Merge remote-tracking branch 'regmap/for-next'
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
392 */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399 * max perf event sample rate
400 */
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433 if (ret || !write)
434 return ret;
435
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455 {
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
469
470 return 0;
471 }
472
473 /*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
502
503 if (max_len == 0)
504 return;
505
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
511
512 /*
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
516 */
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
520
521 __report_avg = avg_len;
522 __report_allowed = max_len;
523
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
533
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
545 }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void) { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564 return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569 return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 struct perf_cgroup *cgrp;
645
646 /*
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
649 */
650 if (!is_cgroup_event(event))
651 return;
652
653 cgrp = perf_cgroup_from_task(current, event->ctx);
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
664 {
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
674 return;
675
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684 /*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
712
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 }
748 }
749
750 local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
755 {
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
759 rcu_read_lock();
760 /*
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
764 */
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776 rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
781 {
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
785 rcu_read_lock();
786 /*
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
790 */
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802 rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808 {
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
813
814 if (!f.file)
815 return -EBADF;
816
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
835 }
836 out:
837 fdput(f);
838 return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865 {
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881 }
882
883 /*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890 {
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905 cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disbled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 u64 id = event->id;
1281
1282 if (event->parent)
1283 id = event->parent->id;
1284
1285 return id;
1286 }
1287
1288 /*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 struct perf_event_context *ctx;
1298
1299 retry:
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1308 */
1309 local_irq_save(*flags);
1310 rcu_read_lock();
1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
1323 raw_spin_lock(&ctx->lock);
1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 raw_spin_unlock(&ctx->lock);
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 goto retry;
1329 }
1330
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
1333 raw_spin_unlock(&ctx->lock);
1334 ctx = NULL;
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
1337 }
1338 }
1339 rcu_read_unlock();
1340 if (!ctx)
1341 local_irq_restore(*flags);
1342 return ctx;
1343 }
1344
1345 /*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 struct perf_event_context *ctx;
1354 unsigned long flags;
1355
1356 ctx = perf_lock_task_context(task, ctxn, &flags);
1357 if (ctx) {
1358 ++ctx->pin_count;
1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 }
1361 return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&ctx->lock, flags);
1369 --ctx->pin_count;
1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374 * Update the record of the current time in a context.
1375 */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 struct perf_event_context *ctx = event->ctx;
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
1391 return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
1402 lockdep_assert_held(&ctx->lock);
1403
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
1407
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
1419 run_end = perf_cgroup_event_time(event);
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
1430 run_end = perf_event_time(event);
1431
1432 event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 if (event->attr.pinned)
1452 return &ctx->pinned_groups;
1453 else
1454 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458 * Add a event from the lists for its context.
1459 * Must be called with ctx->mutex and ctx->lock held.
1460 */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465 lockdep_assert_held(&ctx->lock);
1466
1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470 /*
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
1474 */
1475 if (event->group_leader == event) {
1476 struct list_head *list;
1477
1478 if (is_software_event(event))
1479 event->group_flags |= PERF_GROUP_SOFTWARE;
1480
1481 list = ctx_group_list(event, ctx);
1482 list_add_tail(&event->group_entry, list);
1483 }
1484
1485 list_update_cgroup_event(event, ctx, true);
1486
1487 list_add_rcu(&event->event_entry, &ctx->event_list);
1488 ctx->nr_events++;
1489 if (event->attr.inherit_stat)
1490 ctx->nr_stat++;
1491
1492 ctx->generation++;
1493 }
1494
1495 /*
1496 * Initialize event state based on the perf_event_attr::disabled.
1497 */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501 PERF_EVENT_STATE_INACTIVE;
1502 }
1503
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506 int entry = sizeof(u64); /* value */
1507 int size = 0;
1508 int nr = 1;
1509
1510 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 size += sizeof(u64);
1512
1513 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514 size += sizeof(u64);
1515
1516 if (event->attr.read_format & PERF_FORMAT_ID)
1517 entry += sizeof(u64);
1518
1519 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520 nr += nr_siblings;
1521 size += sizeof(u64);
1522 }
1523
1524 size += entry * nr;
1525 event->read_size = size;
1526 }
1527
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530 struct perf_sample_data *data;
1531 u16 size = 0;
1532
1533 if (sample_type & PERF_SAMPLE_IP)
1534 size += sizeof(data->ip);
1535
1536 if (sample_type & PERF_SAMPLE_ADDR)
1537 size += sizeof(data->addr);
1538
1539 if (sample_type & PERF_SAMPLE_PERIOD)
1540 size += sizeof(data->period);
1541
1542 if (sample_type & PERF_SAMPLE_WEIGHT)
1543 size += sizeof(data->weight);
1544
1545 if (sample_type & PERF_SAMPLE_READ)
1546 size += event->read_size;
1547
1548 if (sample_type & PERF_SAMPLE_DATA_SRC)
1549 size += sizeof(data->data_src.val);
1550
1551 if (sample_type & PERF_SAMPLE_TRANSACTION)
1552 size += sizeof(data->txn);
1553
1554 event->header_size = size;
1555 }
1556
1557 /*
1558 * Called at perf_event creation and when events are attached/detached from a
1559 * group.
1560 */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563 __perf_event_read_size(event,
1564 event->group_leader->nr_siblings);
1565 __perf_event_header_size(event, event->attr.sample_type);
1566 }
1567
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570 struct perf_sample_data *data;
1571 u64 sample_type = event->attr.sample_type;
1572 u16 size = 0;
1573
1574 if (sample_type & PERF_SAMPLE_TID)
1575 size += sizeof(data->tid_entry);
1576
1577 if (sample_type & PERF_SAMPLE_TIME)
1578 size += sizeof(data->time);
1579
1580 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581 size += sizeof(data->id);
1582
1583 if (sample_type & PERF_SAMPLE_ID)
1584 size += sizeof(data->id);
1585
1586 if (sample_type & PERF_SAMPLE_STREAM_ID)
1587 size += sizeof(data->stream_id);
1588
1589 if (sample_type & PERF_SAMPLE_CPU)
1590 size += sizeof(data->cpu_entry);
1591
1592 event->id_header_size = size;
1593 }
1594
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597 /*
1598 * The values computed here will be over-written when we actually
1599 * attach the event.
1600 */
1601 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603 perf_event__id_header_size(event);
1604
1605 /*
1606 * Sum the lot; should not exceed the 64k limit we have on records.
1607 * Conservative limit to allow for callchains and other variable fields.
1608 */
1609 if (event->read_size + event->header_size +
1610 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611 return false;
1612
1613 return true;
1614 }
1615
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618 struct perf_event *group_leader = event->group_leader, *pos;
1619
1620 /*
1621 * We can have double attach due to group movement in perf_event_open.
1622 */
1623 if (event->attach_state & PERF_ATTACH_GROUP)
1624 return;
1625
1626 event->attach_state |= PERF_ATTACH_GROUP;
1627
1628 if (group_leader == event)
1629 return;
1630
1631 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
1633 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634 !is_software_event(event))
1635 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638 group_leader->nr_siblings++;
1639
1640 perf_event__header_size(group_leader);
1641
1642 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643 perf_event__header_size(pos);
1644 }
1645
1646 /*
1647 * Remove a event from the lists for its context.
1648 * Must be called with ctx->mutex and ctx->lock held.
1649 */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653 WARN_ON_ONCE(event->ctx != ctx);
1654 lockdep_assert_held(&ctx->lock);
1655
1656 /*
1657 * We can have double detach due to exit/hot-unplug + close.
1658 */
1659 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660 return;
1661
1662 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
1664 list_update_cgroup_event(event, ctx, false);
1665
1666 ctx->nr_events--;
1667 if (event->attr.inherit_stat)
1668 ctx->nr_stat--;
1669
1670 list_del_rcu(&event->event_entry);
1671
1672 if (event->group_leader == event)
1673 list_del_init(&event->group_entry);
1674
1675 update_group_times(event);
1676
1677 /*
1678 * If event was in error state, then keep it
1679 * that way, otherwise bogus counts will be
1680 * returned on read(). The only way to get out
1681 * of error state is by explicit re-enabling
1682 * of the event
1683 */
1684 if (event->state > PERF_EVENT_STATE_OFF)
1685 event->state = PERF_EVENT_STATE_OFF;
1686
1687 ctx->generation++;
1688 }
1689
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692 struct perf_event *sibling, *tmp;
1693 struct list_head *list = NULL;
1694
1695 /*
1696 * We can have double detach due to exit/hot-unplug + close.
1697 */
1698 if (!(event->attach_state & PERF_ATTACH_GROUP))
1699 return;
1700
1701 event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703 /*
1704 * If this is a sibling, remove it from its group.
1705 */
1706 if (event->group_leader != event) {
1707 list_del_init(&event->group_entry);
1708 event->group_leader->nr_siblings--;
1709 goto out;
1710 }
1711
1712 if (!list_empty(&event->group_entry))
1713 list = &event->group_entry;
1714
1715 /*
1716 * If this was a group event with sibling events then
1717 * upgrade the siblings to singleton events by adding them
1718 * to whatever list we are on.
1719 */
1720 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721 if (list)
1722 list_move_tail(&sibling->group_entry, list);
1723 sibling->group_leader = sibling;
1724
1725 /* Inherit group flags from the previous leader */
1726 sibling->group_flags = event->group_flags;
1727
1728 WARN_ON_ONCE(sibling->ctx != event->ctx);
1729 }
1730
1731 out:
1732 perf_event__header_size(event->group_leader);
1733
1734 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735 perf_event__header_size(tmp);
1736 }
1737
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740 return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745 struct pmu *pmu = event->pmu;
1746 return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748
1749 /*
1750 * Check whether we should attempt to schedule an event group based on
1751 * PMU-specific filtering. An event group can consist of HW and SW events,
1752 * potentially with a SW leader, so we must check all the filters, to
1753 * determine whether a group is schedulable:
1754 */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757 struct perf_event *child;
1758
1759 if (!__pmu_filter_match(event))
1760 return 0;
1761
1762 list_for_each_entry(child, &event->sibling_list, group_entry) {
1763 if (!__pmu_filter_match(child))
1764 return 0;
1765 }
1766
1767 return 1;
1768 }
1769
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774 perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776
1777 static void
1778 event_sched_out(struct perf_event *event,
1779 struct perf_cpu_context *cpuctx,
1780 struct perf_event_context *ctx)
1781 {
1782 u64 tstamp = perf_event_time(event);
1783 u64 delta;
1784
1785 WARN_ON_ONCE(event->ctx != ctx);
1786 lockdep_assert_held(&ctx->lock);
1787
1788 /*
1789 * An event which could not be activated because of
1790 * filter mismatch still needs to have its timings
1791 * maintained, otherwise bogus information is return
1792 * via read() for time_enabled, time_running:
1793 */
1794 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795 !event_filter_match(event)) {
1796 delta = tstamp - event->tstamp_stopped;
1797 event->tstamp_running += delta;
1798 event->tstamp_stopped = tstamp;
1799 }
1800
1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 return;
1803
1804 perf_pmu_disable(event->pmu);
1805
1806 event->tstamp_stopped = tstamp;
1807 event->pmu->del(event, 0);
1808 event->oncpu = -1;
1809 event->state = PERF_EVENT_STATE_INACTIVE;
1810 if (event->pending_disable) {
1811 event->pending_disable = 0;
1812 event->state = PERF_EVENT_STATE_OFF;
1813 }
1814
1815 if (!is_software_event(event))
1816 cpuctx->active_oncpu--;
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 cpuctx->exclusive = 0;
1823
1824 perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 struct perf_cpu_context *cpuctx,
1830 struct perf_event_context *ctx)
1831 {
1832 struct perf_event *event;
1833 int state = group_event->state;
1834
1835 event_sched_out(group_event, cpuctx, ctx);
1836
1837 /*
1838 * Schedule out siblings (if any):
1839 */
1840 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841 event_sched_out(event, cpuctx, ctx);
1842
1843 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844 cpuctx->exclusive = 0;
1845 }
1846
1847 #define DETACH_GROUP 0x01UL
1848
1849 /*
1850 * Cross CPU call to remove a performance event
1851 *
1852 * We disable the event on the hardware level first. After that we
1853 * remove it from the context list.
1854 */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857 struct perf_cpu_context *cpuctx,
1858 struct perf_event_context *ctx,
1859 void *info)
1860 {
1861 unsigned long flags = (unsigned long)info;
1862
1863 event_sched_out(event, cpuctx, ctx);
1864 if (flags & DETACH_GROUP)
1865 perf_group_detach(event);
1866 list_del_event(event, ctx);
1867
1868 if (!ctx->nr_events && ctx->is_active) {
1869 ctx->is_active = 0;
1870 if (ctx->task) {
1871 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872 cpuctx->task_ctx = NULL;
1873 }
1874 }
1875 }
1876
1877 /*
1878 * Remove the event from a task's (or a CPU's) list of events.
1879 *
1880 * If event->ctx is a cloned context, callers must make sure that
1881 * every task struct that event->ctx->task could possibly point to
1882 * remains valid. This is OK when called from perf_release since
1883 * that only calls us on the top-level context, which can't be a clone.
1884 * When called from perf_event_exit_task, it's OK because the
1885 * context has been detached from its task.
1886 */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889 lockdep_assert_held(&event->ctx->mutex);
1890
1891 event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893
1894 /*
1895 * Cross CPU call to disable a performance event
1896 */
1897 static void __perf_event_disable(struct perf_event *event,
1898 struct perf_cpu_context *cpuctx,
1899 struct perf_event_context *ctx,
1900 void *info)
1901 {
1902 if (event->state < PERF_EVENT_STATE_INACTIVE)
1903 return;
1904
1905 update_context_time(ctx);
1906 update_cgrp_time_from_event(event);
1907 update_group_times(event);
1908 if (event == event->group_leader)
1909 group_sched_out(event, cpuctx, ctx);
1910 else
1911 event_sched_out(event, cpuctx, ctx);
1912 event->state = PERF_EVENT_STATE_OFF;
1913 }
1914
1915 /*
1916 * Disable a event.
1917 *
1918 * If event->ctx is a cloned context, callers must make sure that
1919 * every task struct that event->ctx->task could possibly point to
1920 * remains valid. This condition is satisifed when called through
1921 * perf_event_for_each_child or perf_event_for_each because they
1922 * hold the top-level event's child_mutex, so any descendant that
1923 * goes to exit will block in perf_event_exit_event().
1924 *
1925 * When called from perf_pending_event it's OK because event->ctx
1926 * is the current context on this CPU and preemption is disabled,
1927 * hence we can't get into perf_event_task_sched_out for this context.
1928 */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931 struct perf_event_context *ctx = event->ctx;
1932
1933 raw_spin_lock_irq(&ctx->lock);
1934 if (event->state <= PERF_EVENT_STATE_OFF) {
1935 raw_spin_unlock_irq(&ctx->lock);
1936 return;
1937 }
1938 raw_spin_unlock_irq(&ctx->lock);
1939
1940 event_function_call(event, __perf_event_disable, NULL);
1941 }
1942
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945 event_function_local(event, __perf_event_disable, NULL);
1946 }
1947
1948 /*
1949 * Strictly speaking kernel users cannot create groups and therefore this
1950 * interface does not need the perf_event_ctx_lock() magic.
1951 */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954 struct perf_event_context *ctx;
1955
1956 ctx = perf_event_ctx_lock(event);
1957 _perf_event_disable(event);
1958 perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961
1962 static void perf_set_shadow_time(struct perf_event *event,
1963 struct perf_event_context *ctx,
1964 u64 tstamp)
1965 {
1966 /*
1967 * use the correct time source for the time snapshot
1968 *
1969 * We could get by without this by leveraging the
1970 * fact that to get to this function, the caller
1971 * has most likely already called update_context_time()
1972 * and update_cgrp_time_xx() and thus both timestamp
1973 * are identical (or very close). Given that tstamp is,
1974 * already adjusted for cgroup, we could say that:
1975 * tstamp - ctx->timestamp
1976 * is equivalent to
1977 * tstamp - cgrp->timestamp.
1978 *
1979 * Then, in perf_output_read(), the calculation would
1980 * work with no changes because:
1981 * - event is guaranteed scheduled in
1982 * - no scheduled out in between
1983 * - thus the timestamp would be the same
1984 *
1985 * But this is a bit hairy.
1986 *
1987 * So instead, we have an explicit cgroup call to remain
1988 * within the time time source all along. We believe it
1989 * is cleaner and simpler to understand.
1990 */
1991 if (is_cgroup_event(event))
1992 perf_cgroup_set_shadow_time(event, tstamp);
1993 else
1994 event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996
1997 #define MAX_INTERRUPTS (~0ULL)
1998
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001
2002 static int
2003 event_sched_in(struct perf_event *event,
2004 struct perf_cpu_context *cpuctx,
2005 struct perf_event_context *ctx)
2006 {
2007 u64 tstamp = perf_event_time(event);
2008 int ret = 0;
2009
2010 lockdep_assert_held(&ctx->lock);
2011
2012 if (event->state <= PERF_EVENT_STATE_OFF)
2013 return 0;
2014
2015 WRITE_ONCE(event->oncpu, smp_processor_id());
2016 /*
2017 * Order event::oncpu write to happen before the ACTIVE state
2018 * is visible.
2019 */
2020 smp_wmb();
2021 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022
2023 /*
2024 * Unthrottle events, since we scheduled we might have missed several
2025 * ticks already, also for a heavily scheduling task there is little
2026 * guarantee it'll get a tick in a timely manner.
2027 */
2028 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029 perf_log_throttle(event, 1);
2030 event->hw.interrupts = 0;
2031 }
2032
2033 /*
2034 * The new state must be visible before we turn it on in the hardware:
2035 */
2036 smp_wmb();
2037
2038 perf_pmu_disable(event->pmu);
2039
2040 perf_set_shadow_time(event, ctx, tstamp);
2041
2042 perf_log_itrace_start(event);
2043
2044 if (event->pmu->add(event, PERF_EF_START)) {
2045 event->state = PERF_EVENT_STATE_INACTIVE;
2046 event->oncpu = -1;
2047 ret = -EAGAIN;
2048 goto out;
2049 }
2050
2051 event->tstamp_running += tstamp - event->tstamp_stopped;
2052
2053 if (!is_software_event(event))
2054 cpuctx->active_oncpu++;
2055 if (!ctx->nr_active++)
2056 perf_event_ctx_activate(ctx);
2057 if (event->attr.freq && event->attr.sample_freq)
2058 ctx->nr_freq++;
2059
2060 if (event->attr.exclusive)
2061 cpuctx->exclusive = 1;
2062
2063 out:
2064 perf_pmu_enable(event->pmu);
2065
2066 return ret;
2067 }
2068
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071 struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *ctx)
2073 {
2074 struct perf_event *event, *partial_group = NULL;
2075 struct pmu *pmu = ctx->pmu;
2076 u64 now = ctx->time;
2077 bool simulate = false;
2078
2079 if (group_event->state == PERF_EVENT_STATE_OFF)
2080 return 0;
2081
2082 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083
2084 if (event_sched_in(group_event, cpuctx, ctx)) {
2085 pmu->cancel_txn(pmu);
2086 perf_mux_hrtimer_restart(cpuctx);
2087 return -EAGAIN;
2088 }
2089
2090 /*
2091 * Schedule in siblings as one group (if any):
2092 */
2093 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094 if (event_sched_in(event, cpuctx, ctx)) {
2095 partial_group = event;
2096 goto group_error;
2097 }
2098 }
2099
2100 if (!pmu->commit_txn(pmu))
2101 return 0;
2102
2103 group_error:
2104 /*
2105 * Groups can be scheduled in as one unit only, so undo any
2106 * partial group before returning:
2107 * The events up to the failed event are scheduled out normally,
2108 * tstamp_stopped will be updated.
2109 *
2110 * The failed events and the remaining siblings need to have
2111 * their timings updated as if they had gone thru event_sched_in()
2112 * and event_sched_out(). This is required to get consistent timings
2113 * across the group. This also takes care of the case where the group
2114 * could never be scheduled by ensuring tstamp_stopped is set to mark
2115 * the time the event was actually stopped, such that time delta
2116 * calculation in update_event_times() is correct.
2117 */
2118 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119 if (event == partial_group)
2120 simulate = true;
2121
2122 if (simulate) {
2123 event->tstamp_running += now - event->tstamp_stopped;
2124 event->tstamp_stopped = now;
2125 } else {
2126 event_sched_out(event, cpuctx, ctx);
2127 }
2128 }
2129 event_sched_out(group_event, cpuctx, ctx);
2130
2131 pmu->cancel_txn(pmu);
2132
2133 perf_mux_hrtimer_restart(cpuctx);
2134
2135 return -EAGAIN;
2136 }
2137
2138 /*
2139 * Work out whether we can put this event group on the CPU now.
2140 */
2141 static int group_can_go_on(struct perf_event *event,
2142 struct perf_cpu_context *cpuctx,
2143 int can_add_hw)
2144 {
2145 /*
2146 * Groups consisting entirely of software events can always go on.
2147 */
2148 if (event->group_flags & PERF_GROUP_SOFTWARE)
2149 return 1;
2150 /*
2151 * If an exclusive group is already on, no other hardware
2152 * events can go on.
2153 */
2154 if (cpuctx->exclusive)
2155 return 0;
2156 /*
2157 * If this group is exclusive and there are already
2158 * events on the CPU, it can't go on.
2159 */
2160 if (event->attr.exclusive && cpuctx->active_oncpu)
2161 return 0;
2162 /*
2163 * Otherwise, try to add it if all previous groups were able
2164 * to go on.
2165 */
2166 return can_add_hw;
2167 }
2168
2169 static void add_event_to_ctx(struct perf_event *event,
2170 struct perf_event_context *ctx)
2171 {
2172 u64 tstamp = perf_event_time(event);
2173
2174 list_add_event(event, ctx);
2175 perf_group_attach(event);
2176 event->tstamp_enabled = tstamp;
2177 event->tstamp_running = tstamp;
2178 event->tstamp_stopped = tstamp;
2179 }
2180
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182 struct perf_cpu_context *cpuctx,
2183 enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186 struct perf_cpu_context *cpuctx,
2187 enum event_type_t event_type,
2188 struct task_struct *task);
2189
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191 struct perf_event_context *ctx)
2192 {
2193 if (!cpuctx->task_ctx)
2194 return;
2195
2196 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197 return;
2198
2199 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203 struct perf_event_context *ctx,
2204 struct task_struct *task)
2205 {
2206 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207 if (ctx)
2208 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210 if (ctx)
2211 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *task_ctx)
2216 {
2217 perf_pmu_disable(cpuctx->ctx.pmu);
2218 if (task_ctx)
2219 task_ctx_sched_out(cpuctx, task_ctx);
2220 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221 perf_event_sched_in(cpuctx, task_ctx, current);
2222 perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224
2225 /*
2226 * Cross CPU call to install and enable a performance event
2227 *
2228 * Very similar to remote_function() + event_function() but cannot assume that
2229 * things like ctx->is_active and cpuctx->task_ctx are set.
2230 */
2231 static int __perf_install_in_context(void *info)
2232 {
2233 struct perf_event *event = info;
2234 struct perf_event_context *ctx = event->ctx;
2235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237 bool activate = true;
2238 int ret = 0;
2239
2240 raw_spin_lock(&cpuctx->ctx.lock);
2241 if (ctx->task) {
2242 raw_spin_lock(&ctx->lock);
2243 task_ctx = ctx;
2244
2245 /* If we're on the wrong CPU, try again */
2246 if (task_cpu(ctx->task) != smp_processor_id()) {
2247 ret = -ESRCH;
2248 goto unlock;
2249 }
2250
2251 /*
2252 * If we're on the right CPU, see if the task we target is
2253 * current, if not we don't have to activate the ctx, a future
2254 * context switch will do that for us.
2255 */
2256 if (ctx->task != current)
2257 activate = false;
2258 else
2259 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260
2261 } else if (task_ctx) {
2262 raw_spin_lock(&task_ctx->lock);
2263 }
2264
2265 if (activate) {
2266 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267 add_event_to_ctx(event, ctx);
2268 ctx_resched(cpuctx, task_ctx);
2269 } else {
2270 add_event_to_ctx(event, ctx);
2271 }
2272
2273 unlock:
2274 perf_ctx_unlock(cpuctx, task_ctx);
2275
2276 return ret;
2277 }
2278
2279 /*
2280 * Attach a performance event to a context.
2281 *
2282 * Very similar to event_function_call, see comment there.
2283 */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286 struct perf_event *event,
2287 int cpu)
2288 {
2289 struct task_struct *task = READ_ONCE(ctx->task);
2290
2291 lockdep_assert_held(&ctx->mutex);
2292
2293 if (event->cpu != -1)
2294 event->cpu = cpu;
2295
2296 /*
2297 * Ensures that if we can observe event->ctx, both the event and ctx
2298 * will be 'complete'. See perf_iterate_sb_cpu().
2299 */
2300 smp_store_release(&event->ctx, ctx);
2301
2302 if (!task) {
2303 cpu_function_call(cpu, __perf_install_in_context, event);
2304 return;
2305 }
2306
2307 /*
2308 * Should not happen, we validate the ctx is still alive before calling.
2309 */
2310 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311 return;
2312
2313 /*
2314 * Installing events is tricky because we cannot rely on ctx->is_active
2315 * to be set in case this is the nr_events 0 -> 1 transition.
2316 */
2317 again:
2318 /*
2319 * Cannot use task_function_call() because we need to run on the task's
2320 * CPU regardless of whether its current or not.
2321 */
2322 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323 return;
2324
2325 raw_spin_lock_irq(&ctx->lock);
2326 task = ctx->task;
2327 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328 /*
2329 * Cannot happen because we already checked above (which also
2330 * cannot happen), and we hold ctx->mutex, which serializes us
2331 * against perf_event_exit_task_context().
2332 */
2333 raw_spin_unlock_irq(&ctx->lock);
2334 return;
2335 }
2336 raw_spin_unlock_irq(&ctx->lock);
2337 /*
2338 * Since !ctx->is_active doesn't mean anything, we must IPI
2339 * unconditionally.
2340 */
2341 goto again;
2342 }
2343
2344 /*
2345 * Put a event into inactive state and update time fields.
2346 * Enabling the leader of a group effectively enables all
2347 * the group members that aren't explicitly disabled, so we
2348 * have to update their ->tstamp_enabled also.
2349 * Note: this works for group members as well as group leaders
2350 * since the non-leader members' sibling_lists will be empty.
2351 */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354 struct perf_event *sub;
2355 u64 tstamp = perf_event_time(event);
2356
2357 event->state = PERF_EVENT_STATE_INACTIVE;
2358 event->tstamp_enabled = tstamp - event->total_time_enabled;
2359 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362 }
2363 }
2364
2365 /*
2366 * Cross CPU call to enable a performance event
2367 */
2368 static void __perf_event_enable(struct perf_event *event,
2369 struct perf_cpu_context *cpuctx,
2370 struct perf_event_context *ctx,
2371 void *info)
2372 {
2373 struct perf_event *leader = event->group_leader;
2374 struct perf_event_context *task_ctx;
2375
2376 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377 event->state <= PERF_EVENT_STATE_ERROR)
2378 return;
2379
2380 if (ctx->is_active)
2381 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382
2383 __perf_event_mark_enabled(event);
2384
2385 if (!ctx->is_active)
2386 return;
2387
2388 if (!event_filter_match(event)) {
2389 if (is_cgroup_event(event))
2390 perf_cgroup_defer_enabled(event);
2391 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392 return;
2393 }
2394
2395 /*
2396 * If the event is in a group and isn't the group leader,
2397 * then don't put it on unless the group is on.
2398 */
2399 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401 return;
2402 }
2403
2404 task_ctx = cpuctx->task_ctx;
2405 if (ctx->task)
2406 WARN_ON_ONCE(task_ctx != ctx);
2407
2408 ctx_resched(cpuctx, task_ctx);
2409 }
2410
2411 /*
2412 * Enable a event.
2413 *
2414 * If event->ctx is a cloned context, callers must make sure that
2415 * every task struct that event->ctx->task could possibly point to
2416 * remains valid. This condition is satisfied when called through
2417 * perf_event_for_each_child or perf_event_for_each as described
2418 * for perf_event_disable.
2419 */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422 struct perf_event_context *ctx = event->ctx;
2423
2424 raw_spin_lock_irq(&ctx->lock);
2425 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426 event->state < PERF_EVENT_STATE_ERROR) {
2427 raw_spin_unlock_irq(&ctx->lock);
2428 return;
2429 }
2430
2431 /*
2432 * If the event is in error state, clear that first.
2433 *
2434 * That way, if we see the event in error state below, we know that it
2435 * has gone back into error state, as distinct from the task having
2436 * been scheduled away before the cross-call arrived.
2437 */
2438 if (event->state == PERF_EVENT_STATE_ERROR)
2439 event->state = PERF_EVENT_STATE_OFF;
2440 raw_spin_unlock_irq(&ctx->lock);
2441
2442 event_function_call(event, __perf_event_enable, NULL);
2443 }
2444
2445 /*
2446 * See perf_event_disable();
2447 */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450 struct perf_event_context *ctx;
2451
2452 ctx = perf_event_ctx_lock(event);
2453 _perf_event_enable(event);
2454 perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457
2458 struct stop_event_data {
2459 struct perf_event *event;
2460 unsigned int restart;
2461 };
2462
2463 static int __perf_event_stop(void *info)
2464 {
2465 struct stop_event_data *sd = info;
2466 struct perf_event *event = sd->event;
2467
2468 /* if it's already INACTIVE, do nothing */
2469 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470 return 0;
2471
2472 /* matches smp_wmb() in event_sched_in() */
2473 smp_rmb();
2474
2475 /*
2476 * There is a window with interrupts enabled before we get here,
2477 * so we need to check again lest we try to stop another CPU's event.
2478 */
2479 if (READ_ONCE(event->oncpu) != smp_processor_id())
2480 return -EAGAIN;
2481
2482 event->pmu->stop(event, PERF_EF_UPDATE);
2483
2484 /*
2485 * May race with the actual stop (through perf_pmu_output_stop()),
2486 * but it is only used for events with AUX ring buffer, and such
2487 * events will refuse to restart because of rb::aux_mmap_count==0,
2488 * see comments in perf_aux_output_begin().
2489 *
2490 * Since this is happening on a event-local CPU, no trace is lost
2491 * while restarting.
2492 */
2493 if (sd->restart)
2494 event->pmu->start(event, PERF_EF_START);
2495
2496 return 0;
2497 }
2498
2499 static int perf_event_restart(struct perf_event *event)
2500 {
2501 struct stop_event_data sd = {
2502 .event = event,
2503 .restart = 1,
2504 };
2505 int ret = 0;
2506
2507 do {
2508 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509 return 0;
2510
2511 /* matches smp_wmb() in event_sched_in() */
2512 smp_rmb();
2513
2514 /*
2515 * We only want to restart ACTIVE events, so if the event goes
2516 * inactive here (event->oncpu==-1), there's nothing more to do;
2517 * fall through with ret==-ENXIO.
2518 */
2519 ret = cpu_function_call(READ_ONCE(event->oncpu),
2520 __perf_event_stop, &sd);
2521 } while (ret == -EAGAIN);
2522
2523 return ret;
2524 }
2525
2526 /*
2527 * In order to contain the amount of racy and tricky in the address filter
2528 * configuration management, it is a two part process:
2529 *
2530 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531 * we update the addresses of corresponding vmas in
2532 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2533 * (p2) when an event is scheduled in (pmu::add), it calls
2534 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535 * if the generation has changed since the previous call.
2536 *
2537 * If (p1) happens while the event is active, we restart it to force (p2).
2538 *
2539 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2541 * ioctl;
2542 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2544 * for reading;
2545 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546 * of exec.
2547 */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551
2552 if (!has_addr_filter(event))
2553 return;
2554
2555 raw_spin_lock(&ifh->lock);
2556 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557 event->pmu->addr_filters_sync(event);
2558 event->hw.addr_filters_gen = event->addr_filters_gen;
2559 }
2560 raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566 /*
2567 * not supported on inherited events
2568 */
2569 if (event->attr.inherit || !is_sampling_event(event))
2570 return -EINVAL;
2571
2572 atomic_add(refresh, &event->event_limit);
2573 _perf_event_enable(event);
2574
2575 return 0;
2576 }
2577
2578 /*
2579 * See perf_event_disable()
2580 */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583 struct perf_event_context *ctx;
2584 int ret;
2585
2586 ctx = perf_event_ctx_lock(event);
2587 ret = _perf_event_refresh(event, refresh);
2588 perf_event_ctx_unlock(event, ctx);
2589
2590 return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595 struct perf_cpu_context *cpuctx,
2596 enum event_type_t event_type)
2597 {
2598 int is_active = ctx->is_active;
2599 struct perf_event *event;
2600
2601 lockdep_assert_held(&ctx->lock);
2602
2603 if (likely(!ctx->nr_events)) {
2604 /*
2605 * See __perf_remove_from_context().
2606 */
2607 WARN_ON_ONCE(ctx->is_active);
2608 if (ctx->task)
2609 WARN_ON_ONCE(cpuctx->task_ctx);
2610 return;
2611 }
2612
2613 ctx->is_active &= ~event_type;
2614 if (!(ctx->is_active & EVENT_ALL))
2615 ctx->is_active = 0;
2616
2617 if (ctx->task) {
2618 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619 if (!ctx->is_active)
2620 cpuctx->task_ctx = NULL;
2621 }
2622
2623 /*
2624 * Always update time if it was set; not only when it changes.
2625 * Otherwise we can 'forget' to update time for any but the last
2626 * context we sched out. For example:
2627 *
2628 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629 * ctx_sched_out(.event_type = EVENT_PINNED)
2630 *
2631 * would only update time for the pinned events.
2632 */
2633 if (is_active & EVENT_TIME) {
2634 /* update (and stop) ctx time */
2635 update_context_time(ctx);
2636 update_cgrp_time_from_cpuctx(cpuctx);
2637 }
2638
2639 is_active ^= ctx->is_active; /* changed bits */
2640
2641 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642 return;
2643
2644 perf_pmu_disable(ctx->pmu);
2645 if (is_active & EVENT_PINNED) {
2646 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647 group_sched_out(event, cpuctx, ctx);
2648 }
2649
2650 if (is_active & EVENT_FLEXIBLE) {
2651 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652 group_sched_out(event, cpuctx, ctx);
2653 }
2654 perf_pmu_enable(ctx->pmu);
2655 }
2656
2657 /*
2658 * Test whether two contexts are equivalent, i.e. whether they have both been
2659 * cloned from the same version of the same context.
2660 *
2661 * Equivalence is measured using a generation number in the context that is
2662 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663 * and list_del_event().
2664 */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666 struct perf_event_context *ctx2)
2667 {
2668 lockdep_assert_held(&ctx1->lock);
2669 lockdep_assert_held(&ctx2->lock);
2670
2671 /* Pinning disables the swap optimization */
2672 if (ctx1->pin_count || ctx2->pin_count)
2673 return 0;
2674
2675 /* If ctx1 is the parent of ctx2 */
2676 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677 return 1;
2678
2679 /* If ctx2 is the parent of ctx1 */
2680 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681 return 1;
2682
2683 /*
2684 * If ctx1 and ctx2 have the same parent; we flatten the parent
2685 * hierarchy, see perf_event_init_context().
2686 */
2687 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688 ctx1->parent_gen == ctx2->parent_gen)
2689 return 1;
2690
2691 /* Unmatched */
2692 return 0;
2693 }
2694
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696 struct perf_event *next_event)
2697 {
2698 u64 value;
2699
2700 if (!event->attr.inherit_stat)
2701 return;
2702
2703 /*
2704 * Update the event value, we cannot use perf_event_read()
2705 * because we're in the middle of a context switch and have IRQs
2706 * disabled, which upsets smp_call_function_single(), however
2707 * we know the event must be on the current CPU, therefore we
2708 * don't need to use it.
2709 */
2710 switch (event->state) {
2711 case PERF_EVENT_STATE_ACTIVE:
2712 event->pmu->read(event);
2713 /* fall-through */
2714
2715 case PERF_EVENT_STATE_INACTIVE:
2716 update_event_times(event);
2717 break;
2718
2719 default:
2720 break;
2721 }
2722
2723 /*
2724 * In order to keep per-task stats reliable we need to flip the event
2725 * values when we flip the contexts.
2726 */
2727 value = local64_read(&next_event->count);
2728 value = local64_xchg(&event->count, value);
2729 local64_set(&next_event->count, value);
2730
2731 swap(event->total_time_enabled, next_event->total_time_enabled);
2732 swap(event->total_time_running, next_event->total_time_running);
2733
2734 /*
2735 * Since we swizzled the values, update the user visible data too.
2736 */
2737 perf_event_update_userpage(event);
2738 perf_event_update_userpage(next_event);
2739 }
2740
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742 struct perf_event_context *next_ctx)
2743 {
2744 struct perf_event *event, *next_event;
2745
2746 if (!ctx->nr_stat)
2747 return;
2748
2749 update_context_time(ctx);
2750
2751 event = list_first_entry(&ctx->event_list,
2752 struct perf_event, event_entry);
2753
2754 next_event = list_first_entry(&next_ctx->event_list,
2755 struct perf_event, event_entry);
2756
2757 while (&event->event_entry != &ctx->event_list &&
2758 &next_event->event_entry != &next_ctx->event_list) {
2759
2760 __perf_event_sync_stat(event, next_event);
2761
2762 event = list_next_entry(event, event_entry);
2763 next_event = list_next_entry(next_event, event_entry);
2764 }
2765 }
2766
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768 struct task_struct *next)
2769 {
2770 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771 struct perf_event_context *next_ctx;
2772 struct perf_event_context *parent, *next_parent;
2773 struct perf_cpu_context *cpuctx;
2774 int do_switch = 1;
2775
2776 if (likely(!ctx))
2777 return;
2778
2779 cpuctx = __get_cpu_context(ctx);
2780 if (!cpuctx->task_ctx)
2781 return;
2782
2783 rcu_read_lock();
2784 next_ctx = next->perf_event_ctxp[ctxn];
2785 if (!next_ctx)
2786 goto unlock;
2787
2788 parent = rcu_dereference(ctx->parent_ctx);
2789 next_parent = rcu_dereference(next_ctx->parent_ctx);
2790
2791 /* If neither context have a parent context; they cannot be clones. */
2792 if (!parent && !next_parent)
2793 goto unlock;
2794
2795 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796 /*
2797 * Looks like the two contexts are clones, so we might be
2798 * able to optimize the context switch. We lock both
2799 * contexts and check that they are clones under the
2800 * lock (including re-checking that neither has been
2801 * uncloned in the meantime). It doesn't matter which
2802 * order we take the locks because no other cpu could
2803 * be trying to lock both of these tasks.
2804 */
2805 raw_spin_lock(&ctx->lock);
2806 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807 if (context_equiv(ctx, next_ctx)) {
2808 WRITE_ONCE(ctx->task, next);
2809 WRITE_ONCE(next_ctx->task, task);
2810
2811 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812
2813 /*
2814 * RCU_INIT_POINTER here is safe because we've not
2815 * modified the ctx and the above modification of
2816 * ctx->task and ctx->task_ctx_data are immaterial
2817 * since those values are always verified under
2818 * ctx->lock which we're now holding.
2819 */
2820 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822
2823 do_switch = 0;
2824
2825 perf_event_sync_stat(ctx, next_ctx);
2826 }
2827 raw_spin_unlock(&next_ctx->lock);
2828 raw_spin_unlock(&ctx->lock);
2829 }
2830 unlock:
2831 rcu_read_unlock();
2832
2833 if (do_switch) {
2834 raw_spin_lock(&ctx->lock);
2835 task_ctx_sched_out(cpuctx, ctx);
2836 raw_spin_unlock(&ctx->lock);
2837 }
2838 }
2839
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842 this_cpu_dec(perf_sched_cb_usages);
2843 }
2844
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847 this_cpu_inc(perf_sched_cb_usages);
2848 }
2849
2850 /*
2851 * This function provides the context switch callback to the lower code
2852 * layer. It is invoked ONLY when the context switch callback is enabled.
2853 */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855 struct task_struct *next,
2856 bool sched_in)
2857 {
2858 struct perf_cpu_context *cpuctx;
2859 struct pmu *pmu;
2860 unsigned long flags;
2861
2862 if (prev == next)
2863 return;
2864
2865 local_irq_save(flags);
2866
2867 rcu_read_lock();
2868
2869 list_for_each_entry_rcu(pmu, &pmus, entry) {
2870 if (pmu->sched_task) {
2871 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872
2873 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874
2875 perf_pmu_disable(pmu);
2876
2877 pmu->sched_task(cpuctx->task_ctx, sched_in);
2878
2879 perf_pmu_enable(pmu);
2880
2881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882 }
2883 }
2884
2885 rcu_read_unlock();
2886
2887 local_irq_restore(flags);
2888 }
2889
2890 static void perf_event_switch(struct task_struct *task,
2891 struct task_struct *next_prev, bool sched_in);
2892
2893 #define for_each_task_context_nr(ctxn) \
2894 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895
2896 /*
2897 * Called from scheduler to remove the events of the current task,
2898 * with interrupts disabled.
2899 *
2900 * We stop each event and update the event value in event->count.
2901 *
2902 * This does not protect us against NMI, but disable()
2903 * sets the disabled bit in the control field of event _before_
2904 * accessing the event control register. If a NMI hits, then it will
2905 * not restart the event.
2906 */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908 struct task_struct *next)
2909 {
2910 int ctxn;
2911
2912 if (__this_cpu_read(perf_sched_cb_usages))
2913 perf_pmu_sched_task(task, next, false);
2914
2915 if (atomic_read(&nr_switch_events))
2916 perf_event_switch(task, next, false);
2917
2918 for_each_task_context_nr(ctxn)
2919 perf_event_context_sched_out(task, ctxn, next);
2920
2921 /*
2922 * if cgroup events exist on this CPU, then we need
2923 * to check if we have to switch out PMU state.
2924 * cgroup event are system-wide mode only
2925 */
2926 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927 perf_cgroup_sched_out(task, next);
2928 }
2929
2930 /*
2931 * Called with IRQs disabled
2932 */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934 enum event_type_t event_type)
2935 {
2936 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941 struct perf_cpu_context *cpuctx)
2942 {
2943 struct perf_event *event;
2944
2945 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946 if (event->state <= PERF_EVENT_STATE_OFF)
2947 continue;
2948 if (!event_filter_match(event))
2949 continue;
2950
2951 /* may need to reset tstamp_enabled */
2952 if (is_cgroup_event(event))
2953 perf_cgroup_mark_enabled(event, ctx);
2954
2955 if (group_can_go_on(event, cpuctx, 1))
2956 group_sched_in(event, cpuctx, ctx);
2957
2958 /*
2959 * If this pinned group hasn't been scheduled,
2960 * put it in error state.
2961 */
2962 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963 update_group_times(event);
2964 event->state = PERF_EVENT_STATE_ERROR;
2965 }
2966 }
2967 }
2968
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971 struct perf_cpu_context *cpuctx)
2972 {
2973 struct perf_event *event;
2974 int can_add_hw = 1;
2975
2976 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977 /* Ignore events in OFF or ERROR state */
2978 if (event->state <= PERF_EVENT_STATE_OFF)
2979 continue;
2980 /*
2981 * Listen to the 'cpu' scheduling filter constraint
2982 * of events:
2983 */
2984 if (!event_filter_match(event))
2985 continue;
2986
2987 /* may need to reset tstamp_enabled */
2988 if (is_cgroup_event(event))
2989 perf_cgroup_mark_enabled(event, ctx);
2990
2991 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992 if (group_sched_in(event, cpuctx, ctx))
2993 can_add_hw = 0;
2994 }
2995 }
2996 }
2997
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000 struct perf_cpu_context *cpuctx,
3001 enum event_type_t event_type,
3002 struct task_struct *task)
3003 {
3004 int is_active = ctx->is_active;
3005 u64 now;
3006
3007 lockdep_assert_held(&ctx->lock);
3008
3009 if (likely(!ctx->nr_events))
3010 return;
3011
3012 ctx->is_active |= (event_type | EVENT_TIME);
3013 if (ctx->task) {
3014 if (!is_active)
3015 cpuctx->task_ctx = ctx;
3016 else
3017 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018 }
3019
3020 is_active ^= ctx->is_active; /* changed bits */
3021
3022 if (is_active & EVENT_TIME) {
3023 /* start ctx time */
3024 now = perf_clock();
3025 ctx->timestamp = now;
3026 perf_cgroup_set_timestamp(task, ctx);
3027 }
3028
3029 /*
3030 * First go through the list and put on any pinned groups
3031 * in order to give them the best chance of going on.
3032 */
3033 if (is_active & EVENT_PINNED)
3034 ctx_pinned_sched_in(ctx, cpuctx);
3035
3036 /* Then walk through the lower prio flexible groups */
3037 if (is_active & EVENT_FLEXIBLE)
3038 ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042 enum event_type_t event_type,
3043 struct task_struct *task)
3044 {
3045 struct perf_event_context *ctx = &cpuctx->ctx;
3046
3047 ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051 struct task_struct *task)
3052 {
3053 struct perf_cpu_context *cpuctx;
3054
3055 cpuctx = __get_cpu_context(ctx);
3056 if (cpuctx->task_ctx == ctx)
3057 return;
3058
3059 perf_ctx_lock(cpuctx, ctx);
3060 perf_pmu_disable(ctx->pmu);
3061 /*
3062 * We want to keep the following priority order:
3063 * cpu pinned (that don't need to move), task pinned,
3064 * cpu flexible, task flexible.
3065 */
3066 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067 perf_event_sched_in(cpuctx, ctx, task);
3068 perf_pmu_enable(ctx->pmu);
3069 perf_ctx_unlock(cpuctx, ctx);
3070 }
3071
3072 /*
3073 * Called from scheduler to add the events of the current task
3074 * with interrupts disabled.
3075 *
3076 * We restore the event value and then enable it.
3077 *
3078 * This does not protect us against NMI, but enable()
3079 * sets the enabled bit in the control field of event _before_
3080 * accessing the event control register. If a NMI hits, then it will
3081 * keep the event running.
3082 */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084 struct task_struct *task)
3085 {
3086 struct perf_event_context *ctx;
3087 int ctxn;
3088
3089 /*
3090 * If cgroup events exist on this CPU, then we need to check if we have
3091 * to switch in PMU state; cgroup event are system-wide mode only.
3092 *
3093 * Since cgroup events are CPU events, we must schedule these in before
3094 * we schedule in the task events.
3095 */
3096 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097 perf_cgroup_sched_in(prev, task);
3098
3099 for_each_task_context_nr(ctxn) {
3100 ctx = task->perf_event_ctxp[ctxn];
3101 if (likely(!ctx))
3102 continue;
3103
3104 perf_event_context_sched_in(ctx, task);
3105 }
3106
3107 if (atomic_read(&nr_switch_events))
3108 perf_event_switch(task, prev, true);
3109
3110 if (__this_cpu_read(perf_sched_cb_usages))
3111 perf_pmu_sched_task(prev, task, true);
3112 }
3113
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116 u64 frequency = event->attr.sample_freq;
3117 u64 sec = NSEC_PER_SEC;
3118 u64 divisor, dividend;
3119
3120 int count_fls, nsec_fls, frequency_fls, sec_fls;
3121
3122 count_fls = fls64(count);
3123 nsec_fls = fls64(nsec);
3124 frequency_fls = fls64(frequency);
3125 sec_fls = 30;
3126
3127 /*
3128 * We got @count in @nsec, with a target of sample_freq HZ
3129 * the target period becomes:
3130 *
3131 * @count * 10^9
3132 * period = -------------------
3133 * @nsec * sample_freq
3134 *
3135 */
3136
3137 /*
3138 * Reduce accuracy by one bit such that @a and @b converge
3139 * to a similar magnitude.
3140 */
3141 #define REDUCE_FLS(a, b) \
3142 do { \
3143 if (a##_fls > b##_fls) { \
3144 a >>= 1; \
3145 a##_fls--; \
3146 } else { \
3147 b >>= 1; \
3148 b##_fls--; \
3149 } \
3150 } while (0)
3151
3152 /*
3153 * Reduce accuracy until either term fits in a u64, then proceed with
3154 * the other, so that finally we can do a u64/u64 division.
3155 */
3156 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157 REDUCE_FLS(nsec, frequency);
3158 REDUCE_FLS(sec, count);
3159 }
3160
3161 if (count_fls + sec_fls > 64) {
3162 divisor = nsec * frequency;
3163
3164 while (count_fls + sec_fls > 64) {
3165 REDUCE_FLS(count, sec);
3166 divisor >>= 1;
3167 }
3168
3169 dividend = count * sec;
3170 } else {
3171 dividend = count * sec;
3172
3173 while (nsec_fls + frequency_fls > 64) {
3174 REDUCE_FLS(nsec, frequency);
3175 dividend >>= 1;
3176 }
3177
3178 divisor = nsec * frequency;
3179 }
3180
3181 if (!divisor)
3182 return dividend;
3183
3184 return div64_u64(dividend, divisor);
3185 }
3186
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192 struct hw_perf_event *hwc = &event->hw;
3193 s64 period, sample_period;
3194 s64 delta;
3195
3196 period = perf_calculate_period(event, nsec, count);
3197
3198 delta = (s64)(period - hwc->sample_period);
3199 delta = (delta + 7) / 8; /* low pass filter */
3200
3201 sample_period = hwc->sample_period + delta;
3202
3203 if (!sample_period)
3204 sample_period = 1;
3205
3206 hwc->sample_period = sample_period;
3207
3208 if (local64_read(&hwc->period_left) > 8*sample_period) {
3209 if (disable)
3210 event->pmu->stop(event, PERF_EF_UPDATE);
3211
3212 local64_set(&hwc->period_left, 0);
3213
3214 if (disable)
3215 event->pmu->start(event, PERF_EF_RELOAD);
3216 }
3217 }
3218
3219 /*
3220 * combine freq adjustment with unthrottling to avoid two passes over the
3221 * events. At the same time, make sure, having freq events does not change
3222 * the rate of unthrottling as that would introduce bias.
3223 */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225 int needs_unthr)
3226 {
3227 struct perf_event *event;
3228 struct hw_perf_event *hwc;
3229 u64 now, period = TICK_NSEC;
3230 s64 delta;
3231
3232 /*
3233 * only need to iterate over all events iff:
3234 * - context have events in frequency mode (needs freq adjust)
3235 * - there are events to unthrottle on this cpu
3236 */
3237 if (!(ctx->nr_freq || needs_unthr))
3238 return;
3239
3240 raw_spin_lock(&ctx->lock);
3241 perf_pmu_disable(ctx->pmu);
3242
3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 continue;
3246
3247 if (!event_filter_match(event))
3248 continue;
3249
3250 perf_pmu_disable(event->pmu);
3251
3252 hwc = &event->hw;
3253
3254 if (hwc->interrupts == MAX_INTERRUPTS) {
3255 hwc->interrupts = 0;
3256 perf_log_throttle(event, 1);
3257 event->pmu->start(event, 0);
3258 }
3259
3260 if (!event->attr.freq || !event->attr.sample_freq)
3261 goto next;
3262
3263 /*
3264 * stop the event and update event->count
3265 */
3266 event->pmu->stop(event, PERF_EF_UPDATE);
3267
3268 now = local64_read(&event->count);
3269 delta = now - hwc->freq_count_stamp;
3270 hwc->freq_count_stamp = now;
3271
3272 /*
3273 * restart the event
3274 * reload only if value has changed
3275 * we have stopped the event so tell that
3276 * to perf_adjust_period() to avoid stopping it
3277 * twice.
3278 */
3279 if (delta > 0)
3280 perf_adjust_period(event, period, delta, false);
3281
3282 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283 next:
3284 perf_pmu_enable(event->pmu);
3285 }
3286
3287 perf_pmu_enable(ctx->pmu);
3288 raw_spin_unlock(&ctx->lock);
3289 }
3290
3291 /*
3292 * Round-robin a context's events:
3293 */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296 /*
3297 * Rotate the first entry last of non-pinned groups. Rotation might be
3298 * disabled by the inheritance code.
3299 */
3300 if (!ctx->rotate_disable)
3301 list_rotate_left(&ctx->flexible_groups);
3302 }
3303
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306 struct perf_event_context *ctx = NULL;
3307 int rotate = 0;
3308
3309 if (cpuctx->ctx.nr_events) {
3310 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311 rotate = 1;
3312 }
3313
3314 ctx = cpuctx->task_ctx;
3315 if (ctx && ctx->nr_events) {
3316 if (ctx->nr_events != ctx->nr_active)
3317 rotate = 1;
3318 }
3319
3320 if (!rotate)
3321 goto done;
3322
3323 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324 perf_pmu_disable(cpuctx->ctx.pmu);
3325
3326 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327 if (ctx)
3328 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329
3330 rotate_ctx(&cpuctx->ctx);
3331 if (ctx)
3332 rotate_ctx(ctx);
3333
3334 perf_event_sched_in(cpuctx, ctx, current);
3335
3336 perf_pmu_enable(cpuctx->ctx.pmu);
3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339
3340 return rotate;
3341 }
3342
3343 void perf_event_task_tick(void)
3344 {
3345 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346 struct perf_event_context *ctx, *tmp;
3347 int throttled;
3348
3349 WARN_ON(!irqs_disabled());
3350
3351 __this_cpu_inc(perf_throttled_seq);
3352 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354
3355 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356 perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358
3359 static int event_enable_on_exec(struct perf_event *event,
3360 struct perf_event_context *ctx)
3361 {
3362 if (!event->attr.enable_on_exec)
3363 return 0;
3364
3365 event->attr.enable_on_exec = 0;
3366 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367 return 0;
3368
3369 __perf_event_mark_enabled(event);
3370
3371 return 1;
3372 }
3373
3374 /*
3375 * Enable all of a task's events that have been marked enable-on-exec.
3376 * This expects task == current.
3377 */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380 struct perf_event_context *ctx, *clone_ctx = NULL;
3381 struct perf_cpu_context *cpuctx;
3382 struct perf_event *event;
3383 unsigned long flags;
3384 int enabled = 0;
3385
3386 local_irq_save(flags);
3387 ctx = current->perf_event_ctxp[ctxn];
3388 if (!ctx || !ctx->nr_events)
3389 goto out;
3390
3391 cpuctx = __get_cpu_context(ctx);
3392 perf_ctx_lock(cpuctx, ctx);
3393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394 list_for_each_entry(event, &ctx->event_list, event_entry)
3395 enabled |= event_enable_on_exec(event, ctx);
3396
3397 /*
3398 * Unclone and reschedule this context if we enabled any event.
3399 */
3400 if (enabled) {
3401 clone_ctx = unclone_ctx(ctx);
3402 ctx_resched(cpuctx, ctx);
3403 }
3404 perf_ctx_unlock(cpuctx, ctx);
3405
3406 out:
3407 local_irq_restore(flags);
3408
3409 if (clone_ctx)
3410 put_ctx(clone_ctx);
3411 }
3412
3413 struct perf_read_data {
3414 struct perf_event *event;
3415 bool group;
3416 int ret;
3417 };
3418
3419 /*
3420 * Cross CPU call to read the hardware event
3421 */
3422 static void __perf_event_read(void *info)
3423 {
3424 struct perf_read_data *data = info;
3425 struct perf_event *sub, *event = data->event;
3426 struct perf_event_context *ctx = event->ctx;
3427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428 struct pmu *pmu = event->pmu;
3429
3430 /*
3431 * If this is a task context, we need to check whether it is
3432 * the current task context of this cpu. If not it has been
3433 * scheduled out before the smp call arrived. In that case
3434 * event->count would have been updated to a recent sample
3435 * when the event was scheduled out.
3436 */
3437 if (ctx->task && cpuctx->task_ctx != ctx)
3438 return;
3439
3440 raw_spin_lock(&ctx->lock);
3441 if (ctx->is_active) {
3442 update_context_time(ctx);
3443 update_cgrp_time_from_event(event);
3444 }
3445
3446 update_event_times(event);
3447 if (event->state != PERF_EVENT_STATE_ACTIVE)
3448 goto unlock;
3449
3450 if (!data->group) {
3451 pmu->read(event);
3452 data->ret = 0;
3453 goto unlock;
3454 }
3455
3456 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457
3458 pmu->read(event);
3459
3460 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461 update_event_times(sub);
3462 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463 /*
3464 * Use sibling's PMU rather than @event's since
3465 * sibling could be on different (eg: software) PMU.
3466 */
3467 sub->pmu->read(sub);
3468 }
3469 }
3470
3471 data->ret = pmu->commit_txn(pmu);
3472
3473 unlock:
3474 raw_spin_unlock(&ctx->lock);
3475 }
3476
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479 if (event->pmu->count)
3480 return event->pmu->count(event);
3481
3482 return __perf_event_count(event);
3483 }
3484
3485 /*
3486 * NMI-safe method to read a local event, that is an event that
3487 * is:
3488 * - either for the current task, or for this CPU
3489 * - does not have inherit set, for inherited task events
3490 * will not be local and we cannot read them atomically
3491 * - must not have a pmu::count method
3492 */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495 unsigned long flags;
3496 u64 val;
3497
3498 /*
3499 * Disabling interrupts avoids all counter scheduling (context
3500 * switches, timer based rotation and IPIs).
3501 */
3502 local_irq_save(flags);
3503
3504 /* If this is a per-task event, it must be for current */
3505 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506 event->hw.target != current);
3507
3508 /* If this is a per-CPU event, it must be for this CPU */
3509 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510 event->cpu != smp_processor_id());
3511
3512 /*
3513 * It must not be an event with inherit set, we cannot read
3514 * all child counters from atomic context.
3515 */
3516 WARN_ON_ONCE(event->attr.inherit);
3517
3518 /*
3519 * It must not have a pmu::count method, those are not
3520 * NMI safe.
3521 */
3522 WARN_ON_ONCE(event->pmu->count);
3523
3524 /*
3525 * If the event is currently on this CPU, its either a per-task event,
3526 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527 * oncpu == -1).
3528 */
3529 if (event->oncpu == smp_processor_id())
3530 event->pmu->read(event);
3531
3532 val = local64_read(&event->count);
3533 local_irq_restore(flags);
3534
3535 return val;
3536 }
3537
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540 int ret = 0;
3541
3542 /*
3543 * If event is enabled and currently active on a CPU, update the
3544 * value in the event structure:
3545 */
3546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547 struct perf_read_data data = {
3548 .event = event,
3549 .group = group,
3550 .ret = 0,
3551 };
3552 ret = smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3553 /* The event must have been read from an online CPU: */
3554 WARN_ON_ONCE(ret);
3555 ret = ret ? : data.ret;
3556 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3557 struct perf_event_context *ctx = event->ctx;
3558 unsigned long flags;
3559
3560 raw_spin_lock_irqsave(&ctx->lock, flags);
3561 /*
3562 * may read while context is not active
3563 * (e.g., thread is blocked), in that case
3564 * we cannot update context time
3565 */
3566 if (ctx->is_active) {
3567 update_context_time(ctx);
3568 update_cgrp_time_from_event(event);
3569 }
3570 if (group)
3571 update_group_times(event);
3572 else
3573 update_event_times(event);
3574 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3575 }
3576
3577 return ret;
3578 }
3579
3580 /*
3581 * Initialize the perf_event context in a task_struct:
3582 */
3583 static void __perf_event_init_context(struct perf_event_context *ctx)
3584 {
3585 raw_spin_lock_init(&ctx->lock);
3586 mutex_init(&ctx->mutex);
3587 INIT_LIST_HEAD(&ctx->active_ctx_list);
3588 INIT_LIST_HEAD(&ctx->pinned_groups);
3589 INIT_LIST_HEAD(&ctx->flexible_groups);
3590 INIT_LIST_HEAD(&ctx->event_list);
3591 atomic_set(&ctx->refcount, 1);
3592 }
3593
3594 static struct perf_event_context *
3595 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3596 {
3597 struct perf_event_context *ctx;
3598
3599 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3600 if (!ctx)
3601 return NULL;
3602
3603 __perf_event_init_context(ctx);
3604 if (task) {
3605 ctx->task = task;
3606 get_task_struct(task);
3607 }
3608 ctx->pmu = pmu;
3609
3610 return ctx;
3611 }
3612
3613 static struct task_struct *
3614 find_lively_task_by_vpid(pid_t vpid)
3615 {
3616 struct task_struct *task;
3617
3618 rcu_read_lock();
3619 if (!vpid)
3620 task = current;
3621 else
3622 task = find_task_by_vpid(vpid);
3623 if (task)
3624 get_task_struct(task);
3625 rcu_read_unlock();
3626
3627 if (!task)
3628 return ERR_PTR(-ESRCH);
3629
3630 return task;
3631 }
3632
3633 /*
3634 * Returns a matching context with refcount and pincount.
3635 */
3636 static struct perf_event_context *
3637 find_get_context(struct pmu *pmu, struct task_struct *task,
3638 struct perf_event *event)
3639 {
3640 struct perf_event_context *ctx, *clone_ctx = NULL;
3641 struct perf_cpu_context *cpuctx;
3642 void *task_ctx_data = NULL;
3643 unsigned long flags;
3644 int ctxn, err;
3645 int cpu = event->cpu;
3646
3647 if (!task) {
3648 /* Must be root to operate on a CPU event: */
3649 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3650 return ERR_PTR(-EACCES);
3651
3652 /*
3653 * We could be clever and allow to attach a event to an
3654 * offline CPU and activate it when the CPU comes up, but
3655 * that's for later.
3656 */
3657 if (!cpu_online(cpu))
3658 return ERR_PTR(-ENODEV);
3659
3660 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3661 ctx = &cpuctx->ctx;
3662 get_ctx(ctx);
3663 ++ctx->pin_count;
3664
3665 return ctx;
3666 }
3667
3668 err = -EINVAL;
3669 ctxn = pmu->task_ctx_nr;
3670 if (ctxn < 0)
3671 goto errout;
3672
3673 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3674 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3675 if (!task_ctx_data) {
3676 err = -ENOMEM;
3677 goto errout;
3678 }
3679 }
3680
3681 retry:
3682 ctx = perf_lock_task_context(task, ctxn, &flags);
3683 if (ctx) {
3684 clone_ctx = unclone_ctx(ctx);
3685 ++ctx->pin_count;
3686
3687 if (task_ctx_data && !ctx->task_ctx_data) {
3688 ctx->task_ctx_data = task_ctx_data;
3689 task_ctx_data = NULL;
3690 }
3691 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3692
3693 if (clone_ctx)
3694 put_ctx(clone_ctx);
3695 } else {
3696 ctx = alloc_perf_context(pmu, task);
3697 err = -ENOMEM;
3698 if (!ctx)
3699 goto errout;
3700
3701 if (task_ctx_data) {
3702 ctx->task_ctx_data = task_ctx_data;
3703 task_ctx_data = NULL;
3704 }
3705
3706 err = 0;
3707 mutex_lock(&task->perf_event_mutex);
3708 /*
3709 * If it has already passed perf_event_exit_task().
3710 * we must see PF_EXITING, it takes this mutex too.
3711 */
3712 if (task->flags & PF_EXITING)
3713 err = -ESRCH;
3714 else if (task->perf_event_ctxp[ctxn])
3715 err = -EAGAIN;
3716 else {
3717 get_ctx(ctx);
3718 ++ctx->pin_count;
3719 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3720 }
3721 mutex_unlock(&task->perf_event_mutex);
3722
3723 if (unlikely(err)) {
3724 put_ctx(ctx);
3725
3726 if (err == -EAGAIN)
3727 goto retry;
3728 goto errout;
3729 }
3730 }
3731
3732 kfree(task_ctx_data);
3733 return ctx;
3734
3735 errout:
3736 kfree(task_ctx_data);
3737 return ERR_PTR(err);
3738 }
3739
3740 static void perf_event_free_filter(struct perf_event *event);
3741 static void perf_event_free_bpf_prog(struct perf_event *event);
3742
3743 static void free_event_rcu(struct rcu_head *head)
3744 {
3745 struct perf_event *event;
3746
3747 event = container_of(head, struct perf_event, rcu_head);
3748 if (event->ns)
3749 put_pid_ns(event->ns);
3750 perf_event_free_filter(event);
3751 kfree(event);
3752 }
3753
3754 static void ring_buffer_attach(struct perf_event *event,
3755 struct ring_buffer *rb);
3756
3757 static void detach_sb_event(struct perf_event *event)
3758 {
3759 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3760
3761 raw_spin_lock(&pel->lock);
3762 list_del_rcu(&event->sb_list);
3763 raw_spin_unlock(&pel->lock);
3764 }
3765
3766 static bool is_sb_event(struct perf_event *event)
3767 {
3768 struct perf_event_attr *attr = &event->attr;
3769
3770 if (event->parent)
3771 return false;
3772
3773 if (event->attach_state & PERF_ATTACH_TASK)
3774 return false;
3775
3776 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3777 attr->comm || attr->comm_exec ||
3778 attr->task ||
3779 attr->context_switch)
3780 return true;
3781 return false;
3782 }
3783
3784 static void unaccount_pmu_sb_event(struct perf_event *event)
3785 {
3786 if (is_sb_event(event))
3787 detach_sb_event(event);
3788 }
3789
3790 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3791 {
3792 if (event->parent)
3793 return;
3794
3795 if (is_cgroup_event(event))
3796 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3797 }
3798
3799 #ifdef CONFIG_NO_HZ_FULL
3800 static DEFINE_SPINLOCK(nr_freq_lock);
3801 #endif
3802
3803 static void unaccount_freq_event_nohz(void)
3804 {
3805 #ifdef CONFIG_NO_HZ_FULL
3806 spin_lock(&nr_freq_lock);
3807 if (atomic_dec_and_test(&nr_freq_events))
3808 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3809 spin_unlock(&nr_freq_lock);
3810 #endif
3811 }
3812
3813 static void unaccount_freq_event(void)
3814 {
3815 if (tick_nohz_full_enabled())
3816 unaccount_freq_event_nohz();
3817 else
3818 atomic_dec(&nr_freq_events);
3819 }
3820
3821 static void unaccount_event(struct perf_event *event)
3822 {
3823 bool dec = false;
3824
3825 if (event->parent)
3826 return;
3827
3828 if (event->attach_state & PERF_ATTACH_TASK)
3829 dec = true;
3830 if (event->attr.mmap || event->attr.mmap_data)
3831 atomic_dec(&nr_mmap_events);
3832 if (event->attr.comm)
3833 atomic_dec(&nr_comm_events);
3834 if (event->attr.task)
3835 atomic_dec(&nr_task_events);
3836 if (event->attr.freq)
3837 unaccount_freq_event();
3838 if (event->attr.context_switch) {
3839 dec = true;
3840 atomic_dec(&nr_switch_events);
3841 }
3842 if (is_cgroup_event(event))
3843 dec = true;
3844 if (has_branch_stack(event))
3845 dec = true;
3846
3847 if (dec) {
3848 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3849 schedule_delayed_work(&perf_sched_work, HZ);
3850 }
3851
3852 unaccount_event_cpu(event, event->cpu);
3853
3854 unaccount_pmu_sb_event(event);
3855 }
3856
3857 static void perf_sched_delayed(struct work_struct *work)
3858 {
3859 mutex_lock(&perf_sched_mutex);
3860 if (atomic_dec_and_test(&perf_sched_count))
3861 static_branch_disable(&perf_sched_events);
3862 mutex_unlock(&perf_sched_mutex);
3863 }
3864
3865 /*
3866 * The following implement mutual exclusion of events on "exclusive" pmus
3867 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3868 * at a time, so we disallow creating events that might conflict, namely:
3869 *
3870 * 1) cpu-wide events in the presence of per-task events,
3871 * 2) per-task events in the presence of cpu-wide events,
3872 * 3) two matching events on the same context.
3873 *
3874 * The former two cases are handled in the allocation path (perf_event_alloc(),
3875 * _free_event()), the latter -- before the first perf_install_in_context().
3876 */
3877 static int exclusive_event_init(struct perf_event *event)
3878 {
3879 struct pmu *pmu = event->pmu;
3880
3881 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3882 return 0;
3883
3884 /*
3885 * Prevent co-existence of per-task and cpu-wide events on the
3886 * same exclusive pmu.
3887 *
3888 * Negative pmu::exclusive_cnt means there are cpu-wide
3889 * events on this "exclusive" pmu, positive means there are
3890 * per-task events.
3891 *
3892 * Since this is called in perf_event_alloc() path, event::ctx
3893 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3894 * to mean "per-task event", because unlike other attach states it
3895 * never gets cleared.
3896 */
3897 if (event->attach_state & PERF_ATTACH_TASK) {
3898 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3899 return -EBUSY;
3900 } else {
3901 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3902 return -EBUSY;
3903 }
3904
3905 return 0;
3906 }
3907
3908 static void exclusive_event_destroy(struct perf_event *event)
3909 {
3910 struct pmu *pmu = event->pmu;
3911
3912 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3913 return;
3914
3915 /* see comment in exclusive_event_init() */
3916 if (event->attach_state & PERF_ATTACH_TASK)
3917 atomic_dec(&pmu->exclusive_cnt);
3918 else
3919 atomic_inc(&pmu->exclusive_cnt);
3920 }
3921
3922 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3923 {
3924 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3925 (e1->cpu == e2->cpu ||
3926 e1->cpu == -1 ||
3927 e2->cpu == -1))
3928 return true;
3929 return false;
3930 }
3931
3932 /* Called under the same ctx::mutex as perf_install_in_context() */
3933 static bool exclusive_event_installable(struct perf_event *event,
3934 struct perf_event_context *ctx)
3935 {
3936 struct perf_event *iter_event;
3937 struct pmu *pmu = event->pmu;
3938
3939 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3940 return true;
3941
3942 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3943 if (exclusive_event_match(iter_event, event))
3944 return false;
3945 }
3946
3947 return true;
3948 }
3949
3950 static void perf_addr_filters_splice(struct perf_event *event,
3951 struct list_head *head);
3952
3953 static void _free_event(struct perf_event *event)
3954 {
3955 irq_work_sync(&event->pending);
3956
3957 unaccount_event(event);
3958
3959 if (event->rb) {
3960 /*
3961 * Can happen when we close an event with re-directed output.
3962 *
3963 * Since we have a 0 refcount, perf_mmap_close() will skip
3964 * over us; possibly making our ring_buffer_put() the last.
3965 */
3966 mutex_lock(&event->mmap_mutex);
3967 ring_buffer_attach(event, NULL);
3968 mutex_unlock(&event->mmap_mutex);
3969 }
3970
3971 if (is_cgroup_event(event))
3972 perf_detach_cgroup(event);
3973
3974 if (!event->parent) {
3975 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3976 put_callchain_buffers();
3977 }
3978
3979 perf_event_free_bpf_prog(event);
3980 perf_addr_filters_splice(event, NULL);
3981 kfree(event->addr_filters_offs);
3982
3983 if (event->destroy)
3984 event->destroy(event);
3985
3986 if (event->ctx)
3987 put_ctx(event->ctx);
3988
3989 exclusive_event_destroy(event);
3990 module_put(event->pmu->module);
3991
3992 call_rcu(&event->rcu_head, free_event_rcu);
3993 }
3994
3995 /*
3996 * Used to free events which have a known refcount of 1, such as in error paths
3997 * where the event isn't exposed yet and inherited events.
3998 */
3999 static void free_event(struct perf_event *event)
4000 {
4001 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4002 "unexpected event refcount: %ld; ptr=%p\n",
4003 atomic_long_read(&event->refcount), event)) {
4004 /* leak to avoid use-after-free */
4005 return;
4006 }
4007
4008 _free_event(event);
4009 }
4010
4011 /*
4012 * Remove user event from the owner task.
4013 */
4014 static void perf_remove_from_owner(struct perf_event *event)
4015 {
4016 struct task_struct *owner;
4017
4018 rcu_read_lock();
4019 /*
4020 * Matches the smp_store_release() in perf_event_exit_task(). If we
4021 * observe !owner it means the list deletion is complete and we can
4022 * indeed free this event, otherwise we need to serialize on
4023 * owner->perf_event_mutex.
4024 */
4025 owner = lockless_dereference(event->owner);
4026 if (owner) {
4027 /*
4028 * Since delayed_put_task_struct() also drops the last
4029 * task reference we can safely take a new reference
4030 * while holding the rcu_read_lock().
4031 */
4032 get_task_struct(owner);
4033 }
4034 rcu_read_unlock();
4035
4036 if (owner) {
4037 /*
4038 * If we're here through perf_event_exit_task() we're already
4039 * holding ctx->mutex which would be an inversion wrt. the
4040 * normal lock order.
4041 *
4042 * However we can safely take this lock because its the child
4043 * ctx->mutex.
4044 */
4045 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4046
4047 /*
4048 * We have to re-check the event->owner field, if it is cleared
4049 * we raced with perf_event_exit_task(), acquiring the mutex
4050 * ensured they're done, and we can proceed with freeing the
4051 * event.
4052 */
4053 if (event->owner) {
4054 list_del_init(&event->owner_entry);
4055 smp_store_release(&event->owner, NULL);
4056 }
4057 mutex_unlock(&owner->perf_event_mutex);
4058 put_task_struct(owner);
4059 }
4060 }
4061
4062 static void put_event(struct perf_event *event)
4063 {
4064 if (!atomic_long_dec_and_test(&event->refcount))
4065 return;
4066
4067 _free_event(event);
4068 }
4069
4070 /*
4071 * Kill an event dead; while event:refcount will preserve the event
4072 * object, it will not preserve its functionality. Once the last 'user'
4073 * gives up the object, we'll destroy the thing.
4074 */
4075 int perf_event_release_kernel(struct perf_event *event)
4076 {
4077 struct perf_event_context *ctx = event->ctx;
4078 struct perf_event *child, *tmp;
4079
4080 /*
4081 * If we got here through err_file: fput(event_file); we will not have
4082 * attached to a context yet.
4083 */
4084 if (!ctx) {
4085 WARN_ON_ONCE(event->attach_state &
4086 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4087 goto no_ctx;
4088 }
4089
4090 if (!is_kernel_event(event))
4091 perf_remove_from_owner(event);
4092
4093 ctx = perf_event_ctx_lock(event);
4094 WARN_ON_ONCE(ctx->parent_ctx);
4095 perf_remove_from_context(event, DETACH_GROUP);
4096
4097 raw_spin_lock_irq(&ctx->lock);
4098 /*
4099 * Mark this even as STATE_DEAD, there is no external reference to it
4100 * anymore.
4101 *
4102 * Anybody acquiring event->child_mutex after the below loop _must_
4103 * also see this, most importantly inherit_event() which will avoid
4104 * placing more children on the list.
4105 *
4106 * Thus this guarantees that we will in fact observe and kill _ALL_
4107 * child events.
4108 */
4109 event->state = PERF_EVENT_STATE_DEAD;
4110 raw_spin_unlock_irq(&ctx->lock);
4111
4112 perf_event_ctx_unlock(event, ctx);
4113
4114 again:
4115 mutex_lock(&event->child_mutex);
4116 list_for_each_entry(child, &event->child_list, child_list) {
4117
4118 /*
4119 * Cannot change, child events are not migrated, see the
4120 * comment with perf_event_ctx_lock_nested().
4121 */
4122 ctx = lockless_dereference(child->ctx);
4123 /*
4124 * Since child_mutex nests inside ctx::mutex, we must jump
4125 * through hoops. We start by grabbing a reference on the ctx.
4126 *
4127 * Since the event cannot get freed while we hold the
4128 * child_mutex, the context must also exist and have a !0
4129 * reference count.
4130 */
4131 get_ctx(ctx);
4132
4133 /*
4134 * Now that we have a ctx ref, we can drop child_mutex, and
4135 * acquire ctx::mutex without fear of it going away. Then we
4136 * can re-acquire child_mutex.
4137 */
4138 mutex_unlock(&event->child_mutex);
4139 mutex_lock(&ctx->mutex);
4140 mutex_lock(&event->child_mutex);
4141
4142 /*
4143 * Now that we hold ctx::mutex and child_mutex, revalidate our
4144 * state, if child is still the first entry, it didn't get freed
4145 * and we can continue doing so.
4146 */
4147 tmp = list_first_entry_or_null(&event->child_list,
4148 struct perf_event, child_list);
4149 if (tmp == child) {
4150 perf_remove_from_context(child, DETACH_GROUP);
4151 list_del(&child->child_list);
4152 free_event(child);
4153 /*
4154 * This matches the refcount bump in inherit_event();
4155 * this can't be the last reference.
4156 */
4157 put_event(event);
4158 }
4159
4160 mutex_unlock(&event->child_mutex);
4161 mutex_unlock(&ctx->mutex);
4162 put_ctx(ctx);
4163 goto again;
4164 }
4165 mutex_unlock(&event->child_mutex);
4166
4167 no_ctx:
4168 put_event(event); /* Must be the 'last' reference */
4169 return 0;
4170 }
4171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4172
4173 /*
4174 * Called when the last reference to the file is gone.
4175 */
4176 static int perf_release(struct inode *inode, struct file *file)
4177 {
4178 perf_event_release_kernel(file->private_data);
4179 return 0;
4180 }
4181
4182 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4183 {
4184 struct perf_event *child;
4185 u64 total = 0;
4186
4187 *enabled = 0;
4188 *running = 0;
4189
4190 mutex_lock(&event->child_mutex);
4191
4192 (void)perf_event_read(event, false);
4193 total += perf_event_count(event);
4194
4195 *enabled += event->total_time_enabled +
4196 atomic64_read(&event->child_total_time_enabled);
4197 *running += event->total_time_running +
4198 atomic64_read(&event->child_total_time_running);
4199
4200 list_for_each_entry(child, &event->child_list, child_list) {
4201 (void)perf_event_read(child, false);
4202 total += perf_event_count(child);
4203 *enabled += child->total_time_enabled;
4204 *running += child->total_time_running;
4205 }
4206 mutex_unlock(&event->child_mutex);
4207
4208 return total;
4209 }
4210 EXPORT_SYMBOL_GPL(perf_event_read_value);
4211
4212 static int __perf_read_group_add(struct perf_event *leader,
4213 u64 read_format, u64 *values)
4214 {
4215 struct perf_event *sub;
4216 int n = 1; /* skip @nr */
4217 int ret;
4218
4219 ret = perf_event_read(leader, true);
4220 if (ret)
4221 return ret;
4222
4223 /*
4224 * Since we co-schedule groups, {enabled,running} times of siblings
4225 * will be identical to those of the leader, so we only publish one
4226 * set.
4227 */
4228 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4229 values[n++] += leader->total_time_enabled +
4230 atomic64_read(&leader->child_total_time_enabled);
4231 }
4232
4233 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4234 values[n++] += leader->total_time_running +
4235 atomic64_read(&leader->child_total_time_running);
4236 }
4237
4238 /*
4239 * Write {count,id} tuples for every sibling.
4240 */
4241 values[n++] += perf_event_count(leader);
4242 if (read_format & PERF_FORMAT_ID)
4243 values[n++] = primary_event_id(leader);
4244
4245 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4246 values[n++] += perf_event_count(sub);
4247 if (read_format & PERF_FORMAT_ID)
4248 values[n++] = primary_event_id(sub);
4249 }
4250
4251 return 0;
4252 }
4253
4254 static int perf_read_group(struct perf_event *event,
4255 u64 read_format, char __user *buf)
4256 {
4257 struct perf_event *leader = event->group_leader, *child;
4258 struct perf_event_context *ctx = leader->ctx;
4259 int ret;
4260 u64 *values;
4261
4262 lockdep_assert_held(&ctx->mutex);
4263
4264 values = kzalloc(event->read_size, GFP_KERNEL);
4265 if (!values)
4266 return -ENOMEM;
4267
4268 values[0] = 1 + leader->nr_siblings;
4269
4270 /*
4271 * By locking the child_mutex of the leader we effectively
4272 * lock the child list of all siblings.. XXX explain how.
4273 */
4274 mutex_lock(&leader->child_mutex);
4275
4276 ret = __perf_read_group_add(leader, read_format, values);
4277 if (ret)
4278 goto unlock;
4279
4280 list_for_each_entry(child, &leader->child_list, child_list) {
4281 ret = __perf_read_group_add(child, read_format, values);
4282 if (ret)
4283 goto unlock;
4284 }
4285
4286 mutex_unlock(&leader->child_mutex);
4287
4288 ret = event->read_size;
4289 if (copy_to_user(buf, values, event->read_size))
4290 ret = -EFAULT;
4291 goto out;
4292
4293 unlock:
4294 mutex_unlock(&leader->child_mutex);
4295 out:
4296 kfree(values);
4297 return ret;
4298 }
4299
4300 static int perf_read_one(struct perf_event *event,
4301 u64 read_format, char __user *buf)
4302 {
4303 u64 enabled, running;
4304 u64 values[4];
4305 int n = 0;
4306
4307 values[n++] = perf_event_read_value(event, &enabled, &running);
4308 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4309 values[n++] = enabled;
4310 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4311 values[n++] = running;
4312 if (read_format & PERF_FORMAT_ID)
4313 values[n++] = primary_event_id(event);
4314
4315 if (copy_to_user(buf, values, n * sizeof(u64)))
4316 return -EFAULT;
4317
4318 return n * sizeof(u64);
4319 }
4320
4321 static bool is_event_hup(struct perf_event *event)
4322 {
4323 bool no_children;
4324
4325 if (event->state > PERF_EVENT_STATE_EXIT)
4326 return false;
4327
4328 mutex_lock(&event->child_mutex);
4329 no_children = list_empty(&event->child_list);
4330 mutex_unlock(&event->child_mutex);
4331 return no_children;
4332 }
4333
4334 /*
4335 * Read the performance event - simple non blocking version for now
4336 */
4337 static ssize_t
4338 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4339 {
4340 u64 read_format = event->attr.read_format;
4341 int ret;
4342
4343 /*
4344 * Return end-of-file for a read on a event that is in
4345 * error state (i.e. because it was pinned but it couldn't be
4346 * scheduled on to the CPU at some point).
4347 */
4348 if (event->state == PERF_EVENT_STATE_ERROR)
4349 return 0;
4350
4351 if (count < event->read_size)
4352 return -ENOSPC;
4353
4354 WARN_ON_ONCE(event->ctx->parent_ctx);
4355 if (read_format & PERF_FORMAT_GROUP)
4356 ret = perf_read_group(event, read_format, buf);
4357 else
4358 ret = perf_read_one(event, read_format, buf);
4359
4360 return ret;
4361 }
4362
4363 static ssize_t
4364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4365 {
4366 struct perf_event *event = file->private_data;
4367 struct perf_event_context *ctx;
4368 int ret;
4369
4370 ctx = perf_event_ctx_lock(event);
4371 ret = __perf_read(event, buf, count);
4372 perf_event_ctx_unlock(event, ctx);
4373
4374 return ret;
4375 }
4376
4377 static unsigned int perf_poll(struct file *file, poll_table *wait)
4378 {
4379 struct perf_event *event = file->private_data;
4380 struct ring_buffer *rb;
4381 unsigned int events = POLLHUP;
4382
4383 poll_wait(file, &event->waitq, wait);
4384
4385 if (is_event_hup(event))
4386 return events;
4387
4388 /*
4389 * Pin the event->rb by taking event->mmap_mutex; otherwise
4390 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4391 */
4392 mutex_lock(&event->mmap_mutex);
4393 rb = event->rb;
4394 if (rb)
4395 events = atomic_xchg(&rb->poll, 0);
4396 mutex_unlock(&event->mmap_mutex);
4397 return events;
4398 }
4399
4400 static void _perf_event_reset(struct perf_event *event)
4401 {
4402 (void)perf_event_read(event, false);
4403 local64_set(&event->count, 0);
4404 perf_event_update_userpage(event);
4405 }
4406
4407 /*
4408 * Holding the top-level event's child_mutex means that any
4409 * descendant process that has inherited this event will block
4410 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4411 * task existence requirements of perf_event_enable/disable.
4412 */
4413 static void perf_event_for_each_child(struct perf_event *event,
4414 void (*func)(struct perf_event *))
4415 {
4416 struct perf_event *child;
4417
4418 WARN_ON_ONCE(event->ctx->parent_ctx);
4419
4420 mutex_lock(&event->child_mutex);
4421 func(event);
4422 list_for_each_entry(child, &event->child_list, child_list)
4423 func(child);
4424 mutex_unlock(&event->child_mutex);
4425 }
4426
4427 static void perf_event_for_each(struct perf_event *event,
4428 void (*func)(struct perf_event *))
4429 {
4430 struct perf_event_context *ctx = event->ctx;
4431 struct perf_event *sibling;
4432
4433 lockdep_assert_held(&ctx->mutex);
4434
4435 event = event->group_leader;
4436
4437 perf_event_for_each_child(event, func);
4438 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4439 perf_event_for_each_child(sibling, func);
4440 }
4441
4442 static void __perf_event_period(struct perf_event *event,
4443 struct perf_cpu_context *cpuctx,
4444 struct perf_event_context *ctx,
4445 void *info)
4446 {
4447 u64 value = *((u64 *)info);
4448 bool active;
4449
4450 if (event->attr.freq) {
4451 event->attr.sample_freq = value;
4452 } else {
4453 event->attr.sample_period = value;
4454 event->hw.sample_period = value;
4455 }
4456
4457 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4458 if (active) {
4459 perf_pmu_disable(ctx->pmu);
4460 /*
4461 * We could be throttled; unthrottle now to avoid the tick
4462 * trying to unthrottle while we already re-started the event.
4463 */
4464 if (event->hw.interrupts == MAX_INTERRUPTS) {
4465 event->hw.interrupts = 0;
4466 perf_log_throttle(event, 1);
4467 }
4468 event->pmu->stop(event, PERF_EF_UPDATE);
4469 }
4470
4471 local64_set(&event->hw.period_left, 0);
4472
4473 if (active) {
4474 event->pmu->start(event, PERF_EF_RELOAD);
4475 perf_pmu_enable(ctx->pmu);
4476 }
4477 }
4478
4479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4480 {
4481 u64 value;
4482
4483 if (!is_sampling_event(event))
4484 return -EINVAL;
4485
4486 if (copy_from_user(&value, arg, sizeof(value)))
4487 return -EFAULT;
4488
4489 if (!value)
4490 return -EINVAL;
4491
4492 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4493 return -EINVAL;
4494
4495 event_function_call(event, __perf_event_period, &value);
4496
4497 return 0;
4498 }
4499
4500 static const struct file_operations perf_fops;
4501
4502 static inline int perf_fget_light(int fd, struct fd *p)
4503 {
4504 struct fd f = fdget(fd);
4505 if (!f.file)
4506 return -EBADF;
4507
4508 if (f.file->f_op != &perf_fops) {
4509 fdput(f);
4510 return -EBADF;
4511 }
4512 *p = f;
4513 return 0;
4514 }
4515
4516 static int perf_event_set_output(struct perf_event *event,
4517 struct perf_event *output_event);
4518 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4519 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4520
4521 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4522 {
4523 void (*func)(struct perf_event *);
4524 u32 flags = arg;
4525
4526 switch (cmd) {
4527 case PERF_EVENT_IOC_ENABLE:
4528 func = _perf_event_enable;
4529 break;
4530 case PERF_EVENT_IOC_DISABLE:
4531 func = _perf_event_disable;
4532 break;
4533 case PERF_EVENT_IOC_RESET:
4534 func = _perf_event_reset;
4535 break;
4536
4537 case PERF_EVENT_IOC_REFRESH:
4538 return _perf_event_refresh(event, arg);
4539
4540 case PERF_EVENT_IOC_PERIOD:
4541 return perf_event_period(event, (u64 __user *)arg);
4542
4543 case PERF_EVENT_IOC_ID:
4544 {
4545 u64 id = primary_event_id(event);
4546
4547 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4548 return -EFAULT;
4549 return 0;
4550 }
4551
4552 case PERF_EVENT_IOC_SET_OUTPUT:
4553 {
4554 int ret;
4555 if (arg != -1) {
4556 struct perf_event *output_event;
4557 struct fd output;
4558 ret = perf_fget_light(arg, &output);
4559 if (ret)
4560 return ret;
4561 output_event = output.file->private_data;
4562 ret = perf_event_set_output(event, output_event);
4563 fdput(output);
4564 } else {
4565 ret = perf_event_set_output(event, NULL);
4566 }
4567 return ret;
4568 }
4569
4570 case PERF_EVENT_IOC_SET_FILTER:
4571 return perf_event_set_filter(event, (void __user *)arg);
4572
4573 case PERF_EVENT_IOC_SET_BPF:
4574 return perf_event_set_bpf_prog(event, arg);
4575
4576 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4577 struct ring_buffer *rb;
4578
4579 rcu_read_lock();
4580 rb = rcu_dereference(event->rb);
4581 if (!rb || !rb->nr_pages) {
4582 rcu_read_unlock();
4583 return -EINVAL;
4584 }
4585 rb_toggle_paused(rb, !!arg);
4586 rcu_read_unlock();
4587 return 0;
4588 }
4589 default:
4590 return -ENOTTY;
4591 }
4592
4593 if (flags & PERF_IOC_FLAG_GROUP)
4594 perf_event_for_each(event, func);
4595 else
4596 perf_event_for_each_child(event, func);
4597
4598 return 0;
4599 }
4600
4601 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4602 {
4603 struct perf_event *event = file->private_data;
4604 struct perf_event_context *ctx;
4605 long ret;
4606
4607 ctx = perf_event_ctx_lock(event);
4608 ret = _perf_ioctl(event, cmd, arg);
4609 perf_event_ctx_unlock(event, ctx);
4610
4611 return ret;
4612 }
4613
4614 #ifdef CONFIG_COMPAT
4615 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4616 unsigned long arg)
4617 {
4618 switch (_IOC_NR(cmd)) {
4619 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4620 case _IOC_NR(PERF_EVENT_IOC_ID):
4621 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4622 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4623 cmd &= ~IOCSIZE_MASK;
4624 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4625 }
4626 break;
4627 }
4628 return perf_ioctl(file, cmd, arg);
4629 }
4630 #else
4631 # define perf_compat_ioctl NULL
4632 #endif
4633
4634 int perf_event_task_enable(void)
4635 {
4636 struct perf_event_context *ctx;
4637 struct perf_event *event;
4638
4639 mutex_lock(&current->perf_event_mutex);
4640 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4641 ctx = perf_event_ctx_lock(event);
4642 perf_event_for_each_child(event, _perf_event_enable);
4643 perf_event_ctx_unlock(event, ctx);
4644 }
4645 mutex_unlock(&current->perf_event_mutex);
4646
4647 return 0;
4648 }
4649
4650 int perf_event_task_disable(void)
4651 {
4652 struct perf_event_context *ctx;
4653 struct perf_event *event;
4654
4655 mutex_lock(&current->perf_event_mutex);
4656 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4657 ctx = perf_event_ctx_lock(event);
4658 perf_event_for_each_child(event, _perf_event_disable);
4659 perf_event_ctx_unlock(event, ctx);
4660 }
4661 mutex_unlock(&current->perf_event_mutex);
4662
4663 return 0;
4664 }
4665
4666 static int perf_event_index(struct perf_event *event)
4667 {
4668 if (event->hw.state & PERF_HES_STOPPED)
4669 return 0;
4670
4671 if (event->state != PERF_EVENT_STATE_ACTIVE)
4672 return 0;
4673
4674 return event->pmu->event_idx(event);
4675 }
4676
4677 static void calc_timer_values(struct perf_event *event,
4678 u64 *now,
4679 u64 *enabled,
4680 u64 *running)
4681 {
4682 u64 ctx_time;
4683
4684 *now = perf_clock();
4685 ctx_time = event->shadow_ctx_time + *now;
4686 *enabled = ctx_time - event->tstamp_enabled;
4687 *running = ctx_time - event->tstamp_running;
4688 }
4689
4690 static void perf_event_init_userpage(struct perf_event *event)
4691 {
4692 struct perf_event_mmap_page *userpg;
4693 struct ring_buffer *rb;
4694
4695 rcu_read_lock();
4696 rb = rcu_dereference(event->rb);
4697 if (!rb)
4698 goto unlock;
4699
4700 userpg = rb->user_page;
4701
4702 /* Allow new userspace to detect that bit 0 is deprecated */
4703 userpg->cap_bit0_is_deprecated = 1;
4704 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4705 userpg->data_offset = PAGE_SIZE;
4706 userpg->data_size = perf_data_size(rb);
4707
4708 unlock:
4709 rcu_read_unlock();
4710 }
4711
4712 void __weak arch_perf_update_userpage(
4713 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4714 {
4715 }
4716
4717 /*
4718 * Callers need to ensure there can be no nesting of this function, otherwise
4719 * the seqlock logic goes bad. We can not serialize this because the arch
4720 * code calls this from NMI context.
4721 */
4722 void perf_event_update_userpage(struct perf_event *event)
4723 {
4724 struct perf_event_mmap_page *userpg;
4725 struct ring_buffer *rb;
4726 u64 enabled, running, now;
4727
4728 rcu_read_lock();
4729 rb = rcu_dereference(event->rb);
4730 if (!rb)
4731 goto unlock;
4732
4733 /*
4734 * compute total_time_enabled, total_time_running
4735 * based on snapshot values taken when the event
4736 * was last scheduled in.
4737 *
4738 * we cannot simply called update_context_time()
4739 * because of locking issue as we can be called in
4740 * NMI context
4741 */
4742 calc_timer_values(event, &now, &enabled, &running);
4743
4744 userpg = rb->user_page;
4745 /*
4746 * Disable preemption so as to not let the corresponding user-space
4747 * spin too long if we get preempted.
4748 */
4749 preempt_disable();
4750 ++userpg->lock;
4751 barrier();
4752 userpg->index = perf_event_index(event);
4753 userpg->offset = perf_event_count(event);
4754 if (userpg->index)
4755 userpg->offset -= local64_read(&event->hw.prev_count);
4756
4757 userpg->time_enabled = enabled +
4758 atomic64_read(&event->child_total_time_enabled);
4759
4760 userpg->time_running = running +
4761 atomic64_read(&event->child_total_time_running);
4762
4763 arch_perf_update_userpage(event, userpg, now);
4764
4765 barrier();
4766 ++userpg->lock;
4767 preempt_enable();
4768 unlock:
4769 rcu_read_unlock();
4770 }
4771
4772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4773 {
4774 struct perf_event *event = vma->vm_file->private_data;
4775 struct ring_buffer *rb;
4776 int ret = VM_FAULT_SIGBUS;
4777
4778 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4779 if (vmf->pgoff == 0)
4780 ret = 0;
4781 return ret;
4782 }
4783
4784 rcu_read_lock();
4785 rb = rcu_dereference(event->rb);
4786 if (!rb)
4787 goto unlock;
4788
4789 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4790 goto unlock;
4791
4792 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4793 if (!vmf->page)
4794 goto unlock;
4795
4796 get_page(vmf->page);
4797 vmf->page->mapping = vma->vm_file->f_mapping;
4798 vmf->page->index = vmf->pgoff;
4799
4800 ret = 0;
4801 unlock:
4802 rcu_read_unlock();
4803
4804 return ret;
4805 }
4806
4807 static void ring_buffer_attach(struct perf_event *event,
4808 struct ring_buffer *rb)
4809 {
4810 struct ring_buffer *old_rb = NULL;
4811 unsigned long flags;
4812
4813 if (event->rb) {
4814 /*
4815 * Should be impossible, we set this when removing
4816 * event->rb_entry and wait/clear when adding event->rb_entry.
4817 */
4818 WARN_ON_ONCE(event->rcu_pending);
4819
4820 old_rb = event->rb;
4821 spin_lock_irqsave(&old_rb->event_lock, flags);
4822 list_del_rcu(&event->rb_entry);
4823 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4824
4825 event->rcu_batches = get_state_synchronize_rcu();
4826 event->rcu_pending = 1;
4827 }
4828
4829 if (rb) {
4830 if (event->rcu_pending) {
4831 cond_synchronize_rcu(event->rcu_batches);
4832 event->rcu_pending = 0;
4833 }
4834
4835 spin_lock_irqsave(&rb->event_lock, flags);
4836 list_add_rcu(&event->rb_entry, &rb->event_list);
4837 spin_unlock_irqrestore(&rb->event_lock, flags);
4838 }
4839
4840 rcu_assign_pointer(event->rb, rb);
4841
4842 if (old_rb) {
4843 ring_buffer_put(old_rb);
4844 /*
4845 * Since we detached before setting the new rb, so that we
4846 * could attach the new rb, we could have missed a wakeup.
4847 * Provide it now.
4848 */
4849 wake_up_all(&event->waitq);
4850 }
4851 }
4852
4853 static void ring_buffer_wakeup(struct perf_event *event)
4854 {
4855 struct ring_buffer *rb;
4856
4857 rcu_read_lock();
4858 rb = rcu_dereference(event->rb);
4859 if (rb) {
4860 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4861 wake_up_all(&event->waitq);
4862 }
4863 rcu_read_unlock();
4864 }
4865
4866 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4867 {
4868 struct ring_buffer *rb;
4869
4870 rcu_read_lock();
4871 rb = rcu_dereference(event->rb);
4872 if (rb) {
4873 if (!atomic_inc_not_zero(&rb->refcount))
4874 rb = NULL;
4875 }
4876 rcu_read_unlock();
4877
4878 return rb;
4879 }
4880
4881 void ring_buffer_put(struct ring_buffer *rb)
4882 {
4883 if (!atomic_dec_and_test(&rb->refcount))
4884 return;
4885
4886 WARN_ON_ONCE(!list_empty(&rb->event_list));
4887
4888 call_rcu(&rb->rcu_head, rb_free_rcu);
4889 }
4890
4891 static void perf_mmap_open(struct vm_area_struct *vma)
4892 {
4893 struct perf_event *event = vma->vm_file->private_data;
4894
4895 atomic_inc(&event->mmap_count);
4896 atomic_inc(&event->rb->mmap_count);
4897
4898 if (vma->vm_pgoff)
4899 atomic_inc(&event->rb->aux_mmap_count);
4900
4901 if (event->pmu->event_mapped)
4902 event->pmu->event_mapped(event);
4903 }
4904
4905 static void perf_pmu_output_stop(struct perf_event *event);
4906
4907 /*
4908 * A buffer can be mmap()ed multiple times; either directly through the same
4909 * event, or through other events by use of perf_event_set_output().
4910 *
4911 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4912 * the buffer here, where we still have a VM context. This means we need
4913 * to detach all events redirecting to us.
4914 */
4915 static void perf_mmap_close(struct vm_area_struct *vma)
4916 {
4917 struct perf_event *event = vma->vm_file->private_data;
4918
4919 struct ring_buffer *rb = ring_buffer_get(event);
4920 struct user_struct *mmap_user = rb->mmap_user;
4921 int mmap_locked = rb->mmap_locked;
4922 unsigned long size = perf_data_size(rb);
4923
4924 if (event->pmu->event_unmapped)
4925 event->pmu->event_unmapped(event);
4926
4927 /*
4928 * rb->aux_mmap_count will always drop before rb->mmap_count and
4929 * event->mmap_count, so it is ok to use event->mmap_mutex to
4930 * serialize with perf_mmap here.
4931 */
4932 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4933 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4934 /*
4935 * Stop all AUX events that are writing to this buffer,
4936 * so that we can free its AUX pages and corresponding PMU
4937 * data. Note that after rb::aux_mmap_count dropped to zero,
4938 * they won't start any more (see perf_aux_output_begin()).
4939 */
4940 perf_pmu_output_stop(event);
4941
4942 /* now it's safe to free the pages */
4943 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4944 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4945
4946 /* this has to be the last one */
4947 rb_free_aux(rb);
4948 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4949
4950 mutex_unlock(&event->mmap_mutex);
4951 }
4952
4953 atomic_dec(&rb->mmap_count);
4954
4955 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4956 goto out_put;
4957
4958 ring_buffer_attach(event, NULL);
4959 mutex_unlock(&event->mmap_mutex);
4960
4961 /* If there's still other mmap()s of this buffer, we're done. */
4962 if (atomic_read(&rb->mmap_count))
4963 goto out_put;
4964
4965 /*
4966 * No other mmap()s, detach from all other events that might redirect
4967 * into the now unreachable buffer. Somewhat complicated by the
4968 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4969 */
4970 again:
4971 rcu_read_lock();
4972 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4973 if (!atomic_long_inc_not_zero(&event->refcount)) {
4974 /*
4975 * This event is en-route to free_event() which will
4976 * detach it and remove it from the list.
4977 */
4978 continue;
4979 }
4980 rcu_read_unlock();
4981
4982 mutex_lock(&event->mmap_mutex);
4983 /*
4984 * Check we didn't race with perf_event_set_output() which can
4985 * swizzle the rb from under us while we were waiting to
4986 * acquire mmap_mutex.
4987 *
4988 * If we find a different rb; ignore this event, a next
4989 * iteration will no longer find it on the list. We have to
4990 * still restart the iteration to make sure we're not now
4991 * iterating the wrong list.
4992 */
4993 if (event->rb == rb)
4994 ring_buffer_attach(event, NULL);
4995
4996 mutex_unlock(&event->mmap_mutex);
4997 put_event(event);
4998
4999 /*
5000 * Restart the iteration; either we're on the wrong list or
5001 * destroyed its integrity by doing a deletion.
5002 */
5003 goto again;
5004 }
5005 rcu_read_unlock();
5006
5007 /*
5008 * It could be there's still a few 0-ref events on the list; they'll
5009 * get cleaned up by free_event() -- they'll also still have their
5010 * ref on the rb and will free it whenever they are done with it.
5011 *
5012 * Aside from that, this buffer is 'fully' detached and unmapped,
5013 * undo the VM accounting.
5014 */
5015
5016 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5017 vma->vm_mm->pinned_vm -= mmap_locked;
5018 free_uid(mmap_user);
5019
5020 out_put:
5021 ring_buffer_put(rb); /* could be last */
5022 }
5023
5024 static const struct vm_operations_struct perf_mmap_vmops = {
5025 .open = perf_mmap_open,
5026 .close = perf_mmap_close, /* non mergable */
5027 .fault = perf_mmap_fault,
5028 .page_mkwrite = perf_mmap_fault,
5029 };
5030
5031 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5032 {
5033 struct perf_event *event = file->private_data;
5034 unsigned long user_locked, user_lock_limit;
5035 struct user_struct *user = current_user();
5036 unsigned long locked, lock_limit;
5037 struct ring_buffer *rb = NULL;
5038 unsigned long vma_size;
5039 unsigned long nr_pages;
5040 long user_extra = 0, extra = 0;
5041 int ret = 0, flags = 0;
5042
5043 /*
5044 * Don't allow mmap() of inherited per-task counters. This would
5045 * create a performance issue due to all children writing to the
5046 * same rb.
5047 */
5048 if (event->cpu == -1 && event->attr.inherit)
5049 return -EINVAL;
5050
5051 if (!(vma->vm_flags & VM_SHARED))
5052 return -EINVAL;
5053
5054 vma_size = vma->vm_end - vma->vm_start;
5055
5056 if (vma->vm_pgoff == 0) {
5057 nr_pages = (vma_size / PAGE_SIZE) - 1;
5058 } else {
5059 /*
5060 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5061 * mapped, all subsequent mappings should have the same size
5062 * and offset. Must be above the normal perf buffer.
5063 */
5064 u64 aux_offset, aux_size;
5065
5066 if (!event->rb)
5067 return -EINVAL;
5068
5069 nr_pages = vma_size / PAGE_SIZE;
5070
5071 mutex_lock(&event->mmap_mutex);
5072 ret = -EINVAL;
5073
5074 rb = event->rb;
5075 if (!rb)
5076 goto aux_unlock;
5077
5078 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5079 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5080
5081 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5082 goto aux_unlock;
5083
5084 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5085 goto aux_unlock;
5086
5087 /* already mapped with a different offset */
5088 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5089 goto aux_unlock;
5090
5091 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5092 goto aux_unlock;
5093
5094 /* already mapped with a different size */
5095 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5096 goto aux_unlock;
5097
5098 if (!is_power_of_2(nr_pages))
5099 goto aux_unlock;
5100
5101 if (!atomic_inc_not_zero(&rb->mmap_count))
5102 goto aux_unlock;
5103
5104 if (rb_has_aux(rb)) {
5105 atomic_inc(&rb->aux_mmap_count);
5106 ret = 0;
5107 goto unlock;
5108 }
5109
5110 atomic_set(&rb->aux_mmap_count, 1);
5111 user_extra = nr_pages;
5112
5113 goto accounting;
5114 }
5115
5116 /*
5117 * If we have rb pages ensure they're a power-of-two number, so we
5118 * can do bitmasks instead of modulo.
5119 */
5120 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5121 return -EINVAL;
5122
5123 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5124 return -EINVAL;
5125
5126 WARN_ON_ONCE(event->ctx->parent_ctx);
5127 again:
5128 mutex_lock(&event->mmap_mutex);
5129 if (event->rb) {
5130 if (event->rb->nr_pages != nr_pages) {
5131 ret = -EINVAL;
5132 goto unlock;
5133 }
5134
5135 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5136 /*
5137 * Raced against perf_mmap_close() through
5138 * perf_event_set_output(). Try again, hope for better
5139 * luck.
5140 */
5141 mutex_unlock(&event->mmap_mutex);
5142 goto again;
5143 }
5144
5145 goto unlock;
5146 }
5147
5148 user_extra = nr_pages + 1;
5149
5150 accounting:
5151 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5152
5153 /*
5154 * Increase the limit linearly with more CPUs:
5155 */
5156 user_lock_limit *= num_online_cpus();
5157
5158 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5159
5160 if (user_locked > user_lock_limit)
5161 extra = user_locked - user_lock_limit;
5162
5163 lock_limit = rlimit(RLIMIT_MEMLOCK);
5164 lock_limit >>= PAGE_SHIFT;
5165 locked = vma->vm_mm->pinned_vm + extra;
5166
5167 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5168 !capable(CAP_IPC_LOCK)) {
5169 ret = -EPERM;
5170 goto unlock;
5171 }
5172
5173 WARN_ON(!rb && event->rb);
5174
5175 if (vma->vm_flags & VM_WRITE)
5176 flags |= RING_BUFFER_WRITABLE;
5177
5178 if (!rb) {
5179 rb = rb_alloc(nr_pages,
5180 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5181 event->cpu, flags);
5182
5183 if (!rb) {
5184 ret = -ENOMEM;
5185 goto unlock;
5186 }
5187
5188 atomic_set(&rb->mmap_count, 1);
5189 rb->mmap_user = get_current_user();
5190 rb->mmap_locked = extra;
5191
5192 ring_buffer_attach(event, rb);
5193
5194 perf_event_init_userpage(event);
5195 perf_event_update_userpage(event);
5196 } else {
5197 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5198 event->attr.aux_watermark, flags);
5199 if (!ret)
5200 rb->aux_mmap_locked = extra;
5201 }
5202
5203 unlock:
5204 if (!ret) {
5205 atomic_long_add(user_extra, &user->locked_vm);
5206 vma->vm_mm->pinned_vm += extra;
5207
5208 atomic_inc(&event->mmap_count);
5209 } else if (rb) {
5210 atomic_dec(&rb->mmap_count);
5211 }
5212 aux_unlock:
5213 mutex_unlock(&event->mmap_mutex);
5214
5215 /*
5216 * Since pinned accounting is per vm we cannot allow fork() to copy our
5217 * vma.
5218 */
5219 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5220 vma->vm_ops = &perf_mmap_vmops;
5221
5222 if (event->pmu->event_mapped)
5223 event->pmu->event_mapped(event);
5224
5225 return ret;
5226 }
5227
5228 static int perf_fasync(int fd, struct file *filp, int on)
5229 {
5230 struct inode *inode = file_inode(filp);
5231 struct perf_event *event = filp->private_data;
5232 int retval;
5233
5234 inode_lock(inode);
5235 retval = fasync_helper(fd, filp, on, &event->fasync);
5236 inode_unlock(inode);
5237
5238 if (retval < 0)
5239 return retval;
5240
5241 return 0;
5242 }
5243
5244 static const struct file_operations perf_fops = {
5245 .llseek = no_llseek,
5246 .release = perf_release,
5247 .read = perf_read,
5248 .poll = perf_poll,
5249 .unlocked_ioctl = perf_ioctl,
5250 .compat_ioctl = perf_compat_ioctl,
5251 .mmap = perf_mmap,
5252 .fasync = perf_fasync,
5253 };
5254
5255 /*
5256 * Perf event wakeup
5257 *
5258 * If there's data, ensure we set the poll() state and publish everything
5259 * to user-space before waking everybody up.
5260 */
5261
5262 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5263 {
5264 /* only the parent has fasync state */
5265 if (event->parent)
5266 event = event->parent;
5267 return &event->fasync;
5268 }
5269
5270 void perf_event_wakeup(struct perf_event *event)
5271 {
5272 ring_buffer_wakeup(event);
5273
5274 if (event->pending_kill) {
5275 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5276 event->pending_kill = 0;
5277 }
5278 }
5279
5280 static void perf_pending_event(struct irq_work *entry)
5281 {
5282 struct perf_event *event = container_of(entry,
5283 struct perf_event, pending);
5284 int rctx;
5285
5286 rctx = perf_swevent_get_recursion_context();
5287 /*
5288 * If we 'fail' here, that's OK, it means recursion is already disabled
5289 * and we won't recurse 'further'.
5290 */
5291
5292 if (event->pending_disable) {
5293 event->pending_disable = 0;
5294 perf_event_disable_local(event);
5295 }
5296
5297 if (event->pending_wakeup) {
5298 event->pending_wakeup = 0;
5299 perf_event_wakeup(event);
5300 }
5301
5302 if (rctx >= 0)
5303 perf_swevent_put_recursion_context(rctx);
5304 }
5305
5306 /*
5307 * We assume there is only KVM supporting the callbacks.
5308 * Later on, we might change it to a list if there is
5309 * another virtualization implementation supporting the callbacks.
5310 */
5311 struct perf_guest_info_callbacks *perf_guest_cbs;
5312
5313 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5314 {
5315 perf_guest_cbs = cbs;
5316 return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5319
5320 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5321 {
5322 perf_guest_cbs = NULL;
5323 return 0;
5324 }
5325 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5326
5327 static void
5328 perf_output_sample_regs(struct perf_output_handle *handle,
5329 struct pt_regs *regs, u64 mask)
5330 {
5331 int bit;
5332
5333 for_each_set_bit(bit, (const unsigned long *) &mask,
5334 sizeof(mask) * BITS_PER_BYTE) {
5335 u64 val;
5336
5337 val = perf_reg_value(regs, bit);
5338 perf_output_put(handle, val);
5339 }
5340 }
5341
5342 static void perf_sample_regs_user(struct perf_regs *regs_user,
5343 struct pt_regs *regs,
5344 struct pt_regs *regs_user_copy)
5345 {
5346 if (user_mode(regs)) {
5347 regs_user->abi = perf_reg_abi(current);
5348 regs_user->regs = regs;
5349 } else if (current->mm) {
5350 perf_get_regs_user(regs_user, regs, regs_user_copy);
5351 } else {
5352 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5353 regs_user->regs = NULL;
5354 }
5355 }
5356
5357 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5358 struct pt_regs *regs)
5359 {
5360 regs_intr->regs = regs;
5361 regs_intr->abi = perf_reg_abi(current);
5362 }
5363
5364
5365 /*
5366 * Get remaining task size from user stack pointer.
5367 *
5368 * It'd be better to take stack vma map and limit this more
5369 * precisly, but there's no way to get it safely under interrupt,
5370 * so using TASK_SIZE as limit.
5371 */
5372 static u64 perf_ustack_task_size(struct pt_regs *regs)
5373 {
5374 unsigned long addr = perf_user_stack_pointer(regs);
5375
5376 if (!addr || addr >= TASK_SIZE)
5377 return 0;
5378
5379 return TASK_SIZE - addr;
5380 }
5381
5382 static u16
5383 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5384 struct pt_regs *regs)
5385 {
5386 u64 task_size;
5387
5388 /* No regs, no stack pointer, no dump. */
5389 if (!regs)
5390 return 0;
5391
5392 /*
5393 * Check if we fit in with the requested stack size into the:
5394 * - TASK_SIZE
5395 * If we don't, we limit the size to the TASK_SIZE.
5396 *
5397 * - remaining sample size
5398 * If we don't, we customize the stack size to
5399 * fit in to the remaining sample size.
5400 */
5401
5402 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5403 stack_size = min(stack_size, (u16) task_size);
5404
5405 /* Current header size plus static size and dynamic size. */
5406 header_size += 2 * sizeof(u64);
5407
5408 /* Do we fit in with the current stack dump size? */
5409 if ((u16) (header_size + stack_size) < header_size) {
5410 /*
5411 * If we overflow the maximum size for the sample,
5412 * we customize the stack dump size to fit in.
5413 */
5414 stack_size = USHRT_MAX - header_size - sizeof(u64);
5415 stack_size = round_up(stack_size, sizeof(u64));
5416 }
5417
5418 return stack_size;
5419 }
5420
5421 static void
5422 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5423 struct pt_regs *regs)
5424 {
5425 /* Case of a kernel thread, nothing to dump */
5426 if (!regs) {
5427 u64 size = 0;
5428 perf_output_put(handle, size);
5429 } else {
5430 unsigned long sp;
5431 unsigned int rem;
5432 u64 dyn_size;
5433
5434 /*
5435 * We dump:
5436 * static size
5437 * - the size requested by user or the best one we can fit
5438 * in to the sample max size
5439 * data
5440 * - user stack dump data
5441 * dynamic size
5442 * - the actual dumped size
5443 */
5444
5445 /* Static size. */
5446 perf_output_put(handle, dump_size);
5447
5448 /* Data. */
5449 sp = perf_user_stack_pointer(regs);
5450 rem = __output_copy_user(handle, (void *) sp, dump_size);
5451 dyn_size = dump_size - rem;
5452
5453 perf_output_skip(handle, rem);
5454
5455 /* Dynamic size. */
5456 perf_output_put(handle, dyn_size);
5457 }
5458 }
5459
5460 static void __perf_event_header__init_id(struct perf_event_header *header,
5461 struct perf_sample_data *data,
5462 struct perf_event *event)
5463 {
5464 u64 sample_type = event->attr.sample_type;
5465
5466 data->type = sample_type;
5467 header->size += event->id_header_size;
5468
5469 if (sample_type & PERF_SAMPLE_TID) {
5470 /* namespace issues */
5471 data->tid_entry.pid = perf_event_pid(event, current);
5472 data->tid_entry.tid = perf_event_tid(event, current);
5473 }
5474
5475 if (sample_type & PERF_SAMPLE_TIME)
5476 data->time = perf_event_clock(event);
5477
5478 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5479 data->id = primary_event_id(event);
5480
5481 if (sample_type & PERF_SAMPLE_STREAM_ID)
5482 data->stream_id = event->id;
5483
5484 if (sample_type & PERF_SAMPLE_CPU) {
5485 data->cpu_entry.cpu = raw_smp_processor_id();
5486 data->cpu_entry.reserved = 0;
5487 }
5488 }
5489
5490 void perf_event_header__init_id(struct perf_event_header *header,
5491 struct perf_sample_data *data,
5492 struct perf_event *event)
5493 {
5494 if (event->attr.sample_id_all)
5495 __perf_event_header__init_id(header, data, event);
5496 }
5497
5498 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5499 struct perf_sample_data *data)
5500 {
5501 u64 sample_type = data->type;
5502
5503 if (sample_type & PERF_SAMPLE_TID)
5504 perf_output_put(handle, data->tid_entry);
5505
5506 if (sample_type & PERF_SAMPLE_TIME)
5507 perf_output_put(handle, data->time);
5508
5509 if (sample_type & PERF_SAMPLE_ID)
5510 perf_output_put(handle, data->id);
5511
5512 if (sample_type & PERF_SAMPLE_STREAM_ID)
5513 perf_output_put(handle, data->stream_id);
5514
5515 if (sample_type & PERF_SAMPLE_CPU)
5516 perf_output_put(handle, data->cpu_entry);
5517
5518 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5519 perf_output_put(handle, data->id);
5520 }
5521
5522 void perf_event__output_id_sample(struct perf_event *event,
5523 struct perf_output_handle *handle,
5524 struct perf_sample_data *sample)
5525 {
5526 if (event->attr.sample_id_all)
5527 __perf_event__output_id_sample(handle, sample);
5528 }
5529
5530 static void perf_output_read_one(struct perf_output_handle *handle,
5531 struct perf_event *event,
5532 u64 enabled, u64 running)
5533 {
5534 u64 read_format = event->attr.read_format;
5535 u64 values[4];
5536 int n = 0;
5537
5538 values[n++] = perf_event_count(event);
5539 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5540 values[n++] = enabled +
5541 atomic64_read(&event->child_total_time_enabled);
5542 }
5543 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5544 values[n++] = running +
5545 atomic64_read(&event->child_total_time_running);
5546 }
5547 if (read_format & PERF_FORMAT_ID)
5548 values[n++] = primary_event_id(event);
5549
5550 __output_copy(handle, values, n * sizeof(u64));
5551 }
5552
5553 /*
5554 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5555 */
5556 static void perf_output_read_group(struct perf_output_handle *handle,
5557 struct perf_event *event,
5558 u64 enabled, u64 running)
5559 {
5560 struct perf_event *leader = event->group_leader, *sub;
5561 u64 read_format = event->attr.read_format;
5562 u64 values[5];
5563 int n = 0;
5564
5565 values[n++] = 1 + leader->nr_siblings;
5566
5567 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5568 values[n++] = enabled;
5569
5570 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5571 values[n++] = running;
5572
5573 if (leader != event)
5574 leader->pmu->read(leader);
5575
5576 values[n++] = perf_event_count(leader);
5577 if (read_format & PERF_FORMAT_ID)
5578 values[n++] = primary_event_id(leader);
5579
5580 __output_copy(handle, values, n * sizeof(u64));
5581
5582 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5583 n = 0;
5584
5585 if ((sub != event) &&
5586 (sub->state == PERF_EVENT_STATE_ACTIVE))
5587 sub->pmu->read(sub);
5588
5589 values[n++] = perf_event_count(sub);
5590 if (read_format & PERF_FORMAT_ID)
5591 values[n++] = primary_event_id(sub);
5592
5593 __output_copy(handle, values, n * sizeof(u64));
5594 }
5595 }
5596
5597 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5598 PERF_FORMAT_TOTAL_TIME_RUNNING)
5599
5600 static void perf_output_read(struct perf_output_handle *handle,
5601 struct perf_event *event)
5602 {
5603 u64 enabled = 0, running = 0, now;
5604 u64 read_format = event->attr.read_format;
5605
5606 /*
5607 * compute total_time_enabled, total_time_running
5608 * based on snapshot values taken when the event
5609 * was last scheduled in.
5610 *
5611 * we cannot simply called update_context_time()
5612 * because of locking issue as we are called in
5613 * NMI context
5614 */
5615 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5616 calc_timer_values(event, &now, &enabled, &running);
5617
5618 if (event->attr.read_format & PERF_FORMAT_GROUP)
5619 perf_output_read_group(handle, event, enabled, running);
5620 else
5621 perf_output_read_one(handle, event, enabled, running);
5622 }
5623
5624 void perf_output_sample(struct perf_output_handle *handle,
5625 struct perf_event_header *header,
5626 struct perf_sample_data *data,
5627 struct perf_event *event)
5628 {
5629 u64 sample_type = data->type;
5630
5631 perf_output_put(handle, *header);
5632
5633 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5634 perf_output_put(handle, data->id);
5635
5636 if (sample_type & PERF_SAMPLE_IP)
5637 perf_output_put(handle, data->ip);
5638
5639 if (sample_type & PERF_SAMPLE_TID)
5640 perf_output_put(handle, data->tid_entry);
5641
5642 if (sample_type & PERF_SAMPLE_TIME)
5643 perf_output_put(handle, data->time);
5644
5645 if (sample_type & PERF_SAMPLE_ADDR)
5646 perf_output_put(handle, data->addr);
5647
5648 if (sample_type & PERF_SAMPLE_ID)
5649 perf_output_put(handle, data->id);
5650
5651 if (sample_type & PERF_SAMPLE_STREAM_ID)
5652 perf_output_put(handle, data->stream_id);
5653
5654 if (sample_type & PERF_SAMPLE_CPU)
5655 perf_output_put(handle, data->cpu_entry);
5656
5657 if (sample_type & PERF_SAMPLE_PERIOD)
5658 perf_output_put(handle, data->period);
5659
5660 if (sample_type & PERF_SAMPLE_READ)
5661 perf_output_read(handle, event);
5662
5663 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5664 if (data->callchain) {
5665 int size = 1;
5666
5667 if (data->callchain)
5668 size += data->callchain->nr;
5669
5670 size *= sizeof(u64);
5671
5672 __output_copy(handle, data->callchain, size);
5673 } else {
5674 u64 nr = 0;
5675 perf_output_put(handle, nr);
5676 }
5677 }
5678
5679 if (sample_type & PERF_SAMPLE_RAW) {
5680 struct perf_raw_record *raw = data->raw;
5681
5682 if (raw) {
5683 struct perf_raw_frag *frag = &raw->frag;
5684
5685 perf_output_put(handle, raw->size);
5686 do {
5687 if (frag->copy) {
5688 __output_custom(handle, frag->copy,
5689 frag->data, frag->size);
5690 } else {
5691 __output_copy(handle, frag->data,
5692 frag->size);
5693 }
5694 if (perf_raw_frag_last(frag))
5695 break;
5696 frag = frag->next;
5697 } while (1);
5698 if (frag->pad)
5699 __output_skip(handle, NULL, frag->pad);
5700 } else {
5701 struct {
5702 u32 size;
5703 u32 data;
5704 } raw = {
5705 .size = sizeof(u32),
5706 .data = 0,
5707 };
5708 perf_output_put(handle, raw);
5709 }
5710 }
5711
5712 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5713 if (data->br_stack) {
5714 size_t size;
5715
5716 size = data->br_stack->nr
5717 * sizeof(struct perf_branch_entry);
5718
5719 perf_output_put(handle, data->br_stack->nr);
5720 perf_output_copy(handle, data->br_stack->entries, size);
5721 } else {
5722 /*
5723 * we always store at least the value of nr
5724 */
5725 u64 nr = 0;
5726 perf_output_put(handle, nr);
5727 }
5728 }
5729
5730 if (sample_type & PERF_SAMPLE_REGS_USER) {
5731 u64 abi = data->regs_user.abi;
5732
5733 /*
5734 * If there are no regs to dump, notice it through
5735 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5736 */
5737 perf_output_put(handle, abi);
5738
5739 if (abi) {
5740 u64 mask = event->attr.sample_regs_user;
5741 perf_output_sample_regs(handle,
5742 data->regs_user.regs,
5743 mask);
5744 }
5745 }
5746
5747 if (sample_type & PERF_SAMPLE_STACK_USER) {
5748 perf_output_sample_ustack(handle,
5749 data->stack_user_size,
5750 data->regs_user.regs);
5751 }
5752
5753 if (sample_type & PERF_SAMPLE_WEIGHT)
5754 perf_output_put(handle, data->weight);
5755
5756 if (sample_type & PERF_SAMPLE_DATA_SRC)
5757 perf_output_put(handle, data->data_src.val);
5758
5759 if (sample_type & PERF_SAMPLE_TRANSACTION)
5760 perf_output_put(handle, data->txn);
5761
5762 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5763 u64 abi = data->regs_intr.abi;
5764 /*
5765 * If there are no regs to dump, notice it through
5766 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5767 */
5768 perf_output_put(handle, abi);
5769
5770 if (abi) {
5771 u64 mask = event->attr.sample_regs_intr;
5772
5773 perf_output_sample_regs(handle,
5774 data->regs_intr.regs,
5775 mask);
5776 }
5777 }
5778
5779 if (!event->attr.watermark) {
5780 int wakeup_events = event->attr.wakeup_events;
5781
5782 if (wakeup_events) {
5783 struct ring_buffer *rb = handle->rb;
5784 int events = local_inc_return(&rb->events);
5785
5786 if (events >= wakeup_events) {
5787 local_sub(wakeup_events, &rb->events);
5788 local_inc(&rb->wakeup);
5789 }
5790 }
5791 }
5792 }
5793
5794 void perf_prepare_sample(struct perf_event_header *header,
5795 struct perf_sample_data *data,
5796 struct perf_event *event,
5797 struct pt_regs *regs)
5798 {
5799 u64 sample_type = event->attr.sample_type;
5800
5801 header->type = PERF_RECORD_SAMPLE;
5802 header->size = sizeof(*header) + event->header_size;
5803
5804 header->misc = 0;
5805 header->misc |= perf_misc_flags(regs);
5806
5807 __perf_event_header__init_id(header, data, event);
5808
5809 if (sample_type & PERF_SAMPLE_IP)
5810 data->ip = perf_instruction_pointer(regs);
5811
5812 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5813 int size = 1;
5814
5815 data->callchain = perf_callchain(event, regs);
5816
5817 if (data->callchain)
5818 size += data->callchain->nr;
5819
5820 header->size += size * sizeof(u64);
5821 }
5822
5823 if (sample_type & PERF_SAMPLE_RAW) {
5824 struct perf_raw_record *raw = data->raw;
5825 int size;
5826
5827 if (raw) {
5828 struct perf_raw_frag *frag = &raw->frag;
5829 u32 sum = 0;
5830
5831 do {
5832 sum += frag->size;
5833 if (perf_raw_frag_last(frag))
5834 break;
5835 frag = frag->next;
5836 } while (1);
5837
5838 size = round_up(sum + sizeof(u32), sizeof(u64));
5839 raw->size = size - sizeof(u32);
5840 frag->pad = raw->size - sum;
5841 } else {
5842 size = sizeof(u64);
5843 }
5844
5845 header->size += size;
5846 }
5847
5848 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5849 int size = sizeof(u64); /* nr */
5850 if (data->br_stack) {
5851 size += data->br_stack->nr
5852 * sizeof(struct perf_branch_entry);
5853 }
5854 header->size += size;
5855 }
5856
5857 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5858 perf_sample_regs_user(&data->regs_user, regs,
5859 &data->regs_user_copy);
5860
5861 if (sample_type & PERF_SAMPLE_REGS_USER) {
5862 /* regs dump ABI info */
5863 int size = sizeof(u64);
5864
5865 if (data->regs_user.regs) {
5866 u64 mask = event->attr.sample_regs_user;
5867 size += hweight64(mask) * sizeof(u64);
5868 }
5869
5870 header->size += size;
5871 }
5872
5873 if (sample_type & PERF_SAMPLE_STACK_USER) {
5874 /*
5875 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5876 * processed as the last one or have additional check added
5877 * in case new sample type is added, because we could eat
5878 * up the rest of the sample size.
5879 */
5880 u16 stack_size = event->attr.sample_stack_user;
5881 u16 size = sizeof(u64);
5882
5883 stack_size = perf_sample_ustack_size(stack_size, header->size,
5884 data->regs_user.regs);
5885
5886 /*
5887 * If there is something to dump, add space for the dump
5888 * itself and for the field that tells the dynamic size,
5889 * which is how many have been actually dumped.
5890 */
5891 if (stack_size)
5892 size += sizeof(u64) + stack_size;
5893
5894 data->stack_user_size = stack_size;
5895 header->size += size;
5896 }
5897
5898 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5899 /* regs dump ABI info */
5900 int size = sizeof(u64);
5901
5902 perf_sample_regs_intr(&data->regs_intr, regs);
5903
5904 if (data->regs_intr.regs) {
5905 u64 mask = event->attr.sample_regs_intr;
5906
5907 size += hweight64(mask) * sizeof(u64);
5908 }
5909
5910 header->size += size;
5911 }
5912 }
5913
5914 static void __always_inline
5915 __perf_event_output(struct perf_event *event,
5916 struct perf_sample_data *data,
5917 struct pt_regs *regs,
5918 int (*output_begin)(struct perf_output_handle *,
5919 struct perf_event *,
5920 unsigned int))
5921 {
5922 struct perf_output_handle handle;
5923 struct perf_event_header header;
5924
5925 /* protect the callchain buffers */
5926 rcu_read_lock();
5927
5928 perf_prepare_sample(&header, data, event, regs);
5929
5930 if (output_begin(&handle, event, header.size))
5931 goto exit;
5932
5933 perf_output_sample(&handle, &header, data, event);
5934
5935 perf_output_end(&handle);
5936
5937 exit:
5938 rcu_read_unlock();
5939 }
5940
5941 void
5942 perf_event_output_forward(struct perf_event *event,
5943 struct perf_sample_data *data,
5944 struct pt_regs *regs)
5945 {
5946 __perf_event_output(event, data, regs, perf_output_begin_forward);
5947 }
5948
5949 void
5950 perf_event_output_backward(struct perf_event *event,
5951 struct perf_sample_data *data,
5952 struct pt_regs *regs)
5953 {
5954 __perf_event_output(event, data, regs, perf_output_begin_backward);
5955 }
5956
5957 void
5958 perf_event_output(struct perf_event *event,
5959 struct perf_sample_data *data,
5960 struct pt_regs *regs)
5961 {
5962 __perf_event_output(event, data, regs, perf_output_begin);
5963 }
5964
5965 /*
5966 * read event_id
5967 */
5968
5969 struct perf_read_event {
5970 struct perf_event_header header;
5971
5972 u32 pid;
5973 u32 tid;
5974 };
5975
5976 static void
5977 perf_event_read_event(struct perf_event *event,
5978 struct task_struct *task)
5979 {
5980 struct perf_output_handle handle;
5981 struct perf_sample_data sample;
5982 struct perf_read_event read_event = {
5983 .header = {
5984 .type = PERF_RECORD_READ,
5985 .misc = 0,
5986 .size = sizeof(read_event) + event->read_size,
5987 },
5988 .pid = perf_event_pid(event, task),
5989 .tid = perf_event_tid(event, task),
5990 };
5991 int ret;
5992
5993 perf_event_header__init_id(&read_event.header, &sample, event);
5994 ret = perf_output_begin(&handle, event, read_event.header.size);
5995 if (ret)
5996 return;
5997
5998 perf_output_put(&handle, read_event);
5999 perf_output_read(&handle, event);
6000 perf_event__output_id_sample(event, &handle, &sample);
6001
6002 perf_output_end(&handle);
6003 }
6004
6005 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6006
6007 static void
6008 perf_iterate_ctx(struct perf_event_context *ctx,
6009 perf_iterate_f output,
6010 void *data, bool all)
6011 {
6012 struct perf_event *event;
6013
6014 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6015 if (!all) {
6016 if (event->state < PERF_EVENT_STATE_INACTIVE)
6017 continue;
6018 if (!event_filter_match(event))
6019 continue;
6020 }
6021
6022 output(event, data);
6023 }
6024 }
6025
6026 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6027 {
6028 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6029 struct perf_event *event;
6030
6031 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6032 /*
6033 * Skip events that are not fully formed yet; ensure that
6034 * if we observe event->ctx, both event and ctx will be
6035 * complete enough. See perf_install_in_context().
6036 */
6037 if (!smp_load_acquire(&event->ctx))
6038 continue;
6039
6040 if (event->state < PERF_EVENT_STATE_INACTIVE)
6041 continue;
6042 if (!event_filter_match(event))
6043 continue;
6044 output(event, data);
6045 }
6046 }
6047
6048 /*
6049 * Iterate all events that need to receive side-band events.
6050 *
6051 * For new callers; ensure that account_pmu_sb_event() includes
6052 * your event, otherwise it might not get delivered.
6053 */
6054 static void
6055 perf_iterate_sb(perf_iterate_f output, void *data,
6056 struct perf_event_context *task_ctx)
6057 {
6058 struct perf_event_context *ctx;
6059 int ctxn;
6060
6061 rcu_read_lock();
6062 preempt_disable();
6063
6064 /*
6065 * If we have task_ctx != NULL we only notify the task context itself.
6066 * The task_ctx is set only for EXIT events before releasing task
6067 * context.
6068 */
6069 if (task_ctx) {
6070 perf_iterate_ctx(task_ctx, output, data, false);
6071 goto done;
6072 }
6073
6074 perf_iterate_sb_cpu(output, data);
6075
6076 for_each_task_context_nr(ctxn) {
6077 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6078 if (ctx)
6079 perf_iterate_ctx(ctx, output, data, false);
6080 }
6081 done:
6082 preempt_enable();
6083 rcu_read_unlock();
6084 }
6085
6086 /*
6087 * Clear all file-based filters at exec, they'll have to be
6088 * re-instated when/if these objects are mmapped again.
6089 */
6090 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6091 {
6092 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6093 struct perf_addr_filter *filter;
6094 unsigned int restart = 0, count = 0;
6095 unsigned long flags;
6096
6097 if (!has_addr_filter(event))
6098 return;
6099
6100 raw_spin_lock_irqsave(&ifh->lock, flags);
6101 list_for_each_entry(filter, &ifh->list, entry) {
6102 if (filter->inode) {
6103 event->addr_filters_offs[count] = 0;
6104 restart++;
6105 }
6106
6107 count++;
6108 }
6109
6110 if (restart)
6111 event->addr_filters_gen++;
6112 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6113
6114 if (restart)
6115 perf_event_restart(event);
6116 }
6117
6118 void perf_event_exec(void)
6119 {
6120 struct perf_event_context *ctx;
6121 int ctxn;
6122
6123 rcu_read_lock();
6124 for_each_task_context_nr(ctxn) {
6125 ctx = current->perf_event_ctxp[ctxn];
6126 if (!ctx)
6127 continue;
6128
6129 perf_event_enable_on_exec(ctxn);
6130
6131 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6132 true);
6133 }
6134 rcu_read_unlock();
6135 }
6136
6137 struct remote_output {
6138 struct ring_buffer *rb;
6139 int err;
6140 };
6141
6142 static void __perf_event_output_stop(struct perf_event *event, void *data)
6143 {
6144 struct perf_event *parent = event->parent;
6145 struct remote_output *ro = data;
6146 struct ring_buffer *rb = ro->rb;
6147 struct stop_event_data sd = {
6148 .event = event,
6149 };
6150
6151 if (!has_aux(event))
6152 return;
6153
6154 if (!parent)
6155 parent = event;
6156
6157 /*
6158 * In case of inheritance, it will be the parent that links to the
6159 * ring-buffer, but it will be the child that's actually using it:
6160 */
6161 if (rcu_dereference(parent->rb) == rb)
6162 ro->err = __perf_event_stop(&sd);
6163 }
6164
6165 static int __perf_pmu_output_stop(void *info)
6166 {
6167 struct perf_event *event = info;
6168 struct pmu *pmu = event->pmu;
6169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6170 struct remote_output ro = {
6171 .rb = event->rb,
6172 };
6173
6174 rcu_read_lock();
6175 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6176 if (cpuctx->task_ctx)
6177 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6178 &ro, false);
6179 rcu_read_unlock();
6180
6181 return ro.err;
6182 }
6183
6184 static void perf_pmu_output_stop(struct perf_event *event)
6185 {
6186 struct perf_event *iter;
6187 int err, cpu;
6188
6189 restart:
6190 rcu_read_lock();
6191 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6192 /*
6193 * For per-CPU events, we need to make sure that neither they
6194 * nor their children are running; for cpu==-1 events it's
6195 * sufficient to stop the event itself if it's active, since
6196 * it can't have children.
6197 */
6198 cpu = iter->cpu;
6199 if (cpu == -1)
6200 cpu = READ_ONCE(iter->oncpu);
6201
6202 if (cpu == -1)
6203 continue;
6204
6205 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6206 if (err == -EAGAIN) {
6207 rcu_read_unlock();
6208 goto restart;
6209 }
6210 }
6211 rcu_read_unlock();
6212 }
6213
6214 /*
6215 * task tracking -- fork/exit
6216 *
6217 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6218 */
6219
6220 struct perf_task_event {
6221 struct task_struct *task;
6222 struct perf_event_context *task_ctx;
6223
6224 struct {
6225 struct perf_event_header header;
6226
6227 u32 pid;
6228 u32 ppid;
6229 u32 tid;
6230 u32 ptid;
6231 u64 time;
6232 } event_id;
6233 };
6234
6235 static int perf_event_task_match(struct perf_event *event)
6236 {
6237 return event->attr.comm || event->attr.mmap ||
6238 event->attr.mmap2 || event->attr.mmap_data ||
6239 event->attr.task;
6240 }
6241
6242 static void perf_event_task_output(struct perf_event *event,
6243 void *data)
6244 {
6245 struct perf_task_event *task_event = data;
6246 struct perf_output_handle handle;
6247 struct perf_sample_data sample;
6248 struct task_struct *task = task_event->task;
6249 int ret, size = task_event->event_id.header.size;
6250
6251 if (!perf_event_task_match(event))
6252 return;
6253
6254 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6255
6256 ret = perf_output_begin(&handle, event,
6257 task_event->event_id.header.size);
6258 if (ret)
6259 goto out;
6260
6261 task_event->event_id.pid = perf_event_pid(event, task);
6262 task_event->event_id.ppid = perf_event_pid(event, current);
6263
6264 task_event->event_id.tid = perf_event_tid(event, task);
6265 task_event->event_id.ptid = perf_event_tid(event, current);
6266
6267 task_event->event_id.time = perf_event_clock(event);
6268
6269 perf_output_put(&handle, task_event->event_id);
6270
6271 perf_event__output_id_sample(event, &handle, &sample);
6272
6273 perf_output_end(&handle);
6274 out:
6275 task_event->event_id.header.size = size;
6276 }
6277
6278 static void perf_event_task(struct task_struct *task,
6279 struct perf_event_context *task_ctx,
6280 int new)
6281 {
6282 struct perf_task_event task_event;
6283
6284 if (!atomic_read(&nr_comm_events) &&
6285 !atomic_read(&nr_mmap_events) &&
6286 !atomic_read(&nr_task_events))
6287 return;
6288
6289 task_event = (struct perf_task_event){
6290 .task = task,
6291 .task_ctx = task_ctx,
6292 .event_id = {
6293 .header = {
6294 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6295 .misc = 0,
6296 .size = sizeof(task_event.event_id),
6297 },
6298 /* .pid */
6299 /* .ppid */
6300 /* .tid */
6301 /* .ptid */
6302 /* .time */
6303 },
6304 };
6305
6306 perf_iterate_sb(perf_event_task_output,
6307 &task_event,
6308 task_ctx);
6309 }
6310
6311 void perf_event_fork(struct task_struct *task)
6312 {
6313 perf_event_task(task, NULL, 1);
6314 }
6315
6316 /*
6317 * comm tracking
6318 */
6319
6320 struct perf_comm_event {
6321 struct task_struct *task;
6322 char *comm;
6323 int comm_size;
6324
6325 struct {
6326 struct perf_event_header header;
6327
6328 u32 pid;
6329 u32 tid;
6330 } event_id;
6331 };
6332
6333 static int perf_event_comm_match(struct perf_event *event)
6334 {
6335 return event->attr.comm;
6336 }
6337
6338 static void perf_event_comm_output(struct perf_event *event,
6339 void *data)
6340 {
6341 struct perf_comm_event *comm_event = data;
6342 struct perf_output_handle handle;
6343 struct perf_sample_data sample;
6344 int size = comm_event->event_id.header.size;
6345 int ret;
6346
6347 if (!perf_event_comm_match(event))
6348 return;
6349
6350 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6351 ret = perf_output_begin(&handle, event,
6352 comm_event->event_id.header.size);
6353
6354 if (ret)
6355 goto out;
6356
6357 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6358 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6359
6360 perf_output_put(&handle, comm_event->event_id);
6361 __output_copy(&handle, comm_event->comm,
6362 comm_event->comm_size);
6363
6364 perf_event__output_id_sample(event, &handle, &sample);
6365
6366 perf_output_end(&handle);
6367 out:
6368 comm_event->event_id.header.size = size;
6369 }
6370
6371 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6372 {
6373 char comm[TASK_COMM_LEN];
6374 unsigned int size;
6375
6376 memset(comm, 0, sizeof(comm));
6377 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6378 size = ALIGN(strlen(comm)+1, sizeof(u64));
6379
6380 comm_event->comm = comm;
6381 comm_event->comm_size = size;
6382
6383 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6384
6385 perf_iterate_sb(perf_event_comm_output,
6386 comm_event,
6387 NULL);
6388 }
6389
6390 void perf_event_comm(struct task_struct *task, bool exec)
6391 {
6392 struct perf_comm_event comm_event;
6393
6394 if (!atomic_read(&nr_comm_events))
6395 return;
6396
6397 comm_event = (struct perf_comm_event){
6398 .task = task,
6399 /* .comm */
6400 /* .comm_size */
6401 .event_id = {
6402 .header = {
6403 .type = PERF_RECORD_COMM,
6404 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6405 /* .size */
6406 },
6407 /* .pid */
6408 /* .tid */
6409 },
6410 };
6411
6412 perf_event_comm_event(&comm_event);
6413 }
6414
6415 /*
6416 * mmap tracking
6417 */
6418
6419 struct perf_mmap_event {
6420 struct vm_area_struct *vma;
6421
6422 const char *file_name;
6423 int file_size;
6424 int maj, min;
6425 u64 ino;
6426 u64 ino_generation;
6427 u32 prot, flags;
6428
6429 struct {
6430 struct perf_event_header header;
6431
6432 u32 pid;
6433 u32 tid;
6434 u64 start;
6435 u64 len;
6436 u64 pgoff;
6437 } event_id;
6438 };
6439
6440 static int perf_event_mmap_match(struct perf_event *event,
6441 void *data)
6442 {
6443 struct perf_mmap_event *mmap_event = data;
6444 struct vm_area_struct *vma = mmap_event->vma;
6445 int executable = vma->vm_flags & VM_EXEC;
6446
6447 return (!executable && event->attr.mmap_data) ||
6448 (executable && (event->attr.mmap || event->attr.mmap2));
6449 }
6450
6451 static void perf_event_mmap_output(struct perf_event *event,
6452 void *data)
6453 {
6454 struct perf_mmap_event *mmap_event = data;
6455 struct perf_output_handle handle;
6456 struct perf_sample_data sample;
6457 int size = mmap_event->event_id.header.size;
6458 int ret;
6459
6460 if (!perf_event_mmap_match(event, data))
6461 return;
6462
6463 if (event->attr.mmap2) {
6464 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6465 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6466 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6467 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6468 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6469 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6470 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6471 }
6472
6473 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6474 ret = perf_output_begin(&handle, event,
6475 mmap_event->event_id.header.size);
6476 if (ret)
6477 goto out;
6478
6479 mmap_event->event_id.pid = perf_event_pid(event, current);
6480 mmap_event->event_id.tid = perf_event_tid(event, current);
6481
6482 perf_output_put(&handle, mmap_event->event_id);
6483
6484 if (event->attr.mmap2) {
6485 perf_output_put(&handle, mmap_event->maj);
6486 perf_output_put(&handle, mmap_event->min);
6487 perf_output_put(&handle, mmap_event->ino);
6488 perf_output_put(&handle, mmap_event->ino_generation);
6489 perf_output_put(&handle, mmap_event->prot);
6490 perf_output_put(&handle, mmap_event->flags);
6491 }
6492
6493 __output_copy(&handle, mmap_event->file_name,
6494 mmap_event->file_size);
6495
6496 perf_event__output_id_sample(event, &handle, &sample);
6497
6498 perf_output_end(&handle);
6499 out:
6500 mmap_event->event_id.header.size = size;
6501 }
6502
6503 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6504 {
6505 struct vm_area_struct *vma = mmap_event->vma;
6506 struct file *file = vma->vm_file;
6507 int maj = 0, min = 0;
6508 u64 ino = 0, gen = 0;
6509 u32 prot = 0, flags = 0;
6510 unsigned int size;
6511 char tmp[16];
6512 char *buf = NULL;
6513 char *name;
6514
6515 if (file) {
6516 struct inode *inode;
6517 dev_t dev;
6518
6519 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6520 if (!buf) {
6521 name = "//enomem";
6522 goto cpy_name;
6523 }
6524 /*
6525 * d_path() works from the end of the rb backwards, so we
6526 * need to add enough zero bytes after the string to handle
6527 * the 64bit alignment we do later.
6528 */
6529 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6530 if (IS_ERR(name)) {
6531 name = "//toolong";
6532 goto cpy_name;
6533 }
6534 inode = file_inode(vma->vm_file);
6535 dev = inode->i_sb->s_dev;
6536 ino = inode->i_ino;
6537 gen = inode->i_generation;
6538 maj = MAJOR(dev);
6539 min = MINOR(dev);
6540
6541 if (vma->vm_flags & VM_READ)
6542 prot |= PROT_READ;
6543 if (vma->vm_flags & VM_WRITE)
6544 prot |= PROT_WRITE;
6545 if (vma->vm_flags & VM_EXEC)
6546 prot |= PROT_EXEC;
6547
6548 if (vma->vm_flags & VM_MAYSHARE)
6549 flags = MAP_SHARED;
6550 else
6551 flags = MAP_PRIVATE;
6552
6553 if (vma->vm_flags & VM_DENYWRITE)
6554 flags |= MAP_DENYWRITE;
6555 if (vma->vm_flags & VM_MAYEXEC)
6556 flags |= MAP_EXECUTABLE;
6557 if (vma->vm_flags & VM_LOCKED)
6558 flags |= MAP_LOCKED;
6559 if (vma->vm_flags & VM_HUGETLB)
6560 flags |= MAP_HUGETLB;
6561
6562 goto got_name;
6563 } else {
6564 if (vma->vm_ops && vma->vm_ops->name) {
6565 name = (char *) vma->vm_ops->name(vma);
6566 if (name)
6567 goto cpy_name;
6568 }
6569
6570 name = (char *)arch_vma_name(vma);
6571 if (name)
6572 goto cpy_name;
6573
6574 if (vma->vm_start <= vma->vm_mm->start_brk &&
6575 vma->vm_end >= vma->vm_mm->brk) {
6576 name = "[heap]";
6577 goto cpy_name;
6578 }
6579 if (vma->vm_start <= vma->vm_mm->start_stack &&
6580 vma->vm_end >= vma->vm_mm->start_stack) {
6581 name = "[stack]";
6582 goto cpy_name;
6583 }
6584
6585 name = "//anon";
6586 goto cpy_name;
6587 }
6588
6589 cpy_name:
6590 strlcpy(tmp, name, sizeof(tmp));
6591 name = tmp;
6592 got_name:
6593 /*
6594 * Since our buffer works in 8 byte units we need to align our string
6595 * size to a multiple of 8. However, we must guarantee the tail end is
6596 * zero'd out to avoid leaking random bits to userspace.
6597 */
6598 size = strlen(name)+1;
6599 while (!IS_ALIGNED(size, sizeof(u64)))
6600 name[size++] = '\0';
6601
6602 mmap_event->file_name = name;
6603 mmap_event->file_size = size;
6604 mmap_event->maj = maj;
6605 mmap_event->min = min;
6606 mmap_event->ino = ino;
6607 mmap_event->ino_generation = gen;
6608 mmap_event->prot = prot;
6609 mmap_event->flags = flags;
6610
6611 if (!(vma->vm_flags & VM_EXEC))
6612 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6613
6614 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6615
6616 perf_iterate_sb(perf_event_mmap_output,
6617 mmap_event,
6618 NULL);
6619
6620 kfree(buf);
6621 }
6622
6623 /*
6624 * Check whether inode and address range match filter criteria.
6625 */
6626 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6627 struct file *file, unsigned long offset,
6628 unsigned long size)
6629 {
6630 if (filter->inode != file->f_inode)
6631 return false;
6632
6633 if (filter->offset > offset + size)
6634 return false;
6635
6636 if (filter->offset + filter->size < offset)
6637 return false;
6638
6639 return true;
6640 }
6641
6642 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6643 {
6644 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6645 struct vm_area_struct *vma = data;
6646 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6647 struct file *file = vma->vm_file;
6648 struct perf_addr_filter *filter;
6649 unsigned int restart = 0, count = 0;
6650
6651 if (!has_addr_filter(event))
6652 return;
6653
6654 if (!file)
6655 return;
6656
6657 raw_spin_lock_irqsave(&ifh->lock, flags);
6658 list_for_each_entry(filter, &ifh->list, entry) {
6659 if (perf_addr_filter_match(filter, file, off,
6660 vma->vm_end - vma->vm_start)) {
6661 event->addr_filters_offs[count] = vma->vm_start;
6662 restart++;
6663 }
6664
6665 count++;
6666 }
6667
6668 if (restart)
6669 event->addr_filters_gen++;
6670 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6671
6672 if (restart)
6673 perf_event_restart(event);
6674 }
6675
6676 /*
6677 * Adjust all task's events' filters to the new vma
6678 */
6679 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6680 {
6681 struct perf_event_context *ctx;
6682 int ctxn;
6683
6684 /*
6685 * Data tracing isn't supported yet and as such there is no need
6686 * to keep track of anything that isn't related to executable code:
6687 */
6688 if (!(vma->vm_flags & VM_EXEC))
6689 return;
6690
6691 rcu_read_lock();
6692 for_each_task_context_nr(ctxn) {
6693 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6694 if (!ctx)
6695 continue;
6696
6697 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6698 }
6699 rcu_read_unlock();
6700 }
6701
6702 void perf_event_mmap(struct vm_area_struct *vma)
6703 {
6704 struct perf_mmap_event mmap_event;
6705
6706 if (!atomic_read(&nr_mmap_events))
6707 return;
6708
6709 mmap_event = (struct perf_mmap_event){
6710 .vma = vma,
6711 /* .file_name */
6712 /* .file_size */
6713 .event_id = {
6714 .header = {
6715 .type = PERF_RECORD_MMAP,
6716 .misc = PERF_RECORD_MISC_USER,
6717 /* .size */
6718 },
6719 /* .pid */
6720 /* .tid */
6721 .start = vma->vm_start,
6722 .len = vma->vm_end - vma->vm_start,
6723 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6724 },
6725 /* .maj (attr_mmap2 only) */
6726 /* .min (attr_mmap2 only) */
6727 /* .ino (attr_mmap2 only) */
6728 /* .ino_generation (attr_mmap2 only) */
6729 /* .prot (attr_mmap2 only) */
6730 /* .flags (attr_mmap2 only) */
6731 };
6732
6733 perf_addr_filters_adjust(vma);
6734 perf_event_mmap_event(&mmap_event);
6735 }
6736
6737 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6738 unsigned long size, u64 flags)
6739 {
6740 struct perf_output_handle handle;
6741 struct perf_sample_data sample;
6742 struct perf_aux_event {
6743 struct perf_event_header header;
6744 u64 offset;
6745 u64 size;
6746 u64 flags;
6747 } rec = {
6748 .header = {
6749 .type = PERF_RECORD_AUX,
6750 .misc = 0,
6751 .size = sizeof(rec),
6752 },
6753 .offset = head,
6754 .size = size,
6755 .flags = flags,
6756 };
6757 int ret;
6758
6759 perf_event_header__init_id(&rec.header, &sample, event);
6760 ret = perf_output_begin(&handle, event, rec.header.size);
6761
6762 if (ret)
6763 return;
6764
6765 perf_output_put(&handle, rec);
6766 perf_event__output_id_sample(event, &handle, &sample);
6767
6768 perf_output_end(&handle);
6769 }
6770
6771 /*
6772 * Lost/dropped samples logging
6773 */
6774 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6775 {
6776 struct perf_output_handle handle;
6777 struct perf_sample_data sample;
6778 int ret;
6779
6780 struct {
6781 struct perf_event_header header;
6782 u64 lost;
6783 } lost_samples_event = {
6784 .header = {
6785 .type = PERF_RECORD_LOST_SAMPLES,
6786 .misc = 0,
6787 .size = sizeof(lost_samples_event),
6788 },
6789 .lost = lost,
6790 };
6791
6792 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6793
6794 ret = perf_output_begin(&handle, event,
6795 lost_samples_event.header.size);
6796 if (ret)
6797 return;
6798
6799 perf_output_put(&handle, lost_samples_event);
6800 perf_event__output_id_sample(event, &handle, &sample);
6801 perf_output_end(&handle);
6802 }
6803
6804 /*
6805 * context_switch tracking
6806 */
6807
6808 struct perf_switch_event {
6809 struct task_struct *task;
6810 struct task_struct *next_prev;
6811
6812 struct {
6813 struct perf_event_header header;
6814 u32 next_prev_pid;
6815 u32 next_prev_tid;
6816 } event_id;
6817 };
6818
6819 static int perf_event_switch_match(struct perf_event *event)
6820 {
6821 return event->attr.context_switch;
6822 }
6823
6824 static void perf_event_switch_output(struct perf_event *event, void *data)
6825 {
6826 struct perf_switch_event *se = data;
6827 struct perf_output_handle handle;
6828 struct perf_sample_data sample;
6829 int ret;
6830
6831 if (!perf_event_switch_match(event))
6832 return;
6833
6834 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6835 if (event->ctx->task) {
6836 se->event_id.header.type = PERF_RECORD_SWITCH;
6837 se->event_id.header.size = sizeof(se->event_id.header);
6838 } else {
6839 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6840 se->event_id.header.size = sizeof(se->event_id);
6841 se->event_id.next_prev_pid =
6842 perf_event_pid(event, se->next_prev);
6843 se->event_id.next_prev_tid =
6844 perf_event_tid(event, se->next_prev);
6845 }
6846
6847 perf_event_header__init_id(&se->event_id.header, &sample, event);
6848
6849 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6850 if (ret)
6851 return;
6852
6853 if (event->ctx->task)
6854 perf_output_put(&handle, se->event_id.header);
6855 else
6856 perf_output_put(&handle, se->event_id);
6857
6858 perf_event__output_id_sample(event, &handle, &sample);
6859
6860 perf_output_end(&handle);
6861 }
6862
6863 static void perf_event_switch(struct task_struct *task,
6864 struct task_struct *next_prev, bool sched_in)
6865 {
6866 struct perf_switch_event switch_event;
6867
6868 /* N.B. caller checks nr_switch_events != 0 */
6869
6870 switch_event = (struct perf_switch_event){
6871 .task = task,
6872 .next_prev = next_prev,
6873 .event_id = {
6874 .header = {
6875 /* .type */
6876 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6877 /* .size */
6878 },
6879 /* .next_prev_pid */
6880 /* .next_prev_tid */
6881 },
6882 };
6883
6884 perf_iterate_sb(perf_event_switch_output,
6885 &switch_event,
6886 NULL);
6887 }
6888
6889 /*
6890 * IRQ throttle logging
6891 */
6892
6893 static void perf_log_throttle(struct perf_event *event, int enable)
6894 {
6895 struct perf_output_handle handle;
6896 struct perf_sample_data sample;
6897 int ret;
6898
6899 struct {
6900 struct perf_event_header header;
6901 u64 time;
6902 u64 id;
6903 u64 stream_id;
6904 } throttle_event = {
6905 .header = {
6906 .type = PERF_RECORD_THROTTLE,
6907 .misc = 0,
6908 .size = sizeof(throttle_event),
6909 },
6910 .time = perf_event_clock(event),
6911 .id = primary_event_id(event),
6912 .stream_id = event->id,
6913 };
6914
6915 if (enable)
6916 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6917
6918 perf_event_header__init_id(&throttle_event.header, &sample, event);
6919
6920 ret = perf_output_begin(&handle, event,
6921 throttle_event.header.size);
6922 if (ret)
6923 return;
6924
6925 perf_output_put(&handle, throttle_event);
6926 perf_event__output_id_sample(event, &handle, &sample);
6927 perf_output_end(&handle);
6928 }
6929
6930 static void perf_log_itrace_start(struct perf_event *event)
6931 {
6932 struct perf_output_handle handle;
6933 struct perf_sample_data sample;
6934 struct perf_aux_event {
6935 struct perf_event_header header;
6936 u32 pid;
6937 u32 tid;
6938 } rec;
6939 int ret;
6940
6941 if (event->parent)
6942 event = event->parent;
6943
6944 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6945 event->hw.itrace_started)
6946 return;
6947
6948 rec.header.type = PERF_RECORD_ITRACE_START;
6949 rec.header.misc = 0;
6950 rec.header.size = sizeof(rec);
6951 rec.pid = perf_event_pid(event, current);
6952 rec.tid = perf_event_tid(event, current);
6953
6954 perf_event_header__init_id(&rec.header, &sample, event);
6955 ret = perf_output_begin(&handle, event, rec.header.size);
6956
6957 if (ret)
6958 return;
6959
6960 perf_output_put(&handle, rec);
6961 perf_event__output_id_sample(event, &handle, &sample);
6962
6963 perf_output_end(&handle);
6964 }
6965
6966 /*
6967 * Generic event overflow handling, sampling.
6968 */
6969
6970 static int __perf_event_overflow(struct perf_event *event,
6971 int throttle, struct perf_sample_data *data,
6972 struct pt_regs *regs)
6973 {
6974 int events = atomic_read(&event->event_limit);
6975 struct hw_perf_event *hwc = &event->hw;
6976 u64 seq;
6977 int ret = 0;
6978
6979 /*
6980 * Non-sampling counters might still use the PMI to fold short
6981 * hardware counters, ignore those.
6982 */
6983 if (unlikely(!is_sampling_event(event)))
6984 return 0;
6985
6986 seq = __this_cpu_read(perf_throttled_seq);
6987 if (seq != hwc->interrupts_seq) {
6988 hwc->interrupts_seq = seq;
6989 hwc->interrupts = 1;
6990 } else {
6991 hwc->interrupts++;
6992 if (unlikely(throttle
6993 && hwc->interrupts >= max_samples_per_tick)) {
6994 __this_cpu_inc(perf_throttled_count);
6995 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6996 hwc->interrupts = MAX_INTERRUPTS;
6997 perf_log_throttle(event, 0);
6998 ret = 1;
6999 }
7000 }
7001
7002 if (event->attr.freq) {
7003 u64 now = perf_clock();
7004 s64 delta = now - hwc->freq_time_stamp;
7005
7006 hwc->freq_time_stamp = now;
7007
7008 if (delta > 0 && delta < 2*TICK_NSEC)
7009 perf_adjust_period(event, delta, hwc->last_period, true);
7010 }
7011
7012 /*
7013 * XXX event_limit might not quite work as expected on inherited
7014 * events
7015 */
7016
7017 event->pending_kill = POLL_IN;
7018 if (events && atomic_dec_and_test(&event->event_limit)) {
7019 ret = 1;
7020 event->pending_kill = POLL_HUP;
7021 event->pending_disable = 1;
7022 irq_work_queue(&event->pending);
7023 }
7024
7025 READ_ONCE(event->overflow_handler)(event, data, regs);
7026
7027 if (*perf_event_fasync(event) && event->pending_kill) {
7028 event->pending_wakeup = 1;
7029 irq_work_queue(&event->pending);
7030 }
7031
7032 return ret;
7033 }
7034
7035 int perf_event_overflow(struct perf_event *event,
7036 struct perf_sample_data *data,
7037 struct pt_regs *regs)
7038 {
7039 return __perf_event_overflow(event, 1, data, regs);
7040 }
7041
7042 /*
7043 * Generic software event infrastructure
7044 */
7045
7046 struct swevent_htable {
7047 struct swevent_hlist *swevent_hlist;
7048 struct mutex hlist_mutex;
7049 int hlist_refcount;
7050
7051 /* Recursion avoidance in each contexts */
7052 int recursion[PERF_NR_CONTEXTS];
7053 };
7054
7055 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7056
7057 /*
7058 * We directly increment event->count and keep a second value in
7059 * event->hw.period_left to count intervals. This period event
7060 * is kept in the range [-sample_period, 0] so that we can use the
7061 * sign as trigger.
7062 */
7063
7064 u64 perf_swevent_set_period(struct perf_event *event)
7065 {
7066 struct hw_perf_event *hwc = &event->hw;
7067 u64 period = hwc->last_period;
7068 u64 nr, offset;
7069 s64 old, val;
7070
7071 hwc->last_period = hwc->sample_period;
7072
7073 again:
7074 old = val = local64_read(&hwc->period_left);
7075 if (val < 0)
7076 return 0;
7077
7078 nr = div64_u64(period + val, period);
7079 offset = nr * period;
7080 val -= offset;
7081 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7082 goto again;
7083
7084 return nr;
7085 }
7086
7087 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7088 struct perf_sample_data *data,
7089 struct pt_regs *regs)
7090 {
7091 struct hw_perf_event *hwc = &event->hw;
7092 int throttle = 0;
7093
7094 if (!overflow)
7095 overflow = perf_swevent_set_period(event);
7096
7097 if (hwc->interrupts == MAX_INTERRUPTS)
7098 return;
7099
7100 for (; overflow; overflow--) {
7101 if (__perf_event_overflow(event, throttle,
7102 data, regs)) {
7103 /*
7104 * We inhibit the overflow from happening when
7105 * hwc->interrupts == MAX_INTERRUPTS.
7106 */
7107 break;
7108 }
7109 throttle = 1;
7110 }
7111 }
7112
7113 static void perf_swevent_event(struct perf_event *event, u64 nr,
7114 struct perf_sample_data *data,
7115 struct pt_regs *regs)
7116 {
7117 struct hw_perf_event *hwc = &event->hw;
7118
7119 local64_add(nr, &event->count);
7120
7121 if (!regs)
7122 return;
7123
7124 if (!is_sampling_event(event))
7125 return;
7126
7127 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7128 data->period = nr;
7129 return perf_swevent_overflow(event, 1, data, regs);
7130 } else
7131 data->period = event->hw.last_period;
7132
7133 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7134 return perf_swevent_overflow(event, 1, data, regs);
7135
7136 if (local64_add_negative(nr, &hwc->period_left))
7137 return;
7138
7139 perf_swevent_overflow(event, 0, data, regs);
7140 }
7141
7142 static int perf_exclude_event(struct perf_event *event,
7143 struct pt_regs *regs)
7144 {
7145 if (event->hw.state & PERF_HES_STOPPED)
7146 return 1;
7147
7148 if (regs) {
7149 if (event->attr.exclude_user && user_mode(regs))
7150 return 1;
7151
7152 if (event->attr.exclude_kernel && !user_mode(regs))
7153 return 1;
7154 }
7155
7156 return 0;
7157 }
7158
7159 static int perf_swevent_match(struct perf_event *event,
7160 enum perf_type_id type,
7161 u32 event_id,
7162 struct perf_sample_data *data,
7163 struct pt_regs *regs)
7164 {
7165 if (event->attr.type != type)
7166 return 0;
7167
7168 if (event->attr.config != event_id)
7169 return 0;
7170
7171 if (perf_exclude_event(event, regs))
7172 return 0;
7173
7174 return 1;
7175 }
7176
7177 static inline u64 swevent_hash(u64 type, u32 event_id)
7178 {
7179 u64 val = event_id | (type << 32);
7180
7181 return hash_64(val, SWEVENT_HLIST_BITS);
7182 }
7183
7184 static inline struct hlist_head *
7185 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7186 {
7187 u64 hash = swevent_hash(type, event_id);
7188
7189 return &hlist->heads[hash];
7190 }
7191
7192 /* For the read side: events when they trigger */
7193 static inline struct hlist_head *
7194 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7195 {
7196 struct swevent_hlist *hlist;
7197
7198 hlist = rcu_dereference(swhash->swevent_hlist);
7199 if (!hlist)
7200 return NULL;
7201
7202 return __find_swevent_head(hlist, type, event_id);
7203 }
7204
7205 /* For the event head insertion and removal in the hlist */
7206 static inline struct hlist_head *
7207 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7208 {
7209 struct swevent_hlist *hlist;
7210 u32 event_id = event->attr.config;
7211 u64 type = event->attr.type;
7212
7213 /*
7214 * Event scheduling is always serialized against hlist allocation
7215 * and release. Which makes the protected version suitable here.
7216 * The context lock guarantees that.
7217 */
7218 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7219 lockdep_is_held(&event->ctx->lock));
7220 if (!hlist)
7221 return NULL;
7222
7223 return __find_swevent_head(hlist, type, event_id);
7224 }
7225
7226 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7227 u64 nr,
7228 struct perf_sample_data *data,
7229 struct pt_regs *regs)
7230 {
7231 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7232 struct perf_event *event;
7233 struct hlist_head *head;
7234
7235 rcu_read_lock();
7236 head = find_swevent_head_rcu(swhash, type, event_id);
7237 if (!head)
7238 goto end;
7239
7240 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7241 if (perf_swevent_match(event, type, event_id, data, regs))
7242 perf_swevent_event(event, nr, data, regs);
7243 }
7244 end:
7245 rcu_read_unlock();
7246 }
7247
7248 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7249
7250 int perf_swevent_get_recursion_context(void)
7251 {
7252 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7253
7254 return get_recursion_context(swhash->recursion);
7255 }
7256 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7257
7258 void perf_swevent_put_recursion_context(int rctx)
7259 {
7260 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7261
7262 put_recursion_context(swhash->recursion, rctx);
7263 }
7264
7265 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7266 {
7267 struct perf_sample_data data;
7268
7269 if (WARN_ON_ONCE(!regs))
7270 return;
7271
7272 perf_sample_data_init(&data, addr, 0);
7273 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7274 }
7275
7276 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7277 {
7278 int rctx;
7279
7280 preempt_disable_notrace();
7281 rctx = perf_swevent_get_recursion_context();
7282 if (unlikely(rctx < 0))
7283 goto fail;
7284
7285 ___perf_sw_event(event_id, nr, regs, addr);
7286
7287 perf_swevent_put_recursion_context(rctx);
7288 fail:
7289 preempt_enable_notrace();
7290 }
7291
7292 static void perf_swevent_read(struct perf_event *event)
7293 {
7294 }
7295
7296 static int perf_swevent_add(struct perf_event *event, int flags)
7297 {
7298 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7299 struct hw_perf_event *hwc = &event->hw;
7300 struct hlist_head *head;
7301
7302 if (is_sampling_event(event)) {
7303 hwc->last_period = hwc->sample_period;
7304 perf_swevent_set_period(event);
7305 }
7306
7307 hwc->state = !(flags & PERF_EF_START);
7308
7309 head = find_swevent_head(swhash, event);
7310 if (WARN_ON_ONCE(!head))
7311 return -EINVAL;
7312
7313 hlist_add_head_rcu(&event->hlist_entry, head);
7314 perf_event_update_userpage(event);
7315
7316 return 0;
7317 }
7318
7319 static void perf_swevent_del(struct perf_event *event, int flags)
7320 {
7321 hlist_del_rcu(&event->hlist_entry);
7322 }
7323
7324 static void perf_swevent_start(struct perf_event *event, int flags)
7325 {
7326 event->hw.state = 0;
7327 }
7328
7329 static void perf_swevent_stop(struct perf_event *event, int flags)
7330 {
7331 event->hw.state = PERF_HES_STOPPED;
7332 }
7333
7334 /* Deref the hlist from the update side */
7335 static inline struct swevent_hlist *
7336 swevent_hlist_deref(struct swevent_htable *swhash)
7337 {
7338 return rcu_dereference_protected(swhash->swevent_hlist,
7339 lockdep_is_held(&swhash->hlist_mutex));
7340 }
7341
7342 static void swevent_hlist_release(struct swevent_htable *swhash)
7343 {
7344 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7345
7346 if (!hlist)
7347 return;
7348
7349 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7350 kfree_rcu(hlist, rcu_head);
7351 }
7352
7353 static void swevent_hlist_put_cpu(int cpu)
7354 {
7355 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7356
7357 mutex_lock(&swhash->hlist_mutex);
7358
7359 if (!--swhash->hlist_refcount)
7360 swevent_hlist_release(swhash);
7361
7362 mutex_unlock(&swhash->hlist_mutex);
7363 }
7364
7365 static void swevent_hlist_put(void)
7366 {
7367 int cpu;
7368
7369 for_each_possible_cpu(cpu)
7370 swevent_hlist_put_cpu(cpu);
7371 }
7372
7373 static int swevent_hlist_get_cpu(int cpu)
7374 {
7375 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7376 int err = 0;
7377
7378 mutex_lock(&swhash->hlist_mutex);
7379 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7380 struct swevent_hlist *hlist;
7381
7382 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7383 if (!hlist) {
7384 err = -ENOMEM;
7385 goto exit;
7386 }
7387 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7388 }
7389 swhash->hlist_refcount++;
7390 exit:
7391 mutex_unlock(&swhash->hlist_mutex);
7392
7393 return err;
7394 }
7395
7396 static int swevent_hlist_get(void)
7397 {
7398 int err, cpu, failed_cpu;
7399
7400 get_online_cpus();
7401 for_each_possible_cpu(cpu) {
7402 err = swevent_hlist_get_cpu(cpu);
7403 if (err) {
7404 failed_cpu = cpu;
7405 goto fail;
7406 }
7407 }
7408 put_online_cpus();
7409
7410 return 0;
7411 fail:
7412 for_each_possible_cpu(cpu) {
7413 if (cpu == failed_cpu)
7414 break;
7415 swevent_hlist_put_cpu(cpu);
7416 }
7417
7418 put_online_cpus();
7419 return err;
7420 }
7421
7422 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7423
7424 static void sw_perf_event_destroy(struct perf_event *event)
7425 {
7426 u64 event_id = event->attr.config;
7427
7428 WARN_ON(event->parent);
7429
7430 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7431 swevent_hlist_put();
7432 }
7433
7434 static int perf_swevent_init(struct perf_event *event)
7435 {
7436 u64 event_id = event->attr.config;
7437
7438 if (event->attr.type != PERF_TYPE_SOFTWARE)
7439 return -ENOENT;
7440
7441 /*
7442 * no branch sampling for software events
7443 */
7444 if (has_branch_stack(event))
7445 return -EOPNOTSUPP;
7446
7447 switch (event_id) {
7448 case PERF_COUNT_SW_CPU_CLOCK:
7449 case PERF_COUNT_SW_TASK_CLOCK:
7450 return -ENOENT;
7451
7452 default:
7453 break;
7454 }
7455
7456 if (event_id >= PERF_COUNT_SW_MAX)
7457 return -ENOENT;
7458
7459 if (!event->parent) {
7460 int err;
7461
7462 err = swevent_hlist_get();
7463 if (err)
7464 return err;
7465
7466 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7467 event->destroy = sw_perf_event_destroy;
7468 }
7469
7470 return 0;
7471 }
7472
7473 static struct pmu perf_swevent = {
7474 .task_ctx_nr = perf_sw_context,
7475
7476 .capabilities = PERF_PMU_CAP_NO_NMI,
7477
7478 .event_init = perf_swevent_init,
7479 .add = perf_swevent_add,
7480 .del = perf_swevent_del,
7481 .start = perf_swevent_start,
7482 .stop = perf_swevent_stop,
7483 .read = perf_swevent_read,
7484 };
7485
7486 #ifdef CONFIG_EVENT_TRACING
7487
7488 static int perf_tp_filter_match(struct perf_event *event,
7489 struct perf_sample_data *data)
7490 {
7491 void *record = data->raw->frag.data;
7492
7493 /* only top level events have filters set */
7494 if (event->parent)
7495 event = event->parent;
7496
7497 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7498 return 1;
7499 return 0;
7500 }
7501
7502 static int perf_tp_event_match(struct perf_event *event,
7503 struct perf_sample_data *data,
7504 struct pt_regs *regs)
7505 {
7506 if (event->hw.state & PERF_HES_STOPPED)
7507 return 0;
7508 /*
7509 * All tracepoints are from kernel-space.
7510 */
7511 if (event->attr.exclude_kernel)
7512 return 0;
7513
7514 if (!perf_tp_filter_match(event, data))
7515 return 0;
7516
7517 return 1;
7518 }
7519
7520 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7521 struct trace_event_call *call, u64 count,
7522 struct pt_regs *regs, struct hlist_head *head,
7523 struct task_struct *task)
7524 {
7525 struct bpf_prog *prog = call->prog;
7526
7527 if (prog) {
7528 *(struct pt_regs **)raw_data = regs;
7529 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7530 perf_swevent_put_recursion_context(rctx);
7531 return;
7532 }
7533 }
7534 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7535 rctx, task);
7536 }
7537 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7538
7539 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7540 struct pt_regs *regs, struct hlist_head *head, int rctx,
7541 struct task_struct *task)
7542 {
7543 struct perf_sample_data data;
7544 struct perf_event *event;
7545
7546 struct perf_raw_record raw = {
7547 .frag = {
7548 .size = entry_size,
7549 .data = record,
7550 },
7551 };
7552
7553 perf_sample_data_init(&data, 0, 0);
7554 data.raw = &raw;
7555
7556 perf_trace_buf_update(record, event_type);
7557
7558 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7559 if (perf_tp_event_match(event, &data, regs))
7560 perf_swevent_event(event, count, &data, regs);
7561 }
7562
7563 /*
7564 * If we got specified a target task, also iterate its context and
7565 * deliver this event there too.
7566 */
7567 if (task && task != current) {
7568 struct perf_event_context *ctx;
7569 struct trace_entry *entry = record;
7570
7571 rcu_read_lock();
7572 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7573 if (!ctx)
7574 goto unlock;
7575
7576 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7577 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7578 continue;
7579 if (event->attr.config != entry->type)
7580 continue;
7581 if (perf_tp_event_match(event, &data, regs))
7582 perf_swevent_event(event, count, &data, regs);
7583 }
7584 unlock:
7585 rcu_read_unlock();
7586 }
7587
7588 perf_swevent_put_recursion_context(rctx);
7589 }
7590 EXPORT_SYMBOL_GPL(perf_tp_event);
7591
7592 static void tp_perf_event_destroy(struct perf_event *event)
7593 {
7594 perf_trace_destroy(event);
7595 }
7596
7597 static int perf_tp_event_init(struct perf_event *event)
7598 {
7599 int err;
7600
7601 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7602 return -ENOENT;
7603
7604 /*
7605 * no branch sampling for tracepoint events
7606 */
7607 if (has_branch_stack(event))
7608 return -EOPNOTSUPP;
7609
7610 err = perf_trace_init(event);
7611 if (err)
7612 return err;
7613
7614 event->destroy = tp_perf_event_destroy;
7615
7616 return 0;
7617 }
7618
7619 static struct pmu perf_tracepoint = {
7620 .task_ctx_nr = perf_sw_context,
7621
7622 .event_init = perf_tp_event_init,
7623 .add = perf_trace_add,
7624 .del = perf_trace_del,
7625 .start = perf_swevent_start,
7626 .stop = perf_swevent_stop,
7627 .read = perf_swevent_read,
7628 };
7629
7630 static inline void perf_tp_register(void)
7631 {
7632 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7633 }
7634
7635 static void perf_event_free_filter(struct perf_event *event)
7636 {
7637 ftrace_profile_free_filter(event);
7638 }
7639
7640 #ifdef CONFIG_BPF_SYSCALL
7641 static void bpf_overflow_handler(struct perf_event *event,
7642 struct perf_sample_data *data,
7643 struct pt_regs *regs)
7644 {
7645 struct bpf_perf_event_data_kern ctx = {
7646 .data = data,
7647 .regs = regs,
7648 };
7649 int ret = 0;
7650
7651 preempt_disable();
7652 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7653 goto out;
7654 rcu_read_lock();
7655 ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7656 rcu_read_unlock();
7657 out:
7658 __this_cpu_dec(bpf_prog_active);
7659 preempt_enable();
7660 if (!ret)
7661 return;
7662
7663 event->orig_overflow_handler(event, data, regs);
7664 }
7665
7666 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7667 {
7668 struct bpf_prog *prog;
7669
7670 if (event->overflow_handler_context)
7671 /* hw breakpoint or kernel counter */
7672 return -EINVAL;
7673
7674 if (event->prog)
7675 return -EEXIST;
7676
7677 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7678 if (IS_ERR(prog))
7679 return PTR_ERR(prog);
7680
7681 event->prog = prog;
7682 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7683 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7684 return 0;
7685 }
7686
7687 static void perf_event_free_bpf_handler(struct perf_event *event)
7688 {
7689 struct bpf_prog *prog = event->prog;
7690
7691 if (!prog)
7692 return;
7693
7694 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7695 event->prog = NULL;
7696 bpf_prog_put(prog);
7697 }
7698 #else
7699 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7700 {
7701 return -EOPNOTSUPP;
7702 }
7703 static void perf_event_free_bpf_handler(struct perf_event *event)
7704 {
7705 }
7706 #endif
7707
7708 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7709 {
7710 bool is_kprobe, is_tracepoint;
7711 struct bpf_prog *prog;
7712
7713 if (event->attr.type == PERF_TYPE_HARDWARE ||
7714 event->attr.type == PERF_TYPE_SOFTWARE)
7715 return perf_event_set_bpf_handler(event, prog_fd);
7716
7717 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7718 return -EINVAL;
7719
7720 if (event->tp_event->prog)
7721 return -EEXIST;
7722
7723 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7724 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7725 if (!is_kprobe && !is_tracepoint)
7726 /* bpf programs can only be attached to u/kprobe or tracepoint */
7727 return -EINVAL;
7728
7729 prog = bpf_prog_get(prog_fd);
7730 if (IS_ERR(prog))
7731 return PTR_ERR(prog);
7732
7733 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7734 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7735 /* valid fd, but invalid bpf program type */
7736 bpf_prog_put(prog);
7737 return -EINVAL;
7738 }
7739
7740 if (is_tracepoint) {
7741 int off = trace_event_get_offsets(event->tp_event);
7742
7743 if (prog->aux->max_ctx_offset > off) {
7744 bpf_prog_put(prog);
7745 return -EACCES;
7746 }
7747 }
7748 event->tp_event->prog = prog;
7749
7750 return 0;
7751 }
7752
7753 static void perf_event_free_bpf_prog(struct perf_event *event)
7754 {
7755 struct bpf_prog *prog;
7756
7757 perf_event_free_bpf_handler(event);
7758
7759 if (!event->tp_event)
7760 return;
7761
7762 prog = event->tp_event->prog;
7763 if (prog) {
7764 event->tp_event->prog = NULL;
7765 bpf_prog_put(prog);
7766 }
7767 }
7768
7769 #else
7770
7771 static inline void perf_tp_register(void)
7772 {
7773 }
7774
7775 static void perf_event_free_filter(struct perf_event *event)
7776 {
7777 }
7778
7779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7780 {
7781 return -ENOENT;
7782 }
7783
7784 static void perf_event_free_bpf_prog(struct perf_event *event)
7785 {
7786 }
7787 #endif /* CONFIG_EVENT_TRACING */
7788
7789 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7790 void perf_bp_event(struct perf_event *bp, void *data)
7791 {
7792 struct perf_sample_data sample;
7793 struct pt_regs *regs = data;
7794
7795 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7796
7797 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7798 perf_swevent_event(bp, 1, &sample, regs);
7799 }
7800 #endif
7801
7802 /*
7803 * Allocate a new address filter
7804 */
7805 static struct perf_addr_filter *
7806 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7807 {
7808 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7809 struct perf_addr_filter *filter;
7810
7811 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7812 if (!filter)
7813 return NULL;
7814
7815 INIT_LIST_HEAD(&filter->entry);
7816 list_add_tail(&filter->entry, filters);
7817
7818 return filter;
7819 }
7820
7821 static void free_filters_list(struct list_head *filters)
7822 {
7823 struct perf_addr_filter *filter, *iter;
7824
7825 list_for_each_entry_safe(filter, iter, filters, entry) {
7826 if (filter->inode)
7827 iput(filter->inode);
7828 list_del(&filter->entry);
7829 kfree(filter);
7830 }
7831 }
7832
7833 /*
7834 * Free existing address filters and optionally install new ones
7835 */
7836 static void perf_addr_filters_splice(struct perf_event *event,
7837 struct list_head *head)
7838 {
7839 unsigned long flags;
7840 LIST_HEAD(list);
7841
7842 if (!has_addr_filter(event))
7843 return;
7844
7845 /* don't bother with children, they don't have their own filters */
7846 if (event->parent)
7847 return;
7848
7849 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7850
7851 list_splice_init(&event->addr_filters.list, &list);
7852 if (head)
7853 list_splice(head, &event->addr_filters.list);
7854
7855 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7856
7857 free_filters_list(&list);
7858 }
7859
7860 /*
7861 * Scan through mm's vmas and see if one of them matches the
7862 * @filter; if so, adjust filter's address range.
7863 * Called with mm::mmap_sem down for reading.
7864 */
7865 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7866 struct mm_struct *mm)
7867 {
7868 struct vm_area_struct *vma;
7869
7870 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7871 struct file *file = vma->vm_file;
7872 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7873 unsigned long vma_size = vma->vm_end - vma->vm_start;
7874
7875 if (!file)
7876 continue;
7877
7878 if (!perf_addr_filter_match(filter, file, off, vma_size))
7879 continue;
7880
7881 return vma->vm_start;
7882 }
7883
7884 return 0;
7885 }
7886
7887 /*
7888 * Update event's address range filters based on the
7889 * task's existing mappings, if any.
7890 */
7891 static void perf_event_addr_filters_apply(struct perf_event *event)
7892 {
7893 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7894 struct task_struct *task = READ_ONCE(event->ctx->task);
7895 struct perf_addr_filter *filter;
7896 struct mm_struct *mm = NULL;
7897 unsigned int count = 0;
7898 unsigned long flags;
7899
7900 /*
7901 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7902 * will stop on the parent's child_mutex that our caller is also holding
7903 */
7904 if (task == TASK_TOMBSTONE)
7905 return;
7906
7907 mm = get_task_mm(event->ctx->task);
7908 if (!mm)
7909 goto restart;
7910
7911 down_read(&mm->mmap_sem);
7912
7913 raw_spin_lock_irqsave(&ifh->lock, flags);
7914 list_for_each_entry(filter, &ifh->list, entry) {
7915 event->addr_filters_offs[count] = 0;
7916
7917 /*
7918 * Adjust base offset if the filter is associated to a binary
7919 * that needs to be mapped:
7920 */
7921 if (filter->inode)
7922 event->addr_filters_offs[count] =
7923 perf_addr_filter_apply(filter, mm);
7924
7925 count++;
7926 }
7927
7928 event->addr_filters_gen++;
7929 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7930
7931 up_read(&mm->mmap_sem);
7932
7933 mmput(mm);
7934
7935 restart:
7936 perf_event_restart(event);
7937 }
7938
7939 /*
7940 * Address range filtering: limiting the data to certain
7941 * instruction address ranges. Filters are ioctl()ed to us from
7942 * userspace as ascii strings.
7943 *
7944 * Filter string format:
7945 *
7946 * ACTION RANGE_SPEC
7947 * where ACTION is one of the
7948 * * "filter": limit the trace to this region
7949 * * "start": start tracing from this address
7950 * * "stop": stop tracing at this address/region;
7951 * RANGE_SPEC is
7952 * * for kernel addresses: <start address>[/<size>]
7953 * * for object files: <start address>[/<size>]@</path/to/object/file>
7954 *
7955 * if <size> is not specified, the range is treated as a single address.
7956 */
7957 enum {
7958 IF_ACT_FILTER,
7959 IF_ACT_START,
7960 IF_ACT_STOP,
7961 IF_SRC_FILE,
7962 IF_SRC_KERNEL,
7963 IF_SRC_FILEADDR,
7964 IF_SRC_KERNELADDR,
7965 };
7966
7967 enum {
7968 IF_STATE_ACTION = 0,
7969 IF_STATE_SOURCE,
7970 IF_STATE_END,
7971 };
7972
7973 static const match_table_t if_tokens = {
7974 { IF_ACT_FILTER, "filter" },
7975 { IF_ACT_START, "start" },
7976 { IF_ACT_STOP, "stop" },
7977 { IF_SRC_FILE, "%u/%u@%s" },
7978 { IF_SRC_KERNEL, "%u/%u" },
7979 { IF_SRC_FILEADDR, "%u@%s" },
7980 { IF_SRC_KERNELADDR, "%u" },
7981 };
7982
7983 /*
7984 * Address filter string parser
7985 */
7986 static int
7987 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7988 struct list_head *filters)
7989 {
7990 struct perf_addr_filter *filter = NULL;
7991 char *start, *orig, *filename = NULL;
7992 struct path path;
7993 substring_t args[MAX_OPT_ARGS];
7994 int state = IF_STATE_ACTION, token;
7995 unsigned int kernel = 0;
7996 int ret = -EINVAL;
7997
7998 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7999 if (!fstr)
8000 return -ENOMEM;
8001
8002 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8003 ret = -EINVAL;
8004
8005 if (!*start)
8006 continue;
8007
8008 /* filter definition begins */
8009 if (state == IF_STATE_ACTION) {
8010 filter = perf_addr_filter_new(event, filters);
8011 if (!filter)
8012 goto fail;
8013 }
8014
8015 token = match_token(start, if_tokens, args);
8016 switch (token) {
8017 case IF_ACT_FILTER:
8018 case IF_ACT_START:
8019 filter->filter = 1;
8020
8021 case IF_ACT_STOP:
8022 if (state != IF_STATE_ACTION)
8023 goto fail;
8024
8025 state = IF_STATE_SOURCE;
8026 break;
8027
8028 case IF_SRC_KERNELADDR:
8029 case IF_SRC_KERNEL:
8030 kernel = 1;
8031
8032 case IF_SRC_FILEADDR:
8033 case IF_SRC_FILE:
8034 if (state != IF_STATE_SOURCE)
8035 goto fail;
8036
8037 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8038 filter->range = 1;
8039
8040 *args[0].to = 0;
8041 ret = kstrtoul(args[0].from, 0, &filter->offset);
8042 if (ret)
8043 goto fail;
8044
8045 if (filter->range) {
8046 *args[1].to = 0;
8047 ret = kstrtoul(args[1].from, 0, &filter->size);
8048 if (ret)
8049 goto fail;
8050 }
8051
8052 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8053 int fpos = filter->range ? 2 : 1;
8054
8055 filename = match_strdup(&args[fpos]);
8056 if (!filename) {
8057 ret = -ENOMEM;
8058 goto fail;
8059 }
8060 }
8061
8062 state = IF_STATE_END;
8063 break;
8064
8065 default:
8066 goto fail;
8067 }
8068
8069 /*
8070 * Filter definition is fully parsed, validate and install it.
8071 * Make sure that it doesn't contradict itself or the event's
8072 * attribute.
8073 */
8074 if (state == IF_STATE_END) {
8075 if (kernel && event->attr.exclude_kernel)
8076 goto fail;
8077
8078 if (!kernel) {
8079 if (!filename)
8080 goto fail;
8081
8082 /* look up the path and grab its inode */
8083 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8084 if (ret)
8085 goto fail_free_name;
8086
8087 filter->inode = igrab(d_inode(path.dentry));
8088 path_put(&path);
8089 kfree(filename);
8090 filename = NULL;
8091
8092 ret = -EINVAL;
8093 if (!filter->inode ||
8094 !S_ISREG(filter->inode->i_mode))
8095 /* free_filters_list() will iput() */
8096 goto fail;
8097 }
8098
8099 /* ready to consume more filters */
8100 state = IF_STATE_ACTION;
8101 filter = NULL;
8102 }
8103 }
8104
8105 if (state != IF_STATE_ACTION)
8106 goto fail;
8107
8108 kfree(orig);
8109
8110 return 0;
8111
8112 fail_free_name:
8113 kfree(filename);
8114 fail:
8115 free_filters_list(filters);
8116 kfree(orig);
8117
8118 return ret;
8119 }
8120
8121 static int
8122 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8123 {
8124 LIST_HEAD(filters);
8125 int ret;
8126
8127 /*
8128 * Since this is called in perf_ioctl() path, we're already holding
8129 * ctx::mutex.
8130 */
8131 lockdep_assert_held(&event->ctx->mutex);
8132
8133 if (WARN_ON_ONCE(event->parent))
8134 return -EINVAL;
8135
8136 /*
8137 * For now, we only support filtering in per-task events; doing so
8138 * for CPU-wide events requires additional context switching trickery,
8139 * since same object code will be mapped at different virtual
8140 * addresses in different processes.
8141 */
8142 if (!event->ctx->task)
8143 return -EOPNOTSUPP;
8144
8145 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8146 if (ret)
8147 return ret;
8148
8149 ret = event->pmu->addr_filters_validate(&filters);
8150 if (ret) {
8151 free_filters_list(&filters);
8152 return ret;
8153 }
8154
8155 /* remove existing filters, if any */
8156 perf_addr_filters_splice(event, &filters);
8157
8158 /* install new filters */
8159 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8160
8161 return ret;
8162 }
8163
8164 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8165 {
8166 char *filter_str;
8167 int ret = -EINVAL;
8168
8169 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8170 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8171 !has_addr_filter(event))
8172 return -EINVAL;
8173
8174 filter_str = strndup_user(arg, PAGE_SIZE);
8175 if (IS_ERR(filter_str))
8176 return PTR_ERR(filter_str);
8177
8178 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8179 event->attr.type == PERF_TYPE_TRACEPOINT)
8180 ret = ftrace_profile_set_filter(event, event->attr.config,
8181 filter_str);
8182 else if (has_addr_filter(event))
8183 ret = perf_event_set_addr_filter(event, filter_str);
8184
8185 kfree(filter_str);
8186 return ret;
8187 }
8188
8189 /*
8190 * hrtimer based swevent callback
8191 */
8192
8193 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8194 {
8195 enum hrtimer_restart ret = HRTIMER_RESTART;
8196 struct perf_sample_data data;
8197 struct pt_regs *regs;
8198 struct perf_event *event;
8199 u64 period;
8200
8201 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8202
8203 if (event->state != PERF_EVENT_STATE_ACTIVE)
8204 return HRTIMER_NORESTART;
8205
8206 event->pmu->read(event);
8207
8208 perf_sample_data_init(&data, 0, event->hw.last_period);
8209 regs = get_irq_regs();
8210
8211 if (regs && !perf_exclude_event(event, regs)) {
8212 if (!(event->attr.exclude_idle && is_idle_task(current)))
8213 if (__perf_event_overflow(event, 1, &data, regs))
8214 ret = HRTIMER_NORESTART;
8215 }
8216
8217 period = max_t(u64, 10000, event->hw.sample_period);
8218 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8219
8220 return ret;
8221 }
8222
8223 static void perf_swevent_start_hrtimer(struct perf_event *event)
8224 {
8225 struct hw_perf_event *hwc = &event->hw;
8226 s64 period;
8227
8228 if (!is_sampling_event(event))
8229 return;
8230
8231 period = local64_read(&hwc->period_left);
8232 if (period) {
8233 if (period < 0)
8234 period = 10000;
8235
8236 local64_set(&hwc->period_left, 0);
8237 } else {
8238 period = max_t(u64, 10000, hwc->sample_period);
8239 }
8240 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8241 HRTIMER_MODE_REL_PINNED);
8242 }
8243
8244 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8245 {
8246 struct hw_perf_event *hwc = &event->hw;
8247
8248 if (is_sampling_event(event)) {
8249 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8250 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8251
8252 hrtimer_cancel(&hwc->hrtimer);
8253 }
8254 }
8255
8256 static void perf_swevent_init_hrtimer(struct perf_event *event)
8257 {
8258 struct hw_perf_event *hwc = &event->hw;
8259
8260 if (!is_sampling_event(event))
8261 return;
8262
8263 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8264 hwc->hrtimer.function = perf_swevent_hrtimer;
8265
8266 /*
8267 * Since hrtimers have a fixed rate, we can do a static freq->period
8268 * mapping and avoid the whole period adjust feedback stuff.
8269 */
8270 if (event->attr.freq) {
8271 long freq = event->attr.sample_freq;
8272
8273 event->attr.sample_period = NSEC_PER_SEC / freq;
8274 hwc->sample_period = event->attr.sample_period;
8275 local64_set(&hwc->period_left, hwc->sample_period);
8276 hwc->last_period = hwc->sample_period;
8277 event->attr.freq = 0;
8278 }
8279 }
8280
8281 /*
8282 * Software event: cpu wall time clock
8283 */
8284
8285 static void cpu_clock_event_update(struct perf_event *event)
8286 {
8287 s64 prev;
8288 u64 now;
8289
8290 now = local_clock();
8291 prev = local64_xchg(&event->hw.prev_count, now);
8292 local64_add(now - prev, &event->count);
8293 }
8294
8295 static void cpu_clock_event_start(struct perf_event *event, int flags)
8296 {
8297 local64_set(&event->hw.prev_count, local_clock());
8298 perf_swevent_start_hrtimer(event);
8299 }
8300
8301 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8302 {
8303 perf_swevent_cancel_hrtimer(event);
8304 cpu_clock_event_update(event);
8305 }
8306
8307 static int cpu_clock_event_add(struct perf_event *event, int flags)
8308 {
8309 if (flags & PERF_EF_START)
8310 cpu_clock_event_start(event, flags);
8311 perf_event_update_userpage(event);
8312
8313 return 0;
8314 }
8315
8316 static void cpu_clock_event_del(struct perf_event *event, int flags)
8317 {
8318 cpu_clock_event_stop(event, flags);
8319 }
8320
8321 static void cpu_clock_event_read(struct perf_event *event)
8322 {
8323 cpu_clock_event_update(event);
8324 }
8325
8326 static int cpu_clock_event_init(struct perf_event *event)
8327 {
8328 if (event->attr.type != PERF_TYPE_SOFTWARE)
8329 return -ENOENT;
8330
8331 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8332 return -ENOENT;
8333
8334 /*
8335 * no branch sampling for software events
8336 */
8337 if (has_branch_stack(event))
8338 return -EOPNOTSUPP;
8339
8340 perf_swevent_init_hrtimer(event);
8341
8342 return 0;
8343 }
8344
8345 static struct pmu perf_cpu_clock = {
8346 .task_ctx_nr = perf_sw_context,
8347
8348 .capabilities = PERF_PMU_CAP_NO_NMI,
8349
8350 .event_init = cpu_clock_event_init,
8351 .add = cpu_clock_event_add,
8352 .del = cpu_clock_event_del,
8353 .start = cpu_clock_event_start,
8354 .stop = cpu_clock_event_stop,
8355 .read = cpu_clock_event_read,
8356 };
8357
8358 /*
8359 * Software event: task time clock
8360 */
8361
8362 static void task_clock_event_update(struct perf_event *event, u64 now)
8363 {
8364 u64 prev;
8365 s64 delta;
8366
8367 prev = local64_xchg(&event->hw.prev_count, now);
8368 delta = now - prev;
8369 local64_add(delta, &event->count);
8370 }
8371
8372 static void task_clock_event_start(struct perf_event *event, int flags)
8373 {
8374 local64_set(&event->hw.prev_count, event->ctx->time);
8375 perf_swevent_start_hrtimer(event);
8376 }
8377
8378 static void task_clock_event_stop(struct perf_event *event, int flags)
8379 {
8380 perf_swevent_cancel_hrtimer(event);
8381 task_clock_event_update(event, event->ctx->time);
8382 }
8383
8384 static int task_clock_event_add(struct perf_event *event, int flags)
8385 {
8386 if (flags & PERF_EF_START)
8387 task_clock_event_start(event, flags);
8388 perf_event_update_userpage(event);
8389
8390 return 0;
8391 }
8392
8393 static void task_clock_event_del(struct perf_event *event, int flags)
8394 {
8395 task_clock_event_stop(event, PERF_EF_UPDATE);
8396 }
8397
8398 static void task_clock_event_read(struct perf_event *event)
8399 {
8400 u64 now = perf_clock();
8401 u64 delta = now - event->ctx->timestamp;
8402 u64 time = event->ctx->time + delta;
8403
8404 task_clock_event_update(event, time);
8405 }
8406
8407 static int task_clock_event_init(struct perf_event *event)
8408 {
8409 if (event->attr.type != PERF_TYPE_SOFTWARE)
8410 return -ENOENT;
8411
8412 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8413 return -ENOENT;
8414
8415 /*
8416 * no branch sampling for software events
8417 */
8418 if (has_branch_stack(event))
8419 return -EOPNOTSUPP;
8420
8421 perf_swevent_init_hrtimer(event);
8422
8423 return 0;
8424 }
8425
8426 static struct pmu perf_task_clock = {
8427 .task_ctx_nr = perf_sw_context,
8428
8429 .capabilities = PERF_PMU_CAP_NO_NMI,
8430
8431 .event_init = task_clock_event_init,
8432 .add = task_clock_event_add,
8433 .del = task_clock_event_del,
8434 .start = task_clock_event_start,
8435 .stop = task_clock_event_stop,
8436 .read = task_clock_event_read,
8437 };
8438
8439 static void perf_pmu_nop_void(struct pmu *pmu)
8440 {
8441 }
8442
8443 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8444 {
8445 }
8446
8447 static int perf_pmu_nop_int(struct pmu *pmu)
8448 {
8449 return 0;
8450 }
8451
8452 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8453
8454 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8455 {
8456 __this_cpu_write(nop_txn_flags, flags);
8457
8458 if (flags & ~PERF_PMU_TXN_ADD)
8459 return;
8460
8461 perf_pmu_disable(pmu);
8462 }
8463
8464 static int perf_pmu_commit_txn(struct pmu *pmu)
8465 {
8466 unsigned int flags = __this_cpu_read(nop_txn_flags);
8467
8468 __this_cpu_write(nop_txn_flags, 0);
8469
8470 if (flags & ~PERF_PMU_TXN_ADD)
8471 return 0;
8472
8473 perf_pmu_enable(pmu);
8474 return 0;
8475 }
8476
8477 static void perf_pmu_cancel_txn(struct pmu *pmu)
8478 {
8479 unsigned int flags = __this_cpu_read(nop_txn_flags);
8480
8481 __this_cpu_write(nop_txn_flags, 0);
8482
8483 if (flags & ~PERF_PMU_TXN_ADD)
8484 return;
8485
8486 perf_pmu_enable(pmu);
8487 }
8488
8489 static int perf_event_idx_default(struct perf_event *event)
8490 {
8491 return 0;
8492 }
8493
8494 /*
8495 * Ensures all contexts with the same task_ctx_nr have the same
8496 * pmu_cpu_context too.
8497 */
8498 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8499 {
8500 struct pmu *pmu;
8501
8502 if (ctxn < 0)
8503 return NULL;
8504
8505 list_for_each_entry(pmu, &pmus, entry) {
8506 if (pmu->task_ctx_nr == ctxn)
8507 return pmu->pmu_cpu_context;
8508 }
8509
8510 return NULL;
8511 }
8512
8513 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8514 {
8515 int cpu;
8516
8517 for_each_possible_cpu(cpu) {
8518 struct perf_cpu_context *cpuctx;
8519
8520 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8521
8522 if (cpuctx->unique_pmu == old_pmu)
8523 cpuctx->unique_pmu = pmu;
8524 }
8525 }
8526
8527 static void free_pmu_context(struct pmu *pmu)
8528 {
8529 struct pmu *i;
8530
8531 mutex_lock(&pmus_lock);
8532 /*
8533 * Like a real lame refcount.
8534 */
8535 list_for_each_entry(i, &pmus, entry) {
8536 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8537 update_pmu_context(i, pmu);
8538 goto out;
8539 }
8540 }
8541
8542 free_percpu(pmu->pmu_cpu_context);
8543 out:
8544 mutex_unlock(&pmus_lock);
8545 }
8546
8547 /*
8548 * Let userspace know that this PMU supports address range filtering:
8549 */
8550 static ssize_t nr_addr_filters_show(struct device *dev,
8551 struct device_attribute *attr,
8552 char *page)
8553 {
8554 struct pmu *pmu = dev_get_drvdata(dev);
8555
8556 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8557 }
8558 DEVICE_ATTR_RO(nr_addr_filters);
8559
8560 static struct idr pmu_idr;
8561
8562 static ssize_t
8563 type_show(struct device *dev, struct device_attribute *attr, char *page)
8564 {
8565 struct pmu *pmu = dev_get_drvdata(dev);
8566
8567 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8568 }
8569 static DEVICE_ATTR_RO(type);
8570
8571 static ssize_t
8572 perf_event_mux_interval_ms_show(struct device *dev,
8573 struct device_attribute *attr,
8574 char *page)
8575 {
8576 struct pmu *pmu = dev_get_drvdata(dev);
8577
8578 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8579 }
8580
8581 static DEFINE_MUTEX(mux_interval_mutex);
8582
8583 static ssize_t
8584 perf_event_mux_interval_ms_store(struct device *dev,
8585 struct device_attribute *attr,
8586 const char *buf, size_t count)
8587 {
8588 struct pmu *pmu = dev_get_drvdata(dev);
8589 int timer, cpu, ret;
8590
8591 ret = kstrtoint(buf, 0, &timer);
8592 if (ret)
8593 return ret;
8594
8595 if (timer < 1)
8596 return -EINVAL;
8597
8598 /* same value, noting to do */
8599 if (timer == pmu->hrtimer_interval_ms)
8600 return count;
8601
8602 mutex_lock(&mux_interval_mutex);
8603 pmu->hrtimer_interval_ms = timer;
8604
8605 /* update all cpuctx for this PMU */
8606 get_online_cpus();
8607 for_each_online_cpu(cpu) {
8608 struct perf_cpu_context *cpuctx;
8609 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8610 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8611
8612 cpu_function_call(cpu,
8613 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8614 }
8615 put_online_cpus();
8616 mutex_unlock(&mux_interval_mutex);
8617
8618 return count;
8619 }
8620 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8621
8622 static struct attribute *pmu_dev_attrs[] = {
8623 &dev_attr_type.attr,
8624 &dev_attr_perf_event_mux_interval_ms.attr,
8625 NULL,
8626 };
8627 ATTRIBUTE_GROUPS(pmu_dev);
8628
8629 static int pmu_bus_running;
8630 static struct bus_type pmu_bus = {
8631 .name = "event_source",
8632 .dev_groups = pmu_dev_groups,
8633 };
8634
8635 static void pmu_dev_release(struct device *dev)
8636 {
8637 kfree(dev);
8638 }
8639
8640 static int pmu_dev_alloc(struct pmu *pmu)
8641 {
8642 int ret = -ENOMEM;
8643
8644 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8645 if (!pmu->dev)
8646 goto out;
8647
8648 pmu->dev->groups = pmu->attr_groups;
8649 device_initialize(pmu->dev);
8650 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8651 if (ret)
8652 goto free_dev;
8653
8654 dev_set_drvdata(pmu->dev, pmu);
8655 pmu->dev->bus = &pmu_bus;
8656 pmu->dev->release = pmu_dev_release;
8657 ret = device_add(pmu->dev);
8658 if (ret)
8659 goto free_dev;
8660
8661 /* For PMUs with address filters, throw in an extra attribute: */
8662 if (pmu->nr_addr_filters)
8663 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8664
8665 if (ret)
8666 goto del_dev;
8667
8668 out:
8669 return ret;
8670
8671 del_dev:
8672 device_del(pmu->dev);
8673
8674 free_dev:
8675 put_device(pmu->dev);
8676 goto out;
8677 }
8678
8679 static struct lock_class_key cpuctx_mutex;
8680 static struct lock_class_key cpuctx_lock;
8681
8682 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8683 {
8684 int cpu, ret;
8685
8686 mutex_lock(&pmus_lock);
8687 ret = -ENOMEM;
8688 pmu->pmu_disable_count = alloc_percpu(int);
8689 if (!pmu->pmu_disable_count)
8690 goto unlock;
8691
8692 pmu->type = -1;
8693 if (!name)
8694 goto skip_type;
8695 pmu->name = name;
8696
8697 if (type < 0) {
8698 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8699 if (type < 0) {
8700 ret = type;
8701 goto free_pdc;
8702 }
8703 }
8704 pmu->type = type;
8705
8706 if (pmu_bus_running) {
8707 ret = pmu_dev_alloc(pmu);
8708 if (ret)
8709 goto free_idr;
8710 }
8711
8712 skip_type:
8713 if (pmu->task_ctx_nr == perf_hw_context) {
8714 static int hw_context_taken = 0;
8715
8716 /*
8717 * Other than systems with heterogeneous CPUs, it never makes
8718 * sense for two PMUs to share perf_hw_context. PMUs which are
8719 * uncore must use perf_invalid_context.
8720 */
8721 if (WARN_ON_ONCE(hw_context_taken &&
8722 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8723 pmu->task_ctx_nr = perf_invalid_context;
8724
8725 hw_context_taken = 1;
8726 }
8727
8728 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8729 if (pmu->pmu_cpu_context)
8730 goto got_cpu_context;
8731
8732 ret = -ENOMEM;
8733 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8734 if (!pmu->pmu_cpu_context)
8735 goto free_dev;
8736
8737 for_each_possible_cpu(cpu) {
8738 struct perf_cpu_context *cpuctx;
8739
8740 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8741 __perf_event_init_context(&cpuctx->ctx);
8742 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8743 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8744 cpuctx->ctx.pmu = pmu;
8745
8746 __perf_mux_hrtimer_init(cpuctx, cpu);
8747
8748 cpuctx->unique_pmu = pmu;
8749 }
8750
8751 got_cpu_context:
8752 if (!pmu->start_txn) {
8753 if (pmu->pmu_enable) {
8754 /*
8755 * If we have pmu_enable/pmu_disable calls, install
8756 * transaction stubs that use that to try and batch
8757 * hardware accesses.
8758 */
8759 pmu->start_txn = perf_pmu_start_txn;
8760 pmu->commit_txn = perf_pmu_commit_txn;
8761 pmu->cancel_txn = perf_pmu_cancel_txn;
8762 } else {
8763 pmu->start_txn = perf_pmu_nop_txn;
8764 pmu->commit_txn = perf_pmu_nop_int;
8765 pmu->cancel_txn = perf_pmu_nop_void;
8766 }
8767 }
8768
8769 if (!pmu->pmu_enable) {
8770 pmu->pmu_enable = perf_pmu_nop_void;
8771 pmu->pmu_disable = perf_pmu_nop_void;
8772 }
8773
8774 if (!pmu->event_idx)
8775 pmu->event_idx = perf_event_idx_default;
8776
8777 list_add_rcu(&pmu->entry, &pmus);
8778 atomic_set(&pmu->exclusive_cnt, 0);
8779 ret = 0;
8780 unlock:
8781 mutex_unlock(&pmus_lock);
8782
8783 return ret;
8784
8785 free_dev:
8786 device_del(pmu->dev);
8787 put_device(pmu->dev);
8788
8789 free_idr:
8790 if (pmu->type >= PERF_TYPE_MAX)
8791 idr_remove(&pmu_idr, pmu->type);
8792
8793 free_pdc:
8794 free_percpu(pmu->pmu_disable_count);
8795 goto unlock;
8796 }
8797 EXPORT_SYMBOL_GPL(perf_pmu_register);
8798
8799 void perf_pmu_unregister(struct pmu *pmu)
8800 {
8801 mutex_lock(&pmus_lock);
8802 list_del_rcu(&pmu->entry);
8803 mutex_unlock(&pmus_lock);
8804
8805 /*
8806 * We dereference the pmu list under both SRCU and regular RCU, so
8807 * synchronize against both of those.
8808 */
8809 synchronize_srcu(&pmus_srcu);
8810 synchronize_rcu();
8811
8812 free_percpu(pmu->pmu_disable_count);
8813 if (pmu->type >= PERF_TYPE_MAX)
8814 idr_remove(&pmu_idr, pmu->type);
8815 if (pmu->nr_addr_filters)
8816 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8817 device_del(pmu->dev);
8818 put_device(pmu->dev);
8819 free_pmu_context(pmu);
8820 }
8821 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8822
8823 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8824 {
8825 struct perf_event_context *ctx = NULL;
8826 int ret;
8827
8828 if (!try_module_get(pmu->module))
8829 return -ENODEV;
8830
8831 if (event->group_leader != event) {
8832 /*
8833 * This ctx->mutex can nest when we're called through
8834 * inheritance. See the perf_event_ctx_lock_nested() comment.
8835 */
8836 ctx = perf_event_ctx_lock_nested(event->group_leader,
8837 SINGLE_DEPTH_NESTING);
8838 BUG_ON(!ctx);
8839 }
8840
8841 event->pmu = pmu;
8842 ret = pmu->event_init(event);
8843
8844 if (ctx)
8845 perf_event_ctx_unlock(event->group_leader, ctx);
8846
8847 if (ret)
8848 module_put(pmu->module);
8849
8850 return ret;
8851 }
8852
8853 static struct pmu *perf_init_event(struct perf_event *event)
8854 {
8855 struct pmu *pmu = NULL;
8856 int idx;
8857 int ret;
8858
8859 idx = srcu_read_lock(&pmus_srcu);
8860
8861 rcu_read_lock();
8862 pmu = idr_find(&pmu_idr, event->attr.type);
8863 rcu_read_unlock();
8864 if (pmu) {
8865 ret = perf_try_init_event(pmu, event);
8866 if (ret)
8867 pmu = ERR_PTR(ret);
8868 goto unlock;
8869 }
8870
8871 list_for_each_entry_rcu(pmu, &pmus, entry) {
8872 ret = perf_try_init_event(pmu, event);
8873 if (!ret)
8874 goto unlock;
8875
8876 if (ret != -ENOENT) {
8877 pmu = ERR_PTR(ret);
8878 goto unlock;
8879 }
8880 }
8881 pmu = ERR_PTR(-ENOENT);
8882 unlock:
8883 srcu_read_unlock(&pmus_srcu, idx);
8884
8885 return pmu;
8886 }
8887
8888 static void attach_sb_event(struct perf_event *event)
8889 {
8890 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8891
8892 raw_spin_lock(&pel->lock);
8893 list_add_rcu(&event->sb_list, &pel->list);
8894 raw_spin_unlock(&pel->lock);
8895 }
8896
8897 /*
8898 * We keep a list of all !task (and therefore per-cpu) events
8899 * that need to receive side-band records.
8900 *
8901 * This avoids having to scan all the various PMU per-cpu contexts
8902 * looking for them.
8903 */
8904 static void account_pmu_sb_event(struct perf_event *event)
8905 {
8906 if (is_sb_event(event))
8907 attach_sb_event(event);
8908 }
8909
8910 static void account_event_cpu(struct perf_event *event, int cpu)
8911 {
8912 if (event->parent)
8913 return;
8914
8915 if (is_cgroup_event(event))
8916 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8917 }
8918
8919 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8920 static void account_freq_event_nohz(void)
8921 {
8922 #ifdef CONFIG_NO_HZ_FULL
8923 /* Lock so we don't race with concurrent unaccount */
8924 spin_lock(&nr_freq_lock);
8925 if (atomic_inc_return(&nr_freq_events) == 1)
8926 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8927 spin_unlock(&nr_freq_lock);
8928 #endif
8929 }
8930
8931 static void account_freq_event(void)
8932 {
8933 if (tick_nohz_full_enabled())
8934 account_freq_event_nohz();
8935 else
8936 atomic_inc(&nr_freq_events);
8937 }
8938
8939
8940 static void account_event(struct perf_event *event)
8941 {
8942 bool inc = false;
8943
8944 if (event->parent)
8945 return;
8946
8947 if (event->attach_state & PERF_ATTACH_TASK)
8948 inc = true;
8949 if (event->attr.mmap || event->attr.mmap_data)
8950 atomic_inc(&nr_mmap_events);
8951 if (event->attr.comm)
8952 atomic_inc(&nr_comm_events);
8953 if (event->attr.task)
8954 atomic_inc(&nr_task_events);
8955 if (event->attr.freq)
8956 account_freq_event();
8957 if (event->attr.context_switch) {
8958 atomic_inc(&nr_switch_events);
8959 inc = true;
8960 }
8961 if (has_branch_stack(event))
8962 inc = true;
8963 if (is_cgroup_event(event))
8964 inc = true;
8965
8966 if (inc) {
8967 if (atomic_inc_not_zero(&perf_sched_count))
8968 goto enabled;
8969
8970 mutex_lock(&perf_sched_mutex);
8971 if (!atomic_read(&perf_sched_count)) {
8972 static_branch_enable(&perf_sched_events);
8973 /*
8974 * Guarantee that all CPUs observe they key change and
8975 * call the perf scheduling hooks before proceeding to
8976 * install events that need them.
8977 */
8978 synchronize_sched();
8979 }
8980 /*
8981 * Now that we have waited for the sync_sched(), allow further
8982 * increments to by-pass the mutex.
8983 */
8984 atomic_inc(&perf_sched_count);
8985 mutex_unlock(&perf_sched_mutex);
8986 }
8987 enabled:
8988
8989 account_event_cpu(event, event->cpu);
8990
8991 account_pmu_sb_event(event);
8992 }
8993
8994 /*
8995 * Allocate and initialize a event structure
8996 */
8997 static struct perf_event *
8998 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8999 struct task_struct *task,
9000 struct perf_event *group_leader,
9001 struct perf_event *parent_event,
9002 perf_overflow_handler_t overflow_handler,
9003 void *context, int cgroup_fd)
9004 {
9005 struct pmu *pmu;
9006 struct perf_event *event;
9007 struct hw_perf_event *hwc;
9008 long err = -EINVAL;
9009
9010 if ((unsigned)cpu >= nr_cpu_ids) {
9011 if (!task || cpu != -1)
9012 return ERR_PTR(-EINVAL);
9013 }
9014
9015 event = kzalloc(sizeof(*event), GFP_KERNEL);
9016 if (!event)
9017 return ERR_PTR(-ENOMEM);
9018
9019 /*
9020 * Single events are their own group leaders, with an
9021 * empty sibling list:
9022 */
9023 if (!group_leader)
9024 group_leader = event;
9025
9026 mutex_init(&event->child_mutex);
9027 INIT_LIST_HEAD(&event->child_list);
9028
9029 INIT_LIST_HEAD(&event->group_entry);
9030 INIT_LIST_HEAD(&event->event_entry);
9031 INIT_LIST_HEAD(&event->sibling_list);
9032 INIT_LIST_HEAD(&event->rb_entry);
9033 INIT_LIST_HEAD(&event->active_entry);
9034 INIT_LIST_HEAD(&event->addr_filters.list);
9035 INIT_HLIST_NODE(&event->hlist_entry);
9036
9037
9038 init_waitqueue_head(&event->waitq);
9039 init_irq_work(&event->pending, perf_pending_event);
9040
9041 mutex_init(&event->mmap_mutex);
9042 raw_spin_lock_init(&event->addr_filters.lock);
9043
9044 atomic_long_set(&event->refcount, 1);
9045 event->cpu = cpu;
9046 event->attr = *attr;
9047 event->group_leader = group_leader;
9048 event->pmu = NULL;
9049 event->oncpu = -1;
9050
9051 event->parent = parent_event;
9052
9053 event->ns = get_pid_ns(task_active_pid_ns(current));
9054 event->id = atomic64_inc_return(&perf_event_id);
9055
9056 event->state = PERF_EVENT_STATE_INACTIVE;
9057
9058 if (task) {
9059 event->attach_state = PERF_ATTACH_TASK;
9060 /*
9061 * XXX pmu::event_init needs to know what task to account to
9062 * and we cannot use the ctx information because we need the
9063 * pmu before we get a ctx.
9064 */
9065 event->hw.target = task;
9066 }
9067
9068 event->clock = &local_clock;
9069 if (parent_event)
9070 event->clock = parent_event->clock;
9071
9072 if (!overflow_handler && parent_event) {
9073 overflow_handler = parent_event->overflow_handler;
9074 context = parent_event->overflow_handler_context;
9075 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9076 if (overflow_handler == bpf_overflow_handler) {
9077 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9078
9079 if (IS_ERR(prog)) {
9080 err = PTR_ERR(prog);
9081 goto err_ns;
9082 }
9083 event->prog = prog;
9084 event->orig_overflow_handler =
9085 parent_event->orig_overflow_handler;
9086 }
9087 #endif
9088 }
9089
9090 if (overflow_handler) {
9091 event->overflow_handler = overflow_handler;
9092 event->overflow_handler_context = context;
9093 } else if (is_write_backward(event)){
9094 event->overflow_handler = perf_event_output_backward;
9095 event->overflow_handler_context = NULL;
9096 } else {
9097 event->overflow_handler = perf_event_output_forward;
9098 event->overflow_handler_context = NULL;
9099 }
9100
9101 perf_event__state_init(event);
9102
9103 pmu = NULL;
9104
9105 hwc = &event->hw;
9106 hwc->sample_period = attr->sample_period;
9107 if (attr->freq && attr->sample_freq)
9108 hwc->sample_period = 1;
9109 hwc->last_period = hwc->sample_period;
9110
9111 local64_set(&hwc->period_left, hwc->sample_period);
9112
9113 /*
9114 * we currently do not support PERF_FORMAT_GROUP on inherited events
9115 */
9116 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9117 goto err_ns;
9118
9119 if (!has_branch_stack(event))
9120 event->attr.branch_sample_type = 0;
9121
9122 if (cgroup_fd != -1) {
9123 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9124 if (err)
9125 goto err_ns;
9126 }
9127
9128 pmu = perf_init_event(event);
9129 if (!pmu)
9130 goto err_ns;
9131 else if (IS_ERR(pmu)) {
9132 err = PTR_ERR(pmu);
9133 goto err_ns;
9134 }
9135
9136 err = exclusive_event_init(event);
9137 if (err)
9138 goto err_pmu;
9139
9140 if (has_addr_filter(event)) {
9141 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9142 sizeof(unsigned long),
9143 GFP_KERNEL);
9144 if (!event->addr_filters_offs)
9145 goto err_per_task;
9146
9147 /* force hw sync on the address filters */
9148 event->addr_filters_gen = 1;
9149 }
9150
9151 if (!event->parent) {
9152 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9153 err = get_callchain_buffers(attr->sample_max_stack);
9154 if (err)
9155 goto err_addr_filters;
9156 }
9157 }
9158
9159 /* symmetric to unaccount_event() in _free_event() */
9160 account_event(event);
9161
9162 return event;
9163
9164 err_addr_filters:
9165 kfree(event->addr_filters_offs);
9166
9167 err_per_task:
9168 exclusive_event_destroy(event);
9169
9170 err_pmu:
9171 if (event->destroy)
9172 event->destroy(event);
9173 module_put(pmu->module);
9174 err_ns:
9175 if (is_cgroup_event(event))
9176 perf_detach_cgroup(event);
9177 if (event->ns)
9178 put_pid_ns(event->ns);
9179 kfree(event);
9180
9181 return ERR_PTR(err);
9182 }
9183
9184 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9185 struct perf_event_attr *attr)
9186 {
9187 u32 size;
9188 int ret;
9189
9190 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9191 return -EFAULT;
9192
9193 /*
9194 * zero the full structure, so that a short copy will be nice.
9195 */
9196 memset(attr, 0, sizeof(*attr));
9197
9198 ret = get_user(size, &uattr->size);
9199 if (ret)
9200 return ret;
9201
9202 if (size > PAGE_SIZE) /* silly large */
9203 goto err_size;
9204
9205 if (!size) /* abi compat */
9206 size = PERF_ATTR_SIZE_VER0;
9207
9208 if (size < PERF_ATTR_SIZE_VER0)
9209 goto err_size;
9210
9211 /*
9212 * If we're handed a bigger struct than we know of,
9213 * ensure all the unknown bits are 0 - i.e. new
9214 * user-space does not rely on any kernel feature
9215 * extensions we dont know about yet.
9216 */
9217 if (size > sizeof(*attr)) {
9218 unsigned char __user *addr;
9219 unsigned char __user *end;
9220 unsigned char val;
9221
9222 addr = (void __user *)uattr + sizeof(*attr);
9223 end = (void __user *)uattr + size;
9224
9225 for (; addr < end; addr++) {
9226 ret = get_user(val, addr);
9227 if (ret)
9228 return ret;
9229 if (val)
9230 goto err_size;
9231 }
9232 size = sizeof(*attr);
9233 }
9234
9235 ret = copy_from_user(attr, uattr, size);
9236 if (ret)
9237 return -EFAULT;
9238
9239 if (attr->__reserved_1)
9240 return -EINVAL;
9241
9242 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9243 return -EINVAL;
9244
9245 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9246 return -EINVAL;
9247
9248 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9249 u64 mask = attr->branch_sample_type;
9250
9251 /* only using defined bits */
9252 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9253 return -EINVAL;
9254
9255 /* at least one branch bit must be set */
9256 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9257 return -EINVAL;
9258
9259 /* propagate priv level, when not set for branch */
9260 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9261
9262 /* exclude_kernel checked on syscall entry */
9263 if (!attr->exclude_kernel)
9264 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9265
9266 if (!attr->exclude_user)
9267 mask |= PERF_SAMPLE_BRANCH_USER;
9268
9269 if (!attr->exclude_hv)
9270 mask |= PERF_SAMPLE_BRANCH_HV;
9271 /*
9272 * adjust user setting (for HW filter setup)
9273 */
9274 attr->branch_sample_type = mask;
9275 }
9276 /* privileged levels capture (kernel, hv): check permissions */
9277 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9278 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9279 return -EACCES;
9280 }
9281
9282 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9283 ret = perf_reg_validate(attr->sample_regs_user);
9284 if (ret)
9285 return ret;
9286 }
9287
9288 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9289 if (!arch_perf_have_user_stack_dump())
9290 return -ENOSYS;
9291
9292 /*
9293 * We have __u32 type for the size, but so far
9294 * we can only use __u16 as maximum due to the
9295 * __u16 sample size limit.
9296 */
9297 if (attr->sample_stack_user >= USHRT_MAX)
9298 ret = -EINVAL;
9299 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9300 ret = -EINVAL;
9301 }
9302
9303 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9304 ret = perf_reg_validate(attr->sample_regs_intr);
9305 out:
9306 return ret;
9307
9308 err_size:
9309 put_user(sizeof(*attr), &uattr->size);
9310 ret = -E2BIG;
9311 goto out;
9312 }
9313
9314 static int
9315 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9316 {
9317 struct ring_buffer *rb = NULL;
9318 int ret = -EINVAL;
9319
9320 if (!output_event)
9321 goto set;
9322
9323 /* don't allow circular references */
9324 if (event == output_event)
9325 goto out;
9326
9327 /*
9328 * Don't allow cross-cpu buffers
9329 */
9330 if (output_event->cpu != event->cpu)
9331 goto out;
9332
9333 /*
9334 * If its not a per-cpu rb, it must be the same task.
9335 */
9336 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9337 goto out;
9338
9339 /*
9340 * Mixing clocks in the same buffer is trouble you don't need.
9341 */
9342 if (output_event->clock != event->clock)
9343 goto out;
9344
9345 /*
9346 * Either writing ring buffer from beginning or from end.
9347 * Mixing is not allowed.
9348 */
9349 if (is_write_backward(output_event) != is_write_backward(event))
9350 goto out;
9351
9352 /*
9353 * If both events generate aux data, they must be on the same PMU
9354 */
9355 if (has_aux(event) && has_aux(output_event) &&
9356 event->pmu != output_event->pmu)
9357 goto out;
9358
9359 set:
9360 mutex_lock(&event->mmap_mutex);
9361 /* Can't redirect output if we've got an active mmap() */
9362 if (atomic_read(&event->mmap_count))
9363 goto unlock;
9364
9365 if (output_event) {
9366 /* get the rb we want to redirect to */
9367 rb = ring_buffer_get(output_event);
9368 if (!rb)
9369 goto unlock;
9370 }
9371
9372 ring_buffer_attach(event, rb);
9373
9374 ret = 0;
9375 unlock:
9376 mutex_unlock(&event->mmap_mutex);
9377
9378 out:
9379 return ret;
9380 }
9381
9382 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9383 {
9384 if (b < a)
9385 swap(a, b);
9386
9387 mutex_lock(a);
9388 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9389 }
9390
9391 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9392 {
9393 bool nmi_safe = false;
9394
9395 switch (clk_id) {
9396 case CLOCK_MONOTONIC:
9397 event->clock = &ktime_get_mono_fast_ns;
9398 nmi_safe = true;
9399 break;
9400
9401 case CLOCK_MONOTONIC_RAW:
9402 event->clock = &ktime_get_raw_fast_ns;
9403 nmi_safe = true;
9404 break;
9405
9406 case CLOCK_REALTIME:
9407 event->clock = &ktime_get_real_ns;
9408 break;
9409
9410 case CLOCK_BOOTTIME:
9411 event->clock = &ktime_get_boot_ns;
9412 break;
9413
9414 case CLOCK_TAI:
9415 event->clock = &ktime_get_tai_ns;
9416 break;
9417
9418 default:
9419 return -EINVAL;
9420 }
9421
9422 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9423 return -EINVAL;
9424
9425 return 0;
9426 }
9427
9428 /**
9429 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9430 *
9431 * @attr_uptr: event_id type attributes for monitoring/sampling
9432 * @pid: target pid
9433 * @cpu: target cpu
9434 * @group_fd: group leader event fd
9435 */
9436 SYSCALL_DEFINE5(perf_event_open,
9437 struct perf_event_attr __user *, attr_uptr,
9438 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9439 {
9440 struct perf_event *group_leader = NULL, *output_event = NULL;
9441 struct perf_event *event, *sibling;
9442 struct perf_event_attr attr;
9443 struct perf_event_context *ctx, *uninitialized_var(gctx);
9444 struct file *event_file = NULL;
9445 struct fd group = {NULL, 0};
9446 struct task_struct *task = NULL;
9447 struct pmu *pmu;
9448 int event_fd;
9449 int move_group = 0;
9450 int err;
9451 int f_flags = O_RDWR;
9452 int cgroup_fd = -1;
9453
9454 /* for future expandability... */
9455 if (flags & ~PERF_FLAG_ALL)
9456 return -EINVAL;
9457
9458 err = perf_copy_attr(attr_uptr, &attr);
9459 if (err)
9460 return err;
9461
9462 if (!attr.exclude_kernel) {
9463 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9464 return -EACCES;
9465 }
9466
9467 if (attr.freq) {
9468 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9469 return -EINVAL;
9470 } else {
9471 if (attr.sample_period & (1ULL << 63))
9472 return -EINVAL;
9473 }
9474
9475 if (!attr.sample_max_stack)
9476 attr.sample_max_stack = sysctl_perf_event_max_stack;
9477
9478 /*
9479 * In cgroup mode, the pid argument is used to pass the fd
9480 * opened to the cgroup directory in cgroupfs. The cpu argument
9481 * designates the cpu on which to monitor threads from that
9482 * cgroup.
9483 */
9484 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9485 return -EINVAL;
9486
9487 if (flags & PERF_FLAG_FD_CLOEXEC)
9488 f_flags |= O_CLOEXEC;
9489
9490 event_fd = get_unused_fd_flags(f_flags);
9491 if (event_fd < 0)
9492 return event_fd;
9493
9494 if (group_fd != -1) {
9495 err = perf_fget_light(group_fd, &group);
9496 if (err)
9497 goto err_fd;
9498 group_leader = group.file->private_data;
9499 if (flags & PERF_FLAG_FD_OUTPUT)
9500 output_event = group_leader;
9501 if (flags & PERF_FLAG_FD_NO_GROUP)
9502 group_leader = NULL;
9503 }
9504
9505 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9506 task = find_lively_task_by_vpid(pid);
9507 if (IS_ERR(task)) {
9508 err = PTR_ERR(task);
9509 goto err_group_fd;
9510 }
9511 }
9512
9513 if (task && group_leader &&
9514 group_leader->attr.inherit != attr.inherit) {
9515 err = -EINVAL;
9516 goto err_task;
9517 }
9518
9519 get_online_cpus();
9520
9521 if (task) {
9522 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9523 if (err)
9524 goto err_cpus;
9525
9526 /*
9527 * Reuse ptrace permission checks for now.
9528 *
9529 * We must hold cred_guard_mutex across this and any potential
9530 * perf_install_in_context() call for this new event to
9531 * serialize against exec() altering our credentials (and the
9532 * perf_event_exit_task() that could imply).
9533 */
9534 err = -EACCES;
9535 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9536 goto err_cred;
9537 }
9538
9539 if (flags & PERF_FLAG_PID_CGROUP)
9540 cgroup_fd = pid;
9541
9542 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9543 NULL, NULL, cgroup_fd);
9544 if (IS_ERR(event)) {
9545 err = PTR_ERR(event);
9546 goto err_cred;
9547 }
9548
9549 if (is_sampling_event(event)) {
9550 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9551 err = -EOPNOTSUPP;
9552 goto err_alloc;
9553 }
9554 }
9555
9556 /*
9557 * Special case software events and allow them to be part of
9558 * any hardware group.
9559 */
9560 pmu = event->pmu;
9561
9562 if (attr.use_clockid) {
9563 err = perf_event_set_clock(event, attr.clockid);
9564 if (err)
9565 goto err_alloc;
9566 }
9567
9568 if (group_leader &&
9569 (is_software_event(event) != is_software_event(group_leader))) {
9570 if (is_software_event(event)) {
9571 /*
9572 * If event and group_leader are not both a software
9573 * event, and event is, then group leader is not.
9574 *
9575 * Allow the addition of software events to !software
9576 * groups, this is safe because software events never
9577 * fail to schedule.
9578 */
9579 pmu = group_leader->pmu;
9580 } else if (is_software_event(group_leader) &&
9581 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9582 /*
9583 * In case the group is a pure software group, and we
9584 * try to add a hardware event, move the whole group to
9585 * the hardware context.
9586 */
9587 move_group = 1;
9588 }
9589 }
9590
9591 /*
9592 * Get the target context (task or percpu):
9593 */
9594 ctx = find_get_context(pmu, task, event);
9595 if (IS_ERR(ctx)) {
9596 err = PTR_ERR(ctx);
9597 goto err_alloc;
9598 }
9599
9600 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9601 err = -EBUSY;
9602 goto err_context;
9603 }
9604
9605 /*
9606 * Look up the group leader (we will attach this event to it):
9607 */
9608 if (group_leader) {
9609 err = -EINVAL;
9610
9611 /*
9612 * Do not allow a recursive hierarchy (this new sibling
9613 * becoming part of another group-sibling):
9614 */
9615 if (group_leader->group_leader != group_leader)
9616 goto err_context;
9617
9618 /* All events in a group should have the same clock */
9619 if (group_leader->clock != event->clock)
9620 goto err_context;
9621
9622 /*
9623 * Do not allow to attach to a group in a different
9624 * task or CPU context:
9625 */
9626 if (move_group) {
9627 /*
9628 * Make sure we're both on the same task, or both
9629 * per-cpu events.
9630 */
9631 if (group_leader->ctx->task != ctx->task)
9632 goto err_context;
9633
9634 /*
9635 * Make sure we're both events for the same CPU;
9636 * grouping events for different CPUs is broken; since
9637 * you can never concurrently schedule them anyhow.
9638 */
9639 if (group_leader->cpu != event->cpu)
9640 goto err_context;
9641 } else {
9642 if (group_leader->ctx != ctx)
9643 goto err_context;
9644 }
9645
9646 /*
9647 * Only a group leader can be exclusive or pinned
9648 */
9649 if (attr.exclusive || attr.pinned)
9650 goto err_context;
9651 }
9652
9653 if (output_event) {
9654 err = perf_event_set_output(event, output_event);
9655 if (err)
9656 goto err_context;
9657 }
9658
9659 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9660 f_flags);
9661 if (IS_ERR(event_file)) {
9662 err = PTR_ERR(event_file);
9663 event_file = NULL;
9664 goto err_context;
9665 }
9666
9667 if (move_group) {
9668 gctx = group_leader->ctx;
9669 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9670 if (gctx->task == TASK_TOMBSTONE) {
9671 err = -ESRCH;
9672 goto err_locked;
9673 }
9674 } else {
9675 mutex_lock(&ctx->mutex);
9676 }
9677
9678 if (ctx->task == TASK_TOMBSTONE) {
9679 err = -ESRCH;
9680 goto err_locked;
9681 }
9682
9683 if (!perf_event_validate_size(event)) {
9684 err = -E2BIG;
9685 goto err_locked;
9686 }
9687
9688 /*
9689 * Must be under the same ctx::mutex as perf_install_in_context(),
9690 * because we need to serialize with concurrent event creation.
9691 */
9692 if (!exclusive_event_installable(event, ctx)) {
9693 /* exclusive and group stuff are assumed mutually exclusive */
9694 WARN_ON_ONCE(move_group);
9695
9696 err = -EBUSY;
9697 goto err_locked;
9698 }
9699
9700 WARN_ON_ONCE(ctx->parent_ctx);
9701
9702 /*
9703 * This is the point on no return; we cannot fail hereafter. This is
9704 * where we start modifying current state.
9705 */
9706
9707 if (move_group) {
9708 /*
9709 * See perf_event_ctx_lock() for comments on the details
9710 * of swizzling perf_event::ctx.
9711 */
9712 perf_remove_from_context(group_leader, 0);
9713
9714 list_for_each_entry(sibling, &group_leader->sibling_list,
9715 group_entry) {
9716 perf_remove_from_context(sibling, 0);
9717 put_ctx(gctx);
9718 }
9719
9720 /*
9721 * Wait for everybody to stop referencing the events through
9722 * the old lists, before installing it on new lists.
9723 */
9724 synchronize_rcu();
9725
9726 /*
9727 * Install the group siblings before the group leader.
9728 *
9729 * Because a group leader will try and install the entire group
9730 * (through the sibling list, which is still in-tact), we can
9731 * end up with siblings installed in the wrong context.
9732 *
9733 * By installing siblings first we NO-OP because they're not
9734 * reachable through the group lists.
9735 */
9736 list_for_each_entry(sibling, &group_leader->sibling_list,
9737 group_entry) {
9738 perf_event__state_init(sibling);
9739 perf_install_in_context(ctx, sibling, sibling->cpu);
9740 get_ctx(ctx);
9741 }
9742
9743 /*
9744 * Removing from the context ends up with disabled
9745 * event. What we want here is event in the initial
9746 * startup state, ready to be add into new context.
9747 */
9748 perf_event__state_init(group_leader);
9749 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9750 get_ctx(ctx);
9751
9752 /*
9753 * Now that all events are installed in @ctx, nothing
9754 * references @gctx anymore, so drop the last reference we have
9755 * on it.
9756 */
9757 put_ctx(gctx);
9758 }
9759
9760 /*
9761 * Precalculate sample_data sizes; do while holding ctx::mutex such
9762 * that we're serialized against further additions and before
9763 * perf_install_in_context() which is the point the event is active and
9764 * can use these values.
9765 */
9766 perf_event__header_size(event);
9767 perf_event__id_header_size(event);
9768
9769 event->owner = current;
9770
9771 perf_install_in_context(ctx, event, event->cpu);
9772 perf_unpin_context(ctx);
9773
9774 if (move_group)
9775 mutex_unlock(&gctx->mutex);
9776 mutex_unlock(&ctx->mutex);
9777
9778 if (task) {
9779 mutex_unlock(&task->signal->cred_guard_mutex);
9780 put_task_struct(task);
9781 }
9782
9783 put_online_cpus();
9784
9785 mutex_lock(&current->perf_event_mutex);
9786 list_add_tail(&event->owner_entry, &current->perf_event_list);
9787 mutex_unlock(&current->perf_event_mutex);
9788
9789 /*
9790 * Drop the reference on the group_event after placing the
9791 * new event on the sibling_list. This ensures destruction
9792 * of the group leader will find the pointer to itself in
9793 * perf_group_detach().
9794 */
9795 fdput(group);
9796 fd_install(event_fd, event_file);
9797 return event_fd;
9798
9799 err_locked:
9800 if (move_group)
9801 mutex_unlock(&gctx->mutex);
9802 mutex_unlock(&ctx->mutex);
9803 /* err_file: */
9804 fput(event_file);
9805 err_context:
9806 perf_unpin_context(ctx);
9807 put_ctx(ctx);
9808 err_alloc:
9809 /*
9810 * If event_file is set, the fput() above will have called ->release()
9811 * and that will take care of freeing the event.
9812 */
9813 if (!event_file)
9814 free_event(event);
9815 err_cred:
9816 if (task)
9817 mutex_unlock(&task->signal->cred_guard_mutex);
9818 err_cpus:
9819 put_online_cpus();
9820 err_task:
9821 if (task)
9822 put_task_struct(task);
9823 err_group_fd:
9824 fdput(group);
9825 err_fd:
9826 put_unused_fd(event_fd);
9827 return err;
9828 }
9829
9830 /**
9831 * perf_event_create_kernel_counter
9832 *
9833 * @attr: attributes of the counter to create
9834 * @cpu: cpu in which the counter is bound
9835 * @task: task to profile (NULL for percpu)
9836 */
9837 struct perf_event *
9838 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9839 struct task_struct *task,
9840 perf_overflow_handler_t overflow_handler,
9841 void *context)
9842 {
9843 struct perf_event_context *ctx;
9844 struct perf_event *event;
9845 int err;
9846
9847 /*
9848 * Get the target context (task or percpu):
9849 */
9850
9851 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9852 overflow_handler, context, -1);
9853 if (IS_ERR(event)) {
9854 err = PTR_ERR(event);
9855 goto err;
9856 }
9857
9858 /* Mark owner so we could distinguish it from user events. */
9859 event->owner = TASK_TOMBSTONE;
9860
9861 ctx = find_get_context(event->pmu, task, event);
9862 if (IS_ERR(ctx)) {
9863 err = PTR_ERR(ctx);
9864 goto err_free;
9865 }
9866
9867 WARN_ON_ONCE(ctx->parent_ctx);
9868 mutex_lock(&ctx->mutex);
9869 if (ctx->task == TASK_TOMBSTONE) {
9870 err = -ESRCH;
9871 goto err_unlock;
9872 }
9873
9874 if (!exclusive_event_installable(event, ctx)) {
9875 err = -EBUSY;
9876 goto err_unlock;
9877 }
9878
9879 perf_install_in_context(ctx, event, cpu);
9880 perf_unpin_context(ctx);
9881 mutex_unlock(&ctx->mutex);
9882
9883 return event;
9884
9885 err_unlock:
9886 mutex_unlock(&ctx->mutex);
9887 perf_unpin_context(ctx);
9888 put_ctx(ctx);
9889 err_free:
9890 free_event(event);
9891 err:
9892 return ERR_PTR(err);
9893 }
9894 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9895
9896 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9897 {
9898 struct perf_event_context *src_ctx;
9899 struct perf_event_context *dst_ctx;
9900 struct perf_event *event, *tmp;
9901 LIST_HEAD(events);
9902
9903 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9904 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9905
9906 /*
9907 * See perf_event_ctx_lock() for comments on the details
9908 * of swizzling perf_event::ctx.
9909 */
9910 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9911 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9912 event_entry) {
9913 perf_remove_from_context(event, 0);
9914 unaccount_event_cpu(event, src_cpu);
9915 put_ctx(src_ctx);
9916 list_add(&event->migrate_entry, &events);
9917 }
9918
9919 /*
9920 * Wait for the events to quiesce before re-instating them.
9921 */
9922 synchronize_rcu();
9923
9924 /*
9925 * Re-instate events in 2 passes.
9926 *
9927 * Skip over group leaders and only install siblings on this first
9928 * pass, siblings will not get enabled without a leader, however a
9929 * leader will enable its siblings, even if those are still on the old
9930 * context.
9931 */
9932 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9933 if (event->group_leader == event)
9934 continue;
9935
9936 list_del(&event->migrate_entry);
9937 if (event->state >= PERF_EVENT_STATE_OFF)
9938 event->state = PERF_EVENT_STATE_INACTIVE;
9939 account_event_cpu(event, dst_cpu);
9940 perf_install_in_context(dst_ctx, event, dst_cpu);
9941 get_ctx(dst_ctx);
9942 }
9943
9944 /*
9945 * Once all the siblings are setup properly, install the group leaders
9946 * to make it go.
9947 */
9948 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9949 list_del(&event->migrate_entry);
9950 if (event->state >= PERF_EVENT_STATE_OFF)
9951 event->state = PERF_EVENT_STATE_INACTIVE;
9952 account_event_cpu(event, dst_cpu);
9953 perf_install_in_context(dst_ctx, event, dst_cpu);
9954 get_ctx(dst_ctx);
9955 }
9956 mutex_unlock(&dst_ctx->mutex);
9957 mutex_unlock(&src_ctx->mutex);
9958 }
9959 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9960
9961 static void sync_child_event(struct perf_event *child_event,
9962 struct task_struct *child)
9963 {
9964 struct perf_event *parent_event = child_event->parent;
9965 u64 child_val;
9966
9967 if (child_event->attr.inherit_stat)
9968 perf_event_read_event(child_event, child);
9969
9970 child_val = perf_event_count(child_event);
9971
9972 /*
9973 * Add back the child's count to the parent's count:
9974 */
9975 atomic64_add(child_val, &parent_event->child_count);
9976 atomic64_add(child_event->total_time_enabled,
9977 &parent_event->child_total_time_enabled);
9978 atomic64_add(child_event->total_time_running,
9979 &parent_event->child_total_time_running);
9980 }
9981
9982 static void
9983 perf_event_exit_event(struct perf_event *child_event,
9984 struct perf_event_context *child_ctx,
9985 struct task_struct *child)
9986 {
9987 struct perf_event *parent_event = child_event->parent;
9988
9989 /*
9990 * Do not destroy the 'original' grouping; because of the context
9991 * switch optimization the original events could've ended up in a
9992 * random child task.
9993 *
9994 * If we were to destroy the original group, all group related
9995 * operations would cease to function properly after this random
9996 * child dies.
9997 *
9998 * Do destroy all inherited groups, we don't care about those
9999 * and being thorough is better.
10000 */
10001 raw_spin_lock_irq(&child_ctx->lock);
10002 WARN_ON_ONCE(child_ctx->is_active);
10003
10004 if (parent_event)
10005 perf_group_detach(child_event);
10006 list_del_event(child_event, child_ctx);
10007 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10008 raw_spin_unlock_irq(&child_ctx->lock);
10009
10010 /*
10011 * Parent events are governed by their filedesc, retain them.
10012 */
10013 if (!parent_event) {
10014 perf_event_wakeup(child_event);
10015 return;
10016 }
10017 /*
10018 * Child events can be cleaned up.
10019 */
10020
10021 sync_child_event(child_event, child);
10022
10023 /*
10024 * Remove this event from the parent's list
10025 */
10026 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10027 mutex_lock(&parent_event->child_mutex);
10028 list_del_init(&child_event->child_list);
10029 mutex_unlock(&parent_event->child_mutex);
10030
10031 /*
10032 * Kick perf_poll() for is_event_hup().
10033 */
10034 perf_event_wakeup(parent_event);
10035 free_event(child_event);
10036 put_event(parent_event);
10037 }
10038
10039 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10040 {
10041 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10042 struct perf_event *child_event, *next;
10043
10044 WARN_ON_ONCE(child != current);
10045
10046 child_ctx = perf_pin_task_context(child, ctxn);
10047 if (!child_ctx)
10048 return;
10049
10050 /*
10051 * In order to reduce the amount of tricky in ctx tear-down, we hold
10052 * ctx::mutex over the entire thing. This serializes against almost
10053 * everything that wants to access the ctx.
10054 *
10055 * The exception is sys_perf_event_open() /
10056 * perf_event_create_kernel_count() which does find_get_context()
10057 * without ctx::mutex (it cannot because of the move_group double mutex
10058 * lock thing). See the comments in perf_install_in_context().
10059 */
10060 mutex_lock(&child_ctx->mutex);
10061
10062 /*
10063 * In a single ctx::lock section, de-schedule the events and detach the
10064 * context from the task such that we cannot ever get it scheduled back
10065 * in.
10066 */
10067 raw_spin_lock_irq(&child_ctx->lock);
10068 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10069
10070 /*
10071 * Now that the context is inactive, destroy the task <-> ctx relation
10072 * and mark the context dead.
10073 */
10074 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10075 put_ctx(child_ctx); /* cannot be last */
10076 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10077 put_task_struct(current); /* cannot be last */
10078
10079 clone_ctx = unclone_ctx(child_ctx);
10080 raw_spin_unlock_irq(&child_ctx->lock);
10081
10082 if (clone_ctx)
10083 put_ctx(clone_ctx);
10084
10085 /*
10086 * Report the task dead after unscheduling the events so that we
10087 * won't get any samples after PERF_RECORD_EXIT. We can however still
10088 * get a few PERF_RECORD_READ events.
10089 */
10090 perf_event_task(child, child_ctx, 0);
10091
10092 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10093 perf_event_exit_event(child_event, child_ctx, child);
10094
10095 mutex_unlock(&child_ctx->mutex);
10096
10097 put_ctx(child_ctx);
10098 }
10099
10100 /*
10101 * When a child task exits, feed back event values to parent events.
10102 *
10103 * Can be called with cred_guard_mutex held when called from
10104 * install_exec_creds().
10105 */
10106 void perf_event_exit_task(struct task_struct *child)
10107 {
10108 struct perf_event *event, *tmp;
10109 int ctxn;
10110
10111 mutex_lock(&child->perf_event_mutex);
10112 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10113 owner_entry) {
10114 list_del_init(&event->owner_entry);
10115
10116 /*
10117 * Ensure the list deletion is visible before we clear
10118 * the owner, closes a race against perf_release() where
10119 * we need to serialize on the owner->perf_event_mutex.
10120 */
10121 smp_store_release(&event->owner, NULL);
10122 }
10123 mutex_unlock(&child->perf_event_mutex);
10124
10125 for_each_task_context_nr(ctxn)
10126 perf_event_exit_task_context(child, ctxn);
10127
10128 /*
10129 * The perf_event_exit_task_context calls perf_event_task
10130 * with child's task_ctx, which generates EXIT events for
10131 * child contexts and sets child->perf_event_ctxp[] to NULL.
10132 * At this point we need to send EXIT events to cpu contexts.
10133 */
10134 perf_event_task(child, NULL, 0);
10135 }
10136
10137 static void perf_free_event(struct perf_event *event,
10138 struct perf_event_context *ctx)
10139 {
10140 struct perf_event *parent = event->parent;
10141
10142 if (WARN_ON_ONCE(!parent))
10143 return;
10144
10145 mutex_lock(&parent->child_mutex);
10146 list_del_init(&event->child_list);
10147 mutex_unlock(&parent->child_mutex);
10148
10149 put_event(parent);
10150
10151 raw_spin_lock_irq(&ctx->lock);
10152 perf_group_detach(event);
10153 list_del_event(event, ctx);
10154 raw_spin_unlock_irq(&ctx->lock);
10155 free_event(event);
10156 }
10157
10158 /*
10159 * Free an unexposed, unused context as created by inheritance by
10160 * perf_event_init_task below, used by fork() in case of fail.
10161 *
10162 * Not all locks are strictly required, but take them anyway to be nice and
10163 * help out with the lockdep assertions.
10164 */
10165 void perf_event_free_task(struct task_struct *task)
10166 {
10167 struct perf_event_context *ctx;
10168 struct perf_event *event, *tmp;
10169 int ctxn;
10170
10171 for_each_task_context_nr(ctxn) {
10172 ctx = task->perf_event_ctxp[ctxn];
10173 if (!ctx)
10174 continue;
10175
10176 mutex_lock(&ctx->mutex);
10177 again:
10178 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10179 group_entry)
10180 perf_free_event(event, ctx);
10181
10182 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10183 group_entry)
10184 perf_free_event(event, ctx);
10185
10186 if (!list_empty(&ctx->pinned_groups) ||
10187 !list_empty(&ctx->flexible_groups))
10188 goto again;
10189
10190 mutex_unlock(&ctx->mutex);
10191
10192 put_ctx(ctx);
10193 }
10194 }
10195
10196 void perf_event_delayed_put(struct task_struct *task)
10197 {
10198 int ctxn;
10199
10200 for_each_task_context_nr(ctxn)
10201 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10202 }
10203
10204 struct file *perf_event_get(unsigned int fd)
10205 {
10206 struct file *file;
10207
10208 file = fget_raw(fd);
10209 if (!file)
10210 return ERR_PTR(-EBADF);
10211
10212 if (file->f_op != &perf_fops) {
10213 fput(file);
10214 return ERR_PTR(-EBADF);
10215 }
10216
10217 return file;
10218 }
10219
10220 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10221 {
10222 if (!event)
10223 return ERR_PTR(-EINVAL);
10224
10225 return &event->attr;
10226 }
10227
10228 /*
10229 * inherit a event from parent task to child task:
10230 */
10231 static struct perf_event *
10232 inherit_event(struct perf_event *parent_event,
10233 struct task_struct *parent,
10234 struct perf_event_context *parent_ctx,
10235 struct task_struct *child,
10236 struct perf_event *group_leader,
10237 struct perf_event_context *child_ctx)
10238 {
10239 enum perf_event_active_state parent_state = parent_event->state;
10240 struct perf_event *child_event;
10241 unsigned long flags;
10242
10243 /*
10244 * Instead of creating recursive hierarchies of events,
10245 * we link inherited events back to the original parent,
10246 * which has a filp for sure, which we use as the reference
10247 * count:
10248 */
10249 if (parent_event->parent)
10250 parent_event = parent_event->parent;
10251
10252 child_event = perf_event_alloc(&parent_event->attr,
10253 parent_event->cpu,
10254 child,
10255 group_leader, parent_event,
10256 NULL, NULL, -1);
10257 if (IS_ERR(child_event))
10258 return child_event;
10259
10260 /*
10261 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10262 * must be under the same lock in order to serialize against
10263 * perf_event_release_kernel(), such that either we must observe
10264 * is_orphaned_event() or they will observe us on the child_list.
10265 */
10266 mutex_lock(&parent_event->child_mutex);
10267 if (is_orphaned_event(parent_event) ||
10268 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10269 mutex_unlock(&parent_event->child_mutex);
10270 free_event(child_event);
10271 return NULL;
10272 }
10273
10274 get_ctx(child_ctx);
10275
10276 /*
10277 * Make the child state follow the state of the parent event,
10278 * not its attr.disabled bit. We hold the parent's mutex,
10279 * so we won't race with perf_event_{en, dis}able_family.
10280 */
10281 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10282 child_event->state = PERF_EVENT_STATE_INACTIVE;
10283 else
10284 child_event->state = PERF_EVENT_STATE_OFF;
10285
10286 if (parent_event->attr.freq) {
10287 u64 sample_period = parent_event->hw.sample_period;
10288 struct hw_perf_event *hwc = &child_event->hw;
10289
10290 hwc->sample_period = sample_period;
10291 hwc->last_period = sample_period;
10292
10293 local64_set(&hwc->period_left, sample_period);
10294 }
10295
10296 child_event->ctx = child_ctx;
10297 child_event->overflow_handler = parent_event->overflow_handler;
10298 child_event->overflow_handler_context
10299 = parent_event->overflow_handler_context;
10300
10301 /*
10302 * Precalculate sample_data sizes
10303 */
10304 perf_event__header_size(child_event);
10305 perf_event__id_header_size(child_event);
10306
10307 /*
10308 * Link it up in the child's context:
10309 */
10310 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10311 add_event_to_ctx(child_event, child_ctx);
10312 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10313
10314 /*
10315 * Link this into the parent event's child list
10316 */
10317 list_add_tail(&child_event->child_list, &parent_event->child_list);
10318 mutex_unlock(&parent_event->child_mutex);
10319
10320 return child_event;
10321 }
10322
10323 static int inherit_group(struct perf_event *parent_event,
10324 struct task_struct *parent,
10325 struct perf_event_context *parent_ctx,
10326 struct task_struct *child,
10327 struct perf_event_context *child_ctx)
10328 {
10329 struct perf_event *leader;
10330 struct perf_event *sub;
10331 struct perf_event *child_ctr;
10332
10333 leader = inherit_event(parent_event, parent, parent_ctx,
10334 child, NULL, child_ctx);
10335 if (IS_ERR(leader))
10336 return PTR_ERR(leader);
10337 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10338 child_ctr = inherit_event(sub, parent, parent_ctx,
10339 child, leader, child_ctx);
10340 if (IS_ERR(child_ctr))
10341 return PTR_ERR(child_ctr);
10342 }
10343 return 0;
10344 }
10345
10346 static int
10347 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10348 struct perf_event_context *parent_ctx,
10349 struct task_struct *child, int ctxn,
10350 int *inherited_all)
10351 {
10352 int ret;
10353 struct perf_event_context *child_ctx;
10354
10355 if (!event->attr.inherit) {
10356 *inherited_all = 0;
10357 return 0;
10358 }
10359
10360 child_ctx = child->perf_event_ctxp[ctxn];
10361 if (!child_ctx) {
10362 /*
10363 * This is executed from the parent task context, so
10364 * inherit events that have been marked for cloning.
10365 * First allocate and initialize a context for the
10366 * child.
10367 */
10368
10369 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10370 if (!child_ctx)
10371 return -ENOMEM;
10372
10373 child->perf_event_ctxp[ctxn] = child_ctx;
10374 }
10375
10376 ret = inherit_group(event, parent, parent_ctx,
10377 child, child_ctx);
10378
10379 if (ret)
10380 *inherited_all = 0;
10381
10382 return ret;
10383 }
10384
10385 /*
10386 * Initialize the perf_event context in task_struct
10387 */
10388 static int perf_event_init_context(struct task_struct *child, int ctxn)
10389 {
10390 struct perf_event_context *child_ctx, *parent_ctx;
10391 struct perf_event_context *cloned_ctx;
10392 struct perf_event *event;
10393 struct task_struct *parent = current;
10394 int inherited_all = 1;
10395 unsigned long flags;
10396 int ret = 0;
10397
10398 if (likely(!parent->perf_event_ctxp[ctxn]))
10399 return 0;
10400
10401 /*
10402 * If the parent's context is a clone, pin it so it won't get
10403 * swapped under us.
10404 */
10405 parent_ctx = perf_pin_task_context(parent, ctxn);
10406 if (!parent_ctx)
10407 return 0;
10408
10409 /*
10410 * No need to check if parent_ctx != NULL here; since we saw
10411 * it non-NULL earlier, the only reason for it to become NULL
10412 * is if we exit, and since we're currently in the middle of
10413 * a fork we can't be exiting at the same time.
10414 */
10415
10416 /*
10417 * Lock the parent list. No need to lock the child - not PID
10418 * hashed yet and not running, so nobody can access it.
10419 */
10420 mutex_lock(&parent_ctx->mutex);
10421
10422 /*
10423 * We dont have to disable NMIs - we are only looking at
10424 * the list, not manipulating it:
10425 */
10426 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10427 ret = inherit_task_group(event, parent, parent_ctx,
10428 child, ctxn, &inherited_all);
10429 if (ret)
10430 break;
10431 }
10432
10433 /*
10434 * We can't hold ctx->lock when iterating the ->flexible_group list due
10435 * to allocations, but we need to prevent rotation because
10436 * rotate_ctx() will change the list from interrupt context.
10437 */
10438 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10439 parent_ctx->rotate_disable = 1;
10440 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10441
10442 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10443 ret = inherit_task_group(event, parent, parent_ctx,
10444 child, ctxn, &inherited_all);
10445 if (ret)
10446 break;
10447 }
10448
10449 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10450 parent_ctx->rotate_disable = 0;
10451
10452 child_ctx = child->perf_event_ctxp[ctxn];
10453
10454 if (child_ctx && inherited_all) {
10455 /*
10456 * Mark the child context as a clone of the parent
10457 * context, or of whatever the parent is a clone of.
10458 *
10459 * Note that if the parent is a clone, the holding of
10460 * parent_ctx->lock avoids it from being uncloned.
10461 */
10462 cloned_ctx = parent_ctx->parent_ctx;
10463 if (cloned_ctx) {
10464 child_ctx->parent_ctx = cloned_ctx;
10465 child_ctx->parent_gen = parent_ctx->parent_gen;
10466 } else {
10467 child_ctx->parent_ctx = parent_ctx;
10468 child_ctx->parent_gen = parent_ctx->generation;
10469 }
10470 get_ctx(child_ctx->parent_ctx);
10471 }
10472
10473 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10474 mutex_unlock(&parent_ctx->mutex);
10475
10476 perf_unpin_context(parent_ctx);
10477 put_ctx(parent_ctx);
10478
10479 return ret;
10480 }
10481
10482 /*
10483 * Initialize the perf_event context in task_struct
10484 */
10485 int perf_event_init_task(struct task_struct *child)
10486 {
10487 int ctxn, ret;
10488
10489 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10490 mutex_init(&child->perf_event_mutex);
10491 INIT_LIST_HEAD(&child->perf_event_list);
10492
10493 for_each_task_context_nr(ctxn) {
10494 ret = perf_event_init_context(child, ctxn);
10495 if (ret) {
10496 perf_event_free_task(child);
10497 return ret;
10498 }
10499 }
10500
10501 return 0;
10502 }
10503
10504 static void __init perf_event_init_all_cpus(void)
10505 {
10506 struct swevent_htable *swhash;
10507 int cpu;
10508
10509 for_each_possible_cpu(cpu) {
10510 swhash = &per_cpu(swevent_htable, cpu);
10511 mutex_init(&swhash->hlist_mutex);
10512 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10513
10514 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10515 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10516 }
10517 }
10518
10519 int perf_event_init_cpu(unsigned int cpu)
10520 {
10521 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10522
10523 mutex_lock(&swhash->hlist_mutex);
10524 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10525 struct swevent_hlist *hlist;
10526
10527 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10528 WARN_ON(!hlist);
10529 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10530 }
10531 mutex_unlock(&swhash->hlist_mutex);
10532 return 0;
10533 }
10534
10535 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10536 static void __perf_event_exit_context(void *__info)
10537 {
10538 struct perf_event_context *ctx = __info;
10539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10540 struct perf_event *event;
10541
10542 raw_spin_lock(&ctx->lock);
10543 list_for_each_entry(event, &ctx->event_list, event_entry)
10544 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10545 raw_spin_unlock(&ctx->lock);
10546 }
10547
10548 static void perf_event_exit_cpu_context(int cpu)
10549 {
10550 struct perf_event_context *ctx;
10551 struct pmu *pmu;
10552 int idx;
10553
10554 idx = srcu_read_lock(&pmus_srcu);
10555 list_for_each_entry_rcu(pmu, &pmus, entry) {
10556 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10557
10558 mutex_lock(&ctx->mutex);
10559 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10560 mutex_unlock(&ctx->mutex);
10561 }
10562 srcu_read_unlock(&pmus_srcu, idx);
10563 }
10564 #else
10565
10566 static void perf_event_exit_cpu_context(int cpu) { }
10567
10568 #endif
10569
10570 int perf_event_exit_cpu(unsigned int cpu)
10571 {
10572 perf_event_exit_cpu_context(cpu);
10573 return 0;
10574 }
10575
10576 static int
10577 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10578 {
10579 int cpu;
10580
10581 for_each_online_cpu(cpu)
10582 perf_event_exit_cpu(cpu);
10583
10584 return NOTIFY_OK;
10585 }
10586
10587 /*
10588 * Run the perf reboot notifier at the very last possible moment so that
10589 * the generic watchdog code runs as long as possible.
10590 */
10591 static struct notifier_block perf_reboot_notifier = {
10592 .notifier_call = perf_reboot,
10593 .priority = INT_MIN,
10594 };
10595
10596 void __init perf_event_init(void)
10597 {
10598 int ret;
10599
10600 idr_init(&pmu_idr);
10601
10602 perf_event_init_all_cpus();
10603 init_srcu_struct(&pmus_srcu);
10604 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10605 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10606 perf_pmu_register(&perf_task_clock, NULL, -1);
10607 perf_tp_register();
10608 perf_event_init_cpu(smp_processor_id());
10609 register_reboot_notifier(&perf_reboot_notifier);
10610
10611 ret = init_hw_breakpoint();
10612 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10613
10614 /*
10615 * Build time assertion that we keep the data_head at the intended
10616 * location. IOW, validation we got the __reserved[] size right.
10617 */
10618 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10619 != 1024);
10620 }
10621
10622 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10623 char *page)
10624 {
10625 struct perf_pmu_events_attr *pmu_attr =
10626 container_of(attr, struct perf_pmu_events_attr, attr);
10627
10628 if (pmu_attr->event_str)
10629 return sprintf(page, "%s\n", pmu_attr->event_str);
10630
10631 return 0;
10632 }
10633 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10634
10635 static int __init perf_event_sysfs_init(void)
10636 {
10637 struct pmu *pmu;
10638 int ret;
10639
10640 mutex_lock(&pmus_lock);
10641
10642 ret = bus_register(&pmu_bus);
10643 if (ret)
10644 goto unlock;
10645
10646 list_for_each_entry(pmu, &pmus, entry) {
10647 if (!pmu->name || pmu->type < 0)
10648 continue;
10649
10650 ret = pmu_dev_alloc(pmu);
10651 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10652 }
10653 pmu_bus_running = 1;
10654 ret = 0;
10655
10656 unlock:
10657 mutex_unlock(&pmus_lock);
10658
10659 return ret;
10660 }
10661 device_initcall(perf_event_sysfs_init);
10662
10663 #ifdef CONFIG_CGROUP_PERF
10664 static struct cgroup_subsys_state *
10665 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10666 {
10667 struct perf_cgroup *jc;
10668
10669 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10670 if (!jc)
10671 return ERR_PTR(-ENOMEM);
10672
10673 jc->info = alloc_percpu(struct perf_cgroup_info);
10674 if (!jc->info) {
10675 kfree(jc);
10676 return ERR_PTR(-ENOMEM);
10677 }
10678
10679 return &jc->css;
10680 }
10681
10682 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10683 {
10684 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10685
10686 free_percpu(jc->info);
10687 kfree(jc);
10688 }
10689
10690 static int __perf_cgroup_move(void *info)
10691 {
10692 struct task_struct *task = info;
10693 rcu_read_lock();
10694 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10695 rcu_read_unlock();
10696 return 0;
10697 }
10698
10699 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10700 {
10701 struct task_struct *task;
10702 struct cgroup_subsys_state *css;
10703
10704 cgroup_taskset_for_each(task, css, tset)
10705 task_function_call(task, __perf_cgroup_move, task);
10706 }
10707
10708 struct cgroup_subsys perf_event_cgrp_subsys = {
10709 .css_alloc = perf_cgroup_css_alloc,
10710 .css_free = perf_cgroup_css_free,
10711 .attach = perf_cgroup_attach,
10712 };
10713 #endif /* CONFIG_CGROUP_PERF */
This page took 0.341251 seconds and 6 git commands to generate.