mm: page migration remove_migration_ptes at lock+unlock level
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268 * set_max_threads
269 */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 u64 threads;
273
274 /*
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
277 */
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
283
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
286
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
300 #endif
301 /* create a slab on which task_structs can be allocated */
302 task_struct_cachep =
303 kmem_cache_create("task_struct", arch_task_struct_size,
304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306
307 /* do the arch specific task caches init */
308 arch_task_cache_init();
309
310 set_max_threads(MAX_THREADS);
311
312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 init_task.signal->rlim[RLIMIT_NPROC];
316 }
317
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 struct task_struct *src)
320 {
321 *dst = *src;
322 return 0;
323 }
324
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 unsigned long *stackend;
328
329 stackend = end_of_stack(tsk);
330 *stackend = STACK_END_MAGIC; /* for overflow detection */
331 }
332
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 struct task_struct *tsk;
336 struct thread_info *ti;
337 int node = tsk_fork_get_node(orig);
338 int err;
339
340 tsk = alloc_task_struct_node(node);
341 if (!tsk)
342 return NULL;
343
344 ti = alloc_thread_info_node(tsk, node);
345 if (!ti)
346 goto free_tsk;
347
348 err = arch_dup_task_struct(tsk, orig);
349 if (err)
350 goto free_ti;
351
352 tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 /*
355 * We must handle setting up seccomp filters once we're under
356 * the sighand lock in case orig has changed between now and
357 * then. Until then, filter must be NULL to avoid messing up
358 * the usage counts on the error path calling free_task.
359 */
360 tsk->seccomp.filter = NULL;
361 #endif
362
363 setup_thread_stack(tsk, orig);
364 clear_user_return_notifier(tsk);
365 clear_tsk_need_resched(tsk);
366 set_task_stack_end_magic(tsk);
367
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 tsk->stack_canary = get_random_int();
370 #endif
371
372 /*
373 * One for us, one for whoever does the "release_task()" (usually
374 * parent)
375 */
376 atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 tsk->btrace_seq = 0;
379 #endif
380 tsk->splice_pipe = NULL;
381 tsk->task_frag.page = NULL;
382
383 account_kernel_stack(ti, 1);
384
385 return tsk;
386
387 free_ti:
388 free_thread_info(ti);
389 free_tsk:
390 free_task_struct(tsk);
391 return NULL;
392 }
393
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 struct rb_node **rb_link, *rb_parent;
399 int retval;
400 unsigned long charge;
401
402 uprobe_start_dup_mmap();
403 down_write(&oldmm->mmap_sem);
404 flush_cache_dup_mm(oldmm);
405 uprobe_dup_mmap(oldmm, mm);
406 /*
407 * Not linked in yet - no deadlock potential:
408 */
409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410
411 /* No ordering required: file already has been exposed. */
412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413
414 mm->total_vm = oldmm->total_vm;
415 mm->shared_vm = oldmm->shared_vm;
416 mm->exec_vm = oldmm->exec_vm;
417 mm->stack_vm = oldmm->stack_vm;
418
419 rb_link = &mm->mm_rb.rb_node;
420 rb_parent = NULL;
421 pprev = &mm->mmap;
422 retval = ksm_fork(mm, oldmm);
423 if (retval)
424 goto out;
425 retval = khugepaged_fork(mm, oldmm);
426 if (retval)
427 goto out;
428
429 prev = NULL;
430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 struct file *file;
432
433 if (mpnt->vm_flags & VM_DONTCOPY) {
434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 -vma_pages(mpnt));
436 continue;
437 }
438 charge = 0;
439 if (mpnt->vm_flags & VM_ACCOUNT) {
440 unsigned long len = vma_pages(mpnt);
441
442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 goto fail_nomem;
444 charge = len;
445 }
446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 if (!tmp)
448 goto fail_nomem;
449 *tmp = *mpnt;
450 INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 retval = vma_dup_policy(mpnt, tmp);
452 if (retval)
453 goto fail_nomem_policy;
454 tmp->vm_mm = mm;
455 if (anon_vma_fork(tmp, mpnt))
456 goto fail_nomem_anon_vma_fork;
457 tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP);
458 tmp->vm_next = tmp->vm_prev = NULL;
459 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
460 file = tmp->vm_file;
461 if (file) {
462 struct inode *inode = file_inode(file);
463 struct address_space *mapping = file->f_mapping;
464
465 get_file(file);
466 if (tmp->vm_flags & VM_DENYWRITE)
467 atomic_dec(&inode->i_writecount);
468 i_mmap_lock_write(mapping);
469 if (tmp->vm_flags & VM_SHARED)
470 atomic_inc(&mapping->i_mmap_writable);
471 flush_dcache_mmap_lock(mapping);
472 /* insert tmp into the share list, just after mpnt */
473 vma_interval_tree_insert_after(tmp, mpnt,
474 &mapping->i_mmap);
475 flush_dcache_mmap_unlock(mapping);
476 i_mmap_unlock_write(mapping);
477 }
478
479 /*
480 * Clear hugetlb-related page reserves for children. This only
481 * affects MAP_PRIVATE mappings. Faults generated by the child
482 * are not guaranteed to succeed, even if read-only
483 */
484 if (is_vm_hugetlb_page(tmp))
485 reset_vma_resv_huge_pages(tmp);
486
487 /*
488 * Link in the new vma and copy the page table entries.
489 */
490 *pprev = tmp;
491 pprev = &tmp->vm_next;
492 tmp->vm_prev = prev;
493 prev = tmp;
494
495 __vma_link_rb(mm, tmp, rb_link, rb_parent);
496 rb_link = &tmp->vm_rb.rb_right;
497 rb_parent = &tmp->vm_rb;
498
499 mm->map_count++;
500 retval = copy_page_range(mm, oldmm, mpnt);
501
502 if (tmp->vm_ops && tmp->vm_ops->open)
503 tmp->vm_ops->open(tmp);
504
505 if (retval)
506 goto out;
507 }
508 /* a new mm has just been created */
509 arch_dup_mmap(oldmm, mm);
510 retval = 0;
511 out:
512 up_write(&mm->mmap_sem);
513 flush_tlb_mm(oldmm);
514 up_write(&oldmm->mmap_sem);
515 uprobe_end_dup_mmap();
516 return retval;
517 fail_nomem_anon_vma_fork:
518 mpol_put(vma_policy(tmp));
519 fail_nomem_policy:
520 kmem_cache_free(vm_area_cachep, tmp);
521 fail_nomem:
522 retval = -ENOMEM;
523 vm_unacct_memory(charge);
524 goto out;
525 }
526
527 static inline int mm_alloc_pgd(struct mm_struct *mm)
528 {
529 mm->pgd = pgd_alloc(mm);
530 if (unlikely(!mm->pgd))
531 return -ENOMEM;
532 return 0;
533 }
534
535 static inline void mm_free_pgd(struct mm_struct *mm)
536 {
537 pgd_free(mm, mm->pgd);
538 }
539 #else
540 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 {
542 down_write(&oldmm->mmap_sem);
543 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
544 up_write(&oldmm->mmap_sem);
545 return 0;
546 }
547 #define mm_alloc_pgd(mm) (0)
548 #define mm_free_pgd(mm)
549 #endif /* CONFIG_MMU */
550
551 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
552
553 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
554 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
555
556 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
557
558 static int __init coredump_filter_setup(char *s)
559 {
560 default_dump_filter =
561 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
562 MMF_DUMP_FILTER_MASK;
563 return 1;
564 }
565
566 __setup("coredump_filter=", coredump_filter_setup);
567
568 #include <linux/init_task.h>
569
570 static void mm_init_aio(struct mm_struct *mm)
571 {
572 #ifdef CONFIG_AIO
573 spin_lock_init(&mm->ioctx_lock);
574 mm->ioctx_table = NULL;
575 #endif
576 }
577
578 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
579 {
580 #ifdef CONFIG_MEMCG
581 mm->owner = p;
582 #endif
583 }
584
585 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
586 {
587 mm->mmap = NULL;
588 mm->mm_rb = RB_ROOT;
589 mm->vmacache_seqnum = 0;
590 atomic_set(&mm->mm_users, 1);
591 atomic_set(&mm->mm_count, 1);
592 init_rwsem(&mm->mmap_sem);
593 INIT_LIST_HEAD(&mm->mmlist);
594 mm->core_state = NULL;
595 atomic_long_set(&mm->nr_ptes, 0);
596 mm_nr_pmds_init(mm);
597 mm->map_count = 0;
598 mm->locked_vm = 0;
599 mm->pinned_vm = 0;
600 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
601 spin_lock_init(&mm->page_table_lock);
602 mm_init_cpumask(mm);
603 mm_init_aio(mm);
604 mm_init_owner(mm, p);
605 mmu_notifier_mm_init(mm);
606 clear_tlb_flush_pending(mm);
607 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
608 mm->pmd_huge_pte = NULL;
609 #endif
610
611 if (current->mm) {
612 mm->flags = current->mm->flags & MMF_INIT_MASK;
613 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
614 } else {
615 mm->flags = default_dump_filter;
616 mm->def_flags = 0;
617 }
618
619 if (mm_alloc_pgd(mm))
620 goto fail_nopgd;
621
622 if (init_new_context(p, mm))
623 goto fail_nocontext;
624
625 return mm;
626
627 fail_nocontext:
628 mm_free_pgd(mm);
629 fail_nopgd:
630 free_mm(mm);
631 return NULL;
632 }
633
634 static void check_mm(struct mm_struct *mm)
635 {
636 int i;
637
638 for (i = 0; i < NR_MM_COUNTERS; i++) {
639 long x = atomic_long_read(&mm->rss_stat.count[i]);
640
641 if (unlikely(x))
642 printk(KERN_ALERT "BUG: Bad rss-counter state "
643 "mm:%p idx:%d val:%ld\n", mm, i, x);
644 }
645
646 if (atomic_long_read(&mm->nr_ptes))
647 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
648 atomic_long_read(&mm->nr_ptes));
649 if (mm_nr_pmds(mm))
650 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
651 mm_nr_pmds(mm));
652
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657
658 /*
659 * Allocate and initialize an mm_struct.
660 */
661 struct mm_struct *mm_alloc(void)
662 {
663 struct mm_struct *mm;
664
665 mm = allocate_mm();
666 if (!mm)
667 return NULL;
668
669 memset(mm, 0, sizeof(*mm));
670 return mm_init(mm, current);
671 }
672
673 /*
674 * Called when the last reference to the mm
675 * is dropped: either by a lazy thread or by
676 * mmput. Free the page directory and the mm.
677 */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 BUG_ON(mm == &init_mm);
681 mm_free_pgd(mm);
682 destroy_context(mm);
683 mmu_notifier_mm_destroy(mm);
684 check_mm(mm);
685 free_mm(mm);
686 }
687 EXPORT_SYMBOL_GPL(__mmdrop);
688
689 /*
690 * Decrement the use count and release all resources for an mm.
691 */
692 void mmput(struct mm_struct *mm)
693 {
694 might_sleep();
695
696 if (atomic_dec_and_test(&mm->mm_users)) {
697 uprobe_clear_state(mm);
698 exit_aio(mm);
699 ksm_exit(mm);
700 khugepaged_exit(mm); /* must run before exit_mmap */
701 exit_mmap(mm);
702 set_mm_exe_file(mm, NULL);
703 if (!list_empty(&mm->mmlist)) {
704 spin_lock(&mmlist_lock);
705 list_del(&mm->mmlist);
706 spin_unlock(&mmlist_lock);
707 }
708 if (mm->binfmt)
709 module_put(mm->binfmt->module);
710 mmdrop(mm);
711 }
712 }
713 EXPORT_SYMBOL_GPL(mmput);
714
715 /**
716 * set_mm_exe_file - change a reference to the mm's executable file
717 *
718 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
719 *
720 * Main users are mmput() and sys_execve(). Callers prevent concurrent
721 * invocations: in mmput() nobody alive left, in execve task is single
722 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
723 * mm->exe_file, but does so without using set_mm_exe_file() in order
724 * to do avoid the need for any locks.
725 */
726 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
727 {
728 struct file *old_exe_file;
729
730 /*
731 * It is safe to dereference the exe_file without RCU as
732 * this function is only called if nobody else can access
733 * this mm -- see comment above for justification.
734 */
735 old_exe_file = rcu_dereference_raw(mm->exe_file);
736
737 if (new_exe_file)
738 get_file(new_exe_file);
739 rcu_assign_pointer(mm->exe_file, new_exe_file);
740 if (old_exe_file)
741 fput(old_exe_file);
742 }
743
744 /**
745 * get_mm_exe_file - acquire a reference to the mm's executable file
746 *
747 * Returns %NULL if mm has no associated executable file.
748 * User must release file via fput().
749 */
750 struct file *get_mm_exe_file(struct mm_struct *mm)
751 {
752 struct file *exe_file;
753
754 rcu_read_lock();
755 exe_file = rcu_dereference(mm->exe_file);
756 if (exe_file && !get_file_rcu(exe_file))
757 exe_file = NULL;
758 rcu_read_unlock();
759 return exe_file;
760 }
761 EXPORT_SYMBOL(get_mm_exe_file);
762
763 /**
764 * get_task_mm - acquire a reference to the task's mm
765 *
766 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
767 * this kernel workthread has transiently adopted a user mm with use_mm,
768 * to do its AIO) is not set and if so returns a reference to it, after
769 * bumping up the use count. User must release the mm via mmput()
770 * after use. Typically used by /proc and ptrace.
771 */
772 struct mm_struct *get_task_mm(struct task_struct *task)
773 {
774 struct mm_struct *mm;
775
776 task_lock(task);
777 mm = task->mm;
778 if (mm) {
779 if (task->flags & PF_KTHREAD)
780 mm = NULL;
781 else
782 atomic_inc(&mm->mm_users);
783 }
784 task_unlock(task);
785 return mm;
786 }
787 EXPORT_SYMBOL_GPL(get_task_mm);
788
789 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
790 {
791 struct mm_struct *mm;
792 int err;
793
794 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
795 if (err)
796 return ERR_PTR(err);
797
798 mm = get_task_mm(task);
799 if (mm && mm != current->mm &&
800 !ptrace_may_access(task, mode)) {
801 mmput(mm);
802 mm = ERR_PTR(-EACCES);
803 }
804 mutex_unlock(&task->signal->cred_guard_mutex);
805
806 return mm;
807 }
808
809 static void complete_vfork_done(struct task_struct *tsk)
810 {
811 struct completion *vfork;
812
813 task_lock(tsk);
814 vfork = tsk->vfork_done;
815 if (likely(vfork)) {
816 tsk->vfork_done = NULL;
817 complete(vfork);
818 }
819 task_unlock(tsk);
820 }
821
822 static int wait_for_vfork_done(struct task_struct *child,
823 struct completion *vfork)
824 {
825 int killed;
826
827 freezer_do_not_count();
828 killed = wait_for_completion_killable(vfork);
829 freezer_count();
830
831 if (killed) {
832 task_lock(child);
833 child->vfork_done = NULL;
834 task_unlock(child);
835 }
836
837 put_task_struct(child);
838 return killed;
839 }
840
841 /* Please note the differences between mmput and mm_release.
842 * mmput is called whenever we stop holding onto a mm_struct,
843 * error success whatever.
844 *
845 * mm_release is called after a mm_struct has been removed
846 * from the current process.
847 *
848 * This difference is important for error handling, when we
849 * only half set up a mm_struct for a new process and need to restore
850 * the old one. Because we mmput the new mm_struct before
851 * restoring the old one. . .
852 * Eric Biederman 10 January 1998
853 */
854 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
855 {
856 /* Get rid of any futexes when releasing the mm */
857 #ifdef CONFIG_FUTEX
858 if (unlikely(tsk->robust_list)) {
859 exit_robust_list(tsk);
860 tsk->robust_list = NULL;
861 }
862 #ifdef CONFIG_COMPAT
863 if (unlikely(tsk->compat_robust_list)) {
864 compat_exit_robust_list(tsk);
865 tsk->compat_robust_list = NULL;
866 }
867 #endif
868 if (unlikely(!list_empty(&tsk->pi_state_list)))
869 exit_pi_state_list(tsk);
870 #endif
871
872 uprobe_free_utask(tsk);
873
874 /* Get rid of any cached register state */
875 deactivate_mm(tsk, mm);
876
877 /*
878 * If we're exiting normally, clear a user-space tid field if
879 * requested. We leave this alone when dying by signal, to leave
880 * the value intact in a core dump, and to save the unnecessary
881 * trouble, say, a killed vfork parent shouldn't touch this mm.
882 * Userland only wants this done for a sys_exit.
883 */
884 if (tsk->clear_child_tid) {
885 if (!(tsk->flags & PF_SIGNALED) &&
886 atomic_read(&mm->mm_users) > 1) {
887 /*
888 * We don't check the error code - if userspace has
889 * not set up a proper pointer then tough luck.
890 */
891 put_user(0, tsk->clear_child_tid);
892 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
893 1, NULL, NULL, 0);
894 }
895 tsk->clear_child_tid = NULL;
896 }
897
898 /*
899 * All done, finally we can wake up parent and return this mm to him.
900 * Also kthread_stop() uses this completion for synchronization.
901 */
902 if (tsk->vfork_done)
903 complete_vfork_done(tsk);
904 }
905
906 /*
907 * Allocate a new mm structure and copy contents from the
908 * mm structure of the passed in task structure.
909 */
910 static struct mm_struct *dup_mm(struct task_struct *tsk)
911 {
912 struct mm_struct *mm, *oldmm = current->mm;
913 int err;
914
915 mm = allocate_mm();
916 if (!mm)
917 goto fail_nomem;
918
919 memcpy(mm, oldmm, sizeof(*mm));
920
921 if (!mm_init(mm, tsk))
922 goto fail_nomem;
923
924 err = dup_mmap(mm, oldmm);
925 if (err)
926 goto free_pt;
927
928 mm->hiwater_rss = get_mm_rss(mm);
929 mm->hiwater_vm = mm->total_vm;
930
931 if (mm->binfmt && !try_module_get(mm->binfmt->module))
932 goto free_pt;
933
934 return mm;
935
936 free_pt:
937 /* don't put binfmt in mmput, we haven't got module yet */
938 mm->binfmt = NULL;
939 mmput(mm);
940
941 fail_nomem:
942 return NULL;
943 }
944
945 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 struct mm_struct *mm, *oldmm;
948 int retval;
949
950 tsk->min_flt = tsk->maj_flt = 0;
951 tsk->nvcsw = tsk->nivcsw = 0;
952 #ifdef CONFIG_DETECT_HUNG_TASK
953 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
954 #endif
955
956 tsk->mm = NULL;
957 tsk->active_mm = NULL;
958
959 /*
960 * Are we cloning a kernel thread?
961 *
962 * We need to steal a active VM for that..
963 */
964 oldmm = current->mm;
965 if (!oldmm)
966 return 0;
967
968 /* initialize the new vmacache entries */
969 vmacache_flush(tsk);
970
971 if (clone_flags & CLONE_VM) {
972 atomic_inc(&oldmm->mm_users);
973 mm = oldmm;
974 goto good_mm;
975 }
976
977 retval = -ENOMEM;
978 mm = dup_mm(tsk);
979 if (!mm)
980 goto fail_nomem;
981
982 good_mm:
983 tsk->mm = mm;
984 tsk->active_mm = mm;
985 return 0;
986
987 fail_nomem:
988 return retval;
989 }
990
991 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
992 {
993 struct fs_struct *fs = current->fs;
994 if (clone_flags & CLONE_FS) {
995 /* tsk->fs is already what we want */
996 spin_lock(&fs->lock);
997 if (fs->in_exec) {
998 spin_unlock(&fs->lock);
999 return -EAGAIN;
1000 }
1001 fs->users++;
1002 spin_unlock(&fs->lock);
1003 return 0;
1004 }
1005 tsk->fs = copy_fs_struct(fs);
1006 if (!tsk->fs)
1007 return -ENOMEM;
1008 return 0;
1009 }
1010
1011 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013 struct files_struct *oldf, *newf;
1014 int error = 0;
1015
1016 /*
1017 * A background process may not have any files ...
1018 */
1019 oldf = current->files;
1020 if (!oldf)
1021 goto out;
1022
1023 if (clone_flags & CLONE_FILES) {
1024 atomic_inc(&oldf->count);
1025 goto out;
1026 }
1027
1028 newf = dup_fd(oldf, &error);
1029 if (!newf)
1030 goto out;
1031
1032 tsk->files = newf;
1033 error = 0;
1034 out:
1035 return error;
1036 }
1037
1038 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039 {
1040 #ifdef CONFIG_BLOCK
1041 struct io_context *ioc = current->io_context;
1042 struct io_context *new_ioc;
1043
1044 if (!ioc)
1045 return 0;
1046 /*
1047 * Share io context with parent, if CLONE_IO is set
1048 */
1049 if (clone_flags & CLONE_IO) {
1050 ioc_task_link(ioc);
1051 tsk->io_context = ioc;
1052 } else if (ioprio_valid(ioc->ioprio)) {
1053 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1054 if (unlikely(!new_ioc))
1055 return -ENOMEM;
1056
1057 new_ioc->ioprio = ioc->ioprio;
1058 put_io_context(new_ioc);
1059 }
1060 #endif
1061 return 0;
1062 }
1063
1064 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065 {
1066 struct sighand_struct *sig;
1067
1068 if (clone_flags & CLONE_SIGHAND) {
1069 atomic_inc(&current->sighand->count);
1070 return 0;
1071 }
1072 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1073 rcu_assign_pointer(tsk->sighand, sig);
1074 if (!sig)
1075 return -ENOMEM;
1076
1077 atomic_set(&sig->count, 1);
1078 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1079 return 0;
1080 }
1081
1082 void __cleanup_sighand(struct sighand_struct *sighand)
1083 {
1084 if (atomic_dec_and_test(&sighand->count)) {
1085 signalfd_cleanup(sighand);
1086 /*
1087 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1088 * without an RCU grace period, see __lock_task_sighand().
1089 */
1090 kmem_cache_free(sighand_cachep, sighand);
1091 }
1092 }
1093
1094 /*
1095 * Initialize POSIX timer handling for a thread group.
1096 */
1097 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1098 {
1099 unsigned long cpu_limit;
1100
1101 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1102 if (cpu_limit != RLIM_INFINITY) {
1103 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1104 sig->cputimer.running = true;
1105 }
1106
1107 /* The timer lists. */
1108 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1109 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1110 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1111 }
1112
1113 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1114 {
1115 struct signal_struct *sig;
1116
1117 if (clone_flags & CLONE_THREAD)
1118 return 0;
1119
1120 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1121 tsk->signal = sig;
1122 if (!sig)
1123 return -ENOMEM;
1124
1125 sig->nr_threads = 1;
1126 atomic_set(&sig->live, 1);
1127 atomic_set(&sig->sigcnt, 1);
1128
1129 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1130 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1131 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1132
1133 init_waitqueue_head(&sig->wait_chldexit);
1134 sig->curr_target = tsk;
1135 init_sigpending(&sig->shared_pending);
1136 INIT_LIST_HEAD(&sig->posix_timers);
1137 seqlock_init(&sig->stats_lock);
1138 prev_cputime_init(&sig->prev_cputime);
1139
1140 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 sig->real_timer.function = it_real_fn;
1142
1143 task_lock(current->group_leader);
1144 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1145 task_unlock(current->group_leader);
1146
1147 posix_cpu_timers_init_group(sig);
1148
1149 tty_audit_fork(sig);
1150 sched_autogroup_fork(sig);
1151
1152 #ifdef CONFIG_CGROUPS
1153 init_rwsem(&sig->group_rwsem);
1154 #endif
1155
1156 sig->oom_score_adj = current->signal->oom_score_adj;
1157 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1158
1159 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1160 current->signal->is_child_subreaper;
1161
1162 mutex_init(&sig->cred_guard_mutex);
1163
1164 return 0;
1165 }
1166
1167 static void copy_seccomp(struct task_struct *p)
1168 {
1169 #ifdef CONFIG_SECCOMP
1170 /*
1171 * Must be called with sighand->lock held, which is common to
1172 * all threads in the group. Holding cred_guard_mutex is not
1173 * needed because this new task is not yet running and cannot
1174 * be racing exec.
1175 */
1176 assert_spin_locked(&current->sighand->siglock);
1177
1178 /* Ref-count the new filter user, and assign it. */
1179 get_seccomp_filter(current);
1180 p->seccomp = current->seccomp;
1181
1182 /*
1183 * Explicitly enable no_new_privs here in case it got set
1184 * between the task_struct being duplicated and holding the
1185 * sighand lock. The seccomp state and nnp must be in sync.
1186 */
1187 if (task_no_new_privs(current))
1188 task_set_no_new_privs(p);
1189
1190 /*
1191 * If the parent gained a seccomp mode after copying thread
1192 * flags and between before we held the sighand lock, we have
1193 * to manually enable the seccomp thread flag here.
1194 */
1195 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1196 set_tsk_thread_flag(p, TIF_SECCOMP);
1197 #endif
1198 }
1199
1200 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1201 {
1202 current->clear_child_tid = tidptr;
1203
1204 return task_pid_vnr(current);
1205 }
1206
1207 static void rt_mutex_init_task(struct task_struct *p)
1208 {
1209 raw_spin_lock_init(&p->pi_lock);
1210 #ifdef CONFIG_RT_MUTEXES
1211 p->pi_waiters = RB_ROOT;
1212 p->pi_waiters_leftmost = NULL;
1213 p->pi_blocked_on = NULL;
1214 #endif
1215 }
1216
1217 /*
1218 * Initialize POSIX timer handling for a single task.
1219 */
1220 static void posix_cpu_timers_init(struct task_struct *tsk)
1221 {
1222 tsk->cputime_expires.prof_exp = 0;
1223 tsk->cputime_expires.virt_exp = 0;
1224 tsk->cputime_expires.sched_exp = 0;
1225 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1226 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1227 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1228 }
1229
1230 static inline void
1231 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1232 {
1233 task->pids[type].pid = pid;
1234 }
1235
1236 /*
1237 * This creates a new process as a copy of the old one,
1238 * but does not actually start it yet.
1239 *
1240 * It copies the registers, and all the appropriate
1241 * parts of the process environment (as per the clone
1242 * flags). The actual kick-off is left to the caller.
1243 */
1244 static struct task_struct *copy_process(unsigned long clone_flags,
1245 unsigned long stack_start,
1246 unsigned long stack_size,
1247 int __user *child_tidptr,
1248 struct pid *pid,
1249 int trace,
1250 unsigned long tls)
1251 {
1252 int retval;
1253 struct task_struct *p;
1254 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1255
1256 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1257 return ERR_PTR(-EINVAL);
1258
1259 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1260 return ERR_PTR(-EINVAL);
1261
1262 /*
1263 * Thread groups must share signals as well, and detached threads
1264 * can only be started up within the thread group.
1265 */
1266 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1267 return ERR_PTR(-EINVAL);
1268
1269 /*
1270 * Shared signal handlers imply shared VM. By way of the above,
1271 * thread groups also imply shared VM. Blocking this case allows
1272 * for various simplifications in other code.
1273 */
1274 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1275 return ERR_PTR(-EINVAL);
1276
1277 /*
1278 * Siblings of global init remain as zombies on exit since they are
1279 * not reaped by their parent (swapper). To solve this and to avoid
1280 * multi-rooted process trees, prevent global and container-inits
1281 * from creating siblings.
1282 */
1283 if ((clone_flags & CLONE_PARENT) &&
1284 current->signal->flags & SIGNAL_UNKILLABLE)
1285 return ERR_PTR(-EINVAL);
1286
1287 /*
1288 * If the new process will be in a different pid or user namespace
1289 * do not allow it to share a thread group with the forking task.
1290 */
1291 if (clone_flags & CLONE_THREAD) {
1292 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1293 (task_active_pid_ns(current) !=
1294 current->nsproxy->pid_ns_for_children))
1295 return ERR_PTR(-EINVAL);
1296 }
1297
1298 retval = security_task_create(clone_flags);
1299 if (retval)
1300 goto fork_out;
1301
1302 retval = -ENOMEM;
1303 p = dup_task_struct(current);
1304 if (!p)
1305 goto fork_out;
1306
1307 ftrace_graph_init_task(p);
1308
1309 rt_mutex_init_task(p);
1310
1311 #ifdef CONFIG_PROVE_LOCKING
1312 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1313 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1314 #endif
1315 retval = -EAGAIN;
1316 if (atomic_read(&p->real_cred->user->processes) >=
1317 task_rlimit(p, RLIMIT_NPROC)) {
1318 if (p->real_cred->user != INIT_USER &&
1319 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1320 goto bad_fork_free;
1321 }
1322 current->flags &= ~PF_NPROC_EXCEEDED;
1323
1324 retval = copy_creds(p, clone_flags);
1325 if (retval < 0)
1326 goto bad_fork_free;
1327
1328 /*
1329 * If multiple threads are within copy_process(), then this check
1330 * triggers too late. This doesn't hurt, the check is only there
1331 * to stop root fork bombs.
1332 */
1333 retval = -EAGAIN;
1334 if (nr_threads >= max_threads)
1335 goto bad_fork_cleanup_count;
1336
1337 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1338 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1339 p->flags |= PF_FORKNOEXEC;
1340 INIT_LIST_HEAD(&p->children);
1341 INIT_LIST_HEAD(&p->sibling);
1342 rcu_copy_process(p);
1343 p->vfork_done = NULL;
1344 spin_lock_init(&p->alloc_lock);
1345
1346 init_sigpending(&p->pending);
1347
1348 p->utime = p->stime = p->gtime = 0;
1349 p->utimescaled = p->stimescaled = 0;
1350 prev_cputime_init(&p->prev_cputime);
1351
1352 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1353 seqlock_init(&p->vtime_seqlock);
1354 p->vtime_snap = 0;
1355 p->vtime_snap_whence = VTIME_SLEEPING;
1356 #endif
1357
1358 #if defined(SPLIT_RSS_COUNTING)
1359 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1360 #endif
1361
1362 p->default_timer_slack_ns = current->timer_slack_ns;
1363
1364 task_io_accounting_init(&p->ioac);
1365 acct_clear_integrals(p);
1366
1367 posix_cpu_timers_init(p);
1368
1369 p->start_time = ktime_get_ns();
1370 p->real_start_time = ktime_get_boot_ns();
1371 p->io_context = NULL;
1372 p->audit_context = NULL;
1373 if (clone_flags & CLONE_THREAD)
1374 threadgroup_change_begin(current);
1375 cgroup_fork(p);
1376 #ifdef CONFIG_NUMA
1377 p->mempolicy = mpol_dup(p->mempolicy);
1378 if (IS_ERR(p->mempolicy)) {
1379 retval = PTR_ERR(p->mempolicy);
1380 p->mempolicy = NULL;
1381 goto bad_fork_cleanup_threadgroup_lock;
1382 }
1383 #endif
1384 #ifdef CONFIG_CPUSETS
1385 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1386 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1387 seqcount_init(&p->mems_allowed_seq);
1388 #endif
1389 #ifdef CONFIG_TRACE_IRQFLAGS
1390 p->irq_events = 0;
1391 p->hardirqs_enabled = 0;
1392 p->hardirq_enable_ip = 0;
1393 p->hardirq_enable_event = 0;
1394 p->hardirq_disable_ip = _THIS_IP_;
1395 p->hardirq_disable_event = 0;
1396 p->softirqs_enabled = 1;
1397 p->softirq_enable_ip = _THIS_IP_;
1398 p->softirq_enable_event = 0;
1399 p->softirq_disable_ip = 0;
1400 p->softirq_disable_event = 0;
1401 p->hardirq_context = 0;
1402 p->softirq_context = 0;
1403 #endif
1404
1405 p->pagefault_disabled = 0;
1406
1407 #ifdef CONFIG_LOCKDEP
1408 p->lockdep_depth = 0; /* no locks held yet */
1409 p->curr_chain_key = 0;
1410 p->lockdep_recursion = 0;
1411 #endif
1412
1413 #ifdef CONFIG_DEBUG_MUTEXES
1414 p->blocked_on = NULL; /* not blocked yet */
1415 #endif
1416 #ifdef CONFIG_BCACHE
1417 p->sequential_io = 0;
1418 p->sequential_io_avg = 0;
1419 #endif
1420
1421 /* Perform scheduler related setup. Assign this task to a CPU. */
1422 retval = sched_fork(clone_flags, p);
1423 if (retval)
1424 goto bad_fork_cleanup_policy;
1425
1426 retval = perf_event_init_task(p);
1427 if (retval)
1428 goto bad_fork_cleanup_policy;
1429 retval = audit_alloc(p);
1430 if (retval)
1431 goto bad_fork_cleanup_perf;
1432 /* copy all the process information */
1433 shm_init_task(p);
1434 retval = copy_semundo(clone_flags, p);
1435 if (retval)
1436 goto bad_fork_cleanup_audit;
1437 retval = copy_files(clone_flags, p);
1438 if (retval)
1439 goto bad_fork_cleanup_semundo;
1440 retval = copy_fs(clone_flags, p);
1441 if (retval)
1442 goto bad_fork_cleanup_files;
1443 retval = copy_sighand(clone_flags, p);
1444 if (retval)
1445 goto bad_fork_cleanup_fs;
1446 retval = copy_signal(clone_flags, p);
1447 if (retval)
1448 goto bad_fork_cleanup_sighand;
1449 retval = copy_mm(clone_flags, p);
1450 if (retval)
1451 goto bad_fork_cleanup_signal;
1452 retval = copy_namespaces(clone_flags, p);
1453 if (retval)
1454 goto bad_fork_cleanup_mm;
1455 retval = copy_io(clone_flags, p);
1456 if (retval)
1457 goto bad_fork_cleanup_namespaces;
1458 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1459 if (retval)
1460 goto bad_fork_cleanup_io;
1461
1462 if (pid != &init_struct_pid) {
1463 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1464 if (IS_ERR(pid)) {
1465 retval = PTR_ERR(pid);
1466 goto bad_fork_cleanup_io;
1467 }
1468 }
1469
1470 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1471 /*
1472 * Clear TID on mm_release()?
1473 */
1474 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1475 #ifdef CONFIG_BLOCK
1476 p->plug = NULL;
1477 #endif
1478 #ifdef CONFIG_FUTEX
1479 p->robust_list = NULL;
1480 #ifdef CONFIG_COMPAT
1481 p->compat_robust_list = NULL;
1482 #endif
1483 INIT_LIST_HEAD(&p->pi_state_list);
1484 p->pi_state_cache = NULL;
1485 #endif
1486 /*
1487 * sigaltstack should be cleared when sharing the same VM
1488 */
1489 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1490 p->sas_ss_sp = p->sas_ss_size = 0;
1491
1492 /*
1493 * Syscall tracing and stepping should be turned off in the
1494 * child regardless of CLONE_PTRACE.
1495 */
1496 user_disable_single_step(p);
1497 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1498 #ifdef TIF_SYSCALL_EMU
1499 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1500 #endif
1501 clear_all_latency_tracing(p);
1502
1503 /* ok, now we should be set up.. */
1504 p->pid = pid_nr(pid);
1505 if (clone_flags & CLONE_THREAD) {
1506 p->exit_signal = -1;
1507 p->group_leader = current->group_leader;
1508 p->tgid = current->tgid;
1509 } else {
1510 if (clone_flags & CLONE_PARENT)
1511 p->exit_signal = current->group_leader->exit_signal;
1512 else
1513 p->exit_signal = (clone_flags & CSIGNAL);
1514 p->group_leader = p;
1515 p->tgid = p->pid;
1516 }
1517
1518 p->nr_dirtied = 0;
1519 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1520 p->dirty_paused_when = 0;
1521
1522 p->pdeath_signal = 0;
1523 INIT_LIST_HEAD(&p->thread_group);
1524 p->task_works = NULL;
1525
1526 /*
1527 * Ensure that the cgroup subsystem policies allow the new process to be
1528 * forked. It should be noted the the new process's css_set can be changed
1529 * between here and cgroup_post_fork() if an organisation operation is in
1530 * progress.
1531 */
1532 retval = cgroup_can_fork(p, cgrp_ss_priv);
1533 if (retval)
1534 goto bad_fork_free_pid;
1535
1536 /*
1537 * Make it visible to the rest of the system, but dont wake it up yet.
1538 * Need tasklist lock for parent etc handling!
1539 */
1540 write_lock_irq(&tasklist_lock);
1541
1542 /* CLONE_PARENT re-uses the old parent */
1543 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1544 p->real_parent = current->real_parent;
1545 p->parent_exec_id = current->parent_exec_id;
1546 } else {
1547 p->real_parent = current;
1548 p->parent_exec_id = current->self_exec_id;
1549 }
1550
1551 spin_lock(&current->sighand->siglock);
1552
1553 /*
1554 * Copy seccomp details explicitly here, in case they were changed
1555 * before holding sighand lock.
1556 */
1557 copy_seccomp(p);
1558
1559 /*
1560 * Process group and session signals need to be delivered to just the
1561 * parent before the fork or both the parent and the child after the
1562 * fork. Restart if a signal comes in before we add the new process to
1563 * it's process group.
1564 * A fatal signal pending means that current will exit, so the new
1565 * thread can't slip out of an OOM kill (or normal SIGKILL).
1566 */
1567 recalc_sigpending();
1568 if (signal_pending(current)) {
1569 spin_unlock(&current->sighand->siglock);
1570 write_unlock_irq(&tasklist_lock);
1571 retval = -ERESTARTNOINTR;
1572 goto bad_fork_cancel_cgroup;
1573 }
1574
1575 if (likely(p->pid)) {
1576 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1577
1578 init_task_pid(p, PIDTYPE_PID, pid);
1579 if (thread_group_leader(p)) {
1580 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1581 init_task_pid(p, PIDTYPE_SID, task_session(current));
1582
1583 if (is_child_reaper(pid)) {
1584 ns_of_pid(pid)->child_reaper = p;
1585 p->signal->flags |= SIGNAL_UNKILLABLE;
1586 }
1587
1588 p->signal->leader_pid = pid;
1589 p->signal->tty = tty_kref_get(current->signal->tty);
1590 list_add_tail(&p->sibling, &p->real_parent->children);
1591 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1592 attach_pid(p, PIDTYPE_PGID);
1593 attach_pid(p, PIDTYPE_SID);
1594 __this_cpu_inc(process_counts);
1595 } else {
1596 current->signal->nr_threads++;
1597 atomic_inc(&current->signal->live);
1598 atomic_inc(&current->signal->sigcnt);
1599 list_add_tail_rcu(&p->thread_group,
1600 &p->group_leader->thread_group);
1601 list_add_tail_rcu(&p->thread_node,
1602 &p->signal->thread_head);
1603 }
1604 attach_pid(p, PIDTYPE_PID);
1605 nr_threads++;
1606 }
1607
1608 total_forks++;
1609 spin_unlock(&current->sighand->siglock);
1610 syscall_tracepoint_update(p);
1611 write_unlock_irq(&tasklist_lock);
1612
1613 proc_fork_connector(p);
1614 cgroup_post_fork(p, cgrp_ss_priv);
1615 if (clone_flags & CLONE_THREAD)
1616 threadgroup_change_end(current);
1617 perf_event_fork(p);
1618
1619 trace_task_newtask(p, clone_flags);
1620 uprobe_copy_process(p, clone_flags);
1621
1622 return p;
1623
1624 bad_fork_cancel_cgroup:
1625 cgroup_cancel_fork(p, cgrp_ss_priv);
1626 bad_fork_free_pid:
1627 if (pid != &init_struct_pid)
1628 free_pid(pid);
1629 bad_fork_cleanup_io:
1630 if (p->io_context)
1631 exit_io_context(p);
1632 bad_fork_cleanup_namespaces:
1633 exit_task_namespaces(p);
1634 bad_fork_cleanup_mm:
1635 if (p->mm)
1636 mmput(p->mm);
1637 bad_fork_cleanup_signal:
1638 if (!(clone_flags & CLONE_THREAD))
1639 free_signal_struct(p->signal);
1640 bad_fork_cleanup_sighand:
1641 __cleanup_sighand(p->sighand);
1642 bad_fork_cleanup_fs:
1643 exit_fs(p); /* blocking */
1644 bad_fork_cleanup_files:
1645 exit_files(p); /* blocking */
1646 bad_fork_cleanup_semundo:
1647 exit_sem(p);
1648 bad_fork_cleanup_audit:
1649 audit_free(p);
1650 bad_fork_cleanup_perf:
1651 perf_event_free_task(p);
1652 bad_fork_cleanup_policy:
1653 #ifdef CONFIG_NUMA
1654 mpol_put(p->mempolicy);
1655 bad_fork_cleanup_threadgroup_lock:
1656 #endif
1657 if (clone_flags & CLONE_THREAD)
1658 threadgroup_change_end(current);
1659 delayacct_tsk_free(p);
1660 bad_fork_cleanup_count:
1661 atomic_dec(&p->cred->user->processes);
1662 exit_creds(p);
1663 bad_fork_free:
1664 free_task(p);
1665 fork_out:
1666 return ERR_PTR(retval);
1667 }
1668
1669 static inline void init_idle_pids(struct pid_link *links)
1670 {
1671 enum pid_type type;
1672
1673 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1674 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1675 links[type].pid = &init_struct_pid;
1676 }
1677 }
1678
1679 struct task_struct *fork_idle(int cpu)
1680 {
1681 struct task_struct *task;
1682 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1683 if (!IS_ERR(task)) {
1684 init_idle_pids(task->pids);
1685 init_idle(task, cpu);
1686 }
1687
1688 return task;
1689 }
1690
1691 /*
1692 * Ok, this is the main fork-routine.
1693 *
1694 * It copies the process, and if successful kick-starts
1695 * it and waits for it to finish using the VM if required.
1696 */
1697 long _do_fork(unsigned long clone_flags,
1698 unsigned long stack_start,
1699 unsigned long stack_size,
1700 int __user *parent_tidptr,
1701 int __user *child_tidptr,
1702 unsigned long tls)
1703 {
1704 struct task_struct *p;
1705 int trace = 0;
1706 long nr;
1707
1708 /*
1709 * Determine whether and which event to report to ptracer. When
1710 * called from kernel_thread or CLONE_UNTRACED is explicitly
1711 * requested, no event is reported; otherwise, report if the event
1712 * for the type of forking is enabled.
1713 */
1714 if (!(clone_flags & CLONE_UNTRACED)) {
1715 if (clone_flags & CLONE_VFORK)
1716 trace = PTRACE_EVENT_VFORK;
1717 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1718 trace = PTRACE_EVENT_CLONE;
1719 else
1720 trace = PTRACE_EVENT_FORK;
1721
1722 if (likely(!ptrace_event_enabled(current, trace)))
1723 trace = 0;
1724 }
1725
1726 p = copy_process(clone_flags, stack_start, stack_size,
1727 child_tidptr, NULL, trace, tls);
1728 /*
1729 * Do this prior waking up the new thread - the thread pointer
1730 * might get invalid after that point, if the thread exits quickly.
1731 */
1732 if (!IS_ERR(p)) {
1733 struct completion vfork;
1734 struct pid *pid;
1735
1736 trace_sched_process_fork(current, p);
1737
1738 pid = get_task_pid(p, PIDTYPE_PID);
1739 nr = pid_vnr(pid);
1740
1741 if (clone_flags & CLONE_PARENT_SETTID)
1742 put_user(nr, parent_tidptr);
1743
1744 if (clone_flags & CLONE_VFORK) {
1745 p->vfork_done = &vfork;
1746 init_completion(&vfork);
1747 get_task_struct(p);
1748 }
1749
1750 wake_up_new_task(p);
1751
1752 /* forking complete and child started to run, tell ptracer */
1753 if (unlikely(trace))
1754 ptrace_event_pid(trace, pid);
1755
1756 if (clone_flags & CLONE_VFORK) {
1757 if (!wait_for_vfork_done(p, &vfork))
1758 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1759 }
1760
1761 put_pid(pid);
1762 } else {
1763 nr = PTR_ERR(p);
1764 }
1765 return nr;
1766 }
1767
1768 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1769 /* For compatibility with architectures that call do_fork directly rather than
1770 * using the syscall entry points below. */
1771 long do_fork(unsigned long clone_flags,
1772 unsigned long stack_start,
1773 unsigned long stack_size,
1774 int __user *parent_tidptr,
1775 int __user *child_tidptr)
1776 {
1777 return _do_fork(clone_flags, stack_start, stack_size,
1778 parent_tidptr, child_tidptr, 0);
1779 }
1780 #endif
1781
1782 /*
1783 * Create a kernel thread.
1784 */
1785 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1786 {
1787 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1788 (unsigned long)arg, NULL, NULL, 0);
1789 }
1790
1791 #ifdef __ARCH_WANT_SYS_FORK
1792 SYSCALL_DEFINE0(fork)
1793 {
1794 #ifdef CONFIG_MMU
1795 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1796 #else
1797 /* can not support in nommu mode */
1798 return -EINVAL;
1799 #endif
1800 }
1801 #endif
1802
1803 #ifdef __ARCH_WANT_SYS_VFORK
1804 SYSCALL_DEFINE0(vfork)
1805 {
1806 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1807 0, NULL, NULL, 0);
1808 }
1809 #endif
1810
1811 #ifdef __ARCH_WANT_SYS_CLONE
1812 #ifdef CONFIG_CLONE_BACKWARDS
1813 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1814 int __user *, parent_tidptr,
1815 unsigned long, tls,
1816 int __user *, child_tidptr)
1817 #elif defined(CONFIG_CLONE_BACKWARDS2)
1818 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1819 int __user *, parent_tidptr,
1820 int __user *, child_tidptr,
1821 unsigned long, tls)
1822 #elif defined(CONFIG_CLONE_BACKWARDS3)
1823 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1824 int, stack_size,
1825 int __user *, parent_tidptr,
1826 int __user *, child_tidptr,
1827 unsigned long, tls)
1828 #else
1829 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1830 int __user *, parent_tidptr,
1831 int __user *, child_tidptr,
1832 unsigned long, tls)
1833 #endif
1834 {
1835 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1836 }
1837 #endif
1838
1839 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1840 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1841 #endif
1842
1843 static void sighand_ctor(void *data)
1844 {
1845 struct sighand_struct *sighand = data;
1846
1847 spin_lock_init(&sighand->siglock);
1848 init_waitqueue_head(&sighand->signalfd_wqh);
1849 }
1850
1851 void __init proc_caches_init(void)
1852 {
1853 sighand_cachep = kmem_cache_create("sighand_cache",
1854 sizeof(struct sighand_struct), 0,
1855 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1856 SLAB_NOTRACK, sighand_ctor);
1857 signal_cachep = kmem_cache_create("signal_cache",
1858 sizeof(struct signal_struct), 0,
1859 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860 files_cachep = kmem_cache_create("files_cache",
1861 sizeof(struct files_struct), 0,
1862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863 fs_cachep = kmem_cache_create("fs_cache",
1864 sizeof(struct fs_struct), 0,
1865 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1866 /*
1867 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1868 * whole struct cpumask for the OFFSTACK case. We could change
1869 * this to *only* allocate as much of it as required by the
1870 * maximum number of CPU's we can ever have. The cpumask_allocation
1871 * is at the end of the structure, exactly for that reason.
1872 */
1873 mm_cachep = kmem_cache_create("mm_struct",
1874 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1875 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1876 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1877 mmap_init();
1878 nsproxy_cache_init();
1879 }
1880
1881 /*
1882 * Check constraints on flags passed to the unshare system call.
1883 */
1884 static int check_unshare_flags(unsigned long unshare_flags)
1885 {
1886 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1887 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1888 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1889 CLONE_NEWUSER|CLONE_NEWPID))
1890 return -EINVAL;
1891 /*
1892 * Not implemented, but pretend it works if there is nothing
1893 * to unshare. Note that unsharing the address space or the
1894 * signal handlers also need to unshare the signal queues (aka
1895 * CLONE_THREAD).
1896 */
1897 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1898 if (!thread_group_empty(current))
1899 return -EINVAL;
1900 }
1901 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1902 if (atomic_read(&current->sighand->count) > 1)
1903 return -EINVAL;
1904 }
1905 if (unshare_flags & CLONE_VM) {
1906 if (!current_is_single_threaded())
1907 return -EINVAL;
1908 }
1909
1910 return 0;
1911 }
1912
1913 /*
1914 * Unshare the filesystem structure if it is being shared
1915 */
1916 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1917 {
1918 struct fs_struct *fs = current->fs;
1919
1920 if (!(unshare_flags & CLONE_FS) || !fs)
1921 return 0;
1922
1923 /* don't need lock here; in the worst case we'll do useless copy */
1924 if (fs->users == 1)
1925 return 0;
1926
1927 *new_fsp = copy_fs_struct(fs);
1928 if (!*new_fsp)
1929 return -ENOMEM;
1930
1931 return 0;
1932 }
1933
1934 /*
1935 * Unshare file descriptor table if it is being shared
1936 */
1937 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1938 {
1939 struct files_struct *fd = current->files;
1940 int error = 0;
1941
1942 if ((unshare_flags & CLONE_FILES) &&
1943 (fd && atomic_read(&fd->count) > 1)) {
1944 *new_fdp = dup_fd(fd, &error);
1945 if (!*new_fdp)
1946 return error;
1947 }
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * unshare allows a process to 'unshare' part of the process
1954 * context which was originally shared using clone. copy_*
1955 * functions used by do_fork() cannot be used here directly
1956 * because they modify an inactive task_struct that is being
1957 * constructed. Here we are modifying the current, active,
1958 * task_struct.
1959 */
1960 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1961 {
1962 struct fs_struct *fs, *new_fs = NULL;
1963 struct files_struct *fd, *new_fd = NULL;
1964 struct cred *new_cred = NULL;
1965 struct nsproxy *new_nsproxy = NULL;
1966 int do_sysvsem = 0;
1967 int err;
1968
1969 /*
1970 * If unsharing a user namespace must also unshare the thread group
1971 * and unshare the filesystem root and working directories.
1972 */
1973 if (unshare_flags & CLONE_NEWUSER)
1974 unshare_flags |= CLONE_THREAD | CLONE_FS;
1975 /*
1976 * If unsharing vm, must also unshare signal handlers.
1977 */
1978 if (unshare_flags & CLONE_VM)
1979 unshare_flags |= CLONE_SIGHAND;
1980 /*
1981 * If unsharing a signal handlers, must also unshare the signal queues.
1982 */
1983 if (unshare_flags & CLONE_SIGHAND)
1984 unshare_flags |= CLONE_THREAD;
1985 /*
1986 * If unsharing namespace, must also unshare filesystem information.
1987 */
1988 if (unshare_flags & CLONE_NEWNS)
1989 unshare_flags |= CLONE_FS;
1990
1991 err = check_unshare_flags(unshare_flags);
1992 if (err)
1993 goto bad_unshare_out;
1994 /*
1995 * CLONE_NEWIPC must also detach from the undolist: after switching
1996 * to a new ipc namespace, the semaphore arrays from the old
1997 * namespace are unreachable.
1998 */
1999 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2000 do_sysvsem = 1;
2001 err = unshare_fs(unshare_flags, &new_fs);
2002 if (err)
2003 goto bad_unshare_out;
2004 err = unshare_fd(unshare_flags, &new_fd);
2005 if (err)
2006 goto bad_unshare_cleanup_fs;
2007 err = unshare_userns(unshare_flags, &new_cred);
2008 if (err)
2009 goto bad_unshare_cleanup_fd;
2010 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2011 new_cred, new_fs);
2012 if (err)
2013 goto bad_unshare_cleanup_cred;
2014
2015 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2016 if (do_sysvsem) {
2017 /*
2018 * CLONE_SYSVSEM is equivalent to sys_exit().
2019 */
2020 exit_sem(current);
2021 }
2022 if (unshare_flags & CLONE_NEWIPC) {
2023 /* Orphan segments in old ns (see sem above). */
2024 exit_shm(current);
2025 shm_init_task(current);
2026 }
2027
2028 if (new_nsproxy)
2029 switch_task_namespaces(current, new_nsproxy);
2030
2031 task_lock(current);
2032
2033 if (new_fs) {
2034 fs = current->fs;
2035 spin_lock(&fs->lock);
2036 current->fs = new_fs;
2037 if (--fs->users)
2038 new_fs = NULL;
2039 else
2040 new_fs = fs;
2041 spin_unlock(&fs->lock);
2042 }
2043
2044 if (new_fd) {
2045 fd = current->files;
2046 current->files = new_fd;
2047 new_fd = fd;
2048 }
2049
2050 task_unlock(current);
2051
2052 if (new_cred) {
2053 /* Install the new user namespace */
2054 commit_creds(new_cred);
2055 new_cred = NULL;
2056 }
2057 }
2058
2059 bad_unshare_cleanup_cred:
2060 if (new_cred)
2061 put_cred(new_cred);
2062 bad_unshare_cleanup_fd:
2063 if (new_fd)
2064 put_files_struct(new_fd);
2065
2066 bad_unshare_cleanup_fs:
2067 if (new_fs)
2068 free_fs_struct(new_fs);
2069
2070 bad_unshare_out:
2071 return err;
2072 }
2073
2074 /*
2075 * Helper to unshare the files of the current task.
2076 * We don't want to expose copy_files internals to
2077 * the exec layer of the kernel.
2078 */
2079
2080 int unshare_files(struct files_struct **displaced)
2081 {
2082 struct task_struct *task = current;
2083 struct files_struct *copy = NULL;
2084 int error;
2085
2086 error = unshare_fd(CLONE_FILES, &copy);
2087 if (error || !copy) {
2088 *displaced = NULL;
2089 return error;
2090 }
2091 *displaced = task->files;
2092 task_lock(task);
2093 task->files = copy;
2094 task_unlock(task);
2095 return 0;
2096 }
2097
2098 int sysctl_max_threads(struct ctl_table *table, int write,
2099 void __user *buffer, size_t *lenp, loff_t *ppos)
2100 {
2101 struct ctl_table t;
2102 int ret;
2103 int threads = max_threads;
2104 int min = MIN_THREADS;
2105 int max = MAX_THREADS;
2106
2107 t = *table;
2108 t.data = &threads;
2109 t.extra1 = &min;
2110 t.extra2 = &max;
2111
2112 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2113 if (ret || !write)
2114 return ret;
2115
2116 set_max_threads(threads);
2117
2118 return 0;
2119 }
This page took 0.072619 seconds and 5 git commands to generate.