Merge branch 'for-4.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 typedef int (*remote_function_f)(void *);
53
54 struct remote_function_call {
55 struct task_struct *p;
56 remote_function_f func;
57 void *info;
58 int ret;
59 };
60
61 static void remote_function(void *data)
62 {
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82 }
83
84 /**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 struct remote_function_call data = {
101 .p = p,
102 .func = func,
103 .info = info,
104 .ret = -EAGAIN,
105 };
106 int ret;
107
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
113
114 return ret;
115 }
116
117 /**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 struct remote_function_call data = {
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138 }
139
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
148 {
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152 }
153
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156 {
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161
162 #define TASK_TOMBSTONE ((void *)-1L)
163
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168
169 /*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191 struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195 };
196
197 static int event_function(void *info)
198 {
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
201 struct perf_event_context *ctx = event->ctx;
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 int ret = 0;
205
206 WARN_ON_ONCE(!irqs_disabled());
207
208 perf_ctx_lock(cpuctx, task_ctx);
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
212 */
213 if (ctx->task) {
214 if (ctx->task != current) {
215 ret = -ESRCH;
216 goto unlock;
217 }
218
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 }
235
236 efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 perf_ctx_unlock(cpuctx, task_ctx);
239
240 return ret;
241 }
242
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 struct perf_event_context *ctx = event->ctx;
258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
264
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
273
274 if (!task) {
275 cpu_function_call(event->cpu, event_function, &efs);
276 return;
277 }
278
279 if (task == TASK_TOMBSTONE)
280 return;
281
282 again:
283 if (!task_function_call(task, event_function, &efs))
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
295 }
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
301 raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
308
309 /*
310 * branch priv levels that need permission checks
311 */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
316 enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_TIME = 0x4,
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322
323 /*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
327
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346
347 /*
348 * perf event paranoia level:
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
351 * 1 - disallow cpu events for unpriv
352 * 2 - disallow kernel profiling for unpriv
353 */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358
359 /*
360 * max perf event sample rate
361 */
362 #define DEFAULT_MAX_SAMPLE_RATE 100000
363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
371 static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373
374 static void update_perf_cpu_limits(void)
375 {
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
384 }
385
386 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
388 int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391 {
392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402 }
403
404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409 {
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
415 if (sysctl_perf_cpu_time_max_percent == 100) {
416 printk(KERN_WARNING
417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 WRITE_ONCE(perf_sample_allowed_ns, 0);
419 } else {
420 update_perf_cpu_limits();
421 }
422
423 return 0;
424 }
425
426 /*
427 * perf samples are done in some very critical code paths (NMIs).
428 * If they take too much CPU time, the system can lock up and not
429 * get any real work done. This will drop the sample rate when
430 * we detect that events are taking too long.
431 */
432 #define NR_ACCUMULATED_SAMPLES 128
433 static DEFINE_PER_CPU(u64, running_sample_length);
434
435 static u64 __report_avg;
436 static u64 __report_allowed;
437
438 static void perf_duration_warn(struct irq_work *w)
439 {
440 printk_ratelimited(KERN_WARNING
441 "perf: interrupt took too long (%lld > %lld), lowering "
442 "kernel.perf_event_max_sample_rate to %d\n",
443 __report_avg, __report_allowed,
444 sysctl_perf_event_sample_rate);
445 }
446
447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448
449 void perf_sample_event_took(u64 sample_len_ns)
450 {
451 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 u64 running_len;
453 u64 avg_len;
454 u32 max;
455
456 if (max_len == 0)
457 return;
458
459 /* Decay the counter by 1 average sample. */
460 running_len = __this_cpu_read(running_sample_length);
461 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 running_len += sample_len_ns;
463 __this_cpu_write(running_sample_length, running_len);
464
465 /*
466 * Note: this will be biased artifically low until we have
467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 * from having to maintain a count.
469 */
470 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 if (avg_len <= max_len)
472 return;
473
474 __report_avg = avg_len;
475 __report_allowed = max_len;
476
477 /*
478 * Compute a throttle threshold 25% below the current duration.
479 */
480 avg_len += avg_len / 4;
481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 if (avg_len < max)
483 max /= (u32)avg_len;
484 else
485 max = 1;
486
487 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 WRITE_ONCE(max_samples_per_tick, max);
489
490 sysctl_perf_event_sample_rate = max * HZ;
491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492
493 if (!irq_work_queue(&perf_duration_work)) {
494 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495 "kernel.perf_event_max_sample_rate to %d\n",
496 __report_avg, __report_allowed,
497 sysctl_perf_event_sample_rate);
498 }
499 }
500
501 static atomic64_t perf_event_id;
502
503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 enum event_type_t event_type);
505
506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
507 enum event_type_t event_type,
508 struct task_struct *task);
509
510 static void update_context_time(struct perf_event_context *ctx);
511 static u64 perf_event_time(struct perf_event *event);
512
513 void __weak perf_event_print_debug(void) { }
514
515 extern __weak const char *perf_pmu_name(void)
516 {
517 return "pmu";
518 }
519
520 static inline u64 perf_clock(void)
521 {
522 return local_clock();
523 }
524
525 static inline u64 perf_event_clock(struct perf_event *event)
526 {
527 return event->clock();
528 }
529
530 #ifdef CONFIG_CGROUP_PERF
531
532 static inline bool
533 perf_cgroup_match(struct perf_event *event)
534 {
535 struct perf_event_context *ctx = event->ctx;
536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537
538 /* @event doesn't care about cgroup */
539 if (!event->cgrp)
540 return true;
541
542 /* wants specific cgroup scope but @cpuctx isn't associated with any */
543 if (!cpuctx->cgrp)
544 return false;
545
546 /*
547 * Cgroup scoping is recursive. An event enabled for a cgroup is
548 * also enabled for all its descendant cgroups. If @cpuctx's
549 * cgroup is a descendant of @event's (the test covers identity
550 * case), it's a match.
551 */
552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 event->cgrp->css.cgroup);
554 }
555
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {
558 css_put(&event->cgrp->css);
559 event->cgrp = NULL;
560 }
561
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 return event->cgrp != NULL;
565 }
566
567 static inline u64 perf_cgroup_event_time(struct perf_event *event)
568 {
569 struct perf_cgroup_info *t;
570
571 t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 return t->time;
573 }
574
575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576 {
577 struct perf_cgroup_info *info;
578 u64 now;
579
580 now = perf_clock();
581
582 info = this_cpu_ptr(cgrp->info);
583
584 info->time += now - info->timestamp;
585 info->timestamp = now;
586 }
587
588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589 {
590 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 if (cgrp_out)
592 __update_cgrp_time(cgrp_out);
593 }
594
595 static inline void update_cgrp_time_from_event(struct perf_event *event)
596 {
597 struct perf_cgroup *cgrp;
598
599 /*
600 * ensure we access cgroup data only when needed and
601 * when we know the cgroup is pinned (css_get)
602 */
603 if (!is_cgroup_event(event))
604 return;
605
606 cgrp = perf_cgroup_from_task(current, event->ctx);
607 /*
608 * Do not update time when cgroup is not active
609 */
610 if (cgrp == event->cgrp)
611 __update_cgrp_time(event->cgrp);
612 }
613
614 static inline void
615 perf_cgroup_set_timestamp(struct task_struct *task,
616 struct perf_event_context *ctx)
617 {
618 struct perf_cgroup *cgrp;
619 struct perf_cgroup_info *info;
620
621 /*
622 * ctx->lock held by caller
623 * ensure we do not access cgroup data
624 * unless we have the cgroup pinned (css_get)
625 */
626 if (!task || !ctx->nr_cgroups)
627 return;
628
629 cgrp = perf_cgroup_from_task(task, ctx);
630 info = this_cpu_ptr(cgrp->info);
631 info->timestamp = ctx->timestamp;
632 }
633
634 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
635 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
636
637 /*
638 * reschedule events based on the cgroup constraint of task.
639 *
640 * mode SWOUT : schedule out everything
641 * mode SWIN : schedule in based on cgroup for next
642 */
643 static void perf_cgroup_switch(struct task_struct *task, int mode)
644 {
645 struct perf_cpu_context *cpuctx;
646 struct pmu *pmu;
647 unsigned long flags;
648
649 /*
650 * disable interrupts to avoid geting nr_cgroup
651 * changes via __perf_event_disable(). Also
652 * avoids preemption.
653 */
654 local_irq_save(flags);
655
656 /*
657 * we reschedule only in the presence of cgroup
658 * constrained events.
659 */
660
661 list_for_each_entry_rcu(pmu, &pmus, entry) {
662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 if (cpuctx->unique_pmu != pmu)
664 continue; /* ensure we process each cpuctx once */
665
666 /*
667 * perf_cgroup_events says at least one
668 * context on this CPU has cgroup events.
669 *
670 * ctx->nr_cgroups reports the number of cgroup
671 * events for a context.
672 */
673 if (cpuctx->ctx.nr_cgroups > 0) {
674 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 perf_pmu_disable(cpuctx->ctx.pmu);
676
677 if (mode & PERF_CGROUP_SWOUT) {
678 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 /*
680 * must not be done before ctxswout due
681 * to event_filter_match() in event_sched_out()
682 */
683 cpuctx->cgrp = NULL;
684 }
685
686 if (mode & PERF_CGROUP_SWIN) {
687 WARN_ON_ONCE(cpuctx->cgrp);
688 /*
689 * set cgrp before ctxsw in to allow
690 * event_filter_match() to not have to pass
691 * task around
692 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 * because cgorup events are only per-cpu
694 */
695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 }
698 perf_pmu_enable(cpuctx->ctx.pmu);
699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
700 }
701 }
702
703 local_irq_restore(flags);
704 }
705
706 static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
708 {
709 struct perf_cgroup *cgrp1;
710 struct perf_cgroup *cgrp2 = NULL;
711
712 rcu_read_lock();
713 /*
714 * we come here when we know perf_cgroup_events > 0
715 * we do not need to pass the ctx here because we know
716 * we are holding the rcu lock
717 */
718 cgrp1 = perf_cgroup_from_task(task, NULL);
719 cgrp2 = perf_cgroup_from_task(next, NULL);
720
721 /*
722 * only schedule out current cgroup events if we know
723 * that we are switching to a different cgroup. Otherwise,
724 * do no touch the cgroup events.
725 */
726 if (cgrp1 != cgrp2)
727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728
729 rcu_read_unlock();
730 }
731
732 static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
734 {
735 struct perf_cgroup *cgrp1;
736 struct perf_cgroup *cgrp2 = NULL;
737
738 rcu_read_lock();
739 /*
740 * we come here when we know perf_cgroup_events > 0
741 * we do not need to pass the ctx here because we know
742 * we are holding the rcu lock
743 */
744 cgrp1 = perf_cgroup_from_task(task, NULL);
745 cgrp2 = perf_cgroup_from_task(prev, NULL);
746
747 /*
748 * only need to schedule in cgroup events if we are changing
749 * cgroup during ctxsw. Cgroup events were not scheduled
750 * out of ctxsw out if that was not the case.
751 */
752 if (cgrp1 != cgrp2)
753 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754
755 rcu_read_unlock();
756 }
757
758 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 struct perf_event_attr *attr,
760 struct perf_event *group_leader)
761 {
762 struct perf_cgroup *cgrp;
763 struct cgroup_subsys_state *css;
764 struct fd f = fdget(fd);
765 int ret = 0;
766
767 if (!f.file)
768 return -EBADF;
769
770 css = css_tryget_online_from_dir(f.file->f_path.dentry,
771 &perf_event_cgrp_subsys);
772 if (IS_ERR(css)) {
773 ret = PTR_ERR(css);
774 goto out;
775 }
776
777 cgrp = container_of(css, struct perf_cgroup, css);
778 event->cgrp = cgrp;
779
780 /*
781 * all events in a group must monitor
782 * the same cgroup because a task belongs
783 * to only one perf cgroup at a time
784 */
785 if (group_leader && group_leader->cgrp != cgrp) {
786 perf_detach_cgroup(event);
787 ret = -EINVAL;
788 }
789 out:
790 fdput(f);
791 return ret;
792 }
793
794 static inline void
795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796 {
797 struct perf_cgroup_info *t;
798 t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 event->shadow_ctx_time = now - t->timestamp;
800 }
801
802 static inline void
803 perf_cgroup_defer_enabled(struct perf_event *event)
804 {
805 /*
806 * when the current task's perf cgroup does not match
807 * the event's, we need to remember to call the
808 * perf_mark_enable() function the first time a task with
809 * a matching perf cgroup is scheduled in.
810 */
811 if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 event->cgrp_defer_enabled = 1;
813 }
814
815 static inline void
816 perf_cgroup_mark_enabled(struct perf_event *event,
817 struct perf_event_context *ctx)
818 {
819 struct perf_event *sub;
820 u64 tstamp = perf_event_time(event);
821
822 if (!event->cgrp_defer_enabled)
823 return;
824
825 event->cgrp_defer_enabled = 0;
826
827 event->tstamp_enabled = tstamp - event->total_time_enabled;
828 list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 sub->cgrp_defer_enabled = 0;
832 }
833 }
834 }
835 #else /* !CONFIG_CGROUP_PERF */
836
837 static inline bool
838 perf_cgroup_match(struct perf_event *event)
839 {
840 return true;
841 }
842
843 static inline void perf_detach_cgroup(struct perf_event *event)
844 {}
845
846 static inline int is_cgroup_event(struct perf_event *event)
847 {
848 return 0;
849 }
850
851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852 {
853 return 0;
854 }
855
856 static inline void update_cgrp_time_from_event(struct perf_event *event)
857 {
858 }
859
860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861 {
862 }
863
864 static inline void perf_cgroup_sched_out(struct task_struct *task,
865 struct task_struct *next)
866 {
867 }
868
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
871 {
872 }
873
874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 struct perf_event_attr *attr,
876 struct perf_event *group_leader)
877 {
878 return -EINVAL;
879 }
880
881 static inline void
882 perf_cgroup_set_timestamp(struct task_struct *task,
883 struct perf_event_context *ctx)
884 {
885 }
886
887 void
888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889 {
890 }
891
892 static inline void
893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894 {
895 }
896
897 static inline u64 perf_cgroup_event_time(struct perf_event *event)
898 {
899 return 0;
900 }
901
902 static inline void
903 perf_cgroup_defer_enabled(struct perf_event *event)
904 {
905 }
906
907 static inline void
908 perf_cgroup_mark_enabled(struct perf_event *event,
909 struct perf_event_context *ctx)
910 {
911 }
912 #endif
913
914 /*
915 * set default to be dependent on timer tick just
916 * like original code
917 */
918 #define PERF_CPU_HRTIMER (1000 / HZ)
919 /*
920 * function must be called with interrupts disbled
921 */
922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 {
924 struct perf_cpu_context *cpuctx;
925 int rotations = 0;
926
927 WARN_ON(!irqs_disabled());
928
929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
930 rotations = perf_rotate_context(cpuctx);
931
932 raw_spin_lock(&cpuctx->hrtimer_lock);
933 if (rotations)
934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
935 else
936 cpuctx->hrtimer_active = 0;
937 raw_spin_unlock(&cpuctx->hrtimer_lock);
938
939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 }
941
942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943 {
944 struct hrtimer *timer = &cpuctx->hrtimer;
945 struct pmu *pmu = cpuctx->ctx.pmu;
946 u64 interval;
947
948 /* no multiplexing needed for SW PMU */
949 if (pmu->task_ctx_nr == perf_sw_context)
950 return;
951
952 /*
953 * check default is sane, if not set then force to
954 * default interval (1/tick)
955 */
956 interval = pmu->hrtimer_interval_ms;
957 if (interval < 1)
958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959
960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961
962 raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964 timer->function = perf_mux_hrtimer_handler;
965 }
966
967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968 {
969 struct hrtimer *timer = &cpuctx->hrtimer;
970 struct pmu *pmu = cpuctx->ctx.pmu;
971 unsigned long flags;
972
973 /* not for SW PMU */
974 if (pmu->task_ctx_nr == perf_sw_context)
975 return 0;
976
977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 if (!cpuctx->hrtimer_active) {
979 cpuctx->hrtimer_active = 1;
980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 }
983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984
985 return 0;
986 }
987
988 void perf_pmu_disable(struct pmu *pmu)
989 {
990 int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 if (!(*count)++)
992 pmu->pmu_disable(pmu);
993 }
994
995 void perf_pmu_enable(struct pmu *pmu)
996 {
997 int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 if (!--(*count))
999 pmu->pmu_enable(pmu);
1000 }
1001
1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003
1004 /*
1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006 * perf_event_task_tick() are fully serialized because they're strictly cpu
1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008 * disabled, while perf_event_task_tick is called from IRQ context.
1009 */
1010 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011 {
1012 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013
1014 WARN_ON(!irqs_disabled());
1015
1016 WARN_ON(!list_empty(&ctx->active_ctx_list));
1017
1018 list_add(&ctx->active_ctx_list, head);
1019 }
1020
1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022 {
1023 WARN_ON(!irqs_disabled());
1024
1025 WARN_ON(list_empty(&ctx->active_ctx_list));
1026
1027 list_del_init(&ctx->active_ctx_list);
1028 }
1029
1030 static void get_ctx(struct perf_event_context *ctx)
1031 {
1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 }
1034
1035 static void free_ctx(struct rcu_head *head)
1036 {
1037 struct perf_event_context *ctx;
1038
1039 ctx = container_of(head, struct perf_event_context, rcu_head);
1040 kfree(ctx->task_ctx_data);
1041 kfree(ctx);
1042 }
1043
1044 static void put_ctx(struct perf_event_context *ctx)
1045 {
1046 if (atomic_dec_and_test(&ctx->refcount)) {
1047 if (ctx->parent_ctx)
1048 put_ctx(ctx->parent_ctx);
1049 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050 put_task_struct(ctx->task);
1051 call_rcu(&ctx->rcu_head, free_ctx);
1052 }
1053 }
1054
1055 /*
1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057 * perf_pmu_migrate_context() we need some magic.
1058 *
1059 * Those places that change perf_event::ctx will hold both
1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061 *
1062 * Lock ordering is by mutex address. There are two other sites where
1063 * perf_event_context::mutex nests and those are:
1064 *
1065 * - perf_event_exit_task_context() [ child , 0 ]
1066 * perf_event_exit_event()
1067 * put_event() [ parent, 1 ]
1068 *
1069 * - perf_event_init_context() [ parent, 0 ]
1070 * inherit_task_group()
1071 * inherit_group()
1072 * inherit_event()
1073 * perf_event_alloc()
1074 * perf_init_event()
1075 * perf_try_init_event() [ child , 1 ]
1076 *
1077 * While it appears there is an obvious deadlock here -- the parent and child
1078 * nesting levels are inverted between the two. This is in fact safe because
1079 * life-time rules separate them. That is an exiting task cannot fork, and a
1080 * spawning task cannot (yet) exit.
1081 *
1082 * But remember that that these are parent<->child context relations, and
1083 * migration does not affect children, therefore these two orderings should not
1084 * interact.
1085 *
1086 * The change in perf_event::ctx does not affect children (as claimed above)
1087 * because the sys_perf_event_open() case will install a new event and break
1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089 * concerned with cpuctx and that doesn't have children.
1090 *
1091 * The places that change perf_event::ctx will issue:
1092 *
1093 * perf_remove_from_context();
1094 * synchronize_rcu();
1095 * perf_install_in_context();
1096 *
1097 * to affect the change. The remove_from_context() + synchronize_rcu() should
1098 * quiesce the event, after which we can install it in the new location. This
1099 * means that only external vectors (perf_fops, prctl) can perturb the event
1100 * while in transit. Therefore all such accessors should also acquire
1101 * perf_event_context::mutex to serialize against this.
1102 *
1103 * However; because event->ctx can change while we're waiting to acquire
1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105 * function.
1106 *
1107 * Lock order:
1108 * task_struct::perf_event_mutex
1109 * perf_event_context::mutex
1110 * perf_event::child_mutex;
1111 * perf_event_context::lock
1112 * perf_event::mmap_mutex
1113 * mmap_sem
1114 */
1115 static struct perf_event_context *
1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1117 {
1118 struct perf_event_context *ctx;
1119
1120 again:
1121 rcu_read_lock();
1122 ctx = ACCESS_ONCE(event->ctx);
1123 if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 rcu_read_unlock();
1125 goto again;
1126 }
1127 rcu_read_unlock();
1128
1129 mutex_lock_nested(&ctx->mutex, nesting);
1130 if (event->ctx != ctx) {
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133 goto again;
1134 }
1135
1136 return ctx;
1137 }
1138
1139 static inline struct perf_event_context *
1140 perf_event_ctx_lock(struct perf_event *event)
1141 {
1142 return perf_event_ctx_lock_nested(event, 0);
1143 }
1144
1145 static void perf_event_ctx_unlock(struct perf_event *event,
1146 struct perf_event_context *ctx)
1147 {
1148 mutex_unlock(&ctx->mutex);
1149 put_ctx(ctx);
1150 }
1151
1152 /*
1153 * This must be done under the ctx->lock, such as to serialize against
1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155 * calling scheduler related locks and ctx->lock nests inside those.
1156 */
1157 static __must_check struct perf_event_context *
1158 unclone_ctx(struct perf_event_context *ctx)
1159 {
1160 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161
1162 lockdep_assert_held(&ctx->lock);
1163
1164 if (parent_ctx)
1165 ctx->parent_ctx = NULL;
1166 ctx->generation++;
1167
1168 return parent_ctx;
1169 }
1170
1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172 {
1173 /*
1174 * only top level events have the pid namespace they were created in
1175 */
1176 if (event->parent)
1177 event = event->parent;
1178
1179 return task_tgid_nr_ns(p, event->ns);
1180 }
1181
1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183 {
1184 /*
1185 * only top level events have the pid namespace they were created in
1186 */
1187 if (event->parent)
1188 event = event->parent;
1189
1190 return task_pid_nr_ns(p, event->ns);
1191 }
1192
1193 /*
1194 * If we inherit events we want to return the parent event id
1195 * to userspace.
1196 */
1197 static u64 primary_event_id(struct perf_event *event)
1198 {
1199 u64 id = event->id;
1200
1201 if (event->parent)
1202 id = event->parent->id;
1203
1204 return id;
1205 }
1206
1207 /*
1208 * Get the perf_event_context for a task and lock it.
1209 *
1210 * This has to cope with with the fact that until it is locked,
1211 * the context could get moved to another task.
1212 */
1213 static struct perf_event_context *
1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215 {
1216 struct perf_event_context *ctx;
1217
1218 retry:
1219 /*
1220 * One of the few rules of preemptible RCU is that one cannot do
1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222 * part of the read side critical section was irqs-enabled -- see
1223 * rcu_read_unlock_special().
1224 *
1225 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226 * side critical section has interrupts disabled.
1227 */
1228 local_irq_save(*flags);
1229 rcu_read_lock();
1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 if (ctx) {
1232 /*
1233 * If this context is a clone of another, it might
1234 * get swapped for another underneath us by
1235 * perf_event_task_sched_out, though the
1236 * rcu_read_lock() protects us from any context
1237 * getting freed. Lock the context and check if it
1238 * got swapped before we could get the lock, and retry
1239 * if so. If we locked the right context, then it
1240 * can't get swapped on us any more.
1241 */
1242 raw_spin_lock(&ctx->lock);
1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244 raw_spin_unlock(&ctx->lock);
1245 rcu_read_unlock();
1246 local_irq_restore(*flags);
1247 goto retry;
1248 }
1249
1250 if (ctx->task == TASK_TOMBSTONE ||
1251 !atomic_inc_not_zero(&ctx->refcount)) {
1252 raw_spin_unlock(&ctx->lock);
1253 ctx = NULL;
1254 } else {
1255 WARN_ON_ONCE(ctx->task != task);
1256 }
1257 }
1258 rcu_read_unlock();
1259 if (!ctx)
1260 local_irq_restore(*flags);
1261 return ctx;
1262 }
1263
1264 /*
1265 * Get the context for a task and increment its pin_count so it
1266 * can't get swapped to another task. This also increments its
1267 * reference count so that the context can't get freed.
1268 */
1269 static struct perf_event_context *
1270 perf_pin_task_context(struct task_struct *task, int ctxn)
1271 {
1272 struct perf_event_context *ctx;
1273 unsigned long flags;
1274
1275 ctx = perf_lock_task_context(task, ctxn, &flags);
1276 if (ctx) {
1277 ++ctx->pin_count;
1278 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 }
1280 return ctx;
1281 }
1282
1283 static void perf_unpin_context(struct perf_event_context *ctx)
1284 {
1285 unsigned long flags;
1286
1287 raw_spin_lock_irqsave(&ctx->lock, flags);
1288 --ctx->pin_count;
1289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 }
1291
1292 /*
1293 * Update the record of the current time in a context.
1294 */
1295 static void update_context_time(struct perf_event_context *ctx)
1296 {
1297 u64 now = perf_clock();
1298
1299 ctx->time += now - ctx->timestamp;
1300 ctx->timestamp = now;
1301 }
1302
1303 static u64 perf_event_time(struct perf_event *event)
1304 {
1305 struct perf_event_context *ctx = event->ctx;
1306
1307 if (is_cgroup_event(event))
1308 return perf_cgroup_event_time(event);
1309
1310 return ctx ? ctx->time : 0;
1311 }
1312
1313 /*
1314 * Update the total_time_enabled and total_time_running fields for a event.
1315 */
1316 static void update_event_times(struct perf_event *event)
1317 {
1318 struct perf_event_context *ctx = event->ctx;
1319 u64 run_end;
1320
1321 lockdep_assert_held(&ctx->lock);
1322
1323 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 return;
1326
1327 /*
1328 * in cgroup mode, time_enabled represents
1329 * the time the event was enabled AND active
1330 * tasks were in the monitored cgroup. This is
1331 * independent of the activity of the context as
1332 * there may be a mix of cgroup and non-cgroup events.
1333 *
1334 * That is why we treat cgroup events differently
1335 * here.
1336 */
1337 if (is_cgroup_event(event))
1338 run_end = perf_cgroup_event_time(event);
1339 else if (ctx->is_active)
1340 run_end = ctx->time;
1341 else
1342 run_end = event->tstamp_stopped;
1343
1344 event->total_time_enabled = run_end - event->tstamp_enabled;
1345
1346 if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 run_end = event->tstamp_stopped;
1348 else
1349 run_end = perf_event_time(event);
1350
1351 event->total_time_running = run_end - event->tstamp_running;
1352
1353 }
1354
1355 /*
1356 * Update total_time_enabled and total_time_running for all events in a group.
1357 */
1358 static void update_group_times(struct perf_event *leader)
1359 {
1360 struct perf_event *event;
1361
1362 update_event_times(leader);
1363 list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 update_event_times(event);
1365 }
1366
1367 static struct list_head *
1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 if (event->attr.pinned)
1371 return &ctx->pinned_groups;
1372 else
1373 return &ctx->flexible_groups;
1374 }
1375
1376 /*
1377 * Add a event from the lists for its context.
1378 * Must be called with ctx->mutex and ctx->lock held.
1379 */
1380 static void
1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382 {
1383 lockdep_assert_held(&ctx->lock);
1384
1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 event->attach_state |= PERF_ATTACH_CONTEXT;
1387
1388 /*
1389 * If we're a stand alone event or group leader, we go to the context
1390 * list, group events are kept attached to the group so that
1391 * perf_group_detach can, at all times, locate all siblings.
1392 */
1393 if (event->group_leader == event) {
1394 struct list_head *list;
1395
1396 if (is_software_event(event))
1397 event->group_flags |= PERF_GROUP_SOFTWARE;
1398
1399 list = ctx_group_list(event, ctx);
1400 list_add_tail(&event->group_entry, list);
1401 }
1402
1403 if (is_cgroup_event(event))
1404 ctx->nr_cgroups++;
1405
1406 list_add_rcu(&event->event_entry, &ctx->event_list);
1407 ctx->nr_events++;
1408 if (event->attr.inherit_stat)
1409 ctx->nr_stat++;
1410
1411 ctx->generation++;
1412 }
1413
1414 /*
1415 * Initialize event state based on the perf_event_attr::disabled.
1416 */
1417 static inline void perf_event__state_init(struct perf_event *event)
1418 {
1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 PERF_EVENT_STATE_INACTIVE;
1421 }
1422
1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 {
1425 int entry = sizeof(u64); /* value */
1426 int size = 0;
1427 int nr = 1;
1428
1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 size += sizeof(u64);
1431
1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 size += sizeof(u64);
1434
1435 if (event->attr.read_format & PERF_FORMAT_ID)
1436 entry += sizeof(u64);
1437
1438 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1439 nr += nr_siblings;
1440 size += sizeof(u64);
1441 }
1442
1443 size += entry * nr;
1444 event->read_size = size;
1445 }
1446
1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 {
1449 struct perf_sample_data *data;
1450 u16 size = 0;
1451
1452 if (sample_type & PERF_SAMPLE_IP)
1453 size += sizeof(data->ip);
1454
1455 if (sample_type & PERF_SAMPLE_ADDR)
1456 size += sizeof(data->addr);
1457
1458 if (sample_type & PERF_SAMPLE_PERIOD)
1459 size += sizeof(data->period);
1460
1461 if (sample_type & PERF_SAMPLE_WEIGHT)
1462 size += sizeof(data->weight);
1463
1464 if (sample_type & PERF_SAMPLE_READ)
1465 size += event->read_size;
1466
1467 if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 size += sizeof(data->data_src.val);
1469
1470 if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 size += sizeof(data->txn);
1472
1473 event->header_size = size;
1474 }
1475
1476 /*
1477 * Called at perf_event creation and when events are attached/detached from a
1478 * group.
1479 */
1480 static void perf_event__header_size(struct perf_event *event)
1481 {
1482 __perf_event_read_size(event,
1483 event->group_leader->nr_siblings);
1484 __perf_event_header_size(event, event->attr.sample_type);
1485 }
1486
1487 static void perf_event__id_header_size(struct perf_event *event)
1488 {
1489 struct perf_sample_data *data;
1490 u64 sample_type = event->attr.sample_type;
1491 u16 size = 0;
1492
1493 if (sample_type & PERF_SAMPLE_TID)
1494 size += sizeof(data->tid_entry);
1495
1496 if (sample_type & PERF_SAMPLE_TIME)
1497 size += sizeof(data->time);
1498
1499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 size += sizeof(data->id);
1501
1502 if (sample_type & PERF_SAMPLE_ID)
1503 size += sizeof(data->id);
1504
1505 if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 size += sizeof(data->stream_id);
1507
1508 if (sample_type & PERF_SAMPLE_CPU)
1509 size += sizeof(data->cpu_entry);
1510
1511 event->id_header_size = size;
1512 }
1513
1514 static bool perf_event_validate_size(struct perf_event *event)
1515 {
1516 /*
1517 * The values computed here will be over-written when we actually
1518 * attach the event.
1519 */
1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 perf_event__id_header_size(event);
1523
1524 /*
1525 * Sum the lot; should not exceed the 64k limit we have on records.
1526 * Conservative limit to allow for callchains and other variable fields.
1527 */
1528 if (event->read_size + event->header_size +
1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 return false;
1531
1532 return true;
1533 }
1534
1535 static void perf_group_attach(struct perf_event *event)
1536 {
1537 struct perf_event *group_leader = event->group_leader, *pos;
1538
1539 /*
1540 * We can have double attach due to group movement in perf_event_open.
1541 */
1542 if (event->attach_state & PERF_ATTACH_GROUP)
1543 return;
1544
1545 event->attach_state |= PERF_ATTACH_GROUP;
1546
1547 if (group_leader == event)
1548 return;
1549
1550 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551
1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 !is_software_event(event))
1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555
1556 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 group_leader->nr_siblings++;
1558
1559 perf_event__header_size(group_leader);
1560
1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 perf_event__header_size(pos);
1563 }
1564
1565 /*
1566 * Remove a event from the lists for its context.
1567 * Must be called with ctx->mutex and ctx->lock held.
1568 */
1569 static void
1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571 {
1572 struct perf_cpu_context *cpuctx;
1573
1574 WARN_ON_ONCE(event->ctx != ctx);
1575 lockdep_assert_held(&ctx->lock);
1576
1577 /*
1578 * We can have double detach due to exit/hot-unplug + close.
1579 */
1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581 return;
1582
1583 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584
1585 if (is_cgroup_event(event)) {
1586 ctx->nr_cgroups--;
1587 /*
1588 * Because cgroup events are always per-cpu events, this will
1589 * always be called from the right CPU.
1590 */
1591 cpuctx = __get_cpu_context(ctx);
1592 /*
1593 * If there are no more cgroup events then clear cgrp to avoid
1594 * stale pointer in update_cgrp_time_from_cpuctx().
1595 */
1596 if (!ctx->nr_cgroups)
1597 cpuctx->cgrp = NULL;
1598 }
1599
1600 ctx->nr_events--;
1601 if (event->attr.inherit_stat)
1602 ctx->nr_stat--;
1603
1604 list_del_rcu(&event->event_entry);
1605
1606 if (event->group_leader == event)
1607 list_del_init(&event->group_entry);
1608
1609 update_group_times(event);
1610
1611 /*
1612 * If event was in error state, then keep it
1613 * that way, otherwise bogus counts will be
1614 * returned on read(). The only way to get out
1615 * of error state is by explicit re-enabling
1616 * of the event
1617 */
1618 if (event->state > PERF_EVENT_STATE_OFF)
1619 event->state = PERF_EVENT_STATE_OFF;
1620
1621 ctx->generation++;
1622 }
1623
1624 static void perf_group_detach(struct perf_event *event)
1625 {
1626 struct perf_event *sibling, *tmp;
1627 struct list_head *list = NULL;
1628
1629 /*
1630 * We can have double detach due to exit/hot-unplug + close.
1631 */
1632 if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 return;
1634
1635 event->attach_state &= ~PERF_ATTACH_GROUP;
1636
1637 /*
1638 * If this is a sibling, remove it from its group.
1639 */
1640 if (event->group_leader != event) {
1641 list_del_init(&event->group_entry);
1642 event->group_leader->nr_siblings--;
1643 goto out;
1644 }
1645
1646 if (!list_empty(&event->group_entry))
1647 list = &event->group_entry;
1648
1649 /*
1650 * If this was a group event with sibling events then
1651 * upgrade the siblings to singleton events by adding them
1652 * to whatever list we are on.
1653 */
1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 if (list)
1656 list_move_tail(&sibling->group_entry, list);
1657 sibling->group_leader = sibling;
1658
1659 /* Inherit group flags from the previous leader */
1660 sibling->group_flags = event->group_flags;
1661
1662 WARN_ON_ONCE(sibling->ctx != event->ctx);
1663 }
1664
1665 out:
1666 perf_event__header_size(event->group_leader);
1667
1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 perf_event__header_size(tmp);
1670 }
1671
1672 static bool is_orphaned_event(struct perf_event *event)
1673 {
1674 return event->state == PERF_EVENT_STATE_DEAD;
1675 }
1676
1677 static inline int pmu_filter_match(struct perf_event *event)
1678 {
1679 struct pmu *pmu = event->pmu;
1680 return pmu->filter_match ? pmu->filter_match(event) : 1;
1681 }
1682
1683 static inline int
1684 event_filter_match(struct perf_event *event)
1685 {
1686 return (event->cpu == -1 || event->cpu == smp_processor_id())
1687 && perf_cgroup_match(event) && pmu_filter_match(event);
1688 }
1689
1690 static void
1691 event_sched_out(struct perf_event *event,
1692 struct perf_cpu_context *cpuctx,
1693 struct perf_event_context *ctx)
1694 {
1695 u64 tstamp = perf_event_time(event);
1696 u64 delta;
1697
1698 WARN_ON_ONCE(event->ctx != ctx);
1699 lockdep_assert_held(&ctx->lock);
1700
1701 /*
1702 * An event which could not be activated because of
1703 * filter mismatch still needs to have its timings
1704 * maintained, otherwise bogus information is return
1705 * via read() for time_enabled, time_running:
1706 */
1707 if (event->state == PERF_EVENT_STATE_INACTIVE
1708 && !event_filter_match(event)) {
1709 delta = tstamp - event->tstamp_stopped;
1710 event->tstamp_running += delta;
1711 event->tstamp_stopped = tstamp;
1712 }
1713
1714 if (event->state != PERF_EVENT_STATE_ACTIVE)
1715 return;
1716
1717 perf_pmu_disable(event->pmu);
1718
1719 event->tstamp_stopped = tstamp;
1720 event->pmu->del(event, 0);
1721 event->oncpu = -1;
1722 event->state = PERF_EVENT_STATE_INACTIVE;
1723 if (event->pending_disable) {
1724 event->pending_disable = 0;
1725 event->state = PERF_EVENT_STATE_OFF;
1726 }
1727
1728 if (!is_software_event(event))
1729 cpuctx->active_oncpu--;
1730 if (!--ctx->nr_active)
1731 perf_event_ctx_deactivate(ctx);
1732 if (event->attr.freq && event->attr.sample_freq)
1733 ctx->nr_freq--;
1734 if (event->attr.exclusive || !cpuctx->active_oncpu)
1735 cpuctx->exclusive = 0;
1736
1737 perf_pmu_enable(event->pmu);
1738 }
1739
1740 static void
1741 group_sched_out(struct perf_event *group_event,
1742 struct perf_cpu_context *cpuctx,
1743 struct perf_event_context *ctx)
1744 {
1745 struct perf_event *event;
1746 int state = group_event->state;
1747
1748 event_sched_out(group_event, cpuctx, ctx);
1749
1750 /*
1751 * Schedule out siblings (if any):
1752 */
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 event_sched_out(event, cpuctx, ctx);
1755
1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 cpuctx->exclusive = 0;
1758 }
1759
1760 #define DETACH_GROUP 0x01UL
1761
1762 /*
1763 * Cross CPU call to remove a performance event
1764 *
1765 * We disable the event on the hardware level first. After that we
1766 * remove it from the context list.
1767 */
1768 static void
1769 __perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
1773 {
1774 unsigned long flags = (unsigned long)info;
1775
1776 event_sched_out(event, cpuctx, ctx);
1777 if (flags & DETACH_GROUP)
1778 perf_group_detach(event);
1779 list_del_event(event, ctx);
1780
1781 if (!ctx->nr_events && ctx->is_active) {
1782 ctx->is_active = 0;
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Remove the event from a task's (or a CPU's) list of events.
1792 *
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
1797 * When called from perf_event_exit_task, it's OK because the
1798 * context has been detached from its task.
1799 */
1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1801 {
1802 lockdep_assert_held(&event->ctx->mutex);
1803
1804 event_function_call(event, __perf_remove_from_context, (void *)flags);
1805 }
1806
1807 /*
1808 * Cross CPU call to disable a performance event
1809 */
1810 static void __perf_event_disable(struct perf_event *event,
1811 struct perf_cpu_context *cpuctx,
1812 struct perf_event_context *ctx,
1813 void *info)
1814 {
1815 if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 return;
1817
1818 update_context_time(ctx);
1819 update_cgrp_time_from_event(event);
1820 update_group_times(event);
1821 if (event == event->group_leader)
1822 group_sched_out(event, cpuctx, ctx);
1823 else
1824 event_sched_out(event, cpuctx, ctx);
1825 event->state = PERF_EVENT_STATE_OFF;
1826 }
1827
1828 /*
1829 * Disable a event.
1830 *
1831 * If event->ctx is a cloned context, callers must make sure that
1832 * every task struct that event->ctx->task could possibly point to
1833 * remains valid. This condition is satisifed when called through
1834 * perf_event_for_each_child or perf_event_for_each because they
1835 * hold the top-level event's child_mutex, so any descendant that
1836 * goes to exit will block in perf_event_exit_event().
1837 *
1838 * When called from perf_pending_event it's OK because event->ctx
1839 * is the current context on this CPU and preemption is disabled,
1840 * hence we can't get into perf_event_task_sched_out for this context.
1841 */
1842 static void _perf_event_disable(struct perf_event *event)
1843 {
1844 struct perf_event_context *ctx = event->ctx;
1845
1846 raw_spin_lock_irq(&ctx->lock);
1847 if (event->state <= PERF_EVENT_STATE_OFF) {
1848 raw_spin_unlock_irq(&ctx->lock);
1849 return;
1850 }
1851 raw_spin_unlock_irq(&ctx->lock);
1852
1853 event_function_call(event, __perf_event_disable, NULL);
1854 }
1855
1856 void perf_event_disable_local(struct perf_event *event)
1857 {
1858 event_function_local(event, __perf_event_disable, NULL);
1859 }
1860
1861 /*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865 void perf_event_disable(struct perf_event *event)
1866 {
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872 }
1873 EXPORT_SYMBOL_GPL(perf_event_disable);
1874
1875 static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878 {
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908 }
1909
1910 #define MAX_INTERRUPTS (~0ULL)
1911
1912 static void perf_log_throttle(struct perf_event *event, int enable);
1913 static void perf_log_itrace_start(struct perf_event *event);
1914
1915 static int
1916 event_sched_in(struct perf_event *event,
1917 struct perf_cpu_context *cpuctx,
1918 struct perf_event_context *ctx)
1919 {
1920 u64 tstamp = perf_event_time(event);
1921 int ret = 0;
1922
1923 lockdep_assert_held(&ctx->lock);
1924
1925 if (event->state <= PERF_EVENT_STATE_OFF)
1926 return 0;
1927
1928 event->state = PERF_EVENT_STATE_ACTIVE;
1929 event->oncpu = smp_processor_id();
1930
1931 /*
1932 * Unthrottle events, since we scheduled we might have missed several
1933 * ticks already, also for a heavily scheduling task there is little
1934 * guarantee it'll get a tick in a timely manner.
1935 */
1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 perf_log_throttle(event, 1);
1938 event->hw.interrupts = 0;
1939 }
1940
1941 /*
1942 * The new state must be visible before we turn it on in the hardware:
1943 */
1944 smp_wmb();
1945
1946 perf_pmu_disable(event->pmu);
1947
1948 perf_set_shadow_time(event, ctx, tstamp);
1949
1950 perf_log_itrace_start(event);
1951
1952 if (event->pmu->add(event, PERF_EF_START)) {
1953 event->state = PERF_EVENT_STATE_INACTIVE;
1954 event->oncpu = -1;
1955 ret = -EAGAIN;
1956 goto out;
1957 }
1958
1959 event->tstamp_running += tstamp - event->tstamp_stopped;
1960
1961 if (!is_software_event(event))
1962 cpuctx->active_oncpu++;
1963 if (!ctx->nr_active++)
1964 perf_event_ctx_activate(ctx);
1965 if (event->attr.freq && event->attr.sample_freq)
1966 ctx->nr_freq++;
1967
1968 if (event->attr.exclusive)
1969 cpuctx->exclusive = 1;
1970
1971 out:
1972 perf_pmu_enable(event->pmu);
1973
1974 return ret;
1975 }
1976
1977 static int
1978 group_sched_in(struct perf_event *group_event,
1979 struct perf_cpu_context *cpuctx,
1980 struct perf_event_context *ctx)
1981 {
1982 struct perf_event *event, *partial_group = NULL;
1983 struct pmu *pmu = ctx->pmu;
1984 u64 now = ctx->time;
1985 bool simulate = false;
1986
1987 if (group_event->state == PERF_EVENT_STATE_OFF)
1988 return 0;
1989
1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991
1992 if (event_sched_in(group_event, cpuctx, ctx)) {
1993 pmu->cancel_txn(pmu);
1994 perf_mux_hrtimer_restart(cpuctx);
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Schedule in siblings as one group (if any):
2000 */
2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002 if (event_sched_in(event, cpuctx, ctx)) {
2003 partial_group = event;
2004 goto group_error;
2005 }
2006 }
2007
2008 if (!pmu->commit_txn(pmu))
2009 return 0;
2010
2011 group_error:
2012 /*
2013 * Groups can be scheduled in as one unit only, so undo any
2014 * partial group before returning:
2015 * The events up to the failed event are scheduled out normally,
2016 * tstamp_stopped will be updated.
2017 *
2018 * The failed events and the remaining siblings need to have
2019 * their timings updated as if they had gone thru event_sched_in()
2020 * and event_sched_out(). This is required to get consistent timings
2021 * across the group. This also takes care of the case where the group
2022 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 * the time the event was actually stopped, such that time delta
2024 * calculation in update_event_times() is correct.
2025 */
2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 if (event == partial_group)
2028 simulate = true;
2029
2030 if (simulate) {
2031 event->tstamp_running += now - event->tstamp_stopped;
2032 event->tstamp_stopped = now;
2033 } else {
2034 event_sched_out(event, cpuctx, ctx);
2035 }
2036 }
2037 event_sched_out(group_event, cpuctx, ctx);
2038
2039 pmu->cancel_txn(pmu);
2040
2041 perf_mux_hrtimer_restart(cpuctx);
2042
2043 return -EAGAIN;
2044 }
2045
2046 /*
2047 * Work out whether we can put this event group on the CPU now.
2048 */
2049 static int group_can_go_on(struct perf_event *event,
2050 struct perf_cpu_context *cpuctx,
2051 int can_add_hw)
2052 {
2053 /*
2054 * Groups consisting entirely of software events can always go on.
2055 */
2056 if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 return 1;
2058 /*
2059 * If an exclusive group is already on, no other hardware
2060 * events can go on.
2061 */
2062 if (cpuctx->exclusive)
2063 return 0;
2064 /*
2065 * If this group is exclusive and there are already
2066 * events on the CPU, it can't go on.
2067 */
2068 if (event->attr.exclusive && cpuctx->active_oncpu)
2069 return 0;
2070 /*
2071 * Otherwise, try to add it if all previous groups were able
2072 * to go on.
2073 */
2074 return can_add_hw;
2075 }
2076
2077 static void add_event_to_ctx(struct perf_event *event,
2078 struct perf_event_context *ctx)
2079 {
2080 u64 tstamp = perf_event_time(event);
2081
2082 list_add_event(event, ctx);
2083 perf_group_attach(event);
2084 event->tstamp_enabled = tstamp;
2085 event->tstamp_running = tstamp;
2086 event->tstamp_stopped = tstamp;
2087 }
2088
2089 static void ctx_sched_out(struct perf_event_context *ctx,
2090 struct perf_cpu_context *cpuctx,
2091 enum event_type_t event_type);
2092 static void
2093 ctx_sched_in(struct perf_event_context *ctx,
2094 struct perf_cpu_context *cpuctx,
2095 enum event_type_t event_type,
2096 struct task_struct *task);
2097
2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2099 struct perf_event_context *ctx)
2100 {
2101 if (!cpuctx->task_ctx)
2102 return;
2103
2104 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2105 return;
2106
2107 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2108 }
2109
2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2111 struct perf_event_context *ctx,
2112 struct task_struct *task)
2113 {
2114 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2115 if (ctx)
2116 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2117 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2118 if (ctx)
2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120 }
2121
2122 static void ctx_resched(struct perf_cpu_context *cpuctx,
2123 struct perf_event_context *task_ctx)
2124 {
2125 perf_pmu_disable(cpuctx->ctx.pmu);
2126 if (task_ctx)
2127 task_ctx_sched_out(cpuctx, task_ctx);
2128 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2129 perf_event_sched_in(cpuctx, task_ctx, current);
2130 perf_pmu_enable(cpuctx->ctx.pmu);
2131 }
2132
2133 /*
2134 * Cross CPU call to install and enable a performance event
2135 *
2136 * Very similar to remote_function() + event_function() but cannot assume that
2137 * things like ctx->is_active and cpuctx->task_ctx are set.
2138 */
2139 static int __perf_install_in_context(void *info)
2140 {
2141 struct perf_event *event = info;
2142 struct perf_event_context *ctx = event->ctx;
2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 bool activate = true;
2146 int ret = 0;
2147
2148 raw_spin_lock(&cpuctx->ctx.lock);
2149 if (ctx->task) {
2150 raw_spin_lock(&ctx->lock);
2151 task_ctx = ctx;
2152
2153 /* If we're on the wrong CPU, try again */
2154 if (task_cpu(ctx->task) != smp_processor_id()) {
2155 ret = -ESRCH;
2156 goto unlock;
2157 }
2158
2159 /*
2160 * If we're on the right CPU, see if the task we target is
2161 * current, if not we don't have to activate the ctx, a future
2162 * context switch will do that for us.
2163 */
2164 if (ctx->task != current)
2165 activate = false;
2166 else
2167 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2168
2169 } else if (task_ctx) {
2170 raw_spin_lock(&task_ctx->lock);
2171 }
2172
2173 if (activate) {
2174 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2175 add_event_to_ctx(event, ctx);
2176 ctx_resched(cpuctx, task_ctx);
2177 } else {
2178 add_event_to_ctx(event, ctx);
2179 }
2180
2181 unlock:
2182 perf_ctx_unlock(cpuctx, task_ctx);
2183
2184 return ret;
2185 }
2186
2187 /*
2188 * Attach a performance event to a context.
2189 *
2190 * Very similar to event_function_call, see comment there.
2191 */
2192 static void
2193 perf_install_in_context(struct perf_event_context *ctx,
2194 struct perf_event *event,
2195 int cpu)
2196 {
2197 struct task_struct *task = READ_ONCE(ctx->task);
2198
2199 lockdep_assert_held(&ctx->mutex);
2200
2201 event->ctx = ctx;
2202 if (event->cpu != -1)
2203 event->cpu = cpu;
2204
2205 if (!task) {
2206 cpu_function_call(cpu, __perf_install_in_context, event);
2207 return;
2208 }
2209
2210 /*
2211 * Should not happen, we validate the ctx is still alive before calling.
2212 */
2213 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2214 return;
2215
2216 /*
2217 * Installing events is tricky because we cannot rely on ctx->is_active
2218 * to be set in case this is the nr_events 0 -> 1 transition.
2219 */
2220 again:
2221 /*
2222 * Cannot use task_function_call() because we need to run on the task's
2223 * CPU regardless of whether its current or not.
2224 */
2225 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2226 return;
2227
2228 raw_spin_lock_irq(&ctx->lock);
2229 task = ctx->task;
2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 /*
2232 * Cannot happen because we already checked above (which also
2233 * cannot happen), and we hold ctx->mutex, which serializes us
2234 * against perf_event_exit_task_context().
2235 */
2236 raw_spin_unlock_irq(&ctx->lock);
2237 return;
2238 }
2239 raw_spin_unlock_irq(&ctx->lock);
2240 /*
2241 * Since !ctx->is_active doesn't mean anything, we must IPI
2242 * unconditionally.
2243 */
2244 goto again;
2245 }
2246
2247 /*
2248 * Put a event into inactive state and update time fields.
2249 * Enabling the leader of a group effectively enables all
2250 * the group members that aren't explicitly disabled, so we
2251 * have to update their ->tstamp_enabled also.
2252 * Note: this works for group members as well as group leaders
2253 * since the non-leader members' sibling_lists will be empty.
2254 */
2255 static void __perf_event_mark_enabled(struct perf_event *event)
2256 {
2257 struct perf_event *sub;
2258 u64 tstamp = perf_event_time(event);
2259
2260 event->state = PERF_EVENT_STATE_INACTIVE;
2261 event->tstamp_enabled = tstamp - event->total_time_enabled;
2262 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2264 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2265 }
2266 }
2267
2268 /*
2269 * Cross CPU call to enable a performance event
2270 */
2271 static void __perf_event_enable(struct perf_event *event,
2272 struct perf_cpu_context *cpuctx,
2273 struct perf_event_context *ctx,
2274 void *info)
2275 {
2276 struct perf_event *leader = event->group_leader;
2277 struct perf_event_context *task_ctx;
2278
2279 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2280 event->state <= PERF_EVENT_STATE_ERROR)
2281 return;
2282
2283 if (ctx->is_active)
2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285
2286 __perf_event_mark_enabled(event);
2287
2288 if (!ctx->is_active)
2289 return;
2290
2291 if (!event_filter_match(event)) {
2292 if (is_cgroup_event(event))
2293 perf_cgroup_defer_enabled(event);
2294 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295 return;
2296 }
2297
2298 /*
2299 * If the event is in a group and isn't the group leader,
2300 * then don't put it on unless the group is on.
2301 */
2302 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 return;
2305 }
2306
2307 task_ctx = cpuctx->task_ctx;
2308 if (ctx->task)
2309 WARN_ON_ONCE(task_ctx != ctx);
2310
2311 ctx_resched(cpuctx, task_ctx);
2312 }
2313
2314 /*
2315 * Enable a event.
2316 *
2317 * If event->ctx is a cloned context, callers must make sure that
2318 * every task struct that event->ctx->task could possibly point to
2319 * remains valid. This condition is satisfied when called through
2320 * perf_event_for_each_child or perf_event_for_each as described
2321 * for perf_event_disable.
2322 */
2323 static void _perf_event_enable(struct perf_event *event)
2324 {
2325 struct perf_event_context *ctx = event->ctx;
2326
2327 raw_spin_lock_irq(&ctx->lock);
2328 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2329 event->state < PERF_EVENT_STATE_ERROR) {
2330 raw_spin_unlock_irq(&ctx->lock);
2331 return;
2332 }
2333
2334 /*
2335 * If the event is in error state, clear that first.
2336 *
2337 * That way, if we see the event in error state below, we know that it
2338 * has gone back into error state, as distinct from the task having
2339 * been scheduled away before the cross-call arrived.
2340 */
2341 if (event->state == PERF_EVENT_STATE_ERROR)
2342 event->state = PERF_EVENT_STATE_OFF;
2343 raw_spin_unlock_irq(&ctx->lock);
2344
2345 event_function_call(event, __perf_event_enable, NULL);
2346 }
2347
2348 /*
2349 * See perf_event_disable();
2350 */
2351 void perf_event_enable(struct perf_event *event)
2352 {
2353 struct perf_event_context *ctx;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 _perf_event_enable(event);
2357 perf_event_ctx_unlock(event, ctx);
2358 }
2359 EXPORT_SYMBOL_GPL(perf_event_enable);
2360
2361 static int _perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 /*
2364 * not supported on inherited events
2365 */
2366 if (event->attr.inherit || !is_sampling_event(event))
2367 return -EINVAL;
2368
2369 atomic_add(refresh, &event->event_limit);
2370 _perf_event_enable(event);
2371
2372 return 0;
2373 }
2374
2375 /*
2376 * See perf_event_disable()
2377 */
2378 int perf_event_refresh(struct perf_event *event, int refresh)
2379 {
2380 struct perf_event_context *ctx;
2381 int ret;
2382
2383 ctx = perf_event_ctx_lock(event);
2384 ret = _perf_event_refresh(event, refresh);
2385 perf_event_ctx_unlock(event, ctx);
2386
2387 return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_refresh);
2390
2391 static void ctx_sched_out(struct perf_event_context *ctx,
2392 struct perf_cpu_context *cpuctx,
2393 enum event_type_t event_type)
2394 {
2395 int is_active = ctx->is_active;
2396 struct perf_event *event;
2397
2398 lockdep_assert_held(&ctx->lock);
2399
2400 if (likely(!ctx->nr_events)) {
2401 /*
2402 * See __perf_remove_from_context().
2403 */
2404 WARN_ON_ONCE(ctx->is_active);
2405 if (ctx->task)
2406 WARN_ON_ONCE(cpuctx->task_ctx);
2407 return;
2408 }
2409
2410 ctx->is_active &= ~event_type;
2411 if (!(ctx->is_active & EVENT_ALL))
2412 ctx->is_active = 0;
2413
2414 if (ctx->task) {
2415 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2416 if (!ctx->is_active)
2417 cpuctx->task_ctx = NULL;
2418 }
2419
2420 /*
2421 * Always update time if it was set; not only when it changes.
2422 * Otherwise we can 'forget' to update time for any but the last
2423 * context we sched out. For example:
2424 *
2425 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2426 * ctx_sched_out(.event_type = EVENT_PINNED)
2427 *
2428 * would only update time for the pinned events.
2429 */
2430 if (is_active & EVENT_TIME) {
2431 /* update (and stop) ctx time */
2432 update_context_time(ctx);
2433 update_cgrp_time_from_cpuctx(cpuctx);
2434 }
2435
2436 is_active ^= ctx->is_active; /* changed bits */
2437
2438 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2439 return;
2440
2441 perf_pmu_disable(ctx->pmu);
2442 if (is_active & EVENT_PINNED) {
2443 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2444 group_sched_out(event, cpuctx, ctx);
2445 }
2446
2447 if (is_active & EVENT_FLEXIBLE) {
2448 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2449 group_sched_out(event, cpuctx, ctx);
2450 }
2451 perf_pmu_enable(ctx->pmu);
2452 }
2453
2454 /*
2455 * Test whether two contexts are equivalent, i.e. whether they have both been
2456 * cloned from the same version of the same context.
2457 *
2458 * Equivalence is measured using a generation number in the context that is
2459 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2460 * and list_del_event().
2461 */
2462 static int context_equiv(struct perf_event_context *ctx1,
2463 struct perf_event_context *ctx2)
2464 {
2465 lockdep_assert_held(&ctx1->lock);
2466 lockdep_assert_held(&ctx2->lock);
2467
2468 /* Pinning disables the swap optimization */
2469 if (ctx1->pin_count || ctx2->pin_count)
2470 return 0;
2471
2472 /* If ctx1 is the parent of ctx2 */
2473 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2474 return 1;
2475
2476 /* If ctx2 is the parent of ctx1 */
2477 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2478 return 1;
2479
2480 /*
2481 * If ctx1 and ctx2 have the same parent; we flatten the parent
2482 * hierarchy, see perf_event_init_context().
2483 */
2484 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2485 ctx1->parent_gen == ctx2->parent_gen)
2486 return 1;
2487
2488 /* Unmatched */
2489 return 0;
2490 }
2491
2492 static void __perf_event_sync_stat(struct perf_event *event,
2493 struct perf_event *next_event)
2494 {
2495 u64 value;
2496
2497 if (!event->attr.inherit_stat)
2498 return;
2499
2500 /*
2501 * Update the event value, we cannot use perf_event_read()
2502 * because we're in the middle of a context switch and have IRQs
2503 * disabled, which upsets smp_call_function_single(), however
2504 * we know the event must be on the current CPU, therefore we
2505 * don't need to use it.
2506 */
2507 switch (event->state) {
2508 case PERF_EVENT_STATE_ACTIVE:
2509 event->pmu->read(event);
2510 /* fall-through */
2511
2512 case PERF_EVENT_STATE_INACTIVE:
2513 update_event_times(event);
2514 break;
2515
2516 default:
2517 break;
2518 }
2519
2520 /*
2521 * In order to keep per-task stats reliable we need to flip the event
2522 * values when we flip the contexts.
2523 */
2524 value = local64_read(&next_event->count);
2525 value = local64_xchg(&event->count, value);
2526 local64_set(&next_event->count, value);
2527
2528 swap(event->total_time_enabled, next_event->total_time_enabled);
2529 swap(event->total_time_running, next_event->total_time_running);
2530
2531 /*
2532 * Since we swizzled the values, update the user visible data too.
2533 */
2534 perf_event_update_userpage(event);
2535 perf_event_update_userpage(next_event);
2536 }
2537
2538 static void perf_event_sync_stat(struct perf_event_context *ctx,
2539 struct perf_event_context *next_ctx)
2540 {
2541 struct perf_event *event, *next_event;
2542
2543 if (!ctx->nr_stat)
2544 return;
2545
2546 update_context_time(ctx);
2547
2548 event = list_first_entry(&ctx->event_list,
2549 struct perf_event, event_entry);
2550
2551 next_event = list_first_entry(&next_ctx->event_list,
2552 struct perf_event, event_entry);
2553
2554 while (&event->event_entry != &ctx->event_list &&
2555 &next_event->event_entry != &next_ctx->event_list) {
2556
2557 __perf_event_sync_stat(event, next_event);
2558
2559 event = list_next_entry(event, event_entry);
2560 next_event = list_next_entry(next_event, event_entry);
2561 }
2562 }
2563
2564 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2565 struct task_struct *next)
2566 {
2567 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2568 struct perf_event_context *next_ctx;
2569 struct perf_event_context *parent, *next_parent;
2570 struct perf_cpu_context *cpuctx;
2571 int do_switch = 1;
2572
2573 if (likely(!ctx))
2574 return;
2575
2576 cpuctx = __get_cpu_context(ctx);
2577 if (!cpuctx->task_ctx)
2578 return;
2579
2580 rcu_read_lock();
2581 next_ctx = next->perf_event_ctxp[ctxn];
2582 if (!next_ctx)
2583 goto unlock;
2584
2585 parent = rcu_dereference(ctx->parent_ctx);
2586 next_parent = rcu_dereference(next_ctx->parent_ctx);
2587
2588 /* If neither context have a parent context; they cannot be clones. */
2589 if (!parent && !next_parent)
2590 goto unlock;
2591
2592 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2593 /*
2594 * Looks like the two contexts are clones, so we might be
2595 * able to optimize the context switch. We lock both
2596 * contexts and check that they are clones under the
2597 * lock (including re-checking that neither has been
2598 * uncloned in the meantime). It doesn't matter which
2599 * order we take the locks because no other cpu could
2600 * be trying to lock both of these tasks.
2601 */
2602 raw_spin_lock(&ctx->lock);
2603 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2604 if (context_equiv(ctx, next_ctx)) {
2605 WRITE_ONCE(ctx->task, next);
2606 WRITE_ONCE(next_ctx->task, task);
2607
2608 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2609
2610 /*
2611 * RCU_INIT_POINTER here is safe because we've not
2612 * modified the ctx and the above modification of
2613 * ctx->task and ctx->task_ctx_data are immaterial
2614 * since those values are always verified under
2615 * ctx->lock which we're now holding.
2616 */
2617 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2618 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2619
2620 do_switch = 0;
2621
2622 perf_event_sync_stat(ctx, next_ctx);
2623 }
2624 raw_spin_unlock(&next_ctx->lock);
2625 raw_spin_unlock(&ctx->lock);
2626 }
2627 unlock:
2628 rcu_read_unlock();
2629
2630 if (do_switch) {
2631 raw_spin_lock(&ctx->lock);
2632 task_ctx_sched_out(cpuctx, ctx);
2633 raw_spin_unlock(&ctx->lock);
2634 }
2635 }
2636
2637 void perf_sched_cb_dec(struct pmu *pmu)
2638 {
2639 this_cpu_dec(perf_sched_cb_usages);
2640 }
2641
2642 void perf_sched_cb_inc(struct pmu *pmu)
2643 {
2644 this_cpu_inc(perf_sched_cb_usages);
2645 }
2646
2647 /*
2648 * This function provides the context switch callback to the lower code
2649 * layer. It is invoked ONLY when the context switch callback is enabled.
2650 */
2651 static void perf_pmu_sched_task(struct task_struct *prev,
2652 struct task_struct *next,
2653 bool sched_in)
2654 {
2655 struct perf_cpu_context *cpuctx;
2656 struct pmu *pmu;
2657 unsigned long flags;
2658
2659 if (prev == next)
2660 return;
2661
2662 local_irq_save(flags);
2663
2664 rcu_read_lock();
2665
2666 list_for_each_entry_rcu(pmu, &pmus, entry) {
2667 if (pmu->sched_task) {
2668 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2669
2670 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2671
2672 perf_pmu_disable(pmu);
2673
2674 pmu->sched_task(cpuctx->task_ctx, sched_in);
2675
2676 perf_pmu_enable(pmu);
2677
2678 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2679 }
2680 }
2681
2682 rcu_read_unlock();
2683
2684 local_irq_restore(flags);
2685 }
2686
2687 static void perf_event_switch(struct task_struct *task,
2688 struct task_struct *next_prev, bool sched_in);
2689
2690 #define for_each_task_context_nr(ctxn) \
2691 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2692
2693 /*
2694 * Called from scheduler to remove the events of the current task,
2695 * with interrupts disabled.
2696 *
2697 * We stop each event and update the event value in event->count.
2698 *
2699 * This does not protect us against NMI, but disable()
2700 * sets the disabled bit in the control field of event _before_
2701 * accessing the event control register. If a NMI hits, then it will
2702 * not restart the event.
2703 */
2704 void __perf_event_task_sched_out(struct task_struct *task,
2705 struct task_struct *next)
2706 {
2707 int ctxn;
2708
2709 if (__this_cpu_read(perf_sched_cb_usages))
2710 perf_pmu_sched_task(task, next, false);
2711
2712 if (atomic_read(&nr_switch_events))
2713 perf_event_switch(task, next, false);
2714
2715 for_each_task_context_nr(ctxn)
2716 perf_event_context_sched_out(task, ctxn, next);
2717
2718 /*
2719 * if cgroup events exist on this CPU, then we need
2720 * to check if we have to switch out PMU state.
2721 * cgroup event are system-wide mode only
2722 */
2723 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2724 perf_cgroup_sched_out(task, next);
2725 }
2726
2727 /*
2728 * Called with IRQs disabled
2729 */
2730 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2731 enum event_type_t event_type)
2732 {
2733 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2734 }
2735
2736 static void
2737 ctx_pinned_sched_in(struct perf_event_context *ctx,
2738 struct perf_cpu_context *cpuctx)
2739 {
2740 struct perf_event *event;
2741
2742 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2743 if (event->state <= PERF_EVENT_STATE_OFF)
2744 continue;
2745 if (!event_filter_match(event))
2746 continue;
2747
2748 /* may need to reset tstamp_enabled */
2749 if (is_cgroup_event(event))
2750 perf_cgroup_mark_enabled(event, ctx);
2751
2752 if (group_can_go_on(event, cpuctx, 1))
2753 group_sched_in(event, cpuctx, ctx);
2754
2755 /*
2756 * If this pinned group hasn't been scheduled,
2757 * put it in error state.
2758 */
2759 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2760 update_group_times(event);
2761 event->state = PERF_EVENT_STATE_ERROR;
2762 }
2763 }
2764 }
2765
2766 static void
2767 ctx_flexible_sched_in(struct perf_event_context *ctx,
2768 struct perf_cpu_context *cpuctx)
2769 {
2770 struct perf_event *event;
2771 int can_add_hw = 1;
2772
2773 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2774 /* Ignore events in OFF or ERROR state */
2775 if (event->state <= PERF_EVENT_STATE_OFF)
2776 continue;
2777 /*
2778 * Listen to the 'cpu' scheduling filter constraint
2779 * of events:
2780 */
2781 if (!event_filter_match(event))
2782 continue;
2783
2784 /* may need to reset tstamp_enabled */
2785 if (is_cgroup_event(event))
2786 perf_cgroup_mark_enabled(event, ctx);
2787
2788 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2789 if (group_sched_in(event, cpuctx, ctx))
2790 can_add_hw = 0;
2791 }
2792 }
2793 }
2794
2795 static void
2796 ctx_sched_in(struct perf_event_context *ctx,
2797 struct perf_cpu_context *cpuctx,
2798 enum event_type_t event_type,
2799 struct task_struct *task)
2800 {
2801 int is_active = ctx->is_active;
2802 u64 now;
2803
2804 lockdep_assert_held(&ctx->lock);
2805
2806 if (likely(!ctx->nr_events))
2807 return;
2808
2809 ctx->is_active |= (event_type | EVENT_TIME);
2810 if (ctx->task) {
2811 if (!is_active)
2812 cpuctx->task_ctx = ctx;
2813 else
2814 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2815 }
2816
2817 is_active ^= ctx->is_active; /* changed bits */
2818
2819 if (is_active & EVENT_TIME) {
2820 /* start ctx time */
2821 now = perf_clock();
2822 ctx->timestamp = now;
2823 perf_cgroup_set_timestamp(task, ctx);
2824 }
2825
2826 /*
2827 * First go through the list and put on any pinned groups
2828 * in order to give them the best chance of going on.
2829 */
2830 if (is_active & EVENT_PINNED)
2831 ctx_pinned_sched_in(ctx, cpuctx);
2832
2833 /* Then walk through the lower prio flexible groups */
2834 if (is_active & EVENT_FLEXIBLE)
2835 ctx_flexible_sched_in(ctx, cpuctx);
2836 }
2837
2838 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2839 enum event_type_t event_type,
2840 struct task_struct *task)
2841 {
2842 struct perf_event_context *ctx = &cpuctx->ctx;
2843
2844 ctx_sched_in(ctx, cpuctx, event_type, task);
2845 }
2846
2847 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2848 struct task_struct *task)
2849 {
2850 struct perf_cpu_context *cpuctx;
2851
2852 cpuctx = __get_cpu_context(ctx);
2853 if (cpuctx->task_ctx == ctx)
2854 return;
2855
2856 perf_ctx_lock(cpuctx, ctx);
2857 perf_pmu_disable(ctx->pmu);
2858 /*
2859 * We want to keep the following priority order:
2860 * cpu pinned (that don't need to move), task pinned,
2861 * cpu flexible, task flexible.
2862 */
2863 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2864 perf_event_sched_in(cpuctx, ctx, task);
2865 perf_pmu_enable(ctx->pmu);
2866 perf_ctx_unlock(cpuctx, ctx);
2867 }
2868
2869 /*
2870 * Called from scheduler to add the events of the current task
2871 * with interrupts disabled.
2872 *
2873 * We restore the event value and then enable it.
2874 *
2875 * This does not protect us against NMI, but enable()
2876 * sets the enabled bit in the control field of event _before_
2877 * accessing the event control register. If a NMI hits, then it will
2878 * keep the event running.
2879 */
2880 void __perf_event_task_sched_in(struct task_struct *prev,
2881 struct task_struct *task)
2882 {
2883 struct perf_event_context *ctx;
2884 int ctxn;
2885
2886 /*
2887 * If cgroup events exist on this CPU, then we need to check if we have
2888 * to switch in PMU state; cgroup event are system-wide mode only.
2889 *
2890 * Since cgroup events are CPU events, we must schedule these in before
2891 * we schedule in the task events.
2892 */
2893 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2894 perf_cgroup_sched_in(prev, task);
2895
2896 for_each_task_context_nr(ctxn) {
2897 ctx = task->perf_event_ctxp[ctxn];
2898 if (likely(!ctx))
2899 continue;
2900
2901 perf_event_context_sched_in(ctx, task);
2902 }
2903
2904 if (atomic_read(&nr_switch_events))
2905 perf_event_switch(task, prev, true);
2906
2907 if (__this_cpu_read(perf_sched_cb_usages))
2908 perf_pmu_sched_task(prev, task, true);
2909 }
2910
2911 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2912 {
2913 u64 frequency = event->attr.sample_freq;
2914 u64 sec = NSEC_PER_SEC;
2915 u64 divisor, dividend;
2916
2917 int count_fls, nsec_fls, frequency_fls, sec_fls;
2918
2919 count_fls = fls64(count);
2920 nsec_fls = fls64(nsec);
2921 frequency_fls = fls64(frequency);
2922 sec_fls = 30;
2923
2924 /*
2925 * We got @count in @nsec, with a target of sample_freq HZ
2926 * the target period becomes:
2927 *
2928 * @count * 10^9
2929 * period = -------------------
2930 * @nsec * sample_freq
2931 *
2932 */
2933
2934 /*
2935 * Reduce accuracy by one bit such that @a and @b converge
2936 * to a similar magnitude.
2937 */
2938 #define REDUCE_FLS(a, b) \
2939 do { \
2940 if (a##_fls > b##_fls) { \
2941 a >>= 1; \
2942 a##_fls--; \
2943 } else { \
2944 b >>= 1; \
2945 b##_fls--; \
2946 } \
2947 } while (0)
2948
2949 /*
2950 * Reduce accuracy until either term fits in a u64, then proceed with
2951 * the other, so that finally we can do a u64/u64 division.
2952 */
2953 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2954 REDUCE_FLS(nsec, frequency);
2955 REDUCE_FLS(sec, count);
2956 }
2957
2958 if (count_fls + sec_fls > 64) {
2959 divisor = nsec * frequency;
2960
2961 while (count_fls + sec_fls > 64) {
2962 REDUCE_FLS(count, sec);
2963 divisor >>= 1;
2964 }
2965
2966 dividend = count * sec;
2967 } else {
2968 dividend = count * sec;
2969
2970 while (nsec_fls + frequency_fls > 64) {
2971 REDUCE_FLS(nsec, frequency);
2972 dividend >>= 1;
2973 }
2974
2975 divisor = nsec * frequency;
2976 }
2977
2978 if (!divisor)
2979 return dividend;
2980
2981 return div64_u64(dividend, divisor);
2982 }
2983
2984 static DEFINE_PER_CPU(int, perf_throttled_count);
2985 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2986
2987 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2988 {
2989 struct hw_perf_event *hwc = &event->hw;
2990 s64 period, sample_period;
2991 s64 delta;
2992
2993 period = perf_calculate_period(event, nsec, count);
2994
2995 delta = (s64)(period - hwc->sample_period);
2996 delta = (delta + 7) / 8; /* low pass filter */
2997
2998 sample_period = hwc->sample_period + delta;
2999
3000 if (!sample_period)
3001 sample_period = 1;
3002
3003 hwc->sample_period = sample_period;
3004
3005 if (local64_read(&hwc->period_left) > 8*sample_period) {
3006 if (disable)
3007 event->pmu->stop(event, PERF_EF_UPDATE);
3008
3009 local64_set(&hwc->period_left, 0);
3010
3011 if (disable)
3012 event->pmu->start(event, PERF_EF_RELOAD);
3013 }
3014 }
3015
3016 /*
3017 * combine freq adjustment with unthrottling to avoid two passes over the
3018 * events. At the same time, make sure, having freq events does not change
3019 * the rate of unthrottling as that would introduce bias.
3020 */
3021 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3022 int needs_unthr)
3023 {
3024 struct perf_event *event;
3025 struct hw_perf_event *hwc;
3026 u64 now, period = TICK_NSEC;
3027 s64 delta;
3028
3029 /*
3030 * only need to iterate over all events iff:
3031 * - context have events in frequency mode (needs freq adjust)
3032 * - there are events to unthrottle on this cpu
3033 */
3034 if (!(ctx->nr_freq || needs_unthr))
3035 return;
3036
3037 raw_spin_lock(&ctx->lock);
3038 perf_pmu_disable(ctx->pmu);
3039
3040 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3041 if (event->state != PERF_EVENT_STATE_ACTIVE)
3042 continue;
3043
3044 if (!event_filter_match(event))
3045 continue;
3046
3047 perf_pmu_disable(event->pmu);
3048
3049 hwc = &event->hw;
3050
3051 if (hwc->interrupts == MAX_INTERRUPTS) {
3052 hwc->interrupts = 0;
3053 perf_log_throttle(event, 1);
3054 event->pmu->start(event, 0);
3055 }
3056
3057 if (!event->attr.freq || !event->attr.sample_freq)
3058 goto next;
3059
3060 /*
3061 * stop the event and update event->count
3062 */
3063 event->pmu->stop(event, PERF_EF_UPDATE);
3064
3065 now = local64_read(&event->count);
3066 delta = now - hwc->freq_count_stamp;
3067 hwc->freq_count_stamp = now;
3068
3069 /*
3070 * restart the event
3071 * reload only if value has changed
3072 * we have stopped the event so tell that
3073 * to perf_adjust_period() to avoid stopping it
3074 * twice.
3075 */
3076 if (delta > 0)
3077 perf_adjust_period(event, period, delta, false);
3078
3079 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3080 next:
3081 perf_pmu_enable(event->pmu);
3082 }
3083
3084 perf_pmu_enable(ctx->pmu);
3085 raw_spin_unlock(&ctx->lock);
3086 }
3087
3088 /*
3089 * Round-robin a context's events:
3090 */
3091 static void rotate_ctx(struct perf_event_context *ctx)
3092 {
3093 /*
3094 * Rotate the first entry last of non-pinned groups. Rotation might be
3095 * disabled by the inheritance code.
3096 */
3097 if (!ctx->rotate_disable)
3098 list_rotate_left(&ctx->flexible_groups);
3099 }
3100
3101 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3102 {
3103 struct perf_event_context *ctx = NULL;
3104 int rotate = 0;
3105
3106 if (cpuctx->ctx.nr_events) {
3107 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3108 rotate = 1;
3109 }
3110
3111 ctx = cpuctx->task_ctx;
3112 if (ctx && ctx->nr_events) {
3113 if (ctx->nr_events != ctx->nr_active)
3114 rotate = 1;
3115 }
3116
3117 if (!rotate)
3118 goto done;
3119
3120 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3121 perf_pmu_disable(cpuctx->ctx.pmu);
3122
3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 if (ctx)
3125 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3126
3127 rotate_ctx(&cpuctx->ctx);
3128 if (ctx)
3129 rotate_ctx(ctx);
3130
3131 perf_event_sched_in(cpuctx, ctx, current);
3132
3133 perf_pmu_enable(cpuctx->ctx.pmu);
3134 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3135 done:
3136
3137 return rotate;
3138 }
3139
3140 void perf_event_task_tick(void)
3141 {
3142 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3143 struct perf_event_context *ctx, *tmp;
3144 int throttled;
3145
3146 WARN_ON(!irqs_disabled());
3147
3148 __this_cpu_inc(perf_throttled_seq);
3149 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3150 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3151
3152 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3153 perf_adjust_freq_unthr_context(ctx, throttled);
3154 }
3155
3156 static int event_enable_on_exec(struct perf_event *event,
3157 struct perf_event_context *ctx)
3158 {
3159 if (!event->attr.enable_on_exec)
3160 return 0;
3161
3162 event->attr.enable_on_exec = 0;
3163 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3164 return 0;
3165
3166 __perf_event_mark_enabled(event);
3167
3168 return 1;
3169 }
3170
3171 /*
3172 * Enable all of a task's events that have been marked enable-on-exec.
3173 * This expects task == current.
3174 */
3175 static void perf_event_enable_on_exec(int ctxn)
3176 {
3177 struct perf_event_context *ctx, *clone_ctx = NULL;
3178 struct perf_cpu_context *cpuctx;
3179 struct perf_event *event;
3180 unsigned long flags;
3181 int enabled = 0;
3182
3183 local_irq_save(flags);
3184 ctx = current->perf_event_ctxp[ctxn];
3185 if (!ctx || !ctx->nr_events)
3186 goto out;
3187
3188 cpuctx = __get_cpu_context(ctx);
3189 perf_ctx_lock(cpuctx, ctx);
3190 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3191 list_for_each_entry(event, &ctx->event_list, event_entry)
3192 enabled |= event_enable_on_exec(event, ctx);
3193
3194 /*
3195 * Unclone and reschedule this context if we enabled any event.
3196 */
3197 if (enabled) {
3198 clone_ctx = unclone_ctx(ctx);
3199 ctx_resched(cpuctx, ctx);
3200 }
3201 perf_ctx_unlock(cpuctx, ctx);
3202
3203 out:
3204 local_irq_restore(flags);
3205
3206 if (clone_ctx)
3207 put_ctx(clone_ctx);
3208 }
3209
3210 void perf_event_exec(void)
3211 {
3212 int ctxn;
3213
3214 rcu_read_lock();
3215 for_each_task_context_nr(ctxn)
3216 perf_event_enable_on_exec(ctxn);
3217 rcu_read_unlock();
3218 }
3219
3220 struct perf_read_data {
3221 struct perf_event *event;
3222 bool group;
3223 int ret;
3224 };
3225
3226 /*
3227 * Cross CPU call to read the hardware event
3228 */
3229 static void __perf_event_read(void *info)
3230 {
3231 struct perf_read_data *data = info;
3232 struct perf_event *sub, *event = data->event;
3233 struct perf_event_context *ctx = event->ctx;
3234 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3235 struct pmu *pmu = event->pmu;
3236
3237 /*
3238 * If this is a task context, we need to check whether it is
3239 * the current task context of this cpu. If not it has been
3240 * scheduled out before the smp call arrived. In that case
3241 * event->count would have been updated to a recent sample
3242 * when the event was scheduled out.
3243 */
3244 if (ctx->task && cpuctx->task_ctx != ctx)
3245 return;
3246
3247 raw_spin_lock(&ctx->lock);
3248 if (ctx->is_active) {
3249 update_context_time(ctx);
3250 update_cgrp_time_from_event(event);
3251 }
3252
3253 update_event_times(event);
3254 if (event->state != PERF_EVENT_STATE_ACTIVE)
3255 goto unlock;
3256
3257 if (!data->group) {
3258 pmu->read(event);
3259 data->ret = 0;
3260 goto unlock;
3261 }
3262
3263 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3264
3265 pmu->read(event);
3266
3267 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3268 update_event_times(sub);
3269 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3270 /*
3271 * Use sibling's PMU rather than @event's since
3272 * sibling could be on different (eg: software) PMU.
3273 */
3274 sub->pmu->read(sub);
3275 }
3276 }
3277
3278 data->ret = pmu->commit_txn(pmu);
3279
3280 unlock:
3281 raw_spin_unlock(&ctx->lock);
3282 }
3283
3284 static inline u64 perf_event_count(struct perf_event *event)
3285 {
3286 if (event->pmu->count)
3287 return event->pmu->count(event);
3288
3289 return __perf_event_count(event);
3290 }
3291
3292 /*
3293 * NMI-safe method to read a local event, that is an event that
3294 * is:
3295 * - either for the current task, or for this CPU
3296 * - does not have inherit set, for inherited task events
3297 * will not be local and we cannot read them atomically
3298 * - must not have a pmu::count method
3299 */
3300 u64 perf_event_read_local(struct perf_event *event)
3301 {
3302 unsigned long flags;
3303 u64 val;
3304
3305 /*
3306 * Disabling interrupts avoids all counter scheduling (context
3307 * switches, timer based rotation and IPIs).
3308 */
3309 local_irq_save(flags);
3310
3311 /* If this is a per-task event, it must be for current */
3312 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3313 event->hw.target != current);
3314
3315 /* If this is a per-CPU event, it must be for this CPU */
3316 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3317 event->cpu != smp_processor_id());
3318
3319 /*
3320 * It must not be an event with inherit set, we cannot read
3321 * all child counters from atomic context.
3322 */
3323 WARN_ON_ONCE(event->attr.inherit);
3324
3325 /*
3326 * It must not have a pmu::count method, those are not
3327 * NMI safe.
3328 */
3329 WARN_ON_ONCE(event->pmu->count);
3330
3331 /*
3332 * If the event is currently on this CPU, its either a per-task event,
3333 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3334 * oncpu == -1).
3335 */
3336 if (event->oncpu == smp_processor_id())
3337 event->pmu->read(event);
3338
3339 val = local64_read(&event->count);
3340 local_irq_restore(flags);
3341
3342 return val;
3343 }
3344
3345 static int perf_event_read(struct perf_event *event, bool group)
3346 {
3347 int ret = 0;
3348
3349 /*
3350 * If event is enabled and currently active on a CPU, update the
3351 * value in the event structure:
3352 */
3353 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3354 struct perf_read_data data = {
3355 .event = event,
3356 .group = group,
3357 .ret = 0,
3358 };
3359 smp_call_function_single(event->oncpu,
3360 __perf_event_read, &data, 1);
3361 ret = data.ret;
3362 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3363 struct perf_event_context *ctx = event->ctx;
3364 unsigned long flags;
3365
3366 raw_spin_lock_irqsave(&ctx->lock, flags);
3367 /*
3368 * may read while context is not active
3369 * (e.g., thread is blocked), in that case
3370 * we cannot update context time
3371 */
3372 if (ctx->is_active) {
3373 update_context_time(ctx);
3374 update_cgrp_time_from_event(event);
3375 }
3376 if (group)
3377 update_group_times(event);
3378 else
3379 update_event_times(event);
3380 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3381 }
3382
3383 return ret;
3384 }
3385
3386 /*
3387 * Initialize the perf_event context in a task_struct:
3388 */
3389 static void __perf_event_init_context(struct perf_event_context *ctx)
3390 {
3391 raw_spin_lock_init(&ctx->lock);
3392 mutex_init(&ctx->mutex);
3393 INIT_LIST_HEAD(&ctx->active_ctx_list);
3394 INIT_LIST_HEAD(&ctx->pinned_groups);
3395 INIT_LIST_HEAD(&ctx->flexible_groups);
3396 INIT_LIST_HEAD(&ctx->event_list);
3397 atomic_set(&ctx->refcount, 1);
3398 }
3399
3400 static struct perf_event_context *
3401 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3402 {
3403 struct perf_event_context *ctx;
3404
3405 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3406 if (!ctx)
3407 return NULL;
3408
3409 __perf_event_init_context(ctx);
3410 if (task) {
3411 ctx->task = task;
3412 get_task_struct(task);
3413 }
3414 ctx->pmu = pmu;
3415
3416 return ctx;
3417 }
3418
3419 static struct task_struct *
3420 find_lively_task_by_vpid(pid_t vpid)
3421 {
3422 struct task_struct *task;
3423 int err;
3424
3425 rcu_read_lock();
3426 if (!vpid)
3427 task = current;
3428 else
3429 task = find_task_by_vpid(vpid);
3430 if (task)
3431 get_task_struct(task);
3432 rcu_read_unlock();
3433
3434 if (!task)
3435 return ERR_PTR(-ESRCH);
3436
3437 /* Reuse ptrace permission checks for now. */
3438 err = -EACCES;
3439 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3440 goto errout;
3441
3442 return task;
3443 errout:
3444 put_task_struct(task);
3445 return ERR_PTR(err);
3446
3447 }
3448
3449 /*
3450 * Returns a matching context with refcount and pincount.
3451 */
3452 static struct perf_event_context *
3453 find_get_context(struct pmu *pmu, struct task_struct *task,
3454 struct perf_event *event)
3455 {
3456 struct perf_event_context *ctx, *clone_ctx = NULL;
3457 struct perf_cpu_context *cpuctx;
3458 void *task_ctx_data = NULL;
3459 unsigned long flags;
3460 int ctxn, err;
3461 int cpu = event->cpu;
3462
3463 if (!task) {
3464 /* Must be root to operate on a CPU event: */
3465 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3466 return ERR_PTR(-EACCES);
3467
3468 /*
3469 * We could be clever and allow to attach a event to an
3470 * offline CPU and activate it when the CPU comes up, but
3471 * that's for later.
3472 */
3473 if (!cpu_online(cpu))
3474 return ERR_PTR(-ENODEV);
3475
3476 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3477 ctx = &cpuctx->ctx;
3478 get_ctx(ctx);
3479 ++ctx->pin_count;
3480
3481 return ctx;
3482 }
3483
3484 err = -EINVAL;
3485 ctxn = pmu->task_ctx_nr;
3486 if (ctxn < 0)
3487 goto errout;
3488
3489 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3490 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3491 if (!task_ctx_data) {
3492 err = -ENOMEM;
3493 goto errout;
3494 }
3495 }
3496
3497 retry:
3498 ctx = perf_lock_task_context(task, ctxn, &flags);
3499 if (ctx) {
3500 clone_ctx = unclone_ctx(ctx);
3501 ++ctx->pin_count;
3502
3503 if (task_ctx_data && !ctx->task_ctx_data) {
3504 ctx->task_ctx_data = task_ctx_data;
3505 task_ctx_data = NULL;
3506 }
3507 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3508
3509 if (clone_ctx)
3510 put_ctx(clone_ctx);
3511 } else {
3512 ctx = alloc_perf_context(pmu, task);
3513 err = -ENOMEM;
3514 if (!ctx)
3515 goto errout;
3516
3517 if (task_ctx_data) {
3518 ctx->task_ctx_data = task_ctx_data;
3519 task_ctx_data = NULL;
3520 }
3521
3522 err = 0;
3523 mutex_lock(&task->perf_event_mutex);
3524 /*
3525 * If it has already passed perf_event_exit_task().
3526 * we must see PF_EXITING, it takes this mutex too.
3527 */
3528 if (task->flags & PF_EXITING)
3529 err = -ESRCH;
3530 else if (task->perf_event_ctxp[ctxn])
3531 err = -EAGAIN;
3532 else {
3533 get_ctx(ctx);
3534 ++ctx->pin_count;
3535 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3536 }
3537 mutex_unlock(&task->perf_event_mutex);
3538
3539 if (unlikely(err)) {
3540 put_ctx(ctx);
3541
3542 if (err == -EAGAIN)
3543 goto retry;
3544 goto errout;
3545 }
3546 }
3547
3548 kfree(task_ctx_data);
3549 return ctx;
3550
3551 errout:
3552 kfree(task_ctx_data);
3553 return ERR_PTR(err);
3554 }
3555
3556 static void perf_event_free_filter(struct perf_event *event);
3557 static void perf_event_free_bpf_prog(struct perf_event *event);
3558
3559 static void free_event_rcu(struct rcu_head *head)
3560 {
3561 struct perf_event *event;
3562
3563 event = container_of(head, struct perf_event, rcu_head);
3564 if (event->ns)
3565 put_pid_ns(event->ns);
3566 perf_event_free_filter(event);
3567 kfree(event);
3568 }
3569
3570 static void ring_buffer_attach(struct perf_event *event,
3571 struct ring_buffer *rb);
3572
3573 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3574 {
3575 if (event->parent)
3576 return;
3577
3578 if (is_cgroup_event(event))
3579 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3580 }
3581
3582 #ifdef CONFIG_NO_HZ_FULL
3583 static DEFINE_SPINLOCK(nr_freq_lock);
3584 #endif
3585
3586 static void unaccount_freq_event_nohz(void)
3587 {
3588 #ifdef CONFIG_NO_HZ_FULL
3589 spin_lock(&nr_freq_lock);
3590 if (atomic_dec_and_test(&nr_freq_events))
3591 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3592 spin_unlock(&nr_freq_lock);
3593 #endif
3594 }
3595
3596 static void unaccount_freq_event(void)
3597 {
3598 if (tick_nohz_full_enabled())
3599 unaccount_freq_event_nohz();
3600 else
3601 atomic_dec(&nr_freq_events);
3602 }
3603
3604 static void unaccount_event(struct perf_event *event)
3605 {
3606 bool dec = false;
3607
3608 if (event->parent)
3609 return;
3610
3611 if (event->attach_state & PERF_ATTACH_TASK)
3612 dec = true;
3613 if (event->attr.mmap || event->attr.mmap_data)
3614 atomic_dec(&nr_mmap_events);
3615 if (event->attr.comm)
3616 atomic_dec(&nr_comm_events);
3617 if (event->attr.task)
3618 atomic_dec(&nr_task_events);
3619 if (event->attr.freq)
3620 unaccount_freq_event();
3621 if (event->attr.context_switch) {
3622 dec = true;
3623 atomic_dec(&nr_switch_events);
3624 }
3625 if (is_cgroup_event(event))
3626 dec = true;
3627 if (has_branch_stack(event))
3628 dec = true;
3629
3630 if (dec) {
3631 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3632 schedule_delayed_work(&perf_sched_work, HZ);
3633 }
3634
3635 unaccount_event_cpu(event, event->cpu);
3636 }
3637
3638 static void perf_sched_delayed(struct work_struct *work)
3639 {
3640 mutex_lock(&perf_sched_mutex);
3641 if (atomic_dec_and_test(&perf_sched_count))
3642 static_branch_disable(&perf_sched_events);
3643 mutex_unlock(&perf_sched_mutex);
3644 }
3645
3646 /*
3647 * The following implement mutual exclusion of events on "exclusive" pmus
3648 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3649 * at a time, so we disallow creating events that might conflict, namely:
3650 *
3651 * 1) cpu-wide events in the presence of per-task events,
3652 * 2) per-task events in the presence of cpu-wide events,
3653 * 3) two matching events on the same context.
3654 *
3655 * The former two cases are handled in the allocation path (perf_event_alloc(),
3656 * _free_event()), the latter -- before the first perf_install_in_context().
3657 */
3658 static int exclusive_event_init(struct perf_event *event)
3659 {
3660 struct pmu *pmu = event->pmu;
3661
3662 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3663 return 0;
3664
3665 /*
3666 * Prevent co-existence of per-task and cpu-wide events on the
3667 * same exclusive pmu.
3668 *
3669 * Negative pmu::exclusive_cnt means there are cpu-wide
3670 * events on this "exclusive" pmu, positive means there are
3671 * per-task events.
3672 *
3673 * Since this is called in perf_event_alloc() path, event::ctx
3674 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3675 * to mean "per-task event", because unlike other attach states it
3676 * never gets cleared.
3677 */
3678 if (event->attach_state & PERF_ATTACH_TASK) {
3679 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3680 return -EBUSY;
3681 } else {
3682 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3683 return -EBUSY;
3684 }
3685
3686 return 0;
3687 }
3688
3689 static void exclusive_event_destroy(struct perf_event *event)
3690 {
3691 struct pmu *pmu = event->pmu;
3692
3693 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3694 return;
3695
3696 /* see comment in exclusive_event_init() */
3697 if (event->attach_state & PERF_ATTACH_TASK)
3698 atomic_dec(&pmu->exclusive_cnt);
3699 else
3700 atomic_inc(&pmu->exclusive_cnt);
3701 }
3702
3703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3704 {
3705 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3706 (e1->cpu == e2->cpu ||
3707 e1->cpu == -1 ||
3708 e2->cpu == -1))
3709 return true;
3710 return false;
3711 }
3712
3713 /* Called under the same ctx::mutex as perf_install_in_context() */
3714 static bool exclusive_event_installable(struct perf_event *event,
3715 struct perf_event_context *ctx)
3716 {
3717 struct perf_event *iter_event;
3718 struct pmu *pmu = event->pmu;
3719
3720 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3721 return true;
3722
3723 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3724 if (exclusive_event_match(iter_event, event))
3725 return false;
3726 }
3727
3728 return true;
3729 }
3730
3731 static void _free_event(struct perf_event *event)
3732 {
3733 irq_work_sync(&event->pending);
3734
3735 unaccount_event(event);
3736
3737 if (event->rb) {
3738 /*
3739 * Can happen when we close an event with re-directed output.
3740 *
3741 * Since we have a 0 refcount, perf_mmap_close() will skip
3742 * over us; possibly making our ring_buffer_put() the last.
3743 */
3744 mutex_lock(&event->mmap_mutex);
3745 ring_buffer_attach(event, NULL);
3746 mutex_unlock(&event->mmap_mutex);
3747 }
3748
3749 if (is_cgroup_event(event))
3750 perf_detach_cgroup(event);
3751
3752 if (!event->parent) {
3753 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3754 put_callchain_buffers();
3755 }
3756
3757 perf_event_free_bpf_prog(event);
3758
3759 if (event->destroy)
3760 event->destroy(event);
3761
3762 if (event->ctx)
3763 put_ctx(event->ctx);
3764
3765 if (event->pmu) {
3766 exclusive_event_destroy(event);
3767 module_put(event->pmu->module);
3768 }
3769
3770 call_rcu(&event->rcu_head, free_event_rcu);
3771 }
3772
3773 /*
3774 * Used to free events which have a known refcount of 1, such as in error paths
3775 * where the event isn't exposed yet and inherited events.
3776 */
3777 static void free_event(struct perf_event *event)
3778 {
3779 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3780 "unexpected event refcount: %ld; ptr=%p\n",
3781 atomic_long_read(&event->refcount), event)) {
3782 /* leak to avoid use-after-free */
3783 return;
3784 }
3785
3786 _free_event(event);
3787 }
3788
3789 /*
3790 * Remove user event from the owner task.
3791 */
3792 static void perf_remove_from_owner(struct perf_event *event)
3793 {
3794 struct task_struct *owner;
3795
3796 rcu_read_lock();
3797 /*
3798 * Matches the smp_store_release() in perf_event_exit_task(). If we
3799 * observe !owner it means the list deletion is complete and we can
3800 * indeed free this event, otherwise we need to serialize on
3801 * owner->perf_event_mutex.
3802 */
3803 owner = lockless_dereference(event->owner);
3804 if (owner) {
3805 /*
3806 * Since delayed_put_task_struct() also drops the last
3807 * task reference we can safely take a new reference
3808 * while holding the rcu_read_lock().
3809 */
3810 get_task_struct(owner);
3811 }
3812 rcu_read_unlock();
3813
3814 if (owner) {
3815 /*
3816 * If we're here through perf_event_exit_task() we're already
3817 * holding ctx->mutex which would be an inversion wrt. the
3818 * normal lock order.
3819 *
3820 * However we can safely take this lock because its the child
3821 * ctx->mutex.
3822 */
3823 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3824
3825 /*
3826 * We have to re-check the event->owner field, if it is cleared
3827 * we raced with perf_event_exit_task(), acquiring the mutex
3828 * ensured they're done, and we can proceed with freeing the
3829 * event.
3830 */
3831 if (event->owner) {
3832 list_del_init(&event->owner_entry);
3833 smp_store_release(&event->owner, NULL);
3834 }
3835 mutex_unlock(&owner->perf_event_mutex);
3836 put_task_struct(owner);
3837 }
3838 }
3839
3840 static void put_event(struct perf_event *event)
3841 {
3842 if (!atomic_long_dec_and_test(&event->refcount))
3843 return;
3844
3845 _free_event(event);
3846 }
3847
3848 /*
3849 * Kill an event dead; while event:refcount will preserve the event
3850 * object, it will not preserve its functionality. Once the last 'user'
3851 * gives up the object, we'll destroy the thing.
3852 */
3853 int perf_event_release_kernel(struct perf_event *event)
3854 {
3855 struct perf_event_context *ctx = event->ctx;
3856 struct perf_event *child, *tmp;
3857
3858 /*
3859 * If we got here through err_file: fput(event_file); we will not have
3860 * attached to a context yet.
3861 */
3862 if (!ctx) {
3863 WARN_ON_ONCE(event->attach_state &
3864 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3865 goto no_ctx;
3866 }
3867
3868 if (!is_kernel_event(event))
3869 perf_remove_from_owner(event);
3870
3871 ctx = perf_event_ctx_lock(event);
3872 WARN_ON_ONCE(ctx->parent_ctx);
3873 perf_remove_from_context(event, DETACH_GROUP);
3874
3875 raw_spin_lock_irq(&ctx->lock);
3876 /*
3877 * Mark this even as STATE_DEAD, there is no external reference to it
3878 * anymore.
3879 *
3880 * Anybody acquiring event->child_mutex after the below loop _must_
3881 * also see this, most importantly inherit_event() which will avoid
3882 * placing more children on the list.
3883 *
3884 * Thus this guarantees that we will in fact observe and kill _ALL_
3885 * child events.
3886 */
3887 event->state = PERF_EVENT_STATE_DEAD;
3888 raw_spin_unlock_irq(&ctx->lock);
3889
3890 perf_event_ctx_unlock(event, ctx);
3891
3892 again:
3893 mutex_lock(&event->child_mutex);
3894 list_for_each_entry(child, &event->child_list, child_list) {
3895
3896 /*
3897 * Cannot change, child events are not migrated, see the
3898 * comment with perf_event_ctx_lock_nested().
3899 */
3900 ctx = lockless_dereference(child->ctx);
3901 /*
3902 * Since child_mutex nests inside ctx::mutex, we must jump
3903 * through hoops. We start by grabbing a reference on the ctx.
3904 *
3905 * Since the event cannot get freed while we hold the
3906 * child_mutex, the context must also exist and have a !0
3907 * reference count.
3908 */
3909 get_ctx(ctx);
3910
3911 /*
3912 * Now that we have a ctx ref, we can drop child_mutex, and
3913 * acquire ctx::mutex without fear of it going away. Then we
3914 * can re-acquire child_mutex.
3915 */
3916 mutex_unlock(&event->child_mutex);
3917 mutex_lock(&ctx->mutex);
3918 mutex_lock(&event->child_mutex);
3919
3920 /*
3921 * Now that we hold ctx::mutex and child_mutex, revalidate our
3922 * state, if child is still the first entry, it didn't get freed
3923 * and we can continue doing so.
3924 */
3925 tmp = list_first_entry_or_null(&event->child_list,
3926 struct perf_event, child_list);
3927 if (tmp == child) {
3928 perf_remove_from_context(child, DETACH_GROUP);
3929 list_del(&child->child_list);
3930 free_event(child);
3931 /*
3932 * This matches the refcount bump in inherit_event();
3933 * this can't be the last reference.
3934 */
3935 put_event(event);
3936 }
3937
3938 mutex_unlock(&event->child_mutex);
3939 mutex_unlock(&ctx->mutex);
3940 put_ctx(ctx);
3941 goto again;
3942 }
3943 mutex_unlock(&event->child_mutex);
3944
3945 no_ctx:
3946 put_event(event); /* Must be the 'last' reference */
3947 return 0;
3948 }
3949 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3950
3951 /*
3952 * Called when the last reference to the file is gone.
3953 */
3954 static int perf_release(struct inode *inode, struct file *file)
3955 {
3956 perf_event_release_kernel(file->private_data);
3957 return 0;
3958 }
3959
3960 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3961 {
3962 struct perf_event *child;
3963 u64 total = 0;
3964
3965 *enabled = 0;
3966 *running = 0;
3967
3968 mutex_lock(&event->child_mutex);
3969
3970 (void)perf_event_read(event, false);
3971 total += perf_event_count(event);
3972
3973 *enabled += event->total_time_enabled +
3974 atomic64_read(&event->child_total_time_enabled);
3975 *running += event->total_time_running +
3976 atomic64_read(&event->child_total_time_running);
3977
3978 list_for_each_entry(child, &event->child_list, child_list) {
3979 (void)perf_event_read(child, false);
3980 total += perf_event_count(child);
3981 *enabled += child->total_time_enabled;
3982 *running += child->total_time_running;
3983 }
3984 mutex_unlock(&event->child_mutex);
3985
3986 return total;
3987 }
3988 EXPORT_SYMBOL_GPL(perf_event_read_value);
3989
3990 static int __perf_read_group_add(struct perf_event *leader,
3991 u64 read_format, u64 *values)
3992 {
3993 struct perf_event *sub;
3994 int n = 1; /* skip @nr */
3995 int ret;
3996
3997 ret = perf_event_read(leader, true);
3998 if (ret)
3999 return ret;
4000
4001 /*
4002 * Since we co-schedule groups, {enabled,running} times of siblings
4003 * will be identical to those of the leader, so we only publish one
4004 * set.
4005 */
4006 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4007 values[n++] += leader->total_time_enabled +
4008 atomic64_read(&leader->child_total_time_enabled);
4009 }
4010
4011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4012 values[n++] += leader->total_time_running +
4013 atomic64_read(&leader->child_total_time_running);
4014 }
4015
4016 /*
4017 * Write {count,id} tuples for every sibling.
4018 */
4019 values[n++] += perf_event_count(leader);
4020 if (read_format & PERF_FORMAT_ID)
4021 values[n++] = primary_event_id(leader);
4022
4023 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4024 values[n++] += perf_event_count(sub);
4025 if (read_format & PERF_FORMAT_ID)
4026 values[n++] = primary_event_id(sub);
4027 }
4028
4029 return 0;
4030 }
4031
4032 static int perf_read_group(struct perf_event *event,
4033 u64 read_format, char __user *buf)
4034 {
4035 struct perf_event *leader = event->group_leader, *child;
4036 struct perf_event_context *ctx = leader->ctx;
4037 int ret;
4038 u64 *values;
4039
4040 lockdep_assert_held(&ctx->mutex);
4041
4042 values = kzalloc(event->read_size, GFP_KERNEL);
4043 if (!values)
4044 return -ENOMEM;
4045
4046 values[0] = 1 + leader->nr_siblings;
4047
4048 /*
4049 * By locking the child_mutex of the leader we effectively
4050 * lock the child list of all siblings.. XXX explain how.
4051 */
4052 mutex_lock(&leader->child_mutex);
4053
4054 ret = __perf_read_group_add(leader, read_format, values);
4055 if (ret)
4056 goto unlock;
4057
4058 list_for_each_entry(child, &leader->child_list, child_list) {
4059 ret = __perf_read_group_add(child, read_format, values);
4060 if (ret)
4061 goto unlock;
4062 }
4063
4064 mutex_unlock(&leader->child_mutex);
4065
4066 ret = event->read_size;
4067 if (copy_to_user(buf, values, event->read_size))
4068 ret = -EFAULT;
4069 goto out;
4070
4071 unlock:
4072 mutex_unlock(&leader->child_mutex);
4073 out:
4074 kfree(values);
4075 return ret;
4076 }
4077
4078 static int perf_read_one(struct perf_event *event,
4079 u64 read_format, char __user *buf)
4080 {
4081 u64 enabled, running;
4082 u64 values[4];
4083 int n = 0;
4084
4085 values[n++] = perf_event_read_value(event, &enabled, &running);
4086 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4087 values[n++] = enabled;
4088 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4089 values[n++] = running;
4090 if (read_format & PERF_FORMAT_ID)
4091 values[n++] = primary_event_id(event);
4092
4093 if (copy_to_user(buf, values, n * sizeof(u64)))
4094 return -EFAULT;
4095
4096 return n * sizeof(u64);
4097 }
4098
4099 static bool is_event_hup(struct perf_event *event)
4100 {
4101 bool no_children;
4102
4103 if (event->state > PERF_EVENT_STATE_EXIT)
4104 return false;
4105
4106 mutex_lock(&event->child_mutex);
4107 no_children = list_empty(&event->child_list);
4108 mutex_unlock(&event->child_mutex);
4109 return no_children;
4110 }
4111
4112 /*
4113 * Read the performance event - simple non blocking version for now
4114 */
4115 static ssize_t
4116 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4117 {
4118 u64 read_format = event->attr.read_format;
4119 int ret;
4120
4121 /*
4122 * Return end-of-file for a read on a event that is in
4123 * error state (i.e. because it was pinned but it couldn't be
4124 * scheduled on to the CPU at some point).
4125 */
4126 if (event->state == PERF_EVENT_STATE_ERROR)
4127 return 0;
4128
4129 if (count < event->read_size)
4130 return -ENOSPC;
4131
4132 WARN_ON_ONCE(event->ctx->parent_ctx);
4133 if (read_format & PERF_FORMAT_GROUP)
4134 ret = perf_read_group(event, read_format, buf);
4135 else
4136 ret = perf_read_one(event, read_format, buf);
4137
4138 return ret;
4139 }
4140
4141 static ssize_t
4142 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4143 {
4144 struct perf_event *event = file->private_data;
4145 struct perf_event_context *ctx;
4146 int ret;
4147
4148 ctx = perf_event_ctx_lock(event);
4149 ret = __perf_read(event, buf, count);
4150 perf_event_ctx_unlock(event, ctx);
4151
4152 return ret;
4153 }
4154
4155 static unsigned int perf_poll(struct file *file, poll_table *wait)
4156 {
4157 struct perf_event *event = file->private_data;
4158 struct ring_buffer *rb;
4159 unsigned int events = POLLHUP;
4160
4161 poll_wait(file, &event->waitq, wait);
4162
4163 if (is_event_hup(event))
4164 return events;
4165
4166 /*
4167 * Pin the event->rb by taking event->mmap_mutex; otherwise
4168 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4169 */
4170 mutex_lock(&event->mmap_mutex);
4171 rb = event->rb;
4172 if (rb)
4173 events = atomic_xchg(&rb->poll, 0);
4174 mutex_unlock(&event->mmap_mutex);
4175 return events;
4176 }
4177
4178 static void _perf_event_reset(struct perf_event *event)
4179 {
4180 (void)perf_event_read(event, false);
4181 local64_set(&event->count, 0);
4182 perf_event_update_userpage(event);
4183 }
4184
4185 /*
4186 * Holding the top-level event's child_mutex means that any
4187 * descendant process that has inherited this event will block
4188 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4189 * task existence requirements of perf_event_enable/disable.
4190 */
4191 static void perf_event_for_each_child(struct perf_event *event,
4192 void (*func)(struct perf_event *))
4193 {
4194 struct perf_event *child;
4195
4196 WARN_ON_ONCE(event->ctx->parent_ctx);
4197
4198 mutex_lock(&event->child_mutex);
4199 func(event);
4200 list_for_each_entry(child, &event->child_list, child_list)
4201 func(child);
4202 mutex_unlock(&event->child_mutex);
4203 }
4204
4205 static void perf_event_for_each(struct perf_event *event,
4206 void (*func)(struct perf_event *))
4207 {
4208 struct perf_event_context *ctx = event->ctx;
4209 struct perf_event *sibling;
4210
4211 lockdep_assert_held(&ctx->mutex);
4212
4213 event = event->group_leader;
4214
4215 perf_event_for_each_child(event, func);
4216 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4217 perf_event_for_each_child(sibling, func);
4218 }
4219
4220 static void __perf_event_period(struct perf_event *event,
4221 struct perf_cpu_context *cpuctx,
4222 struct perf_event_context *ctx,
4223 void *info)
4224 {
4225 u64 value = *((u64 *)info);
4226 bool active;
4227
4228 if (event->attr.freq) {
4229 event->attr.sample_freq = value;
4230 } else {
4231 event->attr.sample_period = value;
4232 event->hw.sample_period = value;
4233 }
4234
4235 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4236 if (active) {
4237 perf_pmu_disable(ctx->pmu);
4238 /*
4239 * We could be throttled; unthrottle now to avoid the tick
4240 * trying to unthrottle while we already re-started the event.
4241 */
4242 if (event->hw.interrupts == MAX_INTERRUPTS) {
4243 event->hw.interrupts = 0;
4244 perf_log_throttle(event, 1);
4245 }
4246 event->pmu->stop(event, PERF_EF_UPDATE);
4247 }
4248
4249 local64_set(&event->hw.period_left, 0);
4250
4251 if (active) {
4252 event->pmu->start(event, PERF_EF_RELOAD);
4253 perf_pmu_enable(ctx->pmu);
4254 }
4255 }
4256
4257 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4258 {
4259 u64 value;
4260
4261 if (!is_sampling_event(event))
4262 return -EINVAL;
4263
4264 if (copy_from_user(&value, arg, sizeof(value)))
4265 return -EFAULT;
4266
4267 if (!value)
4268 return -EINVAL;
4269
4270 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4271 return -EINVAL;
4272
4273 event_function_call(event, __perf_event_period, &value);
4274
4275 return 0;
4276 }
4277
4278 static const struct file_operations perf_fops;
4279
4280 static inline int perf_fget_light(int fd, struct fd *p)
4281 {
4282 struct fd f = fdget(fd);
4283 if (!f.file)
4284 return -EBADF;
4285
4286 if (f.file->f_op != &perf_fops) {
4287 fdput(f);
4288 return -EBADF;
4289 }
4290 *p = f;
4291 return 0;
4292 }
4293
4294 static int perf_event_set_output(struct perf_event *event,
4295 struct perf_event *output_event);
4296 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4297 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4298
4299 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4300 {
4301 void (*func)(struct perf_event *);
4302 u32 flags = arg;
4303
4304 switch (cmd) {
4305 case PERF_EVENT_IOC_ENABLE:
4306 func = _perf_event_enable;
4307 break;
4308 case PERF_EVENT_IOC_DISABLE:
4309 func = _perf_event_disable;
4310 break;
4311 case PERF_EVENT_IOC_RESET:
4312 func = _perf_event_reset;
4313 break;
4314
4315 case PERF_EVENT_IOC_REFRESH:
4316 return _perf_event_refresh(event, arg);
4317
4318 case PERF_EVENT_IOC_PERIOD:
4319 return perf_event_period(event, (u64 __user *)arg);
4320
4321 case PERF_EVENT_IOC_ID:
4322 {
4323 u64 id = primary_event_id(event);
4324
4325 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4326 return -EFAULT;
4327 return 0;
4328 }
4329
4330 case PERF_EVENT_IOC_SET_OUTPUT:
4331 {
4332 int ret;
4333 if (arg != -1) {
4334 struct perf_event *output_event;
4335 struct fd output;
4336 ret = perf_fget_light(arg, &output);
4337 if (ret)
4338 return ret;
4339 output_event = output.file->private_data;
4340 ret = perf_event_set_output(event, output_event);
4341 fdput(output);
4342 } else {
4343 ret = perf_event_set_output(event, NULL);
4344 }
4345 return ret;
4346 }
4347
4348 case PERF_EVENT_IOC_SET_FILTER:
4349 return perf_event_set_filter(event, (void __user *)arg);
4350
4351 case PERF_EVENT_IOC_SET_BPF:
4352 return perf_event_set_bpf_prog(event, arg);
4353
4354 default:
4355 return -ENOTTY;
4356 }
4357
4358 if (flags & PERF_IOC_FLAG_GROUP)
4359 perf_event_for_each(event, func);
4360 else
4361 perf_event_for_each_child(event, func);
4362
4363 return 0;
4364 }
4365
4366 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4367 {
4368 struct perf_event *event = file->private_data;
4369 struct perf_event_context *ctx;
4370 long ret;
4371
4372 ctx = perf_event_ctx_lock(event);
4373 ret = _perf_ioctl(event, cmd, arg);
4374 perf_event_ctx_unlock(event, ctx);
4375
4376 return ret;
4377 }
4378
4379 #ifdef CONFIG_COMPAT
4380 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4381 unsigned long arg)
4382 {
4383 switch (_IOC_NR(cmd)) {
4384 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4385 case _IOC_NR(PERF_EVENT_IOC_ID):
4386 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4387 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4388 cmd &= ~IOCSIZE_MASK;
4389 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4390 }
4391 break;
4392 }
4393 return perf_ioctl(file, cmd, arg);
4394 }
4395 #else
4396 # define perf_compat_ioctl NULL
4397 #endif
4398
4399 int perf_event_task_enable(void)
4400 {
4401 struct perf_event_context *ctx;
4402 struct perf_event *event;
4403
4404 mutex_lock(&current->perf_event_mutex);
4405 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4406 ctx = perf_event_ctx_lock(event);
4407 perf_event_for_each_child(event, _perf_event_enable);
4408 perf_event_ctx_unlock(event, ctx);
4409 }
4410 mutex_unlock(&current->perf_event_mutex);
4411
4412 return 0;
4413 }
4414
4415 int perf_event_task_disable(void)
4416 {
4417 struct perf_event_context *ctx;
4418 struct perf_event *event;
4419
4420 mutex_lock(&current->perf_event_mutex);
4421 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4422 ctx = perf_event_ctx_lock(event);
4423 perf_event_for_each_child(event, _perf_event_disable);
4424 perf_event_ctx_unlock(event, ctx);
4425 }
4426 mutex_unlock(&current->perf_event_mutex);
4427
4428 return 0;
4429 }
4430
4431 static int perf_event_index(struct perf_event *event)
4432 {
4433 if (event->hw.state & PERF_HES_STOPPED)
4434 return 0;
4435
4436 if (event->state != PERF_EVENT_STATE_ACTIVE)
4437 return 0;
4438
4439 return event->pmu->event_idx(event);
4440 }
4441
4442 static void calc_timer_values(struct perf_event *event,
4443 u64 *now,
4444 u64 *enabled,
4445 u64 *running)
4446 {
4447 u64 ctx_time;
4448
4449 *now = perf_clock();
4450 ctx_time = event->shadow_ctx_time + *now;
4451 *enabled = ctx_time - event->tstamp_enabled;
4452 *running = ctx_time - event->tstamp_running;
4453 }
4454
4455 static void perf_event_init_userpage(struct perf_event *event)
4456 {
4457 struct perf_event_mmap_page *userpg;
4458 struct ring_buffer *rb;
4459
4460 rcu_read_lock();
4461 rb = rcu_dereference(event->rb);
4462 if (!rb)
4463 goto unlock;
4464
4465 userpg = rb->user_page;
4466
4467 /* Allow new userspace to detect that bit 0 is deprecated */
4468 userpg->cap_bit0_is_deprecated = 1;
4469 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4470 userpg->data_offset = PAGE_SIZE;
4471 userpg->data_size = perf_data_size(rb);
4472
4473 unlock:
4474 rcu_read_unlock();
4475 }
4476
4477 void __weak arch_perf_update_userpage(
4478 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4479 {
4480 }
4481
4482 /*
4483 * Callers need to ensure there can be no nesting of this function, otherwise
4484 * the seqlock logic goes bad. We can not serialize this because the arch
4485 * code calls this from NMI context.
4486 */
4487 void perf_event_update_userpage(struct perf_event *event)
4488 {
4489 struct perf_event_mmap_page *userpg;
4490 struct ring_buffer *rb;
4491 u64 enabled, running, now;
4492
4493 rcu_read_lock();
4494 rb = rcu_dereference(event->rb);
4495 if (!rb)
4496 goto unlock;
4497
4498 /*
4499 * compute total_time_enabled, total_time_running
4500 * based on snapshot values taken when the event
4501 * was last scheduled in.
4502 *
4503 * we cannot simply called update_context_time()
4504 * because of locking issue as we can be called in
4505 * NMI context
4506 */
4507 calc_timer_values(event, &now, &enabled, &running);
4508
4509 userpg = rb->user_page;
4510 /*
4511 * Disable preemption so as to not let the corresponding user-space
4512 * spin too long if we get preempted.
4513 */
4514 preempt_disable();
4515 ++userpg->lock;
4516 barrier();
4517 userpg->index = perf_event_index(event);
4518 userpg->offset = perf_event_count(event);
4519 if (userpg->index)
4520 userpg->offset -= local64_read(&event->hw.prev_count);
4521
4522 userpg->time_enabled = enabled +
4523 atomic64_read(&event->child_total_time_enabled);
4524
4525 userpg->time_running = running +
4526 atomic64_read(&event->child_total_time_running);
4527
4528 arch_perf_update_userpage(event, userpg, now);
4529
4530 barrier();
4531 ++userpg->lock;
4532 preempt_enable();
4533 unlock:
4534 rcu_read_unlock();
4535 }
4536
4537 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4538 {
4539 struct perf_event *event = vma->vm_file->private_data;
4540 struct ring_buffer *rb;
4541 int ret = VM_FAULT_SIGBUS;
4542
4543 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4544 if (vmf->pgoff == 0)
4545 ret = 0;
4546 return ret;
4547 }
4548
4549 rcu_read_lock();
4550 rb = rcu_dereference(event->rb);
4551 if (!rb)
4552 goto unlock;
4553
4554 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4555 goto unlock;
4556
4557 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4558 if (!vmf->page)
4559 goto unlock;
4560
4561 get_page(vmf->page);
4562 vmf->page->mapping = vma->vm_file->f_mapping;
4563 vmf->page->index = vmf->pgoff;
4564
4565 ret = 0;
4566 unlock:
4567 rcu_read_unlock();
4568
4569 return ret;
4570 }
4571
4572 static void ring_buffer_attach(struct perf_event *event,
4573 struct ring_buffer *rb)
4574 {
4575 struct ring_buffer *old_rb = NULL;
4576 unsigned long flags;
4577
4578 if (event->rb) {
4579 /*
4580 * Should be impossible, we set this when removing
4581 * event->rb_entry and wait/clear when adding event->rb_entry.
4582 */
4583 WARN_ON_ONCE(event->rcu_pending);
4584
4585 old_rb = event->rb;
4586 spin_lock_irqsave(&old_rb->event_lock, flags);
4587 list_del_rcu(&event->rb_entry);
4588 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4589
4590 event->rcu_batches = get_state_synchronize_rcu();
4591 event->rcu_pending = 1;
4592 }
4593
4594 if (rb) {
4595 if (event->rcu_pending) {
4596 cond_synchronize_rcu(event->rcu_batches);
4597 event->rcu_pending = 0;
4598 }
4599
4600 spin_lock_irqsave(&rb->event_lock, flags);
4601 list_add_rcu(&event->rb_entry, &rb->event_list);
4602 spin_unlock_irqrestore(&rb->event_lock, flags);
4603 }
4604
4605 rcu_assign_pointer(event->rb, rb);
4606
4607 if (old_rb) {
4608 ring_buffer_put(old_rb);
4609 /*
4610 * Since we detached before setting the new rb, so that we
4611 * could attach the new rb, we could have missed a wakeup.
4612 * Provide it now.
4613 */
4614 wake_up_all(&event->waitq);
4615 }
4616 }
4617
4618 static void ring_buffer_wakeup(struct perf_event *event)
4619 {
4620 struct ring_buffer *rb;
4621
4622 rcu_read_lock();
4623 rb = rcu_dereference(event->rb);
4624 if (rb) {
4625 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4626 wake_up_all(&event->waitq);
4627 }
4628 rcu_read_unlock();
4629 }
4630
4631 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4632 {
4633 struct ring_buffer *rb;
4634
4635 rcu_read_lock();
4636 rb = rcu_dereference(event->rb);
4637 if (rb) {
4638 if (!atomic_inc_not_zero(&rb->refcount))
4639 rb = NULL;
4640 }
4641 rcu_read_unlock();
4642
4643 return rb;
4644 }
4645
4646 void ring_buffer_put(struct ring_buffer *rb)
4647 {
4648 if (!atomic_dec_and_test(&rb->refcount))
4649 return;
4650
4651 WARN_ON_ONCE(!list_empty(&rb->event_list));
4652
4653 call_rcu(&rb->rcu_head, rb_free_rcu);
4654 }
4655
4656 static void perf_mmap_open(struct vm_area_struct *vma)
4657 {
4658 struct perf_event *event = vma->vm_file->private_data;
4659
4660 atomic_inc(&event->mmap_count);
4661 atomic_inc(&event->rb->mmap_count);
4662
4663 if (vma->vm_pgoff)
4664 atomic_inc(&event->rb->aux_mmap_count);
4665
4666 if (event->pmu->event_mapped)
4667 event->pmu->event_mapped(event);
4668 }
4669
4670 /*
4671 * A buffer can be mmap()ed multiple times; either directly through the same
4672 * event, or through other events by use of perf_event_set_output().
4673 *
4674 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4675 * the buffer here, where we still have a VM context. This means we need
4676 * to detach all events redirecting to us.
4677 */
4678 static void perf_mmap_close(struct vm_area_struct *vma)
4679 {
4680 struct perf_event *event = vma->vm_file->private_data;
4681
4682 struct ring_buffer *rb = ring_buffer_get(event);
4683 struct user_struct *mmap_user = rb->mmap_user;
4684 int mmap_locked = rb->mmap_locked;
4685 unsigned long size = perf_data_size(rb);
4686
4687 if (event->pmu->event_unmapped)
4688 event->pmu->event_unmapped(event);
4689
4690 /*
4691 * rb->aux_mmap_count will always drop before rb->mmap_count and
4692 * event->mmap_count, so it is ok to use event->mmap_mutex to
4693 * serialize with perf_mmap here.
4694 */
4695 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4696 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4697 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4698 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4699
4700 rb_free_aux(rb);
4701 mutex_unlock(&event->mmap_mutex);
4702 }
4703
4704 atomic_dec(&rb->mmap_count);
4705
4706 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4707 goto out_put;
4708
4709 ring_buffer_attach(event, NULL);
4710 mutex_unlock(&event->mmap_mutex);
4711
4712 /* If there's still other mmap()s of this buffer, we're done. */
4713 if (atomic_read(&rb->mmap_count))
4714 goto out_put;
4715
4716 /*
4717 * No other mmap()s, detach from all other events that might redirect
4718 * into the now unreachable buffer. Somewhat complicated by the
4719 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4720 */
4721 again:
4722 rcu_read_lock();
4723 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4724 if (!atomic_long_inc_not_zero(&event->refcount)) {
4725 /*
4726 * This event is en-route to free_event() which will
4727 * detach it and remove it from the list.
4728 */
4729 continue;
4730 }
4731 rcu_read_unlock();
4732
4733 mutex_lock(&event->mmap_mutex);
4734 /*
4735 * Check we didn't race with perf_event_set_output() which can
4736 * swizzle the rb from under us while we were waiting to
4737 * acquire mmap_mutex.
4738 *
4739 * If we find a different rb; ignore this event, a next
4740 * iteration will no longer find it on the list. We have to
4741 * still restart the iteration to make sure we're not now
4742 * iterating the wrong list.
4743 */
4744 if (event->rb == rb)
4745 ring_buffer_attach(event, NULL);
4746
4747 mutex_unlock(&event->mmap_mutex);
4748 put_event(event);
4749
4750 /*
4751 * Restart the iteration; either we're on the wrong list or
4752 * destroyed its integrity by doing a deletion.
4753 */
4754 goto again;
4755 }
4756 rcu_read_unlock();
4757
4758 /*
4759 * It could be there's still a few 0-ref events on the list; they'll
4760 * get cleaned up by free_event() -- they'll also still have their
4761 * ref on the rb and will free it whenever they are done with it.
4762 *
4763 * Aside from that, this buffer is 'fully' detached and unmapped,
4764 * undo the VM accounting.
4765 */
4766
4767 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4768 vma->vm_mm->pinned_vm -= mmap_locked;
4769 free_uid(mmap_user);
4770
4771 out_put:
4772 ring_buffer_put(rb); /* could be last */
4773 }
4774
4775 static const struct vm_operations_struct perf_mmap_vmops = {
4776 .open = perf_mmap_open,
4777 .close = perf_mmap_close, /* non mergable */
4778 .fault = perf_mmap_fault,
4779 .page_mkwrite = perf_mmap_fault,
4780 };
4781
4782 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4783 {
4784 struct perf_event *event = file->private_data;
4785 unsigned long user_locked, user_lock_limit;
4786 struct user_struct *user = current_user();
4787 unsigned long locked, lock_limit;
4788 struct ring_buffer *rb = NULL;
4789 unsigned long vma_size;
4790 unsigned long nr_pages;
4791 long user_extra = 0, extra = 0;
4792 int ret = 0, flags = 0;
4793
4794 /*
4795 * Don't allow mmap() of inherited per-task counters. This would
4796 * create a performance issue due to all children writing to the
4797 * same rb.
4798 */
4799 if (event->cpu == -1 && event->attr.inherit)
4800 return -EINVAL;
4801
4802 if (!(vma->vm_flags & VM_SHARED))
4803 return -EINVAL;
4804
4805 vma_size = vma->vm_end - vma->vm_start;
4806
4807 if (vma->vm_pgoff == 0) {
4808 nr_pages = (vma_size / PAGE_SIZE) - 1;
4809 } else {
4810 /*
4811 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4812 * mapped, all subsequent mappings should have the same size
4813 * and offset. Must be above the normal perf buffer.
4814 */
4815 u64 aux_offset, aux_size;
4816
4817 if (!event->rb)
4818 return -EINVAL;
4819
4820 nr_pages = vma_size / PAGE_SIZE;
4821
4822 mutex_lock(&event->mmap_mutex);
4823 ret = -EINVAL;
4824
4825 rb = event->rb;
4826 if (!rb)
4827 goto aux_unlock;
4828
4829 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4830 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4831
4832 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4833 goto aux_unlock;
4834
4835 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4836 goto aux_unlock;
4837
4838 /* already mapped with a different offset */
4839 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4840 goto aux_unlock;
4841
4842 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4843 goto aux_unlock;
4844
4845 /* already mapped with a different size */
4846 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4847 goto aux_unlock;
4848
4849 if (!is_power_of_2(nr_pages))
4850 goto aux_unlock;
4851
4852 if (!atomic_inc_not_zero(&rb->mmap_count))
4853 goto aux_unlock;
4854
4855 if (rb_has_aux(rb)) {
4856 atomic_inc(&rb->aux_mmap_count);
4857 ret = 0;
4858 goto unlock;
4859 }
4860
4861 atomic_set(&rb->aux_mmap_count, 1);
4862 user_extra = nr_pages;
4863
4864 goto accounting;
4865 }
4866
4867 /*
4868 * If we have rb pages ensure they're a power-of-two number, so we
4869 * can do bitmasks instead of modulo.
4870 */
4871 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4872 return -EINVAL;
4873
4874 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4875 return -EINVAL;
4876
4877 WARN_ON_ONCE(event->ctx->parent_ctx);
4878 again:
4879 mutex_lock(&event->mmap_mutex);
4880 if (event->rb) {
4881 if (event->rb->nr_pages != nr_pages) {
4882 ret = -EINVAL;
4883 goto unlock;
4884 }
4885
4886 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4887 /*
4888 * Raced against perf_mmap_close() through
4889 * perf_event_set_output(). Try again, hope for better
4890 * luck.
4891 */
4892 mutex_unlock(&event->mmap_mutex);
4893 goto again;
4894 }
4895
4896 goto unlock;
4897 }
4898
4899 user_extra = nr_pages + 1;
4900
4901 accounting:
4902 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4903
4904 /*
4905 * Increase the limit linearly with more CPUs:
4906 */
4907 user_lock_limit *= num_online_cpus();
4908
4909 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4910
4911 if (user_locked > user_lock_limit)
4912 extra = user_locked - user_lock_limit;
4913
4914 lock_limit = rlimit(RLIMIT_MEMLOCK);
4915 lock_limit >>= PAGE_SHIFT;
4916 locked = vma->vm_mm->pinned_vm + extra;
4917
4918 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4919 !capable(CAP_IPC_LOCK)) {
4920 ret = -EPERM;
4921 goto unlock;
4922 }
4923
4924 WARN_ON(!rb && event->rb);
4925
4926 if (vma->vm_flags & VM_WRITE)
4927 flags |= RING_BUFFER_WRITABLE;
4928
4929 if (!rb) {
4930 rb = rb_alloc(nr_pages,
4931 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4932 event->cpu, flags);
4933
4934 if (!rb) {
4935 ret = -ENOMEM;
4936 goto unlock;
4937 }
4938
4939 atomic_set(&rb->mmap_count, 1);
4940 rb->mmap_user = get_current_user();
4941 rb->mmap_locked = extra;
4942
4943 ring_buffer_attach(event, rb);
4944
4945 perf_event_init_userpage(event);
4946 perf_event_update_userpage(event);
4947 } else {
4948 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4949 event->attr.aux_watermark, flags);
4950 if (!ret)
4951 rb->aux_mmap_locked = extra;
4952 }
4953
4954 unlock:
4955 if (!ret) {
4956 atomic_long_add(user_extra, &user->locked_vm);
4957 vma->vm_mm->pinned_vm += extra;
4958
4959 atomic_inc(&event->mmap_count);
4960 } else if (rb) {
4961 atomic_dec(&rb->mmap_count);
4962 }
4963 aux_unlock:
4964 mutex_unlock(&event->mmap_mutex);
4965
4966 /*
4967 * Since pinned accounting is per vm we cannot allow fork() to copy our
4968 * vma.
4969 */
4970 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4971 vma->vm_ops = &perf_mmap_vmops;
4972
4973 if (event->pmu->event_mapped)
4974 event->pmu->event_mapped(event);
4975
4976 return ret;
4977 }
4978
4979 static int perf_fasync(int fd, struct file *filp, int on)
4980 {
4981 struct inode *inode = file_inode(filp);
4982 struct perf_event *event = filp->private_data;
4983 int retval;
4984
4985 inode_lock(inode);
4986 retval = fasync_helper(fd, filp, on, &event->fasync);
4987 inode_unlock(inode);
4988
4989 if (retval < 0)
4990 return retval;
4991
4992 return 0;
4993 }
4994
4995 static const struct file_operations perf_fops = {
4996 .llseek = no_llseek,
4997 .release = perf_release,
4998 .read = perf_read,
4999 .poll = perf_poll,
5000 .unlocked_ioctl = perf_ioctl,
5001 .compat_ioctl = perf_compat_ioctl,
5002 .mmap = perf_mmap,
5003 .fasync = perf_fasync,
5004 };
5005
5006 /*
5007 * Perf event wakeup
5008 *
5009 * If there's data, ensure we set the poll() state and publish everything
5010 * to user-space before waking everybody up.
5011 */
5012
5013 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5014 {
5015 /* only the parent has fasync state */
5016 if (event->parent)
5017 event = event->parent;
5018 return &event->fasync;
5019 }
5020
5021 void perf_event_wakeup(struct perf_event *event)
5022 {
5023 ring_buffer_wakeup(event);
5024
5025 if (event->pending_kill) {
5026 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5027 event->pending_kill = 0;
5028 }
5029 }
5030
5031 static void perf_pending_event(struct irq_work *entry)
5032 {
5033 struct perf_event *event = container_of(entry,
5034 struct perf_event, pending);
5035 int rctx;
5036
5037 rctx = perf_swevent_get_recursion_context();
5038 /*
5039 * If we 'fail' here, that's OK, it means recursion is already disabled
5040 * and we won't recurse 'further'.
5041 */
5042
5043 if (event->pending_disable) {
5044 event->pending_disable = 0;
5045 perf_event_disable_local(event);
5046 }
5047
5048 if (event->pending_wakeup) {
5049 event->pending_wakeup = 0;
5050 perf_event_wakeup(event);
5051 }
5052
5053 if (rctx >= 0)
5054 perf_swevent_put_recursion_context(rctx);
5055 }
5056
5057 /*
5058 * We assume there is only KVM supporting the callbacks.
5059 * Later on, we might change it to a list if there is
5060 * another virtualization implementation supporting the callbacks.
5061 */
5062 struct perf_guest_info_callbacks *perf_guest_cbs;
5063
5064 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5065 {
5066 perf_guest_cbs = cbs;
5067 return 0;
5068 }
5069 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5070
5071 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5072 {
5073 perf_guest_cbs = NULL;
5074 return 0;
5075 }
5076 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5077
5078 static void
5079 perf_output_sample_regs(struct perf_output_handle *handle,
5080 struct pt_regs *regs, u64 mask)
5081 {
5082 int bit;
5083
5084 for_each_set_bit(bit, (const unsigned long *) &mask,
5085 sizeof(mask) * BITS_PER_BYTE) {
5086 u64 val;
5087
5088 val = perf_reg_value(regs, bit);
5089 perf_output_put(handle, val);
5090 }
5091 }
5092
5093 static void perf_sample_regs_user(struct perf_regs *regs_user,
5094 struct pt_regs *regs,
5095 struct pt_regs *regs_user_copy)
5096 {
5097 if (user_mode(regs)) {
5098 regs_user->abi = perf_reg_abi(current);
5099 regs_user->regs = regs;
5100 } else if (current->mm) {
5101 perf_get_regs_user(regs_user, regs, regs_user_copy);
5102 } else {
5103 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5104 regs_user->regs = NULL;
5105 }
5106 }
5107
5108 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5109 struct pt_regs *regs)
5110 {
5111 regs_intr->regs = regs;
5112 regs_intr->abi = perf_reg_abi(current);
5113 }
5114
5115
5116 /*
5117 * Get remaining task size from user stack pointer.
5118 *
5119 * It'd be better to take stack vma map and limit this more
5120 * precisly, but there's no way to get it safely under interrupt,
5121 * so using TASK_SIZE as limit.
5122 */
5123 static u64 perf_ustack_task_size(struct pt_regs *regs)
5124 {
5125 unsigned long addr = perf_user_stack_pointer(regs);
5126
5127 if (!addr || addr >= TASK_SIZE)
5128 return 0;
5129
5130 return TASK_SIZE - addr;
5131 }
5132
5133 static u16
5134 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5135 struct pt_regs *regs)
5136 {
5137 u64 task_size;
5138
5139 /* No regs, no stack pointer, no dump. */
5140 if (!regs)
5141 return 0;
5142
5143 /*
5144 * Check if we fit in with the requested stack size into the:
5145 * - TASK_SIZE
5146 * If we don't, we limit the size to the TASK_SIZE.
5147 *
5148 * - remaining sample size
5149 * If we don't, we customize the stack size to
5150 * fit in to the remaining sample size.
5151 */
5152
5153 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5154 stack_size = min(stack_size, (u16) task_size);
5155
5156 /* Current header size plus static size and dynamic size. */
5157 header_size += 2 * sizeof(u64);
5158
5159 /* Do we fit in with the current stack dump size? */
5160 if ((u16) (header_size + stack_size) < header_size) {
5161 /*
5162 * If we overflow the maximum size for the sample,
5163 * we customize the stack dump size to fit in.
5164 */
5165 stack_size = USHRT_MAX - header_size - sizeof(u64);
5166 stack_size = round_up(stack_size, sizeof(u64));
5167 }
5168
5169 return stack_size;
5170 }
5171
5172 static void
5173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5174 struct pt_regs *regs)
5175 {
5176 /* Case of a kernel thread, nothing to dump */
5177 if (!regs) {
5178 u64 size = 0;
5179 perf_output_put(handle, size);
5180 } else {
5181 unsigned long sp;
5182 unsigned int rem;
5183 u64 dyn_size;
5184
5185 /*
5186 * We dump:
5187 * static size
5188 * - the size requested by user or the best one we can fit
5189 * in to the sample max size
5190 * data
5191 * - user stack dump data
5192 * dynamic size
5193 * - the actual dumped size
5194 */
5195
5196 /* Static size. */
5197 perf_output_put(handle, dump_size);
5198
5199 /* Data. */
5200 sp = perf_user_stack_pointer(regs);
5201 rem = __output_copy_user(handle, (void *) sp, dump_size);
5202 dyn_size = dump_size - rem;
5203
5204 perf_output_skip(handle, rem);
5205
5206 /* Dynamic size. */
5207 perf_output_put(handle, dyn_size);
5208 }
5209 }
5210
5211 static void __perf_event_header__init_id(struct perf_event_header *header,
5212 struct perf_sample_data *data,
5213 struct perf_event *event)
5214 {
5215 u64 sample_type = event->attr.sample_type;
5216
5217 data->type = sample_type;
5218 header->size += event->id_header_size;
5219
5220 if (sample_type & PERF_SAMPLE_TID) {
5221 /* namespace issues */
5222 data->tid_entry.pid = perf_event_pid(event, current);
5223 data->tid_entry.tid = perf_event_tid(event, current);
5224 }
5225
5226 if (sample_type & PERF_SAMPLE_TIME)
5227 data->time = perf_event_clock(event);
5228
5229 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5230 data->id = primary_event_id(event);
5231
5232 if (sample_type & PERF_SAMPLE_STREAM_ID)
5233 data->stream_id = event->id;
5234
5235 if (sample_type & PERF_SAMPLE_CPU) {
5236 data->cpu_entry.cpu = raw_smp_processor_id();
5237 data->cpu_entry.reserved = 0;
5238 }
5239 }
5240
5241 void perf_event_header__init_id(struct perf_event_header *header,
5242 struct perf_sample_data *data,
5243 struct perf_event *event)
5244 {
5245 if (event->attr.sample_id_all)
5246 __perf_event_header__init_id(header, data, event);
5247 }
5248
5249 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5250 struct perf_sample_data *data)
5251 {
5252 u64 sample_type = data->type;
5253
5254 if (sample_type & PERF_SAMPLE_TID)
5255 perf_output_put(handle, data->tid_entry);
5256
5257 if (sample_type & PERF_SAMPLE_TIME)
5258 perf_output_put(handle, data->time);
5259
5260 if (sample_type & PERF_SAMPLE_ID)
5261 perf_output_put(handle, data->id);
5262
5263 if (sample_type & PERF_SAMPLE_STREAM_ID)
5264 perf_output_put(handle, data->stream_id);
5265
5266 if (sample_type & PERF_SAMPLE_CPU)
5267 perf_output_put(handle, data->cpu_entry);
5268
5269 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5270 perf_output_put(handle, data->id);
5271 }
5272
5273 void perf_event__output_id_sample(struct perf_event *event,
5274 struct perf_output_handle *handle,
5275 struct perf_sample_data *sample)
5276 {
5277 if (event->attr.sample_id_all)
5278 __perf_event__output_id_sample(handle, sample);
5279 }
5280
5281 static void perf_output_read_one(struct perf_output_handle *handle,
5282 struct perf_event *event,
5283 u64 enabled, u64 running)
5284 {
5285 u64 read_format = event->attr.read_format;
5286 u64 values[4];
5287 int n = 0;
5288
5289 values[n++] = perf_event_count(event);
5290 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5291 values[n++] = enabled +
5292 atomic64_read(&event->child_total_time_enabled);
5293 }
5294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5295 values[n++] = running +
5296 atomic64_read(&event->child_total_time_running);
5297 }
5298 if (read_format & PERF_FORMAT_ID)
5299 values[n++] = primary_event_id(event);
5300
5301 __output_copy(handle, values, n * sizeof(u64));
5302 }
5303
5304 /*
5305 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5306 */
5307 static void perf_output_read_group(struct perf_output_handle *handle,
5308 struct perf_event *event,
5309 u64 enabled, u64 running)
5310 {
5311 struct perf_event *leader = event->group_leader, *sub;
5312 u64 read_format = event->attr.read_format;
5313 u64 values[5];
5314 int n = 0;
5315
5316 values[n++] = 1 + leader->nr_siblings;
5317
5318 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5319 values[n++] = enabled;
5320
5321 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5322 values[n++] = running;
5323
5324 if (leader != event)
5325 leader->pmu->read(leader);
5326
5327 values[n++] = perf_event_count(leader);
5328 if (read_format & PERF_FORMAT_ID)
5329 values[n++] = primary_event_id(leader);
5330
5331 __output_copy(handle, values, n * sizeof(u64));
5332
5333 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5334 n = 0;
5335
5336 if ((sub != event) &&
5337 (sub->state == PERF_EVENT_STATE_ACTIVE))
5338 sub->pmu->read(sub);
5339
5340 values[n++] = perf_event_count(sub);
5341 if (read_format & PERF_FORMAT_ID)
5342 values[n++] = primary_event_id(sub);
5343
5344 __output_copy(handle, values, n * sizeof(u64));
5345 }
5346 }
5347
5348 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5349 PERF_FORMAT_TOTAL_TIME_RUNNING)
5350
5351 static void perf_output_read(struct perf_output_handle *handle,
5352 struct perf_event *event)
5353 {
5354 u64 enabled = 0, running = 0, now;
5355 u64 read_format = event->attr.read_format;
5356
5357 /*
5358 * compute total_time_enabled, total_time_running
5359 * based on snapshot values taken when the event
5360 * was last scheduled in.
5361 *
5362 * we cannot simply called update_context_time()
5363 * because of locking issue as we are called in
5364 * NMI context
5365 */
5366 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5367 calc_timer_values(event, &now, &enabled, &running);
5368
5369 if (event->attr.read_format & PERF_FORMAT_GROUP)
5370 perf_output_read_group(handle, event, enabled, running);
5371 else
5372 perf_output_read_one(handle, event, enabled, running);
5373 }
5374
5375 void perf_output_sample(struct perf_output_handle *handle,
5376 struct perf_event_header *header,
5377 struct perf_sample_data *data,
5378 struct perf_event *event)
5379 {
5380 u64 sample_type = data->type;
5381
5382 perf_output_put(handle, *header);
5383
5384 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5385 perf_output_put(handle, data->id);
5386
5387 if (sample_type & PERF_SAMPLE_IP)
5388 perf_output_put(handle, data->ip);
5389
5390 if (sample_type & PERF_SAMPLE_TID)
5391 perf_output_put(handle, data->tid_entry);
5392
5393 if (sample_type & PERF_SAMPLE_TIME)
5394 perf_output_put(handle, data->time);
5395
5396 if (sample_type & PERF_SAMPLE_ADDR)
5397 perf_output_put(handle, data->addr);
5398
5399 if (sample_type & PERF_SAMPLE_ID)
5400 perf_output_put(handle, data->id);
5401
5402 if (sample_type & PERF_SAMPLE_STREAM_ID)
5403 perf_output_put(handle, data->stream_id);
5404
5405 if (sample_type & PERF_SAMPLE_CPU)
5406 perf_output_put(handle, data->cpu_entry);
5407
5408 if (sample_type & PERF_SAMPLE_PERIOD)
5409 perf_output_put(handle, data->period);
5410
5411 if (sample_type & PERF_SAMPLE_READ)
5412 perf_output_read(handle, event);
5413
5414 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5415 if (data->callchain) {
5416 int size = 1;
5417
5418 if (data->callchain)
5419 size += data->callchain->nr;
5420
5421 size *= sizeof(u64);
5422
5423 __output_copy(handle, data->callchain, size);
5424 } else {
5425 u64 nr = 0;
5426 perf_output_put(handle, nr);
5427 }
5428 }
5429
5430 if (sample_type & PERF_SAMPLE_RAW) {
5431 if (data->raw) {
5432 u32 raw_size = data->raw->size;
5433 u32 real_size = round_up(raw_size + sizeof(u32),
5434 sizeof(u64)) - sizeof(u32);
5435 u64 zero = 0;
5436
5437 perf_output_put(handle, real_size);
5438 __output_copy(handle, data->raw->data, raw_size);
5439 if (real_size - raw_size)
5440 __output_copy(handle, &zero, real_size - raw_size);
5441 } else {
5442 struct {
5443 u32 size;
5444 u32 data;
5445 } raw = {
5446 .size = sizeof(u32),
5447 .data = 0,
5448 };
5449 perf_output_put(handle, raw);
5450 }
5451 }
5452
5453 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5454 if (data->br_stack) {
5455 size_t size;
5456
5457 size = data->br_stack->nr
5458 * sizeof(struct perf_branch_entry);
5459
5460 perf_output_put(handle, data->br_stack->nr);
5461 perf_output_copy(handle, data->br_stack->entries, size);
5462 } else {
5463 /*
5464 * we always store at least the value of nr
5465 */
5466 u64 nr = 0;
5467 perf_output_put(handle, nr);
5468 }
5469 }
5470
5471 if (sample_type & PERF_SAMPLE_REGS_USER) {
5472 u64 abi = data->regs_user.abi;
5473
5474 /*
5475 * If there are no regs to dump, notice it through
5476 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5477 */
5478 perf_output_put(handle, abi);
5479
5480 if (abi) {
5481 u64 mask = event->attr.sample_regs_user;
5482 perf_output_sample_regs(handle,
5483 data->regs_user.regs,
5484 mask);
5485 }
5486 }
5487
5488 if (sample_type & PERF_SAMPLE_STACK_USER) {
5489 perf_output_sample_ustack(handle,
5490 data->stack_user_size,
5491 data->regs_user.regs);
5492 }
5493
5494 if (sample_type & PERF_SAMPLE_WEIGHT)
5495 perf_output_put(handle, data->weight);
5496
5497 if (sample_type & PERF_SAMPLE_DATA_SRC)
5498 perf_output_put(handle, data->data_src.val);
5499
5500 if (sample_type & PERF_SAMPLE_TRANSACTION)
5501 perf_output_put(handle, data->txn);
5502
5503 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5504 u64 abi = data->regs_intr.abi;
5505 /*
5506 * If there are no regs to dump, notice it through
5507 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5508 */
5509 perf_output_put(handle, abi);
5510
5511 if (abi) {
5512 u64 mask = event->attr.sample_regs_intr;
5513
5514 perf_output_sample_regs(handle,
5515 data->regs_intr.regs,
5516 mask);
5517 }
5518 }
5519
5520 if (!event->attr.watermark) {
5521 int wakeup_events = event->attr.wakeup_events;
5522
5523 if (wakeup_events) {
5524 struct ring_buffer *rb = handle->rb;
5525 int events = local_inc_return(&rb->events);
5526
5527 if (events >= wakeup_events) {
5528 local_sub(wakeup_events, &rb->events);
5529 local_inc(&rb->wakeup);
5530 }
5531 }
5532 }
5533 }
5534
5535 void perf_prepare_sample(struct perf_event_header *header,
5536 struct perf_sample_data *data,
5537 struct perf_event *event,
5538 struct pt_regs *regs)
5539 {
5540 u64 sample_type = event->attr.sample_type;
5541
5542 header->type = PERF_RECORD_SAMPLE;
5543 header->size = sizeof(*header) + event->header_size;
5544
5545 header->misc = 0;
5546 header->misc |= perf_misc_flags(regs);
5547
5548 __perf_event_header__init_id(header, data, event);
5549
5550 if (sample_type & PERF_SAMPLE_IP)
5551 data->ip = perf_instruction_pointer(regs);
5552
5553 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5554 int size = 1;
5555
5556 data->callchain = perf_callchain(event, regs);
5557
5558 if (data->callchain)
5559 size += data->callchain->nr;
5560
5561 header->size += size * sizeof(u64);
5562 }
5563
5564 if (sample_type & PERF_SAMPLE_RAW) {
5565 int size = sizeof(u32);
5566
5567 if (data->raw)
5568 size += data->raw->size;
5569 else
5570 size += sizeof(u32);
5571
5572 header->size += round_up(size, sizeof(u64));
5573 }
5574
5575 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5576 int size = sizeof(u64); /* nr */
5577 if (data->br_stack) {
5578 size += data->br_stack->nr
5579 * sizeof(struct perf_branch_entry);
5580 }
5581 header->size += size;
5582 }
5583
5584 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5585 perf_sample_regs_user(&data->regs_user, regs,
5586 &data->regs_user_copy);
5587
5588 if (sample_type & PERF_SAMPLE_REGS_USER) {
5589 /* regs dump ABI info */
5590 int size = sizeof(u64);
5591
5592 if (data->regs_user.regs) {
5593 u64 mask = event->attr.sample_regs_user;
5594 size += hweight64(mask) * sizeof(u64);
5595 }
5596
5597 header->size += size;
5598 }
5599
5600 if (sample_type & PERF_SAMPLE_STACK_USER) {
5601 /*
5602 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5603 * processed as the last one or have additional check added
5604 * in case new sample type is added, because we could eat
5605 * up the rest of the sample size.
5606 */
5607 u16 stack_size = event->attr.sample_stack_user;
5608 u16 size = sizeof(u64);
5609
5610 stack_size = perf_sample_ustack_size(stack_size, header->size,
5611 data->regs_user.regs);
5612
5613 /*
5614 * If there is something to dump, add space for the dump
5615 * itself and for the field that tells the dynamic size,
5616 * which is how many have been actually dumped.
5617 */
5618 if (stack_size)
5619 size += sizeof(u64) + stack_size;
5620
5621 data->stack_user_size = stack_size;
5622 header->size += size;
5623 }
5624
5625 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5626 /* regs dump ABI info */
5627 int size = sizeof(u64);
5628
5629 perf_sample_regs_intr(&data->regs_intr, regs);
5630
5631 if (data->regs_intr.regs) {
5632 u64 mask = event->attr.sample_regs_intr;
5633
5634 size += hweight64(mask) * sizeof(u64);
5635 }
5636
5637 header->size += size;
5638 }
5639 }
5640
5641 void perf_event_output(struct perf_event *event,
5642 struct perf_sample_data *data,
5643 struct pt_regs *regs)
5644 {
5645 struct perf_output_handle handle;
5646 struct perf_event_header header;
5647
5648 /* protect the callchain buffers */
5649 rcu_read_lock();
5650
5651 perf_prepare_sample(&header, data, event, regs);
5652
5653 if (perf_output_begin(&handle, event, header.size))
5654 goto exit;
5655
5656 perf_output_sample(&handle, &header, data, event);
5657
5658 perf_output_end(&handle);
5659
5660 exit:
5661 rcu_read_unlock();
5662 }
5663
5664 /*
5665 * read event_id
5666 */
5667
5668 struct perf_read_event {
5669 struct perf_event_header header;
5670
5671 u32 pid;
5672 u32 tid;
5673 };
5674
5675 static void
5676 perf_event_read_event(struct perf_event *event,
5677 struct task_struct *task)
5678 {
5679 struct perf_output_handle handle;
5680 struct perf_sample_data sample;
5681 struct perf_read_event read_event = {
5682 .header = {
5683 .type = PERF_RECORD_READ,
5684 .misc = 0,
5685 .size = sizeof(read_event) + event->read_size,
5686 },
5687 .pid = perf_event_pid(event, task),
5688 .tid = perf_event_tid(event, task),
5689 };
5690 int ret;
5691
5692 perf_event_header__init_id(&read_event.header, &sample, event);
5693 ret = perf_output_begin(&handle, event, read_event.header.size);
5694 if (ret)
5695 return;
5696
5697 perf_output_put(&handle, read_event);
5698 perf_output_read(&handle, event);
5699 perf_event__output_id_sample(event, &handle, &sample);
5700
5701 perf_output_end(&handle);
5702 }
5703
5704 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5705
5706 static void
5707 perf_event_aux_ctx(struct perf_event_context *ctx,
5708 perf_event_aux_output_cb output,
5709 void *data)
5710 {
5711 struct perf_event *event;
5712
5713 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5714 if (event->state < PERF_EVENT_STATE_INACTIVE)
5715 continue;
5716 if (!event_filter_match(event))
5717 continue;
5718 output(event, data);
5719 }
5720 }
5721
5722 static void
5723 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5724 struct perf_event_context *task_ctx)
5725 {
5726 rcu_read_lock();
5727 preempt_disable();
5728 perf_event_aux_ctx(task_ctx, output, data);
5729 preempt_enable();
5730 rcu_read_unlock();
5731 }
5732
5733 static void
5734 perf_event_aux(perf_event_aux_output_cb output, void *data,
5735 struct perf_event_context *task_ctx)
5736 {
5737 struct perf_cpu_context *cpuctx;
5738 struct perf_event_context *ctx;
5739 struct pmu *pmu;
5740 int ctxn;
5741
5742 /*
5743 * If we have task_ctx != NULL we only notify
5744 * the task context itself. The task_ctx is set
5745 * only for EXIT events before releasing task
5746 * context.
5747 */
5748 if (task_ctx) {
5749 perf_event_aux_task_ctx(output, data, task_ctx);
5750 return;
5751 }
5752
5753 rcu_read_lock();
5754 list_for_each_entry_rcu(pmu, &pmus, entry) {
5755 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5756 if (cpuctx->unique_pmu != pmu)
5757 goto next;
5758 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5759 ctxn = pmu->task_ctx_nr;
5760 if (ctxn < 0)
5761 goto next;
5762 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5763 if (ctx)
5764 perf_event_aux_ctx(ctx, output, data);
5765 next:
5766 put_cpu_ptr(pmu->pmu_cpu_context);
5767 }
5768 rcu_read_unlock();
5769 }
5770
5771 /*
5772 * task tracking -- fork/exit
5773 *
5774 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5775 */
5776
5777 struct perf_task_event {
5778 struct task_struct *task;
5779 struct perf_event_context *task_ctx;
5780
5781 struct {
5782 struct perf_event_header header;
5783
5784 u32 pid;
5785 u32 ppid;
5786 u32 tid;
5787 u32 ptid;
5788 u64 time;
5789 } event_id;
5790 };
5791
5792 static int perf_event_task_match(struct perf_event *event)
5793 {
5794 return event->attr.comm || event->attr.mmap ||
5795 event->attr.mmap2 || event->attr.mmap_data ||
5796 event->attr.task;
5797 }
5798
5799 static void perf_event_task_output(struct perf_event *event,
5800 void *data)
5801 {
5802 struct perf_task_event *task_event = data;
5803 struct perf_output_handle handle;
5804 struct perf_sample_data sample;
5805 struct task_struct *task = task_event->task;
5806 int ret, size = task_event->event_id.header.size;
5807
5808 if (!perf_event_task_match(event))
5809 return;
5810
5811 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5812
5813 ret = perf_output_begin(&handle, event,
5814 task_event->event_id.header.size);
5815 if (ret)
5816 goto out;
5817
5818 task_event->event_id.pid = perf_event_pid(event, task);
5819 task_event->event_id.ppid = perf_event_pid(event, current);
5820
5821 task_event->event_id.tid = perf_event_tid(event, task);
5822 task_event->event_id.ptid = perf_event_tid(event, current);
5823
5824 task_event->event_id.time = perf_event_clock(event);
5825
5826 perf_output_put(&handle, task_event->event_id);
5827
5828 perf_event__output_id_sample(event, &handle, &sample);
5829
5830 perf_output_end(&handle);
5831 out:
5832 task_event->event_id.header.size = size;
5833 }
5834
5835 static void perf_event_task(struct task_struct *task,
5836 struct perf_event_context *task_ctx,
5837 int new)
5838 {
5839 struct perf_task_event task_event;
5840
5841 if (!atomic_read(&nr_comm_events) &&
5842 !atomic_read(&nr_mmap_events) &&
5843 !atomic_read(&nr_task_events))
5844 return;
5845
5846 task_event = (struct perf_task_event){
5847 .task = task,
5848 .task_ctx = task_ctx,
5849 .event_id = {
5850 .header = {
5851 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5852 .misc = 0,
5853 .size = sizeof(task_event.event_id),
5854 },
5855 /* .pid */
5856 /* .ppid */
5857 /* .tid */
5858 /* .ptid */
5859 /* .time */
5860 },
5861 };
5862
5863 perf_event_aux(perf_event_task_output,
5864 &task_event,
5865 task_ctx);
5866 }
5867
5868 void perf_event_fork(struct task_struct *task)
5869 {
5870 perf_event_task(task, NULL, 1);
5871 }
5872
5873 /*
5874 * comm tracking
5875 */
5876
5877 struct perf_comm_event {
5878 struct task_struct *task;
5879 char *comm;
5880 int comm_size;
5881
5882 struct {
5883 struct perf_event_header header;
5884
5885 u32 pid;
5886 u32 tid;
5887 } event_id;
5888 };
5889
5890 static int perf_event_comm_match(struct perf_event *event)
5891 {
5892 return event->attr.comm;
5893 }
5894
5895 static void perf_event_comm_output(struct perf_event *event,
5896 void *data)
5897 {
5898 struct perf_comm_event *comm_event = data;
5899 struct perf_output_handle handle;
5900 struct perf_sample_data sample;
5901 int size = comm_event->event_id.header.size;
5902 int ret;
5903
5904 if (!perf_event_comm_match(event))
5905 return;
5906
5907 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5908 ret = perf_output_begin(&handle, event,
5909 comm_event->event_id.header.size);
5910
5911 if (ret)
5912 goto out;
5913
5914 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5915 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5916
5917 perf_output_put(&handle, comm_event->event_id);
5918 __output_copy(&handle, comm_event->comm,
5919 comm_event->comm_size);
5920
5921 perf_event__output_id_sample(event, &handle, &sample);
5922
5923 perf_output_end(&handle);
5924 out:
5925 comm_event->event_id.header.size = size;
5926 }
5927
5928 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5929 {
5930 char comm[TASK_COMM_LEN];
5931 unsigned int size;
5932
5933 memset(comm, 0, sizeof(comm));
5934 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5935 size = ALIGN(strlen(comm)+1, sizeof(u64));
5936
5937 comm_event->comm = comm;
5938 comm_event->comm_size = size;
5939
5940 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5941
5942 perf_event_aux(perf_event_comm_output,
5943 comm_event,
5944 NULL);
5945 }
5946
5947 void perf_event_comm(struct task_struct *task, bool exec)
5948 {
5949 struct perf_comm_event comm_event;
5950
5951 if (!atomic_read(&nr_comm_events))
5952 return;
5953
5954 comm_event = (struct perf_comm_event){
5955 .task = task,
5956 /* .comm */
5957 /* .comm_size */
5958 .event_id = {
5959 .header = {
5960 .type = PERF_RECORD_COMM,
5961 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5962 /* .size */
5963 },
5964 /* .pid */
5965 /* .tid */
5966 },
5967 };
5968
5969 perf_event_comm_event(&comm_event);
5970 }
5971
5972 /*
5973 * mmap tracking
5974 */
5975
5976 struct perf_mmap_event {
5977 struct vm_area_struct *vma;
5978
5979 const char *file_name;
5980 int file_size;
5981 int maj, min;
5982 u64 ino;
5983 u64 ino_generation;
5984 u32 prot, flags;
5985
5986 struct {
5987 struct perf_event_header header;
5988
5989 u32 pid;
5990 u32 tid;
5991 u64 start;
5992 u64 len;
5993 u64 pgoff;
5994 } event_id;
5995 };
5996
5997 static int perf_event_mmap_match(struct perf_event *event,
5998 void *data)
5999 {
6000 struct perf_mmap_event *mmap_event = data;
6001 struct vm_area_struct *vma = mmap_event->vma;
6002 int executable = vma->vm_flags & VM_EXEC;
6003
6004 return (!executable && event->attr.mmap_data) ||
6005 (executable && (event->attr.mmap || event->attr.mmap2));
6006 }
6007
6008 static void perf_event_mmap_output(struct perf_event *event,
6009 void *data)
6010 {
6011 struct perf_mmap_event *mmap_event = data;
6012 struct perf_output_handle handle;
6013 struct perf_sample_data sample;
6014 int size = mmap_event->event_id.header.size;
6015 int ret;
6016
6017 if (!perf_event_mmap_match(event, data))
6018 return;
6019
6020 if (event->attr.mmap2) {
6021 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6022 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6023 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6024 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6025 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6026 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6027 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6028 }
6029
6030 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6031 ret = perf_output_begin(&handle, event,
6032 mmap_event->event_id.header.size);
6033 if (ret)
6034 goto out;
6035
6036 mmap_event->event_id.pid = perf_event_pid(event, current);
6037 mmap_event->event_id.tid = perf_event_tid(event, current);
6038
6039 perf_output_put(&handle, mmap_event->event_id);
6040
6041 if (event->attr.mmap2) {
6042 perf_output_put(&handle, mmap_event->maj);
6043 perf_output_put(&handle, mmap_event->min);
6044 perf_output_put(&handle, mmap_event->ino);
6045 perf_output_put(&handle, mmap_event->ino_generation);
6046 perf_output_put(&handle, mmap_event->prot);
6047 perf_output_put(&handle, mmap_event->flags);
6048 }
6049
6050 __output_copy(&handle, mmap_event->file_name,
6051 mmap_event->file_size);
6052
6053 perf_event__output_id_sample(event, &handle, &sample);
6054
6055 perf_output_end(&handle);
6056 out:
6057 mmap_event->event_id.header.size = size;
6058 }
6059
6060 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6061 {
6062 struct vm_area_struct *vma = mmap_event->vma;
6063 struct file *file = vma->vm_file;
6064 int maj = 0, min = 0;
6065 u64 ino = 0, gen = 0;
6066 u32 prot = 0, flags = 0;
6067 unsigned int size;
6068 char tmp[16];
6069 char *buf = NULL;
6070 char *name;
6071
6072 if (file) {
6073 struct inode *inode;
6074 dev_t dev;
6075
6076 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6077 if (!buf) {
6078 name = "//enomem";
6079 goto cpy_name;
6080 }
6081 /*
6082 * d_path() works from the end of the rb backwards, so we
6083 * need to add enough zero bytes after the string to handle
6084 * the 64bit alignment we do later.
6085 */
6086 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6087 if (IS_ERR(name)) {
6088 name = "//toolong";
6089 goto cpy_name;
6090 }
6091 inode = file_inode(vma->vm_file);
6092 dev = inode->i_sb->s_dev;
6093 ino = inode->i_ino;
6094 gen = inode->i_generation;
6095 maj = MAJOR(dev);
6096 min = MINOR(dev);
6097
6098 if (vma->vm_flags & VM_READ)
6099 prot |= PROT_READ;
6100 if (vma->vm_flags & VM_WRITE)
6101 prot |= PROT_WRITE;
6102 if (vma->vm_flags & VM_EXEC)
6103 prot |= PROT_EXEC;
6104
6105 if (vma->vm_flags & VM_MAYSHARE)
6106 flags = MAP_SHARED;
6107 else
6108 flags = MAP_PRIVATE;
6109
6110 if (vma->vm_flags & VM_DENYWRITE)
6111 flags |= MAP_DENYWRITE;
6112 if (vma->vm_flags & VM_MAYEXEC)
6113 flags |= MAP_EXECUTABLE;
6114 if (vma->vm_flags & VM_LOCKED)
6115 flags |= MAP_LOCKED;
6116 if (vma->vm_flags & VM_HUGETLB)
6117 flags |= MAP_HUGETLB;
6118
6119 goto got_name;
6120 } else {
6121 if (vma->vm_ops && vma->vm_ops->name) {
6122 name = (char *) vma->vm_ops->name(vma);
6123 if (name)
6124 goto cpy_name;
6125 }
6126
6127 name = (char *)arch_vma_name(vma);
6128 if (name)
6129 goto cpy_name;
6130
6131 if (vma->vm_start <= vma->vm_mm->start_brk &&
6132 vma->vm_end >= vma->vm_mm->brk) {
6133 name = "[heap]";
6134 goto cpy_name;
6135 }
6136 if (vma->vm_start <= vma->vm_mm->start_stack &&
6137 vma->vm_end >= vma->vm_mm->start_stack) {
6138 name = "[stack]";
6139 goto cpy_name;
6140 }
6141
6142 name = "//anon";
6143 goto cpy_name;
6144 }
6145
6146 cpy_name:
6147 strlcpy(tmp, name, sizeof(tmp));
6148 name = tmp;
6149 got_name:
6150 /*
6151 * Since our buffer works in 8 byte units we need to align our string
6152 * size to a multiple of 8. However, we must guarantee the tail end is
6153 * zero'd out to avoid leaking random bits to userspace.
6154 */
6155 size = strlen(name)+1;
6156 while (!IS_ALIGNED(size, sizeof(u64)))
6157 name[size++] = '\0';
6158
6159 mmap_event->file_name = name;
6160 mmap_event->file_size = size;
6161 mmap_event->maj = maj;
6162 mmap_event->min = min;
6163 mmap_event->ino = ino;
6164 mmap_event->ino_generation = gen;
6165 mmap_event->prot = prot;
6166 mmap_event->flags = flags;
6167
6168 if (!(vma->vm_flags & VM_EXEC))
6169 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6170
6171 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6172
6173 perf_event_aux(perf_event_mmap_output,
6174 mmap_event,
6175 NULL);
6176
6177 kfree(buf);
6178 }
6179
6180 void perf_event_mmap(struct vm_area_struct *vma)
6181 {
6182 struct perf_mmap_event mmap_event;
6183
6184 if (!atomic_read(&nr_mmap_events))
6185 return;
6186
6187 mmap_event = (struct perf_mmap_event){
6188 .vma = vma,
6189 /* .file_name */
6190 /* .file_size */
6191 .event_id = {
6192 .header = {
6193 .type = PERF_RECORD_MMAP,
6194 .misc = PERF_RECORD_MISC_USER,
6195 /* .size */
6196 },
6197 /* .pid */
6198 /* .tid */
6199 .start = vma->vm_start,
6200 .len = vma->vm_end - vma->vm_start,
6201 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6202 },
6203 /* .maj (attr_mmap2 only) */
6204 /* .min (attr_mmap2 only) */
6205 /* .ino (attr_mmap2 only) */
6206 /* .ino_generation (attr_mmap2 only) */
6207 /* .prot (attr_mmap2 only) */
6208 /* .flags (attr_mmap2 only) */
6209 };
6210
6211 perf_event_mmap_event(&mmap_event);
6212 }
6213
6214 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6215 unsigned long size, u64 flags)
6216 {
6217 struct perf_output_handle handle;
6218 struct perf_sample_data sample;
6219 struct perf_aux_event {
6220 struct perf_event_header header;
6221 u64 offset;
6222 u64 size;
6223 u64 flags;
6224 } rec = {
6225 .header = {
6226 .type = PERF_RECORD_AUX,
6227 .misc = 0,
6228 .size = sizeof(rec),
6229 },
6230 .offset = head,
6231 .size = size,
6232 .flags = flags,
6233 };
6234 int ret;
6235
6236 perf_event_header__init_id(&rec.header, &sample, event);
6237 ret = perf_output_begin(&handle, event, rec.header.size);
6238
6239 if (ret)
6240 return;
6241
6242 perf_output_put(&handle, rec);
6243 perf_event__output_id_sample(event, &handle, &sample);
6244
6245 perf_output_end(&handle);
6246 }
6247
6248 /*
6249 * Lost/dropped samples logging
6250 */
6251 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6252 {
6253 struct perf_output_handle handle;
6254 struct perf_sample_data sample;
6255 int ret;
6256
6257 struct {
6258 struct perf_event_header header;
6259 u64 lost;
6260 } lost_samples_event = {
6261 .header = {
6262 .type = PERF_RECORD_LOST_SAMPLES,
6263 .misc = 0,
6264 .size = sizeof(lost_samples_event),
6265 },
6266 .lost = lost,
6267 };
6268
6269 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6270
6271 ret = perf_output_begin(&handle, event,
6272 lost_samples_event.header.size);
6273 if (ret)
6274 return;
6275
6276 perf_output_put(&handle, lost_samples_event);
6277 perf_event__output_id_sample(event, &handle, &sample);
6278 perf_output_end(&handle);
6279 }
6280
6281 /*
6282 * context_switch tracking
6283 */
6284
6285 struct perf_switch_event {
6286 struct task_struct *task;
6287 struct task_struct *next_prev;
6288
6289 struct {
6290 struct perf_event_header header;
6291 u32 next_prev_pid;
6292 u32 next_prev_tid;
6293 } event_id;
6294 };
6295
6296 static int perf_event_switch_match(struct perf_event *event)
6297 {
6298 return event->attr.context_switch;
6299 }
6300
6301 static void perf_event_switch_output(struct perf_event *event, void *data)
6302 {
6303 struct perf_switch_event *se = data;
6304 struct perf_output_handle handle;
6305 struct perf_sample_data sample;
6306 int ret;
6307
6308 if (!perf_event_switch_match(event))
6309 return;
6310
6311 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6312 if (event->ctx->task) {
6313 se->event_id.header.type = PERF_RECORD_SWITCH;
6314 se->event_id.header.size = sizeof(se->event_id.header);
6315 } else {
6316 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6317 se->event_id.header.size = sizeof(se->event_id);
6318 se->event_id.next_prev_pid =
6319 perf_event_pid(event, se->next_prev);
6320 se->event_id.next_prev_tid =
6321 perf_event_tid(event, se->next_prev);
6322 }
6323
6324 perf_event_header__init_id(&se->event_id.header, &sample, event);
6325
6326 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6327 if (ret)
6328 return;
6329
6330 if (event->ctx->task)
6331 perf_output_put(&handle, se->event_id.header);
6332 else
6333 perf_output_put(&handle, se->event_id);
6334
6335 perf_event__output_id_sample(event, &handle, &sample);
6336
6337 perf_output_end(&handle);
6338 }
6339
6340 static void perf_event_switch(struct task_struct *task,
6341 struct task_struct *next_prev, bool sched_in)
6342 {
6343 struct perf_switch_event switch_event;
6344
6345 /* N.B. caller checks nr_switch_events != 0 */
6346
6347 switch_event = (struct perf_switch_event){
6348 .task = task,
6349 .next_prev = next_prev,
6350 .event_id = {
6351 .header = {
6352 /* .type */
6353 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6354 /* .size */
6355 },
6356 /* .next_prev_pid */
6357 /* .next_prev_tid */
6358 },
6359 };
6360
6361 perf_event_aux(perf_event_switch_output,
6362 &switch_event,
6363 NULL);
6364 }
6365
6366 /*
6367 * IRQ throttle logging
6368 */
6369
6370 static void perf_log_throttle(struct perf_event *event, int enable)
6371 {
6372 struct perf_output_handle handle;
6373 struct perf_sample_data sample;
6374 int ret;
6375
6376 struct {
6377 struct perf_event_header header;
6378 u64 time;
6379 u64 id;
6380 u64 stream_id;
6381 } throttle_event = {
6382 .header = {
6383 .type = PERF_RECORD_THROTTLE,
6384 .misc = 0,
6385 .size = sizeof(throttle_event),
6386 },
6387 .time = perf_event_clock(event),
6388 .id = primary_event_id(event),
6389 .stream_id = event->id,
6390 };
6391
6392 if (enable)
6393 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6394
6395 perf_event_header__init_id(&throttle_event.header, &sample, event);
6396
6397 ret = perf_output_begin(&handle, event,
6398 throttle_event.header.size);
6399 if (ret)
6400 return;
6401
6402 perf_output_put(&handle, throttle_event);
6403 perf_event__output_id_sample(event, &handle, &sample);
6404 perf_output_end(&handle);
6405 }
6406
6407 static void perf_log_itrace_start(struct perf_event *event)
6408 {
6409 struct perf_output_handle handle;
6410 struct perf_sample_data sample;
6411 struct perf_aux_event {
6412 struct perf_event_header header;
6413 u32 pid;
6414 u32 tid;
6415 } rec;
6416 int ret;
6417
6418 if (event->parent)
6419 event = event->parent;
6420
6421 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6422 event->hw.itrace_started)
6423 return;
6424
6425 rec.header.type = PERF_RECORD_ITRACE_START;
6426 rec.header.misc = 0;
6427 rec.header.size = sizeof(rec);
6428 rec.pid = perf_event_pid(event, current);
6429 rec.tid = perf_event_tid(event, current);
6430
6431 perf_event_header__init_id(&rec.header, &sample, event);
6432 ret = perf_output_begin(&handle, event, rec.header.size);
6433
6434 if (ret)
6435 return;
6436
6437 perf_output_put(&handle, rec);
6438 perf_event__output_id_sample(event, &handle, &sample);
6439
6440 perf_output_end(&handle);
6441 }
6442
6443 /*
6444 * Generic event overflow handling, sampling.
6445 */
6446
6447 static int __perf_event_overflow(struct perf_event *event,
6448 int throttle, struct perf_sample_data *data,
6449 struct pt_regs *regs)
6450 {
6451 int events = atomic_read(&event->event_limit);
6452 struct hw_perf_event *hwc = &event->hw;
6453 u64 seq;
6454 int ret = 0;
6455
6456 /*
6457 * Non-sampling counters might still use the PMI to fold short
6458 * hardware counters, ignore those.
6459 */
6460 if (unlikely(!is_sampling_event(event)))
6461 return 0;
6462
6463 seq = __this_cpu_read(perf_throttled_seq);
6464 if (seq != hwc->interrupts_seq) {
6465 hwc->interrupts_seq = seq;
6466 hwc->interrupts = 1;
6467 } else {
6468 hwc->interrupts++;
6469 if (unlikely(throttle
6470 && hwc->interrupts >= max_samples_per_tick)) {
6471 __this_cpu_inc(perf_throttled_count);
6472 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6473 hwc->interrupts = MAX_INTERRUPTS;
6474 perf_log_throttle(event, 0);
6475 ret = 1;
6476 }
6477 }
6478
6479 if (event->attr.freq) {
6480 u64 now = perf_clock();
6481 s64 delta = now - hwc->freq_time_stamp;
6482
6483 hwc->freq_time_stamp = now;
6484
6485 if (delta > 0 && delta < 2*TICK_NSEC)
6486 perf_adjust_period(event, delta, hwc->last_period, true);
6487 }
6488
6489 /*
6490 * XXX event_limit might not quite work as expected on inherited
6491 * events
6492 */
6493
6494 event->pending_kill = POLL_IN;
6495 if (events && atomic_dec_and_test(&event->event_limit)) {
6496 ret = 1;
6497 event->pending_kill = POLL_HUP;
6498 event->pending_disable = 1;
6499 irq_work_queue(&event->pending);
6500 }
6501
6502 if (event->overflow_handler)
6503 event->overflow_handler(event, data, regs);
6504 else
6505 perf_event_output(event, data, regs);
6506
6507 if (*perf_event_fasync(event) && event->pending_kill) {
6508 event->pending_wakeup = 1;
6509 irq_work_queue(&event->pending);
6510 }
6511
6512 return ret;
6513 }
6514
6515 int perf_event_overflow(struct perf_event *event,
6516 struct perf_sample_data *data,
6517 struct pt_regs *regs)
6518 {
6519 return __perf_event_overflow(event, 1, data, regs);
6520 }
6521
6522 /*
6523 * Generic software event infrastructure
6524 */
6525
6526 struct swevent_htable {
6527 struct swevent_hlist *swevent_hlist;
6528 struct mutex hlist_mutex;
6529 int hlist_refcount;
6530
6531 /* Recursion avoidance in each contexts */
6532 int recursion[PERF_NR_CONTEXTS];
6533 };
6534
6535 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6536
6537 /*
6538 * We directly increment event->count and keep a second value in
6539 * event->hw.period_left to count intervals. This period event
6540 * is kept in the range [-sample_period, 0] so that we can use the
6541 * sign as trigger.
6542 */
6543
6544 u64 perf_swevent_set_period(struct perf_event *event)
6545 {
6546 struct hw_perf_event *hwc = &event->hw;
6547 u64 period = hwc->last_period;
6548 u64 nr, offset;
6549 s64 old, val;
6550
6551 hwc->last_period = hwc->sample_period;
6552
6553 again:
6554 old = val = local64_read(&hwc->period_left);
6555 if (val < 0)
6556 return 0;
6557
6558 nr = div64_u64(period + val, period);
6559 offset = nr * period;
6560 val -= offset;
6561 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6562 goto again;
6563
6564 return nr;
6565 }
6566
6567 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6568 struct perf_sample_data *data,
6569 struct pt_regs *regs)
6570 {
6571 struct hw_perf_event *hwc = &event->hw;
6572 int throttle = 0;
6573
6574 if (!overflow)
6575 overflow = perf_swevent_set_period(event);
6576
6577 if (hwc->interrupts == MAX_INTERRUPTS)
6578 return;
6579
6580 for (; overflow; overflow--) {
6581 if (__perf_event_overflow(event, throttle,
6582 data, regs)) {
6583 /*
6584 * We inhibit the overflow from happening when
6585 * hwc->interrupts == MAX_INTERRUPTS.
6586 */
6587 break;
6588 }
6589 throttle = 1;
6590 }
6591 }
6592
6593 static void perf_swevent_event(struct perf_event *event, u64 nr,
6594 struct perf_sample_data *data,
6595 struct pt_regs *regs)
6596 {
6597 struct hw_perf_event *hwc = &event->hw;
6598
6599 local64_add(nr, &event->count);
6600
6601 if (!regs)
6602 return;
6603
6604 if (!is_sampling_event(event))
6605 return;
6606
6607 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6608 data->period = nr;
6609 return perf_swevent_overflow(event, 1, data, regs);
6610 } else
6611 data->period = event->hw.last_period;
6612
6613 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6614 return perf_swevent_overflow(event, 1, data, regs);
6615
6616 if (local64_add_negative(nr, &hwc->period_left))
6617 return;
6618
6619 perf_swevent_overflow(event, 0, data, regs);
6620 }
6621
6622 static int perf_exclude_event(struct perf_event *event,
6623 struct pt_regs *regs)
6624 {
6625 if (event->hw.state & PERF_HES_STOPPED)
6626 return 1;
6627
6628 if (regs) {
6629 if (event->attr.exclude_user && user_mode(regs))
6630 return 1;
6631
6632 if (event->attr.exclude_kernel && !user_mode(regs))
6633 return 1;
6634 }
6635
6636 return 0;
6637 }
6638
6639 static int perf_swevent_match(struct perf_event *event,
6640 enum perf_type_id type,
6641 u32 event_id,
6642 struct perf_sample_data *data,
6643 struct pt_regs *regs)
6644 {
6645 if (event->attr.type != type)
6646 return 0;
6647
6648 if (event->attr.config != event_id)
6649 return 0;
6650
6651 if (perf_exclude_event(event, regs))
6652 return 0;
6653
6654 return 1;
6655 }
6656
6657 static inline u64 swevent_hash(u64 type, u32 event_id)
6658 {
6659 u64 val = event_id | (type << 32);
6660
6661 return hash_64(val, SWEVENT_HLIST_BITS);
6662 }
6663
6664 static inline struct hlist_head *
6665 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6666 {
6667 u64 hash = swevent_hash(type, event_id);
6668
6669 return &hlist->heads[hash];
6670 }
6671
6672 /* For the read side: events when they trigger */
6673 static inline struct hlist_head *
6674 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6675 {
6676 struct swevent_hlist *hlist;
6677
6678 hlist = rcu_dereference(swhash->swevent_hlist);
6679 if (!hlist)
6680 return NULL;
6681
6682 return __find_swevent_head(hlist, type, event_id);
6683 }
6684
6685 /* For the event head insertion and removal in the hlist */
6686 static inline struct hlist_head *
6687 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6688 {
6689 struct swevent_hlist *hlist;
6690 u32 event_id = event->attr.config;
6691 u64 type = event->attr.type;
6692
6693 /*
6694 * Event scheduling is always serialized against hlist allocation
6695 * and release. Which makes the protected version suitable here.
6696 * The context lock guarantees that.
6697 */
6698 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6699 lockdep_is_held(&event->ctx->lock));
6700 if (!hlist)
6701 return NULL;
6702
6703 return __find_swevent_head(hlist, type, event_id);
6704 }
6705
6706 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6707 u64 nr,
6708 struct perf_sample_data *data,
6709 struct pt_regs *regs)
6710 {
6711 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6712 struct perf_event *event;
6713 struct hlist_head *head;
6714
6715 rcu_read_lock();
6716 head = find_swevent_head_rcu(swhash, type, event_id);
6717 if (!head)
6718 goto end;
6719
6720 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6721 if (perf_swevent_match(event, type, event_id, data, regs))
6722 perf_swevent_event(event, nr, data, regs);
6723 }
6724 end:
6725 rcu_read_unlock();
6726 }
6727
6728 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6729
6730 int perf_swevent_get_recursion_context(void)
6731 {
6732 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733
6734 return get_recursion_context(swhash->recursion);
6735 }
6736 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6737
6738 inline void perf_swevent_put_recursion_context(int rctx)
6739 {
6740 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6741
6742 put_recursion_context(swhash->recursion, rctx);
6743 }
6744
6745 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6746 {
6747 struct perf_sample_data data;
6748
6749 if (WARN_ON_ONCE(!regs))
6750 return;
6751
6752 perf_sample_data_init(&data, addr, 0);
6753 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6754 }
6755
6756 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6757 {
6758 int rctx;
6759
6760 preempt_disable_notrace();
6761 rctx = perf_swevent_get_recursion_context();
6762 if (unlikely(rctx < 0))
6763 goto fail;
6764
6765 ___perf_sw_event(event_id, nr, regs, addr);
6766
6767 perf_swevent_put_recursion_context(rctx);
6768 fail:
6769 preempt_enable_notrace();
6770 }
6771
6772 static void perf_swevent_read(struct perf_event *event)
6773 {
6774 }
6775
6776 static int perf_swevent_add(struct perf_event *event, int flags)
6777 {
6778 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6779 struct hw_perf_event *hwc = &event->hw;
6780 struct hlist_head *head;
6781
6782 if (is_sampling_event(event)) {
6783 hwc->last_period = hwc->sample_period;
6784 perf_swevent_set_period(event);
6785 }
6786
6787 hwc->state = !(flags & PERF_EF_START);
6788
6789 head = find_swevent_head(swhash, event);
6790 if (WARN_ON_ONCE(!head))
6791 return -EINVAL;
6792
6793 hlist_add_head_rcu(&event->hlist_entry, head);
6794 perf_event_update_userpage(event);
6795
6796 return 0;
6797 }
6798
6799 static void perf_swevent_del(struct perf_event *event, int flags)
6800 {
6801 hlist_del_rcu(&event->hlist_entry);
6802 }
6803
6804 static void perf_swevent_start(struct perf_event *event, int flags)
6805 {
6806 event->hw.state = 0;
6807 }
6808
6809 static void perf_swevent_stop(struct perf_event *event, int flags)
6810 {
6811 event->hw.state = PERF_HES_STOPPED;
6812 }
6813
6814 /* Deref the hlist from the update side */
6815 static inline struct swevent_hlist *
6816 swevent_hlist_deref(struct swevent_htable *swhash)
6817 {
6818 return rcu_dereference_protected(swhash->swevent_hlist,
6819 lockdep_is_held(&swhash->hlist_mutex));
6820 }
6821
6822 static void swevent_hlist_release(struct swevent_htable *swhash)
6823 {
6824 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6825
6826 if (!hlist)
6827 return;
6828
6829 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6830 kfree_rcu(hlist, rcu_head);
6831 }
6832
6833 static void swevent_hlist_put_cpu(int cpu)
6834 {
6835 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6836
6837 mutex_lock(&swhash->hlist_mutex);
6838
6839 if (!--swhash->hlist_refcount)
6840 swevent_hlist_release(swhash);
6841
6842 mutex_unlock(&swhash->hlist_mutex);
6843 }
6844
6845 static void swevent_hlist_put(void)
6846 {
6847 int cpu;
6848
6849 for_each_possible_cpu(cpu)
6850 swevent_hlist_put_cpu(cpu);
6851 }
6852
6853 static int swevent_hlist_get_cpu(int cpu)
6854 {
6855 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6856 int err = 0;
6857
6858 mutex_lock(&swhash->hlist_mutex);
6859 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6860 struct swevent_hlist *hlist;
6861
6862 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6863 if (!hlist) {
6864 err = -ENOMEM;
6865 goto exit;
6866 }
6867 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6868 }
6869 swhash->hlist_refcount++;
6870 exit:
6871 mutex_unlock(&swhash->hlist_mutex);
6872
6873 return err;
6874 }
6875
6876 static int swevent_hlist_get(void)
6877 {
6878 int err, cpu, failed_cpu;
6879
6880 get_online_cpus();
6881 for_each_possible_cpu(cpu) {
6882 err = swevent_hlist_get_cpu(cpu);
6883 if (err) {
6884 failed_cpu = cpu;
6885 goto fail;
6886 }
6887 }
6888 put_online_cpus();
6889
6890 return 0;
6891 fail:
6892 for_each_possible_cpu(cpu) {
6893 if (cpu == failed_cpu)
6894 break;
6895 swevent_hlist_put_cpu(cpu);
6896 }
6897
6898 put_online_cpus();
6899 return err;
6900 }
6901
6902 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6903
6904 static void sw_perf_event_destroy(struct perf_event *event)
6905 {
6906 u64 event_id = event->attr.config;
6907
6908 WARN_ON(event->parent);
6909
6910 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6911 swevent_hlist_put();
6912 }
6913
6914 static int perf_swevent_init(struct perf_event *event)
6915 {
6916 u64 event_id = event->attr.config;
6917
6918 if (event->attr.type != PERF_TYPE_SOFTWARE)
6919 return -ENOENT;
6920
6921 /*
6922 * no branch sampling for software events
6923 */
6924 if (has_branch_stack(event))
6925 return -EOPNOTSUPP;
6926
6927 switch (event_id) {
6928 case PERF_COUNT_SW_CPU_CLOCK:
6929 case PERF_COUNT_SW_TASK_CLOCK:
6930 return -ENOENT;
6931
6932 default:
6933 break;
6934 }
6935
6936 if (event_id >= PERF_COUNT_SW_MAX)
6937 return -ENOENT;
6938
6939 if (!event->parent) {
6940 int err;
6941
6942 err = swevent_hlist_get();
6943 if (err)
6944 return err;
6945
6946 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6947 event->destroy = sw_perf_event_destroy;
6948 }
6949
6950 return 0;
6951 }
6952
6953 static struct pmu perf_swevent = {
6954 .task_ctx_nr = perf_sw_context,
6955
6956 .capabilities = PERF_PMU_CAP_NO_NMI,
6957
6958 .event_init = perf_swevent_init,
6959 .add = perf_swevent_add,
6960 .del = perf_swevent_del,
6961 .start = perf_swevent_start,
6962 .stop = perf_swevent_stop,
6963 .read = perf_swevent_read,
6964 };
6965
6966 #ifdef CONFIG_EVENT_TRACING
6967
6968 static int perf_tp_filter_match(struct perf_event *event,
6969 struct perf_sample_data *data)
6970 {
6971 void *record = data->raw->data;
6972
6973 /* only top level events have filters set */
6974 if (event->parent)
6975 event = event->parent;
6976
6977 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6978 return 1;
6979 return 0;
6980 }
6981
6982 static int perf_tp_event_match(struct perf_event *event,
6983 struct perf_sample_data *data,
6984 struct pt_regs *regs)
6985 {
6986 if (event->hw.state & PERF_HES_STOPPED)
6987 return 0;
6988 /*
6989 * All tracepoints are from kernel-space.
6990 */
6991 if (event->attr.exclude_kernel)
6992 return 0;
6993
6994 if (!perf_tp_filter_match(event, data))
6995 return 0;
6996
6997 return 1;
6998 }
6999
7000 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7001 struct pt_regs *regs, struct hlist_head *head, int rctx,
7002 struct task_struct *task)
7003 {
7004 struct perf_sample_data data;
7005 struct perf_event *event;
7006
7007 struct perf_raw_record raw = {
7008 .size = entry_size,
7009 .data = record,
7010 };
7011
7012 perf_sample_data_init(&data, addr, 0);
7013 data.raw = &raw;
7014
7015 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7016 if (perf_tp_event_match(event, &data, regs))
7017 perf_swevent_event(event, count, &data, regs);
7018 }
7019
7020 /*
7021 * If we got specified a target task, also iterate its context and
7022 * deliver this event there too.
7023 */
7024 if (task && task != current) {
7025 struct perf_event_context *ctx;
7026 struct trace_entry *entry = record;
7027
7028 rcu_read_lock();
7029 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7030 if (!ctx)
7031 goto unlock;
7032
7033 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7034 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7035 continue;
7036 if (event->attr.config != entry->type)
7037 continue;
7038 if (perf_tp_event_match(event, &data, regs))
7039 perf_swevent_event(event, count, &data, regs);
7040 }
7041 unlock:
7042 rcu_read_unlock();
7043 }
7044
7045 perf_swevent_put_recursion_context(rctx);
7046 }
7047 EXPORT_SYMBOL_GPL(perf_tp_event);
7048
7049 static void tp_perf_event_destroy(struct perf_event *event)
7050 {
7051 perf_trace_destroy(event);
7052 }
7053
7054 static int perf_tp_event_init(struct perf_event *event)
7055 {
7056 int err;
7057
7058 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7059 return -ENOENT;
7060
7061 /*
7062 * no branch sampling for tracepoint events
7063 */
7064 if (has_branch_stack(event))
7065 return -EOPNOTSUPP;
7066
7067 err = perf_trace_init(event);
7068 if (err)
7069 return err;
7070
7071 event->destroy = tp_perf_event_destroy;
7072
7073 return 0;
7074 }
7075
7076 static struct pmu perf_tracepoint = {
7077 .task_ctx_nr = perf_sw_context,
7078
7079 .event_init = perf_tp_event_init,
7080 .add = perf_trace_add,
7081 .del = perf_trace_del,
7082 .start = perf_swevent_start,
7083 .stop = perf_swevent_stop,
7084 .read = perf_swevent_read,
7085 };
7086
7087 static inline void perf_tp_register(void)
7088 {
7089 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7090 }
7091
7092 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7093 {
7094 char *filter_str;
7095 int ret;
7096
7097 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7098 return -EINVAL;
7099
7100 filter_str = strndup_user(arg, PAGE_SIZE);
7101 if (IS_ERR(filter_str))
7102 return PTR_ERR(filter_str);
7103
7104 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7105
7106 kfree(filter_str);
7107 return ret;
7108 }
7109
7110 static void perf_event_free_filter(struct perf_event *event)
7111 {
7112 ftrace_profile_free_filter(event);
7113 }
7114
7115 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7116 {
7117 struct bpf_prog *prog;
7118
7119 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7120 return -EINVAL;
7121
7122 if (event->tp_event->prog)
7123 return -EEXIST;
7124
7125 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7126 /* bpf programs can only be attached to u/kprobes */
7127 return -EINVAL;
7128
7129 prog = bpf_prog_get(prog_fd);
7130 if (IS_ERR(prog))
7131 return PTR_ERR(prog);
7132
7133 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7134 /* valid fd, but invalid bpf program type */
7135 bpf_prog_put(prog);
7136 return -EINVAL;
7137 }
7138
7139 event->tp_event->prog = prog;
7140
7141 return 0;
7142 }
7143
7144 static void perf_event_free_bpf_prog(struct perf_event *event)
7145 {
7146 struct bpf_prog *prog;
7147
7148 if (!event->tp_event)
7149 return;
7150
7151 prog = event->tp_event->prog;
7152 if (prog) {
7153 event->tp_event->prog = NULL;
7154 bpf_prog_put(prog);
7155 }
7156 }
7157
7158 #else
7159
7160 static inline void perf_tp_register(void)
7161 {
7162 }
7163
7164 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7165 {
7166 return -ENOENT;
7167 }
7168
7169 static void perf_event_free_filter(struct perf_event *event)
7170 {
7171 }
7172
7173 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7174 {
7175 return -ENOENT;
7176 }
7177
7178 static void perf_event_free_bpf_prog(struct perf_event *event)
7179 {
7180 }
7181 #endif /* CONFIG_EVENT_TRACING */
7182
7183 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7184 void perf_bp_event(struct perf_event *bp, void *data)
7185 {
7186 struct perf_sample_data sample;
7187 struct pt_regs *regs = data;
7188
7189 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7190
7191 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7192 perf_swevent_event(bp, 1, &sample, regs);
7193 }
7194 #endif
7195
7196 /*
7197 * hrtimer based swevent callback
7198 */
7199
7200 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7201 {
7202 enum hrtimer_restart ret = HRTIMER_RESTART;
7203 struct perf_sample_data data;
7204 struct pt_regs *regs;
7205 struct perf_event *event;
7206 u64 period;
7207
7208 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7209
7210 if (event->state != PERF_EVENT_STATE_ACTIVE)
7211 return HRTIMER_NORESTART;
7212
7213 event->pmu->read(event);
7214
7215 perf_sample_data_init(&data, 0, event->hw.last_period);
7216 regs = get_irq_regs();
7217
7218 if (regs && !perf_exclude_event(event, regs)) {
7219 if (!(event->attr.exclude_idle && is_idle_task(current)))
7220 if (__perf_event_overflow(event, 1, &data, regs))
7221 ret = HRTIMER_NORESTART;
7222 }
7223
7224 period = max_t(u64, 10000, event->hw.sample_period);
7225 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7226
7227 return ret;
7228 }
7229
7230 static void perf_swevent_start_hrtimer(struct perf_event *event)
7231 {
7232 struct hw_perf_event *hwc = &event->hw;
7233 s64 period;
7234
7235 if (!is_sampling_event(event))
7236 return;
7237
7238 period = local64_read(&hwc->period_left);
7239 if (period) {
7240 if (period < 0)
7241 period = 10000;
7242
7243 local64_set(&hwc->period_left, 0);
7244 } else {
7245 period = max_t(u64, 10000, hwc->sample_period);
7246 }
7247 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7248 HRTIMER_MODE_REL_PINNED);
7249 }
7250
7251 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7252 {
7253 struct hw_perf_event *hwc = &event->hw;
7254
7255 if (is_sampling_event(event)) {
7256 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7257 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7258
7259 hrtimer_cancel(&hwc->hrtimer);
7260 }
7261 }
7262
7263 static void perf_swevent_init_hrtimer(struct perf_event *event)
7264 {
7265 struct hw_perf_event *hwc = &event->hw;
7266
7267 if (!is_sampling_event(event))
7268 return;
7269
7270 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7271 hwc->hrtimer.function = perf_swevent_hrtimer;
7272
7273 /*
7274 * Since hrtimers have a fixed rate, we can do a static freq->period
7275 * mapping and avoid the whole period adjust feedback stuff.
7276 */
7277 if (event->attr.freq) {
7278 long freq = event->attr.sample_freq;
7279
7280 event->attr.sample_period = NSEC_PER_SEC / freq;
7281 hwc->sample_period = event->attr.sample_period;
7282 local64_set(&hwc->period_left, hwc->sample_period);
7283 hwc->last_period = hwc->sample_period;
7284 event->attr.freq = 0;
7285 }
7286 }
7287
7288 /*
7289 * Software event: cpu wall time clock
7290 */
7291
7292 static void cpu_clock_event_update(struct perf_event *event)
7293 {
7294 s64 prev;
7295 u64 now;
7296
7297 now = local_clock();
7298 prev = local64_xchg(&event->hw.prev_count, now);
7299 local64_add(now - prev, &event->count);
7300 }
7301
7302 static void cpu_clock_event_start(struct perf_event *event, int flags)
7303 {
7304 local64_set(&event->hw.prev_count, local_clock());
7305 perf_swevent_start_hrtimer(event);
7306 }
7307
7308 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7309 {
7310 perf_swevent_cancel_hrtimer(event);
7311 cpu_clock_event_update(event);
7312 }
7313
7314 static int cpu_clock_event_add(struct perf_event *event, int flags)
7315 {
7316 if (flags & PERF_EF_START)
7317 cpu_clock_event_start(event, flags);
7318 perf_event_update_userpage(event);
7319
7320 return 0;
7321 }
7322
7323 static void cpu_clock_event_del(struct perf_event *event, int flags)
7324 {
7325 cpu_clock_event_stop(event, flags);
7326 }
7327
7328 static void cpu_clock_event_read(struct perf_event *event)
7329 {
7330 cpu_clock_event_update(event);
7331 }
7332
7333 static int cpu_clock_event_init(struct perf_event *event)
7334 {
7335 if (event->attr.type != PERF_TYPE_SOFTWARE)
7336 return -ENOENT;
7337
7338 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7339 return -ENOENT;
7340
7341 /*
7342 * no branch sampling for software events
7343 */
7344 if (has_branch_stack(event))
7345 return -EOPNOTSUPP;
7346
7347 perf_swevent_init_hrtimer(event);
7348
7349 return 0;
7350 }
7351
7352 static struct pmu perf_cpu_clock = {
7353 .task_ctx_nr = perf_sw_context,
7354
7355 .capabilities = PERF_PMU_CAP_NO_NMI,
7356
7357 .event_init = cpu_clock_event_init,
7358 .add = cpu_clock_event_add,
7359 .del = cpu_clock_event_del,
7360 .start = cpu_clock_event_start,
7361 .stop = cpu_clock_event_stop,
7362 .read = cpu_clock_event_read,
7363 };
7364
7365 /*
7366 * Software event: task time clock
7367 */
7368
7369 static void task_clock_event_update(struct perf_event *event, u64 now)
7370 {
7371 u64 prev;
7372 s64 delta;
7373
7374 prev = local64_xchg(&event->hw.prev_count, now);
7375 delta = now - prev;
7376 local64_add(delta, &event->count);
7377 }
7378
7379 static void task_clock_event_start(struct perf_event *event, int flags)
7380 {
7381 local64_set(&event->hw.prev_count, event->ctx->time);
7382 perf_swevent_start_hrtimer(event);
7383 }
7384
7385 static void task_clock_event_stop(struct perf_event *event, int flags)
7386 {
7387 perf_swevent_cancel_hrtimer(event);
7388 task_clock_event_update(event, event->ctx->time);
7389 }
7390
7391 static int task_clock_event_add(struct perf_event *event, int flags)
7392 {
7393 if (flags & PERF_EF_START)
7394 task_clock_event_start(event, flags);
7395 perf_event_update_userpage(event);
7396
7397 return 0;
7398 }
7399
7400 static void task_clock_event_del(struct perf_event *event, int flags)
7401 {
7402 task_clock_event_stop(event, PERF_EF_UPDATE);
7403 }
7404
7405 static void task_clock_event_read(struct perf_event *event)
7406 {
7407 u64 now = perf_clock();
7408 u64 delta = now - event->ctx->timestamp;
7409 u64 time = event->ctx->time + delta;
7410
7411 task_clock_event_update(event, time);
7412 }
7413
7414 static int task_clock_event_init(struct perf_event *event)
7415 {
7416 if (event->attr.type != PERF_TYPE_SOFTWARE)
7417 return -ENOENT;
7418
7419 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7420 return -ENOENT;
7421
7422 /*
7423 * no branch sampling for software events
7424 */
7425 if (has_branch_stack(event))
7426 return -EOPNOTSUPP;
7427
7428 perf_swevent_init_hrtimer(event);
7429
7430 return 0;
7431 }
7432
7433 static struct pmu perf_task_clock = {
7434 .task_ctx_nr = perf_sw_context,
7435
7436 .capabilities = PERF_PMU_CAP_NO_NMI,
7437
7438 .event_init = task_clock_event_init,
7439 .add = task_clock_event_add,
7440 .del = task_clock_event_del,
7441 .start = task_clock_event_start,
7442 .stop = task_clock_event_stop,
7443 .read = task_clock_event_read,
7444 };
7445
7446 static void perf_pmu_nop_void(struct pmu *pmu)
7447 {
7448 }
7449
7450 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7451 {
7452 }
7453
7454 static int perf_pmu_nop_int(struct pmu *pmu)
7455 {
7456 return 0;
7457 }
7458
7459 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7460
7461 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7462 {
7463 __this_cpu_write(nop_txn_flags, flags);
7464
7465 if (flags & ~PERF_PMU_TXN_ADD)
7466 return;
7467
7468 perf_pmu_disable(pmu);
7469 }
7470
7471 static int perf_pmu_commit_txn(struct pmu *pmu)
7472 {
7473 unsigned int flags = __this_cpu_read(nop_txn_flags);
7474
7475 __this_cpu_write(nop_txn_flags, 0);
7476
7477 if (flags & ~PERF_PMU_TXN_ADD)
7478 return 0;
7479
7480 perf_pmu_enable(pmu);
7481 return 0;
7482 }
7483
7484 static void perf_pmu_cancel_txn(struct pmu *pmu)
7485 {
7486 unsigned int flags = __this_cpu_read(nop_txn_flags);
7487
7488 __this_cpu_write(nop_txn_flags, 0);
7489
7490 if (flags & ~PERF_PMU_TXN_ADD)
7491 return;
7492
7493 perf_pmu_enable(pmu);
7494 }
7495
7496 static int perf_event_idx_default(struct perf_event *event)
7497 {
7498 return 0;
7499 }
7500
7501 /*
7502 * Ensures all contexts with the same task_ctx_nr have the same
7503 * pmu_cpu_context too.
7504 */
7505 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7506 {
7507 struct pmu *pmu;
7508
7509 if (ctxn < 0)
7510 return NULL;
7511
7512 list_for_each_entry(pmu, &pmus, entry) {
7513 if (pmu->task_ctx_nr == ctxn)
7514 return pmu->pmu_cpu_context;
7515 }
7516
7517 return NULL;
7518 }
7519
7520 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7521 {
7522 int cpu;
7523
7524 for_each_possible_cpu(cpu) {
7525 struct perf_cpu_context *cpuctx;
7526
7527 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7528
7529 if (cpuctx->unique_pmu == old_pmu)
7530 cpuctx->unique_pmu = pmu;
7531 }
7532 }
7533
7534 static void free_pmu_context(struct pmu *pmu)
7535 {
7536 struct pmu *i;
7537
7538 mutex_lock(&pmus_lock);
7539 /*
7540 * Like a real lame refcount.
7541 */
7542 list_for_each_entry(i, &pmus, entry) {
7543 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7544 update_pmu_context(i, pmu);
7545 goto out;
7546 }
7547 }
7548
7549 free_percpu(pmu->pmu_cpu_context);
7550 out:
7551 mutex_unlock(&pmus_lock);
7552 }
7553 static struct idr pmu_idr;
7554
7555 static ssize_t
7556 type_show(struct device *dev, struct device_attribute *attr, char *page)
7557 {
7558 struct pmu *pmu = dev_get_drvdata(dev);
7559
7560 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7561 }
7562 static DEVICE_ATTR_RO(type);
7563
7564 static ssize_t
7565 perf_event_mux_interval_ms_show(struct device *dev,
7566 struct device_attribute *attr,
7567 char *page)
7568 {
7569 struct pmu *pmu = dev_get_drvdata(dev);
7570
7571 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7572 }
7573
7574 static DEFINE_MUTEX(mux_interval_mutex);
7575
7576 static ssize_t
7577 perf_event_mux_interval_ms_store(struct device *dev,
7578 struct device_attribute *attr,
7579 const char *buf, size_t count)
7580 {
7581 struct pmu *pmu = dev_get_drvdata(dev);
7582 int timer, cpu, ret;
7583
7584 ret = kstrtoint(buf, 0, &timer);
7585 if (ret)
7586 return ret;
7587
7588 if (timer < 1)
7589 return -EINVAL;
7590
7591 /* same value, noting to do */
7592 if (timer == pmu->hrtimer_interval_ms)
7593 return count;
7594
7595 mutex_lock(&mux_interval_mutex);
7596 pmu->hrtimer_interval_ms = timer;
7597
7598 /* update all cpuctx for this PMU */
7599 get_online_cpus();
7600 for_each_online_cpu(cpu) {
7601 struct perf_cpu_context *cpuctx;
7602 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7603 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7604
7605 cpu_function_call(cpu,
7606 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7607 }
7608 put_online_cpus();
7609 mutex_unlock(&mux_interval_mutex);
7610
7611 return count;
7612 }
7613 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7614
7615 static struct attribute *pmu_dev_attrs[] = {
7616 &dev_attr_type.attr,
7617 &dev_attr_perf_event_mux_interval_ms.attr,
7618 NULL,
7619 };
7620 ATTRIBUTE_GROUPS(pmu_dev);
7621
7622 static int pmu_bus_running;
7623 static struct bus_type pmu_bus = {
7624 .name = "event_source",
7625 .dev_groups = pmu_dev_groups,
7626 };
7627
7628 static void pmu_dev_release(struct device *dev)
7629 {
7630 kfree(dev);
7631 }
7632
7633 static int pmu_dev_alloc(struct pmu *pmu)
7634 {
7635 int ret = -ENOMEM;
7636
7637 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7638 if (!pmu->dev)
7639 goto out;
7640
7641 pmu->dev->groups = pmu->attr_groups;
7642 device_initialize(pmu->dev);
7643 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7644 if (ret)
7645 goto free_dev;
7646
7647 dev_set_drvdata(pmu->dev, pmu);
7648 pmu->dev->bus = &pmu_bus;
7649 pmu->dev->release = pmu_dev_release;
7650 ret = device_add(pmu->dev);
7651 if (ret)
7652 goto free_dev;
7653
7654 out:
7655 return ret;
7656
7657 free_dev:
7658 put_device(pmu->dev);
7659 goto out;
7660 }
7661
7662 static struct lock_class_key cpuctx_mutex;
7663 static struct lock_class_key cpuctx_lock;
7664
7665 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7666 {
7667 int cpu, ret;
7668
7669 mutex_lock(&pmus_lock);
7670 ret = -ENOMEM;
7671 pmu->pmu_disable_count = alloc_percpu(int);
7672 if (!pmu->pmu_disable_count)
7673 goto unlock;
7674
7675 pmu->type = -1;
7676 if (!name)
7677 goto skip_type;
7678 pmu->name = name;
7679
7680 if (type < 0) {
7681 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7682 if (type < 0) {
7683 ret = type;
7684 goto free_pdc;
7685 }
7686 }
7687 pmu->type = type;
7688
7689 if (pmu_bus_running) {
7690 ret = pmu_dev_alloc(pmu);
7691 if (ret)
7692 goto free_idr;
7693 }
7694
7695 skip_type:
7696 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7697 if (pmu->pmu_cpu_context)
7698 goto got_cpu_context;
7699
7700 ret = -ENOMEM;
7701 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7702 if (!pmu->pmu_cpu_context)
7703 goto free_dev;
7704
7705 for_each_possible_cpu(cpu) {
7706 struct perf_cpu_context *cpuctx;
7707
7708 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7709 __perf_event_init_context(&cpuctx->ctx);
7710 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7711 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7712 cpuctx->ctx.pmu = pmu;
7713
7714 __perf_mux_hrtimer_init(cpuctx, cpu);
7715
7716 cpuctx->unique_pmu = pmu;
7717 }
7718
7719 got_cpu_context:
7720 if (!pmu->start_txn) {
7721 if (pmu->pmu_enable) {
7722 /*
7723 * If we have pmu_enable/pmu_disable calls, install
7724 * transaction stubs that use that to try and batch
7725 * hardware accesses.
7726 */
7727 pmu->start_txn = perf_pmu_start_txn;
7728 pmu->commit_txn = perf_pmu_commit_txn;
7729 pmu->cancel_txn = perf_pmu_cancel_txn;
7730 } else {
7731 pmu->start_txn = perf_pmu_nop_txn;
7732 pmu->commit_txn = perf_pmu_nop_int;
7733 pmu->cancel_txn = perf_pmu_nop_void;
7734 }
7735 }
7736
7737 if (!pmu->pmu_enable) {
7738 pmu->pmu_enable = perf_pmu_nop_void;
7739 pmu->pmu_disable = perf_pmu_nop_void;
7740 }
7741
7742 if (!pmu->event_idx)
7743 pmu->event_idx = perf_event_idx_default;
7744
7745 list_add_rcu(&pmu->entry, &pmus);
7746 atomic_set(&pmu->exclusive_cnt, 0);
7747 ret = 0;
7748 unlock:
7749 mutex_unlock(&pmus_lock);
7750
7751 return ret;
7752
7753 free_dev:
7754 device_del(pmu->dev);
7755 put_device(pmu->dev);
7756
7757 free_idr:
7758 if (pmu->type >= PERF_TYPE_MAX)
7759 idr_remove(&pmu_idr, pmu->type);
7760
7761 free_pdc:
7762 free_percpu(pmu->pmu_disable_count);
7763 goto unlock;
7764 }
7765 EXPORT_SYMBOL_GPL(perf_pmu_register);
7766
7767 void perf_pmu_unregister(struct pmu *pmu)
7768 {
7769 mutex_lock(&pmus_lock);
7770 list_del_rcu(&pmu->entry);
7771 mutex_unlock(&pmus_lock);
7772
7773 /*
7774 * We dereference the pmu list under both SRCU and regular RCU, so
7775 * synchronize against both of those.
7776 */
7777 synchronize_srcu(&pmus_srcu);
7778 synchronize_rcu();
7779
7780 free_percpu(pmu->pmu_disable_count);
7781 if (pmu->type >= PERF_TYPE_MAX)
7782 idr_remove(&pmu_idr, pmu->type);
7783 device_del(pmu->dev);
7784 put_device(pmu->dev);
7785 free_pmu_context(pmu);
7786 }
7787 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7788
7789 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7790 {
7791 struct perf_event_context *ctx = NULL;
7792 int ret;
7793
7794 if (!try_module_get(pmu->module))
7795 return -ENODEV;
7796
7797 if (event->group_leader != event) {
7798 /*
7799 * This ctx->mutex can nest when we're called through
7800 * inheritance. See the perf_event_ctx_lock_nested() comment.
7801 */
7802 ctx = perf_event_ctx_lock_nested(event->group_leader,
7803 SINGLE_DEPTH_NESTING);
7804 BUG_ON(!ctx);
7805 }
7806
7807 event->pmu = pmu;
7808 ret = pmu->event_init(event);
7809
7810 if (ctx)
7811 perf_event_ctx_unlock(event->group_leader, ctx);
7812
7813 if (ret)
7814 module_put(pmu->module);
7815
7816 return ret;
7817 }
7818
7819 static struct pmu *perf_init_event(struct perf_event *event)
7820 {
7821 struct pmu *pmu = NULL;
7822 int idx;
7823 int ret;
7824
7825 idx = srcu_read_lock(&pmus_srcu);
7826
7827 rcu_read_lock();
7828 pmu = idr_find(&pmu_idr, event->attr.type);
7829 rcu_read_unlock();
7830 if (pmu) {
7831 ret = perf_try_init_event(pmu, event);
7832 if (ret)
7833 pmu = ERR_PTR(ret);
7834 goto unlock;
7835 }
7836
7837 list_for_each_entry_rcu(pmu, &pmus, entry) {
7838 ret = perf_try_init_event(pmu, event);
7839 if (!ret)
7840 goto unlock;
7841
7842 if (ret != -ENOENT) {
7843 pmu = ERR_PTR(ret);
7844 goto unlock;
7845 }
7846 }
7847 pmu = ERR_PTR(-ENOENT);
7848 unlock:
7849 srcu_read_unlock(&pmus_srcu, idx);
7850
7851 return pmu;
7852 }
7853
7854 static void account_event_cpu(struct perf_event *event, int cpu)
7855 {
7856 if (event->parent)
7857 return;
7858
7859 if (is_cgroup_event(event))
7860 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7861 }
7862
7863 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7864 static void account_freq_event_nohz(void)
7865 {
7866 #ifdef CONFIG_NO_HZ_FULL
7867 /* Lock so we don't race with concurrent unaccount */
7868 spin_lock(&nr_freq_lock);
7869 if (atomic_inc_return(&nr_freq_events) == 1)
7870 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7871 spin_unlock(&nr_freq_lock);
7872 #endif
7873 }
7874
7875 static void account_freq_event(void)
7876 {
7877 if (tick_nohz_full_enabled())
7878 account_freq_event_nohz();
7879 else
7880 atomic_inc(&nr_freq_events);
7881 }
7882
7883
7884 static void account_event(struct perf_event *event)
7885 {
7886 bool inc = false;
7887
7888 if (event->parent)
7889 return;
7890
7891 if (event->attach_state & PERF_ATTACH_TASK)
7892 inc = true;
7893 if (event->attr.mmap || event->attr.mmap_data)
7894 atomic_inc(&nr_mmap_events);
7895 if (event->attr.comm)
7896 atomic_inc(&nr_comm_events);
7897 if (event->attr.task)
7898 atomic_inc(&nr_task_events);
7899 if (event->attr.freq)
7900 account_freq_event();
7901 if (event->attr.context_switch) {
7902 atomic_inc(&nr_switch_events);
7903 inc = true;
7904 }
7905 if (has_branch_stack(event))
7906 inc = true;
7907 if (is_cgroup_event(event))
7908 inc = true;
7909
7910 if (inc) {
7911 if (atomic_inc_not_zero(&perf_sched_count))
7912 goto enabled;
7913
7914 mutex_lock(&perf_sched_mutex);
7915 if (!atomic_read(&perf_sched_count)) {
7916 static_branch_enable(&perf_sched_events);
7917 /*
7918 * Guarantee that all CPUs observe they key change and
7919 * call the perf scheduling hooks before proceeding to
7920 * install events that need them.
7921 */
7922 synchronize_sched();
7923 }
7924 /*
7925 * Now that we have waited for the sync_sched(), allow further
7926 * increments to by-pass the mutex.
7927 */
7928 atomic_inc(&perf_sched_count);
7929 mutex_unlock(&perf_sched_mutex);
7930 }
7931 enabled:
7932
7933 account_event_cpu(event, event->cpu);
7934 }
7935
7936 /*
7937 * Allocate and initialize a event structure
7938 */
7939 static struct perf_event *
7940 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7941 struct task_struct *task,
7942 struct perf_event *group_leader,
7943 struct perf_event *parent_event,
7944 perf_overflow_handler_t overflow_handler,
7945 void *context, int cgroup_fd)
7946 {
7947 struct pmu *pmu;
7948 struct perf_event *event;
7949 struct hw_perf_event *hwc;
7950 long err = -EINVAL;
7951
7952 if ((unsigned)cpu >= nr_cpu_ids) {
7953 if (!task || cpu != -1)
7954 return ERR_PTR(-EINVAL);
7955 }
7956
7957 event = kzalloc(sizeof(*event), GFP_KERNEL);
7958 if (!event)
7959 return ERR_PTR(-ENOMEM);
7960
7961 /*
7962 * Single events are their own group leaders, with an
7963 * empty sibling list:
7964 */
7965 if (!group_leader)
7966 group_leader = event;
7967
7968 mutex_init(&event->child_mutex);
7969 INIT_LIST_HEAD(&event->child_list);
7970
7971 INIT_LIST_HEAD(&event->group_entry);
7972 INIT_LIST_HEAD(&event->event_entry);
7973 INIT_LIST_HEAD(&event->sibling_list);
7974 INIT_LIST_HEAD(&event->rb_entry);
7975 INIT_LIST_HEAD(&event->active_entry);
7976 INIT_HLIST_NODE(&event->hlist_entry);
7977
7978
7979 init_waitqueue_head(&event->waitq);
7980 init_irq_work(&event->pending, perf_pending_event);
7981
7982 mutex_init(&event->mmap_mutex);
7983
7984 atomic_long_set(&event->refcount, 1);
7985 event->cpu = cpu;
7986 event->attr = *attr;
7987 event->group_leader = group_leader;
7988 event->pmu = NULL;
7989 event->oncpu = -1;
7990
7991 event->parent = parent_event;
7992
7993 event->ns = get_pid_ns(task_active_pid_ns(current));
7994 event->id = atomic64_inc_return(&perf_event_id);
7995
7996 event->state = PERF_EVENT_STATE_INACTIVE;
7997
7998 if (task) {
7999 event->attach_state = PERF_ATTACH_TASK;
8000 /*
8001 * XXX pmu::event_init needs to know what task to account to
8002 * and we cannot use the ctx information because we need the
8003 * pmu before we get a ctx.
8004 */
8005 event->hw.target = task;
8006 }
8007
8008 event->clock = &local_clock;
8009 if (parent_event)
8010 event->clock = parent_event->clock;
8011
8012 if (!overflow_handler && parent_event) {
8013 overflow_handler = parent_event->overflow_handler;
8014 context = parent_event->overflow_handler_context;
8015 }
8016
8017 event->overflow_handler = overflow_handler;
8018 event->overflow_handler_context = context;
8019
8020 perf_event__state_init(event);
8021
8022 pmu = NULL;
8023
8024 hwc = &event->hw;
8025 hwc->sample_period = attr->sample_period;
8026 if (attr->freq && attr->sample_freq)
8027 hwc->sample_period = 1;
8028 hwc->last_period = hwc->sample_period;
8029
8030 local64_set(&hwc->period_left, hwc->sample_period);
8031
8032 /*
8033 * we currently do not support PERF_FORMAT_GROUP on inherited events
8034 */
8035 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8036 goto err_ns;
8037
8038 if (!has_branch_stack(event))
8039 event->attr.branch_sample_type = 0;
8040
8041 if (cgroup_fd != -1) {
8042 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8043 if (err)
8044 goto err_ns;
8045 }
8046
8047 pmu = perf_init_event(event);
8048 if (!pmu)
8049 goto err_ns;
8050 else if (IS_ERR(pmu)) {
8051 err = PTR_ERR(pmu);
8052 goto err_ns;
8053 }
8054
8055 err = exclusive_event_init(event);
8056 if (err)
8057 goto err_pmu;
8058
8059 if (!event->parent) {
8060 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8061 err = get_callchain_buffers();
8062 if (err)
8063 goto err_per_task;
8064 }
8065 }
8066
8067 /* symmetric to unaccount_event() in _free_event() */
8068 account_event(event);
8069
8070 return event;
8071
8072 err_per_task:
8073 exclusive_event_destroy(event);
8074
8075 err_pmu:
8076 if (event->destroy)
8077 event->destroy(event);
8078 module_put(pmu->module);
8079 err_ns:
8080 if (is_cgroup_event(event))
8081 perf_detach_cgroup(event);
8082 if (event->ns)
8083 put_pid_ns(event->ns);
8084 kfree(event);
8085
8086 return ERR_PTR(err);
8087 }
8088
8089 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8090 struct perf_event_attr *attr)
8091 {
8092 u32 size;
8093 int ret;
8094
8095 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8096 return -EFAULT;
8097
8098 /*
8099 * zero the full structure, so that a short copy will be nice.
8100 */
8101 memset(attr, 0, sizeof(*attr));
8102
8103 ret = get_user(size, &uattr->size);
8104 if (ret)
8105 return ret;
8106
8107 if (size > PAGE_SIZE) /* silly large */
8108 goto err_size;
8109
8110 if (!size) /* abi compat */
8111 size = PERF_ATTR_SIZE_VER0;
8112
8113 if (size < PERF_ATTR_SIZE_VER0)
8114 goto err_size;
8115
8116 /*
8117 * If we're handed a bigger struct than we know of,
8118 * ensure all the unknown bits are 0 - i.e. new
8119 * user-space does not rely on any kernel feature
8120 * extensions we dont know about yet.
8121 */
8122 if (size > sizeof(*attr)) {
8123 unsigned char __user *addr;
8124 unsigned char __user *end;
8125 unsigned char val;
8126
8127 addr = (void __user *)uattr + sizeof(*attr);
8128 end = (void __user *)uattr + size;
8129
8130 for (; addr < end; addr++) {
8131 ret = get_user(val, addr);
8132 if (ret)
8133 return ret;
8134 if (val)
8135 goto err_size;
8136 }
8137 size = sizeof(*attr);
8138 }
8139
8140 ret = copy_from_user(attr, uattr, size);
8141 if (ret)
8142 return -EFAULT;
8143
8144 if (attr->__reserved_1)
8145 return -EINVAL;
8146
8147 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8148 return -EINVAL;
8149
8150 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8151 return -EINVAL;
8152
8153 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8154 u64 mask = attr->branch_sample_type;
8155
8156 /* only using defined bits */
8157 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8158 return -EINVAL;
8159
8160 /* at least one branch bit must be set */
8161 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8162 return -EINVAL;
8163
8164 /* propagate priv level, when not set for branch */
8165 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8166
8167 /* exclude_kernel checked on syscall entry */
8168 if (!attr->exclude_kernel)
8169 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8170
8171 if (!attr->exclude_user)
8172 mask |= PERF_SAMPLE_BRANCH_USER;
8173
8174 if (!attr->exclude_hv)
8175 mask |= PERF_SAMPLE_BRANCH_HV;
8176 /*
8177 * adjust user setting (for HW filter setup)
8178 */
8179 attr->branch_sample_type = mask;
8180 }
8181 /* privileged levels capture (kernel, hv): check permissions */
8182 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8183 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8184 return -EACCES;
8185 }
8186
8187 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8188 ret = perf_reg_validate(attr->sample_regs_user);
8189 if (ret)
8190 return ret;
8191 }
8192
8193 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8194 if (!arch_perf_have_user_stack_dump())
8195 return -ENOSYS;
8196
8197 /*
8198 * We have __u32 type for the size, but so far
8199 * we can only use __u16 as maximum due to the
8200 * __u16 sample size limit.
8201 */
8202 if (attr->sample_stack_user >= USHRT_MAX)
8203 ret = -EINVAL;
8204 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8205 ret = -EINVAL;
8206 }
8207
8208 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8209 ret = perf_reg_validate(attr->sample_regs_intr);
8210 out:
8211 return ret;
8212
8213 err_size:
8214 put_user(sizeof(*attr), &uattr->size);
8215 ret = -E2BIG;
8216 goto out;
8217 }
8218
8219 static int
8220 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8221 {
8222 struct ring_buffer *rb = NULL;
8223 int ret = -EINVAL;
8224
8225 if (!output_event)
8226 goto set;
8227
8228 /* don't allow circular references */
8229 if (event == output_event)
8230 goto out;
8231
8232 /*
8233 * Don't allow cross-cpu buffers
8234 */
8235 if (output_event->cpu != event->cpu)
8236 goto out;
8237
8238 /*
8239 * If its not a per-cpu rb, it must be the same task.
8240 */
8241 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8242 goto out;
8243
8244 /*
8245 * Mixing clocks in the same buffer is trouble you don't need.
8246 */
8247 if (output_event->clock != event->clock)
8248 goto out;
8249
8250 /*
8251 * If both events generate aux data, they must be on the same PMU
8252 */
8253 if (has_aux(event) && has_aux(output_event) &&
8254 event->pmu != output_event->pmu)
8255 goto out;
8256
8257 set:
8258 mutex_lock(&event->mmap_mutex);
8259 /* Can't redirect output if we've got an active mmap() */
8260 if (atomic_read(&event->mmap_count))
8261 goto unlock;
8262
8263 if (output_event) {
8264 /* get the rb we want to redirect to */
8265 rb = ring_buffer_get(output_event);
8266 if (!rb)
8267 goto unlock;
8268 }
8269
8270 ring_buffer_attach(event, rb);
8271
8272 ret = 0;
8273 unlock:
8274 mutex_unlock(&event->mmap_mutex);
8275
8276 out:
8277 return ret;
8278 }
8279
8280 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8281 {
8282 if (b < a)
8283 swap(a, b);
8284
8285 mutex_lock(a);
8286 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8287 }
8288
8289 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8290 {
8291 bool nmi_safe = false;
8292
8293 switch (clk_id) {
8294 case CLOCK_MONOTONIC:
8295 event->clock = &ktime_get_mono_fast_ns;
8296 nmi_safe = true;
8297 break;
8298
8299 case CLOCK_MONOTONIC_RAW:
8300 event->clock = &ktime_get_raw_fast_ns;
8301 nmi_safe = true;
8302 break;
8303
8304 case CLOCK_REALTIME:
8305 event->clock = &ktime_get_real_ns;
8306 break;
8307
8308 case CLOCK_BOOTTIME:
8309 event->clock = &ktime_get_boot_ns;
8310 break;
8311
8312 case CLOCK_TAI:
8313 event->clock = &ktime_get_tai_ns;
8314 break;
8315
8316 default:
8317 return -EINVAL;
8318 }
8319
8320 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8321 return -EINVAL;
8322
8323 return 0;
8324 }
8325
8326 /**
8327 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8328 *
8329 * @attr_uptr: event_id type attributes for monitoring/sampling
8330 * @pid: target pid
8331 * @cpu: target cpu
8332 * @group_fd: group leader event fd
8333 */
8334 SYSCALL_DEFINE5(perf_event_open,
8335 struct perf_event_attr __user *, attr_uptr,
8336 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8337 {
8338 struct perf_event *group_leader = NULL, *output_event = NULL;
8339 struct perf_event *event, *sibling;
8340 struct perf_event_attr attr;
8341 struct perf_event_context *ctx, *uninitialized_var(gctx);
8342 struct file *event_file = NULL;
8343 struct fd group = {NULL, 0};
8344 struct task_struct *task = NULL;
8345 struct pmu *pmu;
8346 int event_fd;
8347 int move_group = 0;
8348 int err;
8349 int f_flags = O_RDWR;
8350 int cgroup_fd = -1;
8351
8352 /* for future expandability... */
8353 if (flags & ~PERF_FLAG_ALL)
8354 return -EINVAL;
8355
8356 err = perf_copy_attr(attr_uptr, &attr);
8357 if (err)
8358 return err;
8359
8360 if (!attr.exclude_kernel) {
8361 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8362 return -EACCES;
8363 }
8364
8365 if (attr.freq) {
8366 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8367 return -EINVAL;
8368 } else {
8369 if (attr.sample_period & (1ULL << 63))
8370 return -EINVAL;
8371 }
8372
8373 /*
8374 * In cgroup mode, the pid argument is used to pass the fd
8375 * opened to the cgroup directory in cgroupfs. The cpu argument
8376 * designates the cpu on which to monitor threads from that
8377 * cgroup.
8378 */
8379 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8380 return -EINVAL;
8381
8382 if (flags & PERF_FLAG_FD_CLOEXEC)
8383 f_flags |= O_CLOEXEC;
8384
8385 event_fd = get_unused_fd_flags(f_flags);
8386 if (event_fd < 0)
8387 return event_fd;
8388
8389 if (group_fd != -1) {
8390 err = perf_fget_light(group_fd, &group);
8391 if (err)
8392 goto err_fd;
8393 group_leader = group.file->private_data;
8394 if (flags & PERF_FLAG_FD_OUTPUT)
8395 output_event = group_leader;
8396 if (flags & PERF_FLAG_FD_NO_GROUP)
8397 group_leader = NULL;
8398 }
8399
8400 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8401 task = find_lively_task_by_vpid(pid);
8402 if (IS_ERR(task)) {
8403 err = PTR_ERR(task);
8404 goto err_group_fd;
8405 }
8406 }
8407
8408 if (task && group_leader &&
8409 group_leader->attr.inherit != attr.inherit) {
8410 err = -EINVAL;
8411 goto err_task;
8412 }
8413
8414 get_online_cpus();
8415
8416 if (flags & PERF_FLAG_PID_CGROUP)
8417 cgroup_fd = pid;
8418
8419 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8420 NULL, NULL, cgroup_fd);
8421 if (IS_ERR(event)) {
8422 err = PTR_ERR(event);
8423 goto err_cpus;
8424 }
8425
8426 if (is_sampling_event(event)) {
8427 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8428 err = -ENOTSUPP;
8429 goto err_alloc;
8430 }
8431 }
8432
8433 /*
8434 * Special case software events and allow them to be part of
8435 * any hardware group.
8436 */
8437 pmu = event->pmu;
8438
8439 if (attr.use_clockid) {
8440 err = perf_event_set_clock(event, attr.clockid);
8441 if (err)
8442 goto err_alloc;
8443 }
8444
8445 if (group_leader &&
8446 (is_software_event(event) != is_software_event(group_leader))) {
8447 if (is_software_event(event)) {
8448 /*
8449 * If event and group_leader are not both a software
8450 * event, and event is, then group leader is not.
8451 *
8452 * Allow the addition of software events to !software
8453 * groups, this is safe because software events never
8454 * fail to schedule.
8455 */
8456 pmu = group_leader->pmu;
8457 } else if (is_software_event(group_leader) &&
8458 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8459 /*
8460 * In case the group is a pure software group, and we
8461 * try to add a hardware event, move the whole group to
8462 * the hardware context.
8463 */
8464 move_group = 1;
8465 }
8466 }
8467
8468 /*
8469 * Get the target context (task or percpu):
8470 */
8471 ctx = find_get_context(pmu, task, event);
8472 if (IS_ERR(ctx)) {
8473 err = PTR_ERR(ctx);
8474 goto err_alloc;
8475 }
8476
8477 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8478 err = -EBUSY;
8479 goto err_context;
8480 }
8481
8482 if (task) {
8483 put_task_struct(task);
8484 task = NULL;
8485 }
8486
8487 /*
8488 * Look up the group leader (we will attach this event to it):
8489 */
8490 if (group_leader) {
8491 err = -EINVAL;
8492
8493 /*
8494 * Do not allow a recursive hierarchy (this new sibling
8495 * becoming part of another group-sibling):
8496 */
8497 if (group_leader->group_leader != group_leader)
8498 goto err_context;
8499
8500 /* All events in a group should have the same clock */
8501 if (group_leader->clock != event->clock)
8502 goto err_context;
8503
8504 /*
8505 * Do not allow to attach to a group in a different
8506 * task or CPU context:
8507 */
8508 if (move_group) {
8509 /*
8510 * Make sure we're both on the same task, or both
8511 * per-cpu events.
8512 */
8513 if (group_leader->ctx->task != ctx->task)
8514 goto err_context;
8515
8516 /*
8517 * Make sure we're both events for the same CPU;
8518 * grouping events for different CPUs is broken; since
8519 * you can never concurrently schedule them anyhow.
8520 */
8521 if (group_leader->cpu != event->cpu)
8522 goto err_context;
8523 } else {
8524 if (group_leader->ctx != ctx)
8525 goto err_context;
8526 }
8527
8528 /*
8529 * Only a group leader can be exclusive or pinned
8530 */
8531 if (attr.exclusive || attr.pinned)
8532 goto err_context;
8533 }
8534
8535 if (output_event) {
8536 err = perf_event_set_output(event, output_event);
8537 if (err)
8538 goto err_context;
8539 }
8540
8541 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8542 f_flags);
8543 if (IS_ERR(event_file)) {
8544 err = PTR_ERR(event_file);
8545 event_file = NULL;
8546 goto err_context;
8547 }
8548
8549 if (move_group) {
8550 gctx = group_leader->ctx;
8551 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8552 if (gctx->task == TASK_TOMBSTONE) {
8553 err = -ESRCH;
8554 goto err_locked;
8555 }
8556 } else {
8557 mutex_lock(&ctx->mutex);
8558 }
8559
8560 if (ctx->task == TASK_TOMBSTONE) {
8561 err = -ESRCH;
8562 goto err_locked;
8563 }
8564
8565 if (!perf_event_validate_size(event)) {
8566 err = -E2BIG;
8567 goto err_locked;
8568 }
8569
8570 /*
8571 * Must be under the same ctx::mutex as perf_install_in_context(),
8572 * because we need to serialize with concurrent event creation.
8573 */
8574 if (!exclusive_event_installable(event, ctx)) {
8575 /* exclusive and group stuff are assumed mutually exclusive */
8576 WARN_ON_ONCE(move_group);
8577
8578 err = -EBUSY;
8579 goto err_locked;
8580 }
8581
8582 WARN_ON_ONCE(ctx->parent_ctx);
8583
8584 if (move_group) {
8585 /*
8586 * See perf_event_ctx_lock() for comments on the details
8587 * of swizzling perf_event::ctx.
8588 */
8589 perf_remove_from_context(group_leader, 0);
8590
8591 list_for_each_entry(sibling, &group_leader->sibling_list,
8592 group_entry) {
8593 perf_remove_from_context(sibling, 0);
8594 put_ctx(gctx);
8595 }
8596
8597 /*
8598 * Wait for everybody to stop referencing the events through
8599 * the old lists, before installing it on new lists.
8600 */
8601 synchronize_rcu();
8602
8603 /*
8604 * Install the group siblings before the group leader.
8605 *
8606 * Because a group leader will try and install the entire group
8607 * (through the sibling list, which is still in-tact), we can
8608 * end up with siblings installed in the wrong context.
8609 *
8610 * By installing siblings first we NO-OP because they're not
8611 * reachable through the group lists.
8612 */
8613 list_for_each_entry(sibling, &group_leader->sibling_list,
8614 group_entry) {
8615 perf_event__state_init(sibling);
8616 perf_install_in_context(ctx, sibling, sibling->cpu);
8617 get_ctx(ctx);
8618 }
8619
8620 /*
8621 * Removing from the context ends up with disabled
8622 * event. What we want here is event in the initial
8623 * startup state, ready to be add into new context.
8624 */
8625 perf_event__state_init(group_leader);
8626 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8627 get_ctx(ctx);
8628
8629 /*
8630 * Now that all events are installed in @ctx, nothing
8631 * references @gctx anymore, so drop the last reference we have
8632 * on it.
8633 */
8634 put_ctx(gctx);
8635 }
8636
8637 /*
8638 * Precalculate sample_data sizes; do while holding ctx::mutex such
8639 * that we're serialized against further additions and before
8640 * perf_install_in_context() which is the point the event is active and
8641 * can use these values.
8642 */
8643 perf_event__header_size(event);
8644 perf_event__id_header_size(event);
8645
8646 event->owner = current;
8647
8648 perf_install_in_context(ctx, event, event->cpu);
8649 perf_unpin_context(ctx);
8650
8651 if (move_group)
8652 mutex_unlock(&gctx->mutex);
8653 mutex_unlock(&ctx->mutex);
8654
8655 put_online_cpus();
8656
8657 mutex_lock(&current->perf_event_mutex);
8658 list_add_tail(&event->owner_entry, &current->perf_event_list);
8659 mutex_unlock(&current->perf_event_mutex);
8660
8661 /*
8662 * Drop the reference on the group_event after placing the
8663 * new event on the sibling_list. This ensures destruction
8664 * of the group leader will find the pointer to itself in
8665 * perf_group_detach().
8666 */
8667 fdput(group);
8668 fd_install(event_fd, event_file);
8669 return event_fd;
8670
8671 err_locked:
8672 if (move_group)
8673 mutex_unlock(&gctx->mutex);
8674 mutex_unlock(&ctx->mutex);
8675 /* err_file: */
8676 fput(event_file);
8677 err_context:
8678 perf_unpin_context(ctx);
8679 put_ctx(ctx);
8680 err_alloc:
8681 /*
8682 * If event_file is set, the fput() above will have called ->release()
8683 * and that will take care of freeing the event.
8684 */
8685 if (!event_file)
8686 free_event(event);
8687 err_cpus:
8688 put_online_cpus();
8689 err_task:
8690 if (task)
8691 put_task_struct(task);
8692 err_group_fd:
8693 fdput(group);
8694 err_fd:
8695 put_unused_fd(event_fd);
8696 return err;
8697 }
8698
8699 /**
8700 * perf_event_create_kernel_counter
8701 *
8702 * @attr: attributes of the counter to create
8703 * @cpu: cpu in which the counter is bound
8704 * @task: task to profile (NULL for percpu)
8705 */
8706 struct perf_event *
8707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8708 struct task_struct *task,
8709 perf_overflow_handler_t overflow_handler,
8710 void *context)
8711 {
8712 struct perf_event_context *ctx;
8713 struct perf_event *event;
8714 int err;
8715
8716 /*
8717 * Get the target context (task or percpu):
8718 */
8719
8720 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8721 overflow_handler, context, -1);
8722 if (IS_ERR(event)) {
8723 err = PTR_ERR(event);
8724 goto err;
8725 }
8726
8727 /* Mark owner so we could distinguish it from user events. */
8728 event->owner = TASK_TOMBSTONE;
8729
8730 ctx = find_get_context(event->pmu, task, event);
8731 if (IS_ERR(ctx)) {
8732 err = PTR_ERR(ctx);
8733 goto err_free;
8734 }
8735
8736 WARN_ON_ONCE(ctx->parent_ctx);
8737 mutex_lock(&ctx->mutex);
8738 if (ctx->task == TASK_TOMBSTONE) {
8739 err = -ESRCH;
8740 goto err_unlock;
8741 }
8742
8743 if (!exclusive_event_installable(event, ctx)) {
8744 err = -EBUSY;
8745 goto err_unlock;
8746 }
8747
8748 perf_install_in_context(ctx, event, cpu);
8749 perf_unpin_context(ctx);
8750 mutex_unlock(&ctx->mutex);
8751
8752 return event;
8753
8754 err_unlock:
8755 mutex_unlock(&ctx->mutex);
8756 perf_unpin_context(ctx);
8757 put_ctx(ctx);
8758 err_free:
8759 free_event(event);
8760 err:
8761 return ERR_PTR(err);
8762 }
8763 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8764
8765 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8766 {
8767 struct perf_event_context *src_ctx;
8768 struct perf_event_context *dst_ctx;
8769 struct perf_event *event, *tmp;
8770 LIST_HEAD(events);
8771
8772 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8773 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8774
8775 /*
8776 * See perf_event_ctx_lock() for comments on the details
8777 * of swizzling perf_event::ctx.
8778 */
8779 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8780 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8781 event_entry) {
8782 perf_remove_from_context(event, 0);
8783 unaccount_event_cpu(event, src_cpu);
8784 put_ctx(src_ctx);
8785 list_add(&event->migrate_entry, &events);
8786 }
8787
8788 /*
8789 * Wait for the events to quiesce before re-instating them.
8790 */
8791 synchronize_rcu();
8792
8793 /*
8794 * Re-instate events in 2 passes.
8795 *
8796 * Skip over group leaders and only install siblings on this first
8797 * pass, siblings will not get enabled without a leader, however a
8798 * leader will enable its siblings, even if those are still on the old
8799 * context.
8800 */
8801 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8802 if (event->group_leader == event)
8803 continue;
8804
8805 list_del(&event->migrate_entry);
8806 if (event->state >= PERF_EVENT_STATE_OFF)
8807 event->state = PERF_EVENT_STATE_INACTIVE;
8808 account_event_cpu(event, dst_cpu);
8809 perf_install_in_context(dst_ctx, event, dst_cpu);
8810 get_ctx(dst_ctx);
8811 }
8812
8813 /*
8814 * Once all the siblings are setup properly, install the group leaders
8815 * to make it go.
8816 */
8817 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8818 list_del(&event->migrate_entry);
8819 if (event->state >= PERF_EVENT_STATE_OFF)
8820 event->state = PERF_EVENT_STATE_INACTIVE;
8821 account_event_cpu(event, dst_cpu);
8822 perf_install_in_context(dst_ctx, event, dst_cpu);
8823 get_ctx(dst_ctx);
8824 }
8825 mutex_unlock(&dst_ctx->mutex);
8826 mutex_unlock(&src_ctx->mutex);
8827 }
8828 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8829
8830 static void sync_child_event(struct perf_event *child_event,
8831 struct task_struct *child)
8832 {
8833 struct perf_event *parent_event = child_event->parent;
8834 u64 child_val;
8835
8836 if (child_event->attr.inherit_stat)
8837 perf_event_read_event(child_event, child);
8838
8839 child_val = perf_event_count(child_event);
8840
8841 /*
8842 * Add back the child's count to the parent's count:
8843 */
8844 atomic64_add(child_val, &parent_event->child_count);
8845 atomic64_add(child_event->total_time_enabled,
8846 &parent_event->child_total_time_enabled);
8847 atomic64_add(child_event->total_time_running,
8848 &parent_event->child_total_time_running);
8849 }
8850
8851 static void
8852 perf_event_exit_event(struct perf_event *child_event,
8853 struct perf_event_context *child_ctx,
8854 struct task_struct *child)
8855 {
8856 struct perf_event *parent_event = child_event->parent;
8857
8858 /*
8859 * Do not destroy the 'original' grouping; because of the context
8860 * switch optimization the original events could've ended up in a
8861 * random child task.
8862 *
8863 * If we were to destroy the original group, all group related
8864 * operations would cease to function properly after this random
8865 * child dies.
8866 *
8867 * Do destroy all inherited groups, we don't care about those
8868 * and being thorough is better.
8869 */
8870 raw_spin_lock_irq(&child_ctx->lock);
8871 WARN_ON_ONCE(child_ctx->is_active);
8872
8873 if (parent_event)
8874 perf_group_detach(child_event);
8875 list_del_event(child_event, child_ctx);
8876 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8877 raw_spin_unlock_irq(&child_ctx->lock);
8878
8879 /*
8880 * Parent events are governed by their filedesc, retain them.
8881 */
8882 if (!parent_event) {
8883 perf_event_wakeup(child_event);
8884 return;
8885 }
8886 /*
8887 * Child events can be cleaned up.
8888 */
8889
8890 sync_child_event(child_event, child);
8891
8892 /*
8893 * Remove this event from the parent's list
8894 */
8895 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8896 mutex_lock(&parent_event->child_mutex);
8897 list_del_init(&child_event->child_list);
8898 mutex_unlock(&parent_event->child_mutex);
8899
8900 /*
8901 * Kick perf_poll() for is_event_hup().
8902 */
8903 perf_event_wakeup(parent_event);
8904 free_event(child_event);
8905 put_event(parent_event);
8906 }
8907
8908 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8909 {
8910 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8911 struct perf_event *child_event, *next;
8912
8913 WARN_ON_ONCE(child != current);
8914
8915 child_ctx = perf_pin_task_context(child, ctxn);
8916 if (!child_ctx)
8917 return;
8918
8919 /*
8920 * In order to reduce the amount of tricky in ctx tear-down, we hold
8921 * ctx::mutex over the entire thing. This serializes against almost
8922 * everything that wants to access the ctx.
8923 *
8924 * The exception is sys_perf_event_open() /
8925 * perf_event_create_kernel_count() which does find_get_context()
8926 * without ctx::mutex (it cannot because of the move_group double mutex
8927 * lock thing). See the comments in perf_install_in_context().
8928 */
8929 mutex_lock(&child_ctx->mutex);
8930
8931 /*
8932 * In a single ctx::lock section, de-schedule the events and detach the
8933 * context from the task such that we cannot ever get it scheduled back
8934 * in.
8935 */
8936 raw_spin_lock_irq(&child_ctx->lock);
8937 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8938
8939 /*
8940 * Now that the context is inactive, destroy the task <-> ctx relation
8941 * and mark the context dead.
8942 */
8943 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8944 put_ctx(child_ctx); /* cannot be last */
8945 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8946 put_task_struct(current); /* cannot be last */
8947
8948 clone_ctx = unclone_ctx(child_ctx);
8949 raw_spin_unlock_irq(&child_ctx->lock);
8950
8951 if (clone_ctx)
8952 put_ctx(clone_ctx);
8953
8954 /*
8955 * Report the task dead after unscheduling the events so that we
8956 * won't get any samples after PERF_RECORD_EXIT. We can however still
8957 * get a few PERF_RECORD_READ events.
8958 */
8959 perf_event_task(child, child_ctx, 0);
8960
8961 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8962 perf_event_exit_event(child_event, child_ctx, child);
8963
8964 mutex_unlock(&child_ctx->mutex);
8965
8966 put_ctx(child_ctx);
8967 }
8968
8969 /*
8970 * When a child task exits, feed back event values to parent events.
8971 */
8972 void perf_event_exit_task(struct task_struct *child)
8973 {
8974 struct perf_event *event, *tmp;
8975 int ctxn;
8976
8977 mutex_lock(&child->perf_event_mutex);
8978 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8979 owner_entry) {
8980 list_del_init(&event->owner_entry);
8981
8982 /*
8983 * Ensure the list deletion is visible before we clear
8984 * the owner, closes a race against perf_release() where
8985 * we need to serialize on the owner->perf_event_mutex.
8986 */
8987 smp_store_release(&event->owner, NULL);
8988 }
8989 mutex_unlock(&child->perf_event_mutex);
8990
8991 for_each_task_context_nr(ctxn)
8992 perf_event_exit_task_context(child, ctxn);
8993
8994 /*
8995 * The perf_event_exit_task_context calls perf_event_task
8996 * with child's task_ctx, which generates EXIT events for
8997 * child contexts and sets child->perf_event_ctxp[] to NULL.
8998 * At this point we need to send EXIT events to cpu contexts.
8999 */
9000 perf_event_task(child, NULL, 0);
9001 }
9002
9003 static void perf_free_event(struct perf_event *event,
9004 struct perf_event_context *ctx)
9005 {
9006 struct perf_event *parent = event->parent;
9007
9008 if (WARN_ON_ONCE(!parent))
9009 return;
9010
9011 mutex_lock(&parent->child_mutex);
9012 list_del_init(&event->child_list);
9013 mutex_unlock(&parent->child_mutex);
9014
9015 put_event(parent);
9016
9017 raw_spin_lock_irq(&ctx->lock);
9018 perf_group_detach(event);
9019 list_del_event(event, ctx);
9020 raw_spin_unlock_irq(&ctx->lock);
9021 free_event(event);
9022 }
9023
9024 /*
9025 * Free an unexposed, unused context as created by inheritance by
9026 * perf_event_init_task below, used by fork() in case of fail.
9027 *
9028 * Not all locks are strictly required, but take them anyway to be nice and
9029 * help out with the lockdep assertions.
9030 */
9031 void perf_event_free_task(struct task_struct *task)
9032 {
9033 struct perf_event_context *ctx;
9034 struct perf_event *event, *tmp;
9035 int ctxn;
9036
9037 for_each_task_context_nr(ctxn) {
9038 ctx = task->perf_event_ctxp[ctxn];
9039 if (!ctx)
9040 continue;
9041
9042 mutex_lock(&ctx->mutex);
9043 again:
9044 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9045 group_entry)
9046 perf_free_event(event, ctx);
9047
9048 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9049 group_entry)
9050 perf_free_event(event, ctx);
9051
9052 if (!list_empty(&ctx->pinned_groups) ||
9053 !list_empty(&ctx->flexible_groups))
9054 goto again;
9055
9056 mutex_unlock(&ctx->mutex);
9057
9058 put_ctx(ctx);
9059 }
9060 }
9061
9062 void perf_event_delayed_put(struct task_struct *task)
9063 {
9064 int ctxn;
9065
9066 for_each_task_context_nr(ctxn)
9067 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9068 }
9069
9070 struct file *perf_event_get(unsigned int fd)
9071 {
9072 struct file *file;
9073
9074 file = fget_raw(fd);
9075 if (!file)
9076 return ERR_PTR(-EBADF);
9077
9078 if (file->f_op != &perf_fops) {
9079 fput(file);
9080 return ERR_PTR(-EBADF);
9081 }
9082
9083 return file;
9084 }
9085
9086 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9087 {
9088 if (!event)
9089 return ERR_PTR(-EINVAL);
9090
9091 return &event->attr;
9092 }
9093
9094 /*
9095 * inherit a event from parent task to child task:
9096 */
9097 static struct perf_event *
9098 inherit_event(struct perf_event *parent_event,
9099 struct task_struct *parent,
9100 struct perf_event_context *parent_ctx,
9101 struct task_struct *child,
9102 struct perf_event *group_leader,
9103 struct perf_event_context *child_ctx)
9104 {
9105 enum perf_event_active_state parent_state = parent_event->state;
9106 struct perf_event *child_event;
9107 unsigned long flags;
9108
9109 /*
9110 * Instead of creating recursive hierarchies of events,
9111 * we link inherited events back to the original parent,
9112 * which has a filp for sure, which we use as the reference
9113 * count:
9114 */
9115 if (parent_event->parent)
9116 parent_event = parent_event->parent;
9117
9118 child_event = perf_event_alloc(&parent_event->attr,
9119 parent_event->cpu,
9120 child,
9121 group_leader, parent_event,
9122 NULL, NULL, -1);
9123 if (IS_ERR(child_event))
9124 return child_event;
9125
9126 /*
9127 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9128 * must be under the same lock in order to serialize against
9129 * perf_event_release_kernel(), such that either we must observe
9130 * is_orphaned_event() or they will observe us on the child_list.
9131 */
9132 mutex_lock(&parent_event->child_mutex);
9133 if (is_orphaned_event(parent_event) ||
9134 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9135 mutex_unlock(&parent_event->child_mutex);
9136 free_event(child_event);
9137 return NULL;
9138 }
9139
9140 get_ctx(child_ctx);
9141
9142 /*
9143 * Make the child state follow the state of the parent event,
9144 * not its attr.disabled bit. We hold the parent's mutex,
9145 * so we won't race with perf_event_{en, dis}able_family.
9146 */
9147 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9148 child_event->state = PERF_EVENT_STATE_INACTIVE;
9149 else
9150 child_event->state = PERF_EVENT_STATE_OFF;
9151
9152 if (parent_event->attr.freq) {
9153 u64 sample_period = parent_event->hw.sample_period;
9154 struct hw_perf_event *hwc = &child_event->hw;
9155
9156 hwc->sample_period = sample_period;
9157 hwc->last_period = sample_period;
9158
9159 local64_set(&hwc->period_left, sample_period);
9160 }
9161
9162 child_event->ctx = child_ctx;
9163 child_event->overflow_handler = parent_event->overflow_handler;
9164 child_event->overflow_handler_context
9165 = parent_event->overflow_handler_context;
9166
9167 /*
9168 * Precalculate sample_data sizes
9169 */
9170 perf_event__header_size(child_event);
9171 perf_event__id_header_size(child_event);
9172
9173 /*
9174 * Link it up in the child's context:
9175 */
9176 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9177 add_event_to_ctx(child_event, child_ctx);
9178 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9179
9180 /*
9181 * Link this into the parent event's child list
9182 */
9183 list_add_tail(&child_event->child_list, &parent_event->child_list);
9184 mutex_unlock(&parent_event->child_mutex);
9185
9186 return child_event;
9187 }
9188
9189 static int inherit_group(struct perf_event *parent_event,
9190 struct task_struct *parent,
9191 struct perf_event_context *parent_ctx,
9192 struct task_struct *child,
9193 struct perf_event_context *child_ctx)
9194 {
9195 struct perf_event *leader;
9196 struct perf_event *sub;
9197 struct perf_event *child_ctr;
9198
9199 leader = inherit_event(parent_event, parent, parent_ctx,
9200 child, NULL, child_ctx);
9201 if (IS_ERR(leader))
9202 return PTR_ERR(leader);
9203 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9204 child_ctr = inherit_event(sub, parent, parent_ctx,
9205 child, leader, child_ctx);
9206 if (IS_ERR(child_ctr))
9207 return PTR_ERR(child_ctr);
9208 }
9209 return 0;
9210 }
9211
9212 static int
9213 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9214 struct perf_event_context *parent_ctx,
9215 struct task_struct *child, int ctxn,
9216 int *inherited_all)
9217 {
9218 int ret;
9219 struct perf_event_context *child_ctx;
9220
9221 if (!event->attr.inherit) {
9222 *inherited_all = 0;
9223 return 0;
9224 }
9225
9226 child_ctx = child->perf_event_ctxp[ctxn];
9227 if (!child_ctx) {
9228 /*
9229 * This is executed from the parent task context, so
9230 * inherit events that have been marked for cloning.
9231 * First allocate and initialize a context for the
9232 * child.
9233 */
9234
9235 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9236 if (!child_ctx)
9237 return -ENOMEM;
9238
9239 child->perf_event_ctxp[ctxn] = child_ctx;
9240 }
9241
9242 ret = inherit_group(event, parent, parent_ctx,
9243 child, child_ctx);
9244
9245 if (ret)
9246 *inherited_all = 0;
9247
9248 return ret;
9249 }
9250
9251 /*
9252 * Initialize the perf_event context in task_struct
9253 */
9254 static int perf_event_init_context(struct task_struct *child, int ctxn)
9255 {
9256 struct perf_event_context *child_ctx, *parent_ctx;
9257 struct perf_event_context *cloned_ctx;
9258 struct perf_event *event;
9259 struct task_struct *parent = current;
9260 int inherited_all = 1;
9261 unsigned long flags;
9262 int ret = 0;
9263
9264 if (likely(!parent->perf_event_ctxp[ctxn]))
9265 return 0;
9266
9267 /*
9268 * If the parent's context is a clone, pin it so it won't get
9269 * swapped under us.
9270 */
9271 parent_ctx = perf_pin_task_context(parent, ctxn);
9272 if (!parent_ctx)
9273 return 0;
9274
9275 /*
9276 * No need to check if parent_ctx != NULL here; since we saw
9277 * it non-NULL earlier, the only reason for it to become NULL
9278 * is if we exit, and since we're currently in the middle of
9279 * a fork we can't be exiting at the same time.
9280 */
9281
9282 /*
9283 * Lock the parent list. No need to lock the child - not PID
9284 * hashed yet and not running, so nobody can access it.
9285 */
9286 mutex_lock(&parent_ctx->mutex);
9287
9288 /*
9289 * We dont have to disable NMIs - we are only looking at
9290 * the list, not manipulating it:
9291 */
9292 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9293 ret = inherit_task_group(event, parent, parent_ctx,
9294 child, ctxn, &inherited_all);
9295 if (ret)
9296 break;
9297 }
9298
9299 /*
9300 * We can't hold ctx->lock when iterating the ->flexible_group list due
9301 * to allocations, but we need to prevent rotation because
9302 * rotate_ctx() will change the list from interrupt context.
9303 */
9304 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9305 parent_ctx->rotate_disable = 1;
9306 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9307
9308 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9309 ret = inherit_task_group(event, parent, parent_ctx,
9310 child, ctxn, &inherited_all);
9311 if (ret)
9312 break;
9313 }
9314
9315 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9316 parent_ctx->rotate_disable = 0;
9317
9318 child_ctx = child->perf_event_ctxp[ctxn];
9319
9320 if (child_ctx && inherited_all) {
9321 /*
9322 * Mark the child context as a clone of the parent
9323 * context, or of whatever the parent is a clone of.
9324 *
9325 * Note that if the parent is a clone, the holding of
9326 * parent_ctx->lock avoids it from being uncloned.
9327 */
9328 cloned_ctx = parent_ctx->parent_ctx;
9329 if (cloned_ctx) {
9330 child_ctx->parent_ctx = cloned_ctx;
9331 child_ctx->parent_gen = parent_ctx->parent_gen;
9332 } else {
9333 child_ctx->parent_ctx = parent_ctx;
9334 child_ctx->parent_gen = parent_ctx->generation;
9335 }
9336 get_ctx(child_ctx->parent_ctx);
9337 }
9338
9339 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9340 mutex_unlock(&parent_ctx->mutex);
9341
9342 perf_unpin_context(parent_ctx);
9343 put_ctx(parent_ctx);
9344
9345 return ret;
9346 }
9347
9348 /*
9349 * Initialize the perf_event context in task_struct
9350 */
9351 int perf_event_init_task(struct task_struct *child)
9352 {
9353 int ctxn, ret;
9354
9355 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9356 mutex_init(&child->perf_event_mutex);
9357 INIT_LIST_HEAD(&child->perf_event_list);
9358
9359 for_each_task_context_nr(ctxn) {
9360 ret = perf_event_init_context(child, ctxn);
9361 if (ret) {
9362 perf_event_free_task(child);
9363 return ret;
9364 }
9365 }
9366
9367 return 0;
9368 }
9369
9370 static void __init perf_event_init_all_cpus(void)
9371 {
9372 struct swevent_htable *swhash;
9373 int cpu;
9374
9375 for_each_possible_cpu(cpu) {
9376 swhash = &per_cpu(swevent_htable, cpu);
9377 mutex_init(&swhash->hlist_mutex);
9378 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9379 }
9380 }
9381
9382 static void perf_event_init_cpu(int cpu)
9383 {
9384 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9385
9386 mutex_lock(&swhash->hlist_mutex);
9387 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9388 struct swevent_hlist *hlist;
9389
9390 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9391 WARN_ON(!hlist);
9392 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9393 }
9394 mutex_unlock(&swhash->hlist_mutex);
9395 }
9396
9397 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9398 static void __perf_event_exit_context(void *__info)
9399 {
9400 struct perf_event_context *ctx = __info;
9401 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9402 struct perf_event *event;
9403
9404 raw_spin_lock(&ctx->lock);
9405 list_for_each_entry(event, &ctx->event_list, event_entry)
9406 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9407 raw_spin_unlock(&ctx->lock);
9408 }
9409
9410 static void perf_event_exit_cpu_context(int cpu)
9411 {
9412 struct perf_event_context *ctx;
9413 struct pmu *pmu;
9414 int idx;
9415
9416 idx = srcu_read_lock(&pmus_srcu);
9417 list_for_each_entry_rcu(pmu, &pmus, entry) {
9418 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9419
9420 mutex_lock(&ctx->mutex);
9421 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9422 mutex_unlock(&ctx->mutex);
9423 }
9424 srcu_read_unlock(&pmus_srcu, idx);
9425 }
9426
9427 static void perf_event_exit_cpu(int cpu)
9428 {
9429 perf_event_exit_cpu_context(cpu);
9430 }
9431 #else
9432 static inline void perf_event_exit_cpu(int cpu) { }
9433 #endif
9434
9435 static int
9436 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9437 {
9438 int cpu;
9439
9440 for_each_online_cpu(cpu)
9441 perf_event_exit_cpu(cpu);
9442
9443 return NOTIFY_OK;
9444 }
9445
9446 /*
9447 * Run the perf reboot notifier at the very last possible moment so that
9448 * the generic watchdog code runs as long as possible.
9449 */
9450 static struct notifier_block perf_reboot_notifier = {
9451 .notifier_call = perf_reboot,
9452 .priority = INT_MIN,
9453 };
9454
9455 static int
9456 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9457 {
9458 unsigned int cpu = (long)hcpu;
9459
9460 switch (action & ~CPU_TASKS_FROZEN) {
9461
9462 case CPU_UP_PREPARE:
9463 /*
9464 * This must be done before the CPU comes alive, because the
9465 * moment we can run tasks we can encounter (software) events.
9466 *
9467 * Specifically, someone can have inherited events on kthreadd
9468 * or a pre-existing worker thread that gets re-bound.
9469 */
9470 perf_event_init_cpu(cpu);
9471 break;
9472
9473 case CPU_DOWN_PREPARE:
9474 /*
9475 * This must be done before the CPU dies because after that an
9476 * active event might want to IPI the CPU and that'll not work
9477 * so great for dead CPUs.
9478 *
9479 * XXX smp_call_function_single() return -ENXIO without a warn
9480 * so we could possibly deal with this.
9481 *
9482 * This is safe against new events arriving because
9483 * sys_perf_event_open() serializes against hotplug using
9484 * get_online_cpus().
9485 */
9486 perf_event_exit_cpu(cpu);
9487 break;
9488 default:
9489 break;
9490 }
9491
9492 return NOTIFY_OK;
9493 }
9494
9495 void __init perf_event_init(void)
9496 {
9497 int ret;
9498
9499 idr_init(&pmu_idr);
9500
9501 perf_event_init_all_cpus();
9502 init_srcu_struct(&pmus_srcu);
9503 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9504 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9505 perf_pmu_register(&perf_task_clock, NULL, -1);
9506 perf_tp_register();
9507 perf_cpu_notifier(perf_cpu_notify);
9508 register_reboot_notifier(&perf_reboot_notifier);
9509
9510 ret = init_hw_breakpoint();
9511 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9512
9513 /*
9514 * Build time assertion that we keep the data_head at the intended
9515 * location. IOW, validation we got the __reserved[] size right.
9516 */
9517 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9518 != 1024);
9519 }
9520
9521 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9522 char *page)
9523 {
9524 struct perf_pmu_events_attr *pmu_attr =
9525 container_of(attr, struct perf_pmu_events_attr, attr);
9526
9527 if (pmu_attr->event_str)
9528 return sprintf(page, "%s\n", pmu_attr->event_str);
9529
9530 return 0;
9531 }
9532 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9533
9534 static int __init perf_event_sysfs_init(void)
9535 {
9536 struct pmu *pmu;
9537 int ret;
9538
9539 mutex_lock(&pmus_lock);
9540
9541 ret = bus_register(&pmu_bus);
9542 if (ret)
9543 goto unlock;
9544
9545 list_for_each_entry(pmu, &pmus, entry) {
9546 if (!pmu->name || pmu->type < 0)
9547 continue;
9548
9549 ret = pmu_dev_alloc(pmu);
9550 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9551 }
9552 pmu_bus_running = 1;
9553 ret = 0;
9554
9555 unlock:
9556 mutex_unlock(&pmus_lock);
9557
9558 return ret;
9559 }
9560 device_initcall(perf_event_sysfs_init);
9561
9562 #ifdef CONFIG_CGROUP_PERF
9563 static struct cgroup_subsys_state *
9564 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9565 {
9566 struct perf_cgroup *jc;
9567
9568 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9569 if (!jc)
9570 return ERR_PTR(-ENOMEM);
9571
9572 jc->info = alloc_percpu(struct perf_cgroup_info);
9573 if (!jc->info) {
9574 kfree(jc);
9575 return ERR_PTR(-ENOMEM);
9576 }
9577
9578 return &jc->css;
9579 }
9580
9581 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9582 {
9583 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9584
9585 free_percpu(jc->info);
9586 kfree(jc);
9587 }
9588
9589 static int __perf_cgroup_move(void *info)
9590 {
9591 struct task_struct *task = info;
9592 rcu_read_lock();
9593 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9594 rcu_read_unlock();
9595 return 0;
9596 }
9597
9598 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9599 {
9600 struct task_struct *task;
9601 struct cgroup_subsys_state *css;
9602
9603 cgroup_taskset_for_each(task, css, tset)
9604 task_function_call(task, __perf_cgroup_move, task);
9605 }
9606
9607 struct cgroup_subsys perf_event_cgrp_subsys = {
9608 .css_alloc = perf_cgroup_css_alloc,
9609 .css_free = perf_cgroup_css_free,
9610 .attach = perf_cgroup_attach,
9611 };
9612 #endif /* CONFIG_CGROUP_PERF */
This page took 0.209528 seconds and 6 git commands to generate.