Merge remote-tracking branch 'regmap/fix/raw' into regmap-linus
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 list_del_rcu(&p->thread_node);
76 }
77
78 /*
79 * This function expects the tasklist_lock write-locked.
80 */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 struct signal_struct *sig = tsk->signal;
84 bool group_dead = thread_group_leader(tsk);
85 struct sighand_struct *sighand;
86 struct tty_struct *uninitialized_var(tty);
87 cputime_t utime, stime;
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 lockdep_tasklist_lock_is_held());
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (group_dead) {
95 posix_cpu_timers_exit_group(tsk);
96 tty = sig->tty;
97 sig->tty = NULL;
98 } else {
99 /*
100 * This can only happen if the caller is de_thread().
101 * FIXME: this is the temporary hack, we should teach
102 * posix-cpu-timers to handle this case correctly.
103 */
104 if (unlikely(has_group_leader_pid(tsk)))
105 posix_cpu_timers_exit_group(tsk);
106
107 /*
108 * If there is any task waiting for the group exit
109 * then notify it:
110 */
111 if (sig->notify_count > 0 && !--sig->notify_count)
112 wake_up_process(sig->group_exit_task);
113
114 if (tsk == sig->curr_target)
115 sig->curr_target = next_thread(tsk);
116 }
117
118 /*
119 * Accumulate here the counters for all threads as they die. We could
120 * skip the group leader because it is the last user of signal_struct,
121 * but we want to avoid the race with thread_group_cputime() which can
122 * see the empty ->thread_head list.
123 */
124 task_cputime(tsk, &utime, &stime);
125 write_seqlock(&sig->stats_lock);
126 sig->utime += utime;
127 sig->stime += stime;
128 sig->gtime += task_gtime(tsk);
129 sig->min_flt += tsk->min_flt;
130 sig->maj_flt += tsk->maj_flt;
131 sig->nvcsw += tsk->nvcsw;
132 sig->nivcsw += tsk->nivcsw;
133 sig->inblock += task_io_get_inblock(tsk);
134 sig->oublock += task_io_get_oublock(tsk);
135 task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 sig->nr_threads--;
138 __unhash_process(tsk, group_dead);
139 write_sequnlock(&sig->stats_lock);
140
141 /*
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
148
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct *p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock();
177
178 proc_flush_task(p);
179
180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p);
182 __exit_signal(p);
183
184 /*
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
188 */
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader)
192 && leader->exit_state == EXIT_ZOMBIE) {
193 /*
194 * If we were the last child thread and the leader has
195 * exited already, and the leader's parent ignores SIGCHLD,
196 * then we are the one who should release the leader.
197 */
198 zap_leader = do_notify_parent(leader, leader->exit_signal);
199 if (zap_leader)
200 leader->exit_state = EXIT_DEAD;
201 }
202
203 write_unlock_irq(&tasklist_lock);
204 release_thread(p);
205 call_rcu(&p->rcu, delayed_put_task_struct);
206
207 p = leader;
208 if (unlikely(zap_leader))
209 goto repeat;
210 }
211
212 /*
213 * Determine if a process group is "orphaned", according to the POSIX
214 * definition in 2.2.2.52. Orphaned process groups are not to be affected
215 * by terminal-generated stop signals. Newly orphaned process groups are
216 * to receive a SIGHUP and a SIGCONT.
217 *
218 * "I ask you, have you ever known what it is to be an orphan?"
219 */
220 static int will_become_orphaned_pgrp(struct pid *pgrp,
221 struct task_struct *ignored_task)
222 {
223 struct task_struct *p;
224
225 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
226 if ((p == ignored_task) ||
227 (p->exit_state && thread_group_empty(p)) ||
228 is_global_init(p->real_parent))
229 continue;
230
231 if (task_pgrp(p->real_parent) != pgrp &&
232 task_session(p->real_parent) == task_session(p))
233 return 0;
234 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
235
236 return 1;
237 }
238
239 int is_current_pgrp_orphaned(void)
240 {
241 int retval;
242
243 read_lock(&tasklist_lock);
244 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
245 read_unlock(&tasklist_lock);
246
247 return retval;
248 }
249
250 static bool has_stopped_jobs(struct pid *pgrp)
251 {
252 struct task_struct *p;
253
254 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 if (p->signal->flags & SIGNAL_STOP_STOPPED)
256 return true;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return false;
260 }
261
262 /*
263 * Check to see if any process groups have become orphaned as
264 * a result of our exiting, and if they have any stopped jobs,
265 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
266 */
267 static void
268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
269 {
270 struct pid *pgrp = task_pgrp(tsk);
271 struct task_struct *ignored_task = tsk;
272
273 if (!parent)
274 /* exit: our father is in a different pgrp than
275 * we are and we were the only connection outside.
276 */
277 parent = tsk->real_parent;
278 else
279 /* reparent: our child is in a different pgrp than
280 * we are, and it was the only connection outside.
281 */
282 ignored_task = NULL;
283
284 if (task_pgrp(parent) != pgrp &&
285 task_session(parent) == task_session(tsk) &&
286 will_become_orphaned_pgrp(pgrp, ignored_task) &&
287 has_stopped_jobs(pgrp)) {
288 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
289 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
290 }
291 }
292
293 #ifdef CONFIG_MEMCG
294 /*
295 * A task is exiting. If it owned this mm, find a new owner for the mm.
296 */
297 void mm_update_next_owner(struct mm_struct *mm)
298 {
299 struct task_struct *c, *g, *p = current;
300
301 retry:
302 /*
303 * If the exiting or execing task is not the owner, it's
304 * someone else's problem.
305 */
306 if (mm->owner != p)
307 return;
308 /*
309 * The current owner is exiting/execing and there are no other
310 * candidates. Do not leave the mm pointing to a possibly
311 * freed task structure.
312 */
313 if (atomic_read(&mm->mm_users) <= 1) {
314 mm->owner = NULL;
315 return;
316 }
317
318 read_lock(&tasklist_lock);
319 /*
320 * Search in the children
321 */
322 list_for_each_entry(c, &p->children, sibling) {
323 if (c->mm == mm)
324 goto assign_new_owner;
325 }
326
327 /*
328 * Search in the siblings
329 */
330 list_for_each_entry(c, &p->real_parent->children, sibling) {
331 if (c->mm == mm)
332 goto assign_new_owner;
333 }
334
335 /*
336 * Search through everything else, we should not get here often.
337 */
338 for_each_process(g) {
339 if (g->flags & PF_KTHREAD)
340 continue;
341 for_each_thread(g, c) {
342 if (c->mm == mm)
343 goto assign_new_owner;
344 if (c->mm)
345 break;
346 }
347 }
348 read_unlock(&tasklist_lock);
349 /*
350 * We found no owner yet mm_users > 1: this implies that we are
351 * most likely racing with swapoff (try_to_unuse()) or /proc or
352 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
353 */
354 mm->owner = NULL;
355 return;
356
357 assign_new_owner:
358 BUG_ON(c == p);
359 get_task_struct(c);
360 /*
361 * The task_lock protects c->mm from changing.
362 * We always want mm->owner->mm == mm
363 */
364 task_lock(c);
365 /*
366 * Delay read_unlock() till we have the task_lock()
367 * to ensure that c does not slip away underneath us
368 */
369 read_unlock(&tasklist_lock);
370 if (c->mm != mm) {
371 task_unlock(c);
372 put_task_struct(c);
373 goto retry;
374 }
375 mm->owner = c;
376 task_unlock(c);
377 put_task_struct(c);
378 }
379 #endif /* CONFIG_MEMCG */
380
381 /*
382 * Turn us into a lazy TLB process if we
383 * aren't already..
384 */
385 static void exit_mm(struct task_struct *tsk)
386 {
387 struct mm_struct *mm = tsk->mm;
388 struct core_state *core_state;
389
390 mm_release(tsk, mm);
391 if (!mm)
392 return;
393 sync_mm_rss(mm);
394 /*
395 * Serialize with any possible pending coredump.
396 * We must hold mmap_sem around checking core_state
397 * and clearing tsk->mm. The core-inducing thread
398 * will increment ->nr_threads for each thread in the
399 * group with ->mm != NULL.
400 */
401 down_read(&mm->mmap_sem);
402 core_state = mm->core_state;
403 if (core_state) {
404 struct core_thread self;
405
406 up_read(&mm->mmap_sem);
407
408 self.task = tsk;
409 self.next = xchg(&core_state->dumper.next, &self);
410 /*
411 * Implies mb(), the result of xchg() must be visible
412 * to core_state->dumper.
413 */
414 if (atomic_dec_and_test(&core_state->nr_threads))
415 complete(&core_state->startup);
416
417 for (;;) {
418 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
419 if (!self.task) /* see coredump_finish() */
420 break;
421 freezable_schedule();
422 }
423 __set_task_state(tsk, TASK_RUNNING);
424 down_read(&mm->mmap_sem);
425 }
426 atomic_inc(&mm->mm_count);
427 BUG_ON(mm != tsk->active_mm);
428 /* more a memory barrier than a real lock */
429 task_lock(tsk);
430 tsk->mm = NULL;
431 up_read(&mm->mmap_sem);
432 enter_lazy_tlb(mm, current);
433 task_unlock(tsk);
434 mm_update_next_owner(mm);
435 mmput(mm);
436 if (test_thread_flag(TIF_MEMDIE))
437 exit_oom_victim();
438 }
439
440 static struct task_struct *find_alive_thread(struct task_struct *p)
441 {
442 struct task_struct *t;
443
444 for_each_thread(p, t) {
445 if (!(t->flags & PF_EXITING))
446 return t;
447 }
448 return NULL;
449 }
450
451 static struct task_struct *find_child_reaper(struct task_struct *father)
452 __releases(&tasklist_lock)
453 __acquires(&tasklist_lock)
454 {
455 struct pid_namespace *pid_ns = task_active_pid_ns(father);
456 struct task_struct *reaper = pid_ns->child_reaper;
457
458 if (likely(reaper != father))
459 return reaper;
460
461 reaper = find_alive_thread(father);
462 if (reaper) {
463 pid_ns->child_reaper = reaper;
464 return reaper;
465 }
466
467 write_unlock_irq(&tasklist_lock);
468 if (unlikely(pid_ns == &init_pid_ns)) {
469 panic("Attempted to kill init! exitcode=0x%08x\n",
470 father->signal->group_exit_code ?: father->exit_code);
471 }
472 zap_pid_ns_processes(pid_ns);
473 write_lock_irq(&tasklist_lock);
474
475 return father;
476 }
477
478 /*
479 * When we die, we re-parent all our children, and try to:
480 * 1. give them to another thread in our thread group, if such a member exists
481 * 2. give it to the first ancestor process which prctl'd itself as a
482 * child_subreaper for its children (like a service manager)
483 * 3. give it to the init process (PID 1) in our pid namespace
484 */
485 static struct task_struct *find_new_reaper(struct task_struct *father,
486 struct task_struct *child_reaper)
487 {
488 struct task_struct *thread, *reaper;
489
490 thread = find_alive_thread(father);
491 if (thread)
492 return thread;
493
494 if (father->signal->has_child_subreaper) {
495 /*
496 * Find the first ->is_child_subreaper ancestor in our pid_ns.
497 * We start from father to ensure we can not look into another
498 * namespace, this is safe because all its threads are dead.
499 */
500 for (reaper = father;
501 !same_thread_group(reaper, child_reaper);
502 reaper = reaper->real_parent) {
503 /* call_usermodehelper() descendants need this check */
504 if (reaper == &init_task)
505 break;
506 if (!reaper->signal->is_child_subreaper)
507 continue;
508 thread = find_alive_thread(reaper);
509 if (thread)
510 return thread;
511 }
512 }
513
514 return child_reaper;
515 }
516
517 /*
518 * Any that need to be release_task'd are put on the @dead list.
519 */
520 static void reparent_leader(struct task_struct *father, struct task_struct *p,
521 struct list_head *dead)
522 {
523 if (unlikely(p->exit_state == EXIT_DEAD))
524 return;
525
526 /* We don't want people slaying init. */
527 p->exit_signal = SIGCHLD;
528
529 /* If it has exited notify the new parent about this child's death. */
530 if (!p->ptrace &&
531 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
532 if (do_notify_parent(p, p->exit_signal)) {
533 p->exit_state = EXIT_DEAD;
534 list_add(&p->ptrace_entry, dead);
535 }
536 }
537
538 kill_orphaned_pgrp(p, father);
539 }
540
541 /*
542 * This does two things:
543 *
544 * A. Make init inherit all the child processes
545 * B. Check to see if any process groups have become orphaned
546 * as a result of our exiting, and if they have any stopped
547 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
548 */
549 static void forget_original_parent(struct task_struct *father,
550 struct list_head *dead)
551 {
552 struct task_struct *p, *t, *reaper;
553
554 if (unlikely(!list_empty(&father->ptraced)))
555 exit_ptrace(father, dead);
556
557 /* Can drop and reacquire tasklist_lock */
558 reaper = find_child_reaper(father);
559 if (list_empty(&father->children))
560 return;
561
562 reaper = find_new_reaper(father, reaper);
563 list_for_each_entry(p, &father->children, sibling) {
564 for_each_thread(p, t) {
565 t->real_parent = reaper;
566 BUG_ON((!t->ptrace) != (t->parent == father));
567 if (likely(!t->ptrace))
568 t->parent = t->real_parent;
569 if (t->pdeath_signal)
570 group_send_sig_info(t->pdeath_signal,
571 SEND_SIG_NOINFO, t);
572 }
573 /*
574 * If this is a threaded reparent there is no need to
575 * notify anyone anything has happened.
576 */
577 if (!same_thread_group(reaper, father))
578 reparent_leader(father, p, dead);
579 }
580 list_splice_tail_init(&father->children, &reaper->children);
581 }
582
583 /*
584 * Send signals to all our closest relatives so that they know
585 * to properly mourn us..
586 */
587 static void exit_notify(struct task_struct *tsk, int group_dead)
588 {
589 bool autoreap;
590 struct task_struct *p, *n;
591 LIST_HEAD(dead);
592
593 write_lock_irq(&tasklist_lock);
594 forget_original_parent(tsk, &dead);
595
596 if (group_dead)
597 kill_orphaned_pgrp(tsk->group_leader, NULL);
598
599 if (unlikely(tsk->ptrace)) {
600 int sig = thread_group_leader(tsk) &&
601 thread_group_empty(tsk) &&
602 !ptrace_reparented(tsk) ?
603 tsk->exit_signal : SIGCHLD;
604 autoreap = do_notify_parent(tsk, sig);
605 } else if (thread_group_leader(tsk)) {
606 autoreap = thread_group_empty(tsk) &&
607 do_notify_parent(tsk, tsk->exit_signal);
608 } else {
609 autoreap = true;
610 }
611
612 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
613 if (tsk->exit_state == EXIT_DEAD)
614 list_add(&tsk->ptrace_entry, &dead);
615
616 /* mt-exec, de_thread() is waiting for group leader */
617 if (unlikely(tsk->signal->notify_count < 0))
618 wake_up_process(tsk->signal->group_exit_task);
619 write_unlock_irq(&tasklist_lock);
620
621 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
622 list_del_init(&p->ptrace_entry);
623 release_task(p);
624 }
625 }
626
627 #ifdef CONFIG_DEBUG_STACK_USAGE
628 static void check_stack_usage(void)
629 {
630 static DEFINE_SPINLOCK(low_water_lock);
631 static int lowest_to_date = THREAD_SIZE;
632 unsigned long free;
633
634 free = stack_not_used(current);
635
636 if (free >= lowest_to_date)
637 return;
638
639 spin_lock(&low_water_lock);
640 if (free < lowest_to_date) {
641 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
642 current->comm, task_pid_nr(current), free);
643 lowest_to_date = free;
644 }
645 spin_unlock(&low_water_lock);
646 }
647 #else
648 static inline void check_stack_usage(void) {}
649 #endif
650
651 void do_exit(long code)
652 {
653 struct task_struct *tsk = current;
654 int group_dead;
655 TASKS_RCU(int tasks_rcu_i);
656
657 profile_task_exit(tsk);
658
659 WARN_ON(blk_needs_flush_plug(tsk));
660
661 if (unlikely(in_interrupt()))
662 panic("Aiee, killing interrupt handler!");
663 if (unlikely(!tsk->pid))
664 panic("Attempted to kill the idle task!");
665
666 /*
667 * If do_exit is called because this processes oopsed, it's possible
668 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
669 * continuing. Amongst other possible reasons, this is to prevent
670 * mm_release()->clear_child_tid() from writing to a user-controlled
671 * kernel address.
672 */
673 set_fs(USER_DS);
674
675 ptrace_event(PTRACE_EVENT_EXIT, code);
676
677 validate_creds_for_do_exit(tsk);
678
679 /*
680 * We're taking recursive faults here in do_exit. Safest is to just
681 * leave this task alone and wait for reboot.
682 */
683 if (unlikely(tsk->flags & PF_EXITING)) {
684 pr_alert("Fixing recursive fault but reboot is needed!\n");
685 /*
686 * We can do this unlocked here. The futex code uses
687 * this flag just to verify whether the pi state
688 * cleanup has been done or not. In the worst case it
689 * loops once more. We pretend that the cleanup was
690 * done as there is no way to return. Either the
691 * OWNER_DIED bit is set by now or we push the blocked
692 * task into the wait for ever nirwana as well.
693 */
694 tsk->flags |= PF_EXITPIDONE;
695 set_current_state(TASK_UNINTERRUPTIBLE);
696 schedule();
697 }
698
699 exit_signals(tsk); /* sets PF_EXITING */
700 /*
701 * tsk->flags are checked in the futex code to protect against
702 * an exiting task cleaning up the robust pi futexes.
703 */
704 smp_mb();
705 raw_spin_unlock_wait(&tsk->pi_lock);
706
707 if (unlikely(in_atomic())) {
708 pr_info("note: %s[%d] exited with preempt_count %d\n",
709 current->comm, task_pid_nr(current),
710 preempt_count());
711 preempt_count_set(PREEMPT_ENABLED);
712 }
713
714 /* sync mm's RSS info before statistics gathering */
715 if (tsk->mm)
716 sync_mm_rss(tsk->mm);
717 acct_update_integrals(tsk);
718 group_dead = atomic_dec_and_test(&tsk->signal->live);
719 if (group_dead) {
720 hrtimer_cancel(&tsk->signal->real_timer);
721 exit_itimers(tsk->signal);
722 if (tsk->mm)
723 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
724 }
725 acct_collect(code, group_dead);
726 if (group_dead)
727 tty_audit_exit();
728 audit_free(tsk);
729
730 tsk->exit_code = code;
731 taskstats_exit(tsk, group_dead);
732
733 exit_mm(tsk);
734
735 if (group_dead)
736 acct_process();
737 trace_sched_process_exit(tsk);
738
739 exit_sem(tsk);
740 exit_shm(tsk);
741 exit_files(tsk);
742 exit_fs(tsk);
743 if (group_dead)
744 disassociate_ctty(1);
745 exit_task_namespaces(tsk);
746 exit_task_work(tsk);
747 exit_thread();
748
749 /*
750 * Flush inherited counters to the parent - before the parent
751 * gets woken up by child-exit notifications.
752 *
753 * because of cgroup mode, must be called before cgroup_exit()
754 */
755 perf_event_exit_task(tsk);
756
757 cgroup_exit(tsk);
758
759 /*
760 * FIXME: do that only when needed, using sched_exit tracepoint
761 */
762 flush_ptrace_hw_breakpoint(tsk);
763
764 TASKS_RCU(preempt_disable());
765 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
766 TASKS_RCU(preempt_enable());
767 exit_notify(tsk, group_dead);
768 proc_exit_connector(tsk);
769 #ifdef CONFIG_NUMA
770 task_lock(tsk);
771 mpol_put(tsk->mempolicy);
772 tsk->mempolicy = NULL;
773 task_unlock(tsk);
774 #endif
775 #ifdef CONFIG_FUTEX
776 if (unlikely(current->pi_state_cache))
777 kfree(current->pi_state_cache);
778 #endif
779 /*
780 * Make sure we are holding no locks:
781 */
782 debug_check_no_locks_held();
783 /*
784 * We can do this unlocked here. The futex code uses this flag
785 * just to verify whether the pi state cleanup has been done
786 * or not. In the worst case it loops once more.
787 */
788 tsk->flags |= PF_EXITPIDONE;
789
790 if (tsk->io_context)
791 exit_io_context(tsk);
792
793 if (tsk->splice_pipe)
794 free_pipe_info(tsk->splice_pipe);
795
796 if (tsk->task_frag.page)
797 put_page(tsk->task_frag.page);
798
799 validate_creds_for_do_exit(tsk);
800
801 check_stack_usage();
802 preempt_disable();
803 if (tsk->nr_dirtied)
804 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
805 exit_rcu();
806 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
807
808 /*
809 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
810 * when the following two conditions become true.
811 * - There is race condition of mmap_sem (It is acquired by
812 * exit_mm()), and
813 * - SMI occurs before setting TASK_RUNINNG.
814 * (or hypervisor of virtual machine switches to other guest)
815 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
816 *
817 * To avoid it, we have to wait for releasing tsk->pi_lock which
818 * is held by try_to_wake_up()
819 */
820 smp_mb();
821 raw_spin_unlock_wait(&tsk->pi_lock);
822
823 /* causes final put_task_struct in finish_task_switch(). */
824 tsk->state = TASK_DEAD;
825 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
826 schedule();
827 BUG();
828 /* Avoid "noreturn function does return". */
829 for (;;)
830 cpu_relax(); /* For when BUG is null */
831 }
832 EXPORT_SYMBOL_GPL(do_exit);
833
834 void complete_and_exit(struct completion *comp, long code)
835 {
836 if (comp)
837 complete(comp);
838
839 do_exit(code);
840 }
841 EXPORT_SYMBOL(complete_and_exit);
842
843 SYSCALL_DEFINE1(exit, int, error_code)
844 {
845 do_exit((error_code&0xff)<<8);
846 }
847
848 /*
849 * Take down every thread in the group. This is called by fatal signals
850 * as well as by sys_exit_group (below).
851 */
852 void
853 do_group_exit(int exit_code)
854 {
855 struct signal_struct *sig = current->signal;
856
857 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
858
859 if (signal_group_exit(sig))
860 exit_code = sig->group_exit_code;
861 else if (!thread_group_empty(current)) {
862 struct sighand_struct *const sighand = current->sighand;
863
864 spin_lock_irq(&sighand->siglock);
865 if (signal_group_exit(sig))
866 /* Another thread got here before we took the lock. */
867 exit_code = sig->group_exit_code;
868 else {
869 sig->group_exit_code = exit_code;
870 sig->flags = SIGNAL_GROUP_EXIT;
871 zap_other_threads(current);
872 }
873 spin_unlock_irq(&sighand->siglock);
874 }
875
876 do_exit(exit_code);
877 /* NOTREACHED */
878 }
879
880 /*
881 * this kills every thread in the thread group. Note that any externally
882 * wait4()-ing process will get the correct exit code - even if this
883 * thread is not the thread group leader.
884 */
885 SYSCALL_DEFINE1(exit_group, int, error_code)
886 {
887 do_group_exit((error_code & 0xff) << 8);
888 /* NOTREACHED */
889 return 0;
890 }
891
892 struct wait_opts {
893 enum pid_type wo_type;
894 int wo_flags;
895 struct pid *wo_pid;
896
897 struct siginfo __user *wo_info;
898 int __user *wo_stat;
899 struct rusage __user *wo_rusage;
900
901 wait_queue_t child_wait;
902 int notask_error;
903 };
904
905 static inline
906 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
907 {
908 if (type != PIDTYPE_PID)
909 task = task->group_leader;
910 return task->pids[type].pid;
911 }
912
913 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
914 {
915 return wo->wo_type == PIDTYPE_MAX ||
916 task_pid_type(p, wo->wo_type) == wo->wo_pid;
917 }
918
919 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
920 {
921 if (!eligible_pid(wo, p))
922 return 0;
923 /* Wait for all children (clone and not) if __WALL is set;
924 * otherwise, wait for clone children *only* if __WCLONE is
925 * set; otherwise, wait for non-clone children *only*. (Note:
926 * A "clone" child here is one that reports to its parent
927 * using a signal other than SIGCHLD.) */
928 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
929 && !(wo->wo_flags & __WALL))
930 return 0;
931
932 return 1;
933 }
934
935 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
936 pid_t pid, uid_t uid, int why, int status)
937 {
938 struct siginfo __user *infop;
939 int retval = wo->wo_rusage
940 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
941
942 put_task_struct(p);
943 infop = wo->wo_info;
944 if (infop) {
945 if (!retval)
946 retval = put_user(SIGCHLD, &infop->si_signo);
947 if (!retval)
948 retval = put_user(0, &infop->si_errno);
949 if (!retval)
950 retval = put_user((short)why, &infop->si_code);
951 if (!retval)
952 retval = put_user(pid, &infop->si_pid);
953 if (!retval)
954 retval = put_user(uid, &infop->si_uid);
955 if (!retval)
956 retval = put_user(status, &infop->si_status);
957 }
958 if (!retval)
959 retval = pid;
960 return retval;
961 }
962
963 /*
964 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
965 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
966 * the lock and this task is uninteresting. If we return nonzero, we have
967 * released the lock and the system call should return.
968 */
969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
970 {
971 int state, retval, status;
972 pid_t pid = task_pid_vnr(p);
973 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
974 struct siginfo __user *infop;
975
976 if (!likely(wo->wo_flags & WEXITED))
977 return 0;
978
979 if (unlikely(wo->wo_flags & WNOWAIT)) {
980 int exit_code = p->exit_code;
981 int why;
982
983 get_task_struct(p);
984 read_unlock(&tasklist_lock);
985 sched_annotate_sleep();
986
987 if ((exit_code & 0x7f) == 0) {
988 why = CLD_EXITED;
989 status = exit_code >> 8;
990 } else {
991 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
992 status = exit_code & 0x7f;
993 }
994 return wait_noreap_copyout(wo, p, pid, uid, why, status);
995 }
996 /*
997 * Move the task's state to DEAD/TRACE, only one thread can do this.
998 */
999 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1000 EXIT_TRACE : EXIT_DEAD;
1001 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1002 return 0;
1003 /*
1004 * We own this thread, nobody else can reap it.
1005 */
1006 read_unlock(&tasklist_lock);
1007 sched_annotate_sleep();
1008
1009 /*
1010 * Check thread_group_leader() to exclude the traced sub-threads.
1011 */
1012 if (state == EXIT_DEAD && thread_group_leader(p)) {
1013 struct signal_struct *sig = p->signal;
1014 struct signal_struct *psig = current->signal;
1015 unsigned long maxrss;
1016 cputime_t tgutime, tgstime;
1017
1018 /*
1019 * The resource counters for the group leader are in its
1020 * own task_struct. Those for dead threads in the group
1021 * are in its signal_struct, as are those for the child
1022 * processes it has previously reaped. All these
1023 * accumulate in the parent's signal_struct c* fields.
1024 *
1025 * We don't bother to take a lock here to protect these
1026 * p->signal fields because the whole thread group is dead
1027 * and nobody can change them.
1028 *
1029 * psig->stats_lock also protects us from our sub-theads
1030 * which can reap other children at the same time. Until
1031 * we change k_getrusage()-like users to rely on this lock
1032 * we have to take ->siglock as well.
1033 *
1034 * We use thread_group_cputime_adjusted() to get times for
1035 * the thread group, which consolidates times for all threads
1036 * in the group including the group leader.
1037 */
1038 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1039 spin_lock_irq(&current->sighand->siglock);
1040 write_seqlock(&psig->stats_lock);
1041 psig->cutime += tgutime + sig->cutime;
1042 psig->cstime += tgstime + sig->cstime;
1043 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1044 psig->cmin_flt +=
1045 p->min_flt + sig->min_flt + sig->cmin_flt;
1046 psig->cmaj_flt +=
1047 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1048 psig->cnvcsw +=
1049 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1050 psig->cnivcsw +=
1051 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1052 psig->cinblock +=
1053 task_io_get_inblock(p) +
1054 sig->inblock + sig->cinblock;
1055 psig->coublock +=
1056 task_io_get_oublock(p) +
1057 sig->oublock + sig->coublock;
1058 maxrss = max(sig->maxrss, sig->cmaxrss);
1059 if (psig->cmaxrss < maxrss)
1060 psig->cmaxrss = maxrss;
1061 task_io_accounting_add(&psig->ioac, &p->ioac);
1062 task_io_accounting_add(&psig->ioac, &sig->ioac);
1063 write_sequnlock(&psig->stats_lock);
1064 spin_unlock_irq(&current->sighand->siglock);
1065 }
1066
1067 retval = wo->wo_rusage
1068 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1069 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1070 ? p->signal->group_exit_code : p->exit_code;
1071 if (!retval && wo->wo_stat)
1072 retval = put_user(status, wo->wo_stat);
1073
1074 infop = wo->wo_info;
1075 if (!retval && infop)
1076 retval = put_user(SIGCHLD, &infop->si_signo);
1077 if (!retval && infop)
1078 retval = put_user(0, &infop->si_errno);
1079 if (!retval && infop) {
1080 int why;
1081
1082 if ((status & 0x7f) == 0) {
1083 why = CLD_EXITED;
1084 status >>= 8;
1085 } else {
1086 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1087 status &= 0x7f;
1088 }
1089 retval = put_user((short)why, &infop->si_code);
1090 if (!retval)
1091 retval = put_user(status, &infop->si_status);
1092 }
1093 if (!retval && infop)
1094 retval = put_user(pid, &infop->si_pid);
1095 if (!retval && infop)
1096 retval = put_user(uid, &infop->si_uid);
1097 if (!retval)
1098 retval = pid;
1099
1100 if (state == EXIT_TRACE) {
1101 write_lock_irq(&tasklist_lock);
1102 /* We dropped tasklist, ptracer could die and untrace */
1103 ptrace_unlink(p);
1104
1105 /* If parent wants a zombie, don't release it now */
1106 state = EXIT_ZOMBIE;
1107 if (do_notify_parent(p, p->exit_signal))
1108 state = EXIT_DEAD;
1109 p->exit_state = state;
1110 write_unlock_irq(&tasklist_lock);
1111 }
1112 if (state == EXIT_DEAD)
1113 release_task(p);
1114
1115 return retval;
1116 }
1117
1118 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1119 {
1120 if (ptrace) {
1121 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1122 return &p->exit_code;
1123 } else {
1124 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1125 return &p->signal->group_exit_code;
1126 }
1127 return NULL;
1128 }
1129
1130 /**
1131 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1132 * @wo: wait options
1133 * @ptrace: is the wait for ptrace
1134 * @p: task to wait for
1135 *
1136 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1137 *
1138 * CONTEXT:
1139 * read_lock(&tasklist_lock), which is released if return value is
1140 * non-zero. Also, grabs and releases @p->sighand->siglock.
1141 *
1142 * RETURNS:
1143 * 0 if wait condition didn't exist and search for other wait conditions
1144 * should continue. Non-zero return, -errno on failure and @p's pid on
1145 * success, implies that tasklist_lock is released and wait condition
1146 * search should terminate.
1147 */
1148 static int wait_task_stopped(struct wait_opts *wo,
1149 int ptrace, struct task_struct *p)
1150 {
1151 struct siginfo __user *infop;
1152 int retval, exit_code, *p_code, why;
1153 uid_t uid = 0; /* unneeded, required by compiler */
1154 pid_t pid;
1155
1156 /*
1157 * Traditionally we see ptrace'd stopped tasks regardless of options.
1158 */
1159 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1160 return 0;
1161
1162 if (!task_stopped_code(p, ptrace))
1163 return 0;
1164
1165 exit_code = 0;
1166 spin_lock_irq(&p->sighand->siglock);
1167
1168 p_code = task_stopped_code(p, ptrace);
1169 if (unlikely(!p_code))
1170 goto unlock_sig;
1171
1172 exit_code = *p_code;
1173 if (!exit_code)
1174 goto unlock_sig;
1175
1176 if (!unlikely(wo->wo_flags & WNOWAIT))
1177 *p_code = 0;
1178
1179 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1180 unlock_sig:
1181 spin_unlock_irq(&p->sighand->siglock);
1182 if (!exit_code)
1183 return 0;
1184
1185 /*
1186 * Now we are pretty sure this task is interesting.
1187 * Make sure it doesn't get reaped out from under us while we
1188 * give up the lock and then examine it below. We don't want to
1189 * keep holding onto the tasklist_lock while we call getrusage and
1190 * possibly take page faults for user memory.
1191 */
1192 get_task_struct(p);
1193 pid = task_pid_vnr(p);
1194 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1195 read_unlock(&tasklist_lock);
1196 sched_annotate_sleep();
1197
1198 if (unlikely(wo->wo_flags & WNOWAIT))
1199 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1200
1201 retval = wo->wo_rusage
1202 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1203 if (!retval && wo->wo_stat)
1204 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1205
1206 infop = wo->wo_info;
1207 if (!retval && infop)
1208 retval = put_user(SIGCHLD, &infop->si_signo);
1209 if (!retval && infop)
1210 retval = put_user(0, &infop->si_errno);
1211 if (!retval && infop)
1212 retval = put_user((short)why, &infop->si_code);
1213 if (!retval && infop)
1214 retval = put_user(exit_code, &infop->si_status);
1215 if (!retval && infop)
1216 retval = put_user(pid, &infop->si_pid);
1217 if (!retval && infop)
1218 retval = put_user(uid, &infop->si_uid);
1219 if (!retval)
1220 retval = pid;
1221 put_task_struct(p);
1222
1223 BUG_ON(!retval);
1224 return retval;
1225 }
1226
1227 /*
1228 * Handle do_wait work for one task in a live, non-stopped state.
1229 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1230 * the lock and this task is uninteresting. If we return nonzero, we have
1231 * released the lock and the system call should return.
1232 */
1233 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1234 {
1235 int retval;
1236 pid_t pid;
1237 uid_t uid;
1238
1239 if (!unlikely(wo->wo_flags & WCONTINUED))
1240 return 0;
1241
1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1243 return 0;
1244
1245 spin_lock_irq(&p->sighand->siglock);
1246 /* Re-check with the lock held. */
1247 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1248 spin_unlock_irq(&p->sighand->siglock);
1249 return 0;
1250 }
1251 if (!unlikely(wo->wo_flags & WNOWAIT))
1252 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1253 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1254 spin_unlock_irq(&p->sighand->siglock);
1255
1256 pid = task_pid_vnr(p);
1257 get_task_struct(p);
1258 read_unlock(&tasklist_lock);
1259 sched_annotate_sleep();
1260
1261 if (!wo->wo_info) {
1262 retval = wo->wo_rusage
1263 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1264 put_task_struct(p);
1265 if (!retval && wo->wo_stat)
1266 retval = put_user(0xffff, wo->wo_stat);
1267 if (!retval)
1268 retval = pid;
1269 } else {
1270 retval = wait_noreap_copyout(wo, p, pid, uid,
1271 CLD_CONTINUED, SIGCONT);
1272 BUG_ON(retval == 0);
1273 }
1274
1275 return retval;
1276 }
1277
1278 /*
1279 * Consider @p for a wait by @parent.
1280 *
1281 * -ECHILD should be in ->notask_error before the first call.
1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1283 * Returns zero if the search for a child should continue;
1284 * then ->notask_error is 0 if @p is an eligible child,
1285 * or another error from security_task_wait(), or still -ECHILD.
1286 */
1287 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1288 struct task_struct *p)
1289 {
1290 /*
1291 * We can race with wait_task_zombie() from another thread.
1292 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1293 * can't confuse the checks below.
1294 */
1295 int exit_state = ACCESS_ONCE(p->exit_state);
1296 int ret;
1297
1298 if (unlikely(exit_state == EXIT_DEAD))
1299 return 0;
1300
1301 ret = eligible_child(wo, p);
1302 if (!ret)
1303 return ret;
1304
1305 ret = security_task_wait(p);
1306 if (unlikely(ret < 0)) {
1307 /*
1308 * If we have not yet seen any eligible child,
1309 * then let this error code replace -ECHILD.
1310 * A permission error will give the user a clue
1311 * to look for security policy problems, rather
1312 * than for mysterious wait bugs.
1313 */
1314 if (wo->notask_error)
1315 wo->notask_error = ret;
1316 return 0;
1317 }
1318
1319 if (unlikely(exit_state == EXIT_TRACE)) {
1320 /*
1321 * ptrace == 0 means we are the natural parent. In this case
1322 * we should clear notask_error, debugger will notify us.
1323 */
1324 if (likely(!ptrace))
1325 wo->notask_error = 0;
1326 return 0;
1327 }
1328
1329 if (likely(!ptrace) && unlikely(p->ptrace)) {
1330 /*
1331 * If it is traced by its real parent's group, just pretend
1332 * the caller is ptrace_do_wait() and reap this child if it
1333 * is zombie.
1334 *
1335 * This also hides group stop state from real parent; otherwise
1336 * a single stop can be reported twice as group and ptrace stop.
1337 * If a ptracer wants to distinguish these two events for its
1338 * own children it should create a separate process which takes
1339 * the role of real parent.
1340 */
1341 if (!ptrace_reparented(p))
1342 ptrace = 1;
1343 }
1344
1345 /* slay zombie? */
1346 if (exit_state == EXIT_ZOMBIE) {
1347 /* we don't reap group leaders with subthreads */
1348 if (!delay_group_leader(p)) {
1349 /*
1350 * A zombie ptracee is only visible to its ptracer.
1351 * Notification and reaping will be cascaded to the
1352 * real parent when the ptracer detaches.
1353 */
1354 if (unlikely(ptrace) || likely(!p->ptrace))
1355 return wait_task_zombie(wo, p);
1356 }
1357
1358 /*
1359 * Allow access to stopped/continued state via zombie by
1360 * falling through. Clearing of notask_error is complex.
1361 *
1362 * When !@ptrace:
1363 *
1364 * If WEXITED is set, notask_error should naturally be
1365 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1366 * so, if there are live subthreads, there are events to
1367 * wait for. If all subthreads are dead, it's still safe
1368 * to clear - this function will be called again in finite
1369 * amount time once all the subthreads are released and
1370 * will then return without clearing.
1371 *
1372 * When @ptrace:
1373 *
1374 * Stopped state is per-task and thus can't change once the
1375 * target task dies. Only continued and exited can happen.
1376 * Clear notask_error if WCONTINUED | WEXITED.
1377 */
1378 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1379 wo->notask_error = 0;
1380 } else {
1381 /*
1382 * @p is alive and it's gonna stop, continue or exit, so
1383 * there always is something to wait for.
1384 */
1385 wo->notask_error = 0;
1386 }
1387
1388 /*
1389 * Wait for stopped. Depending on @ptrace, different stopped state
1390 * is used and the two don't interact with each other.
1391 */
1392 ret = wait_task_stopped(wo, ptrace, p);
1393 if (ret)
1394 return ret;
1395
1396 /*
1397 * Wait for continued. There's only one continued state and the
1398 * ptracer can consume it which can confuse the real parent. Don't
1399 * use WCONTINUED from ptracer. You don't need or want it.
1400 */
1401 return wait_task_continued(wo, p);
1402 }
1403
1404 /*
1405 * Do the work of do_wait() for one thread in the group, @tsk.
1406 *
1407 * -ECHILD should be in ->notask_error before the first call.
1408 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1409 * Returns zero if the search for a child should continue; then
1410 * ->notask_error is 0 if there were any eligible children,
1411 * or another error from security_task_wait(), or still -ECHILD.
1412 */
1413 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1414 {
1415 struct task_struct *p;
1416
1417 list_for_each_entry(p, &tsk->children, sibling) {
1418 int ret = wait_consider_task(wo, 0, p);
1419
1420 if (ret)
1421 return ret;
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1428 {
1429 struct task_struct *p;
1430
1431 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1432 int ret = wait_consider_task(wo, 1, p);
1433
1434 if (ret)
1435 return ret;
1436 }
1437
1438 return 0;
1439 }
1440
1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1442 int sync, void *key)
1443 {
1444 struct wait_opts *wo = container_of(wait, struct wait_opts,
1445 child_wait);
1446 struct task_struct *p = key;
1447
1448 if (!eligible_pid(wo, p))
1449 return 0;
1450
1451 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1452 return 0;
1453
1454 return default_wake_function(wait, mode, sync, key);
1455 }
1456
1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1458 {
1459 __wake_up_sync_key(&parent->signal->wait_chldexit,
1460 TASK_INTERRUPTIBLE, 1, p);
1461 }
1462
1463 static long do_wait(struct wait_opts *wo)
1464 {
1465 struct task_struct *tsk;
1466 int retval;
1467
1468 trace_sched_process_wait(wo->wo_pid);
1469
1470 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1471 wo->child_wait.private = current;
1472 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1473 repeat:
1474 /*
1475 * If there is nothing that can match our criteria, just get out.
1476 * We will clear ->notask_error to zero if we see any child that
1477 * might later match our criteria, even if we are not able to reap
1478 * it yet.
1479 */
1480 wo->notask_error = -ECHILD;
1481 if ((wo->wo_type < PIDTYPE_MAX) &&
1482 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1483 goto notask;
1484
1485 set_current_state(TASK_INTERRUPTIBLE);
1486 read_lock(&tasklist_lock);
1487 tsk = current;
1488 do {
1489 retval = do_wait_thread(wo, tsk);
1490 if (retval)
1491 goto end;
1492
1493 retval = ptrace_do_wait(wo, tsk);
1494 if (retval)
1495 goto end;
1496
1497 if (wo->wo_flags & __WNOTHREAD)
1498 break;
1499 } while_each_thread(current, tsk);
1500 read_unlock(&tasklist_lock);
1501
1502 notask:
1503 retval = wo->notask_error;
1504 if (!retval && !(wo->wo_flags & WNOHANG)) {
1505 retval = -ERESTARTSYS;
1506 if (!signal_pending(current)) {
1507 schedule();
1508 goto repeat;
1509 }
1510 }
1511 end:
1512 __set_current_state(TASK_RUNNING);
1513 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1514 return retval;
1515 }
1516
1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1518 infop, int, options, struct rusage __user *, ru)
1519 {
1520 struct wait_opts wo;
1521 struct pid *pid = NULL;
1522 enum pid_type type;
1523 long ret;
1524
1525 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1526 return -EINVAL;
1527 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1528 return -EINVAL;
1529
1530 switch (which) {
1531 case P_ALL:
1532 type = PIDTYPE_MAX;
1533 break;
1534 case P_PID:
1535 type = PIDTYPE_PID;
1536 if (upid <= 0)
1537 return -EINVAL;
1538 break;
1539 case P_PGID:
1540 type = PIDTYPE_PGID;
1541 if (upid <= 0)
1542 return -EINVAL;
1543 break;
1544 default:
1545 return -EINVAL;
1546 }
1547
1548 if (type < PIDTYPE_MAX)
1549 pid = find_get_pid(upid);
1550
1551 wo.wo_type = type;
1552 wo.wo_pid = pid;
1553 wo.wo_flags = options;
1554 wo.wo_info = infop;
1555 wo.wo_stat = NULL;
1556 wo.wo_rusage = ru;
1557 ret = do_wait(&wo);
1558
1559 if (ret > 0) {
1560 ret = 0;
1561 } else if (infop) {
1562 /*
1563 * For a WNOHANG return, clear out all the fields
1564 * we would set so the user can easily tell the
1565 * difference.
1566 */
1567 if (!ret)
1568 ret = put_user(0, &infop->si_signo);
1569 if (!ret)
1570 ret = put_user(0, &infop->si_errno);
1571 if (!ret)
1572 ret = put_user(0, &infop->si_code);
1573 if (!ret)
1574 ret = put_user(0, &infop->si_pid);
1575 if (!ret)
1576 ret = put_user(0, &infop->si_uid);
1577 if (!ret)
1578 ret = put_user(0, &infop->si_status);
1579 }
1580
1581 put_pid(pid);
1582 return ret;
1583 }
1584
1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1586 int, options, struct rusage __user *, ru)
1587 {
1588 struct wait_opts wo;
1589 struct pid *pid = NULL;
1590 enum pid_type type;
1591 long ret;
1592
1593 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1594 __WNOTHREAD|__WCLONE|__WALL))
1595 return -EINVAL;
1596
1597 if (upid == -1)
1598 type = PIDTYPE_MAX;
1599 else if (upid < 0) {
1600 type = PIDTYPE_PGID;
1601 pid = find_get_pid(-upid);
1602 } else if (upid == 0) {
1603 type = PIDTYPE_PGID;
1604 pid = get_task_pid(current, PIDTYPE_PGID);
1605 } else /* upid > 0 */ {
1606 type = PIDTYPE_PID;
1607 pid = find_get_pid(upid);
1608 }
1609
1610 wo.wo_type = type;
1611 wo.wo_pid = pid;
1612 wo.wo_flags = options | WEXITED;
1613 wo.wo_info = NULL;
1614 wo.wo_stat = stat_addr;
1615 wo.wo_rusage = ru;
1616 ret = do_wait(&wo);
1617 put_pid(pid);
1618
1619 return ret;
1620 }
1621
1622 #ifdef __ARCH_WANT_SYS_WAITPID
1623
1624 /*
1625 * sys_waitpid() remains for compatibility. waitpid() should be
1626 * implemented by calling sys_wait4() from libc.a.
1627 */
1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1629 {
1630 return sys_wait4(pid, stat_addr, options, NULL);
1631 }
1632
1633 #endif
This page took 0.066046 seconds and 6 git commands to generate.