Merge branch 'linus' into timers/urgent, to pick up fixes
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
62
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (group_dead) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
70
71 list_del_rcu(&p->tasks);
72 list_del_init(&p->sibling);
73 __this_cpu_dec(process_counts);
74 }
75 list_del_rcu(&p->thread_group);
76 list_del_rcu(&p->thread_node);
77 }
78
79 /*
80 * This function expects the tasklist_lock write-locked.
81 */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 struct signal_struct *sig = tsk->signal;
85 bool group_dead = thread_group_leader(tsk);
86 struct sighand_struct *sighand;
87 struct tty_struct *uninitialized_var(tty);
88 cputime_t utime, stime;
89
90 sighand = rcu_dereference_check(tsk->sighand,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand->siglock);
93
94 posix_cpu_timers_exit(tsk);
95 if (group_dead) {
96 posix_cpu_timers_exit_group(tsk);
97 tty = sig->tty;
98 sig->tty = NULL;
99 } else {
100 /*
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
104 */
105 if (unlikely(has_group_leader_pid(tsk)))
106 posix_cpu_timers_exit_group(tsk);
107
108 /*
109 * If there is any task waiting for the group exit
110 * then notify it:
111 */
112 if (sig->notify_count > 0 && !--sig->notify_count)
113 wake_up_process(sig->group_exit_task);
114
115 if (tsk == sig->curr_target)
116 sig->curr_target = next_thread(tsk);
117 }
118
119 /*
120 * Accumulate here the counters for all threads as they die. We could
121 * skip the group leader because it is the last user of signal_struct,
122 * but we want to avoid the race with thread_group_cputime() which can
123 * see the empty ->thread_head list.
124 */
125 task_cputime(tsk, &utime, &stime);
126 write_seqlock(&sig->stats_lock);
127 sig->utime += utime;
128 sig->stime += stime;
129 sig->gtime += task_gtime(tsk);
130 sig->min_flt += tsk->min_flt;
131 sig->maj_flt += tsk->maj_flt;
132 sig->nvcsw += tsk->nvcsw;
133 sig->nivcsw += tsk->nivcsw;
134 sig->inblock += task_io_get_inblock(tsk);
135 sig->oublock += task_io_get_oublock(tsk);
136 task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
140 write_sequnlock(&sig->stats_lock);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147 tsk->sighand = NULL;
148 spin_unlock(&sighand->siglock);
149
150 __cleanup_sighand(sighand);
151 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
152 if (group_dead) {
153 flush_sigqueue(&sig->shared_pending);
154 tty_kref_put(tty);
155 }
156 }
157
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161
162 perf_event_delayed_put(tsk);
163 trace_sched_process_free(tsk);
164 put_task_struct(tsk);
165 }
166
167
168 void release_task(struct task_struct *p)
169 {
170 struct task_struct *leader;
171 int zap_leader;
172 repeat:
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 ptrace_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader)
193 && leader->exit_state == EXIT_ZOMBIE) {
194 /*
195 * If we were the last child thread and the leader has
196 * exited already, and the leader's parent ignores SIGCHLD,
197 * then we are the one who should release the leader.
198 */
199 zap_leader = do_notify_parent(leader, leader->exit_signal);
200 if (zap_leader)
201 leader->exit_state = EXIT_DEAD;
202 }
203
204 write_unlock_irq(&tasklist_lock);
205 release_thread(p);
206 call_rcu(&p->rcu, delayed_put_task_struct);
207
208 p = leader;
209 if (unlikely(zap_leader))
210 goto repeat;
211 }
212
213 /*
214 * Note that if this function returns a valid task_struct pointer (!NULL)
215 * task->usage must remain >0 for the duration of the RCU critical section.
216 */
217 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
218 {
219 struct sighand_struct *sighand;
220 struct task_struct *task;
221
222 /*
223 * We need to verify that release_task() was not called and thus
224 * delayed_put_task_struct() can't run and drop the last reference
225 * before rcu_read_unlock(). We check task->sighand != NULL,
226 * but we can read the already freed and reused memory.
227 */
228 retry:
229 task = rcu_dereference(*ptask);
230 if (!task)
231 return NULL;
232
233 probe_kernel_address(&task->sighand, sighand);
234
235 /*
236 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
237 * was already freed we can not miss the preceding update of this
238 * pointer.
239 */
240 smp_rmb();
241 if (unlikely(task != READ_ONCE(*ptask)))
242 goto retry;
243
244 /*
245 * We've re-checked that "task == *ptask", now we have two different
246 * cases:
247 *
248 * 1. This is actually the same task/task_struct. In this case
249 * sighand != NULL tells us it is still alive.
250 *
251 * 2. This is another task which got the same memory for task_struct.
252 * We can't know this of course, and we can not trust
253 * sighand != NULL.
254 *
255 * In this case we actually return a random value, but this is
256 * correct.
257 *
258 * If we return NULL - we can pretend that we actually noticed that
259 * *ptask was updated when the previous task has exited. Or pretend
260 * that probe_slab_address(&sighand) reads NULL.
261 *
262 * If we return the new task (because sighand is not NULL for any
263 * reason) - this is fine too. This (new) task can't go away before
264 * another gp pass.
265 *
266 * And note: We could even eliminate the false positive if re-read
267 * task->sighand once again to avoid the falsely NULL. But this case
268 * is very unlikely so we don't care.
269 */
270 if (!sighand)
271 return NULL;
272
273 return task;
274 }
275
276 struct task_struct *try_get_task_struct(struct task_struct **ptask)
277 {
278 struct task_struct *task;
279
280 rcu_read_lock();
281 task = task_rcu_dereference(ptask);
282 if (task)
283 get_task_struct(task);
284 rcu_read_unlock();
285
286 return task;
287 }
288
289 /*
290 * Determine if a process group is "orphaned", according to the POSIX
291 * definition in 2.2.2.52. Orphaned process groups are not to be affected
292 * by terminal-generated stop signals. Newly orphaned process groups are
293 * to receive a SIGHUP and a SIGCONT.
294 *
295 * "I ask you, have you ever known what it is to be an orphan?"
296 */
297 static int will_become_orphaned_pgrp(struct pid *pgrp,
298 struct task_struct *ignored_task)
299 {
300 struct task_struct *p;
301
302 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 if ((p == ignored_task) ||
304 (p->exit_state && thread_group_empty(p)) ||
305 is_global_init(p->real_parent))
306 continue;
307
308 if (task_pgrp(p->real_parent) != pgrp &&
309 task_session(p->real_parent) == task_session(p))
310 return 0;
311 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
312
313 return 1;
314 }
315
316 int is_current_pgrp_orphaned(void)
317 {
318 int retval;
319
320 read_lock(&tasklist_lock);
321 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
322 read_unlock(&tasklist_lock);
323
324 return retval;
325 }
326
327 static bool has_stopped_jobs(struct pid *pgrp)
328 {
329 struct task_struct *p;
330
331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 if (p->signal->flags & SIGNAL_STOP_STOPPED)
333 return true;
334 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
335
336 return false;
337 }
338
339 /*
340 * Check to see if any process groups have become orphaned as
341 * a result of our exiting, and if they have any stopped jobs,
342 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
343 */
344 static void
345 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
346 {
347 struct pid *pgrp = task_pgrp(tsk);
348 struct task_struct *ignored_task = tsk;
349
350 if (!parent)
351 /* exit: our father is in a different pgrp than
352 * we are and we were the only connection outside.
353 */
354 parent = tsk->real_parent;
355 else
356 /* reparent: our child is in a different pgrp than
357 * we are, and it was the only connection outside.
358 */
359 ignored_task = NULL;
360
361 if (task_pgrp(parent) != pgrp &&
362 task_session(parent) == task_session(tsk) &&
363 will_become_orphaned_pgrp(pgrp, ignored_task) &&
364 has_stopped_jobs(pgrp)) {
365 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
366 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
367 }
368 }
369
370 #ifdef CONFIG_MEMCG
371 /*
372 * A task is exiting. If it owned this mm, find a new owner for the mm.
373 */
374 void mm_update_next_owner(struct mm_struct *mm)
375 {
376 struct task_struct *c, *g, *p = current;
377
378 retry:
379 /*
380 * If the exiting or execing task is not the owner, it's
381 * someone else's problem.
382 */
383 if (mm->owner != p)
384 return;
385 /*
386 * The current owner is exiting/execing and there are no other
387 * candidates. Do not leave the mm pointing to a possibly
388 * freed task structure.
389 */
390 if (atomic_read(&mm->mm_users) <= 1) {
391 mm->owner = NULL;
392 return;
393 }
394
395 read_lock(&tasklist_lock);
396 /*
397 * Search in the children
398 */
399 list_for_each_entry(c, &p->children, sibling) {
400 if (c->mm == mm)
401 goto assign_new_owner;
402 }
403
404 /*
405 * Search in the siblings
406 */
407 list_for_each_entry(c, &p->real_parent->children, sibling) {
408 if (c->mm == mm)
409 goto assign_new_owner;
410 }
411
412 /*
413 * Search through everything else, we should not get here often.
414 */
415 for_each_process(g) {
416 if (g->flags & PF_KTHREAD)
417 continue;
418 for_each_thread(g, c) {
419 if (c->mm == mm)
420 goto assign_new_owner;
421 if (c->mm)
422 break;
423 }
424 }
425 read_unlock(&tasklist_lock);
426 /*
427 * We found no owner yet mm_users > 1: this implies that we are
428 * most likely racing with swapoff (try_to_unuse()) or /proc or
429 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
430 */
431 mm->owner = NULL;
432 return;
433
434 assign_new_owner:
435 BUG_ON(c == p);
436 get_task_struct(c);
437 /*
438 * The task_lock protects c->mm from changing.
439 * We always want mm->owner->mm == mm
440 */
441 task_lock(c);
442 /*
443 * Delay read_unlock() till we have the task_lock()
444 * to ensure that c does not slip away underneath us
445 */
446 read_unlock(&tasklist_lock);
447 if (c->mm != mm) {
448 task_unlock(c);
449 put_task_struct(c);
450 goto retry;
451 }
452 mm->owner = c;
453 task_unlock(c);
454 put_task_struct(c);
455 }
456 #endif /* CONFIG_MEMCG */
457
458 /*
459 * Turn us into a lazy TLB process if we
460 * aren't already..
461 */
462 static void exit_mm(struct task_struct *tsk)
463 {
464 struct mm_struct *mm = tsk->mm;
465 struct core_state *core_state;
466
467 mm_release(tsk, mm);
468 if (!mm)
469 return;
470 sync_mm_rss(mm);
471 /*
472 * Serialize with any possible pending coredump.
473 * We must hold mmap_sem around checking core_state
474 * and clearing tsk->mm. The core-inducing thread
475 * will increment ->nr_threads for each thread in the
476 * group with ->mm != NULL.
477 */
478 down_read(&mm->mmap_sem);
479 core_state = mm->core_state;
480 if (core_state) {
481 struct core_thread self;
482
483 up_read(&mm->mmap_sem);
484
485 self.task = tsk;
486 self.next = xchg(&core_state->dumper.next, &self);
487 /*
488 * Implies mb(), the result of xchg() must be visible
489 * to core_state->dumper.
490 */
491 if (atomic_dec_and_test(&core_state->nr_threads))
492 complete(&core_state->startup);
493
494 for (;;) {
495 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
496 if (!self.task) /* see coredump_finish() */
497 break;
498 freezable_schedule();
499 }
500 __set_task_state(tsk, TASK_RUNNING);
501 down_read(&mm->mmap_sem);
502 }
503 atomic_inc(&mm->mm_count);
504 BUG_ON(mm != tsk->active_mm);
505 /* more a memory barrier than a real lock */
506 task_lock(tsk);
507 tsk->mm = NULL;
508 up_read(&mm->mmap_sem);
509 enter_lazy_tlb(mm, current);
510 task_unlock(tsk);
511 mm_update_next_owner(mm);
512 mmput(mm);
513 if (test_thread_flag(TIF_MEMDIE))
514 exit_oom_victim(tsk);
515 }
516
517 static struct task_struct *find_alive_thread(struct task_struct *p)
518 {
519 struct task_struct *t;
520
521 for_each_thread(p, t) {
522 if (!(t->flags & PF_EXITING))
523 return t;
524 }
525 return NULL;
526 }
527
528 static struct task_struct *find_child_reaper(struct task_struct *father)
529 __releases(&tasklist_lock)
530 __acquires(&tasklist_lock)
531 {
532 struct pid_namespace *pid_ns = task_active_pid_ns(father);
533 struct task_struct *reaper = pid_ns->child_reaper;
534
535 if (likely(reaper != father))
536 return reaper;
537
538 reaper = find_alive_thread(father);
539 if (reaper) {
540 pid_ns->child_reaper = reaper;
541 return reaper;
542 }
543
544 write_unlock_irq(&tasklist_lock);
545 if (unlikely(pid_ns == &init_pid_ns)) {
546 panic("Attempted to kill init! exitcode=0x%08x\n",
547 father->signal->group_exit_code ?: father->exit_code);
548 }
549 zap_pid_ns_processes(pid_ns);
550 write_lock_irq(&tasklist_lock);
551
552 return father;
553 }
554
555 /*
556 * When we die, we re-parent all our children, and try to:
557 * 1. give them to another thread in our thread group, if such a member exists
558 * 2. give it to the first ancestor process which prctl'd itself as a
559 * child_subreaper for its children (like a service manager)
560 * 3. give it to the init process (PID 1) in our pid namespace
561 */
562 static struct task_struct *find_new_reaper(struct task_struct *father,
563 struct task_struct *child_reaper)
564 {
565 struct task_struct *thread, *reaper;
566
567 thread = find_alive_thread(father);
568 if (thread)
569 return thread;
570
571 if (father->signal->has_child_subreaper) {
572 /*
573 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 * We start from father to ensure we can not look into another
575 * namespace, this is safe because all its threads are dead.
576 */
577 for (reaper = father;
578 !same_thread_group(reaper, child_reaper);
579 reaper = reaper->real_parent) {
580 /* call_usermodehelper() descendants need this check */
581 if (reaper == &init_task)
582 break;
583 if (!reaper->signal->is_child_subreaper)
584 continue;
585 thread = find_alive_thread(reaper);
586 if (thread)
587 return thread;
588 }
589 }
590
591 return child_reaper;
592 }
593
594 /*
595 * Any that need to be release_task'd are put on the @dead list.
596 */
597 static void reparent_leader(struct task_struct *father, struct task_struct *p,
598 struct list_head *dead)
599 {
600 if (unlikely(p->exit_state == EXIT_DEAD))
601 return;
602
603 /* We don't want people slaying init. */
604 p->exit_signal = SIGCHLD;
605
606 /* If it has exited notify the new parent about this child's death. */
607 if (!p->ptrace &&
608 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
609 if (do_notify_parent(p, p->exit_signal)) {
610 p->exit_state = EXIT_DEAD;
611 list_add(&p->ptrace_entry, dead);
612 }
613 }
614
615 kill_orphaned_pgrp(p, father);
616 }
617
618 /*
619 * This does two things:
620 *
621 * A. Make init inherit all the child processes
622 * B. Check to see if any process groups have become orphaned
623 * as a result of our exiting, and if they have any stopped
624 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
625 */
626 static void forget_original_parent(struct task_struct *father,
627 struct list_head *dead)
628 {
629 struct task_struct *p, *t, *reaper;
630
631 if (unlikely(!list_empty(&father->ptraced)))
632 exit_ptrace(father, dead);
633
634 /* Can drop and reacquire tasklist_lock */
635 reaper = find_child_reaper(father);
636 if (list_empty(&father->children))
637 return;
638
639 reaper = find_new_reaper(father, reaper);
640 list_for_each_entry(p, &father->children, sibling) {
641 for_each_thread(p, t) {
642 t->real_parent = reaper;
643 BUG_ON((!t->ptrace) != (t->parent == father));
644 if (likely(!t->ptrace))
645 t->parent = t->real_parent;
646 if (t->pdeath_signal)
647 group_send_sig_info(t->pdeath_signal,
648 SEND_SIG_NOINFO, t);
649 }
650 /*
651 * If this is a threaded reparent there is no need to
652 * notify anyone anything has happened.
653 */
654 if (!same_thread_group(reaper, father))
655 reparent_leader(father, p, dead);
656 }
657 list_splice_tail_init(&father->children, &reaper->children);
658 }
659
660 /*
661 * Send signals to all our closest relatives so that they know
662 * to properly mourn us..
663 */
664 static void exit_notify(struct task_struct *tsk, int group_dead)
665 {
666 bool autoreap;
667 struct task_struct *p, *n;
668 LIST_HEAD(dead);
669
670 write_lock_irq(&tasklist_lock);
671 forget_original_parent(tsk, &dead);
672
673 if (group_dead)
674 kill_orphaned_pgrp(tsk->group_leader, NULL);
675
676 if (unlikely(tsk->ptrace)) {
677 int sig = thread_group_leader(tsk) &&
678 thread_group_empty(tsk) &&
679 !ptrace_reparented(tsk) ?
680 tsk->exit_signal : SIGCHLD;
681 autoreap = do_notify_parent(tsk, sig);
682 } else if (thread_group_leader(tsk)) {
683 autoreap = thread_group_empty(tsk) &&
684 do_notify_parent(tsk, tsk->exit_signal);
685 } else {
686 autoreap = true;
687 }
688
689 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
690 if (tsk->exit_state == EXIT_DEAD)
691 list_add(&tsk->ptrace_entry, &dead);
692
693 /* mt-exec, de_thread() is waiting for group leader */
694 if (unlikely(tsk->signal->notify_count < 0))
695 wake_up_process(tsk->signal->group_exit_task);
696 write_unlock_irq(&tasklist_lock);
697
698 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
699 list_del_init(&p->ptrace_entry);
700 release_task(p);
701 }
702 }
703
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
706 {
707 static DEFINE_SPINLOCK(low_water_lock);
708 static int lowest_to_date = THREAD_SIZE;
709 unsigned long free;
710
711 free = stack_not_used(current);
712
713 if (free >= lowest_to_date)
714 return;
715
716 spin_lock(&low_water_lock);
717 if (free < lowest_to_date) {
718 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 current->comm, task_pid_nr(current), free);
720 lowest_to_date = free;
721 }
722 spin_unlock(&low_water_lock);
723 }
724 #else
725 static inline void check_stack_usage(void) {}
726 #endif
727
728 void do_exit(long code)
729 {
730 struct task_struct *tsk = current;
731 int group_dead;
732 TASKS_RCU(int tasks_rcu_i);
733
734 profile_task_exit(tsk);
735 kcov_task_exit(tsk);
736
737 WARN_ON(blk_needs_flush_plug(tsk));
738
739 if (unlikely(in_interrupt()))
740 panic("Aiee, killing interrupt handler!");
741 if (unlikely(!tsk->pid))
742 panic("Attempted to kill the idle task!");
743
744 /*
745 * If do_exit is called because this processes oopsed, it's possible
746 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
747 * continuing. Amongst other possible reasons, this is to prevent
748 * mm_release()->clear_child_tid() from writing to a user-controlled
749 * kernel address.
750 */
751 set_fs(USER_DS);
752
753 ptrace_event(PTRACE_EVENT_EXIT, code);
754
755 validate_creds_for_do_exit(tsk);
756
757 /*
758 * We're taking recursive faults here in do_exit. Safest is to just
759 * leave this task alone and wait for reboot.
760 */
761 if (unlikely(tsk->flags & PF_EXITING)) {
762 pr_alert("Fixing recursive fault but reboot is needed!\n");
763 /*
764 * We can do this unlocked here. The futex code uses
765 * this flag just to verify whether the pi state
766 * cleanup has been done or not. In the worst case it
767 * loops once more. We pretend that the cleanup was
768 * done as there is no way to return. Either the
769 * OWNER_DIED bit is set by now or we push the blocked
770 * task into the wait for ever nirwana as well.
771 */
772 tsk->flags |= PF_EXITPIDONE;
773 set_current_state(TASK_UNINTERRUPTIBLE);
774 schedule();
775 }
776
777 exit_signals(tsk); /* sets PF_EXITING */
778 /*
779 * Ensure that all new tsk->pi_lock acquisitions must observe
780 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
781 */
782 smp_mb();
783 /*
784 * Ensure that we must observe the pi_state in exit_mm() ->
785 * mm_release() -> exit_pi_state_list().
786 */
787 raw_spin_unlock_wait(&tsk->pi_lock);
788
789 if (unlikely(in_atomic())) {
790 pr_info("note: %s[%d] exited with preempt_count %d\n",
791 current->comm, task_pid_nr(current),
792 preempt_count());
793 preempt_count_set(PREEMPT_ENABLED);
794 }
795
796 /* sync mm's RSS info before statistics gathering */
797 if (tsk->mm)
798 sync_mm_rss(tsk->mm);
799 acct_update_integrals(tsk);
800 group_dead = atomic_dec_and_test(&tsk->signal->live);
801 if (group_dead) {
802 hrtimer_cancel(&tsk->signal->real_timer);
803 exit_itimers(tsk->signal);
804 if (tsk->mm)
805 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
806 }
807 acct_collect(code, group_dead);
808 if (group_dead)
809 tty_audit_exit();
810 audit_free(tsk);
811
812 tsk->exit_code = code;
813 taskstats_exit(tsk, group_dead);
814
815 exit_mm(tsk);
816
817 if (group_dead)
818 acct_process();
819 trace_sched_process_exit(tsk);
820
821 exit_sem(tsk);
822 exit_shm(tsk);
823 exit_files(tsk);
824 exit_fs(tsk);
825 if (group_dead)
826 disassociate_ctty(1);
827 exit_task_namespaces(tsk);
828 exit_task_work(tsk);
829 exit_thread(tsk);
830
831 /*
832 * Flush inherited counters to the parent - before the parent
833 * gets woken up by child-exit notifications.
834 *
835 * because of cgroup mode, must be called before cgroup_exit()
836 */
837 perf_event_exit_task(tsk);
838
839 cgroup_exit(tsk);
840
841 /*
842 * FIXME: do that only when needed, using sched_exit tracepoint
843 */
844 flush_ptrace_hw_breakpoint(tsk);
845
846 TASKS_RCU(preempt_disable());
847 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
848 TASKS_RCU(preempt_enable());
849 exit_notify(tsk, group_dead);
850 proc_exit_connector(tsk);
851 #ifdef CONFIG_NUMA
852 task_lock(tsk);
853 mpol_put(tsk->mempolicy);
854 tsk->mempolicy = NULL;
855 task_unlock(tsk);
856 #endif
857 #ifdef CONFIG_FUTEX
858 if (unlikely(current->pi_state_cache))
859 kfree(current->pi_state_cache);
860 #endif
861 /*
862 * Make sure we are holding no locks:
863 */
864 debug_check_no_locks_held();
865 /*
866 * We can do this unlocked here. The futex code uses this flag
867 * just to verify whether the pi state cleanup has been done
868 * or not. In the worst case it loops once more.
869 */
870 tsk->flags |= PF_EXITPIDONE;
871
872 if (tsk->io_context)
873 exit_io_context(tsk);
874
875 if (tsk->splice_pipe)
876 free_pipe_info(tsk->splice_pipe);
877
878 if (tsk->task_frag.page)
879 put_page(tsk->task_frag.page);
880
881 validate_creds_for_do_exit(tsk);
882
883 check_stack_usage();
884 preempt_disable();
885 if (tsk->nr_dirtied)
886 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
887 exit_rcu();
888 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
889
890 /*
891 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
892 * when the following two conditions become true.
893 * - There is race condition of mmap_sem (It is acquired by
894 * exit_mm()), and
895 * - SMI occurs before setting TASK_RUNINNG.
896 * (or hypervisor of virtual machine switches to other guest)
897 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
898 *
899 * To avoid it, we have to wait for releasing tsk->pi_lock which
900 * is held by try_to_wake_up()
901 */
902 smp_mb();
903 raw_spin_unlock_wait(&tsk->pi_lock);
904
905 /* causes final put_task_struct in finish_task_switch(). */
906 tsk->state = TASK_DEAD;
907 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
908 schedule();
909 BUG();
910 /* Avoid "noreturn function does return". */
911 for (;;)
912 cpu_relax(); /* For when BUG is null */
913 }
914 EXPORT_SYMBOL_GPL(do_exit);
915
916 void complete_and_exit(struct completion *comp, long code)
917 {
918 if (comp)
919 complete(comp);
920
921 do_exit(code);
922 }
923 EXPORT_SYMBOL(complete_and_exit);
924
925 SYSCALL_DEFINE1(exit, int, error_code)
926 {
927 do_exit((error_code&0xff)<<8);
928 }
929
930 /*
931 * Take down every thread in the group. This is called by fatal signals
932 * as well as by sys_exit_group (below).
933 */
934 void
935 do_group_exit(int exit_code)
936 {
937 struct signal_struct *sig = current->signal;
938
939 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
940
941 if (signal_group_exit(sig))
942 exit_code = sig->group_exit_code;
943 else if (!thread_group_empty(current)) {
944 struct sighand_struct *const sighand = current->sighand;
945
946 spin_lock_irq(&sighand->siglock);
947 if (signal_group_exit(sig))
948 /* Another thread got here before we took the lock. */
949 exit_code = sig->group_exit_code;
950 else {
951 sig->group_exit_code = exit_code;
952 sig->flags = SIGNAL_GROUP_EXIT;
953 zap_other_threads(current);
954 }
955 spin_unlock_irq(&sighand->siglock);
956 }
957
958 do_exit(exit_code);
959 /* NOTREACHED */
960 }
961
962 /*
963 * this kills every thread in the thread group. Note that any externally
964 * wait4()-ing process will get the correct exit code - even if this
965 * thread is not the thread group leader.
966 */
967 SYSCALL_DEFINE1(exit_group, int, error_code)
968 {
969 do_group_exit((error_code & 0xff) << 8);
970 /* NOTREACHED */
971 return 0;
972 }
973
974 struct wait_opts {
975 enum pid_type wo_type;
976 int wo_flags;
977 struct pid *wo_pid;
978
979 struct siginfo __user *wo_info;
980 int __user *wo_stat;
981 struct rusage __user *wo_rusage;
982
983 wait_queue_t child_wait;
984 int notask_error;
985 };
986
987 static inline
988 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
989 {
990 if (type != PIDTYPE_PID)
991 task = task->group_leader;
992 return task->pids[type].pid;
993 }
994
995 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
996 {
997 return wo->wo_type == PIDTYPE_MAX ||
998 task_pid_type(p, wo->wo_type) == wo->wo_pid;
999 }
1000
1001 static int
1002 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1003 {
1004 if (!eligible_pid(wo, p))
1005 return 0;
1006
1007 /*
1008 * Wait for all children (clone and not) if __WALL is set or
1009 * if it is traced by us.
1010 */
1011 if (ptrace || (wo->wo_flags & __WALL))
1012 return 1;
1013
1014 /*
1015 * Otherwise, wait for clone children *only* if __WCLONE is set;
1016 * otherwise, wait for non-clone children *only*.
1017 *
1018 * Note: a "clone" child here is one that reports to its parent
1019 * using a signal other than SIGCHLD, or a non-leader thread which
1020 * we can only see if it is traced by us.
1021 */
1022 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1023 return 0;
1024
1025 return 1;
1026 }
1027
1028 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1029 pid_t pid, uid_t uid, int why, int status)
1030 {
1031 struct siginfo __user *infop;
1032 int retval = wo->wo_rusage
1033 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1034
1035 put_task_struct(p);
1036 infop = wo->wo_info;
1037 if (infop) {
1038 if (!retval)
1039 retval = put_user(SIGCHLD, &infop->si_signo);
1040 if (!retval)
1041 retval = put_user(0, &infop->si_errno);
1042 if (!retval)
1043 retval = put_user((short)why, &infop->si_code);
1044 if (!retval)
1045 retval = put_user(pid, &infop->si_pid);
1046 if (!retval)
1047 retval = put_user(uid, &infop->si_uid);
1048 if (!retval)
1049 retval = put_user(status, &infop->si_status);
1050 }
1051 if (!retval)
1052 retval = pid;
1053 return retval;
1054 }
1055
1056 /*
1057 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1058 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1059 * the lock and this task is uninteresting. If we return nonzero, we have
1060 * released the lock and the system call should return.
1061 */
1062 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1063 {
1064 int state, retval, status;
1065 pid_t pid = task_pid_vnr(p);
1066 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1067 struct siginfo __user *infop;
1068
1069 if (!likely(wo->wo_flags & WEXITED))
1070 return 0;
1071
1072 if (unlikely(wo->wo_flags & WNOWAIT)) {
1073 int exit_code = p->exit_code;
1074 int why;
1075
1076 get_task_struct(p);
1077 read_unlock(&tasklist_lock);
1078 sched_annotate_sleep();
1079
1080 if ((exit_code & 0x7f) == 0) {
1081 why = CLD_EXITED;
1082 status = exit_code >> 8;
1083 } else {
1084 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1085 status = exit_code & 0x7f;
1086 }
1087 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1088 }
1089 /*
1090 * Move the task's state to DEAD/TRACE, only one thread can do this.
1091 */
1092 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1093 EXIT_TRACE : EXIT_DEAD;
1094 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1095 return 0;
1096 /*
1097 * We own this thread, nobody else can reap it.
1098 */
1099 read_unlock(&tasklist_lock);
1100 sched_annotate_sleep();
1101
1102 /*
1103 * Check thread_group_leader() to exclude the traced sub-threads.
1104 */
1105 if (state == EXIT_DEAD && thread_group_leader(p)) {
1106 struct signal_struct *sig = p->signal;
1107 struct signal_struct *psig = current->signal;
1108 unsigned long maxrss;
1109 cputime_t tgutime, tgstime;
1110
1111 /*
1112 * The resource counters for the group leader are in its
1113 * own task_struct. Those for dead threads in the group
1114 * are in its signal_struct, as are those for the child
1115 * processes it has previously reaped. All these
1116 * accumulate in the parent's signal_struct c* fields.
1117 *
1118 * We don't bother to take a lock here to protect these
1119 * p->signal fields because the whole thread group is dead
1120 * and nobody can change them.
1121 *
1122 * psig->stats_lock also protects us from our sub-theads
1123 * which can reap other children at the same time. Until
1124 * we change k_getrusage()-like users to rely on this lock
1125 * we have to take ->siglock as well.
1126 *
1127 * We use thread_group_cputime_adjusted() to get times for
1128 * the thread group, which consolidates times for all threads
1129 * in the group including the group leader.
1130 */
1131 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1132 spin_lock_irq(&current->sighand->siglock);
1133 write_seqlock(&psig->stats_lock);
1134 psig->cutime += tgutime + sig->cutime;
1135 psig->cstime += tgstime + sig->cstime;
1136 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1137 psig->cmin_flt +=
1138 p->min_flt + sig->min_flt + sig->cmin_flt;
1139 psig->cmaj_flt +=
1140 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1141 psig->cnvcsw +=
1142 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1143 psig->cnivcsw +=
1144 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1145 psig->cinblock +=
1146 task_io_get_inblock(p) +
1147 sig->inblock + sig->cinblock;
1148 psig->coublock +=
1149 task_io_get_oublock(p) +
1150 sig->oublock + sig->coublock;
1151 maxrss = max(sig->maxrss, sig->cmaxrss);
1152 if (psig->cmaxrss < maxrss)
1153 psig->cmaxrss = maxrss;
1154 task_io_accounting_add(&psig->ioac, &p->ioac);
1155 task_io_accounting_add(&psig->ioac, &sig->ioac);
1156 write_sequnlock(&psig->stats_lock);
1157 spin_unlock_irq(&current->sighand->siglock);
1158 }
1159
1160 retval = wo->wo_rusage
1161 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1162 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1163 ? p->signal->group_exit_code : p->exit_code;
1164 if (!retval && wo->wo_stat)
1165 retval = put_user(status, wo->wo_stat);
1166
1167 infop = wo->wo_info;
1168 if (!retval && infop)
1169 retval = put_user(SIGCHLD, &infop->si_signo);
1170 if (!retval && infop)
1171 retval = put_user(0, &infop->si_errno);
1172 if (!retval && infop) {
1173 int why;
1174
1175 if ((status & 0x7f) == 0) {
1176 why = CLD_EXITED;
1177 status >>= 8;
1178 } else {
1179 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1180 status &= 0x7f;
1181 }
1182 retval = put_user((short)why, &infop->si_code);
1183 if (!retval)
1184 retval = put_user(status, &infop->si_status);
1185 }
1186 if (!retval && infop)
1187 retval = put_user(pid, &infop->si_pid);
1188 if (!retval && infop)
1189 retval = put_user(uid, &infop->si_uid);
1190 if (!retval)
1191 retval = pid;
1192
1193 if (state == EXIT_TRACE) {
1194 write_lock_irq(&tasklist_lock);
1195 /* We dropped tasklist, ptracer could die and untrace */
1196 ptrace_unlink(p);
1197
1198 /* If parent wants a zombie, don't release it now */
1199 state = EXIT_ZOMBIE;
1200 if (do_notify_parent(p, p->exit_signal))
1201 state = EXIT_DEAD;
1202 p->exit_state = state;
1203 write_unlock_irq(&tasklist_lock);
1204 }
1205 if (state == EXIT_DEAD)
1206 release_task(p);
1207
1208 return retval;
1209 }
1210
1211 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1212 {
1213 if (ptrace) {
1214 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1215 return &p->exit_code;
1216 } else {
1217 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1218 return &p->signal->group_exit_code;
1219 }
1220 return NULL;
1221 }
1222
1223 /**
1224 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1225 * @wo: wait options
1226 * @ptrace: is the wait for ptrace
1227 * @p: task to wait for
1228 *
1229 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1230 *
1231 * CONTEXT:
1232 * read_lock(&tasklist_lock), which is released if return value is
1233 * non-zero. Also, grabs and releases @p->sighand->siglock.
1234 *
1235 * RETURNS:
1236 * 0 if wait condition didn't exist and search for other wait conditions
1237 * should continue. Non-zero return, -errno on failure and @p's pid on
1238 * success, implies that tasklist_lock is released and wait condition
1239 * search should terminate.
1240 */
1241 static int wait_task_stopped(struct wait_opts *wo,
1242 int ptrace, struct task_struct *p)
1243 {
1244 struct siginfo __user *infop;
1245 int retval, exit_code, *p_code, why;
1246 uid_t uid = 0; /* unneeded, required by compiler */
1247 pid_t pid;
1248
1249 /*
1250 * Traditionally we see ptrace'd stopped tasks regardless of options.
1251 */
1252 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1253 return 0;
1254
1255 if (!task_stopped_code(p, ptrace))
1256 return 0;
1257
1258 exit_code = 0;
1259 spin_lock_irq(&p->sighand->siglock);
1260
1261 p_code = task_stopped_code(p, ptrace);
1262 if (unlikely(!p_code))
1263 goto unlock_sig;
1264
1265 exit_code = *p_code;
1266 if (!exit_code)
1267 goto unlock_sig;
1268
1269 if (!unlikely(wo->wo_flags & WNOWAIT))
1270 *p_code = 0;
1271
1272 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1273 unlock_sig:
1274 spin_unlock_irq(&p->sighand->siglock);
1275 if (!exit_code)
1276 return 0;
1277
1278 /*
1279 * Now we are pretty sure this task is interesting.
1280 * Make sure it doesn't get reaped out from under us while we
1281 * give up the lock and then examine it below. We don't want to
1282 * keep holding onto the tasklist_lock while we call getrusage and
1283 * possibly take page faults for user memory.
1284 */
1285 get_task_struct(p);
1286 pid = task_pid_vnr(p);
1287 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1288 read_unlock(&tasklist_lock);
1289 sched_annotate_sleep();
1290
1291 if (unlikely(wo->wo_flags & WNOWAIT))
1292 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1293
1294 retval = wo->wo_rusage
1295 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1296 if (!retval && wo->wo_stat)
1297 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1298
1299 infop = wo->wo_info;
1300 if (!retval && infop)
1301 retval = put_user(SIGCHLD, &infop->si_signo);
1302 if (!retval && infop)
1303 retval = put_user(0, &infop->si_errno);
1304 if (!retval && infop)
1305 retval = put_user((short)why, &infop->si_code);
1306 if (!retval && infop)
1307 retval = put_user(exit_code, &infop->si_status);
1308 if (!retval && infop)
1309 retval = put_user(pid, &infop->si_pid);
1310 if (!retval && infop)
1311 retval = put_user(uid, &infop->si_uid);
1312 if (!retval)
1313 retval = pid;
1314 put_task_struct(p);
1315
1316 BUG_ON(!retval);
1317 return retval;
1318 }
1319
1320 /*
1321 * Handle do_wait work for one task in a live, non-stopped state.
1322 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1323 * the lock and this task is uninteresting. If we return nonzero, we have
1324 * released the lock and the system call should return.
1325 */
1326 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 {
1328 int retval;
1329 pid_t pid;
1330 uid_t uid;
1331
1332 if (!unlikely(wo->wo_flags & WCONTINUED))
1333 return 0;
1334
1335 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336 return 0;
1337
1338 spin_lock_irq(&p->sighand->siglock);
1339 /* Re-check with the lock held. */
1340 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341 spin_unlock_irq(&p->sighand->siglock);
1342 return 0;
1343 }
1344 if (!unlikely(wo->wo_flags & WNOWAIT))
1345 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347 spin_unlock_irq(&p->sighand->siglock);
1348
1349 pid = task_pid_vnr(p);
1350 get_task_struct(p);
1351 read_unlock(&tasklist_lock);
1352 sched_annotate_sleep();
1353
1354 if (!wo->wo_info) {
1355 retval = wo->wo_rusage
1356 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1357 put_task_struct(p);
1358 if (!retval && wo->wo_stat)
1359 retval = put_user(0xffff, wo->wo_stat);
1360 if (!retval)
1361 retval = pid;
1362 } else {
1363 retval = wait_noreap_copyout(wo, p, pid, uid,
1364 CLD_CONTINUED, SIGCONT);
1365 BUG_ON(retval == 0);
1366 }
1367
1368 return retval;
1369 }
1370
1371 /*
1372 * Consider @p for a wait by @parent.
1373 *
1374 * -ECHILD should be in ->notask_error before the first call.
1375 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376 * Returns zero if the search for a child should continue;
1377 * then ->notask_error is 0 if @p is an eligible child,
1378 * or another error from security_task_wait(), or still -ECHILD.
1379 */
1380 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1381 struct task_struct *p)
1382 {
1383 /*
1384 * We can race with wait_task_zombie() from another thread.
1385 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1386 * can't confuse the checks below.
1387 */
1388 int exit_state = ACCESS_ONCE(p->exit_state);
1389 int ret;
1390
1391 if (unlikely(exit_state == EXIT_DEAD))
1392 return 0;
1393
1394 ret = eligible_child(wo, ptrace, p);
1395 if (!ret)
1396 return ret;
1397
1398 ret = security_task_wait(p);
1399 if (unlikely(ret < 0)) {
1400 /*
1401 * If we have not yet seen any eligible child,
1402 * then let this error code replace -ECHILD.
1403 * A permission error will give the user a clue
1404 * to look for security policy problems, rather
1405 * than for mysterious wait bugs.
1406 */
1407 if (wo->notask_error)
1408 wo->notask_error = ret;
1409 return 0;
1410 }
1411
1412 if (unlikely(exit_state == EXIT_TRACE)) {
1413 /*
1414 * ptrace == 0 means we are the natural parent. In this case
1415 * we should clear notask_error, debugger will notify us.
1416 */
1417 if (likely(!ptrace))
1418 wo->notask_error = 0;
1419 return 0;
1420 }
1421
1422 if (likely(!ptrace) && unlikely(p->ptrace)) {
1423 /*
1424 * If it is traced by its real parent's group, just pretend
1425 * the caller is ptrace_do_wait() and reap this child if it
1426 * is zombie.
1427 *
1428 * This also hides group stop state from real parent; otherwise
1429 * a single stop can be reported twice as group and ptrace stop.
1430 * If a ptracer wants to distinguish these two events for its
1431 * own children it should create a separate process which takes
1432 * the role of real parent.
1433 */
1434 if (!ptrace_reparented(p))
1435 ptrace = 1;
1436 }
1437
1438 /* slay zombie? */
1439 if (exit_state == EXIT_ZOMBIE) {
1440 /* we don't reap group leaders with subthreads */
1441 if (!delay_group_leader(p)) {
1442 /*
1443 * A zombie ptracee is only visible to its ptracer.
1444 * Notification and reaping will be cascaded to the
1445 * real parent when the ptracer detaches.
1446 */
1447 if (unlikely(ptrace) || likely(!p->ptrace))
1448 return wait_task_zombie(wo, p);
1449 }
1450
1451 /*
1452 * Allow access to stopped/continued state via zombie by
1453 * falling through. Clearing of notask_error is complex.
1454 *
1455 * When !@ptrace:
1456 *
1457 * If WEXITED is set, notask_error should naturally be
1458 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1459 * so, if there are live subthreads, there are events to
1460 * wait for. If all subthreads are dead, it's still safe
1461 * to clear - this function will be called again in finite
1462 * amount time once all the subthreads are released and
1463 * will then return without clearing.
1464 *
1465 * When @ptrace:
1466 *
1467 * Stopped state is per-task and thus can't change once the
1468 * target task dies. Only continued and exited can happen.
1469 * Clear notask_error if WCONTINUED | WEXITED.
1470 */
1471 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1472 wo->notask_error = 0;
1473 } else {
1474 /*
1475 * @p is alive and it's gonna stop, continue or exit, so
1476 * there always is something to wait for.
1477 */
1478 wo->notask_error = 0;
1479 }
1480
1481 /*
1482 * Wait for stopped. Depending on @ptrace, different stopped state
1483 * is used and the two don't interact with each other.
1484 */
1485 ret = wait_task_stopped(wo, ptrace, p);
1486 if (ret)
1487 return ret;
1488
1489 /*
1490 * Wait for continued. There's only one continued state and the
1491 * ptracer can consume it which can confuse the real parent. Don't
1492 * use WCONTINUED from ptracer. You don't need or want it.
1493 */
1494 return wait_task_continued(wo, p);
1495 }
1496
1497 /*
1498 * Do the work of do_wait() for one thread in the group, @tsk.
1499 *
1500 * -ECHILD should be in ->notask_error before the first call.
1501 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1502 * Returns zero if the search for a child should continue; then
1503 * ->notask_error is 0 if there were any eligible children,
1504 * or another error from security_task_wait(), or still -ECHILD.
1505 */
1506 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508 struct task_struct *p;
1509
1510 list_for_each_entry(p, &tsk->children, sibling) {
1511 int ret = wait_consider_task(wo, 0, p);
1512
1513 if (ret)
1514 return ret;
1515 }
1516
1517 return 0;
1518 }
1519
1520 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1521 {
1522 struct task_struct *p;
1523
1524 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1525 int ret = wait_consider_task(wo, 1, p);
1526
1527 if (ret)
1528 return ret;
1529 }
1530
1531 return 0;
1532 }
1533
1534 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1535 int sync, void *key)
1536 {
1537 struct wait_opts *wo = container_of(wait, struct wait_opts,
1538 child_wait);
1539 struct task_struct *p = key;
1540
1541 if (!eligible_pid(wo, p))
1542 return 0;
1543
1544 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1545 return 0;
1546
1547 return default_wake_function(wait, mode, sync, key);
1548 }
1549
1550 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1551 {
1552 __wake_up_sync_key(&parent->signal->wait_chldexit,
1553 TASK_INTERRUPTIBLE, 1, p);
1554 }
1555
1556 static long do_wait(struct wait_opts *wo)
1557 {
1558 struct task_struct *tsk;
1559 int retval;
1560
1561 trace_sched_process_wait(wo->wo_pid);
1562
1563 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1564 wo->child_wait.private = current;
1565 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1566 repeat:
1567 /*
1568 * If there is nothing that can match our criteria, just get out.
1569 * We will clear ->notask_error to zero if we see any child that
1570 * might later match our criteria, even if we are not able to reap
1571 * it yet.
1572 */
1573 wo->notask_error = -ECHILD;
1574 if ((wo->wo_type < PIDTYPE_MAX) &&
1575 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1576 goto notask;
1577
1578 set_current_state(TASK_INTERRUPTIBLE);
1579 read_lock(&tasklist_lock);
1580 tsk = current;
1581 do {
1582 retval = do_wait_thread(wo, tsk);
1583 if (retval)
1584 goto end;
1585
1586 retval = ptrace_do_wait(wo, tsk);
1587 if (retval)
1588 goto end;
1589
1590 if (wo->wo_flags & __WNOTHREAD)
1591 break;
1592 } while_each_thread(current, tsk);
1593 read_unlock(&tasklist_lock);
1594
1595 notask:
1596 retval = wo->notask_error;
1597 if (!retval && !(wo->wo_flags & WNOHANG)) {
1598 retval = -ERESTARTSYS;
1599 if (!signal_pending(current)) {
1600 schedule();
1601 goto repeat;
1602 }
1603 }
1604 end:
1605 __set_current_state(TASK_RUNNING);
1606 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1607 return retval;
1608 }
1609
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 infop, int, options, struct rusage __user *, ru)
1612 {
1613 struct wait_opts wo;
1614 struct pid *pid = NULL;
1615 enum pid_type type;
1616 long ret;
1617
1618 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1619 __WNOTHREAD|__WCLONE|__WALL))
1620 return -EINVAL;
1621 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1622 return -EINVAL;
1623
1624 switch (which) {
1625 case P_ALL:
1626 type = PIDTYPE_MAX;
1627 break;
1628 case P_PID:
1629 type = PIDTYPE_PID;
1630 if (upid <= 0)
1631 return -EINVAL;
1632 break;
1633 case P_PGID:
1634 type = PIDTYPE_PGID;
1635 if (upid <= 0)
1636 return -EINVAL;
1637 break;
1638 default:
1639 return -EINVAL;
1640 }
1641
1642 if (type < PIDTYPE_MAX)
1643 pid = find_get_pid(upid);
1644
1645 wo.wo_type = type;
1646 wo.wo_pid = pid;
1647 wo.wo_flags = options;
1648 wo.wo_info = infop;
1649 wo.wo_stat = NULL;
1650 wo.wo_rusage = ru;
1651 ret = do_wait(&wo);
1652
1653 if (ret > 0) {
1654 ret = 0;
1655 } else if (infop) {
1656 /*
1657 * For a WNOHANG return, clear out all the fields
1658 * we would set so the user can easily tell the
1659 * difference.
1660 */
1661 if (!ret)
1662 ret = put_user(0, &infop->si_signo);
1663 if (!ret)
1664 ret = put_user(0, &infop->si_errno);
1665 if (!ret)
1666 ret = put_user(0, &infop->si_code);
1667 if (!ret)
1668 ret = put_user(0, &infop->si_pid);
1669 if (!ret)
1670 ret = put_user(0, &infop->si_uid);
1671 if (!ret)
1672 ret = put_user(0, &infop->si_status);
1673 }
1674
1675 put_pid(pid);
1676 return ret;
1677 }
1678
1679 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1680 int, options, struct rusage __user *, ru)
1681 {
1682 struct wait_opts wo;
1683 struct pid *pid = NULL;
1684 enum pid_type type;
1685 long ret;
1686
1687 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1688 __WNOTHREAD|__WCLONE|__WALL))
1689 return -EINVAL;
1690
1691 if (upid == -1)
1692 type = PIDTYPE_MAX;
1693 else if (upid < 0) {
1694 type = PIDTYPE_PGID;
1695 pid = find_get_pid(-upid);
1696 } else if (upid == 0) {
1697 type = PIDTYPE_PGID;
1698 pid = get_task_pid(current, PIDTYPE_PGID);
1699 } else /* upid > 0 */ {
1700 type = PIDTYPE_PID;
1701 pid = find_get_pid(upid);
1702 }
1703
1704 wo.wo_type = type;
1705 wo.wo_pid = pid;
1706 wo.wo_flags = options | WEXITED;
1707 wo.wo_info = NULL;
1708 wo.wo_stat = stat_addr;
1709 wo.wo_rusage = ru;
1710 ret = do_wait(&wo);
1711 put_pid(pid);
1712
1713 return ret;
1714 }
1715
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1717
1718 /*
1719 * sys_waitpid() remains for compatibility. waitpid() should be
1720 * implemented by calling sys_wait4() from libc.a.
1721 */
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1723 {
1724 return sys_wait4(pid, stat_addr, options, NULL);
1725 }
1726
1727 #endif
This page took 0.083412 seconds and 5 git commands to generate.