bvec: avoid variable shadowing warning
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163 int node)
164 {
165 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
167
168 return page ? page_address(page) : NULL;
169 }
170
171 static inline void free_thread_stack(unsigned long *stack)
172 {
173 __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
174 }
175 # else
176 static struct kmem_cache *thread_stack_cache;
177
178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
179 int node)
180 {
181 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
182 }
183
184 static void free_thread_stack(unsigned long *stack)
185 {
186 kmem_cache_free(thread_stack_cache, stack);
187 }
188
189 void thread_stack_cache_init(void)
190 {
191 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
192 THREAD_SIZE, 0, NULL);
193 BUG_ON(thread_stack_cache == NULL);
194 }
195 # endif
196 #endif
197
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache *signal_cachep;
200
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache *sighand_cachep;
203
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache *files_cachep;
206
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache *fs_cachep;
209
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache *vm_area_cachep;
212
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache *mm_cachep;
215
216 static void account_kernel_stack(unsigned long *stack, int account)
217 {
218 /* All stack pages are in the same zone and belong to the same memcg. */
219 struct page *first_page = virt_to_page(stack);
220
221 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
222 THREAD_SIZE / 1024 * account);
223
224 memcg_kmem_update_page_stat(
225 first_page, MEMCG_KERNEL_STACK_KB,
226 account * (THREAD_SIZE / 1024));
227 }
228
229 void free_task(struct task_struct *tsk)
230 {
231 account_kernel_stack(tsk->stack, -1);
232 arch_release_thread_stack(tsk->stack);
233 free_thread_stack(tsk->stack);
234 rt_mutex_debug_task_free(tsk);
235 ftrace_graph_exit_task(tsk);
236 put_seccomp_filter(tsk);
237 arch_release_task_struct(tsk);
238 free_task_struct(tsk);
239 }
240 EXPORT_SYMBOL(free_task);
241
242 static inline void free_signal_struct(struct signal_struct *sig)
243 {
244 taskstats_tgid_free(sig);
245 sched_autogroup_exit(sig);
246 kmem_cache_free(signal_cachep, sig);
247 }
248
249 static inline void put_signal_struct(struct signal_struct *sig)
250 {
251 if (atomic_dec_and_test(&sig->sigcnt))
252 free_signal_struct(sig);
253 }
254
255 void __put_task_struct(struct task_struct *tsk)
256 {
257 WARN_ON(!tsk->exit_state);
258 WARN_ON(atomic_read(&tsk->usage));
259 WARN_ON(tsk == current);
260
261 cgroup_free(tsk);
262 task_numa_free(tsk);
263 security_task_free(tsk);
264 exit_creds(tsk);
265 delayacct_tsk_free(tsk);
266 put_signal_struct(tsk->signal);
267
268 if (!profile_handoff_task(tsk))
269 free_task(tsk);
270 }
271 EXPORT_SYMBOL_GPL(__put_task_struct);
272
273 void __init __weak arch_task_cache_init(void) { }
274
275 /*
276 * set_max_threads
277 */
278 static void set_max_threads(unsigned int max_threads_suggested)
279 {
280 u64 threads;
281
282 /*
283 * The number of threads shall be limited such that the thread
284 * structures may only consume a small part of the available memory.
285 */
286 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
287 threads = MAX_THREADS;
288 else
289 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
290 (u64) THREAD_SIZE * 8UL);
291
292 if (threads > max_threads_suggested)
293 threads = max_threads_suggested;
294
295 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
296 }
297
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly;
301 #endif
302
303 void __init fork_init(void)
304 {
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
308 #endif
309 /* create a slab on which task_structs can be allocated */
310 task_struct_cachep = kmem_cache_create("task_struct",
311 arch_task_struct_size, ARCH_MIN_TASKALIGN,
312 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
313 #endif
314
315 /* do the arch specific task caches init */
316 arch_task_cache_init();
317
318 set_max_threads(MAX_THREADS);
319
320 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
321 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
322 init_task.signal->rlim[RLIMIT_SIGPENDING] =
323 init_task.signal->rlim[RLIMIT_NPROC];
324 }
325
326 int __weak arch_dup_task_struct(struct task_struct *dst,
327 struct task_struct *src)
328 {
329 *dst = *src;
330 return 0;
331 }
332
333 void set_task_stack_end_magic(struct task_struct *tsk)
334 {
335 unsigned long *stackend;
336
337 stackend = end_of_stack(tsk);
338 *stackend = STACK_END_MAGIC; /* for overflow detection */
339 }
340
341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
342 {
343 struct task_struct *tsk;
344 unsigned long *stack;
345 int err;
346
347 if (node == NUMA_NO_NODE)
348 node = tsk_fork_get_node(orig);
349 tsk = alloc_task_struct_node(node);
350 if (!tsk)
351 return NULL;
352
353 stack = alloc_thread_stack_node(tsk, node);
354 if (!stack)
355 goto free_tsk;
356
357 err = arch_dup_task_struct(tsk, orig);
358 if (err)
359 goto free_stack;
360
361 tsk->stack = stack;
362 #ifdef CONFIG_SECCOMP
363 /*
364 * We must handle setting up seccomp filters once we're under
365 * the sighand lock in case orig has changed between now and
366 * then. Until then, filter must be NULL to avoid messing up
367 * the usage counts on the error path calling free_task.
368 */
369 tsk->seccomp.filter = NULL;
370 #endif
371
372 setup_thread_stack(tsk, orig);
373 clear_user_return_notifier(tsk);
374 clear_tsk_need_resched(tsk);
375 set_task_stack_end_magic(tsk);
376
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 tsk->stack_canary = get_random_int();
379 #endif
380
381 /*
382 * One for us, one for whoever does the "release_task()" (usually
383 * parent)
384 */
385 atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387 tsk->btrace_seq = 0;
388 #endif
389 tsk->splice_pipe = NULL;
390 tsk->task_frag.page = NULL;
391 tsk->wake_q.next = NULL;
392
393 account_kernel_stack(stack, 1);
394
395 kcov_task_init(tsk);
396
397 return tsk;
398
399 free_stack:
400 free_thread_stack(stack);
401 free_tsk:
402 free_task_struct(tsk);
403 return NULL;
404 }
405
406 #ifdef CONFIG_MMU
407 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
408 {
409 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
410 struct rb_node **rb_link, *rb_parent;
411 int retval;
412 unsigned long charge;
413
414 uprobe_start_dup_mmap();
415 if (down_write_killable(&oldmm->mmap_sem)) {
416 retval = -EINTR;
417 goto fail_uprobe_end;
418 }
419 flush_cache_dup_mm(oldmm);
420 uprobe_dup_mmap(oldmm, mm);
421 /*
422 * Not linked in yet - no deadlock potential:
423 */
424 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
425
426 /* No ordering required: file already has been exposed. */
427 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
428
429 mm->total_vm = oldmm->total_vm;
430 mm->data_vm = oldmm->data_vm;
431 mm->exec_vm = oldmm->exec_vm;
432 mm->stack_vm = oldmm->stack_vm;
433
434 rb_link = &mm->mm_rb.rb_node;
435 rb_parent = NULL;
436 pprev = &mm->mmap;
437 retval = ksm_fork(mm, oldmm);
438 if (retval)
439 goto out;
440 retval = khugepaged_fork(mm, oldmm);
441 if (retval)
442 goto out;
443
444 prev = NULL;
445 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
446 struct file *file;
447
448 if (mpnt->vm_flags & VM_DONTCOPY) {
449 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
450 continue;
451 }
452 charge = 0;
453 if (mpnt->vm_flags & VM_ACCOUNT) {
454 unsigned long len = vma_pages(mpnt);
455
456 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
457 goto fail_nomem;
458 charge = len;
459 }
460 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
461 if (!tmp)
462 goto fail_nomem;
463 *tmp = *mpnt;
464 INIT_LIST_HEAD(&tmp->anon_vma_chain);
465 retval = vma_dup_policy(mpnt, tmp);
466 if (retval)
467 goto fail_nomem_policy;
468 tmp->vm_mm = mm;
469 if (anon_vma_fork(tmp, mpnt))
470 goto fail_nomem_anon_vma_fork;
471 tmp->vm_flags &=
472 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
473 tmp->vm_next = tmp->vm_prev = NULL;
474 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 file = tmp->vm_file;
476 if (file) {
477 struct inode *inode = file_inode(file);
478 struct address_space *mapping = file->f_mapping;
479
480 get_file(file);
481 if (tmp->vm_flags & VM_DENYWRITE)
482 atomic_dec(&inode->i_writecount);
483 i_mmap_lock_write(mapping);
484 if (tmp->vm_flags & VM_SHARED)
485 atomic_inc(&mapping->i_mmap_writable);
486 flush_dcache_mmap_lock(mapping);
487 /* insert tmp into the share list, just after mpnt */
488 vma_interval_tree_insert_after(tmp, mpnt,
489 &mapping->i_mmap);
490 flush_dcache_mmap_unlock(mapping);
491 i_mmap_unlock_write(mapping);
492 }
493
494 /*
495 * Clear hugetlb-related page reserves for children. This only
496 * affects MAP_PRIVATE mappings. Faults generated by the child
497 * are not guaranteed to succeed, even if read-only
498 */
499 if (is_vm_hugetlb_page(tmp))
500 reset_vma_resv_huge_pages(tmp);
501
502 /*
503 * Link in the new vma and copy the page table entries.
504 */
505 *pprev = tmp;
506 pprev = &tmp->vm_next;
507 tmp->vm_prev = prev;
508 prev = tmp;
509
510 __vma_link_rb(mm, tmp, rb_link, rb_parent);
511 rb_link = &tmp->vm_rb.rb_right;
512 rb_parent = &tmp->vm_rb;
513
514 mm->map_count++;
515 retval = copy_page_range(mm, oldmm, mpnt);
516
517 if (tmp->vm_ops && tmp->vm_ops->open)
518 tmp->vm_ops->open(tmp);
519
520 if (retval)
521 goto out;
522 }
523 /* a new mm has just been created */
524 arch_dup_mmap(oldmm, mm);
525 retval = 0;
526 out:
527 up_write(&mm->mmap_sem);
528 flush_tlb_mm(oldmm);
529 up_write(&oldmm->mmap_sem);
530 fail_uprobe_end:
531 uprobe_end_dup_mmap();
532 return retval;
533 fail_nomem_anon_vma_fork:
534 mpol_put(vma_policy(tmp));
535 fail_nomem_policy:
536 kmem_cache_free(vm_area_cachep, tmp);
537 fail_nomem:
538 retval = -ENOMEM;
539 vm_unacct_memory(charge);
540 goto out;
541 }
542
543 static inline int mm_alloc_pgd(struct mm_struct *mm)
544 {
545 mm->pgd = pgd_alloc(mm);
546 if (unlikely(!mm->pgd))
547 return -ENOMEM;
548 return 0;
549 }
550
551 static inline void mm_free_pgd(struct mm_struct *mm)
552 {
553 pgd_free(mm, mm->pgd);
554 }
555 #else
556 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
557 {
558 down_write(&oldmm->mmap_sem);
559 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
560 up_write(&oldmm->mmap_sem);
561 return 0;
562 }
563 #define mm_alloc_pgd(mm) (0)
564 #define mm_free_pgd(mm)
565 #endif /* CONFIG_MMU */
566
567 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
568
569 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
570 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
571
572 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
573
574 static int __init coredump_filter_setup(char *s)
575 {
576 default_dump_filter =
577 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
578 MMF_DUMP_FILTER_MASK;
579 return 1;
580 }
581
582 __setup("coredump_filter=", coredump_filter_setup);
583
584 #include <linux/init_task.h>
585
586 static void mm_init_aio(struct mm_struct *mm)
587 {
588 #ifdef CONFIG_AIO
589 spin_lock_init(&mm->ioctx_lock);
590 mm->ioctx_table = NULL;
591 #endif
592 }
593
594 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
595 {
596 #ifdef CONFIG_MEMCG
597 mm->owner = p;
598 #endif
599 }
600
601 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
602 {
603 mm->mmap = NULL;
604 mm->mm_rb = RB_ROOT;
605 mm->vmacache_seqnum = 0;
606 atomic_set(&mm->mm_users, 1);
607 atomic_set(&mm->mm_count, 1);
608 init_rwsem(&mm->mmap_sem);
609 INIT_LIST_HEAD(&mm->mmlist);
610 mm->core_state = NULL;
611 atomic_long_set(&mm->nr_ptes, 0);
612 mm_nr_pmds_init(mm);
613 mm->map_count = 0;
614 mm->locked_vm = 0;
615 mm->pinned_vm = 0;
616 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
617 spin_lock_init(&mm->page_table_lock);
618 mm_init_cpumask(mm);
619 mm_init_aio(mm);
620 mm_init_owner(mm, p);
621 mmu_notifier_mm_init(mm);
622 clear_tlb_flush_pending(mm);
623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
624 mm->pmd_huge_pte = NULL;
625 #endif
626
627 if (current->mm) {
628 mm->flags = current->mm->flags & MMF_INIT_MASK;
629 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
630 } else {
631 mm->flags = default_dump_filter;
632 mm->def_flags = 0;
633 }
634
635 if (mm_alloc_pgd(mm))
636 goto fail_nopgd;
637
638 if (init_new_context(p, mm))
639 goto fail_nocontext;
640
641 return mm;
642
643 fail_nocontext:
644 mm_free_pgd(mm);
645 fail_nopgd:
646 free_mm(mm);
647 return NULL;
648 }
649
650 static void check_mm(struct mm_struct *mm)
651 {
652 int i;
653
654 for (i = 0; i < NR_MM_COUNTERS; i++) {
655 long x = atomic_long_read(&mm->rss_stat.count[i]);
656
657 if (unlikely(x))
658 printk(KERN_ALERT "BUG: Bad rss-counter state "
659 "mm:%p idx:%d val:%ld\n", mm, i, x);
660 }
661
662 if (atomic_long_read(&mm->nr_ptes))
663 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
664 atomic_long_read(&mm->nr_ptes));
665 if (mm_nr_pmds(mm))
666 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
667 mm_nr_pmds(mm));
668
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
671 #endif
672 }
673
674 /*
675 * Allocate and initialize an mm_struct.
676 */
677 struct mm_struct *mm_alloc(void)
678 {
679 struct mm_struct *mm;
680
681 mm = allocate_mm();
682 if (!mm)
683 return NULL;
684
685 memset(mm, 0, sizeof(*mm));
686 return mm_init(mm, current);
687 }
688
689 /*
690 * Called when the last reference to the mm
691 * is dropped: either by a lazy thread or by
692 * mmput. Free the page directory and the mm.
693 */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 BUG_ON(mm == &init_mm);
697 mm_free_pgd(mm);
698 destroy_context(mm);
699 mmu_notifier_mm_destroy(mm);
700 check_mm(mm);
701 free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704
705 static inline void __mmput(struct mm_struct *mm)
706 {
707 VM_BUG_ON(atomic_read(&mm->mm_users));
708
709 uprobe_clear_state(mm);
710 exit_aio(mm);
711 ksm_exit(mm);
712 khugepaged_exit(mm); /* must run before exit_mmap */
713 exit_mmap(mm);
714 set_mm_exe_file(mm, NULL);
715 if (!list_empty(&mm->mmlist)) {
716 spin_lock(&mmlist_lock);
717 list_del(&mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 if (mm->binfmt)
721 module_put(mm->binfmt->module);
722 mmdrop(mm);
723 }
724
725 /*
726 * Decrement the use count and release all resources for an mm.
727 */
728 void mmput(struct mm_struct *mm)
729 {
730 might_sleep();
731
732 if (atomic_dec_and_test(&mm->mm_users))
733 __mmput(mm);
734 }
735 EXPORT_SYMBOL_GPL(mmput);
736
737 #ifdef CONFIG_MMU
738 static void mmput_async_fn(struct work_struct *work)
739 {
740 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
741 __mmput(mm);
742 }
743
744 void mmput_async(struct mm_struct *mm)
745 {
746 if (atomic_dec_and_test(&mm->mm_users)) {
747 INIT_WORK(&mm->async_put_work, mmput_async_fn);
748 schedule_work(&mm->async_put_work);
749 }
750 }
751 #endif
752
753 /**
754 * set_mm_exe_file - change a reference to the mm's executable file
755 *
756 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
757 *
758 * Main users are mmput() and sys_execve(). Callers prevent concurrent
759 * invocations: in mmput() nobody alive left, in execve task is single
760 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
761 * mm->exe_file, but does so without using set_mm_exe_file() in order
762 * to do avoid the need for any locks.
763 */
764 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
765 {
766 struct file *old_exe_file;
767
768 /*
769 * It is safe to dereference the exe_file without RCU as
770 * this function is only called if nobody else can access
771 * this mm -- see comment above for justification.
772 */
773 old_exe_file = rcu_dereference_raw(mm->exe_file);
774
775 if (new_exe_file)
776 get_file(new_exe_file);
777 rcu_assign_pointer(mm->exe_file, new_exe_file);
778 if (old_exe_file)
779 fput(old_exe_file);
780 }
781
782 /**
783 * get_mm_exe_file - acquire a reference to the mm's executable file
784 *
785 * Returns %NULL if mm has no associated executable file.
786 * User must release file via fput().
787 */
788 struct file *get_mm_exe_file(struct mm_struct *mm)
789 {
790 struct file *exe_file;
791
792 rcu_read_lock();
793 exe_file = rcu_dereference(mm->exe_file);
794 if (exe_file && !get_file_rcu(exe_file))
795 exe_file = NULL;
796 rcu_read_unlock();
797 return exe_file;
798 }
799 EXPORT_SYMBOL(get_mm_exe_file);
800
801 /**
802 * get_task_mm - acquire a reference to the task's mm
803 *
804 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
805 * this kernel workthread has transiently adopted a user mm with use_mm,
806 * to do its AIO) is not set and if so returns a reference to it, after
807 * bumping up the use count. User must release the mm via mmput()
808 * after use. Typically used by /proc and ptrace.
809 */
810 struct mm_struct *get_task_mm(struct task_struct *task)
811 {
812 struct mm_struct *mm;
813
814 task_lock(task);
815 mm = task->mm;
816 if (mm) {
817 if (task->flags & PF_KTHREAD)
818 mm = NULL;
819 else
820 atomic_inc(&mm->mm_users);
821 }
822 task_unlock(task);
823 return mm;
824 }
825 EXPORT_SYMBOL_GPL(get_task_mm);
826
827 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
828 {
829 struct mm_struct *mm;
830 int err;
831
832 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
833 if (err)
834 return ERR_PTR(err);
835
836 mm = get_task_mm(task);
837 if (mm && mm != current->mm &&
838 !ptrace_may_access(task, mode)) {
839 mmput(mm);
840 mm = ERR_PTR(-EACCES);
841 }
842 mutex_unlock(&task->signal->cred_guard_mutex);
843
844 return mm;
845 }
846
847 static void complete_vfork_done(struct task_struct *tsk)
848 {
849 struct completion *vfork;
850
851 task_lock(tsk);
852 vfork = tsk->vfork_done;
853 if (likely(vfork)) {
854 tsk->vfork_done = NULL;
855 complete(vfork);
856 }
857 task_unlock(tsk);
858 }
859
860 static int wait_for_vfork_done(struct task_struct *child,
861 struct completion *vfork)
862 {
863 int killed;
864
865 freezer_do_not_count();
866 killed = wait_for_completion_killable(vfork);
867 freezer_count();
868
869 if (killed) {
870 task_lock(child);
871 child->vfork_done = NULL;
872 task_unlock(child);
873 }
874
875 put_task_struct(child);
876 return killed;
877 }
878
879 /* Please note the differences between mmput and mm_release.
880 * mmput is called whenever we stop holding onto a mm_struct,
881 * error success whatever.
882 *
883 * mm_release is called after a mm_struct has been removed
884 * from the current process.
885 *
886 * This difference is important for error handling, when we
887 * only half set up a mm_struct for a new process and need to restore
888 * the old one. Because we mmput the new mm_struct before
889 * restoring the old one. . .
890 * Eric Biederman 10 January 1998
891 */
892 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
893 {
894 /* Get rid of any futexes when releasing the mm */
895 #ifdef CONFIG_FUTEX
896 if (unlikely(tsk->robust_list)) {
897 exit_robust_list(tsk);
898 tsk->robust_list = NULL;
899 }
900 #ifdef CONFIG_COMPAT
901 if (unlikely(tsk->compat_robust_list)) {
902 compat_exit_robust_list(tsk);
903 tsk->compat_robust_list = NULL;
904 }
905 #endif
906 if (unlikely(!list_empty(&tsk->pi_state_list)))
907 exit_pi_state_list(tsk);
908 #endif
909
910 uprobe_free_utask(tsk);
911
912 /* Get rid of any cached register state */
913 deactivate_mm(tsk, mm);
914
915 /*
916 * If we're exiting normally, clear a user-space tid field if
917 * requested. We leave this alone when dying by signal, to leave
918 * the value intact in a core dump, and to save the unnecessary
919 * trouble, say, a killed vfork parent shouldn't touch this mm.
920 * Userland only wants this done for a sys_exit.
921 */
922 if (tsk->clear_child_tid) {
923 if (!(tsk->flags & PF_SIGNALED) &&
924 atomic_read(&mm->mm_users) > 1) {
925 /*
926 * We don't check the error code - if userspace has
927 * not set up a proper pointer then tough luck.
928 */
929 put_user(0, tsk->clear_child_tid);
930 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
931 1, NULL, NULL, 0);
932 }
933 tsk->clear_child_tid = NULL;
934 }
935
936 /*
937 * All done, finally we can wake up parent and return this mm to him.
938 * Also kthread_stop() uses this completion for synchronization.
939 */
940 if (tsk->vfork_done)
941 complete_vfork_done(tsk);
942 }
943
944 /*
945 * Allocate a new mm structure and copy contents from the
946 * mm structure of the passed in task structure.
947 */
948 static struct mm_struct *dup_mm(struct task_struct *tsk)
949 {
950 struct mm_struct *mm, *oldmm = current->mm;
951 int err;
952
953 mm = allocate_mm();
954 if (!mm)
955 goto fail_nomem;
956
957 memcpy(mm, oldmm, sizeof(*mm));
958
959 if (!mm_init(mm, tsk))
960 goto fail_nomem;
961
962 err = dup_mmap(mm, oldmm);
963 if (err)
964 goto free_pt;
965
966 mm->hiwater_rss = get_mm_rss(mm);
967 mm->hiwater_vm = mm->total_vm;
968
969 if (mm->binfmt && !try_module_get(mm->binfmt->module))
970 goto free_pt;
971
972 return mm;
973
974 free_pt:
975 /* don't put binfmt in mmput, we haven't got module yet */
976 mm->binfmt = NULL;
977 mmput(mm);
978
979 fail_nomem:
980 return NULL;
981 }
982
983 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 struct mm_struct *mm, *oldmm;
986 int retval;
987
988 tsk->min_flt = tsk->maj_flt = 0;
989 tsk->nvcsw = tsk->nivcsw = 0;
990 #ifdef CONFIG_DETECT_HUNG_TASK
991 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
992 #endif
993
994 tsk->mm = NULL;
995 tsk->active_mm = NULL;
996
997 /*
998 * Are we cloning a kernel thread?
999 *
1000 * We need to steal a active VM for that..
1001 */
1002 oldmm = current->mm;
1003 if (!oldmm)
1004 return 0;
1005
1006 /* initialize the new vmacache entries */
1007 vmacache_flush(tsk);
1008
1009 if (clone_flags & CLONE_VM) {
1010 atomic_inc(&oldmm->mm_users);
1011 mm = oldmm;
1012 goto good_mm;
1013 }
1014
1015 retval = -ENOMEM;
1016 mm = dup_mm(tsk);
1017 if (!mm)
1018 goto fail_nomem;
1019
1020 good_mm:
1021 tsk->mm = mm;
1022 tsk->active_mm = mm;
1023 return 0;
1024
1025 fail_nomem:
1026 return retval;
1027 }
1028
1029 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1030 {
1031 struct fs_struct *fs = current->fs;
1032 if (clone_flags & CLONE_FS) {
1033 /* tsk->fs is already what we want */
1034 spin_lock(&fs->lock);
1035 if (fs->in_exec) {
1036 spin_unlock(&fs->lock);
1037 return -EAGAIN;
1038 }
1039 fs->users++;
1040 spin_unlock(&fs->lock);
1041 return 0;
1042 }
1043 tsk->fs = copy_fs_struct(fs);
1044 if (!tsk->fs)
1045 return -ENOMEM;
1046 return 0;
1047 }
1048
1049 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1050 {
1051 struct files_struct *oldf, *newf;
1052 int error = 0;
1053
1054 /*
1055 * A background process may not have any files ...
1056 */
1057 oldf = current->files;
1058 if (!oldf)
1059 goto out;
1060
1061 if (clone_flags & CLONE_FILES) {
1062 atomic_inc(&oldf->count);
1063 goto out;
1064 }
1065
1066 newf = dup_fd(oldf, &error);
1067 if (!newf)
1068 goto out;
1069
1070 tsk->files = newf;
1071 error = 0;
1072 out:
1073 return error;
1074 }
1075
1076 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1077 {
1078 #ifdef CONFIG_BLOCK
1079 struct io_context *ioc = current->io_context;
1080 struct io_context *new_ioc;
1081
1082 if (!ioc)
1083 return 0;
1084 /*
1085 * Share io context with parent, if CLONE_IO is set
1086 */
1087 if (clone_flags & CLONE_IO) {
1088 ioc_task_link(ioc);
1089 tsk->io_context = ioc;
1090 } else if (ioprio_valid(ioc->ioprio)) {
1091 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1092 if (unlikely(!new_ioc))
1093 return -ENOMEM;
1094
1095 new_ioc->ioprio = ioc->ioprio;
1096 put_io_context(new_ioc);
1097 }
1098 #endif
1099 return 0;
1100 }
1101
1102 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1103 {
1104 struct sighand_struct *sig;
1105
1106 if (clone_flags & CLONE_SIGHAND) {
1107 atomic_inc(&current->sighand->count);
1108 return 0;
1109 }
1110 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1111 rcu_assign_pointer(tsk->sighand, sig);
1112 if (!sig)
1113 return -ENOMEM;
1114
1115 atomic_set(&sig->count, 1);
1116 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1117 return 0;
1118 }
1119
1120 void __cleanup_sighand(struct sighand_struct *sighand)
1121 {
1122 if (atomic_dec_and_test(&sighand->count)) {
1123 signalfd_cleanup(sighand);
1124 /*
1125 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1126 * without an RCU grace period, see __lock_task_sighand().
1127 */
1128 kmem_cache_free(sighand_cachep, sighand);
1129 }
1130 }
1131
1132 /*
1133 * Initialize POSIX timer handling for a thread group.
1134 */
1135 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1136 {
1137 unsigned long cpu_limit;
1138
1139 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1140 if (cpu_limit != RLIM_INFINITY) {
1141 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1142 sig->cputimer.running = true;
1143 }
1144
1145 /* The timer lists. */
1146 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1147 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1148 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1149 }
1150
1151 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1152 {
1153 struct signal_struct *sig;
1154
1155 if (clone_flags & CLONE_THREAD)
1156 return 0;
1157
1158 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1159 tsk->signal = sig;
1160 if (!sig)
1161 return -ENOMEM;
1162
1163 sig->nr_threads = 1;
1164 atomic_set(&sig->live, 1);
1165 atomic_set(&sig->sigcnt, 1);
1166
1167 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1168 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1169 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1170
1171 init_waitqueue_head(&sig->wait_chldexit);
1172 sig->curr_target = tsk;
1173 init_sigpending(&sig->shared_pending);
1174 INIT_LIST_HEAD(&sig->posix_timers);
1175 seqlock_init(&sig->stats_lock);
1176 prev_cputime_init(&sig->prev_cputime);
1177
1178 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 sig->real_timer.function = it_real_fn;
1180
1181 task_lock(current->group_leader);
1182 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1183 task_unlock(current->group_leader);
1184
1185 posix_cpu_timers_init_group(sig);
1186
1187 tty_audit_fork(sig);
1188 sched_autogroup_fork(sig);
1189
1190 sig->oom_score_adj = current->signal->oom_score_adj;
1191 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1192
1193 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1194 current->signal->is_child_subreaper;
1195
1196 mutex_init(&sig->cred_guard_mutex);
1197
1198 return 0;
1199 }
1200
1201 static void copy_seccomp(struct task_struct *p)
1202 {
1203 #ifdef CONFIG_SECCOMP
1204 /*
1205 * Must be called with sighand->lock held, which is common to
1206 * all threads in the group. Holding cred_guard_mutex is not
1207 * needed because this new task is not yet running and cannot
1208 * be racing exec.
1209 */
1210 assert_spin_locked(&current->sighand->siglock);
1211
1212 /* Ref-count the new filter user, and assign it. */
1213 get_seccomp_filter(current);
1214 p->seccomp = current->seccomp;
1215
1216 /*
1217 * Explicitly enable no_new_privs here in case it got set
1218 * between the task_struct being duplicated and holding the
1219 * sighand lock. The seccomp state and nnp must be in sync.
1220 */
1221 if (task_no_new_privs(current))
1222 task_set_no_new_privs(p);
1223
1224 /*
1225 * If the parent gained a seccomp mode after copying thread
1226 * flags and between before we held the sighand lock, we have
1227 * to manually enable the seccomp thread flag here.
1228 */
1229 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1230 set_tsk_thread_flag(p, TIF_SECCOMP);
1231 #endif
1232 }
1233
1234 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1235 {
1236 current->clear_child_tid = tidptr;
1237
1238 return task_pid_vnr(current);
1239 }
1240
1241 static void rt_mutex_init_task(struct task_struct *p)
1242 {
1243 raw_spin_lock_init(&p->pi_lock);
1244 #ifdef CONFIG_RT_MUTEXES
1245 p->pi_waiters = RB_ROOT;
1246 p->pi_waiters_leftmost = NULL;
1247 p->pi_blocked_on = NULL;
1248 #endif
1249 }
1250
1251 /*
1252 * Initialize POSIX timer handling for a single task.
1253 */
1254 static void posix_cpu_timers_init(struct task_struct *tsk)
1255 {
1256 tsk->cputime_expires.prof_exp = 0;
1257 tsk->cputime_expires.virt_exp = 0;
1258 tsk->cputime_expires.sched_exp = 0;
1259 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1260 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1261 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1262 }
1263
1264 static inline void
1265 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1266 {
1267 task->pids[type].pid = pid;
1268 }
1269
1270 /*
1271 * This creates a new process as a copy of the old one,
1272 * but does not actually start it yet.
1273 *
1274 * It copies the registers, and all the appropriate
1275 * parts of the process environment (as per the clone
1276 * flags). The actual kick-off is left to the caller.
1277 */
1278 static struct task_struct *copy_process(unsigned long clone_flags,
1279 unsigned long stack_start,
1280 unsigned long stack_size,
1281 int __user *child_tidptr,
1282 struct pid *pid,
1283 int trace,
1284 unsigned long tls,
1285 int node)
1286 {
1287 int retval;
1288 struct task_struct *p;
1289
1290 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1291 return ERR_PTR(-EINVAL);
1292
1293 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1294 return ERR_PTR(-EINVAL);
1295
1296 /*
1297 * Thread groups must share signals as well, and detached threads
1298 * can only be started up within the thread group.
1299 */
1300 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1301 return ERR_PTR(-EINVAL);
1302
1303 /*
1304 * Shared signal handlers imply shared VM. By way of the above,
1305 * thread groups also imply shared VM. Blocking this case allows
1306 * for various simplifications in other code.
1307 */
1308 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1309 return ERR_PTR(-EINVAL);
1310
1311 /*
1312 * Siblings of global init remain as zombies on exit since they are
1313 * not reaped by their parent (swapper). To solve this and to avoid
1314 * multi-rooted process trees, prevent global and container-inits
1315 * from creating siblings.
1316 */
1317 if ((clone_flags & CLONE_PARENT) &&
1318 current->signal->flags & SIGNAL_UNKILLABLE)
1319 return ERR_PTR(-EINVAL);
1320
1321 /*
1322 * If the new process will be in a different pid or user namespace
1323 * do not allow it to share a thread group with the forking task.
1324 */
1325 if (clone_flags & CLONE_THREAD) {
1326 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1327 (task_active_pid_ns(current) !=
1328 current->nsproxy->pid_ns_for_children))
1329 return ERR_PTR(-EINVAL);
1330 }
1331
1332 retval = security_task_create(clone_flags);
1333 if (retval)
1334 goto fork_out;
1335
1336 retval = -ENOMEM;
1337 p = dup_task_struct(current, node);
1338 if (!p)
1339 goto fork_out;
1340
1341 ftrace_graph_init_task(p);
1342
1343 rt_mutex_init_task(p);
1344
1345 #ifdef CONFIG_PROVE_LOCKING
1346 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1347 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1348 #endif
1349 retval = -EAGAIN;
1350 if (atomic_read(&p->real_cred->user->processes) >=
1351 task_rlimit(p, RLIMIT_NPROC)) {
1352 if (p->real_cred->user != INIT_USER &&
1353 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1354 goto bad_fork_free;
1355 }
1356 current->flags &= ~PF_NPROC_EXCEEDED;
1357
1358 retval = copy_creds(p, clone_flags);
1359 if (retval < 0)
1360 goto bad_fork_free;
1361
1362 /*
1363 * If multiple threads are within copy_process(), then this check
1364 * triggers too late. This doesn't hurt, the check is only there
1365 * to stop root fork bombs.
1366 */
1367 retval = -EAGAIN;
1368 if (nr_threads >= max_threads)
1369 goto bad_fork_cleanup_count;
1370
1371 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1372 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1373 p->flags |= PF_FORKNOEXEC;
1374 INIT_LIST_HEAD(&p->children);
1375 INIT_LIST_HEAD(&p->sibling);
1376 rcu_copy_process(p);
1377 p->vfork_done = NULL;
1378 spin_lock_init(&p->alloc_lock);
1379
1380 init_sigpending(&p->pending);
1381
1382 p->utime = p->stime = p->gtime = 0;
1383 p->utimescaled = p->stimescaled = 0;
1384 prev_cputime_init(&p->prev_cputime);
1385
1386 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1387 seqcount_init(&p->vtime_seqcount);
1388 p->vtime_snap = 0;
1389 p->vtime_snap_whence = VTIME_INACTIVE;
1390 #endif
1391
1392 #if defined(SPLIT_RSS_COUNTING)
1393 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1394 #endif
1395
1396 p->default_timer_slack_ns = current->timer_slack_ns;
1397
1398 task_io_accounting_init(&p->ioac);
1399 acct_clear_integrals(p);
1400
1401 posix_cpu_timers_init(p);
1402
1403 p->start_time = ktime_get_ns();
1404 p->real_start_time = ktime_get_boot_ns();
1405 p->io_context = NULL;
1406 p->audit_context = NULL;
1407 threadgroup_change_begin(current);
1408 cgroup_fork(p);
1409 #ifdef CONFIG_NUMA
1410 p->mempolicy = mpol_dup(p->mempolicy);
1411 if (IS_ERR(p->mempolicy)) {
1412 retval = PTR_ERR(p->mempolicy);
1413 p->mempolicy = NULL;
1414 goto bad_fork_cleanup_threadgroup_lock;
1415 }
1416 #endif
1417 #ifdef CONFIG_CPUSETS
1418 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1419 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1420 seqcount_init(&p->mems_allowed_seq);
1421 #endif
1422 #ifdef CONFIG_TRACE_IRQFLAGS
1423 p->irq_events = 0;
1424 p->hardirqs_enabled = 0;
1425 p->hardirq_enable_ip = 0;
1426 p->hardirq_enable_event = 0;
1427 p->hardirq_disable_ip = _THIS_IP_;
1428 p->hardirq_disable_event = 0;
1429 p->softirqs_enabled = 1;
1430 p->softirq_enable_ip = _THIS_IP_;
1431 p->softirq_enable_event = 0;
1432 p->softirq_disable_ip = 0;
1433 p->softirq_disable_event = 0;
1434 p->hardirq_context = 0;
1435 p->softirq_context = 0;
1436 #endif
1437
1438 p->pagefault_disabled = 0;
1439
1440 #ifdef CONFIG_LOCKDEP
1441 p->lockdep_depth = 0; /* no locks held yet */
1442 p->curr_chain_key = 0;
1443 p->lockdep_recursion = 0;
1444 #endif
1445
1446 #ifdef CONFIG_DEBUG_MUTEXES
1447 p->blocked_on = NULL; /* not blocked yet */
1448 #endif
1449 #ifdef CONFIG_BCACHE
1450 p->sequential_io = 0;
1451 p->sequential_io_avg = 0;
1452 #endif
1453
1454 /* Perform scheduler related setup. Assign this task to a CPU. */
1455 retval = sched_fork(clone_flags, p);
1456 if (retval)
1457 goto bad_fork_cleanup_policy;
1458
1459 retval = perf_event_init_task(p);
1460 if (retval)
1461 goto bad_fork_cleanup_policy;
1462 retval = audit_alloc(p);
1463 if (retval)
1464 goto bad_fork_cleanup_perf;
1465 /* copy all the process information */
1466 shm_init_task(p);
1467 retval = copy_semundo(clone_flags, p);
1468 if (retval)
1469 goto bad_fork_cleanup_audit;
1470 retval = copy_files(clone_flags, p);
1471 if (retval)
1472 goto bad_fork_cleanup_semundo;
1473 retval = copy_fs(clone_flags, p);
1474 if (retval)
1475 goto bad_fork_cleanup_files;
1476 retval = copy_sighand(clone_flags, p);
1477 if (retval)
1478 goto bad_fork_cleanup_fs;
1479 retval = copy_signal(clone_flags, p);
1480 if (retval)
1481 goto bad_fork_cleanup_sighand;
1482 retval = copy_mm(clone_flags, p);
1483 if (retval)
1484 goto bad_fork_cleanup_signal;
1485 retval = copy_namespaces(clone_flags, p);
1486 if (retval)
1487 goto bad_fork_cleanup_mm;
1488 retval = copy_io(clone_flags, p);
1489 if (retval)
1490 goto bad_fork_cleanup_namespaces;
1491 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1492 if (retval)
1493 goto bad_fork_cleanup_io;
1494
1495 if (pid != &init_struct_pid) {
1496 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1497 if (IS_ERR(pid)) {
1498 retval = PTR_ERR(pid);
1499 goto bad_fork_cleanup_thread;
1500 }
1501 }
1502
1503 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1504 /*
1505 * Clear TID on mm_release()?
1506 */
1507 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1508 #ifdef CONFIG_BLOCK
1509 p->plug = NULL;
1510 #endif
1511 #ifdef CONFIG_FUTEX
1512 p->robust_list = NULL;
1513 #ifdef CONFIG_COMPAT
1514 p->compat_robust_list = NULL;
1515 #endif
1516 INIT_LIST_HEAD(&p->pi_state_list);
1517 p->pi_state_cache = NULL;
1518 #endif
1519 /*
1520 * sigaltstack should be cleared when sharing the same VM
1521 */
1522 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1523 sas_ss_reset(p);
1524
1525 /*
1526 * Syscall tracing and stepping should be turned off in the
1527 * child regardless of CLONE_PTRACE.
1528 */
1529 user_disable_single_step(p);
1530 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1531 #ifdef TIF_SYSCALL_EMU
1532 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1533 #endif
1534 clear_all_latency_tracing(p);
1535
1536 /* ok, now we should be set up.. */
1537 p->pid = pid_nr(pid);
1538 if (clone_flags & CLONE_THREAD) {
1539 p->exit_signal = -1;
1540 p->group_leader = current->group_leader;
1541 p->tgid = current->tgid;
1542 } else {
1543 if (clone_flags & CLONE_PARENT)
1544 p->exit_signal = current->group_leader->exit_signal;
1545 else
1546 p->exit_signal = (clone_flags & CSIGNAL);
1547 p->group_leader = p;
1548 p->tgid = p->pid;
1549 }
1550
1551 p->nr_dirtied = 0;
1552 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1553 p->dirty_paused_when = 0;
1554
1555 p->pdeath_signal = 0;
1556 INIT_LIST_HEAD(&p->thread_group);
1557 p->task_works = NULL;
1558
1559 /*
1560 * Ensure that the cgroup subsystem policies allow the new process to be
1561 * forked. It should be noted the the new process's css_set can be changed
1562 * between here and cgroup_post_fork() if an organisation operation is in
1563 * progress.
1564 */
1565 retval = cgroup_can_fork(p);
1566 if (retval)
1567 goto bad_fork_free_pid;
1568
1569 /*
1570 * Make it visible to the rest of the system, but dont wake it up yet.
1571 * Need tasklist lock for parent etc handling!
1572 */
1573 write_lock_irq(&tasklist_lock);
1574
1575 /* CLONE_PARENT re-uses the old parent */
1576 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1577 p->real_parent = current->real_parent;
1578 p->parent_exec_id = current->parent_exec_id;
1579 } else {
1580 p->real_parent = current;
1581 p->parent_exec_id = current->self_exec_id;
1582 }
1583
1584 spin_lock(&current->sighand->siglock);
1585
1586 /*
1587 * Copy seccomp details explicitly here, in case they were changed
1588 * before holding sighand lock.
1589 */
1590 copy_seccomp(p);
1591
1592 /*
1593 * Process group and session signals need to be delivered to just the
1594 * parent before the fork or both the parent and the child after the
1595 * fork. Restart if a signal comes in before we add the new process to
1596 * it's process group.
1597 * A fatal signal pending means that current will exit, so the new
1598 * thread can't slip out of an OOM kill (or normal SIGKILL).
1599 */
1600 recalc_sigpending();
1601 if (signal_pending(current)) {
1602 spin_unlock(&current->sighand->siglock);
1603 write_unlock_irq(&tasklist_lock);
1604 retval = -ERESTARTNOINTR;
1605 goto bad_fork_cancel_cgroup;
1606 }
1607
1608 if (likely(p->pid)) {
1609 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1610
1611 init_task_pid(p, PIDTYPE_PID, pid);
1612 if (thread_group_leader(p)) {
1613 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1614 init_task_pid(p, PIDTYPE_SID, task_session(current));
1615
1616 if (is_child_reaper(pid)) {
1617 ns_of_pid(pid)->child_reaper = p;
1618 p->signal->flags |= SIGNAL_UNKILLABLE;
1619 }
1620
1621 p->signal->leader_pid = pid;
1622 p->signal->tty = tty_kref_get(current->signal->tty);
1623 list_add_tail(&p->sibling, &p->real_parent->children);
1624 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1625 attach_pid(p, PIDTYPE_PGID);
1626 attach_pid(p, PIDTYPE_SID);
1627 __this_cpu_inc(process_counts);
1628 } else {
1629 current->signal->nr_threads++;
1630 atomic_inc(&current->signal->live);
1631 atomic_inc(&current->signal->sigcnt);
1632 list_add_tail_rcu(&p->thread_group,
1633 &p->group_leader->thread_group);
1634 list_add_tail_rcu(&p->thread_node,
1635 &p->signal->thread_head);
1636 }
1637 attach_pid(p, PIDTYPE_PID);
1638 nr_threads++;
1639 }
1640
1641 total_forks++;
1642 spin_unlock(&current->sighand->siglock);
1643 syscall_tracepoint_update(p);
1644 write_unlock_irq(&tasklist_lock);
1645
1646 proc_fork_connector(p);
1647 cgroup_post_fork(p);
1648 threadgroup_change_end(current);
1649 perf_event_fork(p);
1650
1651 trace_task_newtask(p, clone_flags);
1652 uprobe_copy_process(p, clone_flags);
1653
1654 return p;
1655
1656 bad_fork_cancel_cgroup:
1657 cgroup_cancel_fork(p);
1658 bad_fork_free_pid:
1659 if (pid != &init_struct_pid)
1660 free_pid(pid);
1661 bad_fork_cleanup_thread:
1662 exit_thread(p);
1663 bad_fork_cleanup_io:
1664 if (p->io_context)
1665 exit_io_context(p);
1666 bad_fork_cleanup_namespaces:
1667 exit_task_namespaces(p);
1668 bad_fork_cleanup_mm:
1669 if (p->mm)
1670 mmput(p->mm);
1671 bad_fork_cleanup_signal:
1672 if (!(clone_flags & CLONE_THREAD))
1673 free_signal_struct(p->signal);
1674 bad_fork_cleanup_sighand:
1675 __cleanup_sighand(p->sighand);
1676 bad_fork_cleanup_fs:
1677 exit_fs(p); /* blocking */
1678 bad_fork_cleanup_files:
1679 exit_files(p); /* blocking */
1680 bad_fork_cleanup_semundo:
1681 exit_sem(p);
1682 bad_fork_cleanup_audit:
1683 audit_free(p);
1684 bad_fork_cleanup_perf:
1685 perf_event_free_task(p);
1686 bad_fork_cleanup_policy:
1687 #ifdef CONFIG_NUMA
1688 mpol_put(p->mempolicy);
1689 bad_fork_cleanup_threadgroup_lock:
1690 #endif
1691 threadgroup_change_end(current);
1692 delayacct_tsk_free(p);
1693 bad_fork_cleanup_count:
1694 atomic_dec(&p->cred->user->processes);
1695 exit_creds(p);
1696 bad_fork_free:
1697 free_task(p);
1698 fork_out:
1699 return ERR_PTR(retval);
1700 }
1701
1702 static inline void init_idle_pids(struct pid_link *links)
1703 {
1704 enum pid_type type;
1705
1706 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1707 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1708 links[type].pid = &init_struct_pid;
1709 }
1710 }
1711
1712 struct task_struct *fork_idle(int cpu)
1713 {
1714 struct task_struct *task;
1715 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1716 cpu_to_node(cpu));
1717 if (!IS_ERR(task)) {
1718 init_idle_pids(task->pids);
1719 init_idle(task, cpu);
1720 }
1721
1722 return task;
1723 }
1724
1725 /*
1726 * Ok, this is the main fork-routine.
1727 *
1728 * It copies the process, and if successful kick-starts
1729 * it and waits for it to finish using the VM if required.
1730 */
1731 long _do_fork(unsigned long clone_flags,
1732 unsigned long stack_start,
1733 unsigned long stack_size,
1734 int __user *parent_tidptr,
1735 int __user *child_tidptr,
1736 unsigned long tls)
1737 {
1738 struct task_struct *p;
1739 int trace = 0;
1740 long nr;
1741
1742 /*
1743 * Determine whether and which event to report to ptracer. When
1744 * called from kernel_thread or CLONE_UNTRACED is explicitly
1745 * requested, no event is reported; otherwise, report if the event
1746 * for the type of forking is enabled.
1747 */
1748 if (!(clone_flags & CLONE_UNTRACED)) {
1749 if (clone_flags & CLONE_VFORK)
1750 trace = PTRACE_EVENT_VFORK;
1751 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1752 trace = PTRACE_EVENT_CLONE;
1753 else
1754 trace = PTRACE_EVENT_FORK;
1755
1756 if (likely(!ptrace_event_enabled(current, trace)))
1757 trace = 0;
1758 }
1759
1760 p = copy_process(clone_flags, stack_start, stack_size,
1761 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1762 /*
1763 * Do this prior waking up the new thread - the thread pointer
1764 * might get invalid after that point, if the thread exits quickly.
1765 */
1766 if (!IS_ERR(p)) {
1767 struct completion vfork;
1768 struct pid *pid;
1769
1770 trace_sched_process_fork(current, p);
1771
1772 pid = get_task_pid(p, PIDTYPE_PID);
1773 nr = pid_vnr(pid);
1774
1775 if (clone_flags & CLONE_PARENT_SETTID)
1776 put_user(nr, parent_tidptr);
1777
1778 if (clone_flags & CLONE_VFORK) {
1779 p->vfork_done = &vfork;
1780 init_completion(&vfork);
1781 get_task_struct(p);
1782 }
1783
1784 wake_up_new_task(p);
1785
1786 /* forking complete and child started to run, tell ptracer */
1787 if (unlikely(trace))
1788 ptrace_event_pid(trace, pid);
1789
1790 if (clone_flags & CLONE_VFORK) {
1791 if (!wait_for_vfork_done(p, &vfork))
1792 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1793 }
1794
1795 put_pid(pid);
1796 } else {
1797 nr = PTR_ERR(p);
1798 }
1799 return nr;
1800 }
1801
1802 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1803 /* For compatibility with architectures that call do_fork directly rather than
1804 * using the syscall entry points below. */
1805 long do_fork(unsigned long clone_flags,
1806 unsigned long stack_start,
1807 unsigned long stack_size,
1808 int __user *parent_tidptr,
1809 int __user *child_tidptr)
1810 {
1811 return _do_fork(clone_flags, stack_start, stack_size,
1812 parent_tidptr, child_tidptr, 0);
1813 }
1814 #endif
1815
1816 /*
1817 * Create a kernel thread.
1818 */
1819 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1820 {
1821 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1822 (unsigned long)arg, NULL, NULL, 0);
1823 }
1824
1825 #ifdef __ARCH_WANT_SYS_FORK
1826 SYSCALL_DEFINE0(fork)
1827 {
1828 #ifdef CONFIG_MMU
1829 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1830 #else
1831 /* can not support in nommu mode */
1832 return -EINVAL;
1833 #endif
1834 }
1835 #endif
1836
1837 #ifdef __ARCH_WANT_SYS_VFORK
1838 SYSCALL_DEFINE0(vfork)
1839 {
1840 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1841 0, NULL, NULL, 0);
1842 }
1843 #endif
1844
1845 #ifdef __ARCH_WANT_SYS_CLONE
1846 #ifdef CONFIG_CLONE_BACKWARDS
1847 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1848 int __user *, parent_tidptr,
1849 unsigned long, tls,
1850 int __user *, child_tidptr)
1851 #elif defined(CONFIG_CLONE_BACKWARDS2)
1852 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1853 int __user *, parent_tidptr,
1854 int __user *, child_tidptr,
1855 unsigned long, tls)
1856 #elif defined(CONFIG_CLONE_BACKWARDS3)
1857 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1858 int, stack_size,
1859 int __user *, parent_tidptr,
1860 int __user *, child_tidptr,
1861 unsigned long, tls)
1862 #else
1863 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1864 int __user *, parent_tidptr,
1865 int __user *, child_tidptr,
1866 unsigned long, tls)
1867 #endif
1868 {
1869 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1870 }
1871 #endif
1872
1873 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1874 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1875 #endif
1876
1877 static void sighand_ctor(void *data)
1878 {
1879 struct sighand_struct *sighand = data;
1880
1881 spin_lock_init(&sighand->siglock);
1882 init_waitqueue_head(&sighand->signalfd_wqh);
1883 }
1884
1885 void __init proc_caches_init(void)
1886 {
1887 sighand_cachep = kmem_cache_create("sighand_cache",
1888 sizeof(struct sighand_struct), 0,
1889 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1890 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1891 signal_cachep = kmem_cache_create("signal_cache",
1892 sizeof(struct signal_struct), 0,
1893 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1894 NULL);
1895 files_cachep = kmem_cache_create("files_cache",
1896 sizeof(struct files_struct), 0,
1897 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1898 NULL);
1899 fs_cachep = kmem_cache_create("fs_cache",
1900 sizeof(struct fs_struct), 0,
1901 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1902 NULL);
1903 /*
1904 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1905 * whole struct cpumask for the OFFSTACK case. We could change
1906 * this to *only* allocate as much of it as required by the
1907 * maximum number of CPU's we can ever have. The cpumask_allocation
1908 * is at the end of the structure, exactly for that reason.
1909 */
1910 mm_cachep = kmem_cache_create("mm_struct",
1911 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1912 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1913 NULL);
1914 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1915 mmap_init();
1916 nsproxy_cache_init();
1917 }
1918
1919 /*
1920 * Check constraints on flags passed to the unshare system call.
1921 */
1922 static int check_unshare_flags(unsigned long unshare_flags)
1923 {
1924 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1925 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1926 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1927 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1928 return -EINVAL;
1929 /*
1930 * Not implemented, but pretend it works if there is nothing
1931 * to unshare. Note that unsharing the address space or the
1932 * signal handlers also need to unshare the signal queues (aka
1933 * CLONE_THREAD).
1934 */
1935 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1936 if (!thread_group_empty(current))
1937 return -EINVAL;
1938 }
1939 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1940 if (atomic_read(&current->sighand->count) > 1)
1941 return -EINVAL;
1942 }
1943 if (unshare_flags & CLONE_VM) {
1944 if (!current_is_single_threaded())
1945 return -EINVAL;
1946 }
1947
1948 return 0;
1949 }
1950
1951 /*
1952 * Unshare the filesystem structure if it is being shared
1953 */
1954 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1955 {
1956 struct fs_struct *fs = current->fs;
1957
1958 if (!(unshare_flags & CLONE_FS) || !fs)
1959 return 0;
1960
1961 /* don't need lock here; in the worst case we'll do useless copy */
1962 if (fs->users == 1)
1963 return 0;
1964
1965 *new_fsp = copy_fs_struct(fs);
1966 if (!*new_fsp)
1967 return -ENOMEM;
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * Unshare file descriptor table if it is being shared
1974 */
1975 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1976 {
1977 struct files_struct *fd = current->files;
1978 int error = 0;
1979
1980 if ((unshare_flags & CLONE_FILES) &&
1981 (fd && atomic_read(&fd->count) > 1)) {
1982 *new_fdp = dup_fd(fd, &error);
1983 if (!*new_fdp)
1984 return error;
1985 }
1986
1987 return 0;
1988 }
1989
1990 /*
1991 * unshare allows a process to 'unshare' part of the process
1992 * context which was originally shared using clone. copy_*
1993 * functions used by do_fork() cannot be used here directly
1994 * because they modify an inactive task_struct that is being
1995 * constructed. Here we are modifying the current, active,
1996 * task_struct.
1997 */
1998 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1999 {
2000 struct fs_struct *fs, *new_fs = NULL;
2001 struct files_struct *fd, *new_fd = NULL;
2002 struct cred *new_cred = NULL;
2003 struct nsproxy *new_nsproxy = NULL;
2004 int do_sysvsem = 0;
2005 int err;
2006
2007 /*
2008 * If unsharing a user namespace must also unshare the thread group
2009 * and unshare the filesystem root and working directories.
2010 */
2011 if (unshare_flags & CLONE_NEWUSER)
2012 unshare_flags |= CLONE_THREAD | CLONE_FS;
2013 /*
2014 * If unsharing vm, must also unshare signal handlers.
2015 */
2016 if (unshare_flags & CLONE_VM)
2017 unshare_flags |= CLONE_SIGHAND;
2018 /*
2019 * If unsharing a signal handlers, must also unshare the signal queues.
2020 */
2021 if (unshare_flags & CLONE_SIGHAND)
2022 unshare_flags |= CLONE_THREAD;
2023 /*
2024 * If unsharing namespace, must also unshare filesystem information.
2025 */
2026 if (unshare_flags & CLONE_NEWNS)
2027 unshare_flags |= CLONE_FS;
2028
2029 err = check_unshare_flags(unshare_flags);
2030 if (err)
2031 goto bad_unshare_out;
2032 /*
2033 * CLONE_NEWIPC must also detach from the undolist: after switching
2034 * to a new ipc namespace, the semaphore arrays from the old
2035 * namespace are unreachable.
2036 */
2037 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2038 do_sysvsem = 1;
2039 err = unshare_fs(unshare_flags, &new_fs);
2040 if (err)
2041 goto bad_unshare_out;
2042 err = unshare_fd(unshare_flags, &new_fd);
2043 if (err)
2044 goto bad_unshare_cleanup_fs;
2045 err = unshare_userns(unshare_flags, &new_cred);
2046 if (err)
2047 goto bad_unshare_cleanup_fd;
2048 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2049 new_cred, new_fs);
2050 if (err)
2051 goto bad_unshare_cleanup_cred;
2052
2053 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2054 if (do_sysvsem) {
2055 /*
2056 * CLONE_SYSVSEM is equivalent to sys_exit().
2057 */
2058 exit_sem(current);
2059 }
2060 if (unshare_flags & CLONE_NEWIPC) {
2061 /* Orphan segments in old ns (see sem above). */
2062 exit_shm(current);
2063 shm_init_task(current);
2064 }
2065
2066 if (new_nsproxy)
2067 switch_task_namespaces(current, new_nsproxy);
2068
2069 task_lock(current);
2070
2071 if (new_fs) {
2072 fs = current->fs;
2073 spin_lock(&fs->lock);
2074 current->fs = new_fs;
2075 if (--fs->users)
2076 new_fs = NULL;
2077 else
2078 new_fs = fs;
2079 spin_unlock(&fs->lock);
2080 }
2081
2082 if (new_fd) {
2083 fd = current->files;
2084 current->files = new_fd;
2085 new_fd = fd;
2086 }
2087
2088 task_unlock(current);
2089
2090 if (new_cred) {
2091 /* Install the new user namespace */
2092 commit_creds(new_cred);
2093 new_cred = NULL;
2094 }
2095 }
2096
2097 bad_unshare_cleanup_cred:
2098 if (new_cred)
2099 put_cred(new_cred);
2100 bad_unshare_cleanup_fd:
2101 if (new_fd)
2102 put_files_struct(new_fd);
2103
2104 bad_unshare_cleanup_fs:
2105 if (new_fs)
2106 free_fs_struct(new_fs);
2107
2108 bad_unshare_out:
2109 return err;
2110 }
2111
2112 /*
2113 * Helper to unshare the files of the current task.
2114 * We don't want to expose copy_files internals to
2115 * the exec layer of the kernel.
2116 */
2117
2118 int unshare_files(struct files_struct **displaced)
2119 {
2120 struct task_struct *task = current;
2121 struct files_struct *copy = NULL;
2122 int error;
2123
2124 error = unshare_fd(CLONE_FILES, &copy);
2125 if (error || !copy) {
2126 *displaced = NULL;
2127 return error;
2128 }
2129 *displaced = task->files;
2130 task_lock(task);
2131 task->files = copy;
2132 task_unlock(task);
2133 return 0;
2134 }
2135
2136 int sysctl_max_threads(struct ctl_table *table, int write,
2137 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 struct ctl_table t;
2140 int ret;
2141 int threads = max_threads;
2142 int min = MIN_THREADS;
2143 int max = MAX_THREADS;
2144
2145 t = *table;
2146 t.data = &threads;
2147 t.extra1 = &min;
2148 t.extra2 = &max;
2149
2150 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 if (ret || !write)
2152 return ret;
2153
2154 set_max_threads(threads);
2155
2156 return 0;
2157 }
This page took 0.135137 seconds and 5 git commands to generate.