts == MAX_INTERRUPTS) {
2986 hwc->interrupts = 0;
2987 perf_log_throttle(event, 1);
2988 event->pmu->start(event, 0);
2989 }
2990
2991 if (!event->attr.freq || !event->attr.sample_freq)
2992 goto next;
2993
2994 /*
2995 * stop the event and update event->count
2996 */
2997 event->pmu->stop(event, PERF_EF_UPDATE);
2998
2999 now = local64_read(&event->count);
3000 delta = now - hwc->freq_count_stamp;
3001 hwc->freq_count_stamp = now;
3002
3003 /*
3004 * restart the event
3005 * reload only if value has changed
3006 * we have stopped the event so tell that
3007 * to perf_adjust_period() to avoid stopping it
3008 * twice.
3009 */
3010 if (delta > 0)
3011 perf_adjust_period(event, period, delta, false);
3012
3013 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3014 next:
3015 perf_pmu_enable(event->pmu);
3016 }
3017
3018 perf_pmu_enable(ctx->pmu);
3019 raw_spin_unlock(&ctx->lock);
3020 }
3021
3022 /*
3023 * Round-robin a context's events:
3024 */
3025 static void rotate_ctx(struct perf_event_context *ctx)
3026 {
3027 /*
3028 * Rotate the first entry last of non-pinned groups. Rotation might be
3029 * disabled by the inheritance code.
3030 */
3031 if (!ctx->rotate_disable)
3032 list_rotate_left(&ctx->flexible_groups);
3033 }
3034
3035 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3036 {
3037 struct perf_event_context *ctx = NULL;
3038 int rotate = 0;
3039
3040 if (cpuctx->ctx.nr_events) {
3041 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3042 rotate = 1;
3043 }
3044
3045 ctx = cpuctx->task_ctx;
3046 if (ctx && ctx->nr_events) {
3047 if (ctx->nr_events != ctx->nr_active)
3048 rotate = 1;
3049 }
3050
3051 if (!rotate)
3052 goto done;
3053
3054 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3055 perf_pmu_disable(cpuctx->ctx.pmu);
3056
3057 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3058 if (ctx)
3059 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3060
3061 rotate_ctx(&cpuctx->ctx);
3062 if (ctx)
3063 rotate_ctx(ctx);
3064
3065 perf_event_sched_in(cpuctx, ctx, current);
3066
3067 perf_pmu_enable(cpuctx->ctx.pmu);
3068 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3069 done:
3070
3071 return rotate;
3072 }
3073
3074 #ifdef CONFIG_NO_HZ_FULL
3075 bool perf_event_can_stop_tick(void)
3076 {
3077 if (atomic_read(&nr_freq_events) ||
3078 __this_cpu_read(perf_throttled_count))
3079 return false;
3080 else
3081 return true;
3082 }
3083 #endif
3084
3085 void perf_event_task_tick(void)
3086 {
3087 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3088 struct perf_event_context *ctx, *tmp;
3089 int throttled;
3090
3091 WARN_ON(!irqs_disabled());
3092
3093 __this_cpu_inc(perf_throttled_seq);
3094 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3095
3096 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3097 perf_adjust_freq_unthr_context(ctx, throttled);
3098 }
3099
3100 static int event_enable_on_exec(struct perf_event *event,
3101 struct perf_event_context *ctx)
3102 {
3103 if (!event->attr.enable_on_exec)
3104 return 0;
3105
3106 event->attr.enable_on_exec = 0;
3107 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3108 return 0;
3109
3110 __perf_event_mark_enabled(event);
3111
3112 return 1;
3113 }
3114
3115 /*
3116 * Enable all of a task's events that have been marked enable-on-exec.
3117 * This expects task == current.
3118 */
3119 static void perf_event_enable_on_exec(int ctxn)
3120 {
3121 struct perf_event_context *ctx, *clone_ctx = NULL;
3122 struct perf_cpu_context *cpuctx;
3123 struct perf_event *event;
3124 unsigned long flags;
3125 int enabled = 0;
3126
3127 local_irq_save(flags);
3128 ctx = current->perf_event_ctxp[ctxn];
3129 if (!ctx || !ctx->nr_events)
3130 goto out;
3131
3132 cpuctx = __get_cpu_context(ctx);
3133 perf_ctx_lock(cpuctx, ctx);
3134 list_for_each_entry(event, &ctx->event_list, event_entry)
3135 enabled |= event_enable_on_exec(event, ctx);
3136
3137 /*
3138 * Unclone and reschedule this context if we enabled any event.
3139 */
3140 if (enabled) {
3141 clone_ctx = unclone_ctx(ctx);
3142 ctx_resched(cpuctx, ctx);
3143 }
3144 perf_ctx_unlock(cpuctx, ctx);
3145
3146 out:
3147 local_irq_restore(flags);
3148
3149 if (clone_ctx)
3150 put_ctx(clone_ctx);
3151 }
3152
3153 void perf_event_exec(void)
3154 {
3155 int ctxn;
3156
3157 rcu_read_lock();
3158 for_each_task_context_nr(ctxn)
3159 perf_event_enable_on_exec(ctxn);
3160 rcu_read_unlock();
3161 }
3162
3163 struct perf_read_data {
3164 struct perf_event *event;
3165 bool group;
3166 int ret;
3167 };
3168
3169 /*
3170 * Cross CPU call to read the hardware event
3171 */
3172 static void __perf_event_read(void *info)
3173 {
3174 struct perf_read_data *data = info;
3175 struct perf_event *sub, *event = data->event;
3176 struct perf_event_context *ctx = event->ctx;
3177 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3178 struct pmu *pmu = event->pmu;
3179
3180 /*
3181 * If this is a task context, we need to check whether it is
3182 * the current task context of this cpu. If not it has been
3183 * scheduled out before the smp call arrived. In that case
3184 * event->count would have been updated to a recent sample
3185 * when the event was scheduled out.
3186 */
3187 if (ctx->task && cpuctx->task_ctx != ctx)
3188 return;
3189
3190 raw_spin_lock(&ctx->lock);
3191 if (ctx->is_active) {
3192 update_context_time(ctx);
3193 update_cgrp_time_from_event(event);
3194 }
3195
3196 update_event_times(event);
3197 if (event->state != PERF_EVENT_STATE_ACTIVE)
3198 goto unlock;
3199
3200 if (!data->group) {
3201 pmu->read(event);
3202 data->ret = 0;
3203 goto unlock;
3204 }
3205
3206 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3207
3208 pmu->read(event);
3209
3210 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3211 update_event_times(sub);
3212 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3213 /*
3214 * Use sibling's PMU rather than @event's since
3215 * sibling could be on different (eg: software) PMU.
3216 */
3217 sub->pmu->read(sub);
3218 }
3219 }
3220
3221 data->ret = pmu->commit_txn(pmu);
3222
3223 unlock:
3224 raw_spin_unlock(&ctx->lock);
3225 }
3226
3227 static inline u64 perf_event_count(struct perf_event *event)
3228 {
3229 if (event->pmu->count)
3230 return event->pmu->count(event);
3231
3232 return __perf_event_count(event);
3233 }
3234
3235 /*
3236 * NMI-safe method to read a local event, that is an event that
3237 * is:
3238 * - either for the current task, or for this CPU
3239 * - does not have inherit set, for inherited task events
3240 * will not be local and we cannot read them atomically
3241 * - must not have a pmu::count method
3242 */
3243 u64 perf_event_read_local(struct perf_event *event)
3244 {
3245 unsigned long flags;
3246 u64 val;
3247
3248 /*
3249 * Disabling interrupts avoids all counter scheduling (context
3250 * switches, timer based rotation and IPIs).
3251 */
3252 local_irq_save(flags);
3253
3254 /* If this is a per-task event, it must be for current */
3255 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3256 event->hw.target != current);
3257
3258 /* If this is a per-CPU event, it must be for this CPU */
3259 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3260 event->cpu != smp_processor_id());
3261
3262 /*
3263 * It must not be an event with inherit set, we cannot read
3264 * all child counters from atomic context.
3265 */
3266 WARN_ON_ONCE(event->attr.inherit);
3267
3268 /*
3269 * It must not have a pmu::count method, those are not
3270 * NMI safe.
3271 */
3272 WARN_ON_ONCE(event->pmu->count);
3273
3274 /*
3275 * If the event is currently on this CPU, its either a per-task event,
3276 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3277 * oncpu == -1).
3278 */
3279 if (event->oncpu == smp_processor_id())
3280 event->pmu->read(event);
3281
3282 val = local64_read(&event->count);
3283 local_irq_restore(flags);
3284
3285 return val;
3286 }
3287
3288 static int perf_event_read(struct perf_event *event, bool group)
3289 {
3290 int ret = 0;
3291
3292 /*
3293 * If event is enabled and currently active on a CPU, update the
3294 * value in the event structure:
3295 */
3296 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3297 struct perf_read_data data = {
3298 .event = event,
3299 .group = group,
3300 .ret = 0,
3301 };
3302 smp_call_function_single(event->oncpu,
3303 __perf_event_read, &data, 1);
3304 ret = data.ret;
3305 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3306 struct perf_event_context *ctx = event->ctx;
3307 unsigned long flags;
3308
3309 raw_spin_lock_irqsave(&ctx->lock, flags);
3310 /*
3311 * may read while context is not active
3312 * (e.g., thread is blocked), in that case
3313 * we cannot update context time
3314 */
3315 if (ctx->is_active) {
3316 update_context_time(ctx);
3317 update_cgrp_time_from_event(event);
3318 }
3319 if (group)
3320 update_group_times(event);
3321 else
3322 update_event_times(event);
3323 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3324 }
3325
3326 return ret;
3327 }
3328
3329 /*
3330 * Initialize the perf_event context in a task_struct:
3331 */
3332 static void __perf_event_init_context(struct perf_event_context *ctx)
3333 {
3334 raw_spin_lock_init(&ctx->lock);
3335 mutex_init(&ctx->mutex);
3336 INIT_LIST_HEAD(&ctx->active_ctx_list);
3337 INIT_LIST_HEAD(&ctx->pinned_groups);
3338 INIT_LIST_HEAD(&ctx->flexible_groups);
3339 INIT_LIST_HEAD(&ctx->event_list);
3340 atomic_set(&ctx->refcount, 1);
3341 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3342 }
3343
3344 static struct perf_event_context *
3345 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3346 {
3347 struct perf_event_context *ctx;
3348
3349 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3350 if (!ctx)
3351 return NULL;
3352
3353 __perf_event_init_context(ctx);
3354 if (task) {
3355 ctx->task = task;
3356 get_task_struct(task);
3357 }
3358 ctx->pmu = pmu;
3359
3360 return ctx;
3361 }
3362
3363 static struct task_struct *
3364 find_lively_task_by_vpid(pid_t vpid)
3365 {
3366 struct task_struct *task;
3367 int err;
3368
3369 rcu_read_lock();
3370 if (!vpid)
3371 task = current;
3372 else
3373 task = find_task_by_vpid(vpid);
3374 if (task)
3375 get_task_struct(task);
3376 rcu_read_unlock();
3377
3378 if (!task)
3379 return ERR_PTR(-ESRCH);
3380
3381 /* Reuse ptrace permission checks for now. */
3382 err = -EACCES;
3383 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3384 goto errout;
3385
3386 return task;
3387 errout:
3388 put_task_struct(task);
3389 return ERR_PTR(err);
3390
3391 }
3392
3393 /*
3394 * Returns a matching context with refcount and pincount.
3395 */
3396 static struct perf_event_context *
3397 find_get_context(struct pmu *pmu, struct task_struct *task,
3398 struct perf_event *event)
3399 {
3400 struct perf_event_context *ctx, *clone_ctx = NULL;
3401 struct perf_cpu_context *cpuctx;
3402 void *task_ctx_data = NULL;
3403 unsigned long flags;
3404 int ctxn, err;
3405 int cpu = event->cpu;
3406
3407 if (!task) {
3408 /* Must be root to operate on a CPU event: */
3409 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3410 return ERR_PTR(-EACCES);
3411
3412 /*
3413 * We could be clever and allow to attach a event to an
3414 * offline CPU and activate it when the CPU comes up, but
3415 * that's for later.
3416 */
3417 if (!cpu_online(cpu))
3418 return ERR_PTR(-ENODEV);
3419
3420 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3421 ctx = &cpuctx->ctx;
3422 get_ctx(ctx);
3423 ++ctx->pin_count;
3424
3425 return ctx;
3426 }
3427
3428 err = -EINVAL;
3429 ctxn = pmu->task_ctx_nr;
3430 if (ctxn < 0)
3431 goto errout;
3432
3433 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3434 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3435 if (!task_ctx_data) {
3436 err = -ENOMEM;
3437 goto errout;
3438 }
3439 }
3440
3441 retry:
3442 ctx = perf_lock_task_context(task, ctxn, &flags);
3443 if (ctx) {
3444 clone_ctx = unclone_ctx(ctx);
3445 ++ctx->pin_count;
3446
3447 if (task_ctx_data && !ctx->task_ctx_data) {
3448 ctx->task_ctx_data = task_ctx_data;
3449 task_ctx_data = NULL;
3450 }
3451 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3452
3453 if (clone_ctx)
3454 put_ctx(clone_ctx);
3455 } else {
3456 ctx = alloc_perf_context(pmu, task);
3457 err = -ENOMEM;
3458 if (!ctx)
3459 goto errout;
3460
3461 if (task_ctx_data) {
3462 ctx->task_ctx_data = task_ctx_data;
3463 task_ctx_data = NULL;
3464 }
3465
3466 err = 0;
3467 mutex_lock(&task->perf_event_mutex);
3468 /*
3469 * If it has already passed perf_event_exit_task().
3470 * we must see PF_EXITING, it takes this mutex too.
3471 */
3472 if (task->flags & PF_EXITING)
3473 err = -ESRCH;
3474 else if (task->perf_event_ctxp[ctxn])
3475 err = -EAGAIN;
3476 else {
3477 get_ctx(ctx);
3478 ++ctx->pin_count;
3479 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3480 }
3481 mutex_unlock(&task->perf_event_mutex);
3482
3483 if (unlikely(err)) {
3484 put_ctx(ctx);
3485
3486 if (err == -EAGAIN)
3487 goto retry;
3488 goto errout;
3489 }
3490 }
3491
3492 kfree(task_ctx_data);
3493 return ctx;
3494
3495 errout:
3496 kfree(task_ctx_data);
3497 return ERR_PTR(err);
3498 }
3499
3500 static void perf_event_free_filter(struct perf_event *event);
3501 static void perf_event_free_bpf_prog(struct perf_event *event);
3502
3503 static void free_event_rcu(struct rcu_head *head)
3504 {
3505 struct perf_event *event;
3506
3507 event = container_of(head, struct perf_event, rcu_head);
3508 if (event->ns)
3509 put_pid_ns(event->ns);
3510 perf_event_free_filter(event);
3511 kfree(event);
3512 }
3513
3514 static void ring_buffer_attach(struct perf_event *event,
3515 struct ring_buffer *rb);
3516
3517 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3518 {
3519 if (event->parent)
3520 return;
3521
3522 if (is_cgroup_event(event))
3523 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3524 }
3525
3526 static void unaccount_event(struct perf_event *event)
3527 {
3528 bool dec = false;
3529
3530 if (event->parent)
3531 return;
3532
3533 if (event->attach_state & PERF_ATTACH_TASK)
3534 dec = true;
3535 if (event->attr.mmap || event->attr.mmap_data)
3536 atomic_dec(&nr_mmap_events);
3537 if (event->attr.comm)
3538 atomic_dec(&nr_comm_events);
3539 if (event->attr.task)
3540 atomic_dec(&nr_task_events);
3541 if (event->attr.freq)
3542 atomic_dec(&nr_freq_events);
3543 if (event->attr.context_switch) {
3544 dec = true;
3545 atomic_dec(&nr_switch_events);
3546 }
3547 if (is_cgroup_event(event))
3548 dec = true;
3549 if (has_branch_stack(event))
3550 dec = true;
3551
3552 if (dec)
3553 static_key_slow_dec_deferred(&perf_sched_events);
3554
3555 unaccount_event_cpu(event, event->cpu);
3556 }
3557
3558 /*
3559 * The following implement mutual exclusion of events on "exclusive" pmus
3560 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3561 * at a time, so we disallow creating events that might conflict, namely:
3562 *
3563 * 1) cpu-wide events in the presence of per-task events,
3564 * 2) per-task events in the presence of cpu-wide events,
3565 * 3) two matching events on the same context.
3566 *
3567 * The former two cases are handled in the allocation path (perf_event_alloc(),
3568 * __free_event()), the latter -- before the first perf_install_in_context().
3569 */
3570 static int exclusive_event_init(struct perf_event *event)
3571 {
3572 struct pmu *pmu = event->pmu;
3573
3574 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3575 return 0;
3576
3577 /*
3578 * Prevent co-existence of per-task and cpu-wide events on the
3579 * same exclusive pmu.
3580 *
3581 * Negative pmu::exclusive_cnt means there are cpu-wide
3582 * events on this "exclusive" pmu, positive means there are
3583 * per-task events.
3584 *
3585 * Since this is called in perf_event_alloc() path, event::ctx
3586 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3587 * to mean "per-task event", because unlike other attach states it
3588 * never gets cleared.
3589 */
3590 if (event->attach_state & PERF_ATTACH_TASK) {
3591 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3592 return -EBUSY;
3593 } else {
3594 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3595 return -EBUSY;
3596 }
3597
3598 return 0;
3599 }
3600
3601 static void exclusive_event_destroy(struct perf_event *event)
3602 {
3603 struct pmu *pmu = event->pmu;
3604
3605 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3606 return;
3607
3608 /* see comment in exclusive_event_init() */
3609 if (event->attach_state & PERF_ATTACH_TASK)
3610 atomic_dec(&pmu->exclusive_cnt);
3611 else
3612 atomic_inc(&pmu->exclusive_cnt);
3613 }
3614
3615 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3616 {
3617 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3618 (e1->cpu == e2->cpu ||
3619 e1->cpu == -1 ||
3620 e2->cpu == -1))
3621 return true;
3622 return false;
3623 }
3624
3625 /* Called under the same ctx::mutex as perf_install_in_context() */
3626 static bool exclusive_event_installable(struct perf_event *event,
3627 struct perf_event_context *ctx)
3628 {
3629 struct perf_event *iter_event;
3630 struct pmu *pmu = event->pmu;
3631
3632 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3633 return true;
3634
3635 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3636 if (exclusive_event_match(iter_event, event))
3637 return false;
3638 }
3639
3640 return true;
3641 }
3642
3643 static void __free_event(struct perf_event *event)
3644 {
3645 if (!event->parent) {
3646 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3647 put_callchain_buffers();
3648 }
3649
3650 perf_event_free_bpf_prog(event);
3651
3652 if (event->destroy)
3653 event->destroy(event);
3654
3655 if (event->ctx)
3656 put_ctx(event->ctx);
3657
3658 if (event->pmu) {
3659 exclusive_event_destroy(event);
3660 module_put(event->pmu->module);
3661 }
3662
3663 call_rcu(&event->rcu_head, free_event_rcu);
3664 }
3665
3666 static void _free_event(struct perf_event *event)
3667 {
3668 irq_work_sync(&event->pending);
3669
3670 unaccount_event(event);
3671
3672 if (event->rb) {
3673 /*
3674 * Can happen when we close an event with re-directed output.
3675 *
3676 * Since we have a 0 refcount, perf_mmap_close() will skip
3677 * over us; possibly making our ring_buffer_put() the last.
3678 */
3679 mutex_lock(&event->mmap_mutex);
3680 ring_buffer_attach(event, NULL);
3681 mutex_unlock(&event->mmap_mutex);
3682 }
3683
3684 if (is_cgroup_event(event))
3685 perf_detach_cgroup(event);
3686
3687 __free_event(event);
3688 }
3689
3690 /*
3691 * Used to free events which have a known refcount of 1, such as in error paths
3692 * where the event isn't exposed yet and inherited events.
3693 */
3694 static void free_event(struct perf_event *event)
3695 {
3696 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3697 "unexpected event refcount: %ld; ptr=%p\n",
3698 atomic_long_read(&event->refcount), event)) {
3699 /* leak to avoid use-after-free */
3700 return;
3701 }
3702
3703 _free_event(event);
3704 }
3705
3706 /*
3707 * Remove user event from the owner task.
3708 */
3709 static void perf_remove_from_owner(struct perf_event *event)
3710 {
3711 struct task_struct *owner;
3712
3713 rcu_read_lock();
3714 owner = ACCESS_ONCE(event->owner);
3715 /*
3716 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3717 * !owner it means the list deletion is complete and we can indeed
3718 * free this event, otherwise we need to serialize on
3719 * owner->perf_event_mutex.
3720 */
3721 smp_read_barrier_depends();
3722 if (owner) {
3723 /*
3724 * Since delayed_put_task_struct() also drops the last
3725 * task reference we can safely take a new reference
3726 * while holding the rcu_read_lock().
3727 */
3728 get_task_struct(owner);
3729 }
3730 rcu_read_unlock();
3731
3732 if (owner) {
3733 /*
3734 * If we're here through perf_event_exit_task() we're already
3735 * holding ctx->mutex which would be an inversion wrt. the
3736 * normal lock order.
3737 *
3738 * However we can safely take this lock because its the child
3739 * ctx->mutex.
3740 */
3741 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3742
3743 /*
3744 * We have to re-check the event->owner field, if it is cleared
3745 * we raced with perf_event_exit_task(), acquiring the mutex
3746 * ensured they're done, and we can proceed with freeing the
3747 * event.
3748 */
3749 if (event->owner)
3750 list_del_init(&event->owner_entry);
3751 mutex_unlock(&owner->perf_event_mutex);
3752 put_task_struct(owner);
3753 }
3754 }
3755
3756 static void put_event(struct perf_event *event)
3757 {
3758 struct perf_event_context *ctx;
3759
3760 if (!atomic_long_dec_and_test(&event->refcount))
3761 return;
3762
3763 if (!is_kernel_event(event))
3764 perf_remove_from_owner(event);
3765
3766 /*
3767 * There are two ways this annotation is useful:
3768 *
3769 * 1) there is a lock recursion from perf_event_exit_task
3770 * see the comment there.
3771 *
3772 * 2) there is a lock-inversion with mmap_sem through
3773 * perf_read_group(), which takes faults while
3774 * holding ctx->mutex, however this is called after
3775 * the last filedesc died, so there is no possibility
3776 * to trigger the AB-BA case.
3777 */
3778 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3779 WARN_ON_ONCE(ctx->parent_ctx);
3780 perf_remove_from_context(event, true);
3781 perf_event_ctx_unlock(event, ctx);
3782
3783 _free_event(event);
3784 }
3785
3786 int perf_event_release_kernel(struct perf_event *event)
3787 {
3788 put_event(event);
3789 return 0;
3790 }
3791 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3792
3793 /*
3794 * Called when the last reference to the file is gone.
3795 */
3796 static int perf_release(struct inode *inode, struct file *file)
3797 {
3798 put_event(file->private_data);
3799 return 0;
3800 }
3801
3802 /*
3803 * Remove all orphanes events from the context.
3804 */
3805 static void orphans_remove_work(struct work_struct *work)
3806 {
3807 struct perf_event_context *ctx;
3808 struct perf_event *event, *tmp;
3809
3810 ctx = container_of(work, struct perf_event_context,
3811 orphans_remove.work);
3812
3813 mutex_lock(&ctx->mutex);
3814 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3815 struct perf_event *parent_event = event->parent;
3816
3817 if (!is_orphaned_child(event))
3818 continue;
3819
3820 perf_remove_from_context(event, true);
3821
3822 mutex_lock(&parent_event->child_mutex);
3823 list_del_init(&event->child_list);
3824 mutex_unlock(&parent_event->child_mutex);
3825
3826 free_event(event);
3827 put_event(parent_event);
3828 }
3829
3830 raw_spin_lock_irq(&ctx->lock);
3831 ctx->orphans_remove_sched = false;
3832 raw_spin_unlock_irq(&ctx->lock);
3833 mutex_unlock(&ctx->mutex);
3834
3835 put_ctx(ctx);
3836 }
3837
3838 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3839 {
3840 struct perf_event *child;
3841 u64 total = 0;
3842
3843 *enabled = 0;
3844 *running = 0;
3845
3846 mutex_lock(&event->child_mutex);
3847
3848 (void)perf_event_read(event, false);
3849 total += perf_event_count(event);
3850
3851 *enabled += event->total_time_enabled +
3852 atomic64_read(&event->child_total_time_enabled);
3853 *running += event->total_time_running +
3854 atomic64_read(&event->child_total_time_running);
3855
3856 list_for_each_entry(child, &event->child_list, child_list) {
3857 (void)perf_event_read(child, false);
3858 total += perf_event_count(child);
3859 *enabled += child->total_time_enabled;
3860 *running += child->total_time_running;
3861 }
3862 mutex_unlock(&event->child_mutex);
3863
3864 return total;
3865 }
3866 EXPORT_SYMBOL_GPL(perf_event_read_value);
3867
3868 static int __perf_read_group_add(struct perf_event *leader,
3869 u64 read_format, u64 *values)
3870 {
3871 struct perf_event *sub;
3872 int n = 1; /* skip @nr */
3873 int ret;
3874
3875 ret = perf_event_read(leader, true);
3876 if (ret)
3877 return ret;
3878
3879 /*
3880 * Since we co-schedule groups, {enabled,running} times of siblings
3881 * will be identical to those of the leader, so we only publish one
3882 * set.
3883 */
3884 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3885 values[n++] += leader->total_time_enabled +
3886 atomic64_read(&leader->child_total_time_enabled);
3887 }
3888
3889 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3890 values[n++] += leader->total_time_running +
3891 atomic64_read(&leader->child_total_time_running);
3892 }
3893
3894 /*
3895 * Write {count,id} tuples for every sibling.
3896 */
3897 values[n++] += perf_event_count(leader);
3898 if (read_format & PERF_FORMAT_ID)
3899 values[n++] = primary_event_id(leader);
3900
3901 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3902 values[n++] += perf_event_count(sub);
3903 if (read_format & PERF_FORMAT_ID)
3904 values[n++] = primary_event_id(sub);
3905 }
3906
3907 return 0;
3908 }
3909
3910 static int perf_read_group(struct perf_event *event,
3911 u64 read_format, char __user *buf)
3912 {
3913 struct perf_event *leader = event->group_leader, *child;
3914 struct perf_event_context *ctx = leader->ctx;
3915 int ret;
3916 u64 *values;
3917
3918 lockdep_assert_held(&ctx->mutex);
3919
3920 values = kzalloc(event->read_size, GFP_KERNEL);
3921 if (!values)
3922 return -ENOMEM;
3923
3924 values[0] = 1 + leader->nr_siblings;
3925
3926 /*
3927 * By locking the child_mutex of the leader we effectively
3928 * lock the child list of all siblings.. XXX explain how.
3929 */
3930 mutex_lock(&leader->child_mutex);
3931
3932 ret = __perf_read_group_add(leader, read_format, values);
3933 if (ret)
3934 goto unlock;
3935
3936 list_for_each_entry(child, &leader->child_list, child_list) {
3937 ret = __perf_read_group_add(child, read_format, values);
3938 if (ret)
3939 goto unlock;
3940 }
3941
3942 mutex_unlock(&leader->child_mutex);
3943
3944 ret = event->read_size;
3945 if (copy_to_user(buf, values, event->read_size))
3946 ret = -EFAULT;
3947 goto out;
3948
3949 unlock:
3950 mutex_unlock(&leader->child_mutex);
3951 out:
3952 kfree(values);
3953 return ret;
3954 }
3955
3956 static int perf_read_one(struct perf_event *event,
3957 u64 read_format, char __user *buf)
3958 {
3959 u64 enabled, running;
3960 u64 values[4];
3961 int n = 0;
3962
3963 values[n++] = perf_event_read_value(event, &enabled, &running);
3964 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3965 values[n++] = enabled;
3966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3967 values[n++] = running;
3968 if (read_format & PERF_FORMAT_ID)
3969 values[n++] = primary_event_id(event);
3970
3971 if (copy_to_user(buf, values, n * sizeof(u64)))
3972 return -EFAULT;
3973
3974 return n * sizeof(u64);
3975 }
3976
3977 static bool is_event_hup(struct perf_event *event)
3978 {
3979 bool no_children;
3980
3981 if (event->state != PERF_EVENT_STATE_EXIT)
3982 return false;
3983
3984 mutex_lock(&event->child_mutex);
3985 no_children = list_empty(&event->child_list);
3986 mutex_unlock(&event->child_mutex);
3987 return no_children;
3988 }
3989
3990 /*
3991 * Read the performance event - simple non blocking version for now
3992 */
3993 static ssize_t
3994 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3995 {
3996 u64 read_format = event->attr.read_format;
3997 int ret;
3998
3999 /*
4000 * Return end-of-file for a read on a event that is in
4001 * error state (i.e. because it was pinned but it couldn't be
4002 * scheduled on to the CPU at some point).
4003 */
4004 if (event->state == PERF_EVENT_STATE_ERROR)
4005 return 0;
4006
4007 if (count < event->read_size)
4008 return -ENOSPC;
4009
4010 WARN_ON_ONCE(event->ctx->parent_ctx);
4011 if (read_format & PERF_FORMAT_GROUP)
4012 ret = perf_read_group(event, read_format, buf);
4013 else
4014 ret = perf_read_one(event, read_format, buf);
4015
4016 return ret;
4017 }
4018
4019 static ssize_t
4020 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4021 {
4022 struct perf_event *event = file->private_data;
4023 struct perf_event_context *ctx;
4024 int ret;
4025
4026 ctx = perf_event_ctx_lock(event);
4027 ret = __perf_read(event, buf, count);
4028 perf_event_ctx_unlock(event, ctx);
4029
4030 return ret;
4031 }
4032
4033 static unsigned int perf_poll(struct file *file, poll_table *wait)
4034 {
4035 struct perf_event *event = file->private_data;
4036 struct ring_buffer *rb;
4037 unsigned int events = POLLHUP;
4038
4039 poll_wait(file, &event->waitq, wait);
4040
4041 if (is_event_hup(event))
4042 return events;
4043
4044 /*
4045 * Pin the event->rb by taking event->mmap_mutex; otherwise
4046 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4047 */
4048 mutex_lock(&event->mmap_mutex);
4049 rb = event->rb;
4050 if (rb)
4051 events = atomic_xchg(&rb->poll, 0);
4052 mutex_unlock(&event->mmap_mutex);
4053 return events;
4054 }
4055
4056 static void _perf_event_reset(struct perf_event *event)
4057 {
4058 (void)perf_event_read(event, false);
4059 local64_set(&event->count, 0);
4060 perf_event_update_userpage(event);
4061 }
4062
4063 /*
4064 * Holding the top-level event's child_mutex means that any
4065 * descendant process that has inherited this event will block
4066 * in sync_child_event if it goes to exit, thus satisfying the
4067 * task existence requirements of perf_event_enable/disable.
4068 */
4069 static void perf_event_for_each_child(struct perf_event *event,
4070 void (*func)(struct perf_event *))
4071 {
4072 struct perf_event *child;
4073
4074 WARN_ON_ONCE(event->ctx->parent_ctx);
4075
4076 mutex_lock(&event->child_mutex);
4077 func(event);
4078 list_for_each_entry(child, &event->child_list, child_list)
4079 func(child);
4080 mutex_unlock(&event->child_mutex);
4081 }
4082
4083 static void perf_event_for_each(struct perf_event *event,
4084 void (*func)(struct perf_event *))
4085 {
4086 struct perf_event_context *ctx = event->ctx;
4087 struct perf_event *sibling;
4088
4089 lockdep_assert_held(&ctx->mutex);
4090
4091 event = event->group_leader;
4092
4093 perf_event_for_each_child(event, func);
4094 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4095 perf_event_for_each_child(sibling, func);
4096 }
4097
4098 struct period_event {
4099 struct perf_event *event;
4100 u64 value;
4101 };
4102
4103 static void ___perf_event_period(void *info)
4104 {
4105 struct period_event *pe = info;
4106 struct perf_event *event = pe->event;
4107 u64 value = pe->value;
4108
4109 if (event->attr.freq) {
4110 event->attr.sample_freq = value;
4111 } else {
4112 event->attr.sample_period = value;
4113 event->hw.sample_period = value;
4114 }
4115
4116 local64_set(&event->hw.period_left, 0);
4117 }
4118
4119 static int __perf_event_period(void *info)
4120 {
4121 struct period_event *pe = info;
4122 struct perf_event *event = pe->event;
4123 struct perf_event_context *ctx = event->ctx;
4124 u64 value = pe->value;
4125 bool active;
4126
4127 raw_spin_lock(&ctx->lock);
4128 if (event->attr.freq) {
4129 event->attr.sample_freq = value;
4130 } else {
4131 event->attr.sample_period = value;
4132 event->hw.sample_period = value;
4133 }
4134
4135 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4136 if (active) {
4137 perf_pmu_disable(ctx->pmu);
4138 event->pmu->stop(event, PERF_EF_UPDATE);
4139 }
4140
4141 local64_set(&event->hw.period_left, 0);
4142
4143 if (active) {
4144 event->pmu->start(event, PERF_EF_RELOAD);
4145 perf_pmu_enable(ctx->pmu);
4146 }
4147 raw_spin_unlock(&ctx->lock);
4148
4149 return 0;
4150 }
4151
4152 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4153 {
4154 struct period_event pe = { .event = event, };
4155 u64 value;
4156
4157 if (!is_sampling_event(event))
4158 return -EINVAL;
4159
4160 if (copy_from_user(&value, arg, sizeof(value)))
4161 return -EFAULT;
4162
4163 if (!value)
4164 return -EINVAL;
4165
4166 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4167 return -EINVAL;
4168
4169 pe.value = value;
4170
4171 event_function_call(event, __perf_event_period,
4172 ___perf_event_period, &pe);
4173
4174 return 0;
4175 }
4176
4177 static const struct file_operations perf_fops;
4178
4179 static inline int perf_fget_light(int fd, struct fd *p)
4180 {
4181 struct fd f = fdget(fd);
4182 if (!f.file)
4183 return -EBADF;
4184
4185 if (f.file->f_op != &perf_fops) {
4186 fdput(f);
4187 return -EBADF;
4188 }
4189 *p = f;
4190 return 0;
4191 }
4192
4193 static int perf_event_set_output(struct perf_event *event,
4194 struct perf_event *output_event);
4195 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4196 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4197
4198 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4199 {
4200 void (*func)(struct perf_event *);
4201 u32 flags = arg;
4202
4203 switch (cmd) {
4204 case PERF_EVENT_IOC_ENABLE:
4205 func = _perf_event_enable;
4206 break;
4207 case PERF_EVENT_IOC_DISABLE:
4208 func = _perf_event_disable;
4209 break;
4210 case PERF_EVENT_IOC_RESET:
4211 func = _perf_event_reset;
4212 break;
4213
4214 case PERF_EVENT_IOC_REFRESH:
4215 return _perf_event_refresh(event, arg);
4216
4217 case PERF_EVENT_IOC_PERIOD:
4218 return perf_event_period(event, (u64 __user *)arg);
4219
4220 case PERF_EVENT_IOC_ID:
4221 {
4222 u64 id = primary_event_id(event);
4223
4224 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4225 return -EFAULT;
4226 return 0;
4227 }
4228
4229 case PERF_EVENT_IOC_SET_OUTPUT:
4230 {
4231 int ret;
4232 if (arg != -1) {
4233 struct perf_event *output_event;
4234 struct fd output;
4235 ret = perf_fget_light(arg, &output);
4236 if (ret)
4237 return ret;
4238 output_event = output.file->private_data;
4239 ret = perf_event_set_output(event, output_event);
4240 fdput(output);
4241 } else {
4242 ret = perf_event_set_output(event, NULL);
4243 }
4244 return ret;
4245 }
4246
4247 case PERF_EVENT_IOC_SET_FILTER:
4248 return perf_event_set_filter(event, (void __user *)arg);
4249
4250 case PERF_EVENT_IOC_SET_BPF:
4251 return perf_event_set_bpf_prog(event, arg);
4252
4253 default:
4254 return -ENOTTY;
4255 }
4256
4257 if (flags & PERF_IOC_FLAG_GROUP)
4258 perf_event_for_each(event, func);
4259 else
4260 perf_event_for_each_child(event, func);
4261
4262 return 0;
4263 }
4264
4265 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4266 {
4267 struct perf_event *event = file->private_data;
4268 struct perf_event_context *ctx;
4269 long ret;
4270
4271 ctx = perf_event_ctx_lock(event);
4272 ret = _perf_ioctl(event, cmd, arg);
4273 perf_event_ctx_unlock(event, ctx);
4274
4275 return ret;
4276 }
4277
4278 #ifdef CONFIG_COMPAT
4279 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4280 unsigned long arg)
4281 {
4282 switch (_IOC_NR(cmd)) {
4283 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4284 case _IOC_NR(PERF_EVENT_IOC_ID):
4285 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4286 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4287 cmd &= ~IOCSIZE_MASK;
4288 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4289 }
4290 break;
4291 }
4292 return perf_ioctl(file, cmd, arg);
4293 }
4294 #else
4295 # define perf_compat_ioctl NULL
4296 #endif
4297
4298 int perf_event_task_enable(void)
4299 {
4300 struct perf_event_context *ctx;
4301 struct perf_event *event;
4302
4303 mutex_lock(&current->perf_event_mutex);
4304 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4305 ctx = perf_event_ctx_lock(event);
4306 perf_event_for_each_child(event, _perf_event_enable);
4307 perf_event_ctx_unlock(event, ctx);
4308 }
4309 mutex_unlock(&current->perf_event_mutex);
4310
4311 return 0;
4312 }
4313
4314 int perf_event_task_disable(void)
4315 {
4316 struct perf_event_context *ctx;
4317 struct perf_event *event;
4318
4319 mutex_lock(&current->perf_event_mutex);
4320 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4321 ctx = perf_event_ctx_lock(event);
4322 perf_event_for_each_child(event, _perf_event_disable);
4323 perf_event_ctx_unlock(event, ctx);
4324 }
4325 mutex_unlock(&current->perf_event_mutex);
4326
4327 return 0;
4328 }
4329
4330 static int perf_event_index(struct perf_event *event)
4331 {
4332 if (event->hw.state & PERF_HES_STOPPED)
4333 return 0;
4334
4335 if (event->state != PERF_EVENT_STATE_ACTIVE)
4336 return 0;
4337
4338 return event->pmu->event_idx(event);
4339 }
4340
4341 static void calc_timer_values(struct perf_event *event,
4342 u64 *now,
4343 u64 *enabled,
4344 u64 *running)
4345 {
4346 u64 ctx_time;
4347
4348 *now = perf_clock();
4349 ctx_time = event->shadow_ctx_time + *now;
4350 *enabled = ctx_time - event->tstamp_enabled;
4351 *running = ctx_time - event->tstamp_running;
4352 }
4353
4354 static void perf_event_init_userpage(struct perf_event *event)
4355 {
4356 struct perf_event_mmap_page *userpg;
4357 struct ring_buffer *rb;
4358
4359 rcu_read_lock();
4360 rb = rcu_dereference(event->rb);
4361 if (!rb)
4362 goto unlock;
4363
4364 userpg = rb->user_page;
4365
4366 /* Allow new userspace to detect that bit 0 is deprecated */
4367 userpg->cap_bit0_is_deprecated = 1;
4368 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4369 userpg->data_offset = PAGE_SIZE;
4370 userpg->data_size = perf_data_size(rb);
4371
4372 unlock:
4373 rcu_read_unlock();
4374 }
4375
4376 void __weak arch_perf_update_userpage(
4377 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4378 {
4379 }
4380
4381 /*
4382 * Callers need to ensure there can be no nesting of this function, otherwise
4383 * the seqlock logic goes bad. We can not serialize this because the arch
4384 * code calls this from NMI context.
4385 */
4386 void perf_event_update_userpage(struct perf_event *event)
4387 {
4388 struct perf_event_mmap_page *userpg;
4389 struct ring_buffer *rb;
4390 u64 enabled, running, now;
4391
4392 rcu_read_lock();
4393 rb = rcu_dereference(event->rb);
4394 if (!rb)
4395 goto unlock;
4396
4397 /*
4398 * compute total_time_enabled, total_time_running
4399 * based on snapshot values taken when the event
4400 * was last scheduled in.
4401 *
4402 * we cannot simply called update_context_time()
4403 * because of locking issue as we can be called in
4404 * NMI context
4405 */
4406 calc_timer_values(event, &now, &enabled, &running);
4407
4408 userpg = rb->user_page;
4409 /*
4410 * Disable preemption so as to not let the corresponding user-space
4411 * spin too long if we get preempted.
4412 */
4413 preempt_disable();
4414 ++userpg->lock;
4415 barrier();
4416 userpg->index = perf_event_index(event);
4417 userpg->offset = perf_event_count(event);
4418 if (userpg->index)
4419 userpg->offset -= local64_read(&event->hw.prev_count);
4420
4421 userpg->time_enabled = enabled +
4422 atomic64_read(&event->child_total_time_enabled);
4423
4424 userpg->time_running = running +
4425 atomic64_read(&event->child_total_time_running);
4426
4427 arch_perf_update_userpage(event, userpg, now);
4428
4429 barrier();
4430 ++userpg->lock;
4431 preempt_enable();
4432 unlock:
4433 rcu_read_unlock();
4434 }
4435
4436 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4437 {
4438 struct perf_event *event = vma->vm_file->private_data;
4439 struct ring_buffer *rb;
4440 int ret = VM_FAULT_SIGBUS;
4441
4442 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4443 if (vmf->pgoff == 0)
4444 ret = 0;
4445 return ret;
4446 }
4447
4448 rcu_read_lock();
4449 rb = rcu_dereference(event->rb);
4450 if (!rb)
4451 goto unlock;
4452
4453 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4454 goto unlock;
4455
4456 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4457 if (!vmf->page)
4458 goto unlock;
4459
4460 get_page(vmf->page);
4461 vmf->page->mapping = vma->vm_file->f_mapping;
4462 vmf->page->index = vmf->pgoff;
4463
4464 ret = 0;
4465 unlock:
4466 rcu_read_unlock();
4467
4468 return ret;
4469 }
4470
4471 static void ring_buffer_attach(struct perf_event *event,
4472 struct ring_buffer *rb)
4473 {
4474 struct ring_buffer *old_rb = NULL;
4475 unsigned long flags;
4476
4477 if (event->rb) {
4478 /*
4479 * Should be impossible, we set this when removing
4480 * event->rb_entry and wait/clear when adding event->rb_entry.
4481 */
4482 WARN_ON_ONCE(event->rcu_pending);
4483
4484 old_rb = event->rb;
4485 spin_lock_irqsave(&old_rb->event_lock, flags);
4486 list_del_rcu(&event->rb_entry);
4487 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4488
4489 event->rcu_batches = get_state_synchronize_rcu();
4490 event->rcu_pending = 1;
4491 }
4492
4493 if (rb) {
4494 if (event->rcu_pending) {
4495 cond_synchronize_rcu(event->rcu_batches);
4496 event->rcu_pending = 0;
4497 }
4498
4499 spin_lock_irqsave(&rb->event_lock, flags);
4500 list_add_rcu(&event->rb_entry, &rb->event_list);
4501 spin_unlock_irqrestore(&rb->event_lock, flags);
4502 }
4503
4504 rcu_assign_pointer(event->rb, rb);
4505
4506 if (old_rb) {
4507 ring_buffer_put(old_rb);
4508 /*
4509 * Since we detached before setting the new rb, so that we
4510 * could attach the new rb, we could have missed a wakeup.
4511 * Provide it now.
4512 */
4513 wake_up_all(&event->waitq);
4514 }
4515 }
4516
4517 static void ring_buffer_wakeup(struct perf_event *event)
4518 {
4519 struct ring_buffer *rb;
4520
4521 rcu_read_lock();
4522 rb = rcu_dereference(event->rb);
4523 if (rb) {
4524 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4525 wake_up_all(&event->waitq);
4526 }
4527 rcu_read_unlock();
4528 }
4529
4530 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4531 {
4532 struct ring_buffer *rb;
4533
4534 rcu_read_lock();
4535 rb = rcu_dereference(event->rb);
4536 if (rb) {
4537 if (!atomic_inc_not_zero(&rb->refcount))
4538 rb = NULL;
4539 }
4540 rcu_read_unlock();
4541
4542 return rb;
4543 }
4544
4545 void ring_buffer_put(struct ring_buffer *rb)
4546 {
4547 if (!atomic_dec_and_test(&rb->refcount))
4548 return;
4549
4550 WARN_ON_ONCE(!list_empty(&rb->event_list));
4551
4552 call_rcu(&rb->rcu_head, rb_free_rcu);
4553 }
4554
4555 static void perf_mmap_open(struct vm_area_struct *vma)
4556 {
4557 struct perf_event *event = vma->vm_file->private_data;
4558
4559 atomic_inc(&event->mmap_count);
4560 atomic_inc(&event->rb->mmap_count);
4561
4562 if (vma->vm_pgoff)
4563 atomic_inc(&event->rb->aux_mmap_count);
4564
4565 if (event->pmu->event_mapped)
4566 event->pmu->event_mapped(event);
4567 }
4568
4569 /*
4570 * A buffer can be mmap()ed multiple times; either directly through the same
4571 * event, or through other events by use of perf_event_set_output().
4572 *
4573 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4574 * the buffer here, where we still have a VM context. This means we need
4575 * to detach all events redirecting to us.
4576 */
4577 static void perf_mmap_close(struct vm_area_struct *vma)
4578 {
4579 struct perf_event *event = vma->vm_file->private_data;
4580
4581 struct ring_buffer *rb = ring_buffer_get(event);
4582 struct user_struct *mmap_user = rb->mmap_user;
4583 int mmap_locked = rb->mmap_locked;
4584 unsigned long size = perf_data_size(rb);
4585
4586 if (event->pmu->event_unmapped)
4587 event->pmu->event_unmapped(event);
4588
4589 /*
4590 * rb->aux_mmap_count will always drop before rb->mmap_count and
4591 * event->mmap_count, so it is ok to use event->mmap_mutex to
4592 * serialize with perf_mmap here.
4593 */
4594 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4595 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4596 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4597 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4598
4599 rb_free_aux(rb);
4600 mutex_unlock(&event->mmap_mutex);
4601 }
4602
4603 atomic_dec(&rb->mmap_count);
4604
4605 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4606 goto out_put;
4607
4608 ring_buffer_attach(event, NULL);
4609 mutex_unlock(&event->mmap_mutex);
4610
4611 /* If there's still other mmap()s of this buffer, we're done. */
4612 if (atomic_read(&rb->mmap_count))
4613 goto out_put;
4614
4615 /*
4616 * No other mmap()s, detach from all other events that might redirect
4617 * into the now unreachable buffer. Somewhat complicated by the
4618 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4619 */
4620 again:
4621 rcu_read_lock();
4622 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4623 if (!atomic_long_inc_not_zero(&event->refcount)) {
4624 /*
4625 * This event is en-route to free_event() which will
4626 * detach it and remove it from the list.
4627 */
4628 continue;
4629 }
4630 rcu_read_unlock();
4631
4632 mutex_lock(&event->mmap_mutex);
4633 /*
4634 * Check we didn't race with perf_event_set_output() which can
4635 * swizzle the rb from under us while we were waiting to
4636 * acquire mmap_mutex.
4637 *
4638 * If we find a different rb; ignore this event, a next
4639 * iteration will no longer find it on the list. We have to
4640 * still restart the iteration to make sure we're not now
4641 * iterating the wrong list.
4642 */
4643 if (event->rb == rb)
4644 ring_buffer_attach(event, NULL);
4645
4646 mutex_unlock(&event->mmap_mutex);
4647 put_event(event);
4648
4649 /*
4650 * Restart the iteration; either we're on the wrong list or
4651 * destroyed its integrity by doing a deletion.
4652 */
4653 goto again;
4654 }
4655 rcu_read_unlock();
4656
4657 /*
4658 * It could be there's still a few 0-ref events on the list; they'll
4659 * get cleaned up by free_event() -- they'll also still have their
4660 * ref on the rb and will free it whenever they are done with it.
4661 *
4662 * Aside from that, this buffer is 'fully' detached and unmapped,
4663 * undo the VM accounting.
4664 */
4665
4666 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4667 vma->vm_mm->pinned_vm -= mmap_locked;
4668 free_uid(mmap_user);
4669
4670 out_put:
4671 ring_buffer_put(rb); /* could be last */
4672 }
4673
4674 static const struct vm_operations_struct perf_mmap_vmops = {
4675 .open = perf_mmap_open,
4676 .close = perf_mmap_close, /* non mergable */
4677 .fault = perf_mmap_fault,
4678 .page_mkwrite = perf_mmap_fault,
4679 };
4680
4681 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4682 {
4683 struct perf_event *event = file->private_data;
4684 unsigned long user_locked, user_lock_limit;
4685 struct user_struct *user = current_user();
4686 unsigned long locked, lock_limit;
4687 struct ring_buffer *rb = NULL;
4688 unsigned long vma_size;
4689 unsigned long nr_pages;
4690 long user_extra = 0, extra = 0;
4691 int ret = 0, flags = 0;
4692
4693 /*
4694 * Don't allow mmap() of inherited per-task counters. This would
4695 * create a performance issue due to all children writing to the
4696 * same rb.
4697 */
4698 if (event->cpu == -1 && event->attr.inherit)
4699 return -EINVAL;
4700
4701 if (!(vma->vm_flags & VM_SHARED))
4702 return -EINVAL;
4703
4704 vma_size = vma->vm_end - vma->vm_start;
4705
4706 if (vma->vm_pgoff == 0) {
4707 nr_pages = (vma_size / PAGE_SIZE) - 1;
4708 } else {
4709 /*
4710 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4711 * mapped, all subsequent mappings should have the same size
4712 * and offset. Must be above the normal perf buffer.
4713 */
4714 u64 aux_offset, aux_size;
4715
4716 if (!event->rb)
4717 return -EINVAL;
4718
4719 nr_pages = vma_size / PAGE_SIZE;
4720
4721 mutex_lock(&event->mmap_mutex);
4722 ret = -EINVAL;
4723
4724 rb = event->rb;
4725 if (!rb)
4726 goto aux_unlock;
4727
4728 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4729 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4730
4731 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4732 goto aux_unlock;
4733
4734 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4735 goto aux_unlock;
4736
4737 /* already mapped with a different offset */
4738 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4739 goto aux_unlock;
4740
4741 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4742 goto aux_unlock;
4743
4744 /* already mapped with a different size */
4745 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4746 goto aux_unlock;
4747
4748 if (!is_power_of_2(nr_pages))
4749 goto aux_unlock;
4750
4751 if (!atomic_inc_not_zero(&rb->mmap_count))
4752 goto aux_unlock;
4753
4754 if (rb_has_aux(rb)) {
4755 atomic_inc(&rb->aux_mmap_count);
4756 ret = 0;
4757 goto unlock;
4758 }
4759
4760 atomic_set(&rb->aux_mmap_count, 1);
4761 user_extra = nr_pages;
4762
4763 goto accounting;
4764 }
4765
4766 /*
4767 * If we have rb pages ensure they're a power-of-two number, so we
4768 * can do bitmasks instead of modulo.
4769 */
4770 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4771 return -EINVAL;
4772
4773 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4774 return -EINVAL;
4775
4776 WARN_ON_ONCE(event->ctx->parent_ctx);
4777 again:
4778 mutex_lock(&event->mmap_mutex);
4779 if (event->rb) {
4780 if (event->rb->nr_pages != nr_pages) {
4781 ret = -EINVAL;
4782 goto unlock;
4783 }
4784
4785 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4786 /*
4787 * Raced against perf_mmap_close() through
4788 * perf_event_set_output(). Try again, hope for better
4789 * luck.
4790 */
4791 mutex_unlock(&event->mmap_mutex);
4792 goto again;
4793 }
4794
4795 goto unlock;
4796 }
4797
4798 user_extra = nr_pages + 1;
4799
4800 accounting:
4801 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4802
4803 /*
4804 * Increase the limit linearly with more CPUs:
4805 */
4806 user_lock_limit *= num_online_cpus();
4807
4808 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4809
4810 if (user_locked > user_lock_limit)
4811 extra = user_locked - user_lock_limit;
4812
4813 lock_limit = rlimit(RLIMIT_MEMLOCK);
4814 lock_limit >>= PAGE_SHIFT;
4815 locked = vma->vm_mm->pinned_vm + extra;
4816
4817 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4818 !capable(CAP_IPC_LOCK)) {
4819 ret = -EPERM;
4820 goto unlock;
4821 }
4822
4823 WARN_ON(!rb && event->rb);
4824
4825 if (vma->vm_flags & VM_WRITE)
4826 flags |= RING_BUFFER_WRITABLE;
4827
4828 if (!rb) {
4829 rb = rb_alloc(nr_pages,
4830 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4831 event->cpu, flags);
4832
4833 if (!rb) {
4834 ret = -ENOMEM;
4835 goto unlock;
4836 }
4837
4838 atomic_set(&rb->mmap_count, 1);
4839 rb->mmap_user = get_current_user();
4840 rb->mmap_locked = extra;
4841
4842 ring_buffer_attach(event, rb);
4843
4844 perf_event_init_userpage(event);
4845 perf_event_update_userpage(event);
4846 } else {
4847 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4848 event->attr.aux_watermark, flags);
4849 if (!ret)
4850 rb->aux_mmap_locked = extra;
4851 }
4852
4853 unlock:
4854 if (!ret) {
4855 atomic_long_add(user_extra, &user->locked_vm);
4856 vma->vm_mm->pinned_vm += extra;
4857
4858 atomic_inc(&event->mmap_count);
4859 } else if (rb) {
4860 atomic_dec(&rb->mmap_count);
4861 }
4862 aux_unlock:
4863 mutex_unlock(&event->mmap_mutex);
4864
4865 /*
4866 * Since pinned accounting is per vm we cannot allow fork() to copy our
4867 * vma.
4868 */
4869 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4870 vma->vm_ops = &perf_mmap_vmops;
4871
4872 if (event->pmu->event_mapped)
4873 event->pmu->event_mapped(event);
4874
4875 return ret;
4876 }
4877
4878 static int perf_fasync(int fd, struct file *filp, int on)
4879 {
4880 struct inode *inode = file_inode(filp);
4881 struct perf_event *event = filp->private_data;
4882 int retval;
4883
4884 mutex_lock(&inode->i_mutex);
4885 retval = fasync_helper(fd, filp, on, &event->fasync);
4886 mutex_unlock(&inode->i_mutex);
4887
4888 if (retval < 0)
4889 return retval;
4890
4891 return 0;
4892 }
4893
4894 static const struct file_operations perf_fops = {
4895 .llseek = no_llseek,
4896 .release = perf_release,
4897 .read = perf_read,
4898 .poll = perf_poll,
4899 .unlocked_ioctl = perf_ioctl,
4900 .compat_ioctl = perf_compat_ioctl,
4901 .mmap = perf_mmap,
4902 .fasync = perf_fasync,
4903 };
4904
4905 /*
4906 * Perf event wakeup
4907 *
4908 * If there's data, ensure we set the poll() state and publish everything
4909 * to user-space before waking everybody up.
4910 */
4911
4912 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4913 {
4914 /* only the parent has fasync state */
4915 if (event->parent)
4916 event = event->parent;
4917 return &event->fasync;
4918 }
4919
4920 void perf_event_wakeup(struct perf_event *event)
4921 {
4922 ring_buffer_wakeup(event);
4923
4924 if (event->pending_kill) {
4925 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4926 event->pending_kill = 0;
4927 }
4928 }
4929
4930 static void perf_pending_event(struct irq_work *entry)
4931 {
4932 struct perf_event *event = container_of(entry,
4933 struct perf_event, pending);
4934 int rctx;
4935
4936 rctx = perf_swevent_get_recursion_context();
4937 /*
4938 * If we 'fail' here, that's OK, it means recursion is already disabled
4939 * and we won't recurse 'further'.
4940 */
4941
4942 if (event->pending_disable) {
4943 event->pending_disable = 0;
4944 __perf_event_disable(event);
4945 }
4946
4947 if (event->pending_wakeup) {
4948 event->pending_wakeup = 0;
4949 perf_event_wakeup(event);
4950 }
4951
4952 if (rctx >= 0)
4953 perf_swevent_put_recursion_context(rctx);
4954 }
4955
4956 /*
4957 * We assume there is only KVM supporting the callbacks.
4958 * Later on, we might change it to a list if there is
4959 * another virtualization implementation supporting the callbacks.
4960 */
4961 struct perf_guest_info_callbacks *perf_guest_cbs;
4962
4963 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4964 {
4965 perf_guest_cbs = cbs;
4966 return 0;
4967 }
4968 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4969
4970 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4971 {
4972 perf_guest_cbs = NULL;
4973 return 0;
4974 }
4975 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4976
4977 static void
4978 perf_output_sample_regs(struct perf_output_handle *handle,
4979 struct pt_regs *regs, u64 mask)
4980 {
4981 int bit;
4982
4983 for_each_set_bit(bit, (const unsigned long *) &mask,
4984 sizeof(mask) * BITS_PER_BYTE) {
4985 u64 val;
4986
4987 val = perf_reg_value(regs, bit);
4988 perf_output_put(handle, val);
4989 }
4990 }
4991
4992 static void perf_sample_regs_user(struct perf_regs *regs_user,
4993 struct pt_regs *regs,
4994 struct pt_regs *regs_user_copy)
4995 {
4996 if (user_mode(regs)) {
4997 regs_user->abi = perf_reg_abi(current);
4998 regs_user->regs = regs;
4999 } else if (current->mm) {
5000 perf_get_regs_user(regs_user, regs, regs_user_copy);
5001 } else {
5002 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5003 regs_user->regs = NULL;
5004 }
5005 }
5006
5007 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5008 struct pt_regs *regs)
5009 {
5010 regs_intr->regs = regs;
5011 regs_intr->abi = perf_reg_abi(current);
5012 }
5013
5014
5015 /*
5016 * Get remaining task size from user stack pointer.
5017 *
5018 * It'd be better to take stack vma map and limit this more
5019 * precisly, but there's no way to get it safely under interrupt,
5020 * so using TASK_SIZE as limit.
5021 */
5022 static u64 perf_ustack_task_size(struct pt_regs *regs)
5023 {
5024 unsigned long addr = perf_user_stack_pointer(regs);
5025
5026 if (!addr || addr >= TASK_SIZE)
5027 return 0;
5028
5029 return TASK_SIZE - addr;
5030 }
5031
5032 static u16
5033 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5034 struct pt_regs *regs)
5035 {
5036 u64 task_size;
5037
5038 /* No regs, no stack pointer, no dump. */
5039 if (!regs)
5040 return 0;
5041
5042 /*
5043 * Check if we fit in with the requested stack size into the:
5044 * - TASK_SIZE
5045 * If we don't, we limit the size to the TASK_SIZE.
5046 *
5047 * - remaining sample size
5048 * If we don't, we customize the stack size to
5049 * fit in to the remaining sample size.
5050 */
5051
5052 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5053 stack_size = min(stack_size, (u16) task_size);
5054
5055 /* Current header size plus static size and dynamic size. */
5056 header_size += 2 * sizeof(u64);
5057
5058 /* Do we fit in with the current stack dump size? */
5059 if ((u16) (header_size + stack_size) < header_size) {
5060 /*
5061 * If we overflow the maximum size for the sample,
5062 * we customize the stack dump size to fit in.
5063 */
5064 stack_size = USHRT_MAX - header_size - sizeof(u64);
5065 stack_size = round_up(stack_size, sizeof(u64));
5066 }
5067
5068 return stack_size;
5069 }
5070
5071 static void
5072 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5073 struct pt_regs *regs)
5074 {
5075 /* Case of a kernel thread, nothing to dump */
5076 if (!regs) {
5077 u64 size = 0;
5078 perf_output_put(handle, size);
5079 } else {
5080 unsigned long sp;
5081 unsigned int rem;
5082 u64 dyn_size;
5083
5084 /*
5085 * We dump:
5086 * static size
5087 * - the size requested by user or the best one we can fit
5088 * in to the sample max size
5089 * data
5090 * - user stack dump data
5091 * dynamic size
5092 * - the actual dumped size
5093 */
5094
5095 /* Static size. */
5096 perf_output_put(handle, dump_size);
5097
5098 /* Data. */
5099 sp = perf_user_stack_pointer(regs);
5100 rem = __output_copy_user(handle, (void *) sp, dump_size);
5101 dyn_size = dump_size - rem;
5102
5103 perf_output_skip(handle, rem);
5104
5105 /* Dynamic size. */
5106 perf_output_put(handle, dyn_size);
5107 }
5108 }
5109
5110 static void __perf_event_header__init_id(struct perf_event_header *header,
5111 struct perf_sample_data *data,
5112 struct perf_event *event)
5113 {
5114 u64 sample_type = event->attr.sample_type;
5115
5116 data->type = sample_type;
5117 header->size += event->id_header_size;
5118
5119 if (sample_type & PERF_SAMPLE_TID) {
5120 /* namespace issues */
5121 data->tid_entry.pid = perf_event_pid(event, current);
5122 data->tid_entry.tid = perf_event_tid(event, current);
5123 }
5124
5125 if (sample_type & PERF_SAMPLE_TIME)
5126 data->time = perf_event_clock(event);
5127
5128 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5129 data->id = primary_event_id(event);
5130
5131 if (sample_type & PERF_SAMPLE_STREAM_ID)
5132 data->stream_id = event->id;
5133
5134 if (sample_type & PERF_SAMPLE_CPU) {
5135 data->cpu_entry.cpu = raw_smp_processor_id();
5136 data->cpu_entry.reserved = 0;
5137 }
5138 }
5139
5140 void perf_event_header__init_id(struct perf_event_header *header,
5141 struct perf_sample_data *data,
5142 struct perf_event *event)
5143 {
5144 if (event->attr.sample_id_all)
5145 __perf_event_header__init_id(header, data, event);
5146 }
5147
5148 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5149 struct perf_sample_data *data)
5150 {
5151 u64 sample_type = data->type;
5152
5153 if (sample_type & PERF_SAMPLE_TID)
5154 perf_output_put(handle, data->tid_entry);
5155
5156 if (sample_type & PERF_SAMPLE_TIME)
5157 perf_output_put(handle, data->time);
5158
5159 if (sample_type & PERF_SAMPLE_ID)
5160 perf_output_put(handle, data->id);
5161
5162 if (sample_type & PERF_SAMPLE_STREAM_ID)
5163 perf_output_put(handle, data->stream_id);
5164
5165 if (sample_type & PERF_SAMPLE_CPU)
5166 perf_output_put(handle, data->cpu_entry);
5167
5168 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5169 perf_output_put(handle, data->id);
5170 }
5171
5172 void perf_event__output_id_sample(struct perf_event *event,
5173 struct perf_output_handle *handle,
5174 struct perf_sample_data *sample)
5175 {
5176 if (event->attr.sample_id_all)
5177 __perf_event__output_id_sample(handle, sample);
5178 }
5179
5180 static void perf_output_read_one(struct perf_output_handle *handle,
5181 struct perf_event *event,
5182 u64 enabled, u64 running)
5183 {
5184 u64 read_format = event->attr.read_format;
5185 u64 values[4];
5186 int n = 0;
5187
5188 values[n++] = perf_event_count(event);
5189 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5190 values[n++] = enabled +
5191 atomic64_read(&event->child_total_time_enabled);
5192 }
5193 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5194 values[n++] = running +
5195 atomic64_read(&event->child_total_time_running);
5196 }
5197 if (read_format & PERF_FORMAT_ID)
5198 values[n++] = primary_event_id(event);
5199
5200 __output_copy(handle, values, n * sizeof(u64));
5201 }
5202
5203 /*
5204 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5205 */
5206 static void perf_output_read_group(struct perf_output_handle *handle,
5207 struct perf_event *event,
5208 u64 enabled, u64 running)
5209 {
5210 struct perf_event *leader = event->group_leader, *sub;
5211 u64 read_format = event->attr.read_format;
5212 u64 values[5];
5213 int n = 0;
5214
5215 values[n++] = 1 + leader->nr_siblings;
5216
5217 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5218 values[n++] = enabled;
5219
5220 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5221 values[n++] = running;
5222
5223 if (leader != event)
5224 leader->pmu->read(leader);
5225
5226 values[n++] = perf_event_count(leader);
5227 if (read_format & PERF_FORMAT_ID)
5228 values[n++] = primary_event_id(leader);
5229
5230 __output_copy(handle, values, n * sizeof(u64));
5231
5232 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5233 n = 0;
5234
5235 if ((sub != event) &&
5236 (sub->state == PERF_EVENT_STATE_ACTIVE))
5237 sub->pmu->read(sub);
5238
5239 values[n++] = perf_event_count(sub);
5240 if (read_format & PERF_FORMAT_ID)
5241 values[n++] = primary_event_id(sub);
5242
5243 __output_copy(handle, values, n * sizeof(u64));
5244 }
5245 }
5246
5247 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5248 PERF_FORMAT_TOTAL_TIME_RUNNING)
5249
5250 static void perf_output_read(struct perf_output_handle *handle,
5251 struct perf_event *event)
5252 {
5253 u64 enabled = 0, running = 0, now;
5254 u64 read_format = event->attr.read_format;
5255
5256 /*
5257 * compute total_time_enabled, total_time_running
5258 * based on snapshot values taken when the event
5259 * was last scheduled in.
5260 *
5261 * we cannot simply called update_context_time()
5262 * because of locking issue as we are called in
5263 * NMI context
5264 */
5265 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5266 calc_timer_values(event, &now, &enabled, &running);
5267
5268 if (event->attr.read_format & PERF_FORMAT_GROUP)
5269 perf_output_read_group(handle, event, enabled, running);
5270 else
5271 perf_output_read_one(handle, event, enabled, running);
5272 }
5273
5274 void perf_output_sample(struct perf_output_handle *handle,
5275 struct perf_event_header *header,
5276 struct perf_sample_data *data,
5277 struct perf_event *event)
5278 {
5279 u64 sample_type = data->type;
5280
5281 perf_output_put(handle, *header);
5282
5283 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5284 perf_output_put(handle, data->id);
5285
5286 if (sample_type & PERF_SAMPLE_IP)
5287 perf_output_put(handle, data->ip);
5288
5289 if (sample_type & PERF_SAMPLE_TID)
5290 perf_output_put(handle, data->tid_entry);
5291
5292 if (sample_type & PERF_SAMPLE_TIME)
5293 perf_output_put(handle, data->time);
5294
5295 if (sample_type & PERF_SAMPLE_ADDR)
5296 perf_output_put(handle, data->addr);
5297
5298 if (sample_type & PERF_SAMPLE_ID)
5299 perf_output_put(handle, data->id);
5300
5301 if (sample_type & PERF_SAMPLE_STREAM_ID)
5302 perf_output_put(handle, data->stream_id);
5303
5304 if (sample_type & PERF_SAMPLE_CPU)
5305 perf_output_put(handle, data->cpu_entry);
5306
5307 if (sample_type & PERF_SAMPLE_PERIOD)
5308 perf_output_put(handle, data->period);
5309
5310 if (sample_type & PERF_SAMPLE_READ)
5311 perf_output_read(handle, event);
5312
5313 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5314 if (data->callchain) {
5315 int size = 1;
5316
5317 if (data->callchain)
5318 size += data->callchain->nr;
5319
5320 size *= sizeof(u64);
5321
5322 __output_copy(handle, data->callchain, size);
5323 } else {
5324 u64 nr = 0;
5325 perf_output_put(handle, nr);
5326 }
5327 }
5328
5329 if (sample_type & PERF_SAMPLE_RAW) {
5330 if (data->raw) {
5331 u32 raw_size = data->raw->size;
5332 u32 real_size = round_up(raw_size + sizeof(u32),
5333 sizeof(u64)) - sizeof(u32);
5334 u64 zero = 0;
5335
5336 perf_output_put(handle, real_size);
5337 __output_copy(handle, data->raw->data, raw_size);
5338 if (real_size - raw_size)
5339 __output_copy(handle, &zero, real_size - raw_size);
5340 } else {
5341 struct {
5342 u32 size;
5343 u32 data;
5344 } raw = {
5345 .size = sizeof(u32),
5346 .data = 0,
5347 };
5348 perf_output_put(handle, raw);
5349 }
5350 }
5351
5352 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5353 if (data->br_stack) {
5354 size_t size;
5355
5356 size = data->br_stack->nr
5357 * sizeof(struct perf_branch_entry);
5358
5359 perf_output_put(handle, data->br_stack->nr);
5360 perf_output_copy(handle, data->br_stack->entries, size);
5361 } else {
5362 /*
5363 * we always store at least the value of nr
5364 */
5365 u64 nr = 0;
5366 perf_output_put(handle, nr);
5367 }
5368 }
5369
5370 if (sample_type & PERF_SAMPLE_REGS_USER) {
5371 u64 abi = data->regs_user.abi;
5372
5373 /*
5374 * If there are no regs to dump, notice it through
5375 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5376 */
5377 perf_output_put(handle, abi);
5378
5379 if (abi) {
5380 u64 mask = event->attr.sample_regs_user;
5381 perf_output_sample_regs(handle,
5382 data->regs_user.regs,
5383 mask);
5384 }
5385 }
5386
5387 if (sample_type & PERF_SAMPLE_STACK_USER) {
5388 perf_output_sample_ustack(handle,
5389 data->stack_user_size,
5390 data->regs_user.regs);
5391 }
5392
5393 if (sample_type & PERF_SAMPLE_WEIGHT)
5394 perf_output_put(handle, data->weight);
5395
5396 if (sample_type & PERF_SAMPLE_DATA_SRC)
5397 perf_output_put(handle, data->data_src.val);
5398
5399 if (sample_type & PERF_SAMPLE_TRANSACTION)
5400 perf_output_put(handle, data->txn);
5401
5402 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5403 u64 abi = data->regs_intr.abi;
5404 /*
5405 * If there are no regs to dump, notice it through
5406 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5407 */
5408 perf_output_put(handle, abi);
5409
5410 if (abi) {
5411 u64 mask = event->attr.sample_regs_intr;
5412
5413 perf_output_sample_regs(handle,
5414 data->regs_intr.regs,
5415 mask);
5416 }
5417 }
5418
5419 if (!event->attr.watermark) {
5420 int wakeup_events = event->attr.wakeup_events;
5421
5422 if (wakeup_events) {
5423 struct ring_buffer *rb = handle->rb;
5424 int events = local_inc_return(&rb->events);
5425
5426 if (events >= wakeup_events) {
5427 local_sub(wakeup_events, &rb->events);
5428 local_inc(&rb->wakeup);
5429 }
5430 }
5431 }
5432 }
5433
5434 void perf_prepare_sample(struct perf_event_header *header,
5435 struct perf_sample_data *data,
5436 struct perf_event *event,
5437 struct pt_regs *regs)
5438 {
5439 u64 sample_type = event->attr.sample_type;
5440
5441 header->type = PERF_RECORD_SAMPLE;
5442 header->size = sizeof(*header) + event->header_size;
5443
5444 header->misc = 0;
5445 header->misc |= perf_misc_flags(regs);
5446
5447 __perf_event_header__init_id(header, data, event);
5448
5449 if (sample_type & PERF_SAMPLE_IP)
5450 data->ip = perf_instruction_pointer(regs);
5451
5452 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5453 int size = 1;
5454
5455 data->callchain = perf_callchain(event, regs);
5456
5457 if (data->callchain)
5458 size += data->callchain->nr;
5459
5460 header->size += size * sizeof(u64);
5461 }
5462
5463 if (sample_type & PERF_SAMPLE_RAW) {
5464 int size = sizeof(u32);
5465
5466 if (data->raw)
5467 size += data->raw->size;
5468 else
5469 size += sizeof(u32);
5470
5471 header->size += round_up(size, sizeof(u64));
5472 }
5473
5474 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5475 int size = sizeof(u64); /* nr */
5476 if (data->br_stack) {
5477 size += data->br_stack->nr
5478 * sizeof(struct perf_branch_entry);
5479 }
5480 header->size += size;
5481 }
5482
5483 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5484 perf_sample_regs_user(&data->regs_user, regs,
5485 &data->regs_user_copy);
5486
5487 if (sample_type & PERF_SAMPLE_REGS_USER) {
5488 /* regs dump ABI info */
5489 int size = sizeof(u64);
5490
5491 if (data->regs_user.regs) {
5492 u64 mask = event->attr.sample_regs_user;
5493 size += hweight64(mask) * sizeof(u64);
5494 }
5495
5496 header->size += size;
5497 }
5498
5499 if (sample_type & PERF_SAMPLE_STACK_USER) {
5500 /*
5501 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5502 * processed as the last one or have additional check added
5503 * in case new sample type is added, because we could eat
5504 * up the rest of the sample size.
5505 */
5506 u16 stack_size = event->attr.sample_stack_user;
5507 u16 size = sizeof(u64);
5508
5509 stack_size = perf_sample_ustack_size(stack_size, header->size,
5510 data->regs_user.regs);
5511
5512 /*
5513 * If there is something to dump, add space for the dump
5514 * itself and for the field that tells the dynamic size,
5515 * which is how many have been actually dumped.
5516 */
5517 if (stack_size)
5518 size += sizeof(u64) + stack_size;
5519
5520 data->stack_user_size = stack_size;
5521 header->size += size;
5522 }
5523
5524 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5525 /* regs dump ABI info */
5526 int size = sizeof(u64);
5527
5528 perf_sample_regs_intr(&data->regs_intr, regs);
5529
5530 if (data->regs_intr.regs) {
5531 u64 mask = event->attr.sample_regs_intr;
5532
5533 size += hweight64(mask) * sizeof(u64);
5534 }
5535
5536 header->size += size;
5537 }
5538 }
5539
5540 void perf_event_output(struct perf_event *event,
5541 struct perf_sample_data *data,
5542 struct pt_regs *regs)
5543 {
5544 struct perf_output_handle handle;
5545 struct perf_event_header header;
5546
5547 /* protect the callchain buffers */
5548 rcu_read_lock();
5549
5550 perf_prepare_sample(&header, data, event, regs);
5551
5552 if (perf_output_begin(&handle, event, header.size))
5553 goto exit;
5554
5555 perf_output_sample(&handle, &header, data, event);
5556
5557 perf_output_end(&handle);
5558
5559 exit:
5560 rcu_read_unlock();
5561 }
5562
5563 /*
5564 * read event_id
5565 */
5566
5567 struct perf_read_event {
5568 struct perf_event_header header;
5569
5570 u32 pid;
5571 u32 tid;
5572 };
5573
5574 static void
5575 perf_event_read_event(struct perf_event *event,
5576 struct task_struct *task)
5577 {
5578 struct perf_output_handle handle;
5579 struct perf_sample_data sample;
5580 struct perf_read_event read_event = {
5581 .header = {
5582 .type = PERF_RECORD_READ,
5583 .misc = 0,
5584 .size = sizeof(read_event) + event->read_size,
5585 },
5586 .pid = perf_event_pid(event, task),
5587 .tid = perf_event_tid(event, task),
5588 };
5589 int ret;
5590
5591 perf_event_header__init_id(&read_event.header, &sample, event);
5592 ret = perf_output_begin(&handle, event, read_event.header.size);
5593 if (ret)
5594 return;
5595
5596 perf_output_put(&handle, read_event);
5597 perf_output_read(&handle, event);
5598 perf_event__output_id_sample(event, &handle, &sample);
5599
5600 perf_output_end(&handle);
5601 }
5602
5603 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5604
5605 static void
5606 perf_event_aux_ctx(struct perf_event_context *ctx,
5607 perf_event_aux_output_cb output,
5608 void *data)
5609 {
5610 struct perf_event *event;
5611
5612 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5613 if (event->state < PERF_EVENT_STATE_INACTIVE)
5614 continue;
5615 if (!event_filter_match(event))
5616 continue;
5617 output(event, data);
5618 }
5619 }
5620
5621 static void
5622 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5623 struct perf_event_context *task_ctx)
5624 {
5625 rcu_read_lock();
5626 preempt_disable();
5627 perf_event_aux_ctx(task_ctx, output, data);
5628 preempt_enable();
5629 rcu_read_unlock();
5630 }
5631
5632 static void
5633 perf_event_aux(perf_event_aux_output_cb output, void *data,
5634 struct perf_event_context *task_ctx)
5635 {
5636 struct perf_cpu_context *cpuctx;
5637 struct perf_event_context *ctx;
5638 struct pmu *pmu;
5639 int ctxn;
5640
5641 /*
5642 * If we have task_ctx != NULL we only notify
5643 * the task context itself. The task_ctx is set
5644 * only for EXIT events before releasing task
5645 * context.
5646 */
5647 if (task_ctx) {
5648 perf_event_aux_task_ctx(output, data, task_ctx);
5649 return;
5650 }
5651
5652 rcu_read_lock();
5653 list_for_each_entry_rcu(pmu, &pmus, entry) {
5654 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5655 if (cpuctx->unique_pmu != pmu)
5656 goto next;
5657 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5658 ctxn = pmu->task_ctx_nr;
5659 if (ctxn < 0)
5660 goto next;
5661 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5662 if (ctx)
5663 perf_event_aux_ctx(ctx, output, data);
5664 next:
5665 put_cpu_ptr(pmu->pmu_cpu_context);
5666 }
5667 rcu_read_unlock();
5668 }
5669
5670 /*
5671 * task tracking -- fork/exit
5672 *
5673 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5674 */
5675
5676 struct perf_task_event {
5677 struct task_struct *task;
5678 struct perf_event_context *task_ctx;
5679
5680 struct {
5681 struct perf_event_header header;
5682
5683 u32 pid;
5684 u32 ppid;
5685 u32 tid;
5686 u32 ptid;
5687 u64 time;
5688 } event_id;
5689 };
5690
5691 static int perf_event_task_match(struct perf_event *event)
5692 {
5693 return event->attr.comm || event->attr.mmap ||
5694 event->attr.mmap2 || event->attr.mmap_data ||
5695 event->attr.task;
5696 }
5697
5698 static void perf_event_task_output(struct perf_event *event,
5699 void *data)
5700 {
5701 struct perf_task_event *task_event = data;
5702 struct perf_output_handle handle;
5703 struct perf_sample_data sample;
5704 struct task_struct *task = task_event->task;
5705 int ret, size = task_event->event_id.header.size;
5706
5707 if (!perf_event_task_match(event))
5708 return;
5709
5710 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5711
5712 ret = perf_output_begin(&handle, event,
5713 task_event->event_id.header.size);
5714 if (ret)
5715 goto out;
5716
5717 task_event->event_id.pid = perf_event_pid(event, task);
5718 task_event->event_id.ppid = perf_event_pid(event, current);
5719
5720 task_event->event_id.tid = perf_event_tid(event, task);
5721 task_event->event_id.ptid = perf_event_tid(event, current);
5722
5723 task_event->event_id.time = perf_event_clock(event);
5724
5725 perf_output_put(&handle, task_event->event_id);
5726
5727 perf_event__output_id_sample(event, &handle, &sample);
5728
5729 perf_output_end(&handle);
5730 out:
5731 task_event->event_id.header.size = size;
5732 }
5733
5734 static void perf_event_task(struct task_struct *task,
5735 struct perf_event_context *task_ctx,
5736 int new)
5737 {
5738 struct perf_task_event task_event;
5739
5740 if (!atomic_read(&nr_comm_events) &&
5741 !atomic_read(&nr_mmap_events) &&
5742 !atomic_read(&nr_task_events))
5743 return;
5744
5745 task_event = (struct perf_task_event){
5746 .task = task,
5747 .task_ctx = task_ctx,
5748 .event_id = {
5749 .header = {
5750 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5751 .misc = 0,
5752 .size = sizeof(task_event.event_id),
5753 },
5754 /* .pid */
5755 /* .ppid */
5756 /* .tid */
5757 /* .ptid */
5758 /* .time */
5759 },
5760 };
5761
5762 perf_event_aux(perf_event_task_output,
5763 &task_event,
5764 task_ctx);
5765 }
5766
5767 void perf_event_fork(struct task_struct *task)
5768 {
5769 perf_event_task(task, NULL, 1);
5770 }
5771
5772 /*
5773 * comm tracking
5774 */
5775
5776 struct perf_comm_event {
5777 struct task_struct *task;
5778 char *comm;
5779 int comm_size;
5780
5781 struct {
5782 struct perf_event_header header;
5783
5784 u32 pid;
5785 u32 tid;
5786 } event_id;
5787 };
5788
5789 static int perf_event_comm_match(struct perf_event *event)
5790 {
5791 return event->attr.comm;
5792 }
5793
5794 static void perf_event_comm_output(struct perf_event *event,
5795 void *data)
5796 {
5797 struct perf_comm_event *comm_event = data;
5798 struct perf_output_handle handle;
5799 struct perf_sample_data sample;
5800 int size = comm_event->event_id.header.size;
5801 int ret;
5802
5803 if (!perf_event_comm_match(event))
5804 return;
5805
5806 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5807 ret = perf_output_begin(&handle, event,
5808 comm_event->event_id.header.size);
5809
5810 if (ret)
5811 goto out;
5812
5813 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5814 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5815
5816 perf_output_put(&handle, comm_event->event_id);
5817 __output_copy(&handle, comm_event->comm,
5818 comm_event->comm_size);
5819
5820 perf_event__output_id_sample(event, &handle, &sample);
5821
5822 perf_output_end(&handle);
5823 out:
5824 comm_event->event_id.header.size = size;
5825 }
5826
5827 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5828 {
5829 char comm[TASK_COMM_LEN];
5830 unsigned int size;
5831
5832 memset(comm, 0, sizeof(comm));
5833 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5834 size = ALIGN(strlen(comm)+1, sizeof(u64));
5835
5836 comm_event->comm = comm;
5837 comm_event->comm_size = size;
5838
5839 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5840
5841 perf_event_aux(perf_event_comm_output,
5842 comm_event,
5843 NULL);
5844 }
5845
5846 void perf_event_comm(struct task_struct *task, bool exec)
5847 {
5848 struct perf_comm_event comm_event;
5849
5850 if (!atomic_read(&nr_comm_events))
5851 return;
5852
5853 comm_event = (struct perf_comm_event){
5854 .task = task,
5855 /* .comm */
5856 /* .comm_size */
5857 .event_id = {
5858 .header = {
5859 .type = PERF_RECORD_COMM,
5860 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5861 /* .size */
5862 },
5863 /* .pid */
5864 /* .tid */
5865 },
5866 };
5867
5868 perf_event_comm_event(&comm_event);
5869 }
5870
5871 /*
5872 * mmap tracking
5873 */
5874
5875 struct perf_mmap_event {
5876 struct vm_area_struct *vma;
5877
5878 const char *file_name;
5879 int file_size;
5880 int maj, min;
5881 u64 ino;
5882 u64 ino_generation;
5883 u32 prot, flags;
5884
5885 struct {
5886 struct perf_event_header header;
5887
5888 u32 pid;
5889 u32 tid;
5890 u64 start;
5891 u64 len;
5892 u64 pgoff;
5893 } event_id;
5894 };
5895
5896 static int perf_event_mmap_match(struct perf_event *event,
5897 void *data)
5898 {
5899 struct perf_mmap_event *mmap_event = data;
5900 struct vm_area_struct *vma = mmap_event->vma;
5901 int executable = vma->vm_flags & VM_EXEC;
5902
5903 return (!executable && event->attr.mmap_data) ||
5904 (executable && (event->attr.mmap || event->attr.mmap2));
5905 }
5906
5907 static void perf_event_mmap_output(struct perf_event *event,
5908 void *data)
5909 {
5910 struct perf_mmap_event *mmap_event = data;
5911 struct perf_output_handle handle;
5912 struct perf_sample_data sample;
5913 int size = mmap_event->event_id.header.size;
5914 int ret;
5915
5916 if (!perf_event_mmap_match(event, data))
5917 return;
5918
5919 if (event->attr.mmap2) {
5920 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5921 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5922 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5923 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5924 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5925 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5926 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5927 }
5928
5929 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5930 ret = perf_output_begin(&handle, event,
5931 mmap_event->event_id.header.size);
5932 if (ret)
5933 goto out;
5934
5935 mmap_event->event_id.pid = perf_event_pid(event, current);
5936 mmap_event->event_id.tid = perf_event_tid(event, current);
5937
5938 perf_output_put(&handle, mmap_event->event_id);
5939
5940 if (event->attr.mmap2) {
5941 perf_output_put(&handle, mmap_event->maj);
5942 perf_output_put(&handle, mmap_event->min);
5943 perf_output_put(&handle, mmap_event->ino);
5944 perf_output_put(&handle, mmap_event->ino_generation);
5945 perf_output_put(&handle, mmap_event->prot);
5946 perf_output_put(&handle, mmap_event->flags);
5947 }
5948
5949 __output_copy(&handle, mmap_event->file_name,
5950 mmap_event->file_size);
5951
5952 perf_event__output_id_sample(event, &handle, &sample);
5953
5954 perf_output_end(&handle);
5955 out:
5956 mmap_event->event_id.header.size = size;
5957 }
5958
5959 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5960 {
5961 struct vm_area_struct *vma = mmap_event->vma;
5962 struct file *file = vma->vm_file;
5963 int maj = 0, min = 0;
5964 u64 ino = 0, gen = 0;
5965 u32 prot = 0, flags = 0;
5966 unsigned int size;
5967 char tmp[16];
5968 char *buf = NULL;
5969 char *name;
5970
5971 if (file) {
5972 struct inode *inode;
5973 dev_t dev;
5974
5975 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5976 if (!buf) {
5977 name = "//enomem";
5978 goto cpy_name;
5979 }
5980 /*
5981 * d_path() works from the end of the rb backwards, so we
5982 * need to add enough zero bytes after the string to handle
5983 * the 64bit alignment we do later.
5984 */
5985 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5986 if (IS_ERR(name)) {
5987 name = "//toolong";
5988 goto cpy_name;
5989 }
5990 inode = file_inode(vma->vm_file);
5991 dev = inode->i_sb->s_dev;
5992 ino = inode->i_ino;
5993 gen = inode->i_generation;
5994 maj = MAJOR(dev);
5995 min = MINOR(dev);
5996
5997 if (vma->vm_flags & VM_READ)
5998 prot |= PROT_READ;
5999 if (vma->vm_flags & VM_WRITE)
6000 prot |= PROT_WRITE;
6001 if (vma->vm_flags & VM_EXEC)
6002 prot |= PROT_EXEC;
6003
6004 if (vma->vm_flags & VM_MAYSHARE)
6005 flags = MAP_SHARED;
6006 else
6007 flags = MAP_PRIVATE;
6008
6009 if (vma->vm_flags & VM_DENYWRITE)
6010 flags |= MAP_DENYWRITE;
6011 if (vma->vm_flags & VM_MAYEXEC)
6012 flags |= MAP_EXECUTABLE;
6013 if (vma->vm_flags & VM_LOCKED)
6014 flags |= MAP_LOCKED;
6015 if (vma->vm_flags & VM_HUGETLB)
6016 flags |= MAP_HUGETLB;
6017
6018 goto got_name;
6019 } else {
6020 if (vma->vm_ops && vma->vm_ops->name) {
6021 name = (char *) vma->vm_ops->name(vma);
6022 if (name)
6023 goto cpy_name;
6024 }
6025
6026 name = (char *)arch_vma_name(vma);
6027 if (name)
6028 goto cpy_name;
6029
6030 if (vma->vm_start <= vma->vm_mm->start_brk &&
6031 vma->vm_end >= vma->vm_mm->brk) {
6032 name = "[heap]";
6033 goto cpy_name;
6034 }
6035 if (vma->vm_start <= vma->vm_mm->start_stack &&
6036 vma->vm_end >= vma->vm_mm->start_stack) {
6037 name = "[stack]";
6038 goto cpy_name;
6039 }
6040
6041 name = "//anon";
6042 goto cpy_name;
6043 }
6044
6045 cpy_name:
6046 strlcpy(tmp, name, sizeof(tmp));
6047 name = tmp;
6048 got_name:
6049 /*
6050 * Since our buffer works in 8 byte units we need to align our string
6051 * size to a multiple of 8. However, we must guarantee the tail end is
6052 * zero'd out to avoid leaking random bits to userspace.
6053 */
6054 size = strlen(name)+1;
6055 while (!IS_ALIGNED(size, sizeof(u64)))
6056 name[size++] = '\0';
6057
6058 mmap_event->file_name = name;
6059 mmap_event->file_size = size;
6060 mmap_event->maj = maj;
6061 mmap_event->min = min;
6062 mmap_event->ino = ino;
6063 mmap_event->ino_generation = gen;
6064 mmap_event->prot = prot;
6065 mmap_event->flags = flags;
6066
6067 if (!(vma->vm_flags & VM_EXEC))
6068 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6069
6070 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6071
6072 perf_event_aux(perf_event_mmap_output,
6073 mmap_event,
6074 NULL);
6075
6076 kfree(buf);
6077 }
6078
6079 void perf_event_mmap(struct vm_area_struct *vma)
6080 {
6081 struct perf_mmap_event mmap_event;
6082
6083 if (!atomic_read(&nr_mmap_events))
6084 return;
6085
6086 mmap_event = (struct perf_mmap_event){
6087 .vma = vma,
6088 /* .file_name */
6089 /* .file_size */
6090 .event_id = {
6091 .header = {
6092 .type = PERF_RECORD_MMAP,
6093 .misc = PERF_RECORD_MISC_USER,
6094 /* .size */
6095 },
6096 /* .pid */
6097 /* .tid */
6098 .start = vma->vm_start,
6099 .len = vma->vm_end - vma->vm_start,
6100 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6101 },
6102 /* .maj (attr_mmap2 only) */
6103 /* .min (attr_mmap2 only) */
6104 /* .ino (attr_mmap2 only) */
6105 /* .ino_generation (attr_mmap2 only) */
6106 /* .prot (attr_mmap2 only) */
6107 /* .flags (attr_mmap2 only) */
6108 };
6109
6110 perf_event_mmap_event(&mmap_event);
6111 }
6112
6113 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6114 unsigned long size, u64 flags)
6115 {
6116 struct perf_output_handle handle;
6117 struct perf_sample_data sample;
6118 struct perf_aux_event {
6119 struct perf_event_header header;
6120 u64 offset;
6121 u64 size;
6122 u64 flags;
6123 } rec = {
6124 .header = {
6125 .type = PERF_RECORD_AUX,
6126 .misc = 0,
6127 .size = sizeof(rec),
6128 },
6129 .offset = head,
6130 .size = size,
6131 .flags = flags,
6132 };
6133 int ret;
6134
6135 perf_event_header__init_id(&rec.header, &sample, event);
6136 ret = perf_output_begin(&handle, event, rec.header.size);
6137
6138 if (ret)
6139 return;
6140
6141 perf_output_put(&handle, rec);
6142 perf_event__output_id_sample(event, &handle, &sample);
6143
6144 perf_output_end(&handle);
6145 }
6146
6147 /*
6148 * Lost/dropped samples logging
6149 */
6150 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6151 {
6152 struct perf_output_handle handle;
6153 struct perf_sample_data sample;
6154 int ret;
6155
6156 struct {
6157 struct perf_event_header header;
6158 u64 lost;
6159 } lost_samples_event = {
6160 .header = {
6161 .type = PERF_RECORD_LOST_SAMPLES,
6162 .misc = 0,
6163 .size = sizeof(lost_samples_event),
6164 },
6165 .lost = lost,
6166 };
6167
6168 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6169
6170 ret = perf_output_begin(&handle, event,
6171 lost_samples_event.header.size);
6172 if (ret)
6173 return;
6174
6175 perf_output_put(&handle, lost_samples_event);
6176 perf_event__output_id_sample(event, &handle, &sample);
6177 perf_output_end(&handle);
6178 }
6179
6180 /*
6181 * context_switch tracking
6182 */
6183
6184 struct perf_switch_event {
6185 struct task_struct *task;
6186 struct task_struct *next_prev;
6187
6188 struct {
6189 struct perf_event_header header;
6190 u32 next_prev_pid;
6191 u32 next_prev_tid;
6192 } event_id;
6193 };
6194
6195 static int perf_event_switch_match(struct perf_event *event)
6196 {
6197 return event->attr.context_switch;
6198 }
6199
6200 static void perf_event_switch_output(struct perf_event *event, void *data)
6201 {
6202 struct perf_switch_event *se = data;
6203 struct perf_output_handle handle;
6204 struct perf_sample_data sample;
6205 int ret;
6206
6207 if (!perf_event_switch_match(event))
6208 return;
6209
6210 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6211 if (event->ctx->task) {
6212 se->event_id.header.type = PERF_RECORD_SWITCH;
6213 se->event_id.header.size = sizeof(se->event_id.header);
6214 } else {
6215 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6216 se->event_id.header.size = sizeof(se->event_id);
6217 se->event_id.next_prev_pid =
6218 perf_event_pid(event, se->next_prev);
6219 se->event_id.next_prev_tid =
6220 perf_event_tid(event, se->next_prev);
6221 }
6222
6223 perf_event_header__init_id(&se->event_id.header, &sample, event);
6224
6225 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6226 if (ret)
6227 return;
6228
6229 if (event->ctx->task)
6230 perf_output_put(&handle, se->event_id.header);
6231 else
6232 perf_output_put(&handle, se->event_id);
6233
6234 perf_event__output_id_sample(event, &handle, &sample);
6235
6236 perf_output_end(&handle);
6237 }
6238
6239 static void perf_event_switch(struct task_struct *task,
6240 struct task_struct *next_prev, bool sched_in)
6241 {
6242 struct perf_switch_event switch_event;
6243
6244 /* N.B. caller checks nr_switch_events != 0 */
6245
6246 switch_event = (struct perf_switch_event){
6247 .task = task,
6248 .next_prev = next_prev,
6249 .event_id = {
6250 .header = {
6251 /* .type */
6252 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6253 /* .size */
6254 },
6255 /* .next_prev_pid */
6256 /* .next_prev_tid */
6257 },
6258 };
6259
6260 perf_event_aux(perf_event_switch_output,
6261 &switch_event,
6262 NULL);
6263 }
6264
6265 /*
6266 * IRQ throttle logging
6267 */
6268
6269 static void perf_log_throttle(struct perf_event *event, int enable)
6270 {
6271 struct perf_output_handle handle;
6272 struct perf_sample_data sample;
6273 int ret;
6274
6275 struct {
6276 struct perf_event_header header;
6277 u64 time;
6278 u64 id;
6279 u64 stream_id;
6280 } throttle_event = {
6281 .header = {
6282 .type = PERF_RECORD_THROTTLE,
6283 .misc = 0,
6284 .size = sizeof(throttle_event),
6285 },
6286 .time = perf_event_clock(event),
6287 .id = primary_event_id(event),
6288 .stream_id = event->id,
6289 };
6290
6291 if (enable)
6292 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6293
6294 perf_event_header__init_id(&throttle_event.header, &sample, event);
6295
6296 ret = perf_output_begin(&handle, event,
6297 throttle_event.header.size);
6298 if (ret)
6299 return;
6300
6301 perf_output_put(&handle, throttle_event);
6302 perf_event__output_id_sample(event, &handle, &sample);
6303 perf_output_end(&handle);
6304 }
6305
6306 static void perf_log_itrace_start(struct perf_event *event)
6307 {
6308 struct perf_output_handle handle;
6309 struct perf_sample_data sample;
6310 struct perf_aux_event {
6311 struct perf_event_header header;
6312 u32 pid;
6313 u32 tid;
6314 } rec;
6315 int ret;
6316
6317 if (event->parent)
6318 event = event->parent;
6319
6320 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6321 event->hw.itrace_started)
6322 return;
6323
6324 rec.header.type = PERF_RECORD_ITRACE_START;
6325 rec.header.misc = 0;
6326 rec.header.size = sizeof(rec);
6327 rec.pid = perf_event_pid(event, current);
6328 rec.tid = perf_event_tid(event, current);
6329
6330 perf_event_header__init_id(&rec.header, &sample, event);
6331 ret = perf_output_begin(&handle, event, rec.header.size);
6332
6333 if (ret)
6334 return;
6335
6336 perf_output_put(&handle, rec);
6337 perf_event__output_id_sample(event, &handle, &sample);
6338
6339 perf_output_end(&handle);
6340 }
6341
6342 /*
6343 * Generic event overflow handling, sampling.
6344 */
6345
6346 static int __perf_event_overflow(struct perf_event *event,
6347 int throttle, struct perf_sample_data *data,
6348 struct pt_regs *regs)
6349 {
6350 int events = atomic_read(&event->event_limit);
6351 struct hw_perf_event *hwc = &event->hw;
6352 u64 seq;
6353 int ret = 0;
6354
6355 /*
6356 * Non-sampling counters might still use the PMI to fold short
6357 * hardware counters, ignore those.
6358 */
6359 if (unlikely(!is_sampling_event(event)))
6360 return 0;
6361
6362 seq = __this_cpu_read(perf_throttled_seq);
6363 if (seq != hwc->interrupts_seq) {
6364 hwc->interrupts_seq = seq;
6365 hwc->interrupts = 1;
6366 } else {
6367 hwc->interrupts++;
6368 if (unlikely(throttle
6369 && hwc->interrupts >= max_samples_per_tick)) {
6370 __this_cpu_inc(perf_throttled_count);
6371 hwc->interrupts = MAX_INTERRUPTS;
6372 perf_log_throttle(event, 0);
6373 tick_nohz_full_kick();
6374 ret = 1;
6375 }
6376 }
6377
6378 if (event->attr.freq) {
6379 u64 now = perf_clock();
6380 s64 delta = now - hwc->freq_time_stamp;
6381
6382 hwc->freq_time_stamp = now;
6383
6384 if (delta > 0 && delta < 2*TICK_NSEC)
6385 perf_adjust_period(event, delta, hwc->last_period, true);
6386 }
6387
6388 /*
6389 * XXX event_limit might not quite work as expected on inherited
6390 * events
6391 */
6392
6393 event->pending_kill = POLL_IN;
6394 if (events && atomic_dec_and_test(&event->event_limit)) {
6395 ret = 1;
6396 event->pending_kill = POLL_HUP;
6397 event->pending_disable = 1;
6398 irq_work_queue(&event->pending);
6399 }
6400
6401 if (event->overflow_handler)
6402 event->overflow_handler(event, data, regs);
6403 else
6404 perf_event_output(event, data, regs);
6405
6406 if (*perf_event_fasync(event) && event->pending_kill) {
6407 event->pending_wakeup = 1;
6408 irq_work_queue(&event->pending);
6409 }
6410
6411 return ret;
6412 }
6413
6414 int perf_event_overflow(struct perf_event *event,
6415 struct perf_sample_data *data,
6416 struct pt_regs *regs)
6417 {
6418 return __perf_event_overflow(event, 1, data, regs);
6419 }
6420
6421 /*
6422 * Generic software event infrastructure
6423 */
6424
6425 struct swevent_htable {
6426 struct swevent_hlist *swevent_hlist;
6427 struct mutex hlist_mutex;
6428 int hlist_refcount;
6429
6430 /* Recursion avoidance in each contexts */
6431 int recursion[PERF_NR_CONTEXTS];
6432 };
6433
6434 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6435
6436 /*
6437 * We directly increment event->count and keep a second value in
6438 * event->hw.period_left to count intervals. This period event
6439 * is kept in the range [-sample_period, 0] so that we can use the
6440 * sign as trigger.
6441 */
6442
6443 u64 perf_swevent_set_period(struct perf_event *event)
6444 {
6445 struct hw_perf_event *hwc = &event->hw;
6446 u64 period = hwc->last_period;
6447 u64 nr, offset;
6448 s64 old, val;
6449
6450 hwc->last_period = hwc->sample_period;
6451
6452 again:
6453 old = val = local64_read(&hwc->period_left);
6454 if (val < 0)
6455 return 0;
6456
6457 nr = div64_u64(period + val, period);
6458 offset = nr * period;
6459 val -= offset;
6460 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6461 goto again;
6462
6463 return nr;
6464 }
6465
6466 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6467 struct perf_sample_data *data,
6468 struct pt_regs *regs)
6469 {
6470 struct hw_perf_event *hwc = &event->hw;
6471 int throttle = 0;
6472
6473 if (!overflow)
6474 overflow = perf_swevent_set_period(event);
6475
6476 if (hwc->interrupts == MAX_INTERRUPTS)
6477 return;
6478
6479 for (; overflow; overflow--) {
6480 if (__perf_event_overflow(event, throttle,
6481 data, regs)) {
6482 /*
6483 * We inhibit the overflow from happening when
6484 * hwc->interrupts == MAX_INTERRUPTS.
6485 */
6486 break;
6487 }
6488 throttle = 1;
6489 }
6490 }
6491
6492 static void perf_swevent_event(struct perf_event *event, u64 nr,
6493 struct perf_sample_data *data,
6494 struct pt_regs *regs)
6495 {
6496 struct hw_perf_event *hwc = &event->hw;
6497
6498 local64_add(nr, &event->count);
6499
6500 if (!regs)
6501 return;
6502
6503 if (!is_sampling_event(event))
6504 return;
6505
6506 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6507 data->period = nr;
6508 return perf_swevent_overflow(event, 1, data, regs);
6509 } else
6510 data->period = event->hw.last_period;
6511
6512 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6513 return perf_swevent_overflow(event, 1, data, regs);
6514
6515 if (local64_add_negative(nr, &hwc->period_left))
6516 return;
6517
6518 perf_swevent_overflow(event, 0, data, regs);
6519 }
6520
6521 static int perf_exclude_event(struct perf_event *event,
6522 struct pt_regs *regs)
6523 {
6524 if (event->hw.state & PERF_HES_STOPPED)
6525 return 1;
6526
6527 if (regs) {
6528 if (event->attr.exclude_user && user_mode(regs))
6529 return 1;
6530
6531 if (event->attr.exclude_kernel && !user_mode(regs))
6532 return 1;
6533 }
6534
6535 return 0;
6536 }
6537
6538 static int perf_swevent_match(struct perf_event *event,
6539 enum perf_type_id type,
6540 u32 event_id,
6541 struct perf_sample_data *data,
6542 struct pt_regs *regs)
6543 {
6544 if (event->attr.type != type)
6545 return 0;
6546
6547 if (event->attr.config != event_id)
6548 return 0;
6549
6550 if (perf_exclude_event(event, regs))
6551 return 0;
6552
6553 return 1;
6554 }
6555
6556 static inline u64 swevent_hash(u64 type, u32 event_id)
6557 {
6558 u64 val = event_id | (type << 32);
6559
6560 return hash_64(val, SWEVENT_HLIST_BITS);
6561 }
6562
6563 static inline struct hlist_head *
6564 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6565 {
6566 u64 hash = swevent_hash(type, event_id);
6567
6568 return &hlist->heads[hash];
6569 }
6570
6571 /* For the read side: events when they trigger */
6572 static inline struct hlist_head *
6573 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6574 {
6575 struct swevent_hlist *hlist;
6576
6577 hlist = rcu_dereference(swhash->swevent_hlist);
6578 if (!hlist)
6579 return NULL;
6580
6581 return __find_swevent_head(hlist, type, event_id);
6582 }
6583
6584 /* For the event head insertion and removal in the hlist */
6585 static inline struct hlist_head *
6586 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6587 {
6588 struct swevent_hlist *hlist;
6589 u32 event_id = event->attr.config;
6590 u64 type = event->attr.type;
6591
6592 /*
6593 * Event scheduling is always serialized against hlist allocation
6594 * and release. Which makes the protected version suitable here.
6595 * The context lock guarantees that.
6596 */
6597 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6598 lockdep_is_held(&event->ctx->lock));
6599 if (!hlist)
6600 return NULL;
6601
6602 return __find_swevent_head(hlist, type, event_id);
6603 }
6604
6605 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6606 u64 nr,
6607 struct perf_sample_data *data,
6608 struct pt_regs *regs)
6609 {
6610 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6611 struct perf_event *event;
6612 struct hlist_head *head;
6613
6614 rcu_read_lock();
6615 head = find_swevent_head_rcu(swhash, type, event_id);
6616 if (!head)
6617 goto end;
6618
6619 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6620 if (perf_swevent_match(event, type, event_id, data, regs))
6621 perf_swevent_event(event, nr, data, regs);
6622 }
6623 end:
6624 rcu_read_unlock();
6625 }
6626
6627 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6628
6629 int perf_swevent_get_recursion_context(void)
6630 {
6631 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6632
6633 return get_recursion_context(swhash->recursion);
6634 }
6635 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6636
6637 inline void perf_swevent_put_recursion_context(int rctx)
6638 {
6639 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6640
6641 put_recursion_context(swhash->recursion, rctx);
6642 }
6643
6644 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6645 {
6646 struct perf_sample_data data;
6647
6648 if (WARN_ON_ONCE(!regs))
6649 return;
6650
6651 perf_sample_data_init(&data, addr, 0);
6652 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6653 }
6654
6655 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6656 {
6657 int rctx;
6658
6659 preempt_disable_notrace();
6660 rctx = perf_swevent_get_recursion_context();
6661 if (unlikely(rctx < 0))
6662 goto fail;
6663
6664 ___perf_sw_event(event_id, nr, regs, addr);
6665
6666 perf_swevent_put_recursion_context(rctx);
6667 fail:
6668 preempt_enable_notrace();
6669 }
6670
6671 static void perf_swevent_read(struct perf_event *event)
6672 {
6673 }
6674
6675 static int perf_swevent_add(struct perf_event *event, int flags)
6676 {
6677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678 struct hw_perf_event *hwc = &event->hw;
6679 struct hlist_head *head;
6680
6681 if (is_sampling_event(event)) {
6682 hwc->last_period = hwc->sample_period;
6683 perf_swevent_set_period(event);
6684 }
6685
6686 hwc->state = !(flags & PERF_EF_START);
6687
6688 head = find_swevent_head(swhash, event);
6689 if (WARN_ON_ONCE(!head))
6690 return -EINVAL;
6691
6692 hlist_add_head_rcu(&event->hlist_entry, head);
6693 perf_event_update_userpage(event);
6694
6695 return 0;
6696 }
6697
6698 static void perf_swevent_del(struct perf_event *event, int flags)
6699 {
6700 hlist_del_rcu(&event->hlist_entry);
6701 }
6702
6703 static void perf_swevent_start(struct perf_event *event, int flags)
6704 {
6705 event->hw.state = 0;
6706 }
6707
6708 static void perf_swevent_stop(struct perf_event *event, int flags)
6709 {
6710 event->hw.state = PERF_HES_STOPPED;
6711 }
6712
6713 /* Deref the hlist from the update side */
6714 static inline struct swevent_hlist *
6715 swevent_hlist_deref(struct swevent_htable *swhash)
6716 {
6717 return rcu_dereference_protected(swhash->swevent_hlist,
6718 lockdep_is_held(&swhash->hlist_mutex));
6719 }
6720
6721 static void swevent_hlist_release(struct swevent_htable *swhash)
6722 {
6723 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6724
6725 if (!hlist)
6726 return;
6727
6728 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6729 kfree_rcu(hlist, rcu_head);
6730 }
6731
6732 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6733 {
6734 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6735
6736 mutex_lock(&swhash->hlist_mutex);
6737
6738 if (!--swhash->hlist_refcount)
6739 swevent_hlist_release(swhash);
6740
6741 mutex_unlock(&swhash->hlist_mutex);
6742 }
6743
6744 static void swevent_hlist_put(struct perf_event *event)
6745 {
6746 int cpu;
6747
6748 for_each_possible_cpu(cpu)
6749 swevent_hlist_put_cpu(event, cpu);
6750 }
6751
6752 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6753 {
6754 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6755 int err = 0;
6756
6757 mutex_lock(&swhash->hlist_mutex);
6758 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6759 struct swevent_hlist *hlist;
6760
6761 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6762 if (!hlist) {
6763 err = -ENOMEM;
6764 goto exit;
6765 }
6766 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6767 }
6768 swhash->hlist_refcount++;
6769 exit:
6770 mutex_unlock(&swhash->hlist_mutex);
6771
6772 return err;
6773 }
6774
6775 static int swevent_hlist_get(struct perf_event *event)
6776 {
6777 int err;
6778 int cpu, failed_cpu;
6779
6780 get_online_cpus();
6781 for_each_possible_cpu(cpu) {
6782 err = swevent_hlist_get_cpu(event, cpu);
6783 if (err) {
6784 failed_cpu = cpu;
6785 goto fail;
6786 }
6787 }
6788 put_online_cpus();
6789
6790 return 0;
6791 fail:
6792 for_each_possible_cpu(cpu) {
6793 if (cpu == failed_cpu)
6794 break;
6795 swevent_hlist_put_cpu(event, cpu);
6796 }
6797
6798 put_online_cpus();
6799 return err;
6800 }
6801
6802 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6803
6804 static void sw_perf_event_destroy(struct perf_event *event)
6805 {
6806 u64 event_id = event->attr.config;
6807
6808 WARN_ON(event->parent);
6809
6810 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6811 swevent_hlist_put(event);
6812 }
6813
6814 static int perf_swevent_init(struct perf_event *event)
6815 {
6816 u64 event_id = event->attr.config;
6817
6818 if (event->attr.type != PERF_TYPE_SOFTWARE)
6819 return -ENOENT;
6820
6821 /*
6822 * no branch sampling for software events
6823 */
6824 if (has_branch_stack(event))
6825 return -EOPNOTSUPP;
6826
6827 switch (event_id) {
6828 case PERF_COUNT_SW_CPU_CLOCK:
6829 case PERF_COUNT_SW_TASK_CLOCK:
6830 return -ENOENT;
6831
6832 default:
6833 break;
6834 }
6835
6836 if (event_id >= PERF_COUNT_SW_MAX)
6837 return -ENOENT;
6838
6839 if (!event->parent) {
6840 int err;
6841
6842 err = swevent_hlist_get(event);
6843 if (err)
6844 return err;
6845
6846 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6847 event->destroy = sw_perf_event_destroy;
6848 }
6849
6850 return 0;
6851 }
6852
6853 static struct pmu perf_swevent = {
6854 .task_ctx_nr = perf_sw_context,
6855
6856 .capabilities = PERF_PMU_CAP_NO_NMI,
6857
6858 .event_init = perf_swevent_init,
6859 .add = perf_swevent_add,
6860 .del = perf_swevent_del,
6861 .start = perf_swevent_start,
6862 .stop = perf_swevent_stop,
6863 .read = perf_swevent_read,
6864 };
6865
6866 #ifdef CONFIG_EVENT_TRACING
6867
6868 static int perf_tp_filter_match(struct perf_event *event,
6869 struct perf_sample_data *data)
6870 {
6871 void *record = data->raw->data;
6872
6873 /* only top level events have filters set */
6874 if (event->parent)
6875 event = event->parent;
6876
6877 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6878 return 1;
6879 return 0;
6880 }
6881
6882 static int perf_tp_event_match(struct perf_event *event,
6883 struct perf_sample_data *data,
6884 struct pt_regs *regs)
6885 {
6886 if (event->hw.state & PERF_HES_STOPPED)
6887 return 0;
6888 /*
6889 * All tracepoints are from kernel-space.
6890 */
6891 if (event->attr.exclude_kernel)
6892 return 0;
6893
6894 if (!perf_tp_filter_match(event, data))
6895 return 0;
6896
6897 return 1;
6898 }
6899
6900 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6901 struct pt_regs *regs, struct hlist_head *head, int rctx,
6902 struct task_struct *task)
6903 {
6904 struct perf_sample_data data;
6905 struct perf_event *event;
6906
6907 struct perf_raw_record raw = {
6908 .size = entry_size,
6909 .data = record,
6910 };
6911
6912 perf_sample_data_init(&data, addr, 0);
6913 data.raw = &raw;
6914
6915 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6916 if (perf_tp_event_match(event, &data, regs))
6917 perf_swevent_event(event, count, &data, regs);
6918 }
6919
6920 /*
6921 * If we got specified a target task, also iterate its context and
6922 * deliver this event there too.
6923 */
6924 if (task && task != current) {
6925 struct perf_event_context *ctx;
6926 struct trace_entry *entry = record;
6927
6928 rcu_read_lock();
6929 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6930 if (!ctx)
6931 goto unlock;
6932
6933 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6934 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6935 continue;
6936 if (event->attr.config != entry->type)
6937 continue;
6938 if (perf_tp_event_match(event, &data, regs))
6939 perf_swevent_event(event, count, &data, regs);
6940 }
6941 unlock:
6942 rcu_read_unlock();
6943 }
6944
6945 perf_swevent_put_recursion_context(rctx);
6946 }
6947 EXPORT_SYMBOL_GPL(perf_tp_event);
6948
6949 static void tp_perf_event_destroy(struct perf_event *event)
6950 {
6951 perf_trace_destroy(event);
6952 }
6953
6954 static int perf_tp_event_init(struct perf_event *event)
6955 {
6956 int err;
6957
6958 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6959 return -ENOENT;
6960
6961 /*
6962 * no branch sampling for tracepoint events
6963 */
6964 if (has_branch_stack(event))
6965 return -EOPNOTSUPP;
6966
6967 err = perf_trace_init(event);
6968 if (err)
6969 return err;
6970
6971 event->destroy = tp_perf_event_destroy;
6972
6973 return 0;
6974 }
6975
6976 static struct pmu perf_tracepoint = {
6977 .task_ctx_nr = perf_sw_context,
6978
6979 .event_init = perf_tp_event_init,
6980 .add = perf_trace_add,
6981 .del = perf_trace_del,
6982 .start = perf_swevent_start,
6983 .stop = perf_swevent_stop,
6984 .read = perf_swevent_read,
6985 };
6986
6987 static inline void perf_tp_register(void)
6988 {
6989 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6990 }
6991
6992 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6993 {
6994 char *filter_str;
6995 int ret;
6996
6997 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6998 return -EINVAL;
6999
7000 filter_str = strndup_user(arg, PAGE_SIZE);
7001 if (IS_ERR(filter_str))
7002 return PTR_ERR(filter_str);
7003
7004 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7005
7006 kfree(filter_str);
7007 return ret;
7008 }
7009
7010 static void perf_event_free_filter(struct perf_event *event)
7011 {
7012 ftrace_profile_free_filter(event);
7013 }
7014
7015 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7016 {
7017 struct bpf_prog *prog;
7018
7019 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7020 return -EINVAL;
7021
7022 if (event->tp_event->prog)
7023 return -EEXIST;
7024
7025 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7026 /* bpf programs can only be attached to u/kprobes */
7027 return -EINVAL;
7028
7029 prog = bpf_prog_get(prog_fd);
7030 if (IS_ERR(prog))
7031 return PTR_ERR(prog);
7032
7033 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7034 /* valid fd, but invalid bpf program type */
7035 bpf_prog_put(prog);
7036 return -EINVAL;
7037 }
7038
7039 event->tp_event->prog = prog;
7040
7041 return 0;
7042 }
7043
7044 static void perf_event_free_bpf_prog(struct perf_event *event)
7045 {
7046 struct bpf_prog *prog;
7047
7048 if (!event->tp_event)
7049 return;
7050
7051 prog = event->tp_event->prog;
7052 if (prog) {
7053 event->tp_event->prog = NULL;
7054 bpf_prog_put(prog);
7055 }
7056 }
7057
7058 #else
7059
7060 static inline void perf_tp_register(void)
7061 {
7062 }
7063
7064 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7065 {
7066 return -ENOENT;
7067 }
7068
7069 static void perf_event_free_filter(struct perf_event *event)
7070 {
7071 }
7072
7073 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7074 {
7075 return -ENOENT;
7076 }
7077
7078 static void perf_event_free_bpf_prog(struct perf_event *event)
7079 {
7080 }
7081 #endif /* CONFIG_EVENT_TRACING */
7082
7083 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7084 void perf_bp_event(struct perf_event *bp, void *data)
7085 {
7086 struct perf_sample_data sample;
7087 struct pt_regs *regs = data;
7088
7089 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7090
7091 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7092 perf_swevent_event(bp, 1, &sample, regs);
7093 }
7094 #endif
7095
7096 /*
7097 * hrtimer based swevent callback
7098 */
7099
7100 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7101 {
7102 enum hrtimer_restart ret = HRTIMER_RESTART;
7103 struct perf_sample_data data;
7104 struct pt_regs *regs;
7105 struct perf_event *event;
7106 u64 period;
7107
7108 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7109
7110 if (event->state != PERF_EVENT_STATE_ACTIVE)
7111 return HRTIMER_NORESTART;
7112
7113 event->pmu->read(event);
7114
7115 perf_sample_data_init(&data, 0, event->hw.last_period);
7116 regs = get_irq_regs();
7117
7118 if (regs && !perf_exclude_event(event, regs)) {
7119 if (!(event->attr.exclude_idle && is_idle_task(current)))
7120 if (__perf_event_overflow(event, 1, &data, regs))
7121 ret = HRTIMER_NORESTART;
7122 }
7123
7124 period = max_t(u64, 10000, event->hw.sample_period);
7125 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7126
7127 return ret;
7128 }
7129
7130 static void perf_swevent_start_hrtimer(struct perf_event *event)
7131 {
7132 struct hw_perf_event *hwc = &event->hw;
7133 s64 period;
7134
7135 if (!is_sampling_event(event))
7136 return;
7137
7138 period = local64_read(&hwc->period_left);
7139 if (period) {
7140 if (period < 0)
7141 period = 10000;
7142
7143 local64_set(&hwc->period_left, 0);
7144 } else {
7145 period = max_t(u64, 10000, hwc->sample_period);
7146 }
7147 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7148 HRTIMER_MODE_REL_PINNED);
7149 }
7150
7151 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7152 {
7153 struct hw_perf_event *hwc = &event->hw;
7154
7155 if (is_sampling_event(event)) {
7156 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7157 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7158
7159 hrtimer_cancel(&hwc->hrtimer);
7160 }
7161 }
7162
7163 static void perf_swevent_init_hrtimer(struct perf_event *event)
7164 {
7165 struct hw_perf_event *hwc = &event->hw;
7166
7167 if (!is_sampling_event(event))
7168 return;
7169
7170 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7171 hwc->hrtimer.function = perf_swevent_hrtimer;
7172
7173 /*
7174 * Since hrtimers have a fixed rate, we can do a static freq->period
7175 * mapping and avoid the whole period adjust feedback stuff.
7176 */
7177 if (event->attr.freq) {
7178 long freq = event->attr.sample_freq;
7179
7180 event->attr.sample_period = NSEC_PER_SEC / freq;
7181 hwc->sample_period = event->attr.sample_period;
7182 local64_set(&hwc->period_left, hwc->sample_period);
7183 hwc->last_period = hwc->sample_period;
7184 event->attr.freq = 0;
7185 }
7186 }
7187
7188 /*
7189 * Software event: cpu wall time clock
7190 */
7191
7192 static void cpu_clock_event_update(struct perf_event *event)
7193 {
7194 s64 prev;
7195 u64 now;
7196
7197 now = local_clock();
7198 prev = local64_xchg(&event->hw.prev_count, now);
7199 local64_add(now - prev, &event->count);
7200 }
7201
7202 static void cpu_clock_event_start(struct perf_event *event, int flags)
7203 {
7204 local64_set(&event->hw.prev_count, local_clock());
7205 perf_swevent_start_hrtimer(event);
7206 }
7207
7208 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7209 {
7210 perf_swevent_cancel_hrtimer(event);
7211 cpu_clock_event_update(event);
7212 }
7213
7214 static int cpu_clock_event_add(struct perf_event *event, int flags)
7215 {
7216 if (flags & PERF_EF_START)
7217 cpu_clock_event_start(event, flags);
7218 perf_event_update_userpage(event);
7219
7220 return 0;
7221 }
7222
7223 static void cpu_clock_event_del(struct perf_event *event, int flags)
7224 {
7225 cpu_clock_event_stop(event, flags);
7226 }
7227
7228 static void cpu_clock_event_read(struct perf_event *event)
7229 {
7230 cpu_clock_event_update(event);
7231 }
7232
7233 static int cpu_clock_event_init(struct perf_event *event)
7234 {
7235 if (event->attr.type != PERF_TYPE_SOFTWARE)
7236 return -ENOENT;
7237
7238 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7239 return -ENOENT;
7240
7241 /*
7242 * no branch sampling for software events
7243 */
7244 if (has_branch_stack(event))
7245 return -EOPNOTSUPP;
7246
7247 perf_swevent_init_hrtimer(event);
7248
7249 return 0;
7250 }
7251
7252 static struct pmu perf_cpu_clock = {
7253 .task_ctx_nr = perf_sw_context,
7254
7255 .capabilities = PERF_PMU_CAP_NO_NMI,
7256
7257 .event_init = cpu_clock_event_init,
7258 .add = cpu_clock_event_add,
7259 .del = cpu_clock_event_del,
7260 .start = cpu_clock_event_start,
7261 .stop = cpu_clock_event_stop,
7262 .read = cpu_clock_event_read,
7263 };
7264
7265 /*
7266 * Software event: task time clock
7267 */
7268
7269 static void task_clock_event_update(struct perf_event *event, u64 now)
7270 {
7271 u64 prev;
7272 s64 delta;
7273
7274 prev = local64_xchg(&event->hw.prev_count, now);
7275 delta = now - prev;
7276 local64_add(delta, &event->count);
7277 }
7278
7279 static void task_clock_event_start(struct perf_event *event, int flags)
7280 {
7281 local64_set(&event->hw.prev_count, event->ctx->time);
7282 perf_swevent_start_hrtimer(event);
7283 }
7284
7285 static void task_clock_event_stop(struct perf_event *event, int flags)
7286 {
7287 perf_swevent_cancel_hrtimer(event);
7288 task_clock_event_update(event, event->ctx->time);
7289 }
7290
7291 static int task_clock_event_add(struct perf_event *event, int flags)
7292 {
7293 if (flags & PERF_EF_START)
7294 task_clock_event_start(event, flags);
7295 perf_event_update_userpage(event);
7296
7297 return 0;
7298 }
7299
7300 static void task_clock_event_del(struct perf_event *event, int flags)
7301 {
7302 task_clock_event_stop(event, PERF_EF_UPDATE);
7303 }
7304
7305 static void task_clock_event_read(struct perf_event *event)
7306 {
7307 u64 now = perf_clock();
7308 u64 delta = now - event->ctx->timestamp;
7309 u64 time = event->ctx->time + delta;
7310
7311 task_clock_event_update(event, time);
7312 }
7313
7314 static int task_clock_event_init(struct perf_event *event)
7315 {
7316 if (event->attr.type != PERF_TYPE_SOFTWARE)
7317 return -ENOENT;
7318
7319 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7320 return -ENOENT;
7321
7322 /*
7323 * no branch sampling for software events
7324 */
7325 if (has_branch_stack(event))
7326 return -EOPNOTSUPP;
7327
7328 perf_swevent_init_hrtimer(event);
7329
7330 return 0;
7331 }
7332
7333 static struct pmu perf_task_clock = {
7334 .task_ctx_nr = perf_sw_context,
7335
7336 .capabilities = PERF_PMU_CAP_NO_NMI,
7337
7338 .event_init = task_clock_event_init,
7339 .add = task_clock_event_add,
7340 .del = task_clock_event_del,
7341 .start = task_clock_event_start,
7342 .stop = task_clock_event_stop,
7343 .read = task_clock_event_read,
7344 };
7345
7346 static void perf_pmu_nop_void(struct pmu *pmu)
7347 {
7348 }
7349
7350 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7351 {
7352 }
7353
7354 static int perf_pmu_nop_int(struct pmu *pmu)
7355 {
7356 return 0;
7357 }
7358
7359 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7360
7361 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7362 {
7363 __this_cpu_write(nop_txn_flags, flags);
7364
7365 if (flags & ~PERF_PMU_TXN_ADD)
7366 return;
7367
7368 perf_pmu_disable(pmu);
7369 }
7370
7371 static int perf_pmu_commit_txn(struct pmu *pmu)
7372 {
7373 unsigned int flags = __this_cpu_read(nop_txn_flags);
7374
7375 __this_cpu_write(nop_txn_flags, 0);
7376
7377 if (flags & ~PERF_PMU_TXN_ADD)
7378 return 0;
7379
7380 perf_pmu_enable(pmu);
7381 return 0;
7382 }
7383
7384 static void perf_pmu_cancel_txn(struct pmu *pmu)
7385 {
7386 unsigned int flags = __this_cpu_read(nop_txn_flags);
7387
7388 __this_cpu_write(nop_txn_flags, 0);
7389
7390 if (flags & ~PERF_PMU_TXN_ADD)
7391 return;
7392
7393 perf_pmu_enable(pmu);
7394 }
7395
7396 static int perf_event_idx_default(struct perf_event *event)
7397 {
7398 return 0;
7399 }
7400
7401 /*
7402 * Ensures all contexts with the same task_ctx_nr have the same
7403 * pmu_cpu_context too.
7404 */
7405 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7406 {
7407 struct pmu *pmu;
7408
7409 if (ctxn < 0)
7410 return NULL;
7411
7412 list_for_each_entry(pmu, &pmus, entry) {
7413 if (pmu->task_ctx_nr == ctxn)
7414 return pmu->pmu_cpu_context;
7415 }
7416
7417 return NULL;
7418 }
7419
7420 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7421 {
7422 int cpu;
7423
7424 for_each_possible_cpu(cpu) {
7425 struct perf_cpu_context *cpuctx;
7426
7427 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7428
7429 if (cpuctx->unique_pmu == old_pmu)
7430 cpuctx->unique_pmu = pmu;
7431 }
7432 }
7433
7434 static void free_pmu_context(struct pmu *pmu)
7435 {
7436 struct pmu *i;
7437
7438 mutex_lock(&pmus_lock);
7439 /*
7440 * Like a real lame refcount.
7441 */
7442 list_for_each_entry(i, &pmus, entry) {
7443 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7444 update_pmu_context(i, pmu);
7445 goto out;
7446 }
7447 }
7448
7449 free_percpu(pmu->pmu_cpu_context);
7450 out:
7451 mutex_unlock(&pmus_lock);
7452 }
7453 static struct idr pmu_idr;
7454
7455 static ssize_t
7456 type_show(struct device *dev, struct device_attribute *attr, char *page)
7457 {
7458 struct pmu *pmu = dev_get_drvdata(dev);
7459
7460 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7461 }
7462 static DEVICE_ATTR_RO(type);
7463
7464 static ssize_t
7465 perf_event_mux_interval_ms_show(struct device *dev,
7466 struct device_attribute *attr,
7467 char *page)
7468 {
7469 struct pmu *pmu = dev_get_drvdata(dev);
7470
7471 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7472 }
7473
7474 static DEFINE_MUTEX(mux_interval_mutex);
7475
7476 static ssize_t
7477 perf_event_mux_interval_ms_store(struct device *dev,
7478 struct device_attribute *attr,
7479 const char *buf, size_t count)
7480 {
7481 struct pmu *pmu = dev_get_drvdata(dev);
7482 int timer, cpu, ret;
7483
7484 ret = kstrtoint(buf, 0, &timer);
7485 if (ret)
7486 return ret;
7487
7488 if (timer < 1)
7489 return -EINVAL;
7490
7491 /* same value, noting to do */
7492 if (timer == pmu->hrtimer_interval_ms)
7493 return count;
7494
7495 mutex_lock(&mux_interval_mutex);
7496 pmu->hrtimer_interval_ms = timer;
7497
7498 /* update all cpuctx for this PMU */
7499 get_online_cpus();
7500 for_each_online_cpu(cpu) {
7501 struct perf_cpu_context *cpuctx;
7502 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7503 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7504
7505 cpu_function_call(cpu,
7506 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7507 }
7508 put_online_cpus();
7509 mutex_unlock(&mux_interval_mutex);
7510
7511 return count;
7512 }
7513 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7514
7515 static struct attribute *pmu_dev_attrs[] = {
7516 &dev_attr_type.attr,
7517 &dev_attr_perf_event_mux_interval_ms.attr,
7518 NULL,
7519 };
7520 ATTRIBUTE_GROUPS(pmu_dev);
7521
7522 static int pmu_bus_running;
7523 static struct bus_type pmu_bus = {
7524 .name = "event_source",
7525 .dev_groups = pmu_dev_groups,
7526 };
7527
7528 static void pmu_dev_release(struct device *dev)
7529 {
7530 kfree(dev);
7531 }
7532
7533 static int pmu_dev_alloc(struct pmu *pmu)
7534 {
7535 int ret = -ENOMEM;
7536
7537 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7538 if (!pmu->dev)
7539 goto out;
7540
7541 pmu->dev->groups = pmu->attr_groups;
7542 device_initialize(pmu->dev);
7543 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7544 if (ret)
7545 goto free_dev;
7546
7547 dev_set_drvdata(pmu->dev, pmu);
7548 pmu->dev->bus = &pmu_bus;
7549 pmu->dev->release = pmu_dev_release;
7550 ret = device_add(pmu->dev);
7551 if (ret)
7552 goto free_dev;
7553
7554 out:
7555 return ret;
7556
7557 free_dev:
7558 put_device(pmu->dev);
7559 goto out;
7560 }
7561
7562 static struct lock_class_key cpuctx_mutex;
7563 static struct lock_class_key cpuctx_lock;
7564
7565 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7566 {
7567 int cpu, ret;
7568
7569 mutex_lock(&pmus_lock);
7570 ret = -ENOMEM;
7571 pmu->pmu_disable_count = alloc_percpu(int);
7572 if (!pmu->pmu_disable_count)
7573 goto unlock;
7574
7575 pmu->type = -1;
7576 if (!name)
7577 goto skip_type;
7578 pmu->name = name;
7579
7580 if (type < 0) {
7581 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7582 if (type < 0) {
7583 ret = type;
7584 goto free_pdc;
7585 }
7586 }
7587 pmu->type = type;
7588
7589 if (pmu_bus_running) {
7590 ret = pmu_dev_alloc(pmu);
7591 if (ret)
7592 goto free_idr;
7593 }
7594
7595 skip_type:
7596 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7597 if (pmu->pmu_cpu_context)
7598 goto got_cpu_context;
7599
7600 ret = -ENOMEM;
7601 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7602 if (!pmu->pmu_cpu_context)
7603 goto free_dev;
7604
7605 for_each_possible_cpu(cpu) {
7606 struct perf_cpu_context *cpuctx;
7607
7608 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7609 __perf_event_init_context(&cpuctx->ctx);
7610 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7611 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7612 cpuctx->ctx.pmu = pmu;
7613
7614 __perf_mux_hrtimer_init(cpuctx, cpu);
7615
7616 cpuctx->unique_pmu = pmu;
7617 }
7618
7619 got_cpu_context:
7620 if (!pmu->start_txn) {
7621 if (pmu->pmu_enable) {
7622 /*
7623 * If we have pmu_enable/pmu_disable calls, install
7624 * transaction stubs that use that to try and batch
7625 * hardware accesses.
7626 */
7627 pmu->start_txn = perf_pmu_start_txn;
7628 pmu->commit_txn = perf_pmu_commit_txn;
7629 pmu->cancel_txn = perf_pmu_cancel_txn;
7630 } else {
7631 pmu->start_txn = perf_pmu_nop_txn;
7632 pmu->commit_txn = perf_pmu_nop_int;
7633 pmu->cancel_txn = perf_pmu_nop_void;
7634 }
7635 }
7636
7637 if (!pmu->pmu_enable) {
7638 pmu->pmu_enable = perf_pmu_nop_void;
7639 pmu->pmu_disable = perf_pmu_nop_void;
7640 }
7641
7642 if (!pmu->event_idx)
7643 pmu->event_idx = perf_event_idx_default;
7644
7645 list_add_rcu(&pmu->entry, &pmus);
7646 atomic_set(&pmu->exclusive_cnt, 0);
7647 ret = 0;
7648 unlock:
7649 mutex_unlock(&pmus_lock);
7650
7651 return ret;
7652
7653 free_dev:
7654 device_del(pmu->dev);
7655 put_device(pmu->dev);
7656
7657 free_idr:
7658 if (pmu->type >= PERF_TYPE_MAX)
7659 idr_remove(&pmu_idr, pmu->type);
7660
7661 free_pdc:
7662 free_percpu(pmu->pmu_disable_count);
7663 goto unlock;
7664 }
7665 EXPORT_SYMBOL_GPL(perf_pmu_register);
7666
7667 void perf_pmu_unregister(struct pmu *pmu)
7668 {
7669 mutex_lock(&pmus_lock);
7670 list_del_rcu(&pmu->entry);
7671 mutex_unlock(&pmus_lock);
7672
7673 /*
7674 * We dereference the pmu list under both SRCU and regular RCU, so
7675 * synchronize against both of those.
7676 */
7677 synchronize_srcu(&pmus_srcu);
7678 synchronize_rcu();
7679
7680 free_percpu(pmu->pmu_disable_count);
7681 if (pmu->type >= PERF_TYPE_MAX)
7682 idr_remove(&pmu_idr, pmu->type);
7683 device_del(pmu->dev);
7684 put_device(pmu->dev);
7685 free_pmu_context(pmu);
7686 }
7687 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7688
7689 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7690 {
7691 struct perf_event_context *ctx = NULL;
7692 int ret;
7693
7694 if (!try_module_get(pmu->module))
7695 return -ENODEV;
7696
7697 if (event->group_leader != event) {
7698 /*
7699 * This ctx->mutex can nest when we're called through
7700 * inheritance. See the perf_event_ctx_lock_nested() comment.
7701 */
7702 ctx = perf_event_ctx_lock_nested(event->group_leader,
7703 SINGLE_DEPTH_NESTING);
7704 BUG_ON(!ctx);
7705 }
7706
7707 event->pmu = pmu;
7708 ret = pmu->event_init(event);
7709
7710 if (ctx)
7711 perf_event_ctx_unlock(event->group_leader, ctx);
7712
7713 if (ret)
7714 module_put(pmu->module);
7715
7716 return ret;
7717 }
7718
7719 static struct pmu *perf_init_event(struct perf_event *event)
7720 {
7721 struct pmu *pmu = NULL;
7722 int idx;
7723 int ret;
7724
7725 idx = srcu_read_lock(&pmus_srcu);
7726
7727 rcu_read_lock();
7728 pmu = idr_find(&pmu_idr, event->attr.type);
7729 rcu_read_unlock();
7730 if (pmu) {
7731 ret = perf_try_init_event(pmu, event);
7732 if (ret)
7733 pmu = ERR_PTR(ret);
7734 goto unlock;
7735 }
7736
7737 list_for_each_entry_rcu(pmu, &pmus, entry) {
7738 ret = perf_try_init_event(pmu, event);
7739 if (!ret)
7740 goto unlock;
7741
7742 if (ret != -ENOENT) {
7743 pmu = ERR_PTR(ret);
7744 goto unlock;
7745 }
7746 }
7747 pmu = ERR_PTR(-ENOENT);
7748 unlock:
7749 srcu_read_unlock(&pmus_srcu, idx);
7750
7751 return pmu;
7752 }
7753
7754 static void account_event_cpu(struct perf_event *event, int cpu)
7755 {
7756 if (event->parent)
7757 return;
7758
7759 if (is_cgroup_event(event))
7760 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7761 }
7762
7763 static void account_event(struct perf_event *event)
7764 {
7765 bool inc = false;
7766
7767 if (event->parent)
7768 return;
7769
7770 if (event->attach_state & PERF_ATTACH_TASK)
7771 inc = true;
7772 if (event->attr.mmap || event->attr.mmap_data)
7773 atomic_inc(&nr_mmap_events);
7774 if (event->attr.comm)
7775 atomic_inc(&nr_comm_events);
7776 if (event->attr.task)
7777 atomic_inc(&nr_task_events);
7778 if (event->attr.freq) {
7779 if (atomic_inc_return(&nr_freq_events) == 1)
7780 tick_nohz_full_kick_all();
7781 }
7782 if (event->attr.context_switch) {
7783 atomic_inc(&nr_switch_events);
7784 inc = true;
7785 }
7786 if (has_branch_stack(event))
7787 inc = true;
7788 if (is_cgroup_event(event))
7789 inc = true;
7790
7791 if (inc)
7792 static_key_slow_inc(&perf_sched_events.key);
7793
7794 account_event_cpu(event, event->cpu);
7795 }
7796
7797 /*
7798 * Allocate and initialize a event structure
7799 */
7800 static struct perf_event *
7801 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7802 struct task_struct *task,
7803 struct perf_event *group_leader,
7804 struct perf_event *parent_event,
7805 perf_overflow_handler_t overflow_handler,
7806 void *context, int cgroup_fd)
7807 {
7808 struct pmu *pmu;
7809 struct perf_event *event;
7810 struct hw_perf_event *hwc;
7811 long err = -EINVAL;
7812
7813 if ((unsigned)cpu >= nr_cpu_ids) {
7814 if (!task || cpu != -1)
7815 return ERR_PTR(-EINVAL);
7816 }
7817
7818 event = kzalloc(sizeof(*event), GFP_KERNEL);
7819 if (!event)
7820 return ERR_PTR(-ENOMEM);
7821
7822 /*
7823 * Single events are their own group leaders, with an
7824 * empty sibling list:
7825 */
7826 if (!group_leader)
7827 group_leader = event;
7828
7829 mutex_init(&event->child_mutex);
7830 INIT_LIST_HEAD(&event->child_list);
7831
7832 INIT_LIST_HEAD(&event->group_entry);
7833 INIT_LIST_HEAD(&event->event_entry);
7834 INIT_LIST_HEAD(&event->sibling_list);
7835 INIT_LIST_HEAD(&event->rb_entry);
7836 INIT_LIST_HEAD(&event->active_entry);
7837 INIT_HLIST_NODE(&event->hlist_entry);
7838
7839
7840 init_waitqueue_head(&event->waitq);
7841 init_irq_work(&event->pending, perf_pending_event);
7842
7843 mutex_init(&event->mmap_mutex);
7844
7845 atomic_long_set(&event->refcount, 1);
7846 event->cpu = cpu;
7847 event->attr = *attr;
7848 event->group_leader = group_leader;
7849 event->pmu = NULL;
7850 event->oncpu = -1;
7851
7852 event->parent = parent_event;
7853
7854 event->ns = get_pid_ns(task_active_pid_ns(current));
7855 event->id = atomic64_inc_return(&perf_event_id);
7856
7857 event->state = PERF_EVENT_STATE_INACTIVE;
7858
7859 if (task) {
7860 event->attach_state = PERF_ATTACH_TASK;
7861 /*
7862 * XXX pmu::event_init needs to know what task to account to
7863 * and we cannot use the ctx information because we need the
7864 * pmu before we get a ctx.
7865 */
7866 event->hw.target = task;
7867 }
7868
7869 event->clock = &local_clock;
7870 if (parent_event)
7871 event->clock = parent_event->clock;
7872
7873 if (!overflow_handler && parent_event) {
7874 overflow_handler = parent_event->overflow_handler;
7875 context = parent_event->overflow_handler_context;
7876 }
7877
7878 event->overflow_handler = overflow_handler;
7879 event->overflow_handler_context = context;
7880
7881 perf_event__state_init(event);
7882
7883 pmu = NULL;
7884
7885 hwc = &event->hw;
7886 hwc->sample_period = attr->sample_period;
7887 if (attr->freq && attr->sample_freq)
7888 hwc->sample_period = 1;
7889 hwc->last_period = hwc->sample_period;
7890
7891 local64_set(&hwc->period_left, hwc->sample_period);
7892
7893 /*
7894 * we currently do not support PERF_FORMAT_GROUP on inherited events
7895 */
7896 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7897 goto err_ns;
7898
7899 if (!has_branch_stack(event))
7900 event->attr.branch_sample_type = 0;
7901
7902 if (cgroup_fd != -1) {
7903 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7904 if (err)
7905 goto err_ns;
7906 }
7907
7908 pmu = perf_init_event(event);
7909 if (!pmu)
7910 goto err_ns;
7911 else if (IS_ERR(pmu)) {
7912 err = PTR_ERR(pmu);
7913 goto err_ns;
7914 }
7915
7916 err = exclusive_event_init(event);
7917 if (err)
7918 goto err_pmu;
7919
7920 if (!event->parent) {
7921 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7922 err = get_callchain_buffers();
7923 if (err)
7924 goto err_per_task;
7925 }
7926 }
7927
7928 return event;
7929
7930 err_per_task:
7931 exclusive_event_destroy(event);
7932
7933 err_pmu:
7934 if (event->destroy)
7935 event->destroy(event);
7936 module_put(pmu->module);
7937 err_ns:
7938 if (is_cgroup_event(event))
7939 perf_detach_cgroup(event);
7940 if (event->ns)
7941 put_pid_ns(event->ns);
7942 kfree(event);
7943
7944 return ERR_PTR(err);
7945 }
7946
7947 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7948 struct perf_event_attr *attr)
7949 {
7950 u32 size;
7951 int ret;
7952
7953 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7954 return -EFAULT;
7955
7956 /*
7957 * zero the full structure, so that a short copy will be nice.
7958 */
7959 memset(attr, 0, sizeof(*attr));
7960
7961 ret = get_user(size, &uattr->size);
7962 if (ret)
7963 return ret;
7964
7965 if (size > PAGE_SIZE) /* silly large */
7966 goto err_size;
7967
7968 if (!size) /* abi compat */
7969 size = PERF_ATTR_SIZE_VER0;
7970
7971 if (size < PERF_ATTR_SIZE_VER0)
7972 goto err_size;
7973
7974 /*
7975 * If we're handed a bigger struct than we know of,
7976 * ensure all the unknown bits are 0 - i.e. new
7977 * user-space does not rely on any kernel feature
7978 * extensions we dont know about yet.
7979 */
7980 if (size > sizeof(*attr)) {
7981 unsigned char __user *addr;
7982 unsigned char __user *end;
7983 unsigned char val;
7984
7985 addr = (void __user *)uattr + sizeof(*attr);
7986 end = (void __user *)uattr + size;
7987
7988 for (; addr < end; addr++) {
7989 ret = get_user(val, addr);
7990 if (ret)
7991 return ret;
7992 if (val)
7993 goto err_size;
7994 }
7995 size = sizeof(*attr);
7996 }
7997
7998 ret = copy_from_user(attr, uattr, size);
7999 if (ret)
8000 return -EFAULT;
8001
8002 if (attr->__reserved_1)
8003 return -EINVAL;
8004
8005 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8006 return -EINVAL;
8007
8008 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8009 return -EINVAL;
8010
8011 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8012 u64 mask = attr->branch_sample_type;
8013
8014 /* only using defined bits */
8015 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8016 return -EINVAL;
8017
8018 /* at least one branch bit must be set */
8019 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8020 return -EINVAL;
8021
8022 /* propagate priv level, when not set for branch */
8023 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8024
8025 /* exclude_kernel checked on syscall entry */
8026 if (!attr->exclude_kernel)
8027 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8028
8029 if (!attr->exclude_user)
8030 mask |= PERF_SAMPLE_BRANCH_USER;
8031
8032 if (!attr->exclude_hv)
8033 mask |= PERF_SAMPLE_BRANCH_HV;
8034 /*
8035 * adjust user setting (for HW filter setup)
8036 */
8037 attr->branch_sample_type = mask;
8038 }
8039 /* privileged levels capture (kernel, hv): check permissions */
8040 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8041 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8042 return -EACCES;
8043 }
8044
8045 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8046 ret = perf_reg_validate(attr->sample_regs_user);
8047 if (ret)
8048 return ret;
8049 }
8050
8051 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8052 if (!arch_perf_have_user_stack_dump())
8053 return -ENOSYS;
8054
8055 /*
8056 * We have __u32 type for the size, but so far
8057 * we can only use __u16 as maximum due to the
8058 * __u16 sample size limit.
8059 */
8060 if (attr->sample_stack_user >= USHRT_MAX)
8061 ret = -EINVAL;
8062 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8063 ret = -EINVAL;
8064 }
8065
8066 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8067 ret = perf_reg_validate(attr->sample_regs_intr);
8068 out:
8069 return ret;
8070
8071 err_size:
8072 put_user(sizeof(*attr), &uattr->size);
8073 ret = -E2BIG;
8074 goto out;
8075 }
8076
8077 static int
8078 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8079 {
8080 struct ring_buffer *rb = NULL;
8081 int ret = -EINVAL;
8082
8083 if (!output_event)
8084 goto set;
8085
8086 /* don't allow circular references */
8087 if (event == output_event)
8088 goto out;
8089
8090 /*
8091 * Don't allow cross-cpu buffers
8092 */
8093 if (output_event->cpu != event->cpu)
8094 goto out;
8095
8096 /*
8097 * If its not a per-cpu rb, it must be the same task.
8098 */
8099 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8100 goto out;
8101
8102 /*
8103 * Mixing clocks in the same buffer is trouble you don't need.
8104 */
8105 if (output_event->clock != event->clock)
8106 goto out;
8107
8108 /*
8109 * If both events generate aux data, they must be on the same PMU
8110 */
8111 if (has_aux(event) && has_aux(output_event) &&
8112 event->pmu != output_event->pmu)
8113 goto out;
8114
8115 set:
8116 mutex_lock(&event->mmap_mutex);
8117 /* Can't redirect output if we've got an active mmap() */
8118 if (atomic_read(&event->mmap_count))
8119 goto unlock;
8120
8121 if (output_event) {
8122 /* get the rb we want to redirect to */
8123 rb = ring_buffer_get(output_event);
8124 if (!rb)
8125 goto unlock;
8126 }
8127
8128 ring_buffer_attach(event, rb);
8129
8130 ret = 0;
8131 unlock:
8132 mutex_unlock(&event->mmap_mutex);
8133
8134 out:
8135 return ret;
8136 }
8137
8138 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8139 {
8140 if (b < a)
8141 swap(a, b);
8142
8143 mutex_lock(a);
8144 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8145 }
8146
8147 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8148 {
8149 bool nmi_safe = false;
8150
8151 switch (clk_id) {
8152 case CLOCK_MONOTONIC:
8153 event->clock = &ktime_get_mono_fast_ns;
8154 nmi_safe = true;
8155 break;
8156
8157 case CLOCK_MONOTONIC_RAW:
8158 event->clock = &ktime_get_raw_fast_ns;
8159 nmi_safe = true;
8160 break;
8161
8162 case CLOCK_REALTIME:
8163 event->clock = &ktime_get_real_ns;
8164 break;
8165
8166 case CLOCK_BOOTTIME:
8167 event->clock = &ktime_get_boot_ns;
8168 break;
8169
8170 case CLOCK_TAI:
8171 event->clock = &ktime_get_tai_ns;
8172 break;
8173
8174 default:
8175 return -EINVAL;
8176 }
8177
8178 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8179 return -EINVAL;
8180
8181 return 0;
8182 }
8183
8184 /**
8185 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8186 *
8187 * @attr_uptr: event_id type attributes for monitoring/sampling
8188 * @pid: target pid
8189 * @cpu: target cpu
8190 * @group_fd: group leader event fd
8191 */
8192 SYSCALL_DEFINE5(perf_event_open,
8193 struct perf_event_attr __user *, attr_uptr,
8194 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8195 {
8196 struct perf_event *group_leader = NULL, *output_event = NULL;
8197 struct perf_event *event, *sibling;
8198 struct perf_event_attr attr;
8199 struct perf_event_context *ctx, *uninitialized_var(gctx);
8200 struct file *event_file = NULL;
8201 struct fd group = {NULL, 0};
8202 struct task_struct *task = NULL;
8203 struct pmu *pmu;
8204 int event_fd;
8205 int move_group = 0;
8206 int err;
8207 int f_flags = O_RDWR;
8208 int cgroup_fd = -1;
8209
8210 /* for future expandability... */
8211 if (flags & ~PERF_FLAG_ALL)
8212 return -EINVAL;
8213
8214 err = perf_copy_attr(attr_uptr, &attr);
8215 if (err)
8216 return err;
8217
8218 if (!attr.exclude_kernel) {
8219 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8220 return -EACCES;
8221 }
8222
8223 if (attr.freq) {
8224 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8225 return -EINVAL;
8226 } else {
8227 if (attr.sample_period & (1ULL << 63))
8228 return -EINVAL;
8229 }
8230
8231 /*
8232 * In cgroup mode, the pid argument is used to pass the fd
8233 * opened to the cgroup directory in cgroupfs. The cpu argument
8234 * designates the cpu on which to monitor threads from that
8235 * cgroup.
8236 */
8237 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8238 return -EINVAL;
8239
8240 if (flags & PERF_FLAG_FD_CLOEXEC)
8241 f_flags |= O_CLOEXEC;
8242
8243 event_fd = get_unused_fd_flags(f_flags);
8244 if (event_fd < 0)
8245 return event_fd;
8246
8247 if (group_fd != -1) {
8248 err = perf_fget_light(group_fd, &group);
8249 if (err)
8250 goto err_fd;
8251 group_leader = group.file->private_data;
8252 if (flags & PERF_FLAG_FD_OUTPUT)
8253 output_event = group_leader;
8254 if (flags & PERF_FLAG_FD_NO_GROUP)
8255 group_leader = NULL;
8256 }
8257
8258 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8259 task = find_lively_task_by_vpid(pid);
8260 if (IS_ERR(task)) {
8261 err = PTR_ERR(task);
8262 goto err_group_fd;
8263 }
8264 }
8265
8266 if (task && group_leader &&
8267 group_leader->attr.inherit != attr.inherit) {
8268 err = -EINVAL;
8269 goto err_task;
8270 }
8271
8272 get_online_cpus();
8273
8274 if (flags & PERF_FLAG_PID_CGROUP)
8275 cgroup_fd = pid;
8276
8277 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8278 NULL, NULL, cgroup_fd);
8279 if (IS_ERR(event)) {
8280 err = PTR_ERR(event);
8281 goto err_cpus;
8282 }
8283
8284 if (is_sampling_event(event)) {
8285 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8286 err = -ENOTSUPP;
8287 goto err_alloc;
8288 }
8289 }
8290
8291 account_event(event);
8292
8293 /*
8294 * Special case software events and allow them to be part of
8295 * any hardware group.
8296 */
8297 pmu = event->pmu;
8298
8299 if (attr.use_clockid) {
8300 err = perf_event_set_clock(event, attr.clockid);
8301 if (err)
8302 goto err_alloc;
8303 }
8304
8305 if (group_leader &&
8306 (is_software_event(event) != is_software_event(group_leader))) {
8307 if (is_software_event(event)) {
8308 /*
8309 * If event and group_leader are not both a software
8310 * event, and event is, then group leader is not.
8311 *
8312 * Allow the addition of software events to !software
8313 * groups, this is safe because software events never
8314 * fail to schedule.
8315 */
8316 pmu = group_leader->pmu;
8317 } else if (is_software_event(group_leader) &&
8318 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8319 /*
8320 * In case the group is a pure software group, and we
8321 * try to add a hardware event, move the whole group to
8322 * the hardware context.
8323 */
8324 move_group = 1;
8325 }
8326 }
8327
8328 /*
8329 * Get the target context (task or percpu):
8330 */
8331 ctx = find_get_context(pmu, task, event);
8332 if (IS_ERR(ctx)) {
8333 err = PTR_ERR(ctx);
8334 goto err_alloc;
8335 }
8336
8337 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8338 err = -EBUSY;
8339 goto err_context;
8340 }
8341
8342 if (task) {
8343 put_task_struct(task);
8344 task = NULL;
8345 }
8346
8347 /*
8348 * Look up the group leader (we will attach this event to it):
8349 */
8350 if (group_leader) {
8351 err = -EINVAL;
8352
8353 /*
8354 * Do not allow a recursive hierarchy (this new sibling
8355 * becoming part of another group-sibling):
8356 */
8357 if (group_leader->group_leader != group_leader)
8358 goto err_context;
8359
8360 /* All events in a group should have the same clock */
8361 if (group_leader->clock != event->clock)
8362 goto err_context;
8363
8364 /*
8365 * Do not allow to attach to a group in a different
8366 * task or CPU context:
8367 */
8368 if (move_group) {
8369 /*
8370 * Make sure we're both on the same task, or both
8371 * per-cpu events.
8372 */
8373 if (group_leader->ctx->task != ctx->task)
8374 goto err_context;
8375
8376 /*
8377 * Make sure we're both events for the same CPU;
8378 * grouping events for different CPUs is broken; since
8379 * you can never concurrently schedule them anyhow.
8380 */
8381 if (group_leader->cpu != event->cpu)
8382 goto err_context;
8383 } else {
8384 if (group_leader->ctx != ctx)
8385 goto err_context;
8386 }
8387
8388 /*
8389 * Only a group leader can be exclusive or pinned
8390 */
8391 if (attr.exclusive || attr.pinned)
8392 goto err_context;
8393 }
8394
8395 if (output_event) {
8396 err = perf_event_set_output(event, output_event);
8397 if (err)
8398 goto err_context;
8399 }
8400
8401 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8402 f_flags);
8403 if (IS_ERR(event_file)) {
8404 err = PTR_ERR(event_file);
8405 goto err_context;
8406 }
8407
8408 if (move_group) {
8409 gctx = group_leader->ctx;
8410 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8411 } else {
8412 mutex_lock(&ctx->mutex);
8413 }
8414
8415 if (!perf_event_validate_size(event)) {
8416 err = -E2BIG;
8417 goto err_locked;
8418 }
8419
8420 /*
8421 * Must be under the same ctx::mutex as perf_install_in_context(),
8422 * because we need to serialize with concurrent event creation.
8423 */
8424 if (!exclusive_event_installable(event, ctx)) {
8425 /* exclusive and group stuff are assumed mutually exclusive */
8426 WARN_ON_ONCE(move_group);
8427
8428 err = -EBUSY;
8429 goto err_locked;
8430 }
8431
8432 WARN_ON_ONCE(ctx->parent_ctx);
8433
8434 if (move_group) {
8435 /*
8436 * See perf_event_ctx_lock() for comments on the details
8437 * of swizzling perf_event::ctx.
8438 */
8439 perf_remove_from_context(group_leader, false);
8440
8441 list_for_each_entry(sibling, &group_leader->sibling_list,
8442 group_entry) {
8443 perf_remove_from_context(sibling, false);
8444 put_ctx(gctx);
8445 }
8446
8447 /*
8448 * Wait for everybody to stop referencing the events through
8449 * the old lists, before installing it on new lists.
8450 */
8451 synchronize_rcu();
8452
8453 /*
8454 * Install the group siblings before the group leader.
8455 *
8456 * Because a group leader will try and install the entire group
8457 * (through the sibling list, which is still in-tact), we can
8458 * end up with siblings installed in the wrong context.
8459 *
8460 * By installing siblings first we NO-OP because they're not
8461 * reachable through the group lists.
8462 */
8463 list_for_each_entry(sibling, &group_leader->sibling_list,
8464 group_entry) {
8465 perf_event__state_init(sibling);
8466 perf_install_in_context(ctx, sibling, sibling->cpu);
8467 get_ctx(ctx);
8468 }
8469
8470 /*
8471 * Removing from the context ends up with disabled
8472 * event. What we want here is event in the initial
8473 * startup state, ready to be add into new context.
8474 */
8475 perf_event__state_init(group_leader);
8476 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8477 get_ctx(ctx);
8478
8479 /*
8480 * Now that all events are installed in @ctx, nothing
8481 * references @gctx anymore, so drop the last reference we have
8482 * on it.
8483 */
8484 put_ctx(gctx);
8485 }
8486
8487 /*
8488 * Precalculate sample_data sizes; do while holding ctx::mutex such
8489 * that we're serialized against further additions and before
8490 * perf_install_in_context() which is the point the event is active and
8491 * can use these values.
8492 */
8493 perf_event__header_size(event);
8494 perf_event__id_header_size(event);
8495
8496 perf_install_in_context(ctx, event, event->cpu);
8497 perf_unpin_context(ctx);
8498
8499 if (move_group)
8500 mutex_unlock(&gctx->mutex);
8501 mutex_unlock(&ctx->mutex);
8502
8503 put_online_cpus();
8504
8505 event->owner = current;
8506
8507 mutex_lock(&current->perf_event_mutex);
8508 list_add_tail(&event->owner_entry, &current->perf_event_list);
8509 mutex_unlock(&current->perf_event_mutex);
8510
8511 /*
8512 * Drop the reference on the group_event after placing the
8513 * new event on the sibling_list. This ensures destruction
8514 * of the group leader will find the pointer to itself in
8515 * perf_group_detach().
8516 */
8517 fdput(group);
8518 fd_install(event_fd, event_file);
8519 return event_fd;
8520
8521 err_locked:
8522 if (move_group)
8523 mutex_unlock(&gctx->mutex);
8524 mutex_unlock(&ctx->mutex);
8525 /* err_file: */
8526 fput(event_file);
8527 err_context:
8528 perf_unpin_context(ctx);
8529 put_ctx(ctx);
8530 err_alloc:
8531 free_event(event);
8532 err_cpus:
8533 put_online_cpus();
8534 err_task:
8535 if (task)
8536 put_task_struct(task);
8537 err_group_fd:
8538 fdput(group);
8539 err_fd:
8540 put_unused_fd(event_fd);
8541 return err;
8542 }
8543
8544 /**
8545 * perf_event_create_kernel_counter
8546 *
8547 * @attr: attributes of the counter to create
8548 * @cpu: cpu in which the counter is bound
8549 * @task: task to profile (NULL for percpu)
8550 */
8551 struct perf_event *
8552 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8553 struct task_struct *task,
8554 perf_overflow_handler_t overflow_handler,
8555 void *context)
8556 {
8557 struct perf_event_context *ctx;
8558 struct perf_event *event;
8559 int err;
8560
8561 /*
8562 * Get the target context (task or percpu):
8563 */
8564
8565 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8566 overflow_handler, context, -1);
8567 if (IS_ERR(event)) {
8568 err = PTR_ERR(event);
8569 goto err;
8570 }
8571
8572 /* Mark owner so we could distinguish it from user events. */
8573 event->owner = EVENT_OWNER_KERNEL;
8574
8575 account_event(event);
8576
8577 ctx = find_get_context(event->pmu, task, event);
8578 if (IS_ERR(ctx)) {
8579 err = PTR_ERR(ctx);
8580 goto err_free;
8581 }
8582
8583 WARN_ON_ONCE(ctx->parent_ctx);
8584 mutex_lock(&ctx->mutex);
8585 if (!exclusive_event_installable(event, ctx)) {
8586 mutex_unlock(&ctx->mutex);
8587 perf_unpin_context(ctx);
8588 put_ctx(ctx);
8589 err = -EBUSY;
8590 goto err_free;
8591 }
8592
8593 perf_install_in_context(ctx, event, cpu);
8594 perf_unpin_context(ctx);
8595 mutex_unlock(&ctx->mutex);
8596
8597 return event;
8598
8599 err_free:
8600 free_event(event);
8601 err:
8602 return ERR_PTR(err);
8603 }
8604 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8605
8606 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8607 {
8608 struct perf_event_context *src_ctx;
8609 struct perf_event_context *dst_ctx;
8610 struct perf_event *event, *tmp;
8611 LIST_HEAD(events);
8612
8613 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8614 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8615
8616 /*
8617 * See perf_event_ctx_lock() for comments on the details
8618 * of swizzling perf_event::ctx.
8619 */
8620 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8621 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8622 event_entry) {
8623 perf_remove_from_context(event, false);
8624 unaccount_event_cpu(event, src_cpu);
8625 put_ctx(src_ctx);
8626 list_add(&event->migrate_entry, &events);
8627 }
8628
8629 /*
8630 * Wait for the events to quiesce before re-instating them.
8631 */
8632 synchronize_rcu();
8633
8634 /*
8635 * Re-instate events in 2 passes.
8636 *
8637 * Skip over group leaders and only install siblings on this first
8638 * pass, siblings will not get enabled without a leader, however a
8639 * leader will enable its siblings, even if those are still on the old
8640 * context.
8641 */
8642 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8643 if (event->group_leader == event)
8644 continue;
8645
8646 list_del(&event->migrate_entry);
8647 if (event->state >= PERF_EVENT_STATE_OFF)
8648 event->state = PERF_EVENT_STATE_INACTIVE;
8649 account_event_cpu(event, dst_cpu);
8650 perf_install_in_context(dst_ctx, event, dst_cpu);
8651 get_ctx(dst_ctx);
8652 }
8653
8654 /*
8655 * Once all the siblings are setup properly, install the group leaders
8656 * to make it go.
8657 */
8658 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8659 list_del(&event->migrate_entry);
8660 if (event->state >= PERF_EVENT_STATE_OFF)
8661 event->state = PERF_EVENT_STATE_INACTIVE;
8662 account_event_cpu(event, dst_cpu);
8663 perf_install_in_context(dst_ctx, event, dst_cpu);
8664 get_ctx(dst_ctx);
8665 }
8666 mutex_unlock(&dst_ctx->mutex);
8667 mutex_unlock(&src_ctx->mutex);
8668 }
8669 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8670
8671 static void sync_child_event(struct perf_event *child_event,
8672 struct task_struct *child)
8673 {
8674 struct perf_event *parent_event = child_event->parent;
8675 u64 child_val;
8676
8677 if (child_event->attr.inherit_stat)
8678 perf_event_read_event(child_event, child);
8679
8680 child_val = perf_event_count(child_event);
8681
8682 /*
8683 * Add back the child's count to the parent's count:
8684 */
8685 atomic64_add(child_val, &parent_event->child_count);
8686 atomic64_add(child_event->total_time_enabled,
8687 &parent_event->child_total_time_enabled);
8688 atomic64_add(child_event->total_time_running,
8689 &parent_event->child_total_time_running);
8690
8691 /*
8692 * Remove this event from the parent's list
8693 */
8694 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8695 mutex_lock(&parent_event->child_mutex);
8696 list_del_init(&child_event->child_list);
8697 mutex_unlock(&parent_event->child_mutex);
8698
8699 /*
8700 * Make sure user/parent get notified, that we just
8701 * lost one event.
8702 */
8703 perf_event_wakeup(parent_event);
8704
8705 /*
8706 * Release the parent event, if this was the last
8707 * reference to it.
8708 */
8709 put_event(parent_event);
8710 }
8711
8712 static void
8713 __perf_event_exit_task(struct perf_event *child_event,
8714 struct perf_event_context *child_ctx,
8715 struct task_struct *child)
8716 {
8717 /*
8718 * Do not destroy the 'original' grouping; because of the context
8719 * switch optimization the original events could've ended up in a
8720 * random child task.
8721 *
8722 * If we were to destroy the original group, all group related
8723 * operations would cease to function properly after this random
8724 * child dies.
8725 *
8726 * Do destroy all inherited groups, we don't care about those
8727 * and being thorough is better.
8728 */
8729 perf_remove_from_context(child_event, !!child_event->parent);
8730
8731 /*
8732 * It can happen that the parent exits first, and has events
8733 * that are still around due to the child reference. These
8734 * events need to be zapped.
8735 */
8736 if (child_event->parent) {
8737 sync_child_event(child_event, child);
8738 free_event(child_event);
8739 } else {
8740 child_event->state = PERF_EVENT_STATE_EXIT;
8741 perf_event_wakeup(child_event);
8742 }
8743 }
8744
8745 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8746 {
8747 struct perf_event *child_event, *next;
8748 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8749 unsigned long flags;
8750
8751 if (likely(!child->perf_event_ctxp[ctxn]))
8752 return;
8753
8754 local_irq_save(flags);
8755 /*
8756 * We can't reschedule here because interrupts are disabled,
8757 * and either child is current or it is a task that can't be
8758 * scheduled, so we are now safe from rescheduling changing
8759 * our context.
8760 */
8761 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8762
8763 /*
8764 * Take the context lock here so that if find_get_context is
8765 * reading child->perf_event_ctxp, we wait until it has
8766 * incremented the context's refcount before we do put_ctx below.
8767 */
8768 raw_spin_lock(&child_ctx->lock);
8769 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8770 child->perf_event_ctxp[ctxn] = NULL;
8771
8772 /*
8773 * If this context is a clone; unclone it so it can't get
8774 * swapped to another process while we're removing all
8775 * the events from it.
8776 */
8777 clone_ctx = unclone_ctx(child_ctx);
8778 update_context_time(child_ctx);
8779 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8780
8781 if (clone_ctx)
8782 put_ctx(clone_ctx);
8783
8784 /*
8785 * Report the task dead after unscheduling the events so that we
8786 * won't get any samples after PERF_RECORD_EXIT. We can however still
8787 * get a few PERF_RECORD_READ events.
8788 */
8789 perf_event_task(child, child_ctx, 0);
8790
8791 /*
8792 * We can recurse on the same lock type through:
8793 *
8794 * __perf_event_exit_task()
8795 * sync_child_event()
8796 * put_event()
8797 * mutex_lock(&ctx->mutex)
8798 *
8799 * But since its the parent context it won't be the same instance.
8800 */
8801 mutex_lock(&child_ctx->mutex);
8802
8803 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8804 __perf_event_exit_task(child_event, child_ctx, child);
8805
8806 mutex_unlock(&child_ctx->mutex);
8807
8808 put_ctx(child_ctx);
8809 }
8810
8811 /*
8812 * When a child task exits, feed back event values to parent events.
8813 */
8814 void perf_event_exit_task(struct task_struct *child)
8815 {
8816 struct perf_event *event, *tmp;
8817 int ctxn;
8818
8819 mutex_lock(&child->perf_event_mutex);
8820 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8821 owner_entry) {
8822 list_del_init(&event->owner_entry);
8823
8824 /*
8825 * Ensure the list deletion is visible before we clear
8826 * the owner, closes a race against perf_release() where
8827 * we need to serialize on the owner->perf_event_mutex.
8828 */
8829 smp_wmb();
8830 event->owner = NULL;
8831 }
8832 mutex_unlock(&child->perf_event_mutex);
8833
8834 for_each_task_context_nr(ctxn)
8835 perf_event_exit_task_context(child, ctxn);
8836
8837 /*
8838 * The perf_event_exit_task_context calls perf_event_task
8839 * with child's task_ctx, which generates EXIT events for
8840 * child contexts and sets child->perf_event_ctxp[] to NULL.
8841 * At this point we need to send EXIT events to cpu contexts.
8842 */
8843 perf_event_task(child, NULL, 0);
8844 }
8845
8846 static void perf_free_event(struct perf_event *event,
8847 struct perf_event_context *ctx)
8848 {
8849 struct perf_event *parent = event->parent;
8850
8851 if (WARN_ON_ONCE(!parent))
8852 return;
8853
8854 mutex_lock(&parent->child_mutex);
8855 list_del_init(&event->child_list);
8856 mutex_unlock(&parent->child_mutex);
8857
8858 put_event(parent);
8859
8860 raw_spin_lock_irq(&ctx->lock);
8861 perf_group_detach(event);
8862 list_del_event(event, ctx);
8863 raw_spin_unlock_irq(&ctx->lock);
8864 free_event(event);
8865 }
8866
8867 /*
8868 * Free an unexposed, unused context as created by inheritance by
8869 * perf_event_init_task below, used by fork() in case of fail.
8870 *
8871 * Not all locks are strictly required, but take them anyway to be nice and
8872 * help out with the lockdep assertions.
8873 */
8874 void perf_event_free_task(struct task_struct *task)
8875 {
8876 struct perf_event_context *ctx;
8877 struct perf_event *event, *tmp;
8878 int ctxn;
8879
8880 for_each_task_context_nr(ctxn) {
8881 ctx = task->perf_event_ctxp[ctxn];
8882 if (!ctx)
8883 continue;
8884
8885 mutex_lock(&ctx->mutex);
8886 again:
8887 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8888 group_entry)
8889 perf_free_event(event, ctx);
8890
8891 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8892 group_entry)
8893 perf_free_event(event, ctx);
8894
8895 if (!list_empty(&ctx->pinned_groups) ||
8896 !list_empty(&ctx->flexible_groups))
8897 goto again;
8898
8899 mutex_unlock(&ctx->mutex);
8900
8901 put_ctx(ctx);
8902 }
8903 }
8904
8905 void perf_event_delayed_put(struct task_struct *task)
8906 {
8907 int ctxn;
8908
8909 for_each_task_context_nr(ctxn)
8910 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8911 }
8912
8913 struct perf_event *perf_event_get(unsigned int fd)
8914 {
8915 int err;
8916 struct fd f;
8917 struct perf_event *event;
8918
8919 err = perf_fget_light(fd, &f);
8920 if (err)
8921 return ERR_PTR(err);
8922
8923 event = f.file->private_data;
8924 atomic_long_inc(&event->refcount);
8925 fdput(f);
8926
8927 return event;
8928 }
8929
8930 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8931 {
8932 if (!event)
8933 return ERR_PTR(-EINVAL);
8934
8935 return &event->attr;
8936 }
8937
8938 /*
8939 * inherit a event from parent task to child task:
8940 */
8941 static struct perf_event *
8942 inherit_event(struct perf_event *parent_event,
8943 struct task_struct *parent,
8944 struct perf_event_context *parent_ctx,
8945 struct task_struct *child,
8946 struct perf_event *group_leader,
8947 struct perf_event_context *child_ctx)
8948 {
8949 enum perf_event_active_state parent_state = parent_event->state;
8950 struct perf_event *child_event;
8951 unsigned long flags;
8952
8953 /*
8954 * Instead of creating recursive hierarchies of events,
8955 * we link inherited events back to the original parent,
8956 * which has a filp for sure, which we use as the reference
8957 * count:
8958 */
8959 if (parent_event->parent)
8960 parent_event = parent_event->parent;
8961
8962 child_event = perf_event_alloc(&parent_event->attr,
8963 parent_event->cpu,
8964 child,
8965 group_leader, parent_event,
8966 NULL, NULL, -1);
8967 if (IS_ERR(child_event))
8968 return child_event;
8969
8970 if (is_orphaned_event(parent_event) ||
8971 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8972 free_event(child_event);
8973 return NULL;
8974 }
8975
8976 get_ctx(child_ctx);
8977
8978 /*
8979 * Make the child state follow the state of the parent event,
8980 * not its attr.disabled bit. We hold the parent's mutex,
8981 * so we won't race with perf_event_{en, dis}able_family.
8982 */
8983 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8984 child_event->state = PERF_EVENT_STATE_INACTIVE;
8985 else
8986 child_event->state = PERF_EVENT_STATE_OFF;
8987
8988 if (parent_event->attr.freq) {
8989 u64 sample_period = parent_event->hw.sample_period;
8990 struct hw_perf_event *hwc = &child_event->hw;
8991
8992 hwc->sample_period = sample_period;
8993 hwc->last_period = sample_period;
8994
8995 local64_set(&hwc->period_left, sample_period);
8996 }
8997
8998 child_event->ctx = child_ctx;
8999 child_event->overflow_handler = parent_event->overflow_handler;
9000 child_event->overflow_handler_context
9001 = parent_event->overflow_handler_context;
9002
9003 /*
9004 * Precalculate sample_data sizes
9005 */
9006 perf_event__header_size(child_event);
9007 perf_event__id_header_size(child_event);
9008
9009 /*
9010 * Link it up in the child's context:
9011 */
9012 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9013 add_event_to_ctx(child_event, child_ctx);
9014 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9015
9016 /*
9017 * Link this into the parent event's child list
9018 */
9019 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9020 mutex_lock(&parent_event->child_mutex);
9021 list_add_tail(&child_event->child_list, &parent_event->child_list);
9022 mutex_unlock(&parent_event->child_mutex);
9023
9024 return child_event;
9025 }
9026
9027 static int inherit_group(struct perf_event *parent_event,
9028 struct task_struct *parent,
9029 struct perf_event_context *parent_ctx,
9030 struct task_struct *child,
9031 struct perf_event_context *child_ctx)
9032 {
9033 struct perf_event *leader;
9034 struct perf_event *sub;
9035 struct perf_event *child_ctr;
9036
9037 leader = inherit_event(parent_event, parent, parent_ctx,
9038 child, NULL, child_ctx);
9039 if (IS_ERR(leader))
9040 return PTR_ERR(leader);
9041 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9042 child_ctr = inherit_event(sub, parent, parent_ctx,
9043 child, leader, child_ctx);
9044 if (IS_ERR(child_ctr))
9045 return PTR_ERR(child_ctr);
9046 }
9047 return 0;
9048 }
9049
9050 static int
9051 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9052 struct perf_event_context *parent_ctx,
9053 struct task_struct *child, int ctxn,
9054 int *inherited_all)
9055 {
9056 int ret;
9057 struct perf_event_context *child_ctx;
9058
9059 if (!event->attr.inherit) {
9060 *inherited_all = 0;
9061 return 0;
9062 }
9063
9064 child_ctx = child->perf_event_ctxp[ctxn];
9065 if (!child_ctx) {
9066 /*
9067 * This is executed from the parent task context, so
9068 * inherit events that have been marked for cloning.
9069 * First allocate and initialize a context for the
9070 * child.
9071 */
9072
9073 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9074 if (!child_ctx)
9075 return -ENOMEM;
9076
9077 child->perf_event_ctxp[ctxn] = child_ctx;
9078 }
9079
9080 ret = inherit_group(event, parent, parent_ctx,
9081 child, child_ctx);
9082
9083 if (ret)
9084 *inherited_all = 0;
9085
9086 return ret;
9087 }
9088
9089 /*
9090 * Initialize the perf_event context in task_struct
9091 */
9092 static int perf_event_init_context(struct task_struct *child, int ctxn)
9093 {
9094 struct perf_event_context *child_ctx, *parent_ctx;
9095 struct perf_event_context *cloned_ctx;
9096 struct perf_event *event;
9097 struct task_struct *parent = current;
9098 int inherited_all = 1;
9099 unsigned long flags;
9100 int ret = 0;
9101
9102 if (likely(!parent->perf_event_ctxp[ctxn]))
9103 return 0;
9104
9105 /*
9106 * If the parent's context is a clone, pin it so it won't get
9107 * swapped under us.
9108 */
9109 parent_ctx = perf_pin_task_context(parent, ctxn);
9110 if (!parent_ctx)
9111 return 0;
9112
9113 /*
9114 * No need to check if parent_ctx != NULL here; since we saw
9115 * it non-NULL earlier, the only reason for it to become NULL
9116 * is if we exit, and since we're currently in the middle of
9117 * a fork we can't be exiting at the same time.
9118 */
9119
9120 /*
9121 * Lock the parent list. No need to lock the child - not PID
9122 * hashed yet and not running, so nobody can access it.
9123 */
9124 mutex_lock(&parent_ctx->mutex);
9125
9126 /*
9127 * We dont have to disable NMIs - we are only looking at
9128 * the list, not manipulating it:
9129 */
9130 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9131 ret = inherit_task_group(event, parent, parent_ctx,
9132 child, ctxn, &inherited_all);
9133 if (ret)
9134 break;
9135 }
9136
9137 /*
9138 * We can't hold ctx->lock when iterating the ->flexible_group list due
9139 * to allocations, but we need to prevent rotation because
9140 * rotate_ctx() will change the list from interrupt context.
9141 */
9142 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9143 parent_ctx->rotate_disable = 1;
9144 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9145
9146 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9147 ret = inherit_task_group(event, parent, parent_ctx,
9148 child, ctxn, &inherited_all);
9149 if (ret)
9150 break;
9151 }
9152
9153 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9154 parent_ctx->rotate_disable = 0;
9155
9156 child_ctx = child->perf_event_ctxp[ctxn];
9157
9158 if (child_ctx && inherited_all) {
9159 /*
9160 * Mark the child context as a clone of the parent
9161 * context, or of whatever the parent is a clone of.
9162 *
9163 * Note that if the parent is a clone, the holding of
9164 * parent_ctx->lock avoids it from being uncloned.
9165 */
9166 cloned_ctx = parent_ctx->parent_ctx;
9167 if (cloned_ctx) {
9168 child_ctx->parent_ctx = cloned_ctx;
9169 child_ctx->parent_gen = parent_ctx->parent_gen;
9170 } else {
9171 child_ctx->parent_ctx = parent_ctx;
9172 child_ctx->parent_gen = parent_ctx->generation;
9173 }
9174 get_ctx(child_ctx->parent_ctx);
9175 }
9176
9177 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9178 mutex_unlock(&parent_ctx->mutex);
9179
9180 perf_unpin_context(parent_ctx);
9181 put_ctx(parent_ctx);
9182
9183 return ret;
9184 }
9185
9186 /*
9187 * Initialize the perf_event context in task_struct
9188 */
9189 int perf_event_init_task(struct task_struct *child)
9190 {
9191 int ctxn, ret;
9192
9193 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9194 mutex_init(&child->perf_event_mutex);
9195 INIT_LIST_HEAD(&child->perf_event_list);
9196
9197 for_each_task_context_nr(ctxn) {
9198 ret = perf_event_init_context(child, ctxn);
9199 if (ret) {
9200 perf_event_free_task(child);
9201 return ret;
9202 }
9203 }
9204
9205 return 0;
9206 }
9207
9208 static void __init perf_event_init_all_cpus(void)
9209 {
9210 struct swevent_htable *swhash;
9211 int cpu;
9212
9213 for_each_possible_cpu(cpu) {
9214 swhash = &per_cpu(swevent_htable, cpu);
9215 mutex_init(&swhash->hlist_mutex);
9216 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9217 }
9218 }
9219
9220 static void perf_event_init_cpu(int cpu)
9221 {
9222 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9223
9224 mutex_lock(&swhash->hlist_mutex);
9225 if (swhash->hlist_refcount > 0) {
9226 struct swevent_hlist *hlist;
9227
9228 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9229 WARN_ON(!hlist);
9230 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231 }
9232 mutex_unlock(&swhash->hlist_mutex);
9233 }
9234
9235 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9236 static void __perf_event_exit_context(void *__info)
9237 {
9238 struct remove_event re = { .detach_group = true };
9239 struct perf_event_context *ctx = __info;
9240
9241 rcu_read_lock();
9242 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9243 __perf_remove_from_context(&re);
9244 rcu_read_unlock();
9245 }
9246
9247 static void perf_event_exit_cpu_context(int cpu)
9248 {
9249 struct perf_event_context *ctx;
9250 struct pmu *pmu;
9251 int idx;
9252
9253 idx = srcu_read_lock(&pmus_srcu);
9254 list_for_each_entry_rcu(pmu, &pmus, entry) {
9255 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9256
9257 mutex_lock(&ctx->mutex);
9258 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9259 mutex_unlock(&ctx->mutex);
9260 }
9261 srcu_read_unlock(&pmus_srcu, idx);
9262 }
9263
9264 static void perf_event_exit_cpu(int cpu)
9265 {
9266 perf_event_exit_cpu_context(cpu);
9267 }
9268 #else
9269 static inline void perf_event_exit_cpu(int cpu) { }
9270 #endif
9271
9272 static int
9273 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9274 {
9275 int cpu;
9276
9277 for_each_online_cpu(cpu)
9278 perf_event_exit_cpu(cpu);
9279
9280 return NOTIFY_OK;
9281 }
9282
9283 /*
9284 * Run the perf reboot notifier at the very last possible moment so that
9285 * the generic watchdog code runs as long as possible.
9286 */
9287 static struct notifier_block perf_reboot_notifier = {
9288 .notifier_call = perf_reboot,
9289 .priority = INT_MIN,
9290 };
9291
9292 static int
9293 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9294 {
9295 unsigned int cpu = (long)hcpu;
9296
9297 switch (action & ~CPU_TASKS_FROZEN) {
9298
9299 case CPU_UP_PREPARE:
9300 case CPU_DOWN_FAILED:
9301 perf_event_init_cpu(cpu);
9302 break;
9303
9304 case CPU_UP_CANCELED:
9305 case CPU_DOWN_PREPARE:
9306 perf_event_exit_cpu(cpu);
9307 break;
9308 default:
9309 break;
9310 }
9311
9312 return NOTIFY_OK;
9313 }
9314
9315 void __init perf_event_init(void)
9316 {
9317 int ret;
9318
9319 idr_init(&pmu_idr);
9320
9321 perf_event_init_all_cpus();
9322 init_srcu_struct(&pmus_srcu);
9323 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9324 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9325 perf_pmu_register(&perf_task_clock, NULL, -1);
9326 perf_tp_register();
9327 perf_cpu_notifier(perf_cpu_notify);
9328 register_reboot_notifier(&perf_reboot_notifier);
9329
9330 ret = init_hw_breakpoint();
9331 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9332
9333 /* do not patch jump label more than once per second */
9334 jump_label_rate_limit(&perf_sched_events, HZ);
9335
9336 /*
9337 * Build time assertion that we keep the data_head at the intended
9338 * location. IOW, validation we got the __reserved[] size right.
9339 */
9340 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9341 != 1024);
9342 }
9343
9344 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9345 char *page)
9346 {
9347 struct perf_pmu_events_attr *pmu_attr =
9348 container_of(attr, struct perf_pmu_events_attr, attr);
9349
9350 if (pmu_attr->event_str)
9351 return sprintf(page, "%s\n", pmu_attr->event_str);
9352
9353 return 0;
9354 }
9355
9356 static int __init perf_event_sysfs_init(void)
9357 {
9358 struct pmu *pmu;
9359 int ret;
9360
9361 mutex_lock(&pmus_lock);
9362
9363 ret = bus_register(&pmu_bus);
9364 if (ret)
9365 goto unlock;
9366
9367 list_for_each_entry(pmu, &pmus, entry) {
9368 if (!pmu->name || pmu->type < 0)
9369 continue;
9370
9371 ret = pmu_dev_alloc(pmu);
9372 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9373 }
9374 pmu_bus_running = 1;
9375 ret = 0;
9376
9377 unlock:
9378 mutex_unlock(&pmus_lock);
9379
9380 return ret;
9381 }
9382 device_initcall(perf_event_sysfs_init);
9383
9384 #ifdef CONFIG_CGROUP_PERF
9385 static struct cgroup_subsys_state *
9386 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9387 {
9388 struct perf_cgroup *jc;
9389
9390 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9391 if (!jc)
9392 return ERR_PTR(-ENOMEM);
9393
9394 jc->info = alloc_percpu(struct perf_cgroup_info);
9395 if (!jc->info) {
9396 kfree(jc);
9397 return ERR_PTR(-ENOMEM);
9398 }
9399
9400 return &jc->css;
9401 }
9402
9403 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9404 {
9405 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9406
9407 free_percpu(jc->info);
9408 kfree(jc);
9409 }
9410
9411 static int __perf_cgroup_move(void *info)
9412 {
9413 struct task_struct *task = info;
9414 rcu_read_lock();
9415 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9416 rcu_read_unlock();
9417 return 0;
9418 }
9419
9420 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9421 {
9422 struct task_struct *task;
9423 struct cgroup_subsys_state *css;
9424
9425 cgroup_taskset_for_each(task, css, tset)
9426 task_function_call(task, __perf_cgroup_move, task);
9427 }
9428
9429 struct cgroup_subsys perf_event_cgrp_subsys = {
9430 .css_alloc = perf_cgroup_css_alloc,
9431 .css_free = perf_cgroup_css_free,
9432 .attach = perf_cgroup_attach,
9433 };
9434 #endif /* CONFIG_CGROUP_PERF */
This page took 0.239768 seconds and 6 git commands to generate.