userns,pidns: Force thread group sharing, not signal handler sharing.
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268 * set_max_threads
269 */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 u64 threads;
273
274 /*
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
277 */
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
283
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
286
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 void __init fork_init(void)
291 {
292 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
293 #ifndef ARCH_MIN_TASKALIGN
294 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
295 #endif
296 /* create a slab on which task_structs can be allocated */
297 task_struct_cachep =
298 kmem_cache_create("task_struct", sizeof(struct task_struct),
299 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
300 #endif
301
302 /* do the arch specific task caches init */
303 arch_task_cache_init();
304
305 set_max_threads(MAX_THREADS);
306
307 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
308 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
309 init_task.signal->rlim[RLIMIT_SIGPENDING] =
310 init_task.signal->rlim[RLIMIT_NPROC];
311 }
312
313 int __weak arch_dup_task_struct(struct task_struct *dst,
314 struct task_struct *src)
315 {
316 *dst = *src;
317 return 0;
318 }
319
320 void set_task_stack_end_magic(struct task_struct *tsk)
321 {
322 unsigned long *stackend;
323
324 stackend = end_of_stack(tsk);
325 *stackend = STACK_END_MAGIC; /* for overflow detection */
326 }
327
328 static struct task_struct *dup_task_struct(struct task_struct *orig)
329 {
330 struct task_struct *tsk;
331 struct thread_info *ti;
332 int node = tsk_fork_get_node(orig);
333 int err;
334
335 tsk = alloc_task_struct_node(node);
336 if (!tsk)
337 return NULL;
338
339 ti = alloc_thread_info_node(tsk, node);
340 if (!ti)
341 goto free_tsk;
342
343 err = arch_dup_task_struct(tsk, orig);
344 if (err)
345 goto free_ti;
346
347 tsk->stack = ti;
348 #ifdef CONFIG_SECCOMP
349 /*
350 * We must handle setting up seccomp filters once we're under
351 * the sighand lock in case orig has changed between now and
352 * then. Until then, filter must be NULL to avoid messing up
353 * the usage counts on the error path calling free_task.
354 */
355 tsk->seccomp.filter = NULL;
356 #endif
357
358 setup_thread_stack(tsk, orig);
359 clear_user_return_notifier(tsk);
360 clear_tsk_need_resched(tsk);
361 set_task_stack_end_magic(tsk);
362
363 #ifdef CONFIG_CC_STACKPROTECTOR
364 tsk->stack_canary = get_random_int();
365 #endif
366
367 /*
368 * One for us, one for whoever does the "release_task()" (usually
369 * parent)
370 */
371 atomic_set(&tsk->usage, 2);
372 #ifdef CONFIG_BLK_DEV_IO_TRACE
373 tsk->btrace_seq = 0;
374 #endif
375 tsk->splice_pipe = NULL;
376 tsk->task_frag.page = NULL;
377
378 account_kernel_stack(ti, 1);
379
380 return tsk;
381
382 free_ti:
383 free_thread_info(ti);
384 free_tsk:
385 free_task_struct(tsk);
386 return NULL;
387 }
388
389 #ifdef CONFIG_MMU
390 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
391 {
392 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
393 struct rb_node **rb_link, *rb_parent;
394 int retval;
395 unsigned long charge;
396
397 uprobe_start_dup_mmap();
398 down_write(&oldmm->mmap_sem);
399 flush_cache_dup_mm(oldmm);
400 uprobe_dup_mmap(oldmm, mm);
401 /*
402 * Not linked in yet - no deadlock potential:
403 */
404 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
405
406 /* No ordering required: file already has been exposed. */
407 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
408
409 mm->total_vm = oldmm->total_vm;
410 mm->shared_vm = oldmm->shared_vm;
411 mm->exec_vm = oldmm->exec_vm;
412 mm->stack_vm = oldmm->stack_vm;
413
414 rb_link = &mm->mm_rb.rb_node;
415 rb_parent = NULL;
416 pprev = &mm->mmap;
417 retval = ksm_fork(mm, oldmm);
418 if (retval)
419 goto out;
420 retval = khugepaged_fork(mm, oldmm);
421 if (retval)
422 goto out;
423
424 prev = NULL;
425 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
426 struct file *file;
427
428 if (mpnt->vm_flags & VM_DONTCOPY) {
429 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
430 -vma_pages(mpnt));
431 continue;
432 }
433 charge = 0;
434 if (mpnt->vm_flags & VM_ACCOUNT) {
435 unsigned long len = vma_pages(mpnt);
436
437 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
438 goto fail_nomem;
439 charge = len;
440 }
441 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 if (!tmp)
443 goto fail_nomem;
444 *tmp = *mpnt;
445 INIT_LIST_HEAD(&tmp->anon_vma_chain);
446 retval = vma_dup_policy(mpnt, tmp);
447 if (retval)
448 goto fail_nomem_policy;
449 tmp->vm_mm = mm;
450 if (anon_vma_fork(tmp, mpnt))
451 goto fail_nomem_anon_vma_fork;
452 tmp->vm_flags &= ~VM_LOCKED;
453 tmp->vm_next = tmp->vm_prev = NULL;
454 file = tmp->vm_file;
455 if (file) {
456 struct inode *inode = file_inode(file);
457 struct address_space *mapping = file->f_mapping;
458
459 get_file(file);
460 if (tmp->vm_flags & VM_DENYWRITE)
461 atomic_dec(&inode->i_writecount);
462 i_mmap_lock_write(mapping);
463 if (tmp->vm_flags & VM_SHARED)
464 atomic_inc(&mapping->i_mmap_writable);
465 flush_dcache_mmap_lock(mapping);
466 /* insert tmp into the share list, just after mpnt */
467 vma_interval_tree_insert_after(tmp, mpnt,
468 &mapping->i_mmap);
469 flush_dcache_mmap_unlock(mapping);
470 i_mmap_unlock_write(mapping);
471 }
472
473 /*
474 * Clear hugetlb-related page reserves for children. This only
475 * affects MAP_PRIVATE mappings. Faults generated by the child
476 * are not guaranteed to succeed, even if read-only
477 */
478 if (is_vm_hugetlb_page(tmp))
479 reset_vma_resv_huge_pages(tmp);
480
481 /*
482 * Link in the new vma and copy the page table entries.
483 */
484 *pprev = tmp;
485 pprev = &tmp->vm_next;
486 tmp->vm_prev = prev;
487 prev = tmp;
488
489 __vma_link_rb(mm, tmp, rb_link, rb_parent);
490 rb_link = &tmp->vm_rb.rb_right;
491 rb_parent = &tmp->vm_rb;
492
493 mm->map_count++;
494 retval = copy_page_range(mm, oldmm, mpnt);
495
496 if (tmp->vm_ops && tmp->vm_ops->open)
497 tmp->vm_ops->open(tmp);
498
499 if (retval)
500 goto out;
501 }
502 /* a new mm has just been created */
503 arch_dup_mmap(oldmm, mm);
504 retval = 0;
505 out:
506 up_write(&mm->mmap_sem);
507 flush_tlb_mm(oldmm);
508 up_write(&oldmm->mmap_sem);
509 uprobe_end_dup_mmap();
510 return retval;
511 fail_nomem_anon_vma_fork:
512 mpol_put(vma_policy(tmp));
513 fail_nomem_policy:
514 kmem_cache_free(vm_area_cachep, tmp);
515 fail_nomem:
516 retval = -ENOMEM;
517 vm_unacct_memory(charge);
518 goto out;
519 }
520
521 static inline int mm_alloc_pgd(struct mm_struct *mm)
522 {
523 mm->pgd = pgd_alloc(mm);
524 if (unlikely(!mm->pgd))
525 return -ENOMEM;
526 return 0;
527 }
528
529 static inline void mm_free_pgd(struct mm_struct *mm)
530 {
531 pgd_free(mm, mm->pgd);
532 }
533 #else
534 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
535 {
536 down_write(&oldmm->mmap_sem);
537 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
538 up_write(&oldmm->mmap_sem);
539 return 0;
540 }
541 #define mm_alloc_pgd(mm) (0)
542 #define mm_free_pgd(mm)
543 #endif /* CONFIG_MMU */
544
545 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
546
547 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
548 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
549
550 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
551
552 static int __init coredump_filter_setup(char *s)
553 {
554 default_dump_filter =
555 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
556 MMF_DUMP_FILTER_MASK;
557 return 1;
558 }
559
560 __setup("coredump_filter=", coredump_filter_setup);
561
562 #include <linux/init_task.h>
563
564 static void mm_init_aio(struct mm_struct *mm)
565 {
566 #ifdef CONFIG_AIO
567 spin_lock_init(&mm->ioctx_lock);
568 mm->ioctx_table = NULL;
569 #endif
570 }
571
572 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
573 {
574 #ifdef CONFIG_MEMCG
575 mm->owner = p;
576 #endif
577 }
578
579 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
580 {
581 mm->mmap = NULL;
582 mm->mm_rb = RB_ROOT;
583 mm->vmacache_seqnum = 0;
584 atomic_set(&mm->mm_users, 1);
585 atomic_set(&mm->mm_count, 1);
586 init_rwsem(&mm->mmap_sem);
587 INIT_LIST_HEAD(&mm->mmlist);
588 mm->core_state = NULL;
589 atomic_long_set(&mm->nr_ptes, 0);
590 mm_nr_pmds_init(mm);
591 mm->map_count = 0;
592 mm->locked_vm = 0;
593 mm->pinned_vm = 0;
594 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
595 spin_lock_init(&mm->page_table_lock);
596 mm_init_cpumask(mm);
597 mm_init_aio(mm);
598 mm_init_owner(mm, p);
599 mmu_notifier_mm_init(mm);
600 clear_tlb_flush_pending(mm);
601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 mm->pmd_huge_pte = NULL;
603 #endif
604
605 if (current->mm) {
606 mm->flags = current->mm->flags & MMF_INIT_MASK;
607 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
608 } else {
609 mm->flags = default_dump_filter;
610 mm->def_flags = 0;
611 }
612
613 if (mm_alloc_pgd(mm))
614 goto fail_nopgd;
615
616 if (init_new_context(p, mm))
617 goto fail_nocontext;
618
619 return mm;
620
621 fail_nocontext:
622 mm_free_pgd(mm);
623 fail_nopgd:
624 free_mm(mm);
625 return NULL;
626 }
627
628 static void check_mm(struct mm_struct *mm)
629 {
630 int i;
631
632 for (i = 0; i < NR_MM_COUNTERS; i++) {
633 long x = atomic_long_read(&mm->rss_stat.count[i]);
634
635 if (unlikely(x))
636 printk(KERN_ALERT "BUG: Bad rss-counter state "
637 "mm:%p idx:%d val:%ld\n", mm, i, x);
638 }
639
640 if (atomic_long_read(&mm->nr_ptes))
641 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
642 atomic_long_read(&mm->nr_ptes));
643 if (mm_nr_pmds(mm))
644 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
645 mm_nr_pmds(mm));
646
647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
648 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
649 #endif
650 }
651
652 /*
653 * Allocate and initialize an mm_struct.
654 */
655 struct mm_struct *mm_alloc(void)
656 {
657 struct mm_struct *mm;
658
659 mm = allocate_mm();
660 if (!mm)
661 return NULL;
662
663 memset(mm, 0, sizeof(*mm));
664 return mm_init(mm, current);
665 }
666
667 /*
668 * Called when the last reference to the mm
669 * is dropped: either by a lazy thread or by
670 * mmput. Free the page directory and the mm.
671 */
672 void __mmdrop(struct mm_struct *mm)
673 {
674 BUG_ON(mm == &init_mm);
675 mm_free_pgd(mm);
676 destroy_context(mm);
677 mmu_notifier_mm_destroy(mm);
678 check_mm(mm);
679 free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682
683 /*
684 * Decrement the use count and release all resources for an mm.
685 */
686 void mmput(struct mm_struct *mm)
687 {
688 might_sleep();
689
690 if (atomic_dec_and_test(&mm->mm_users)) {
691 uprobe_clear_state(mm);
692 exit_aio(mm);
693 ksm_exit(mm);
694 khugepaged_exit(mm); /* must run before exit_mmap */
695 exit_mmap(mm);
696 set_mm_exe_file(mm, NULL);
697 if (!list_empty(&mm->mmlist)) {
698 spin_lock(&mmlist_lock);
699 list_del(&mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 if (mm->binfmt)
703 module_put(mm->binfmt->module);
704 mmdrop(mm);
705 }
706 }
707 EXPORT_SYMBOL_GPL(mmput);
708
709 /**
710 * set_mm_exe_file - change a reference to the mm's executable file
711 *
712 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
713 *
714 * Main users are mmput() and sys_execve(). Callers prevent concurrent
715 * invocations: in mmput() nobody alive left, in execve task is single
716 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
717 * mm->exe_file, but does so without using set_mm_exe_file() in order
718 * to do avoid the need for any locks.
719 */
720 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
721 {
722 struct file *old_exe_file;
723
724 /*
725 * It is safe to dereference the exe_file without RCU as
726 * this function is only called if nobody else can access
727 * this mm -- see comment above for justification.
728 */
729 old_exe_file = rcu_dereference_raw(mm->exe_file);
730
731 if (new_exe_file)
732 get_file(new_exe_file);
733 rcu_assign_pointer(mm->exe_file, new_exe_file);
734 if (old_exe_file)
735 fput(old_exe_file);
736 }
737
738 /**
739 * get_mm_exe_file - acquire a reference to the mm's executable file
740 *
741 * Returns %NULL if mm has no associated executable file.
742 * User must release file via fput().
743 */
744 struct file *get_mm_exe_file(struct mm_struct *mm)
745 {
746 struct file *exe_file;
747
748 rcu_read_lock();
749 exe_file = rcu_dereference(mm->exe_file);
750 if (exe_file && !get_file_rcu(exe_file))
751 exe_file = NULL;
752 rcu_read_unlock();
753 return exe_file;
754 }
755 EXPORT_SYMBOL(get_mm_exe_file);
756
757 /**
758 * get_task_mm - acquire a reference to the task's mm
759 *
760 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
761 * this kernel workthread has transiently adopted a user mm with use_mm,
762 * to do its AIO) is not set and if so returns a reference to it, after
763 * bumping up the use count. User must release the mm via mmput()
764 * after use. Typically used by /proc and ptrace.
765 */
766 struct mm_struct *get_task_mm(struct task_struct *task)
767 {
768 struct mm_struct *mm;
769
770 task_lock(task);
771 mm = task->mm;
772 if (mm) {
773 if (task->flags & PF_KTHREAD)
774 mm = NULL;
775 else
776 atomic_inc(&mm->mm_users);
777 }
778 task_unlock(task);
779 return mm;
780 }
781 EXPORT_SYMBOL_GPL(get_task_mm);
782
783 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
784 {
785 struct mm_struct *mm;
786 int err;
787
788 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
789 if (err)
790 return ERR_PTR(err);
791
792 mm = get_task_mm(task);
793 if (mm && mm != current->mm &&
794 !ptrace_may_access(task, mode)) {
795 mmput(mm);
796 mm = ERR_PTR(-EACCES);
797 }
798 mutex_unlock(&task->signal->cred_guard_mutex);
799
800 return mm;
801 }
802
803 static void complete_vfork_done(struct task_struct *tsk)
804 {
805 struct completion *vfork;
806
807 task_lock(tsk);
808 vfork = tsk->vfork_done;
809 if (likely(vfork)) {
810 tsk->vfork_done = NULL;
811 complete(vfork);
812 }
813 task_unlock(tsk);
814 }
815
816 static int wait_for_vfork_done(struct task_struct *child,
817 struct completion *vfork)
818 {
819 int killed;
820
821 freezer_do_not_count();
822 killed = wait_for_completion_killable(vfork);
823 freezer_count();
824
825 if (killed) {
826 task_lock(child);
827 child->vfork_done = NULL;
828 task_unlock(child);
829 }
830
831 put_task_struct(child);
832 return killed;
833 }
834
835 /* Please note the differences between mmput and mm_release.
836 * mmput is called whenever we stop holding onto a mm_struct,
837 * error success whatever.
838 *
839 * mm_release is called after a mm_struct has been removed
840 * from the current process.
841 *
842 * This difference is important for error handling, when we
843 * only half set up a mm_struct for a new process and need to restore
844 * the old one. Because we mmput the new mm_struct before
845 * restoring the old one. . .
846 * Eric Biederman 10 January 1998
847 */
848 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
849 {
850 /* Get rid of any futexes when releasing the mm */
851 #ifdef CONFIG_FUTEX
852 if (unlikely(tsk->robust_list)) {
853 exit_robust_list(tsk);
854 tsk->robust_list = NULL;
855 }
856 #ifdef CONFIG_COMPAT
857 if (unlikely(tsk->compat_robust_list)) {
858 compat_exit_robust_list(tsk);
859 tsk->compat_robust_list = NULL;
860 }
861 #endif
862 if (unlikely(!list_empty(&tsk->pi_state_list)))
863 exit_pi_state_list(tsk);
864 #endif
865
866 uprobe_free_utask(tsk);
867
868 /* Get rid of any cached register state */
869 deactivate_mm(tsk, mm);
870
871 /*
872 * If we're exiting normally, clear a user-space tid field if
873 * requested. We leave this alone when dying by signal, to leave
874 * the value intact in a core dump, and to save the unnecessary
875 * trouble, say, a killed vfork parent shouldn't touch this mm.
876 * Userland only wants this done for a sys_exit.
877 */
878 if (tsk->clear_child_tid) {
879 if (!(tsk->flags & PF_SIGNALED) &&
880 atomic_read(&mm->mm_users) > 1) {
881 /*
882 * We don't check the error code - if userspace has
883 * not set up a proper pointer then tough luck.
884 */
885 put_user(0, tsk->clear_child_tid);
886 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
887 1, NULL, NULL, 0);
888 }
889 tsk->clear_child_tid = NULL;
890 }
891
892 /*
893 * All done, finally we can wake up parent and return this mm to him.
894 * Also kthread_stop() uses this completion for synchronization.
895 */
896 if (tsk->vfork_done)
897 complete_vfork_done(tsk);
898 }
899
900 /*
901 * Allocate a new mm structure and copy contents from the
902 * mm structure of the passed in task structure.
903 */
904 static struct mm_struct *dup_mm(struct task_struct *tsk)
905 {
906 struct mm_struct *mm, *oldmm = current->mm;
907 int err;
908
909 mm = allocate_mm();
910 if (!mm)
911 goto fail_nomem;
912
913 memcpy(mm, oldmm, sizeof(*mm));
914
915 if (!mm_init(mm, tsk))
916 goto fail_nomem;
917
918 err = dup_mmap(mm, oldmm);
919 if (err)
920 goto free_pt;
921
922 mm->hiwater_rss = get_mm_rss(mm);
923 mm->hiwater_vm = mm->total_vm;
924
925 if (mm->binfmt && !try_module_get(mm->binfmt->module))
926 goto free_pt;
927
928 return mm;
929
930 free_pt:
931 /* don't put binfmt in mmput, we haven't got module yet */
932 mm->binfmt = NULL;
933 mmput(mm);
934
935 fail_nomem:
936 return NULL;
937 }
938
939 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 struct mm_struct *mm, *oldmm;
942 int retval;
943
944 tsk->min_flt = tsk->maj_flt = 0;
945 tsk->nvcsw = tsk->nivcsw = 0;
946 #ifdef CONFIG_DETECT_HUNG_TASK
947 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
948 #endif
949
950 tsk->mm = NULL;
951 tsk->active_mm = NULL;
952
953 /*
954 * Are we cloning a kernel thread?
955 *
956 * We need to steal a active VM for that..
957 */
958 oldmm = current->mm;
959 if (!oldmm)
960 return 0;
961
962 /* initialize the new vmacache entries */
963 vmacache_flush(tsk);
964
965 if (clone_flags & CLONE_VM) {
966 atomic_inc(&oldmm->mm_users);
967 mm = oldmm;
968 goto good_mm;
969 }
970
971 retval = -ENOMEM;
972 mm = dup_mm(tsk);
973 if (!mm)
974 goto fail_nomem;
975
976 good_mm:
977 tsk->mm = mm;
978 tsk->active_mm = mm;
979 return 0;
980
981 fail_nomem:
982 return retval;
983 }
984
985 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 struct fs_struct *fs = current->fs;
988 if (clone_flags & CLONE_FS) {
989 /* tsk->fs is already what we want */
990 spin_lock(&fs->lock);
991 if (fs->in_exec) {
992 spin_unlock(&fs->lock);
993 return -EAGAIN;
994 }
995 fs->users++;
996 spin_unlock(&fs->lock);
997 return 0;
998 }
999 tsk->fs = copy_fs_struct(fs);
1000 if (!tsk->fs)
1001 return -ENOMEM;
1002 return 0;
1003 }
1004
1005 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 struct files_struct *oldf, *newf;
1008 int error = 0;
1009
1010 /*
1011 * A background process may not have any files ...
1012 */
1013 oldf = current->files;
1014 if (!oldf)
1015 goto out;
1016
1017 if (clone_flags & CLONE_FILES) {
1018 atomic_inc(&oldf->count);
1019 goto out;
1020 }
1021
1022 newf = dup_fd(oldf, &error);
1023 if (!newf)
1024 goto out;
1025
1026 tsk->files = newf;
1027 error = 0;
1028 out:
1029 return error;
1030 }
1031
1032 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 #ifdef CONFIG_BLOCK
1035 struct io_context *ioc = current->io_context;
1036 struct io_context *new_ioc;
1037
1038 if (!ioc)
1039 return 0;
1040 /*
1041 * Share io context with parent, if CLONE_IO is set
1042 */
1043 if (clone_flags & CLONE_IO) {
1044 ioc_task_link(ioc);
1045 tsk->io_context = ioc;
1046 } else if (ioprio_valid(ioc->ioprio)) {
1047 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1048 if (unlikely(!new_ioc))
1049 return -ENOMEM;
1050
1051 new_ioc->ioprio = ioc->ioprio;
1052 put_io_context(new_ioc);
1053 }
1054 #endif
1055 return 0;
1056 }
1057
1058 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060 struct sighand_struct *sig;
1061
1062 if (clone_flags & CLONE_SIGHAND) {
1063 atomic_inc(&current->sighand->count);
1064 return 0;
1065 }
1066 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1067 rcu_assign_pointer(tsk->sighand, sig);
1068 if (!sig)
1069 return -ENOMEM;
1070 atomic_set(&sig->count, 1);
1071 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1072 return 0;
1073 }
1074
1075 void __cleanup_sighand(struct sighand_struct *sighand)
1076 {
1077 if (atomic_dec_and_test(&sighand->count)) {
1078 signalfd_cleanup(sighand);
1079 /*
1080 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1081 * without an RCU grace period, see __lock_task_sighand().
1082 */
1083 kmem_cache_free(sighand_cachep, sighand);
1084 }
1085 }
1086
1087 /*
1088 * Initialize POSIX timer handling for a thread group.
1089 */
1090 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1091 {
1092 unsigned long cpu_limit;
1093
1094 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1095 if (cpu_limit != RLIM_INFINITY) {
1096 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1097 sig->cputimer.running = 1;
1098 }
1099
1100 /* The timer lists. */
1101 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1102 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1103 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1104 }
1105
1106 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1107 {
1108 struct signal_struct *sig;
1109
1110 if (clone_flags & CLONE_THREAD)
1111 return 0;
1112
1113 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1114 tsk->signal = sig;
1115 if (!sig)
1116 return -ENOMEM;
1117
1118 sig->nr_threads = 1;
1119 atomic_set(&sig->live, 1);
1120 atomic_set(&sig->sigcnt, 1);
1121
1122 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1123 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1124 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1125
1126 init_waitqueue_head(&sig->wait_chldexit);
1127 sig->curr_target = tsk;
1128 init_sigpending(&sig->shared_pending);
1129 INIT_LIST_HEAD(&sig->posix_timers);
1130 seqlock_init(&sig->stats_lock);
1131
1132 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 sig->real_timer.function = it_real_fn;
1134
1135 task_lock(current->group_leader);
1136 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1137 task_unlock(current->group_leader);
1138
1139 posix_cpu_timers_init_group(sig);
1140
1141 tty_audit_fork(sig);
1142 sched_autogroup_fork(sig);
1143
1144 sig->oom_score_adj = current->signal->oom_score_adj;
1145 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1146
1147 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1148 current->signal->is_child_subreaper;
1149
1150 mutex_init(&sig->cred_guard_mutex);
1151
1152 return 0;
1153 }
1154
1155 static void copy_seccomp(struct task_struct *p)
1156 {
1157 #ifdef CONFIG_SECCOMP
1158 /*
1159 * Must be called with sighand->lock held, which is common to
1160 * all threads in the group. Holding cred_guard_mutex is not
1161 * needed because this new task is not yet running and cannot
1162 * be racing exec.
1163 */
1164 assert_spin_locked(&current->sighand->siglock);
1165
1166 /* Ref-count the new filter user, and assign it. */
1167 get_seccomp_filter(current);
1168 p->seccomp = current->seccomp;
1169
1170 /*
1171 * Explicitly enable no_new_privs here in case it got set
1172 * between the task_struct being duplicated and holding the
1173 * sighand lock. The seccomp state and nnp must be in sync.
1174 */
1175 if (task_no_new_privs(current))
1176 task_set_no_new_privs(p);
1177
1178 /*
1179 * If the parent gained a seccomp mode after copying thread
1180 * flags and between before we held the sighand lock, we have
1181 * to manually enable the seccomp thread flag here.
1182 */
1183 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1184 set_tsk_thread_flag(p, TIF_SECCOMP);
1185 #endif
1186 }
1187
1188 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1189 {
1190 current->clear_child_tid = tidptr;
1191
1192 return task_pid_vnr(current);
1193 }
1194
1195 static void rt_mutex_init_task(struct task_struct *p)
1196 {
1197 raw_spin_lock_init(&p->pi_lock);
1198 #ifdef CONFIG_RT_MUTEXES
1199 p->pi_waiters = RB_ROOT;
1200 p->pi_waiters_leftmost = NULL;
1201 p->pi_blocked_on = NULL;
1202 #endif
1203 }
1204
1205 /*
1206 * Initialize POSIX timer handling for a single task.
1207 */
1208 static void posix_cpu_timers_init(struct task_struct *tsk)
1209 {
1210 tsk->cputime_expires.prof_exp = 0;
1211 tsk->cputime_expires.virt_exp = 0;
1212 tsk->cputime_expires.sched_exp = 0;
1213 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1214 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1215 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1216 }
1217
1218 static inline void
1219 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1220 {
1221 task->pids[type].pid = pid;
1222 }
1223
1224 /*
1225 * This creates a new process as a copy of the old one,
1226 * but does not actually start it yet.
1227 *
1228 * It copies the registers, and all the appropriate
1229 * parts of the process environment (as per the clone
1230 * flags). The actual kick-off is left to the caller.
1231 */
1232 static struct task_struct *copy_process(unsigned long clone_flags,
1233 unsigned long stack_start,
1234 unsigned long stack_size,
1235 int __user *child_tidptr,
1236 struct pid *pid,
1237 int trace,
1238 unsigned long tls)
1239 {
1240 int retval;
1241 struct task_struct *p;
1242
1243 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1244 return ERR_PTR(-EINVAL);
1245
1246 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1247 return ERR_PTR(-EINVAL);
1248
1249 /*
1250 * Thread groups must share signals as well, and detached threads
1251 * can only be started up within the thread group.
1252 */
1253 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1254 return ERR_PTR(-EINVAL);
1255
1256 /*
1257 * Shared signal handlers imply shared VM. By way of the above,
1258 * thread groups also imply shared VM. Blocking this case allows
1259 * for various simplifications in other code.
1260 */
1261 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1262 return ERR_PTR(-EINVAL);
1263
1264 /*
1265 * Siblings of global init remain as zombies on exit since they are
1266 * not reaped by their parent (swapper). To solve this and to avoid
1267 * multi-rooted process trees, prevent global and container-inits
1268 * from creating siblings.
1269 */
1270 if ((clone_flags & CLONE_PARENT) &&
1271 current->signal->flags & SIGNAL_UNKILLABLE)
1272 return ERR_PTR(-EINVAL);
1273
1274 /*
1275 * If the new process will be in a different pid or user namespace
1276 * do not allow it to share a thread group with the forking task.
1277 */
1278 if (clone_flags & CLONE_THREAD) {
1279 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1280 (task_active_pid_ns(current) !=
1281 current->nsproxy->pid_ns_for_children))
1282 return ERR_PTR(-EINVAL);
1283 }
1284
1285 retval = security_task_create(clone_flags);
1286 if (retval)
1287 goto fork_out;
1288
1289 retval = -ENOMEM;
1290 p = dup_task_struct(current);
1291 if (!p)
1292 goto fork_out;
1293
1294 ftrace_graph_init_task(p);
1295
1296 rt_mutex_init_task(p);
1297
1298 #ifdef CONFIG_PROVE_LOCKING
1299 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1300 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1301 #endif
1302 retval = -EAGAIN;
1303 if (atomic_read(&p->real_cred->user->processes) >=
1304 task_rlimit(p, RLIMIT_NPROC)) {
1305 if (p->real_cred->user != INIT_USER &&
1306 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1307 goto bad_fork_free;
1308 }
1309 current->flags &= ~PF_NPROC_EXCEEDED;
1310
1311 retval = copy_creds(p, clone_flags);
1312 if (retval < 0)
1313 goto bad_fork_free;
1314
1315 /*
1316 * If multiple threads are within copy_process(), then this check
1317 * triggers too late. This doesn't hurt, the check is only there
1318 * to stop root fork bombs.
1319 */
1320 retval = -EAGAIN;
1321 if (nr_threads >= max_threads)
1322 goto bad_fork_cleanup_count;
1323
1324 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1325 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1326 p->flags |= PF_FORKNOEXEC;
1327 INIT_LIST_HEAD(&p->children);
1328 INIT_LIST_HEAD(&p->sibling);
1329 rcu_copy_process(p);
1330 p->vfork_done = NULL;
1331 spin_lock_init(&p->alloc_lock);
1332
1333 init_sigpending(&p->pending);
1334
1335 p->utime = p->stime = p->gtime = 0;
1336 p->utimescaled = p->stimescaled = 0;
1337 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1338 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1339 #endif
1340 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1341 seqlock_init(&p->vtime_seqlock);
1342 p->vtime_snap = 0;
1343 p->vtime_snap_whence = VTIME_SLEEPING;
1344 #endif
1345
1346 #if defined(SPLIT_RSS_COUNTING)
1347 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1348 #endif
1349
1350 p->default_timer_slack_ns = current->timer_slack_ns;
1351
1352 task_io_accounting_init(&p->ioac);
1353 acct_clear_integrals(p);
1354
1355 posix_cpu_timers_init(p);
1356
1357 p->start_time = ktime_get_ns();
1358 p->real_start_time = ktime_get_boot_ns();
1359 p->io_context = NULL;
1360 p->audit_context = NULL;
1361 if (clone_flags & CLONE_THREAD)
1362 threadgroup_change_begin(current);
1363 cgroup_fork(p);
1364 #ifdef CONFIG_NUMA
1365 p->mempolicy = mpol_dup(p->mempolicy);
1366 if (IS_ERR(p->mempolicy)) {
1367 retval = PTR_ERR(p->mempolicy);
1368 p->mempolicy = NULL;
1369 goto bad_fork_cleanup_threadgroup_lock;
1370 }
1371 #endif
1372 #ifdef CONFIG_CPUSETS
1373 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1374 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1375 seqcount_init(&p->mems_allowed_seq);
1376 #endif
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 p->irq_events = 0;
1379 p->hardirqs_enabled = 0;
1380 p->hardirq_enable_ip = 0;
1381 p->hardirq_enable_event = 0;
1382 p->hardirq_disable_ip = _THIS_IP_;
1383 p->hardirq_disable_event = 0;
1384 p->softirqs_enabled = 1;
1385 p->softirq_enable_ip = _THIS_IP_;
1386 p->softirq_enable_event = 0;
1387 p->softirq_disable_ip = 0;
1388 p->softirq_disable_event = 0;
1389 p->hardirq_context = 0;
1390 p->softirq_context = 0;
1391 #endif
1392
1393 p->pagefault_disabled = 0;
1394
1395 #ifdef CONFIG_LOCKDEP
1396 p->lockdep_depth = 0; /* no locks held yet */
1397 p->curr_chain_key = 0;
1398 p->lockdep_recursion = 0;
1399 #endif
1400
1401 #ifdef CONFIG_DEBUG_MUTEXES
1402 p->blocked_on = NULL; /* not blocked yet */
1403 #endif
1404 #ifdef CONFIG_BCACHE
1405 p->sequential_io = 0;
1406 p->sequential_io_avg = 0;
1407 #endif
1408
1409 /* Perform scheduler related setup. Assign this task to a CPU. */
1410 retval = sched_fork(clone_flags, p);
1411 if (retval)
1412 goto bad_fork_cleanup_policy;
1413
1414 retval = perf_event_init_task(p);
1415 if (retval)
1416 goto bad_fork_cleanup_policy;
1417 retval = audit_alloc(p);
1418 if (retval)
1419 goto bad_fork_cleanup_perf;
1420 /* copy all the process information */
1421 shm_init_task(p);
1422 retval = copy_semundo(clone_flags, p);
1423 if (retval)
1424 goto bad_fork_cleanup_audit;
1425 retval = copy_files(clone_flags, p);
1426 if (retval)
1427 goto bad_fork_cleanup_semundo;
1428 retval = copy_fs(clone_flags, p);
1429 if (retval)
1430 goto bad_fork_cleanup_files;
1431 retval = copy_sighand(clone_flags, p);
1432 if (retval)
1433 goto bad_fork_cleanup_fs;
1434 retval = copy_signal(clone_flags, p);
1435 if (retval)
1436 goto bad_fork_cleanup_sighand;
1437 retval = copy_mm(clone_flags, p);
1438 if (retval)
1439 goto bad_fork_cleanup_signal;
1440 retval = copy_namespaces(clone_flags, p);
1441 if (retval)
1442 goto bad_fork_cleanup_mm;
1443 retval = copy_io(clone_flags, p);
1444 if (retval)
1445 goto bad_fork_cleanup_namespaces;
1446 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1447 if (retval)
1448 goto bad_fork_cleanup_io;
1449
1450 if (pid != &init_struct_pid) {
1451 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1452 if (IS_ERR(pid)) {
1453 retval = PTR_ERR(pid);
1454 goto bad_fork_cleanup_io;
1455 }
1456 }
1457
1458 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1459 /*
1460 * Clear TID on mm_release()?
1461 */
1462 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1463 #ifdef CONFIG_BLOCK
1464 p->plug = NULL;
1465 #endif
1466 #ifdef CONFIG_FUTEX
1467 p->robust_list = NULL;
1468 #ifdef CONFIG_COMPAT
1469 p->compat_robust_list = NULL;
1470 #endif
1471 INIT_LIST_HEAD(&p->pi_state_list);
1472 p->pi_state_cache = NULL;
1473 #endif
1474 /*
1475 * sigaltstack should be cleared when sharing the same VM
1476 */
1477 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1478 p->sas_ss_sp = p->sas_ss_size = 0;
1479
1480 /*
1481 * Syscall tracing and stepping should be turned off in the
1482 * child regardless of CLONE_PTRACE.
1483 */
1484 user_disable_single_step(p);
1485 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1486 #ifdef TIF_SYSCALL_EMU
1487 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1488 #endif
1489 clear_all_latency_tracing(p);
1490
1491 /* ok, now we should be set up.. */
1492 p->pid = pid_nr(pid);
1493 if (clone_flags & CLONE_THREAD) {
1494 p->exit_signal = -1;
1495 p->group_leader = current->group_leader;
1496 p->tgid = current->tgid;
1497 } else {
1498 if (clone_flags & CLONE_PARENT)
1499 p->exit_signal = current->group_leader->exit_signal;
1500 else
1501 p->exit_signal = (clone_flags & CSIGNAL);
1502 p->group_leader = p;
1503 p->tgid = p->pid;
1504 }
1505
1506 p->nr_dirtied = 0;
1507 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1508 p->dirty_paused_when = 0;
1509
1510 p->pdeath_signal = 0;
1511 INIT_LIST_HEAD(&p->thread_group);
1512 p->task_works = NULL;
1513
1514 /*
1515 * Make it visible to the rest of the system, but dont wake it up yet.
1516 * Need tasklist lock for parent etc handling!
1517 */
1518 write_lock_irq(&tasklist_lock);
1519
1520 /* CLONE_PARENT re-uses the old parent */
1521 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1522 p->real_parent = current->real_parent;
1523 p->parent_exec_id = current->parent_exec_id;
1524 } else {
1525 p->real_parent = current;
1526 p->parent_exec_id = current->self_exec_id;
1527 }
1528
1529 spin_lock(&current->sighand->siglock);
1530
1531 /*
1532 * Copy seccomp details explicitly here, in case they were changed
1533 * before holding sighand lock.
1534 */
1535 copy_seccomp(p);
1536
1537 /*
1538 * Process group and session signals need to be delivered to just the
1539 * parent before the fork or both the parent and the child after the
1540 * fork. Restart if a signal comes in before we add the new process to
1541 * it's process group.
1542 * A fatal signal pending means that current will exit, so the new
1543 * thread can't slip out of an OOM kill (or normal SIGKILL).
1544 */
1545 recalc_sigpending();
1546 if (signal_pending(current)) {
1547 spin_unlock(&current->sighand->siglock);
1548 write_unlock_irq(&tasklist_lock);
1549 retval = -ERESTARTNOINTR;
1550 goto bad_fork_free_pid;
1551 }
1552
1553 if (likely(p->pid)) {
1554 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1555
1556 init_task_pid(p, PIDTYPE_PID, pid);
1557 if (thread_group_leader(p)) {
1558 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1559 init_task_pid(p, PIDTYPE_SID, task_session(current));
1560
1561 if (is_child_reaper(pid)) {
1562 ns_of_pid(pid)->child_reaper = p;
1563 p->signal->flags |= SIGNAL_UNKILLABLE;
1564 }
1565
1566 p->signal->leader_pid = pid;
1567 p->signal->tty = tty_kref_get(current->signal->tty);
1568 list_add_tail(&p->sibling, &p->real_parent->children);
1569 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1570 attach_pid(p, PIDTYPE_PGID);
1571 attach_pid(p, PIDTYPE_SID);
1572 __this_cpu_inc(process_counts);
1573 } else {
1574 current->signal->nr_threads++;
1575 atomic_inc(&current->signal->live);
1576 atomic_inc(&current->signal->sigcnt);
1577 list_add_tail_rcu(&p->thread_group,
1578 &p->group_leader->thread_group);
1579 list_add_tail_rcu(&p->thread_node,
1580 &p->signal->thread_head);
1581 }
1582 attach_pid(p, PIDTYPE_PID);
1583 nr_threads++;
1584 }
1585
1586 total_forks++;
1587 spin_unlock(&current->sighand->siglock);
1588 syscall_tracepoint_update(p);
1589 write_unlock_irq(&tasklist_lock);
1590
1591 proc_fork_connector(p);
1592 cgroup_post_fork(p);
1593 if (clone_flags & CLONE_THREAD)
1594 threadgroup_change_end(current);
1595 perf_event_fork(p);
1596
1597 trace_task_newtask(p, clone_flags);
1598 uprobe_copy_process(p, clone_flags);
1599
1600 return p;
1601
1602 bad_fork_free_pid:
1603 if (pid != &init_struct_pid)
1604 free_pid(pid);
1605 bad_fork_cleanup_io:
1606 if (p->io_context)
1607 exit_io_context(p);
1608 bad_fork_cleanup_namespaces:
1609 exit_task_namespaces(p);
1610 bad_fork_cleanup_mm:
1611 if (p->mm)
1612 mmput(p->mm);
1613 bad_fork_cleanup_signal:
1614 if (!(clone_flags & CLONE_THREAD))
1615 free_signal_struct(p->signal);
1616 bad_fork_cleanup_sighand:
1617 __cleanup_sighand(p->sighand);
1618 bad_fork_cleanup_fs:
1619 exit_fs(p); /* blocking */
1620 bad_fork_cleanup_files:
1621 exit_files(p); /* blocking */
1622 bad_fork_cleanup_semundo:
1623 exit_sem(p);
1624 bad_fork_cleanup_audit:
1625 audit_free(p);
1626 bad_fork_cleanup_perf:
1627 perf_event_free_task(p);
1628 bad_fork_cleanup_policy:
1629 #ifdef CONFIG_NUMA
1630 mpol_put(p->mempolicy);
1631 bad_fork_cleanup_threadgroup_lock:
1632 #endif
1633 if (clone_flags & CLONE_THREAD)
1634 threadgroup_change_end(current);
1635 delayacct_tsk_free(p);
1636 bad_fork_cleanup_count:
1637 atomic_dec(&p->cred->user->processes);
1638 exit_creds(p);
1639 bad_fork_free:
1640 free_task(p);
1641 fork_out:
1642 return ERR_PTR(retval);
1643 }
1644
1645 static inline void init_idle_pids(struct pid_link *links)
1646 {
1647 enum pid_type type;
1648
1649 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1650 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1651 links[type].pid = &init_struct_pid;
1652 }
1653 }
1654
1655 struct task_struct *fork_idle(int cpu)
1656 {
1657 struct task_struct *task;
1658 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1659 if (!IS_ERR(task)) {
1660 init_idle_pids(task->pids);
1661 init_idle(task, cpu);
1662 }
1663
1664 return task;
1665 }
1666
1667 /*
1668 * Ok, this is the main fork-routine.
1669 *
1670 * It copies the process, and if successful kick-starts
1671 * it and waits for it to finish using the VM if required.
1672 */
1673 long _do_fork(unsigned long clone_flags,
1674 unsigned long stack_start,
1675 unsigned long stack_size,
1676 int __user *parent_tidptr,
1677 int __user *child_tidptr,
1678 unsigned long tls)
1679 {
1680 struct task_struct *p;
1681 int trace = 0;
1682 long nr;
1683
1684 /*
1685 * Determine whether and which event to report to ptracer. When
1686 * called from kernel_thread or CLONE_UNTRACED is explicitly
1687 * requested, no event is reported; otherwise, report if the event
1688 * for the type of forking is enabled.
1689 */
1690 if (!(clone_flags & CLONE_UNTRACED)) {
1691 if (clone_flags & CLONE_VFORK)
1692 trace = PTRACE_EVENT_VFORK;
1693 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1694 trace = PTRACE_EVENT_CLONE;
1695 else
1696 trace = PTRACE_EVENT_FORK;
1697
1698 if (likely(!ptrace_event_enabled(current, trace)))
1699 trace = 0;
1700 }
1701
1702 p = copy_process(clone_flags, stack_start, stack_size,
1703 child_tidptr, NULL, trace, tls);
1704 /*
1705 * Do this prior waking up the new thread - the thread pointer
1706 * might get invalid after that point, if the thread exits quickly.
1707 */
1708 if (!IS_ERR(p)) {
1709 struct completion vfork;
1710 struct pid *pid;
1711
1712 trace_sched_process_fork(current, p);
1713
1714 pid = get_task_pid(p, PIDTYPE_PID);
1715 nr = pid_vnr(pid);
1716
1717 if (clone_flags & CLONE_PARENT_SETTID)
1718 put_user(nr, parent_tidptr);
1719
1720 if (clone_flags & CLONE_VFORK) {
1721 p->vfork_done = &vfork;
1722 init_completion(&vfork);
1723 get_task_struct(p);
1724 }
1725
1726 wake_up_new_task(p);
1727
1728 /* forking complete and child started to run, tell ptracer */
1729 if (unlikely(trace))
1730 ptrace_event_pid(trace, pid);
1731
1732 if (clone_flags & CLONE_VFORK) {
1733 if (!wait_for_vfork_done(p, &vfork))
1734 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1735 }
1736
1737 put_pid(pid);
1738 } else {
1739 nr = PTR_ERR(p);
1740 }
1741 return nr;
1742 }
1743
1744 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1745 /* For compatibility with architectures that call do_fork directly rather than
1746 * using the syscall entry points below. */
1747 long do_fork(unsigned long clone_flags,
1748 unsigned long stack_start,
1749 unsigned long stack_size,
1750 int __user *parent_tidptr,
1751 int __user *child_tidptr)
1752 {
1753 return _do_fork(clone_flags, stack_start, stack_size,
1754 parent_tidptr, child_tidptr, 0);
1755 }
1756 #endif
1757
1758 /*
1759 * Create a kernel thread.
1760 */
1761 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1762 {
1763 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1764 (unsigned long)arg, NULL, NULL, 0);
1765 }
1766
1767 #ifdef __ARCH_WANT_SYS_FORK
1768 SYSCALL_DEFINE0(fork)
1769 {
1770 #ifdef CONFIG_MMU
1771 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1772 #else
1773 /* can not support in nommu mode */
1774 return -EINVAL;
1775 #endif
1776 }
1777 #endif
1778
1779 #ifdef __ARCH_WANT_SYS_VFORK
1780 SYSCALL_DEFINE0(vfork)
1781 {
1782 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1783 0, NULL, NULL, 0);
1784 }
1785 #endif
1786
1787 #ifdef __ARCH_WANT_SYS_CLONE
1788 #ifdef CONFIG_CLONE_BACKWARDS
1789 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1790 int __user *, parent_tidptr,
1791 unsigned long, tls,
1792 int __user *, child_tidptr)
1793 #elif defined(CONFIG_CLONE_BACKWARDS2)
1794 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1795 int __user *, parent_tidptr,
1796 int __user *, child_tidptr,
1797 unsigned long, tls)
1798 #elif defined(CONFIG_CLONE_BACKWARDS3)
1799 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1800 int, stack_size,
1801 int __user *, parent_tidptr,
1802 int __user *, child_tidptr,
1803 unsigned long, tls)
1804 #else
1805 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1806 int __user *, parent_tidptr,
1807 int __user *, child_tidptr,
1808 unsigned long, tls)
1809 #endif
1810 {
1811 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1812 }
1813 #endif
1814
1815 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1816 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1817 #endif
1818
1819 static void sighand_ctor(void *data)
1820 {
1821 struct sighand_struct *sighand = data;
1822
1823 spin_lock_init(&sighand->siglock);
1824 init_waitqueue_head(&sighand->signalfd_wqh);
1825 }
1826
1827 void __init proc_caches_init(void)
1828 {
1829 sighand_cachep = kmem_cache_create("sighand_cache",
1830 sizeof(struct sighand_struct), 0,
1831 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1832 SLAB_NOTRACK, sighand_ctor);
1833 signal_cachep = kmem_cache_create("signal_cache",
1834 sizeof(struct signal_struct), 0,
1835 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1836 files_cachep = kmem_cache_create("files_cache",
1837 sizeof(struct files_struct), 0,
1838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1839 fs_cachep = kmem_cache_create("fs_cache",
1840 sizeof(struct fs_struct), 0,
1841 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1842 /*
1843 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1844 * whole struct cpumask for the OFFSTACK case. We could change
1845 * this to *only* allocate as much of it as required by the
1846 * maximum number of CPU's we can ever have. The cpumask_allocation
1847 * is at the end of the structure, exactly for that reason.
1848 */
1849 mm_cachep = kmem_cache_create("mm_struct",
1850 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1851 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1852 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1853 mmap_init();
1854 nsproxy_cache_init();
1855 }
1856
1857 /*
1858 * Check constraints on flags passed to the unshare system call.
1859 */
1860 static int check_unshare_flags(unsigned long unshare_flags)
1861 {
1862 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1863 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1864 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1865 CLONE_NEWUSER|CLONE_NEWPID))
1866 return -EINVAL;
1867 /*
1868 * Not implemented, but pretend it works if there is nothing
1869 * to unshare. Note that unsharing the address space or the
1870 * signal handlers also need to unshare the signal queues (aka
1871 * CLONE_THREAD).
1872 */
1873 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1874 if (!thread_group_empty(current))
1875 return -EINVAL;
1876 }
1877 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1878 if (atomic_read(&current->sighand->count) > 1)
1879 return -EINVAL;
1880 }
1881 if (unshare_flags & CLONE_VM) {
1882 if (!current_is_single_threaded())
1883 return -EINVAL;
1884 }
1885
1886 return 0;
1887 }
1888
1889 /*
1890 * Unshare the filesystem structure if it is being shared
1891 */
1892 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1893 {
1894 struct fs_struct *fs = current->fs;
1895
1896 if (!(unshare_flags & CLONE_FS) || !fs)
1897 return 0;
1898
1899 /* don't need lock here; in the worst case we'll do useless copy */
1900 if (fs->users == 1)
1901 return 0;
1902
1903 *new_fsp = copy_fs_struct(fs);
1904 if (!*new_fsp)
1905 return -ENOMEM;
1906
1907 return 0;
1908 }
1909
1910 /*
1911 * Unshare file descriptor table if it is being shared
1912 */
1913 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1914 {
1915 struct files_struct *fd = current->files;
1916 int error = 0;
1917
1918 if ((unshare_flags & CLONE_FILES) &&
1919 (fd && atomic_read(&fd->count) > 1)) {
1920 *new_fdp = dup_fd(fd, &error);
1921 if (!*new_fdp)
1922 return error;
1923 }
1924
1925 return 0;
1926 }
1927
1928 /*
1929 * unshare allows a process to 'unshare' part of the process
1930 * context which was originally shared using clone. copy_*
1931 * functions used by do_fork() cannot be used here directly
1932 * because they modify an inactive task_struct that is being
1933 * constructed. Here we are modifying the current, active,
1934 * task_struct.
1935 */
1936 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1937 {
1938 struct fs_struct *fs, *new_fs = NULL;
1939 struct files_struct *fd, *new_fd = NULL;
1940 struct cred *new_cred = NULL;
1941 struct nsproxy *new_nsproxy = NULL;
1942 int do_sysvsem = 0;
1943 int err;
1944
1945 /*
1946 * If unsharing a user namespace must also unshare the thread group
1947 * and unshare the filesystem root and working directories.
1948 */
1949 if (unshare_flags & CLONE_NEWUSER)
1950 unshare_flags |= CLONE_THREAD | CLONE_FS;
1951 /*
1952 * If unsharing vm, must also unshare signal handlers.
1953 */
1954 if (unshare_flags & CLONE_VM)
1955 unshare_flags |= CLONE_SIGHAND;
1956 /*
1957 * If unsharing a signal handlers, must also unshare the signal queues.
1958 */
1959 if (unshare_flags & CLONE_SIGHAND)
1960 unshare_flags |= CLONE_THREAD;
1961 /*
1962 * If unsharing namespace, must also unshare filesystem information.
1963 */
1964 if (unshare_flags & CLONE_NEWNS)
1965 unshare_flags |= CLONE_FS;
1966
1967 err = check_unshare_flags(unshare_flags);
1968 if (err)
1969 goto bad_unshare_out;
1970 /*
1971 * CLONE_NEWIPC must also detach from the undolist: after switching
1972 * to a new ipc namespace, the semaphore arrays from the old
1973 * namespace are unreachable.
1974 */
1975 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1976 do_sysvsem = 1;
1977 err = unshare_fs(unshare_flags, &new_fs);
1978 if (err)
1979 goto bad_unshare_out;
1980 err = unshare_fd(unshare_flags, &new_fd);
1981 if (err)
1982 goto bad_unshare_cleanup_fs;
1983 err = unshare_userns(unshare_flags, &new_cred);
1984 if (err)
1985 goto bad_unshare_cleanup_fd;
1986 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1987 new_cred, new_fs);
1988 if (err)
1989 goto bad_unshare_cleanup_cred;
1990
1991 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1992 if (do_sysvsem) {
1993 /*
1994 * CLONE_SYSVSEM is equivalent to sys_exit().
1995 */
1996 exit_sem(current);
1997 }
1998 if (unshare_flags & CLONE_NEWIPC) {
1999 /* Orphan segments in old ns (see sem above). */
2000 exit_shm(current);
2001 shm_init_task(current);
2002 }
2003
2004 if (new_nsproxy)
2005 switch_task_namespaces(current, new_nsproxy);
2006
2007 task_lock(current);
2008
2009 if (new_fs) {
2010 fs = current->fs;
2011 spin_lock(&fs->lock);
2012 current->fs = new_fs;
2013 if (--fs->users)
2014 new_fs = NULL;
2015 else
2016 new_fs = fs;
2017 spin_unlock(&fs->lock);
2018 }
2019
2020 if (new_fd) {
2021 fd = current->files;
2022 current->files = new_fd;
2023 new_fd = fd;
2024 }
2025
2026 task_unlock(current);
2027
2028 if (new_cred) {
2029 /* Install the new user namespace */
2030 commit_creds(new_cred);
2031 new_cred = NULL;
2032 }
2033 }
2034
2035 bad_unshare_cleanup_cred:
2036 if (new_cred)
2037 put_cred(new_cred);
2038 bad_unshare_cleanup_fd:
2039 if (new_fd)
2040 put_files_struct(new_fd);
2041
2042 bad_unshare_cleanup_fs:
2043 if (new_fs)
2044 free_fs_struct(new_fs);
2045
2046 bad_unshare_out:
2047 return err;
2048 }
2049
2050 /*
2051 * Helper to unshare the files of the current task.
2052 * We don't want to expose copy_files internals to
2053 * the exec layer of the kernel.
2054 */
2055
2056 int unshare_files(struct files_struct **displaced)
2057 {
2058 struct task_struct *task = current;
2059 struct files_struct *copy = NULL;
2060 int error;
2061
2062 error = unshare_fd(CLONE_FILES, &copy);
2063 if (error || !copy) {
2064 *displaced = NULL;
2065 return error;
2066 }
2067 *displaced = task->files;
2068 task_lock(task);
2069 task->files = copy;
2070 task_unlock(task);
2071 return 0;
2072 }
2073
2074 int sysctl_max_threads(struct ctl_table *table, int write,
2075 void __user *buffer, size_t *lenp, loff_t *ppos)
2076 {
2077 struct ctl_table t;
2078 int ret;
2079 int threads = max_threads;
2080 int min = MIN_THREADS;
2081 int max = MAX_THREADS;
2082
2083 t = *table;
2084 t.data = &threads;
2085 t.extra1 = &min;
2086 t.extra2 = &max;
2087
2088 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2089 if (ret || !write)
2090 return ret;
2091
2092 set_max_threads(threads);
2093
2094 return 0;
2095 }
This page took 0.081899 seconds and 5 git commands to generate.