x86, hash: Swap arguments passed to crc32_u32()
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
359 /*
360 * Not linked in yet - no deadlock potential:
361 */
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->map_count = 0;
368 cpumask_clear(mm_cpumask(mm));
369 mm->mm_rb = RB_ROOT;
370 rb_link = &mm->mm_rb.rb_node;
371 rb_parent = NULL;
372 pprev = &mm->mmap;
373 retval = ksm_fork(mm, oldmm);
374 if (retval)
375 goto out;
376 retval = khugepaged_fork(mm, oldmm);
377 if (retval)
378 goto out;
379
380 prev = NULL;
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 struct file *file;
383
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 -vma_pages(mpnt));
387 continue;
388 }
389 charge = 0;
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
392
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 goto fail_nomem;
395 charge = len;
396 }
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 if (!tmp)
399 goto fail_nomem;
400 *tmp = *mpnt;
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 retval = vma_dup_policy(mpnt, tmp);
403 if (retval)
404 goto fail_nomem_policy;
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file_inode(file);
413 struct address_space *mapping = file->f_mapping;
414
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424 vma_nonlinear_insert(tmp,
425 &mapping->i_mmap_nonlinear);
426 else
427 vma_interval_tree_insert_after(tmp, mpnt,
428 &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 mutex_unlock(&mapping->i_mmap_mutex);
431 }
432
433 /*
434 * Clear hugetlb-related page reserves for children. This only
435 * affects MAP_PRIVATE mappings. Faults generated by the child
436 * are not guaranteed to succeed, even if read-only
437 */
438 if (is_vm_hugetlb_page(tmp))
439 reset_vma_resv_huge_pages(tmp);
440
441 /*
442 * Link in the new vma and copy the page table entries.
443 */
444 *pprev = tmp;
445 pprev = &tmp->vm_next;
446 tmp->vm_prev = prev;
447 prev = tmp;
448
449 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450 rb_link = &tmp->vm_rb.rb_right;
451 rb_parent = &tmp->vm_rb;
452
453 mm->map_count++;
454 retval = copy_page_range(mm, oldmm, mpnt);
455
456 if (tmp->vm_ops && tmp->vm_ops->open)
457 tmp->vm_ops->open(tmp);
458
459 if (retval)
460 goto out;
461 }
462 /* a new mm has just been created */
463 arch_dup_mmap(oldmm, mm);
464 retval = 0;
465 out:
466 up_write(&mm->mmap_sem);
467 flush_tlb_mm(oldmm);
468 up_write(&oldmm->mmap_sem);
469 uprobe_end_dup_mmap();
470 return retval;
471 fail_nomem_anon_vma_fork:
472 mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474 kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 retval = -ENOMEM;
477 vm_unacct_memory(charge);
478 goto out;
479 }
480
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483 mm->pgd = pgd_alloc(mm);
484 if (unlikely(!mm->pgd))
485 return -ENOMEM;
486 return 0;
487 }
488
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491 pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm) (0)
495 #define mm_alloc_pgd(mm) (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500
501 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
503
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505
506 static int __init coredump_filter_setup(char *s)
507 {
508 default_dump_filter =
509 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 MMF_DUMP_FILTER_MASK;
511 return 1;
512 }
513
514 __setup("coredump_filter=", coredump_filter_setup);
515
516 #include <linux/init_task.h>
517
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521 spin_lock_init(&mm->ioctx_lock);
522 mm->ioctx_table = NULL;
523 #endif
524 }
525
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528 atomic_set(&mm->mm_users, 1);
529 atomic_set(&mm->mm_count, 1);
530 init_rwsem(&mm->mmap_sem);
531 INIT_LIST_HEAD(&mm->mmlist);
532 mm->flags = (current->mm) ?
533 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 mm->core_state = NULL;
535 atomic_long_set(&mm->nr_ptes, 0);
536 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 spin_lock_init(&mm->page_table_lock);
538 mm_init_aio(mm);
539 mm_init_owner(mm, p);
540 clear_tlb_flush_pending(mm);
541
542 if (likely(!mm_alloc_pgd(mm))) {
543 mm->def_flags = 0;
544 mmu_notifier_mm_init(mm);
545 return mm;
546 }
547
548 free_mm(mm);
549 return NULL;
550 }
551
552 static void check_mm(struct mm_struct *mm)
553 {
554 int i;
555
556 for (i = 0; i < NR_MM_COUNTERS; i++) {
557 long x = atomic_long_read(&mm->rss_stat.count[i]);
558
559 if (unlikely(x))
560 printk(KERN_ALERT "BUG: Bad rss-counter state "
561 "mm:%p idx:%d val:%ld\n", mm, i, x);
562 }
563
564 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
565 VM_BUG_ON(mm->pmd_huge_pte);
566 #endif
567 }
568
569 /*
570 * Allocate and initialize an mm_struct.
571 */
572 struct mm_struct *mm_alloc(void)
573 {
574 struct mm_struct *mm;
575
576 mm = allocate_mm();
577 if (!mm)
578 return NULL;
579
580 memset(mm, 0, sizeof(*mm));
581 mm_init_cpumask(mm);
582 return mm_init(mm, current);
583 }
584
585 /*
586 * Called when the last reference to the mm
587 * is dropped: either by a lazy thread or by
588 * mmput. Free the page directory and the mm.
589 */
590 void __mmdrop(struct mm_struct *mm)
591 {
592 BUG_ON(mm == &init_mm);
593 mm_free_pgd(mm);
594 destroy_context(mm);
595 mmu_notifier_mm_destroy(mm);
596 check_mm(mm);
597 free_mm(mm);
598 }
599 EXPORT_SYMBOL_GPL(__mmdrop);
600
601 /*
602 * Decrement the use count and release all resources for an mm.
603 */
604 void mmput(struct mm_struct *mm)
605 {
606 might_sleep();
607
608 if (atomic_dec_and_test(&mm->mm_users)) {
609 uprobe_clear_state(mm);
610 exit_aio(mm);
611 ksm_exit(mm);
612 khugepaged_exit(mm); /* must run before exit_mmap */
613 exit_mmap(mm);
614 set_mm_exe_file(mm, NULL);
615 if (!list_empty(&mm->mmlist)) {
616 spin_lock(&mmlist_lock);
617 list_del(&mm->mmlist);
618 spin_unlock(&mmlist_lock);
619 }
620 if (mm->binfmt)
621 module_put(mm->binfmt->module);
622 mmdrop(mm);
623 }
624 }
625 EXPORT_SYMBOL_GPL(mmput);
626
627 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
628 {
629 if (new_exe_file)
630 get_file(new_exe_file);
631 if (mm->exe_file)
632 fput(mm->exe_file);
633 mm->exe_file = new_exe_file;
634 }
635
636 struct file *get_mm_exe_file(struct mm_struct *mm)
637 {
638 struct file *exe_file;
639
640 /* We need mmap_sem to protect against races with removal of exe_file */
641 down_read(&mm->mmap_sem);
642 exe_file = mm->exe_file;
643 if (exe_file)
644 get_file(exe_file);
645 up_read(&mm->mmap_sem);
646 return exe_file;
647 }
648
649 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
650 {
651 /* It's safe to write the exe_file pointer without exe_file_lock because
652 * this is called during fork when the task is not yet in /proc */
653 newmm->exe_file = get_mm_exe_file(oldmm);
654 }
655
656 /**
657 * get_task_mm - acquire a reference to the task's mm
658 *
659 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
660 * this kernel workthread has transiently adopted a user mm with use_mm,
661 * to do its AIO) is not set and if so returns a reference to it, after
662 * bumping up the use count. User must release the mm via mmput()
663 * after use. Typically used by /proc and ptrace.
664 */
665 struct mm_struct *get_task_mm(struct task_struct *task)
666 {
667 struct mm_struct *mm;
668
669 task_lock(task);
670 mm = task->mm;
671 if (mm) {
672 if (task->flags & PF_KTHREAD)
673 mm = NULL;
674 else
675 atomic_inc(&mm->mm_users);
676 }
677 task_unlock(task);
678 return mm;
679 }
680 EXPORT_SYMBOL_GPL(get_task_mm);
681
682 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
683 {
684 struct mm_struct *mm;
685 int err;
686
687 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
688 if (err)
689 return ERR_PTR(err);
690
691 mm = get_task_mm(task);
692 if (mm && mm != current->mm &&
693 !ptrace_may_access(task, mode)) {
694 mmput(mm);
695 mm = ERR_PTR(-EACCES);
696 }
697 mutex_unlock(&task->signal->cred_guard_mutex);
698
699 return mm;
700 }
701
702 static void complete_vfork_done(struct task_struct *tsk)
703 {
704 struct completion *vfork;
705
706 task_lock(tsk);
707 vfork = tsk->vfork_done;
708 if (likely(vfork)) {
709 tsk->vfork_done = NULL;
710 complete(vfork);
711 }
712 task_unlock(tsk);
713 }
714
715 static int wait_for_vfork_done(struct task_struct *child,
716 struct completion *vfork)
717 {
718 int killed;
719
720 freezer_do_not_count();
721 killed = wait_for_completion_killable(vfork);
722 freezer_count();
723
724 if (killed) {
725 task_lock(child);
726 child->vfork_done = NULL;
727 task_unlock(child);
728 }
729
730 put_task_struct(child);
731 return killed;
732 }
733
734 /* Please note the differences between mmput and mm_release.
735 * mmput is called whenever we stop holding onto a mm_struct,
736 * error success whatever.
737 *
738 * mm_release is called after a mm_struct has been removed
739 * from the current process.
740 *
741 * This difference is important for error handling, when we
742 * only half set up a mm_struct for a new process and need to restore
743 * the old one. Because we mmput the new mm_struct before
744 * restoring the old one. . .
745 * Eric Biederman 10 January 1998
746 */
747 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
748 {
749 /* Get rid of any futexes when releasing the mm */
750 #ifdef CONFIG_FUTEX
751 if (unlikely(tsk->robust_list)) {
752 exit_robust_list(tsk);
753 tsk->robust_list = NULL;
754 }
755 #ifdef CONFIG_COMPAT
756 if (unlikely(tsk->compat_robust_list)) {
757 compat_exit_robust_list(tsk);
758 tsk->compat_robust_list = NULL;
759 }
760 #endif
761 if (unlikely(!list_empty(&tsk->pi_state_list)))
762 exit_pi_state_list(tsk);
763 #endif
764
765 uprobe_free_utask(tsk);
766
767 /* Get rid of any cached register state */
768 deactivate_mm(tsk, mm);
769
770 /*
771 * If we're exiting normally, clear a user-space tid field if
772 * requested. We leave this alone when dying by signal, to leave
773 * the value intact in a core dump, and to save the unnecessary
774 * trouble, say, a killed vfork parent shouldn't touch this mm.
775 * Userland only wants this done for a sys_exit.
776 */
777 if (tsk->clear_child_tid) {
778 if (!(tsk->flags & PF_SIGNALED) &&
779 atomic_read(&mm->mm_users) > 1) {
780 /*
781 * We don't check the error code - if userspace has
782 * not set up a proper pointer then tough luck.
783 */
784 put_user(0, tsk->clear_child_tid);
785 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
786 1, NULL, NULL, 0);
787 }
788 tsk->clear_child_tid = NULL;
789 }
790
791 /*
792 * All done, finally we can wake up parent and return this mm to him.
793 * Also kthread_stop() uses this completion for synchronization.
794 */
795 if (tsk->vfork_done)
796 complete_vfork_done(tsk);
797 }
798
799 /*
800 * Allocate a new mm structure and copy contents from the
801 * mm structure of the passed in task structure.
802 */
803 static struct mm_struct *dup_mm(struct task_struct *tsk)
804 {
805 struct mm_struct *mm, *oldmm = current->mm;
806 int err;
807
808 mm = allocate_mm();
809 if (!mm)
810 goto fail_nomem;
811
812 memcpy(mm, oldmm, sizeof(*mm));
813 mm_init_cpumask(mm);
814
815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
816 mm->pmd_huge_pte = NULL;
817 #endif
818 if (!mm_init(mm, tsk))
819 goto fail_nomem;
820
821 if (init_new_context(tsk, mm))
822 goto fail_nocontext;
823
824 dup_mm_exe_file(oldmm, mm);
825
826 err = dup_mmap(mm, oldmm);
827 if (err)
828 goto free_pt;
829
830 mm->hiwater_rss = get_mm_rss(mm);
831 mm->hiwater_vm = mm->total_vm;
832
833 if (mm->binfmt && !try_module_get(mm->binfmt->module))
834 goto free_pt;
835
836 return mm;
837
838 free_pt:
839 /* don't put binfmt in mmput, we haven't got module yet */
840 mm->binfmt = NULL;
841 mmput(mm);
842
843 fail_nomem:
844 return NULL;
845
846 fail_nocontext:
847 /*
848 * If init_new_context() failed, we cannot use mmput() to free the mm
849 * because it calls destroy_context()
850 */
851 mm_free_pgd(mm);
852 free_mm(mm);
853 return NULL;
854 }
855
856 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
857 {
858 struct mm_struct *mm, *oldmm;
859 int retval;
860
861 tsk->min_flt = tsk->maj_flt = 0;
862 tsk->nvcsw = tsk->nivcsw = 0;
863 #ifdef CONFIG_DETECT_HUNG_TASK
864 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
865 #endif
866
867 tsk->mm = NULL;
868 tsk->active_mm = NULL;
869
870 /*
871 * Are we cloning a kernel thread?
872 *
873 * We need to steal a active VM for that..
874 */
875 oldmm = current->mm;
876 if (!oldmm)
877 return 0;
878
879 if (clone_flags & CLONE_VM) {
880 atomic_inc(&oldmm->mm_users);
881 mm = oldmm;
882 goto good_mm;
883 }
884
885 retval = -ENOMEM;
886 mm = dup_mm(tsk);
887 if (!mm)
888 goto fail_nomem;
889
890 good_mm:
891 tsk->mm = mm;
892 tsk->active_mm = mm;
893 return 0;
894
895 fail_nomem:
896 return retval;
897 }
898
899 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
900 {
901 struct fs_struct *fs = current->fs;
902 if (clone_flags & CLONE_FS) {
903 /* tsk->fs is already what we want */
904 spin_lock(&fs->lock);
905 if (fs->in_exec) {
906 spin_unlock(&fs->lock);
907 return -EAGAIN;
908 }
909 fs->users++;
910 spin_unlock(&fs->lock);
911 return 0;
912 }
913 tsk->fs = copy_fs_struct(fs);
914 if (!tsk->fs)
915 return -ENOMEM;
916 return 0;
917 }
918
919 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
920 {
921 struct files_struct *oldf, *newf;
922 int error = 0;
923
924 /*
925 * A background process may not have any files ...
926 */
927 oldf = current->files;
928 if (!oldf)
929 goto out;
930
931 if (clone_flags & CLONE_FILES) {
932 atomic_inc(&oldf->count);
933 goto out;
934 }
935
936 newf = dup_fd(oldf, &error);
937 if (!newf)
938 goto out;
939
940 tsk->files = newf;
941 error = 0;
942 out:
943 return error;
944 }
945
946 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
947 {
948 #ifdef CONFIG_BLOCK
949 struct io_context *ioc = current->io_context;
950 struct io_context *new_ioc;
951
952 if (!ioc)
953 return 0;
954 /*
955 * Share io context with parent, if CLONE_IO is set
956 */
957 if (clone_flags & CLONE_IO) {
958 ioc_task_link(ioc);
959 tsk->io_context = ioc;
960 } else if (ioprio_valid(ioc->ioprio)) {
961 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
962 if (unlikely(!new_ioc))
963 return -ENOMEM;
964
965 new_ioc->ioprio = ioc->ioprio;
966 put_io_context(new_ioc);
967 }
968 #endif
969 return 0;
970 }
971
972 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
973 {
974 struct sighand_struct *sig;
975
976 if (clone_flags & CLONE_SIGHAND) {
977 atomic_inc(&current->sighand->count);
978 return 0;
979 }
980 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
981 rcu_assign_pointer(tsk->sighand, sig);
982 if (!sig)
983 return -ENOMEM;
984 atomic_set(&sig->count, 1);
985 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
986 return 0;
987 }
988
989 void __cleanup_sighand(struct sighand_struct *sighand)
990 {
991 if (atomic_dec_and_test(&sighand->count)) {
992 signalfd_cleanup(sighand);
993 kmem_cache_free(sighand_cachep, sighand);
994 }
995 }
996
997
998 /*
999 * Initialize POSIX timer handling for a thread group.
1000 */
1001 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1002 {
1003 unsigned long cpu_limit;
1004
1005 /* Thread group counters. */
1006 thread_group_cputime_init(sig);
1007
1008 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1009 if (cpu_limit != RLIM_INFINITY) {
1010 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1011 sig->cputimer.running = 1;
1012 }
1013
1014 /* The timer lists. */
1015 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1016 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1017 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1018 }
1019
1020 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1021 {
1022 struct signal_struct *sig;
1023
1024 if (clone_flags & CLONE_THREAD)
1025 return 0;
1026
1027 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1028 tsk->signal = sig;
1029 if (!sig)
1030 return -ENOMEM;
1031
1032 sig->nr_threads = 1;
1033 atomic_set(&sig->live, 1);
1034 atomic_set(&sig->sigcnt, 1);
1035
1036 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1037 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1038 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1039
1040 init_waitqueue_head(&sig->wait_chldexit);
1041 sig->curr_target = tsk;
1042 init_sigpending(&sig->shared_pending);
1043 INIT_LIST_HEAD(&sig->posix_timers);
1044
1045 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1046 sig->real_timer.function = it_real_fn;
1047
1048 task_lock(current->group_leader);
1049 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1050 task_unlock(current->group_leader);
1051
1052 posix_cpu_timers_init_group(sig);
1053
1054 tty_audit_fork(sig);
1055 sched_autogroup_fork(sig);
1056
1057 #ifdef CONFIG_CGROUPS
1058 init_rwsem(&sig->group_rwsem);
1059 #endif
1060
1061 sig->oom_score_adj = current->signal->oom_score_adj;
1062 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1063
1064 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1065 current->signal->is_child_subreaper;
1066
1067 mutex_init(&sig->cred_guard_mutex);
1068
1069 return 0;
1070 }
1071
1072 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1073 {
1074 unsigned long new_flags = p->flags;
1075
1076 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1077 new_flags |= PF_FORKNOEXEC;
1078 p->flags = new_flags;
1079 }
1080
1081 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1082 {
1083 current->clear_child_tid = tidptr;
1084
1085 return task_pid_vnr(current);
1086 }
1087
1088 static void rt_mutex_init_task(struct task_struct *p)
1089 {
1090 raw_spin_lock_init(&p->pi_lock);
1091 #ifdef CONFIG_RT_MUTEXES
1092 p->pi_waiters = RB_ROOT;
1093 p->pi_waiters_leftmost = NULL;
1094 p->pi_blocked_on = NULL;
1095 p->pi_top_task = NULL;
1096 #endif
1097 }
1098
1099 #ifdef CONFIG_MM_OWNER
1100 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1101 {
1102 mm->owner = p;
1103 }
1104 #endif /* CONFIG_MM_OWNER */
1105
1106 /*
1107 * Initialize POSIX timer handling for a single task.
1108 */
1109 static void posix_cpu_timers_init(struct task_struct *tsk)
1110 {
1111 tsk->cputime_expires.prof_exp = 0;
1112 tsk->cputime_expires.virt_exp = 0;
1113 tsk->cputime_expires.sched_exp = 0;
1114 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1115 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1116 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1117 }
1118
1119 static inline void
1120 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1121 {
1122 task->pids[type].pid = pid;
1123 }
1124
1125 /*
1126 * This creates a new process as a copy of the old one,
1127 * but does not actually start it yet.
1128 *
1129 * It copies the registers, and all the appropriate
1130 * parts of the process environment (as per the clone
1131 * flags). The actual kick-off is left to the caller.
1132 */
1133 static struct task_struct *copy_process(unsigned long clone_flags,
1134 unsigned long stack_start,
1135 unsigned long stack_size,
1136 int __user *child_tidptr,
1137 struct pid *pid,
1138 int trace)
1139 {
1140 int retval;
1141 struct task_struct *p;
1142
1143 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1144 return ERR_PTR(-EINVAL);
1145
1146 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1147 return ERR_PTR(-EINVAL);
1148
1149 /*
1150 * Thread groups must share signals as well, and detached threads
1151 * can only be started up within the thread group.
1152 */
1153 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1154 return ERR_PTR(-EINVAL);
1155
1156 /*
1157 * Shared signal handlers imply shared VM. By way of the above,
1158 * thread groups also imply shared VM. Blocking this case allows
1159 * for various simplifications in other code.
1160 */
1161 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1162 return ERR_PTR(-EINVAL);
1163
1164 /*
1165 * Siblings of global init remain as zombies on exit since they are
1166 * not reaped by their parent (swapper). To solve this and to avoid
1167 * multi-rooted process trees, prevent global and container-inits
1168 * from creating siblings.
1169 */
1170 if ((clone_flags & CLONE_PARENT) &&
1171 current->signal->flags & SIGNAL_UNKILLABLE)
1172 return ERR_PTR(-EINVAL);
1173
1174 /*
1175 * If the new process will be in a different pid or user namespace
1176 * do not allow it to share a thread group or signal handlers or
1177 * parent with the forking task.
1178 */
1179 if (clone_flags & CLONE_SIGHAND) {
1180 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1181 (task_active_pid_ns(current) !=
1182 current->nsproxy->pid_ns_for_children))
1183 return ERR_PTR(-EINVAL);
1184 }
1185
1186 retval = security_task_create(clone_flags);
1187 if (retval)
1188 goto fork_out;
1189
1190 retval = -ENOMEM;
1191 p = dup_task_struct(current);
1192 if (!p)
1193 goto fork_out;
1194
1195 ftrace_graph_init_task(p);
1196 get_seccomp_filter(p);
1197
1198 rt_mutex_init_task(p);
1199
1200 #ifdef CONFIG_PROVE_LOCKING
1201 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1202 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1203 #endif
1204 retval = -EAGAIN;
1205 if (atomic_read(&p->real_cred->user->processes) >=
1206 task_rlimit(p, RLIMIT_NPROC)) {
1207 if (p->real_cred->user != INIT_USER &&
1208 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1209 goto bad_fork_free;
1210 }
1211 current->flags &= ~PF_NPROC_EXCEEDED;
1212
1213 retval = copy_creds(p, clone_flags);
1214 if (retval < 0)
1215 goto bad_fork_free;
1216
1217 /*
1218 * If multiple threads are within copy_process(), then this check
1219 * triggers too late. This doesn't hurt, the check is only there
1220 * to stop root fork bombs.
1221 */
1222 retval = -EAGAIN;
1223 if (nr_threads >= max_threads)
1224 goto bad_fork_cleanup_count;
1225
1226 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1227 goto bad_fork_cleanup_count;
1228
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1236
1237 init_sigpending(&p->pending);
1238
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1242 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1243 #endif
1244 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1245 seqlock_init(&p->vtime_seqlock);
1246 p->vtime_snap = 0;
1247 p->vtime_snap_whence = VTIME_SLEEPING;
1248 #endif
1249
1250 #if defined(SPLIT_RSS_COUNTING)
1251 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1252 #endif
1253
1254 p->default_timer_slack_ns = current->timer_slack_ns;
1255
1256 task_io_accounting_init(&p->ioac);
1257 acct_clear_integrals(p);
1258
1259 posix_cpu_timers_init(p);
1260
1261 do_posix_clock_monotonic_gettime(&p->start_time);
1262 p->real_start_time = p->start_time;
1263 monotonic_to_bootbased(&p->real_start_time);
1264 p->io_context = NULL;
1265 p->audit_context = NULL;
1266 if (clone_flags & CLONE_THREAD)
1267 threadgroup_change_begin(current);
1268 cgroup_fork(p);
1269 #ifdef CONFIG_NUMA
1270 p->mempolicy = mpol_dup(p->mempolicy);
1271 if (IS_ERR(p->mempolicy)) {
1272 retval = PTR_ERR(p->mempolicy);
1273 p->mempolicy = NULL;
1274 goto bad_fork_cleanup_cgroup;
1275 }
1276 mpol_fix_fork_child_flag(p);
1277 #endif
1278 #ifdef CONFIG_CPUSETS
1279 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1280 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1281 seqcount_init(&p->mems_allowed_seq);
1282 #endif
1283 #ifdef CONFIG_TRACE_IRQFLAGS
1284 p->irq_events = 0;
1285 p->hardirqs_enabled = 0;
1286 p->hardirq_enable_ip = 0;
1287 p->hardirq_enable_event = 0;
1288 p->hardirq_disable_ip = _THIS_IP_;
1289 p->hardirq_disable_event = 0;
1290 p->softirqs_enabled = 1;
1291 p->softirq_enable_ip = _THIS_IP_;
1292 p->softirq_enable_event = 0;
1293 p->softirq_disable_ip = 0;
1294 p->softirq_disable_event = 0;
1295 p->hardirq_context = 0;
1296 p->softirq_context = 0;
1297 #endif
1298 #ifdef CONFIG_LOCKDEP
1299 p->lockdep_depth = 0; /* no locks held yet */
1300 p->curr_chain_key = 0;
1301 p->lockdep_recursion = 0;
1302 #endif
1303
1304 #ifdef CONFIG_DEBUG_MUTEXES
1305 p->blocked_on = NULL; /* not blocked yet */
1306 #endif
1307 #ifdef CONFIG_MEMCG
1308 p->memcg_batch.do_batch = 0;
1309 p->memcg_batch.memcg = NULL;
1310 #endif
1311 #ifdef CONFIG_BCACHE
1312 p->sequential_io = 0;
1313 p->sequential_io_avg = 0;
1314 #endif
1315
1316 /* Perform scheduler related setup. Assign this task to a CPU. */
1317 retval = sched_fork(clone_flags, p);
1318 if (retval)
1319 goto bad_fork_cleanup_policy;
1320
1321 retval = perf_event_init_task(p);
1322 if (retval)
1323 goto bad_fork_cleanup_policy;
1324 retval = audit_alloc(p);
1325 if (retval)
1326 goto bad_fork_cleanup_policy;
1327 /* copy all the process information */
1328 retval = copy_semundo(clone_flags, p);
1329 if (retval)
1330 goto bad_fork_cleanup_audit;
1331 retval = copy_files(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_semundo;
1334 retval = copy_fs(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_files;
1337 retval = copy_sighand(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_fs;
1340 retval = copy_signal(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_sighand;
1343 retval = copy_mm(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_signal;
1346 retval = copy_namespaces(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_mm;
1349 retval = copy_io(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_namespaces;
1352 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1353 if (retval)
1354 goto bad_fork_cleanup_io;
1355
1356 if (pid != &init_struct_pid) {
1357 retval = -ENOMEM;
1358 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1359 if (!pid)
1360 goto bad_fork_cleanup_io;
1361 }
1362
1363 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1364 /*
1365 * Clear TID on mm_release()?
1366 */
1367 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1368 #ifdef CONFIG_BLOCK
1369 p->plug = NULL;
1370 #endif
1371 #ifdef CONFIG_FUTEX
1372 p->robust_list = NULL;
1373 #ifdef CONFIG_COMPAT
1374 p->compat_robust_list = NULL;
1375 #endif
1376 INIT_LIST_HEAD(&p->pi_state_list);
1377 p->pi_state_cache = NULL;
1378 #endif
1379 /*
1380 * sigaltstack should be cleared when sharing the same VM
1381 */
1382 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1383 p->sas_ss_sp = p->sas_ss_size = 0;
1384
1385 /*
1386 * Syscall tracing and stepping should be turned off in the
1387 * child regardless of CLONE_PTRACE.
1388 */
1389 user_disable_single_step(p);
1390 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1391 #ifdef TIF_SYSCALL_EMU
1392 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1393 #endif
1394 clear_all_latency_tracing(p);
1395
1396 /* ok, now we should be set up.. */
1397 p->pid = pid_nr(pid);
1398 if (clone_flags & CLONE_THREAD) {
1399 p->exit_signal = -1;
1400 p->group_leader = current->group_leader;
1401 p->tgid = current->tgid;
1402 } else {
1403 if (clone_flags & CLONE_PARENT)
1404 p->exit_signal = current->group_leader->exit_signal;
1405 else
1406 p->exit_signal = (clone_flags & CSIGNAL);
1407 p->group_leader = p;
1408 p->tgid = p->pid;
1409 }
1410
1411 p->nr_dirtied = 0;
1412 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1413 p->dirty_paused_when = 0;
1414
1415 p->pdeath_signal = 0;
1416 INIT_LIST_HEAD(&p->thread_group);
1417 p->task_works = NULL;
1418
1419 /*
1420 * Make it visible to the rest of the system, but dont wake it up yet.
1421 * Need tasklist lock for parent etc handling!
1422 */
1423 write_lock_irq(&tasklist_lock);
1424
1425 /* CLONE_PARENT re-uses the old parent */
1426 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1427 p->real_parent = current->real_parent;
1428 p->parent_exec_id = current->parent_exec_id;
1429 } else {
1430 p->real_parent = current;
1431 p->parent_exec_id = current->self_exec_id;
1432 }
1433
1434 spin_lock(&current->sighand->siglock);
1435
1436 /*
1437 * Process group and session signals need to be delivered to just the
1438 * parent before the fork or both the parent and the child after the
1439 * fork. Restart if a signal comes in before we add the new process to
1440 * it's process group.
1441 * A fatal signal pending means that current will exit, so the new
1442 * thread can't slip out of an OOM kill (or normal SIGKILL).
1443 */
1444 recalc_sigpending();
1445 if (signal_pending(current)) {
1446 spin_unlock(&current->sighand->siglock);
1447 write_unlock_irq(&tasklist_lock);
1448 retval = -ERESTARTNOINTR;
1449 goto bad_fork_free_pid;
1450 }
1451
1452 if (likely(p->pid)) {
1453 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1454
1455 init_task_pid(p, PIDTYPE_PID, pid);
1456 if (thread_group_leader(p)) {
1457 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1458 init_task_pid(p, PIDTYPE_SID, task_session(current));
1459
1460 if (is_child_reaper(pid)) {
1461 ns_of_pid(pid)->child_reaper = p;
1462 p->signal->flags |= SIGNAL_UNKILLABLE;
1463 }
1464
1465 p->signal->leader_pid = pid;
1466 p->signal->tty = tty_kref_get(current->signal->tty);
1467 list_add_tail(&p->sibling, &p->real_parent->children);
1468 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1469 attach_pid(p, PIDTYPE_PGID);
1470 attach_pid(p, PIDTYPE_SID);
1471 __this_cpu_inc(process_counts);
1472 } else {
1473 current->signal->nr_threads++;
1474 atomic_inc(&current->signal->live);
1475 atomic_inc(&current->signal->sigcnt);
1476 list_add_tail_rcu(&p->thread_group,
1477 &p->group_leader->thread_group);
1478 list_add_tail_rcu(&p->thread_node,
1479 &p->signal->thread_head);
1480 }
1481 attach_pid(p, PIDTYPE_PID);
1482 nr_threads++;
1483 }
1484
1485 total_forks++;
1486 spin_unlock(&current->sighand->siglock);
1487 write_unlock_irq(&tasklist_lock);
1488 proc_fork_connector(p);
1489 cgroup_post_fork(p);
1490 if (clone_flags & CLONE_THREAD)
1491 threadgroup_change_end(current);
1492 perf_event_fork(p);
1493
1494 trace_task_newtask(p, clone_flags);
1495 uprobe_copy_process(p, clone_flags);
1496
1497 return p;
1498
1499 bad_fork_free_pid:
1500 if (pid != &init_struct_pid)
1501 free_pid(pid);
1502 bad_fork_cleanup_io:
1503 if (p->io_context)
1504 exit_io_context(p);
1505 bad_fork_cleanup_namespaces:
1506 exit_task_namespaces(p);
1507 bad_fork_cleanup_mm:
1508 if (p->mm)
1509 mmput(p->mm);
1510 bad_fork_cleanup_signal:
1511 if (!(clone_flags & CLONE_THREAD))
1512 free_signal_struct(p->signal);
1513 bad_fork_cleanup_sighand:
1514 __cleanup_sighand(p->sighand);
1515 bad_fork_cleanup_fs:
1516 exit_fs(p); /* blocking */
1517 bad_fork_cleanup_files:
1518 exit_files(p); /* blocking */
1519 bad_fork_cleanup_semundo:
1520 exit_sem(p);
1521 bad_fork_cleanup_audit:
1522 audit_free(p);
1523 bad_fork_cleanup_policy:
1524 perf_event_free_task(p);
1525 #ifdef CONFIG_NUMA
1526 mpol_put(p->mempolicy);
1527 bad_fork_cleanup_cgroup:
1528 #endif
1529 if (clone_flags & CLONE_THREAD)
1530 threadgroup_change_end(current);
1531 cgroup_exit(p, 0);
1532 delayacct_tsk_free(p);
1533 module_put(task_thread_info(p)->exec_domain->module);
1534 bad_fork_cleanup_count:
1535 atomic_dec(&p->cred->user->processes);
1536 exit_creds(p);
1537 bad_fork_free:
1538 free_task(p);
1539 fork_out:
1540 return ERR_PTR(retval);
1541 }
1542
1543 static inline void init_idle_pids(struct pid_link *links)
1544 {
1545 enum pid_type type;
1546
1547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1548 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1549 links[type].pid = &init_struct_pid;
1550 }
1551 }
1552
1553 struct task_struct *fork_idle(int cpu)
1554 {
1555 struct task_struct *task;
1556 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1557 if (!IS_ERR(task)) {
1558 init_idle_pids(task->pids);
1559 init_idle(task, cpu);
1560 }
1561
1562 return task;
1563 }
1564
1565 /*
1566 * Ok, this is the main fork-routine.
1567 *
1568 * It copies the process, and if successful kick-starts
1569 * it and waits for it to finish using the VM if required.
1570 */
1571 long do_fork(unsigned long clone_flags,
1572 unsigned long stack_start,
1573 unsigned long stack_size,
1574 int __user *parent_tidptr,
1575 int __user *child_tidptr)
1576 {
1577 struct task_struct *p;
1578 int trace = 0;
1579 long nr;
1580
1581 /*
1582 * Determine whether and which event to report to ptracer. When
1583 * called from kernel_thread or CLONE_UNTRACED is explicitly
1584 * requested, no event is reported; otherwise, report if the event
1585 * for the type of forking is enabled.
1586 */
1587 if (!(clone_flags & CLONE_UNTRACED)) {
1588 if (clone_flags & CLONE_VFORK)
1589 trace = PTRACE_EVENT_VFORK;
1590 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1591 trace = PTRACE_EVENT_CLONE;
1592 else
1593 trace = PTRACE_EVENT_FORK;
1594
1595 if (likely(!ptrace_event_enabled(current, trace)))
1596 trace = 0;
1597 }
1598
1599 p = copy_process(clone_flags, stack_start, stack_size,
1600 child_tidptr, NULL, trace);
1601 /*
1602 * Do this prior waking up the new thread - the thread pointer
1603 * might get invalid after that point, if the thread exits quickly.
1604 */
1605 if (!IS_ERR(p)) {
1606 struct completion vfork;
1607
1608 trace_sched_process_fork(current, p);
1609
1610 nr = task_pid_vnr(p);
1611
1612 if (clone_flags & CLONE_PARENT_SETTID)
1613 put_user(nr, parent_tidptr);
1614
1615 if (clone_flags & CLONE_VFORK) {
1616 p->vfork_done = &vfork;
1617 init_completion(&vfork);
1618 get_task_struct(p);
1619 }
1620
1621 wake_up_new_task(p);
1622
1623 /* forking complete and child started to run, tell ptracer */
1624 if (unlikely(trace))
1625 ptrace_event(trace, nr);
1626
1627 if (clone_flags & CLONE_VFORK) {
1628 if (!wait_for_vfork_done(p, &vfork))
1629 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1630 }
1631 } else {
1632 nr = PTR_ERR(p);
1633 }
1634 return nr;
1635 }
1636
1637 /*
1638 * Create a kernel thread.
1639 */
1640 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1641 {
1642 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1643 (unsigned long)arg, NULL, NULL);
1644 }
1645
1646 #ifdef __ARCH_WANT_SYS_FORK
1647 SYSCALL_DEFINE0(fork)
1648 {
1649 #ifdef CONFIG_MMU
1650 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1651 #else
1652 /* can not support in nommu mode */
1653 return -EINVAL;
1654 #endif
1655 }
1656 #endif
1657
1658 #ifdef __ARCH_WANT_SYS_VFORK
1659 SYSCALL_DEFINE0(vfork)
1660 {
1661 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1662 0, NULL, NULL);
1663 }
1664 #endif
1665
1666 #ifdef __ARCH_WANT_SYS_CLONE
1667 #ifdef CONFIG_CLONE_BACKWARDS
1668 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1669 int __user *, parent_tidptr,
1670 int, tls_val,
1671 int __user *, child_tidptr)
1672 #elif defined(CONFIG_CLONE_BACKWARDS2)
1673 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1674 int __user *, parent_tidptr,
1675 int __user *, child_tidptr,
1676 int, tls_val)
1677 #elif defined(CONFIG_CLONE_BACKWARDS3)
1678 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1679 int, stack_size,
1680 int __user *, parent_tidptr,
1681 int __user *, child_tidptr,
1682 int, tls_val)
1683 #else
1684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1685 int __user *, parent_tidptr,
1686 int __user *, child_tidptr,
1687 int, tls_val)
1688 #endif
1689 {
1690 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1691 }
1692 #endif
1693
1694 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1695 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1696 #endif
1697
1698 static void sighand_ctor(void *data)
1699 {
1700 struct sighand_struct *sighand = data;
1701
1702 spin_lock_init(&sighand->siglock);
1703 init_waitqueue_head(&sighand->signalfd_wqh);
1704 }
1705
1706 void __init proc_caches_init(void)
1707 {
1708 sighand_cachep = kmem_cache_create("sighand_cache",
1709 sizeof(struct sighand_struct), 0,
1710 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1711 SLAB_NOTRACK, sighand_ctor);
1712 signal_cachep = kmem_cache_create("signal_cache",
1713 sizeof(struct signal_struct), 0,
1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1715 files_cachep = kmem_cache_create("files_cache",
1716 sizeof(struct files_struct), 0,
1717 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1718 fs_cachep = kmem_cache_create("fs_cache",
1719 sizeof(struct fs_struct), 0,
1720 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1721 /*
1722 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1723 * whole struct cpumask for the OFFSTACK case. We could change
1724 * this to *only* allocate as much of it as required by the
1725 * maximum number of CPU's we can ever have. The cpumask_allocation
1726 * is at the end of the structure, exactly for that reason.
1727 */
1728 mm_cachep = kmem_cache_create("mm_struct",
1729 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1730 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1731 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1732 mmap_init();
1733 nsproxy_cache_init();
1734 }
1735
1736 /*
1737 * Check constraints on flags passed to the unshare system call.
1738 */
1739 static int check_unshare_flags(unsigned long unshare_flags)
1740 {
1741 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1742 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1743 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1744 CLONE_NEWUSER|CLONE_NEWPID))
1745 return -EINVAL;
1746 /*
1747 * Not implemented, but pretend it works if there is nothing to
1748 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1749 * needs to unshare vm.
1750 */
1751 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1752 /* FIXME: get_task_mm() increments ->mm_users */
1753 if (atomic_read(&current->mm->mm_users) > 1)
1754 return -EINVAL;
1755 }
1756
1757 return 0;
1758 }
1759
1760 /*
1761 * Unshare the filesystem structure if it is being shared
1762 */
1763 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1764 {
1765 struct fs_struct *fs = current->fs;
1766
1767 if (!(unshare_flags & CLONE_FS) || !fs)
1768 return 0;
1769
1770 /* don't need lock here; in the worst case we'll do useless copy */
1771 if (fs->users == 1)
1772 return 0;
1773
1774 *new_fsp = copy_fs_struct(fs);
1775 if (!*new_fsp)
1776 return -ENOMEM;
1777
1778 return 0;
1779 }
1780
1781 /*
1782 * Unshare file descriptor table if it is being shared
1783 */
1784 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1785 {
1786 struct files_struct *fd = current->files;
1787 int error = 0;
1788
1789 if ((unshare_flags & CLONE_FILES) &&
1790 (fd && atomic_read(&fd->count) > 1)) {
1791 *new_fdp = dup_fd(fd, &error);
1792 if (!*new_fdp)
1793 return error;
1794 }
1795
1796 return 0;
1797 }
1798
1799 /*
1800 * unshare allows a process to 'unshare' part of the process
1801 * context which was originally shared using clone. copy_*
1802 * functions used by do_fork() cannot be used here directly
1803 * because they modify an inactive task_struct that is being
1804 * constructed. Here we are modifying the current, active,
1805 * task_struct.
1806 */
1807 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1808 {
1809 struct fs_struct *fs, *new_fs = NULL;
1810 struct files_struct *fd, *new_fd = NULL;
1811 struct cred *new_cred = NULL;
1812 struct nsproxy *new_nsproxy = NULL;
1813 int do_sysvsem = 0;
1814 int err;
1815
1816 /*
1817 * If unsharing a user namespace must also unshare the thread.
1818 */
1819 if (unshare_flags & CLONE_NEWUSER)
1820 unshare_flags |= CLONE_THREAD | CLONE_FS;
1821 /*
1822 * If unsharing a thread from a thread group, must also unshare vm.
1823 */
1824 if (unshare_flags & CLONE_THREAD)
1825 unshare_flags |= CLONE_VM;
1826 /*
1827 * If unsharing vm, must also unshare signal handlers.
1828 */
1829 if (unshare_flags & CLONE_VM)
1830 unshare_flags |= CLONE_SIGHAND;
1831 /*
1832 * If unsharing namespace, must also unshare filesystem information.
1833 */
1834 if (unshare_flags & CLONE_NEWNS)
1835 unshare_flags |= CLONE_FS;
1836
1837 err = check_unshare_flags(unshare_flags);
1838 if (err)
1839 goto bad_unshare_out;
1840 /*
1841 * CLONE_NEWIPC must also detach from the undolist: after switching
1842 * to a new ipc namespace, the semaphore arrays from the old
1843 * namespace are unreachable.
1844 */
1845 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1846 do_sysvsem = 1;
1847 err = unshare_fs(unshare_flags, &new_fs);
1848 if (err)
1849 goto bad_unshare_out;
1850 err = unshare_fd(unshare_flags, &new_fd);
1851 if (err)
1852 goto bad_unshare_cleanup_fs;
1853 err = unshare_userns(unshare_flags, &new_cred);
1854 if (err)
1855 goto bad_unshare_cleanup_fd;
1856 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1857 new_cred, new_fs);
1858 if (err)
1859 goto bad_unshare_cleanup_cred;
1860
1861 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1862 if (do_sysvsem) {
1863 /*
1864 * CLONE_SYSVSEM is equivalent to sys_exit().
1865 */
1866 exit_sem(current);
1867 }
1868
1869 if (new_nsproxy)
1870 switch_task_namespaces(current, new_nsproxy);
1871
1872 task_lock(current);
1873
1874 if (new_fs) {
1875 fs = current->fs;
1876 spin_lock(&fs->lock);
1877 current->fs = new_fs;
1878 if (--fs->users)
1879 new_fs = NULL;
1880 else
1881 new_fs = fs;
1882 spin_unlock(&fs->lock);
1883 }
1884
1885 if (new_fd) {
1886 fd = current->files;
1887 current->files = new_fd;
1888 new_fd = fd;
1889 }
1890
1891 task_unlock(current);
1892
1893 if (new_cred) {
1894 /* Install the new user namespace */
1895 commit_creds(new_cred);
1896 new_cred = NULL;
1897 }
1898 }
1899
1900 bad_unshare_cleanup_cred:
1901 if (new_cred)
1902 put_cred(new_cred);
1903 bad_unshare_cleanup_fd:
1904 if (new_fd)
1905 put_files_struct(new_fd);
1906
1907 bad_unshare_cleanup_fs:
1908 if (new_fs)
1909 free_fs_struct(new_fs);
1910
1911 bad_unshare_out:
1912 return err;
1913 }
1914
1915 /*
1916 * Helper to unshare the files of the current task.
1917 * We don't want to expose copy_files internals to
1918 * the exec layer of the kernel.
1919 */
1920
1921 int unshare_files(struct files_struct **displaced)
1922 {
1923 struct task_struct *task = current;
1924 struct files_struct *copy = NULL;
1925 int error;
1926
1927 error = unshare_fd(CLONE_FILES, &copy);
1928 if (error || !copy) {
1929 *displaced = NULL;
1930 return error;
1931 }
1932 *displaced = task->files;
1933 task_lock(task);
1934 task->files = copy;
1935 task_unlock(task);
1936 return 0;
1937 }
This page took 0.132084 seconds and 5 git commands to generate.