mm: convert i_mmap_mutex to rwsem
[deliverable/linux.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87 };
88
89 struct return_instance {
90 struct uprobe *uprobe;
91 unsigned long func;
92 unsigned long orig_ret_vaddr; /* original return address */
93 bool chained; /* true, if instance is nested */
94
95 struct return_instance *next; /* keep as stack */
96 };
97
98 /*
99 * Execute out of line area: anonymous executable mapping installed
100 * by the probed task to execute the copy of the original instruction
101 * mangled by set_swbp().
102 *
103 * On a breakpoint hit, thread contests for a slot. It frees the
104 * slot after singlestep. Currently a fixed number of slots are
105 * allocated.
106 */
107 struct xol_area {
108 wait_queue_head_t wq; /* if all slots are busy */
109 atomic_t slot_count; /* number of in-use slots */
110 unsigned long *bitmap; /* 0 = free slot */
111 struct page *page;
112
113 /*
114 * We keep the vma's vm_start rather than a pointer to the vma
115 * itself. The probed process or a naughty kernel module could make
116 * the vma go away, and we must handle that reasonably gracefully.
117 */
118 unsigned long vaddr; /* Page(s) of instruction slots */
119 };
120
121 /*
122 * valid_vma: Verify if the specified vma is an executable vma
123 * Relax restrictions while unregistering: vm_flags might have
124 * changed after breakpoint was inserted.
125 * - is_register: indicates if we are in register context.
126 * - Return 1 if the specified virtual address is in an
127 * executable vma.
128 */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132
133 if (is_register)
134 flags |= VM_WRITE;
135
136 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148
149 /**
150 * __replace_page - replace page in vma by new page.
151 * based on replace_page in mm/ksm.c
152 *
153 * @vma: vma that holds the pte pointing to page
154 * @addr: address the old @page is mapped at
155 * @page: the cowed page we are replacing by kpage
156 * @kpage: the modified page we replace page by
157 *
158 * Returns 0 on success, -EFAULT on failure.
159 */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 struct page *page, struct page *kpage)
162 {
163 struct mm_struct *mm = vma->vm_mm;
164 spinlock_t *ptl;
165 pte_t *ptep;
166 int err;
167 /* For mmu_notifiers */
168 const unsigned long mmun_start = addr;
169 const unsigned long mmun_end = addr + PAGE_SIZE;
170 struct mem_cgroup *memcg;
171
172 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
173 if (err)
174 return err;
175
176 /* For try_to_free_swap() and munlock_vma_page() below */
177 lock_page(page);
178
179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 err = -EAGAIN;
181 ptep = page_check_address(page, mm, addr, &ptl, 0);
182 if (!ptep)
183 goto unlock;
184
185 get_page(kpage);
186 page_add_new_anon_rmap(kpage, vma, addr);
187 mem_cgroup_commit_charge(kpage, memcg, false);
188 lru_cache_add_active_or_unevictable(kpage, vma);
189
190 if (!PageAnon(page)) {
191 dec_mm_counter(mm, MM_FILEPAGES);
192 inc_mm_counter(mm, MM_ANONPAGES);
193 }
194
195 flush_cache_page(vma, addr, pte_pfn(*ptep));
196 ptep_clear_flush(vma, addr, ptep);
197 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
198
199 page_remove_rmap(page);
200 if (!page_mapped(page))
201 try_to_free_swap(page);
202 pte_unmap_unlock(ptep, ptl);
203
204 if (vma->vm_flags & VM_LOCKED)
205 munlock_vma_page(page);
206 put_page(page);
207
208 err = 0;
209 unlock:
210 mem_cgroup_cancel_charge(kpage, memcg);
211 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
212 unlock_page(page);
213 return err;
214 }
215
216 /**
217 * is_swbp_insn - check if instruction is breakpoint instruction.
218 * @insn: instruction to be checked.
219 * Default implementation of is_swbp_insn
220 * Returns true if @insn is a breakpoint instruction.
221 */
222 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223 {
224 return *insn == UPROBE_SWBP_INSN;
225 }
226
227 /**
228 * is_trap_insn - check if instruction is breakpoint instruction.
229 * @insn: instruction to be checked.
230 * Default implementation of is_trap_insn
231 * Returns true if @insn is a breakpoint instruction.
232 *
233 * This function is needed for the case where an architecture has multiple
234 * trap instructions (like powerpc).
235 */
236 bool __weak is_trap_insn(uprobe_opcode_t *insn)
237 {
238 return is_swbp_insn(insn);
239 }
240
241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242 {
243 void *kaddr = kmap_atomic(page);
244 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245 kunmap_atomic(kaddr);
246 }
247
248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249 {
250 void *kaddr = kmap_atomic(page);
251 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252 kunmap_atomic(kaddr);
253 }
254
255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256 {
257 uprobe_opcode_t old_opcode;
258 bool is_swbp;
259
260 /*
261 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262 * We do not check if it is any other 'trap variant' which could
263 * be conditional trap instruction such as the one powerpc supports.
264 *
265 * The logic is that we do not care if the underlying instruction
266 * is a trap variant; uprobes always wins over any other (gdb)
267 * breakpoint.
268 */
269 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270 is_swbp = is_swbp_insn(&old_opcode);
271
272 if (is_swbp_insn(new_opcode)) {
273 if (is_swbp) /* register: already installed? */
274 return 0;
275 } else {
276 if (!is_swbp) /* unregister: was it changed by us? */
277 return 0;
278 }
279
280 return 1;
281 }
282
283 /*
284 * NOTE:
285 * Expect the breakpoint instruction to be the smallest size instruction for
286 * the architecture. If an arch has variable length instruction and the
287 * breakpoint instruction is not of the smallest length instruction
288 * supported by that architecture then we need to modify is_trap_at_addr and
289 * uprobe_write_opcode accordingly. This would never be a problem for archs
290 * that have fixed length instructions.
291 *
292 * uprobe_write_opcode - write the opcode at a given virtual address.
293 * @mm: the probed process address space.
294 * @vaddr: the virtual address to store the opcode.
295 * @opcode: opcode to be written at @vaddr.
296 *
297 * Called with mm->mmap_sem held for write.
298 * Return 0 (success) or a negative errno.
299 */
300 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
301 uprobe_opcode_t opcode)
302 {
303 struct page *old_page, *new_page;
304 struct vm_area_struct *vma;
305 int ret;
306
307 retry:
308 /* Read the page with vaddr into memory */
309 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
310 if (ret <= 0)
311 return ret;
312
313 ret = verify_opcode(old_page, vaddr, &opcode);
314 if (ret <= 0)
315 goto put_old;
316
317 ret = anon_vma_prepare(vma);
318 if (ret)
319 goto put_old;
320
321 ret = -ENOMEM;
322 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
323 if (!new_page)
324 goto put_old;
325
326 __SetPageUptodate(new_page);
327 copy_highpage(new_page, old_page);
328 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
329
330 ret = __replace_page(vma, vaddr, old_page, new_page);
331 page_cache_release(new_page);
332 put_old:
333 put_page(old_page);
334
335 if (unlikely(ret == -EAGAIN))
336 goto retry;
337 return ret;
338 }
339
340 /**
341 * set_swbp - store breakpoint at a given address.
342 * @auprobe: arch specific probepoint information.
343 * @mm: the probed process address space.
344 * @vaddr: the virtual address to insert the opcode.
345 *
346 * For mm @mm, store the breakpoint instruction at @vaddr.
347 * Return 0 (success) or a negative errno.
348 */
349 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
350 {
351 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
352 }
353
354 /**
355 * set_orig_insn - Restore the original instruction.
356 * @mm: the probed process address space.
357 * @auprobe: arch specific probepoint information.
358 * @vaddr: the virtual address to insert the opcode.
359 *
360 * For mm @mm, restore the original opcode (opcode) at @vaddr.
361 * Return 0 (success) or a negative errno.
362 */
363 int __weak
364 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365 {
366 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
367 }
368
369 static int match_uprobe(struct uprobe *l, struct uprobe *r)
370 {
371 if (l->inode < r->inode)
372 return -1;
373
374 if (l->inode > r->inode)
375 return 1;
376
377 if (l->offset < r->offset)
378 return -1;
379
380 if (l->offset > r->offset)
381 return 1;
382
383 return 0;
384 }
385
386 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387 {
388 struct uprobe u = { .inode = inode, .offset = offset };
389 struct rb_node *n = uprobes_tree.rb_node;
390 struct uprobe *uprobe;
391 int match;
392
393 while (n) {
394 uprobe = rb_entry(n, struct uprobe, rb_node);
395 match = match_uprobe(&u, uprobe);
396 if (!match) {
397 atomic_inc(&uprobe->ref);
398 return uprobe;
399 }
400
401 if (match < 0)
402 n = n->rb_left;
403 else
404 n = n->rb_right;
405 }
406 return NULL;
407 }
408
409 /*
410 * Find a uprobe corresponding to a given inode:offset
411 * Acquires uprobes_treelock
412 */
413 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414 {
415 struct uprobe *uprobe;
416
417 spin_lock(&uprobes_treelock);
418 uprobe = __find_uprobe(inode, offset);
419 spin_unlock(&uprobes_treelock);
420
421 return uprobe;
422 }
423
424 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
425 {
426 struct rb_node **p = &uprobes_tree.rb_node;
427 struct rb_node *parent = NULL;
428 struct uprobe *u;
429 int match;
430
431 while (*p) {
432 parent = *p;
433 u = rb_entry(parent, struct uprobe, rb_node);
434 match = match_uprobe(uprobe, u);
435 if (!match) {
436 atomic_inc(&u->ref);
437 return u;
438 }
439
440 if (match < 0)
441 p = &parent->rb_left;
442 else
443 p = &parent->rb_right;
444
445 }
446
447 u = NULL;
448 rb_link_node(&uprobe->rb_node, parent, p);
449 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450 /* get access + creation ref */
451 atomic_set(&uprobe->ref, 2);
452
453 return u;
454 }
455
456 /*
457 * Acquire uprobes_treelock.
458 * Matching uprobe already exists in rbtree;
459 * increment (access refcount) and return the matching uprobe.
460 *
461 * No matching uprobe; insert the uprobe in rb_tree;
462 * get a double refcount (access + creation) and return NULL.
463 */
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 {
466 struct uprobe *u;
467
468 spin_lock(&uprobes_treelock);
469 u = __insert_uprobe(uprobe);
470 spin_unlock(&uprobes_treelock);
471
472 return u;
473 }
474
475 static void put_uprobe(struct uprobe *uprobe)
476 {
477 if (atomic_dec_and_test(&uprobe->ref))
478 kfree(uprobe);
479 }
480
481 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
482 {
483 struct uprobe *uprobe, *cur_uprobe;
484
485 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
486 if (!uprobe)
487 return NULL;
488
489 uprobe->inode = igrab(inode);
490 uprobe->offset = offset;
491 init_rwsem(&uprobe->register_rwsem);
492 init_rwsem(&uprobe->consumer_rwsem);
493
494 /* add to uprobes_tree, sorted on inode:offset */
495 cur_uprobe = insert_uprobe(uprobe);
496 /* a uprobe exists for this inode:offset combination */
497 if (cur_uprobe) {
498 kfree(uprobe);
499 uprobe = cur_uprobe;
500 iput(inode);
501 }
502
503 return uprobe;
504 }
505
506 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
507 {
508 down_write(&uprobe->consumer_rwsem);
509 uc->next = uprobe->consumers;
510 uprobe->consumers = uc;
511 up_write(&uprobe->consumer_rwsem);
512 }
513
514 /*
515 * For uprobe @uprobe, delete the consumer @uc.
516 * Return true if the @uc is deleted successfully
517 * or return false.
518 */
519 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
520 {
521 struct uprobe_consumer **con;
522 bool ret = false;
523
524 down_write(&uprobe->consumer_rwsem);
525 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
526 if (*con == uc) {
527 *con = uc->next;
528 ret = true;
529 break;
530 }
531 }
532 up_write(&uprobe->consumer_rwsem);
533
534 return ret;
535 }
536
537 static int __copy_insn(struct address_space *mapping, struct file *filp,
538 void *insn, int nbytes, loff_t offset)
539 {
540 struct page *page;
541 /*
542 * Ensure that the page that has the original instruction is populated
543 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
544 * see uprobe_register().
545 */
546 if (mapping->a_ops->readpage)
547 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
548 else
549 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
550 if (IS_ERR(page))
551 return PTR_ERR(page);
552
553 copy_from_page(page, offset, insn, nbytes);
554 page_cache_release(page);
555
556 return 0;
557 }
558
559 static int copy_insn(struct uprobe *uprobe, struct file *filp)
560 {
561 struct address_space *mapping = uprobe->inode->i_mapping;
562 loff_t offs = uprobe->offset;
563 void *insn = &uprobe->arch.insn;
564 int size = sizeof(uprobe->arch.insn);
565 int len, err = -EIO;
566
567 /* Copy only available bytes, -EIO if nothing was read */
568 do {
569 if (offs >= i_size_read(uprobe->inode))
570 break;
571
572 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
573 err = __copy_insn(mapping, filp, insn, len, offs);
574 if (err)
575 break;
576
577 insn += len;
578 offs += len;
579 size -= len;
580 } while (size);
581
582 return err;
583 }
584
585 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
586 struct mm_struct *mm, unsigned long vaddr)
587 {
588 int ret = 0;
589
590 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591 return ret;
592
593 /* TODO: move this into _register, until then we abuse this sem. */
594 down_write(&uprobe->consumer_rwsem);
595 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 goto out;
597
598 ret = copy_insn(uprobe, file);
599 if (ret)
600 goto out;
601
602 ret = -ENOTSUPP;
603 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
604 goto out;
605
606 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
607 if (ret)
608 goto out;
609
610 /* uprobe_write_opcode() assumes we don't cross page boundary */
611 BUG_ON((uprobe->offset & ~PAGE_MASK) +
612 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
613
614 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
615 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
616
617 out:
618 up_write(&uprobe->consumer_rwsem);
619
620 return ret;
621 }
622
623 static inline bool consumer_filter(struct uprobe_consumer *uc,
624 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625 {
626 return !uc->filter || uc->filter(uc, ctx, mm);
627 }
628
629 static bool filter_chain(struct uprobe *uprobe,
630 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
631 {
632 struct uprobe_consumer *uc;
633 bool ret = false;
634
635 down_read(&uprobe->consumer_rwsem);
636 for (uc = uprobe->consumers; uc; uc = uc->next) {
637 ret = consumer_filter(uc, ctx, mm);
638 if (ret)
639 break;
640 }
641 up_read(&uprobe->consumer_rwsem);
642
643 return ret;
644 }
645
646 static int
647 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
648 struct vm_area_struct *vma, unsigned long vaddr)
649 {
650 bool first_uprobe;
651 int ret;
652
653 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
654 if (ret)
655 return ret;
656
657 /*
658 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
659 * the task can hit this breakpoint right after __replace_page().
660 */
661 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
662 if (first_uprobe)
663 set_bit(MMF_HAS_UPROBES, &mm->flags);
664
665 ret = set_swbp(&uprobe->arch, mm, vaddr);
666 if (!ret)
667 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
668 else if (first_uprobe)
669 clear_bit(MMF_HAS_UPROBES, &mm->flags);
670
671 return ret;
672 }
673
674 static int
675 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
676 {
677 set_bit(MMF_RECALC_UPROBES, &mm->flags);
678 return set_orig_insn(&uprobe->arch, mm, vaddr);
679 }
680
681 static inline bool uprobe_is_active(struct uprobe *uprobe)
682 {
683 return !RB_EMPTY_NODE(&uprobe->rb_node);
684 }
685 /*
686 * There could be threads that have already hit the breakpoint. They
687 * will recheck the current insn and restart if find_uprobe() fails.
688 * See find_active_uprobe().
689 */
690 static void delete_uprobe(struct uprobe *uprobe)
691 {
692 if (WARN_ON(!uprobe_is_active(uprobe)))
693 return;
694
695 spin_lock(&uprobes_treelock);
696 rb_erase(&uprobe->rb_node, &uprobes_tree);
697 spin_unlock(&uprobes_treelock);
698 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
699 iput(uprobe->inode);
700 put_uprobe(uprobe);
701 }
702
703 struct map_info {
704 struct map_info *next;
705 struct mm_struct *mm;
706 unsigned long vaddr;
707 };
708
709 static inline struct map_info *free_map_info(struct map_info *info)
710 {
711 struct map_info *next = info->next;
712 kfree(info);
713 return next;
714 }
715
716 static struct map_info *
717 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
718 {
719 unsigned long pgoff = offset >> PAGE_SHIFT;
720 struct vm_area_struct *vma;
721 struct map_info *curr = NULL;
722 struct map_info *prev = NULL;
723 struct map_info *info;
724 int more = 0;
725
726 again:
727 i_mmap_lock_write(mapping);
728 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
729 if (!valid_vma(vma, is_register))
730 continue;
731
732 if (!prev && !more) {
733 /*
734 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
735 * reclaim. This is optimistic, no harm done if it fails.
736 */
737 prev = kmalloc(sizeof(struct map_info),
738 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
739 if (prev)
740 prev->next = NULL;
741 }
742 if (!prev) {
743 more++;
744 continue;
745 }
746
747 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
748 continue;
749
750 info = prev;
751 prev = prev->next;
752 info->next = curr;
753 curr = info;
754
755 info->mm = vma->vm_mm;
756 info->vaddr = offset_to_vaddr(vma, offset);
757 }
758 i_mmap_unlock_write(mapping);
759
760 if (!more)
761 goto out;
762
763 prev = curr;
764 while (curr) {
765 mmput(curr->mm);
766 curr = curr->next;
767 }
768
769 do {
770 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
771 if (!info) {
772 curr = ERR_PTR(-ENOMEM);
773 goto out;
774 }
775 info->next = prev;
776 prev = info;
777 } while (--more);
778
779 goto again;
780 out:
781 while (prev)
782 prev = free_map_info(prev);
783 return curr;
784 }
785
786 static int
787 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
788 {
789 bool is_register = !!new;
790 struct map_info *info;
791 int err = 0;
792
793 percpu_down_write(&dup_mmap_sem);
794 info = build_map_info(uprobe->inode->i_mapping,
795 uprobe->offset, is_register);
796 if (IS_ERR(info)) {
797 err = PTR_ERR(info);
798 goto out;
799 }
800
801 while (info) {
802 struct mm_struct *mm = info->mm;
803 struct vm_area_struct *vma;
804
805 if (err && is_register)
806 goto free;
807
808 down_write(&mm->mmap_sem);
809 vma = find_vma(mm, info->vaddr);
810 if (!vma || !valid_vma(vma, is_register) ||
811 file_inode(vma->vm_file) != uprobe->inode)
812 goto unlock;
813
814 if (vma->vm_start > info->vaddr ||
815 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
816 goto unlock;
817
818 if (is_register) {
819 /* consult only the "caller", new consumer. */
820 if (consumer_filter(new,
821 UPROBE_FILTER_REGISTER, mm))
822 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
823 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
824 if (!filter_chain(uprobe,
825 UPROBE_FILTER_UNREGISTER, mm))
826 err |= remove_breakpoint(uprobe, mm, info->vaddr);
827 }
828
829 unlock:
830 up_write(&mm->mmap_sem);
831 free:
832 mmput(mm);
833 info = free_map_info(info);
834 }
835 out:
836 percpu_up_write(&dup_mmap_sem);
837 return err;
838 }
839
840 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
841 {
842 consumer_add(uprobe, uc);
843 return register_for_each_vma(uprobe, uc);
844 }
845
846 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
847 {
848 int err;
849
850 if (WARN_ON(!consumer_del(uprobe, uc)))
851 return;
852
853 err = register_for_each_vma(uprobe, NULL);
854 /* TODO : cant unregister? schedule a worker thread */
855 if (!uprobe->consumers && !err)
856 delete_uprobe(uprobe);
857 }
858
859 /*
860 * uprobe_register - register a probe
861 * @inode: the file in which the probe has to be placed.
862 * @offset: offset from the start of the file.
863 * @uc: information on howto handle the probe..
864 *
865 * Apart from the access refcount, uprobe_register() takes a creation
866 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
867 * inserted into the rbtree (i.e first consumer for a @inode:@offset
868 * tuple). Creation refcount stops uprobe_unregister from freeing the
869 * @uprobe even before the register operation is complete. Creation
870 * refcount is released when the last @uc for the @uprobe
871 * unregisters.
872 *
873 * Return errno if it cannot successully install probes
874 * else return 0 (success)
875 */
876 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878 struct uprobe *uprobe;
879 int ret;
880
881 /* Uprobe must have at least one set consumer */
882 if (!uc->handler && !uc->ret_handler)
883 return -EINVAL;
884
885 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
886 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
887 return -EIO;
888 /* Racy, just to catch the obvious mistakes */
889 if (offset > i_size_read(inode))
890 return -EINVAL;
891
892 retry:
893 uprobe = alloc_uprobe(inode, offset);
894 if (!uprobe)
895 return -ENOMEM;
896 /*
897 * We can race with uprobe_unregister()->delete_uprobe().
898 * Check uprobe_is_active() and retry if it is false.
899 */
900 down_write(&uprobe->register_rwsem);
901 ret = -EAGAIN;
902 if (likely(uprobe_is_active(uprobe))) {
903 ret = __uprobe_register(uprobe, uc);
904 if (ret)
905 __uprobe_unregister(uprobe, uc);
906 }
907 up_write(&uprobe->register_rwsem);
908 put_uprobe(uprobe);
909
910 if (unlikely(ret == -EAGAIN))
911 goto retry;
912 return ret;
913 }
914 EXPORT_SYMBOL_GPL(uprobe_register);
915
916 /*
917 * uprobe_apply - unregister a already registered probe.
918 * @inode: the file in which the probe has to be removed.
919 * @offset: offset from the start of the file.
920 * @uc: consumer which wants to add more or remove some breakpoints
921 * @add: add or remove the breakpoints
922 */
923 int uprobe_apply(struct inode *inode, loff_t offset,
924 struct uprobe_consumer *uc, bool add)
925 {
926 struct uprobe *uprobe;
927 struct uprobe_consumer *con;
928 int ret = -ENOENT;
929
930 uprobe = find_uprobe(inode, offset);
931 if (WARN_ON(!uprobe))
932 return ret;
933
934 down_write(&uprobe->register_rwsem);
935 for (con = uprobe->consumers; con && con != uc ; con = con->next)
936 ;
937 if (con)
938 ret = register_for_each_vma(uprobe, add ? uc : NULL);
939 up_write(&uprobe->register_rwsem);
940 put_uprobe(uprobe);
941
942 return ret;
943 }
944
945 /*
946 * uprobe_unregister - unregister a already registered probe.
947 * @inode: the file in which the probe has to be removed.
948 * @offset: offset from the start of the file.
949 * @uc: identify which probe if multiple probes are colocated.
950 */
951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 {
953 struct uprobe *uprobe;
954
955 uprobe = find_uprobe(inode, offset);
956 if (WARN_ON(!uprobe))
957 return;
958
959 down_write(&uprobe->register_rwsem);
960 __uprobe_unregister(uprobe, uc);
961 up_write(&uprobe->register_rwsem);
962 put_uprobe(uprobe);
963 }
964 EXPORT_SYMBOL_GPL(uprobe_unregister);
965
966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967 {
968 struct vm_area_struct *vma;
969 int err = 0;
970
971 down_read(&mm->mmap_sem);
972 for (vma = mm->mmap; vma; vma = vma->vm_next) {
973 unsigned long vaddr;
974 loff_t offset;
975
976 if (!valid_vma(vma, false) ||
977 file_inode(vma->vm_file) != uprobe->inode)
978 continue;
979
980 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981 if (uprobe->offset < offset ||
982 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
983 continue;
984
985 vaddr = offset_to_vaddr(vma, uprobe->offset);
986 err |= remove_breakpoint(uprobe, mm, vaddr);
987 }
988 up_read(&mm->mmap_sem);
989
990 return err;
991 }
992
993 static struct rb_node *
994 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995 {
996 struct rb_node *n = uprobes_tree.rb_node;
997
998 while (n) {
999 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000
1001 if (inode < u->inode) {
1002 n = n->rb_left;
1003 } else if (inode > u->inode) {
1004 n = n->rb_right;
1005 } else {
1006 if (max < u->offset)
1007 n = n->rb_left;
1008 else if (min > u->offset)
1009 n = n->rb_right;
1010 else
1011 break;
1012 }
1013 }
1014
1015 return n;
1016 }
1017
1018 /*
1019 * For a given range in vma, build a list of probes that need to be inserted.
1020 */
1021 static void build_probe_list(struct inode *inode,
1022 struct vm_area_struct *vma,
1023 unsigned long start, unsigned long end,
1024 struct list_head *head)
1025 {
1026 loff_t min, max;
1027 struct rb_node *n, *t;
1028 struct uprobe *u;
1029
1030 INIT_LIST_HEAD(head);
1031 min = vaddr_to_offset(vma, start);
1032 max = min + (end - start) - 1;
1033
1034 spin_lock(&uprobes_treelock);
1035 n = find_node_in_range(inode, min, max);
1036 if (n) {
1037 for (t = n; t; t = rb_prev(t)) {
1038 u = rb_entry(t, struct uprobe, rb_node);
1039 if (u->inode != inode || u->offset < min)
1040 break;
1041 list_add(&u->pending_list, head);
1042 atomic_inc(&u->ref);
1043 }
1044 for (t = n; (t = rb_next(t)); ) {
1045 u = rb_entry(t, struct uprobe, rb_node);
1046 if (u->inode != inode || u->offset > max)
1047 break;
1048 list_add(&u->pending_list, head);
1049 atomic_inc(&u->ref);
1050 }
1051 }
1052 spin_unlock(&uprobes_treelock);
1053 }
1054
1055 /*
1056 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057 *
1058 * Currently we ignore all errors and always return 0, the callers
1059 * can't handle the failure anyway.
1060 */
1061 int uprobe_mmap(struct vm_area_struct *vma)
1062 {
1063 struct list_head tmp_list;
1064 struct uprobe *uprobe, *u;
1065 struct inode *inode;
1066
1067 if (no_uprobe_events() || !valid_vma(vma, true))
1068 return 0;
1069
1070 inode = file_inode(vma->vm_file);
1071 if (!inode)
1072 return 0;
1073
1074 mutex_lock(uprobes_mmap_hash(inode));
1075 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076 /*
1077 * We can race with uprobe_unregister(), this uprobe can be already
1078 * removed. But in this case filter_chain() must return false, all
1079 * consumers have gone away.
1080 */
1081 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082 if (!fatal_signal_pending(current) &&
1083 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086 }
1087 put_uprobe(uprobe);
1088 }
1089 mutex_unlock(uprobes_mmap_hash(inode));
1090
1091 return 0;
1092 }
1093
1094 static bool
1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096 {
1097 loff_t min, max;
1098 struct inode *inode;
1099 struct rb_node *n;
1100
1101 inode = file_inode(vma->vm_file);
1102
1103 min = vaddr_to_offset(vma, start);
1104 max = min + (end - start) - 1;
1105
1106 spin_lock(&uprobes_treelock);
1107 n = find_node_in_range(inode, min, max);
1108 spin_unlock(&uprobes_treelock);
1109
1110 return !!n;
1111 }
1112
1113 /*
1114 * Called in context of a munmap of a vma.
1115 */
1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117 {
1118 if (no_uprobe_events() || !valid_vma(vma, false))
1119 return;
1120
1121 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1122 return;
1123
1124 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1126 return;
1127
1128 if (vma_has_uprobes(vma, start, end))
1129 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1130 }
1131
1132 /* Slot allocation for XOL */
1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134 {
1135 int ret = -EALREADY;
1136
1137 down_write(&mm->mmap_sem);
1138 if (mm->uprobes_state.xol_area)
1139 goto fail;
1140
1141 if (!area->vaddr) {
1142 /* Try to map as high as possible, this is only a hint. */
1143 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1144 PAGE_SIZE, 0, 0);
1145 if (area->vaddr & ~PAGE_MASK) {
1146 ret = area->vaddr;
1147 goto fail;
1148 }
1149 }
1150
1151 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1153 if (ret)
1154 goto fail;
1155
1156 smp_wmb(); /* pairs with get_xol_area() */
1157 mm->uprobes_state.xol_area = area;
1158 fail:
1159 up_write(&mm->mmap_sem);
1160
1161 return ret;
1162 }
1163
1164 static struct xol_area *__create_xol_area(unsigned long vaddr)
1165 {
1166 struct mm_struct *mm = current->mm;
1167 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168 struct xol_area *area;
1169
1170 area = kmalloc(sizeof(*area), GFP_KERNEL);
1171 if (unlikely(!area))
1172 goto out;
1173
1174 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1175 if (!area->bitmap)
1176 goto free_area;
1177
1178 area->page = alloc_page(GFP_HIGHUSER);
1179 if (!area->page)
1180 goto free_bitmap;
1181
1182 area->vaddr = vaddr;
1183 init_waitqueue_head(&area->wq);
1184 /* Reserve the 1st slot for get_trampoline_vaddr() */
1185 set_bit(0, area->bitmap);
1186 atomic_set(&area->slot_count, 1);
1187 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188
1189 if (!xol_add_vma(mm, area))
1190 return area;
1191
1192 __free_page(area->page);
1193 free_bitmap:
1194 kfree(area->bitmap);
1195 free_area:
1196 kfree(area);
1197 out:
1198 return NULL;
1199 }
1200
1201 /*
1202 * get_xol_area - Allocate process's xol_area if necessary.
1203 * This area will be used for storing instructions for execution out of line.
1204 *
1205 * Returns the allocated area or NULL.
1206 */
1207 static struct xol_area *get_xol_area(void)
1208 {
1209 struct mm_struct *mm = current->mm;
1210 struct xol_area *area;
1211
1212 if (!mm->uprobes_state.xol_area)
1213 __create_xol_area(0);
1214
1215 area = mm->uprobes_state.xol_area;
1216 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1217 return area;
1218 }
1219
1220 /*
1221 * uprobe_clear_state - Free the area allocated for slots.
1222 */
1223 void uprobe_clear_state(struct mm_struct *mm)
1224 {
1225 struct xol_area *area = mm->uprobes_state.xol_area;
1226
1227 if (!area)
1228 return;
1229
1230 put_page(area->page);
1231 kfree(area->bitmap);
1232 kfree(area);
1233 }
1234
1235 void uprobe_start_dup_mmap(void)
1236 {
1237 percpu_down_read(&dup_mmap_sem);
1238 }
1239
1240 void uprobe_end_dup_mmap(void)
1241 {
1242 percpu_up_read(&dup_mmap_sem);
1243 }
1244
1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246 {
1247 newmm->uprobes_state.xol_area = NULL;
1248
1249 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1253 }
1254 }
1255
1256 /*
1257 * - search for a free slot.
1258 */
1259 static unsigned long xol_take_insn_slot(struct xol_area *area)
1260 {
1261 unsigned long slot_addr;
1262 int slot_nr;
1263
1264 do {
1265 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266 if (slot_nr < UINSNS_PER_PAGE) {
1267 if (!test_and_set_bit(slot_nr, area->bitmap))
1268 break;
1269
1270 slot_nr = UINSNS_PER_PAGE;
1271 continue;
1272 }
1273 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274 } while (slot_nr >= UINSNS_PER_PAGE);
1275
1276 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277 atomic_inc(&area->slot_count);
1278
1279 return slot_addr;
1280 }
1281
1282 /*
1283 * xol_get_insn_slot - allocate a slot for xol.
1284 * Returns the allocated slot address or 0.
1285 */
1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287 {
1288 struct xol_area *area;
1289 unsigned long xol_vaddr;
1290
1291 area = get_xol_area();
1292 if (!area)
1293 return 0;
1294
1295 xol_vaddr = xol_take_insn_slot(area);
1296 if (unlikely(!xol_vaddr))
1297 return 0;
1298
1299 arch_uprobe_copy_ixol(area->page, xol_vaddr,
1300 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1301
1302 return xol_vaddr;
1303 }
1304
1305 /*
1306 * xol_free_insn_slot - If slot was earlier allocated by
1307 * @xol_get_insn_slot(), make the slot available for
1308 * subsequent requests.
1309 */
1310 static void xol_free_insn_slot(struct task_struct *tsk)
1311 {
1312 struct xol_area *area;
1313 unsigned long vma_end;
1314 unsigned long slot_addr;
1315
1316 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1317 return;
1318
1319 slot_addr = tsk->utask->xol_vaddr;
1320 if (unlikely(!slot_addr))
1321 return;
1322
1323 area = tsk->mm->uprobes_state.xol_area;
1324 vma_end = area->vaddr + PAGE_SIZE;
1325 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1326 unsigned long offset;
1327 int slot_nr;
1328
1329 offset = slot_addr - area->vaddr;
1330 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1331 if (slot_nr >= UINSNS_PER_PAGE)
1332 return;
1333
1334 clear_bit(slot_nr, area->bitmap);
1335 atomic_dec(&area->slot_count);
1336 if (waitqueue_active(&area->wq))
1337 wake_up(&area->wq);
1338
1339 tsk->utask->xol_vaddr = 0;
1340 }
1341 }
1342
1343 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1344 void *src, unsigned long len)
1345 {
1346 /* Initialize the slot */
1347 copy_to_page(page, vaddr, src, len);
1348
1349 /*
1350 * We probably need flush_icache_user_range() but it needs vma.
1351 * This should work on most of architectures by default. If
1352 * architecture needs to do something different it can define
1353 * its own version of the function.
1354 */
1355 flush_dcache_page(page);
1356 }
1357
1358 /**
1359 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1360 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1361 * instruction.
1362 * Return the address of the breakpoint instruction.
1363 */
1364 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1365 {
1366 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1367 }
1368
1369 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1370 {
1371 struct uprobe_task *utask = current->utask;
1372
1373 if (unlikely(utask && utask->active_uprobe))
1374 return utask->vaddr;
1375
1376 return instruction_pointer(regs);
1377 }
1378
1379 /*
1380 * Called with no locks held.
1381 * Called in context of a exiting or a exec-ing thread.
1382 */
1383 void uprobe_free_utask(struct task_struct *t)
1384 {
1385 struct uprobe_task *utask = t->utask;
1386 struct return_instance *ri, *tmp;
1387
1388 if (!utask)
1389 return;
1390
1391 if (utask->active_uprobe)
1392 put_uprobe(utask->active_uprobe);
1393
1394 ri = utask->return_instances;
1395 while (ri) {
1396 tmp = ri;
1397 ri = ri->next;
1398
1399 put_uprobe(tmp->uprobe);
1400 kfree(tmp);
1401 }
1402
1403 xol_free_insn_slot(t);
1404 kfree(utask);
1405 t->utask = NULL;
1406 }
1407
1408 /*
1409 * Allocate a uprobe_task object for the task if if necessary.
1410 * Called when the thread hits a breakpoint.
1411 *
1412 * Returns:
1413 * - pointer to new uprobe_task on success
1414 * - NULL otherwise
1415 */
1416 static struct uprobe_task *get_utask(void)
1417 {
1418 if (!current->utask)
1419 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1420 return current->utask;
1421 }
1422
1423 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1424 {
1425 struct uprobe_task *n_utask;
1426 struct return_instance **p, *o, *n;
1427
1428 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429 if (!n_utask)
1430 return -ENOMEM;
1431 t->utask = n_utask;
1432
1433 p = &n_utask->return_instances;
1434 for (o = o_utask->return_instances; o; o = o->next) {
1435 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1436 if (!n)
1437 return -ENOMEM;
1438
1439 *n = *o;
1440 atomic_inc(&n->uprobe->ref);
1441 n->next = NULL;
1442
1443 *p = n;
1444 p = &n->next;
1445 n_utask->depth++;
1446 }
1447
1448 return 0;
1449 }
1450
1451 static void uprobe_warn(struct task_struct *t, const char *msg)
1452 {
1453 pr_warn("uprobe: %s:%d failed to %s\n",
1454 current->comm, current->pid, msg);
1455 }
1456
1457 static void dup_xol_work(struct callback_head *work)
1458 {
1459 if (current->flags & PF_EXITING)
1460 return;
1461
1462 if (!__create_xol_area(current->utask->dup_xol_addr))
1463 uprobe_warn(current, "dup xol area");
1464 }
1465
1466 /*
1467 * Called in context of a new clone/fork from copy_process.
1468 */
1469 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1470 {
1471 struct uprobe_task *utask = current->utask;
1472 struct mm_struct *mm = current->mm;
1473 struct xol_area *area;
1474
1475 t->utask = NULL;
1476
1477 if (!utask || !utask->return_instances)
1478 return;
1479
1480 if (mm == t->mm && !(flags & CLONE_VFORK))
1481 return;
1482
1483 if (dup_utask(t, utask))
1484 return uprobe_warn(t, "dup ret instances");
1485
1486 /* The task can fork() after dup_xol_work() fails */
1487 area = mm->uprobes_state.xol_area;
1488 if (!area)
1489 return uprobe_warn(t, "dup xol area");
1490
1491 if (mm == t->mm)
1492 return;
1493
1494 t->utask->dup_xol_addr = area->vaddr;
1495 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1496 task_work_add(t, &t->utask->dup_xol_work, true);
1497 }
1498
1499 /*
1500 * Current area->vaddr notion assume the trampoline address is always
1501 * equal area->vaddr.
1502 *
1503 * Returns -1 in case the xol_area is not allocated.
1504 */
1505 static unsigned long get_trampoline_vaddr(void)
1506 {
1507 struct xol_area *area;
1508 unsigned long trampoline_vaddr = -1;
1509
1510 area = current->mm->uprobes_state.xol_area;
1511 smp_read_barrier_depends();
1512 if (area)
1513 trampoline_vaddr = area->vaddr;
1514
1515 return trampoline_vaddr;
1516 }
1517
1518 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1519 {
1520 struct return_instance *ri;
1521 struct uprobe_task *utask;
1522 unsigned long orig_ret_vaddr, trampoline_vaddr;
1523 bool chained = false;
1524
1525 if (!get_xol_area())
1526 return;
1527
1528 utask = get_utask();
1529 if (!utask)
1530 return;
1531
1532 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1533 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1534 " nestedness limit pid/tgid=%d/%d\n",
1535 current->pid, current->tgid);
1536 return;
1537 }
1538
1539 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1540 if (!ri)
1541 goto fail;
1542
1543 trampoline_vaddr = get_trampoline_vaddr();
1544 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1545 if (orig_ret_vaddr == -1)
1546 goto fail;
1547
1548 /*
1549 * We don't want to keep trampoline address in stack, rather keep the
1550 * original return address of first caller thru all the consequent
1551 * instances. This also makes breakpoint unwrapping easier.
1552 */
1553 if (orig_ret_vaddr == trampoline_vaddr) {
1554 if (!utask->return_instances) {
1555 /*
1556 * This situation is not possible. Likely we have an
1557 * attack from user-space.
1558 */
1559 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1560 current->pid, current->tgid);
1561 goto fail;
1562 }
1563
1564 chained = true;
1565 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1566 }
1567
1568 atomic_inc(&uprobe->ref);
1569 ri->uprobe = uprobe;
1570 ri->func = instruction_pointer(regs);
1571 ri->orig_ret_vaddr = orig_ret_vaddr;
1572 ri->chained = chained;
1573
1574 utask->depth++;
1575
1576 /* add instance to the stack */
1577 ri->next = utask->return_instances;
1578 utask->return_instances = ri;
1579
1580 return;
1581
1582 fail:
1583 kfree(ri);
1584 }
1585
1586 /* Prepare to single-step probed instruction out of line. */
1587 static int
1588 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1589 {
1590 struct uprobe_task *utask;
1591 unsigned long xol_vaddr;
1592 int err;
1593
1594 utask = get_utask();
1595 if (!utask)
1596 return -ENOMEM;
1597
1598 xol_vaddr = xol_get_insn_slot(uprobe);
1599 if (!xol_vaddr)
1600 return -ENOMEM;
1601
1602 utask->xol_vaddr = xol_vaddr;
1603 utask->vaddr = bp_vaddr;
1604
1605 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1606 if (unlikely(err)) {
1607 xol_free_insn_slot(current);
1608 return err;
1609 }
1610
1611 utask->active_uprobe = uprobe;
1612 utask->state = UTASK_SSTEP;
1613 return 0;
1614 }
1615
1616 /*
1617 * If we are singlestepping, then ensure this thread is not connected to
1618 * non-fatal signals until completion of singlestep. When xol insn itself
1619 * triggers the signal, restart the original insn even if the task is
1620 * already SIGKILL'ed (since coredump should report the correct ip). This
1621 * is even more important if the task has a handler for SIGSEGV/etc, The
1622 * _same_ instruction should be repeated again after return from the signal
1623 * handler, and SSTEP can never finish in this case.
1624 */
1625 bool uprobe_deny_signal(void)
1626 {
1627 struct task_struct *t = current;
1628 struct uprobe_task *utask = t->utask;
1629
1630 if (likely(!utask || !utask->active_uprobe))
1631 return false;
1632
1633 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1634
1635 if (signal_pending(t)) {
1636 spin_lock_irq(&t->sighand->siglock);
1637 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1638 spin_unlock_irq(&t->sighand->siglock);
1639
1640 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1641 utask->state = UTASK_SSTEP_TRAPPED;
1642 set_tsk_thread_flag(t, TIF_UPROBE);
1643 }
1644 }
1645
1646 return true;
1647 }
1648
1649 static void mmf_recalc_uprobes(struct mm_struct *mm)
1650 {
1651 struct vm_area_struct *vma;
1652
1653 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1654 if (!valid_vma(vma, false))
1655 continue;
1656 /*
1657 * This is not strictly accurate, we can race with
1658 * uprobe_unregister() and see the already removed
1659 * uprobe if delete_uprobe() was not yet called.
1660 * Or this uprobe can be filtered out.
1661 */
1662 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1663 return;
1664 }
1665
1666 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1667 }
1668
1669 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1670 {
1671 struct page *page;
1672 uprobe_opcode_t opcode;
1673 int result;
1674
1675 pagefault_disable();
1676 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1677 sizeof(opcode));
1678 pagefault_enable();
1679
1680 if (likely(result == 0))
1681 goto out;
1682
1683 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1684 if (result < 0)
1685 return result;
1686
1687 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1688 put_page(page);
1689 out:
1690 /* This needs to return true for any variant of the trap insn */
1691 return is_trap_insn(&opcode);
1692 }
1693
1694 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1695 {
1696 struct mm_struct *mm = current->mm;
1697 struct uprobe *uprobe = NULL;
1698 struct vm_area_struct *vma;
1699
1700 down_read(&mm->mmap_sem);
1701 vma = find_vma(mm, bp_vaddr);
1702 if (vma && vma->vm_start <= bp_vaddr) {
1703 if (valid_vma(vma, false)) {
1704 struct inode *inode = file_inode(vma->vm_file);
1705 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1706
1707 uprobe = find_uprobe(inode, offset);
1708 }
1709
1710 if (!uprobe)
1711 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712 } else {
1713 *is_swbp = -EFAULT;
1714 }
1715
1716 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1717 mmf_recalc_uprobes(mm);
1718 up_read(&mm->mmap_sem);
1719
1720 return uprobe;
1721 }
1722
1723 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1724 {
1725 struct uprobe_consumer *uc;
1726 int remove = UPROBE_HANDLER_REMOVE;
1727 bool need_prep = false; /* prepare return uprobe, when needed */
1728
1729 down_read(&uprobe->register_rwsem);
1730 for (uc = uprobe->consumers; uc; uc = uc->next) {
1731 int rc = 0;
1732
1733 if (uc->handler) {
1734 rc = uc->handler(uc, regs);
1735 WARN(rc & ~UPROBE_HANDLER_MASK,
1736 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1737 }
1738
1739 if (uc->ret_handler)
1740 need_prep = true;
1741
1742 remove &= rc;
1743 }
1744
1745 if (need_prep && !remove)
1746 prepare_uretprobe(uprobe, regs); /* put bp at return */
1747
1748 if (remove && uprobe->consumers) {
1749 WARN_ON(!uprobe_is_active(uprobe));
1750 unapply_uprobe(uprobe, current->mm);
1751 }
1752 up_read(&uprobe->register_rwsem);
1753 }
1754
1755 static void
1756 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1757 {
1758 struct uprobe *uprobe = ri->uprobe;
1759 struct uprobe_consumer *uc;
1760
1761 down_read(&uprobe->register_rwsem);
1762 for (uc = uprobe->consumers; uc; uc = uc->next) {
1763 if (uc->ret_handler)
1764 uc->ret_handler(uc, ri->func, regs);
1765 }
1766 up_read(&uprobe->register_rwsem);
1767 }
1768
1769 static bool handle_trampoline(struct pt_regs *regs)
1770 {
1771 struct uprobe_task *utask;
1772 struct return_instance *ri, *tmp;
1773 bool chained;
1774
1775 utask = current->utask;
1776 if (!utask)
1777 return false;
1778
1779 ri = utask->return_instances;
1780 if (!ri)
1781 return false;
1782
1783 /*
1784 * TODO: we should throw out return_instance's invalidated by
1785 * longjmp(), currently we assume that the probed function always
1786 * returns.
1787 */
1788 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1789
1790 for (;;) {
1791 handle_uretprobe_chain(ri, regs);
1792
1793 chained = ri->chained;
1794 put_uprobe(ri->uprobe);
1795
1796 tmp = ri;
1797 ri = ri->next;
1798 kfree(tmp);
1799 utask->depth--;
1800
1801 if (!chained)
1802 break;
1803 BUG_ON(!ri);
1804 }
1805
1806 utask->return_instances = ri;
1807
1808 return true;
1809 }
1810
1811 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1812 {
1813 return false;
1814 }
1815
1816 /*
1817 * Run handler and ask thread to singlestep.
1818 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1819 */
1820 static void handle_swbp(struct pt_regs *regs)
1821 {
1822 struct uprobe *uprobe;
1823 unsigned long bp_vaddr;
1824 int uninitialized_var(is_swbp);
1825
1826 bp_vaddr = uprobe_get_swbp_addr(regs);
1827 if (bp_vaddr == get_trampoline_vaddr()) {
1828 if (handle_trampoline(regs))
1829 return;
1830
1831 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832 current->pid, current->tgid);
1833 }
1834
1835 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1836 if (!uprobe) {
1837 if (is_swbp > 0) {
1838 /* No matching uprobe; signal SIGTRAP. */
1839 send_sig(SIGTRAP, current, 0);
1840 } else {
1841 /*
1842 * Either we raced with uprobe_unregister() or we can't
1843 * access this memory. The latter is only possible if
1844 * another thread plays with our ->mm. In both cases
1845 * we can simply restart. If this vma was unmapped we
1846 * can pretend this insn was not executed yet and get
1847 * the (correct) SIGSEGV after restart.
1848 */
1849 instruction_pointer_set(regs, bp_vaddr);
1850 }
1851 return;
1852 }
1853
1854 /* change it in advance for ->handler() and restart */
1855 instruction_pointer_set(regs, bp_vaddr);
1856
1857 /*
1858 * TODO: move copy_insn/etc into _register and remove this hack.
1859 * After we hit the bp, _unregister + _register can install the
1860 * new and not-yet-analyzed uprobe at the same address, restart.
1861 */
1862 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1864 goto out;
1865
1866 /* Tracing handlers use ->utask to communicate with fetch methods */
1867 if (!get_utask())
1868 goto out;
1869
1870 if (arch_uprobe_ignore(&uprobe->arch, regs))
1871 goto out;
1872
1873 handler_chain(uprobe, regs);
1874
1875 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1876 goto out;
1877
1878 if (!pre_ssout(uprobe, regs, bp_vaddr))
1879 return;
1880
1881 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1882 out:
1883 put_uprobe(uprobe);
1884 }
1885
1886 /*
1887 * Perform required fix-ups and disable singlestep.
1888 * Allow pending signals to take effect.
1889 */
1890 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1891 {
1892 struct uprobe *uprobe;
1893 int err = 0;
1894
1895 uprobe = utask->active_uprobe;
1896 if (utask->state == UTASK_SSTEP_ACK)
1897 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1898 else if (utask->state == UTASK_SSTEP_TRAPPED)
1899 arch_uprobe_abort_xol(&uprobe->arch, regs);
1900 else
1901 WARN_ON_ONCE(1);
1902
1903 put_uprobe(uprobe);
1904 utask->active_uprobe = NULL;
1905 utask->state = UTASK_RUNNING;
1906 xol_free_insn_slot(current);
1907
1908 spin_lock_irq(&current->sighand->siglock);
1909 recalc_sigpending(); /* see uprobe_deny_signal() */
1910 spin_unlock_irq(&current->sighand->siglock);
1911
1912 if (unlikely(err)) {
1913 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1914 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1915 }
1916 }
1917
1918 /*
1919 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920 * allows the thread to return from interrupt. After that handle_swbp()
1921 * sets utask->active_uprobe.
1922 *
1923 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924 * and allows the thread to return from interrupt.
1925 *
1926 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927 * uprobe_notify_resume().
1928 */
1929 void uprobe_notify_resume(struct pt_regs *regs)
1930 {
1931 struct uprobe_task *utask;
1932
1933 clear_thread_flag(TIF_UPROBE);
1934
1935 utask = current->utask;
1936 if (utask && utask->active_uprobe)
1937 handle_singlestep(utask, regs);
1938 else
1939 handle_swbp(regs);
1940 }
1941
1942 /*
1943 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1945 */
1946 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1947 {
1948 if (!current->mm)
1949 return 0;
1950
1951 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1952 (!current->utask || !current->utask->return_instances))
1953 return 0;
1954
1955 set_thread_flag(TIF_UPROBE);
1956 return 1;
1957 }
1958
1959 /*
1960 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1962 */
1963 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1964 {
1965 struct uprobe_task *utask = current->utask;
1966
1967 if (!current->mm || !utask || !utask->active_uprobe)
1968 /* task is currently not uprobed */
1969 return 0;
1970
1971 utask->state = UTASK_SSTEP_ACK;
1972 set_thread_flag(TIF_UPROBE);
1973 return 1;
1974 }
1975
1976 static struct notifier_block uprobe_exception_nb = {
1977 .notifier_call = arch_uprobe_exception_notify,
1978 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1979 };
1980
1981 static int __init init_uprobes(void)
1982 {
1983 int i;
1984
1985 for (i = 0; i < UPROBES_HASH_SZ; i++)
1986 mutex_init(&uprobes_mmap_mutex[i]);
1987
1988 if (percpu_init_rwsem(&dup_mmap_sem))
1989 return -ENOMEM;
1990
1991 return register_die_notifier(&uprobe_exception_nb);
1992 }
1993 __initcall(init_uprobes);
This page took 0.099877 seconds and 5 git commands to generate.