af3637e0ee52dbd71e0a9075fbd5aaf47304f1f3
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163 int node)
164 {
165 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
167
168 if (page)
169 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 1 << THREAD_SIZE_ORDER);
171
172 return page ? page_address(page) : NULL;
173 }
174
175 static inline void free_thread_stack(unsigned long *stack)
176 {
177 struct page *page = virt_to_page(stack);
178
179 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 -(1 << THREAD_SIZE_ORDER));
181 __free_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_stack_cache;
185
186 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
187 int node)
188 {
189 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
190 }
191
192 static void free_thread_stack(unsigned long *stack)
193 {
194 kmem_cache_free(thread_stack_cache, stack);
195 }
196
197 void thread_stack_cache_init(void)
198 {
199 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
200 THREAD_SIZE, 0, NULL);
201 BUG_ON(thread_stack_cache == NULL);
202 }
203 # endif
204 #endif
205
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223
224 static void account_kernel_stack(unsigned long *stack, int account)
225 {
226 struct zone *zone = page_zone(virt_to_page(stack));
227
228 mod_zone_page_state(zone, NR_KERNEL_STACK_KB,
229 THREAD_SIZE / 1024 * account);
230 }
231
232 void free_task(struct task_struct *tsk)
233 {
234 account_kernel_stack(tsk->stack, -1);
235 arch_release_thread_stack(tsk->stack);
236 free_thread_stack(tsk->stack);
237 rt_mutex_debug_task_free(tsk);
238 ftrace_graph_exit_task(tsk);
239 put_seccomp_filter(tsk);
240 arch_release_task_struct(tsk);
241 free_task_struct(tsk);
242 }
243 EXPORT_SYMBOL(free_task);
244
245 static inline void free_signal_struct(struct signal_struct *sig)
246 {
247 taskstats_tgid_free(sig);
248 sched_autogroup_exit(sig);
249 kmem_cache_free(signal_cachep, sig);
250 }
251
252 static inline void put_signal_struct(struct signal_struct *sig)
253 {
254 if (atomic_dec_and_test(&sig->sigcnt))
255 free_signal_struct(sig);
256 }
257
258 void __put_task_struct(struct task_struct *tsk)
259 {
260 WARN_ON(!tsk->exit_state);
261 WARN_ON(atomic_read(&tsk->usage));
262 WARN_ON(tsk == current);
263
264 cgroup_free(tsk);
265 task_numa_free(tsk);
266 security_task_free(tsk);
267 exit_creds(tsk);
268 delayacct_tsk_free(tsk);
269 put_signal_struct(tsk->signal);
270
271 if (!profile_handoff_task(tsk))
272 free_task(tsk);
273 }
274 EXPORT_SYMBOL_GPL(__put_task_struct);
275
276 void __init __weak arch_task_cache_init(void) { }
277
278 /*
279 * set_max_threads
280 */
281 static void set_max_threads(unsigned int max_threads_suggested)
282 {
283 u64 threads;
284
285 /*
286 * The number of threads shall be limited such that the thread
287 * structures may only consume a small part of the available memory.
288 */
289 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
290 threads = MAX_THREADS;
291 else
292 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
293 (u64) THREAD_SIZE * 8UL);
294
295 if (threads > max_threads_suggested)
296 threads = max_threads_suggested;
297
298 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
299 }
300
301 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
302 /* Initialized by the architecture: */
303 int arch_task_struct_size __read_mostly;
304 #endif
305
306 void __init fork_init(void)
307 {
308 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
309 #ifndef ARCH_MIN_TASKALIGN
310 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
311 #endif
312 /* create a slab on which task_structs can be allocated */
313 task_struct_cachep = kmem_cache_create("task_struct",
314 arch_task_struct_size, ARCH_MIN_TASKALIGN,
315 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
316 #endif
317
318 /* do the arch specific task caches init */
319 arch_task_cache_init();
320
321 set_max_threads(MAX_THREADS);
322
323 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
324 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
325 init_task.signal->rlim[RLIMIT_SIGPENDING] =
326 init_task.signal->rlim[RLIMIT_NPROC];
327 }
328
329 int __weak arch_dup_task_struct(struct task_struct *dst,
330 struct task_struct *src)
331 {
332 *dst = *src;
333 return 0;
334 }
335
336 void set_task_stack_end_magic(struct task_struct *tsk)
337 {
338 unsigned long *stackend;
339
340 stackend = end_of_stack(tsk);
341 *stackend = STACK_END_MAGIC; /* for overflow detection */
342 }
343
344 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
345 {
346 struct task_struct *tsk;
347 unsigned long *stack;
348 int err;
349
350 if (node == NUMA_NO_NODE)
351 node = tsk_fork_get_node(orig);
352 tsk = alloc_task_struct_node(node);
353 if (!tsk)
354 return NULL;
355
356 stack = alloc_thread_stack_node(tsk, node);
357 if (!stack)
358 goto free_tsk;
359
360 err = arch_dup_task_struct(tsk, orig);
361 if (err)
362 goto free_stack;
363
364 tsk->stack = stack;
365 #ifdef CONFIG_SECCOMP
366 /*
367 * We must handle setting up seccomp filters once we're under
368 * the sighand lock in case orig has changed between now and
369 * then. Until then, filter must be NULL to avoid messing up
370 * the usage counts on the error path calling free_task.
371 */
372 tsk->seccomp.filter = NULL;
373 #endif
374
375 setup_thread_stack(tsk, orig);
376 clear_user_return_notifier(tsk);
377 clear_tsk_need_resched(tsk);
378 set_task_stack_end_magic(tsk);
379
380 #ifdef CONFIG_CC_STACKPROTECTOR
381 tsk->stack_canary = get_random_int();
382 #endif
383
384 /*
385 * One for us, one for whoever does the "release_task()" (usually
386 * parent)
387 */
388 atomic_set(&tsk->usage, 2);
389 #ifdef CONFIG_BLK_DEV_IO_TRACE
390 tsk->btrace_seq = 0;
391 #endif
392 tsk->splice_pipe = NULL;
393 tsk->task_frag.page = NULL;
394 tsk->wake_q.next = NULL;
395
396 account_kernel_stack(stack, 1);
397
398 kcov_task_init(tsk);
399
400 return tsk;
401
402 free_stack:
403 free_thread_stack(stack);
404 free_tsk:
405 free_task_struct(tsk);
406 return NULL;
407 }
408
409 #ifdef CONFIG_MMU
410 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
411 {
412 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
413 struct rb_node **rb_link, *rb_parent;
414 int retval;
415 unsigned long charge;
416
417 uprobe_start_dup_mmap();
418 if (down_write_killable(&oldmm->mmap_sem)) {
419 retval = -EINTR;
420 goto fail_uprobe_end;
421 }
422 flush_cache_dup_mm(oldmm);
423 uprobe_dup_mmap(oldmm, mm);
424 /*
425 * Not linked in yet - no deadlock potential:
426 */
427 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
428
429 /* No ordering required: file already has been exposed. */
430 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
431
432 mm->total_vm = oldmm->total_vm;
433 mm->data_vm = oldmm->data_vm;
434 mm->exec_vm = oldmm->exec_vm;
435 mm->stack_vm = oldmm->stack_vm;
436
437 rb_link = &mm->mm_rb.rb_node;
438 rb_parent = NULL;
439 pprev = &mm->mmap;
440 retval = ksm_fork(mm, oldmm);
441 if (retval)
442 goto out;
443 retval = khugepaged_fork(mm, oldmm);
444 if (retval)
445 goto out;
446
447 prev = NULL;
448 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
449 struct file *file;
450
451 if (mpnt->vm_flags & VM_DONTCOPY) {
452 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
453 continue;
454 }
455 charge = 0;
456 if (mpnt->vm_flags & VM_ACCOUNT) {
457 unsigned long len = vma_pages(mpnt);
458
459 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
460 goto fail_nomem;
461 charge = len;
462 }
463 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
464 if (!tmp)
465 goto fail_nomem;
466 *tmp = *mpnt;
467 INIT_LIST_HEAD(&tmp->anon_vma_chain);
468 retval = vma_dup_policy(mpnt, tmp);
469 if (retval)
470 goto fail_nomem_policy;
471 tmp->vm_mm = mm;
472 if (anon_vma_fork(tmp, mpnt))
473 goto fail_nomem_anon_vma_fork;
474 tmp->vm_flags &=
475 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
476 tmp->vm_next = tmp->vm_prev = NULL;
477 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
478 file = tmp->vm_file;
479 if (file) {
480 struct inode *inode = file_inode(file);
481 struct address_space *mapping = file->f_mapping;
482
483 get_file(file);
484 if (tmp->vm_flags & VM_DENYWRITE)
485 atomic_dec(&inode->i_writecount);
486 i_mmap_lock_write(mapping);
487 if (tmp->vm_flags & VM_SHARED)
488 atomic_inc(&mapping->i_mmap_writable);
489 flush_dcache_mmap_lock(mapping);
490 /* insert tmp into the share list, just after mpnt */
491 vma_interval_tree_insert_after(tmp, mpnt,
492 &mapping->i_mmap);
493 flush_dcache_mmap_unlock(mapping);
494 i_mmap_unlock_write(mapping);
495 }
496
497 /*
498 * Clear hugetlb-related page reserves for children. This only
499 * affects MAP_PRIVATE mappings. Faults generated by the child
500 * are not guaranteed to succeed, even if read-only
501 */
502 if (is_vm_hugetlb_page(tmp))
503 reset_vma_resv_huge_pages(tmp);
504
505 /*
506 * Link in the new vma and copy the page table entries.
507 */
508 *pprev = tmp;
509 pprev = &tmp->vm_next;
510 tmp->vm_prev = prev;
511 prev = tmp;
512
513 __vma_link_rb(mm, tmp, rb_link, rb_parent);
514 rb_link = &tmp->vm_rb.rb_right;
515 rb_parent = &tmp->vm_rb;
516
517 mm->map_count++;
518 retval = copy_page_range(mm, oldmm, mpnt);
519
520 if (tmp->vm_ops && tmp->vm_ops->open)
521 tmp->vm_ops->open(tmp);
522
523 if (retval)
524 goto out;
525 }
526 /* a new mm has just been created */
527 arch_dup_mmap(oldmm, mm);
528 retval = 0;
529 out:
530 up_write(&mm->mmap_sem);
531 flush_tlb_mm(oldmm);
532 up_write(&oldmm->mmap_sem);
533 fail_uprobe_end:
534 uprobe_end_dup_mmap();
535 return retval;
536 fail_nomem_anon_vma_fork:
537 mpol_put(vma_policy(tmp));
538 fail_nomem_policy:
539 kmem_cache_free(vm_area_cachep, tmp);
540 fail_nomem:
541 retval = -ENOMEM;
542 vm_unacct_memory(charge);
543 goto out;
544 }
545
546 static inline int mm_alloc_pgd(struct mm_struct *mm)
547 {
548 mm->pgd = pgd_alloc(mm);
549 if (unlikely(!mm->pgd))
550 return -ENOMEM;
551 return 0;
552 }
553
554 static inline void mm_free_pgd(struct mm_struct *mm)
555 {
556 pgd_free(mm, mm->pgd);
557 }
558 #else
559 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
560 {
561 down_write(&oldmm->mmap_sem);
562 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
563 up_write(&oldmm->mmap_sem);
564 return 0;
565 }
566 #define mm_alloc_pgd(mm) (0)
567 #define mm_free_pgd(mm)
568 #endif /* CONFIG_MMU */
569
570 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
571
572 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
573 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
574
575 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
576
577 static int __init coredump_filter_setup(char *s)
578 {
579 default_dump_filter =
580 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
581 MMF_DUMP_FILTER_MASK;
582 return 1;
583 }
584
585 __setup("coredump_filter=", coredump_filter_setup);
586
587 #include <linux/init_task.h>
588
589 static void mm_init_aio(struct mm_struct *mm)
590 {
591 #ifdef CONFIG_AIO
592 spin_lock_init(&mm->ioctx_lock);
593 mm->ioctx_table = NULL;
594 #endif
595 }
596
597 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
598 {
599 #ifdef CONFIG_MEMCG
600 mm->owner = p;
601 #endif
602 }
603
604 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
605 {
606 mm->mmap = NULL;
607 mm->mm_rb = RB_ROOT;
608 mm->vmacache_seqnum = 0;
609 atomic_set(&mm->mm_users, 1);
610 atomic_set(&mm->mm_count, 1);
611 init_rwsem(&mm->mmap_sem);
612 INIT_LIST_HEAD(&mm->mmlist);
613 mm->core_state = NULL;
614 atomic_long_set(&mm->nr_ptes, 0);
615 mm_nr_pmds_init(mm);
616 mm->map_count = 0;
617 mm->locked_vm = 0;
618 mm->pinned_vm = 0;
619 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
620 spin_lock_init(&mm->page_table_lock);
621 mm_init_cpumask(mm);
622 mm_init_aio(mm);
623 mm_init_owner(mm, p);
624 mmu_notifier_mm_init(mm);
625 clear_tlb_flush_pending(mm);
626 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
627 mm->pmd_huge_pte = NULL;
628 #endif
629
630 if (current->mm) {
631 mm->flags = current->mm->flags & MMF_INIT_MASK;
632 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
633 } else {
634 mm->flags = default_dump_filter;
635 mm->def_flags = 0;
636 }
637
638 if (mm_alloc_pgd(mm))
639 goto fail_nopgd;
640
641 if (init_new_context(p, mm))
642 goto fail_nocontext;
643
644 return mm;
645
646 fail_nocontext:
647 mm_free_pgd(mm);
648 fail_nopgd:
649 free_mm(mm);
650 return NULL;
651 }
652
653 static void check_mm(struct mm_struct *mm)
654 {
655 int i;
656
657 for (i = 0; i < NR_MM_COUNTERS; i++) {
658 long x = atomic_long_read(&mm->rss_stat.count[i]);
659
660 if (unlikely(x))
661 printk(KERN_ALERT "BUG: Bad rss-counter state "
662 "mm:%p idx:%d val:%ld\n", mm, i, x);
663 }
664
665 if (atomic_long_read(&mm->nr_ptes))
666 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
667 atomic_long_read(&mm->nr_ptes));
668 if (mm_nr_pmds(mm))
669 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
670 mm_nr_pmds(mm));
671
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676
677 /*
678 * Allocate and initialize an mm_struct.
679 */
680 struct mm_struct *mm_alloc(void)
681 {
682 struct mm_struct *mm;
683
684 mm = allocate_mm();
685 if (!mm)
686 return NULL;
687
688 memset(mm, 0, sizeof(*mm));
689 return mm_init(mm, current);
690 }
691
692 /*
693 * Called when the last reference to the mm
694 * is dropped: either by a lazy thread or by
695 * mmput. Free the page directory and the mm.
696 */
697 void __mmdrop(struct mm_struct *mm)
698 {
699 BUG_ON(mm == &init_mm);
700 mm_free_pgd(mm);
701 destroy_context(mm);
702 mmu_notifier_mm_destroy(mm);
703 check_mm(mm);
704 free_mm(mm);
705 }
706 EXPORT_SYMBOL_GPL(__mmdrop);
707
708 static inline void __mmput(struct mm_struct *mm)
709 {
710 VM_BUG_ON(atomic_read(&mm->mm_users));
711
712 uprobe_clear_state(mm);
713 exit_aio(mm);
714 ksm_exit(mm);
715 khugepaged_exit(mm); /* must run before exit_mmap */
716 exit_mmap(mm);
717 set_mm_exe_file(mm, NULL);
718 if (!list_empty(&mm->mmlist)) {
719 spin_lock(&mmlist_lock);
720 list_del(&mm->mmlist);
721 spin_unlock(&mmlist_lock);
722 }
723 if (mm->binfmt)
724 module_put(mm->binfmt->module);
725 mmdrop(mm);
726 }
727
728 /*
729 * Decrement the use count and release all resources for an mm.
730 */
731 void mmput(struct mm_struct *mm)
732 {
733 might_sleep();
734
735 if (atomic_dec_and_test(&mm->mm_users))
736 __mmput(mm);
737 }
738 EXPORT_SYMBOL_GPL(mmput);
739
740 #ifdef CONFIG_MMU
741 static void mmput_async_fn(struct work_struct *work)
742 {
743 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
744 __mmput(mm);
745 }
746
747 void mmput_async(struct mm_struct *mm)
748 {
749 if (atomic_dec_and_test(&mm->mm_users)) {
750 INIT_WORK(&mm->async_put_work, mmput_async_fn);
751 schedule_work(&mm->async_put_work);
752 }
753 }
754 #endif
755
756 /**
757 * set_mm_exe_file - change a reference to the mm's executable file
758 *
759 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
760 *
761 * Main users are mmput() and sys_execve(). Callers prevent concurrent
762 * invocations: in mmput() nobody alive left, in execve task is single
763 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
764 * mm->exe_file, but does so without using set_mm_exe_file() in order
765 * to do avoid the need for any locks.
766 */
767 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
768 {
769 struct file *old_exe_file;
770
771 /*
772 * It is safe to dereference the exe_file without RCU as
773 * this function is only called if nobody else can access
774 * this mm -- see comment above for justification.
775 */
776 old_exe_file = rcu_dereference_raw(mm->exe_file);
777
778 if (new_exe_file)
779 get_file(new_exe_file);
780 rcu_assign_pointer(mm->exe_file, new_exe_file);
781 if (old_exe_file)
782 fput(old_exe_file);
783 }
784
785 /**
786 * get_mm_exe_file - acquire a reference to the mm's executable file
787 *
788 * Returns %NULL if mm has no associated executable file.
789 * User must release file via fput().
790 */
791 struct file *get_mm_exe_file(struct mm_struct *mm)
792 {
793 struct file *exe_file;
794
795 rcu_read_lock();
796 exe_file = rcu_dereference(mm->exe_file);
797 if (exe_file && !get_file_rcu(exe_file))
798 exe_file = NULL;
799 rcu_read_unlock();
800 return exe_file;
801 }
802 EXPORT_SYMBOL(get_mm_exe_file);
803
804 /**
805 * get_task_mm - acquire a reference to the task's mm
806 *
807 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
808 * this kernel workthread has transiently adopted a user mm with use_mm,
809 * to do its AIO) is not set and if so returns a reference to it, after
810 * bumping up the use count. User must release the mm via mmput()
811 * after use. Typically used by /proc and ptrace.
812 */
813 struct mm_struct *get_task_mm(struct task_struct *task)
814 {
815 struct mm_struct *mm;
816
817 task_lock(task);
818 mm = task->mm;
819 if (mm) {
820 if (task->flags & PF_KTHREAD)
821 mm = NULL;
822 else
823 atomic_inc(&mm->mm_users);
824 }
825 task_unlock(task);
826 return mm;
827 }
828 EXPORT_SYMBOL_GPL(get_task_mm);
829
830 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
831 {
832 struct mm_struct *mm;
833 int err;
834
835 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
836 if (err)
837 return ERR_PTR(err);
838
839 mm = get_task_mm(task);
840 if (mm && mm != current->mm &&
841 !ptrace_may_access(task, mode)) {
842 mmput(mm);
843 mm = ERR_PTR(-EACCES);
844 }
845 mutex_unlock(&task->signal->cred_guard_mutex);
846
847 return mm;
848 }
849
850 static void complete_vfork_done(struct task_struct *tsk)
851 {
852 struct completion *vfork;
853
854 task_lock(tsk);
855 vfork = tsk->vfork_done;
856 if (likely(vfork)) {
857 tsk->vfork_done = NULL;
858 complete(vfork);
859 }
860 task_unlock(tsk);
861 }
862
863 static int wait_for_vfork_done(struct task_struct *child,
864 struct completion *vfork)
865 {
866 int killed;
867
868 freezer_do_not_count();
869 killed = wait_for_completion_killable(vfork);
870 freezer_count();
871
872 if (killed) {
873 task_lock(child);
874 child->vfork_done = NULL;
875 task_unlock(child);
876 }
877
878 put_task_struct(child);
879 return killed;
880 }
881
882 /* Please note the differences between mmput and mm_release.
883 * mmput is called whenever we stop holding onto a mm_struct,
884 * error success whatever.
885 *
886 * mm_release is called after a mm_struct has been removed
887 * from the current process.
888 *
889 * This difference is important for error handling, when we
890 * only half set up a mm_struct for a new process and need to restore
891 * the old one. Because we mmput the new mm_struct before
892 * restoring the old one. . .
893 * Eric Biederman 10 January 1998
894 */
895 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
896 {
897 /* Get rid of any futexes when releasing the mm */
898 #ifdef CONFIG_FUTEX
899 if (unlikely(tsk->robust_list)) {
900 exit_robust_list(tsk);
901 tsk->robust_list = NULL;
902 }
903 #ifdef CONFIG_COMPAT
904 if (unlikely(tsk->compat_robust_list)) {
905 compat_exit_robust_list(tsk);
906 tsk->compat_robust_list = NULL;
907 }
908 #endif
909 if (unlikely(!list_empty(&tsk->pi_state_list)))
910 exit_pi_state_list(tsk);
911 #endif
912
913 uprobe_free_utask(tsk);
914
915 /* Get rid of any cached register state */
916 deactivate_mm(tsk, mm);
917
918 /*
919 * If we're exiting normally, clear a user-space tid field if
920 * requested. We leave this alone when dying by signal, to leave
921 * the value intact in a core dump, and to save the unnecessary
922 * trouble, say, a killed vfork parent shouldn't touch this mm.
923 * Userland only wants this done for a sys_exit.
924 */
925 if (tsk->clear_child_tid) {
926 if (!(tsk->flags & PF_SIGNALED) &&
927 atomic_read(&mm->mm_users) > 1) {
928 /*
929 * We don't check the error code - if userspace has
930 * not set up a proper pointer then tough luck.
931 */
932 put_user(0, tsk->clear_child_tid);
933 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
934 1, NULL, NULL, 0);
935 }
936 tsk->clear_child_tid = NULL;
937 }
938
939 /*
940 * All done, finally we can wake up parent and return this mm to him.
941 * Also kthread_stop() uses this completion for synchronization.
942 */
943 if (tsk->vfork_done)
944 complete_vfork_done(tsk);
945 }
946
947 /*
948 * Allocate a new mm structure and copy contents from the
949 * mm structure of the passed in task structure.
950 */
951 static struct mm_struct *dup_mm(struct task_struct *tsk)
952 {
953 struct mm_struct *mm, *oldmm = current->mm;
954 int err;
955
956 mm = allocate_mm();
957 if (!mm)
958 goto fail_nomem;
959
960 memcpy(mm, oldmm, sizeof(*mm));
961
962 if (!mm_init(mm, tsk))
963 goto fail_nomem;
964
965 err = dup_mmap(mm, oldmm);
966 if (err)
967 goto free_pt;
968
969 mm->hiwater_rss = get_mm_rss(mm);
970 mm->hiwater_vm = mm->total_vm;
971
972 if (mm->binfmt && !try_module_get(mm->binfmt->module))
973 goto free_pt;
974
975 return mm;
976
977 free_pt:
978 /* don't put binfmt in mmput, we haven't got module yet */
979 mm->binfmt = NULL;
980 mmput(mm);
981
982 fail_nomem:
983 return NULL;
984 }
985
986 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
987 {
988 struct mm_struct *mm, *oldmm;
989 int retval;
990
991 tsk->min_flt = tsk->maj_flt = 0;
992 tsk->nvcsw = tsk->nivcsw = 0;
993 #ifdef CONFIG_DETECT_HUNG_TASK
994 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
995 #endif
996
997 tsk->mm = NULL;
998 tsk->active_mm = NULL;
999
1000 /*
1001 * Are we cloning a kernel thread?
1002 *
1003 * We need to steal a active VM for that..
1004 */
1005 oldmm = current->mm;
1006 if (!oldmm)
1007 return 0;
1008
1009 /* initialize the new vmacache entries */
1010 vmacache_flush(tsk);
1011
1012 if (clone_flags & CLONE_VM) {
1013 atomic_inc(&oldmm->mm_users);
1014 mm = oldmm;
1015 goto good_mm;
1016 }
1017
1018 retval = -ENOMEM;
1019 mm = dup_mm(tsk);
1020 if (!mm)
1021 goto fail_nomem;
1022
1023 good_mm:
1024 tsk->mm = mm;
1025 tsk->active_mm = mm;
1026 return 0;
1027
1028 fail_nomem:
1029 return retval;
1030 }
1031
1032 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 struct fs_struct *fs = current->fs;
1035 if (clone_flags & CLONE_FS) {
1036 /* tsk->fs is already what we want */
1037 spin_lock(&fs->lock);
1038 if (fs->in_exec) {
1039 spin_unlock(&fs->lock);
1040 return -EAGAIN;
1041 }
1042 fs->users++;
1043 spin_unlock(&fs->lock);
1044 return 0;
1045 }
1046 tsk->fs = copy_fs_struct(fs);
1047 if (!tsk->fs)
1048 return -ENOMEM;
1049 return 0;
1050 }
1051
1052 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1053 {
1054 struct files_struct *oldf, *newf;
1055 int error = 0;
1056
1057 /*
1058 * A background process may not have any files ...
1059 */
1060 oldf = current->files;
1061 if (!oldf)
1062 goto out;
1063
1064 if (clone_flags & CLONE_FILES) {
1065 atomic_inc(&oldf->count);
1066 goto out;
1067 }
1068
1069 newf = dup_fd(oldf, &error);
1070 if (!newf)
1071 goto out;
1072
1073 tsk->files = newf;
1074 error = 0;
1075 out:
1076 return error;
1077 }
1078
1079 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1080 {
1081 #ifdef CONFIG_BLOCK
1082 struct io_context *ioc = current->io_context;
1083 struct io_context *new_ioc;
1084
1085 if (!ioc)
1086 return 0;
1087 /*
1088 * Share io context with parent, if CLONE_IO is set
1089 */
1090 if (clone_flags & CLONE_IO) {
1091 ioc_task_link(ioc);
1092 tsk->io_context = ioc;
1093 } else if (ioprio_valid(ioc->ioprio)) {
1094 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1095 if (unlikely(!new_ioc))
1096 return -ENOMEM;
1097
1098 new_ioc->ioprio = ioc->ioprio;
1099 put_io_context(new_ioc);
1100 }
1101 #endif
1102 return 0;
1103 }
1104
1105 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1106 {
1107 struct sighand_struct *sig;
1108
1109 if (clone_flags & CLONE_SIGHAND) {
1110 atomic_inc(&current->sighand->count);
1111 return 0;
1112 }
1113 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1114 rcu_assign_pointer(tsk->sighand, sig);
1115 if (!sig)
1116 return -ENOMEM;
1117
1118 atomic_set(&sig->count, 1);
1119 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1120 return 0;
1121 }
1122
1123 void __cleanup_sighand(struct sighand_struct *sighand)
1124 {
1125 if (atomic_dec_and_test(&sighand->count)) {
1126 signalfd_cleanup(sighand);
1127 /*
1128 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1129 * without an RCU grace period, see __lock_task_sighand().
1130 */
1131 kmem_cache_free(sighand_cachep, sighand);
1132 }
1133 }
1134
1135 /*
1136 * Initialize POSIX timer handling for a thread group.
1137 */
1138 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1139 {
1140 unsigned long cpu_limit;
1141
1142 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1143 if (cpu_limit != RLIM_INFINITY) {
1144 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1145 sig->cputimer.running = true;
1146 }
1147
1148 /* The timer lists. */
1149 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1150 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1151 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1152 }
1153
1154 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1155 {
1156 struct signal_struct *sig;
1157
1158 if (clone_flags & CLONE_THREAD)
1159 return 0;
1160
1161 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1162 tsk->signal = sig;
1163 if (!sig)
1164 return -ENOMEM;
1165
1166 sig->nr_threads = 1;
1167 atomic_set(&sig->live, 1);
1168 atomic_set(&sig->sigcnt, 1);
1169
1170 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1171 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1172 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1173
1174 init_waitqueue_head(&sig->wait_chldexit);
1175 sig->curr_target = tsk;
1176 init_sigpending(&sig->shared_pending);
1177 INIT_LIST_HEAD(&sig->posix_timers);
1178 seqlock_init(&sig->stats_lock);
1179 prev_cputime_init(&sig->prev_cputime);
1180
1181 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1182 sig->real_timer.function = it_real_fn;
1183
1184 task_lock(current->group_leader);
1185 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1186 task_unlock(current->group_leader);
1187
1188 posix_cpu_timers_init_group(sig);
1189
1190 tty_audit_fork(sig);
1191 sched_autogroup_fork(sig);
1192
1193 sig->oom_score_adj = current->signal->oom_score_adj;
1194 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1195
1196 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1197 current->signal->is_child_subreaper;
1198
1199 mutex_init(&sig->cred_guard_mutex);
1200
1201 return 0;
1202 }
1203
1204 static void copy_seccomp(struct task_struct *p)
1205 {
1206 #ifdef CONFIG_SECCOMP
1207 /*
1208 * Must be called with sighand->lock held, which is common to
1209 * all threads in the group. Holding cred_guard_mutex is not
1210 * needed because this new task is not yet running and cannot
1211 * be racing exec.
1212 */
1213 assert_spin_locked(&current->sighand->siglock);
1214
1215 /* Ref-count the new filter user, and assign it. */
1216 get_seccomp_filter(current);
1217 p->seccomp = current->seccomp;
1218
1219 /*
1220 * Explicitly enable no_new_privs here in case it got set
1221 * between the task_struct being duplicated and holding the
1222 * sighand lock. The seccomp state and nnp must be in sync.
1223 */
1224 if (task_no_new_privs(current))
1225 task_set_no_new_privs(p);
1226
1227 /*
1228 * If the parent gained a seccomp mode after copying thread
1229 * flags and between before we held the sighand lock, we have
1230 * to manually enable the seccomp thread flag here.
1231 */
1232 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1233 set_tsk_thread_flag(p, TIF_SECCOMP);
1234 #endif
1235 }
1236
1237 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1238 {
1239 current->clear_child_tid = tidptr;
1240
1241 return task_pid_vnr(current);
1242 }
1243
1244 static void rt_mutex_init_task(struct task_struct *p)
1245 {
1246 raw_spin_lock_init(&p->pi_lock);
1247 #ifdef CONFIG_RT_MUTEXES
1248 p->pi_waiters = RB_ROOT;
1249 p->pi_waiters_leftmost = NULL;
1250 p->pi_blocked_on = NULL;
1251 #endif
1252 }
1253
1254 /*
1255 * Initialize POSIX timer handling for a single task.
1256 */
1257 static void posix_cpu_timers_init(struct task_struct *tsk)
1258 {
1259 tsk->cputime_expires.prof_exp = 0;
1260 tsk->cputime_expires.virt_exp = 0;
1261 tsk->cputime_expires.sched_exp = 0;
1262 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1263 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1264 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1265 }
1266
1267 static inline void
1268 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1269 {
1270 task->pids[type].pid = pid;
1271 }
1272
1273 /*
1274 * This creates a new process as a copy of the old one,
1275 * but does not actually start it yet.
1276 *
1277 * It copies the registers, and all the appropriate
1278 * parts of the process environment (as per the clone
1279 * flags). The actual kick-off is left to the caller.
1280 */
1281 static struct task_struct *copy_process(unsigned long clone_flags,
1282 unsigned long stack_start,
1283 unsigned long stack_size,
1284 int __user *child_tidptr,
1285 struct pid *pid,
1286 int trace,
1287 unsigned long tls,
1288 int node)
1289 {
1290 int retval;
1291 struct task_struct *p;
1292
1293 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1294 return ERR_PTR(-EINVAL);
1295
1296 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1297 return ERR_PTR(-EINVAL);
1298
1299 /*
1300 * Thread groups must share signals as well, and detached threads
1301 * can only be started up within the thread group.
1302 */
1303 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1304 return ERR_PTR(-EINVAL);
1305
1306 /*
1307 * Shared signal handlers imply shared VM. By way of the above,
1308 * thread groups also imply shared VM. Blocking this case allows
1309 * for various simplifications in other code.
1310 */
1311 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1312 return ERR_PTR(-EINVAL);
1313
1314 /*
1315 * Siblings of global init remain as zombies on exit since they are
1316 * not reaped by their parent (swapper). To solve this and to avoid
1317 * multi-rooted process trees, prevent global and container-inits
1318 * from creating siblings.
1319 */
1320 if ((clone_flags & CLONE_PARENT) &&
1321 current->signal->flags & SIGNAL_UNKILLABLE)
1322 return ERR_PTR(-EINVAL);
1323
1324 /*
1325 * If the new process will be in a different pid or user namespace
1326 * do not allow it to share a thread group with the forking task.
1327 */
1328 if (clone_flags & CLONE_THREAD) {
1329 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1330 (task_active_pid_ns(current) !=
1331 current->nsproxy->pid_ns_for_children))
1332 return ERR_PTR(-EINVAL);
1333 }
1334
1335 retval = security_task_create(clone_flags);
1336 if (retval)
1337 goto fork_out;
1338
1339 retval = -ENOMEM;
1340 p = dup_task_struct(current, node);
1341 if (!p)
1342 goto fork_out;
1343
1344 ftrace_graph_init_task(p);
1345
1346 rt_mutex_init_task(p);
1347
1348 #ifdef CONFIG_PROVE_LOCKING
1349 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1350 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1351 #endif
1352 retval = -EAGAIN;
1353 if (atomic_read(&p->real_cred->user->processes) >=
1354 task_rlimit(p, RLIMIT_NPROC)) {
1355 if (p->real_cred->user != INIT_USER &&
1356 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1357 goto bad_fork_free;
1358 }
1359 current->flags &= ~PF_NPROC_EXCEEDED;
1360
1361 retval = copy_creds(p, clone_flags);
1362 if (retval < 0)
1363 goto bad_fork_free;
1364
1365 /*
1366 * If multiple threads are within copy_process(), then this check
1367 * triggers too late. This doesn't hurt, the check is only there
1368 * to stop root fork bombs.
1369 */
1370 retval = -EAGAIN;
1371 if (nr_threads >= max_threads)
1372 goto bad_fork_cleanup_count;
1373
1374 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1375 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1376 p->flags |= PF_FORKNOEXEC;
1377 INIT_LIST_HEAD(&p->children);
1378 INIT_LIST_HEAD(&p->sibling);
1379 rcu_copy_process(p);
1380 p->vfork_done = NULL;
1381 spin_lock_init(&p->alloc_lock);
1382
1383 init_sigpending(&p->pending);
1384
1385 p->utime = p->stime = p->gtime = 0;
1386 p->utimescaled = p->stimescaled = 0;
1387 prev_cputime_init(&p->prev_cputime);
1388
1389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1390 seqcount_init(&p->vtime_seqcount);
1391 p->vtime_snap = 0;
1392 p->vtime_snap_whence = VTIME_INACTIVE;
1393 #endif
1394
1395 #if defined(SPLIT_RSS_COUNTING)
1396 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1397 #endif
1398
1399 p->default_timer_slack_ns = current->timer_slack_ns;
1400
1401 task_io_accounting_init(&p->ioac);
1402 acct_clear_integrals(p);
1403
1404 posix_cpu_timers_init(p);
1405
1406 p->start_time = ktime_get_ns();
1407 p->real_start_time = ktime_get_boot_ns();
1408 p->io_context = NULL;
1409 p->audit_context = NULL;
1410 threadgroup_change_begin(current);
1411 cgroup_fork(p);
1412 #ifdef CONFIG_NUMA
1413 p->mempolicy = mpol_dup(p->mempolicy);
1414 if (IS_ERR(p->mempolicy)) {
1415 retval = PTR_ERR(p->mempolicy);
1416 p->mempolicy = NULL;
1417 goto bad_fork_cleanup_threadgroup_lock;
1418 }
1419 #endif
1420 #ifdef CONFIG_CPUSETS
1421 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1422 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1423 seqcount_init(&p->mems_allowed_seq);
1424 #endif
1425 #ifdef CONFIG_TRACE_IRQFLAGS
1426 p->irq_events = 0;
1427 p->hardirqs_enabled = 0;
1428 p->hardirq_enable_ip = 0;
1429 p->hardirq_enable_event = 0;
1430 p->hardirq_disable_ip = _THIS_IP_;
1431 p->hardirq_disable_event = 0;
1432 p->softirqs_enabled = 1;
1433 p->softirq_enable_ip = _THIS_IP_;
1434 p->softirq_enable_event = 0;
1435 p->softirq_disable_ip = 0;
1436 p->softirq_disable_event = 0;
1437 p->hardirq_context = 0;
1438 p->softirq_context = 0;
1439 #endif
1440
1441 p->pagefault_disabled = 0;
1442
1443 #ifdef CONFIG_LOCKDEP
1444 p->lockdep_depth = 0; /* no locks held yet */
1445 p->curr_chain_key = 0;
1446 p->lockdep_recursion = 0;
1447 #endif
1448
1449 #ifdef CONFIG_DEBUG_MUTEXES
1450 p->blocked_on = NULL; /* not blocked yet */
1451 #endif
1452 #ifdef CONFIG_BCACHE
1453 p->sequential_io = 0;
1454 p->sequential_io_avg = 0;
1455 #endif
1456
1457 /* Perform scheduler related setup. Assign this task to a CPU. */
1458 retval = sched_fork(clone_flags, p);
1459 if (retval)
1460 goto bad_fork_cleanup_policy;
1461
1462 retval = perf_event_init_task(p);
1463 if (retval)
1464 goto bad_fork_cleanup_policy;
1465 retval = audit_alloc(p);
1466 if (retval)
1467 goto bad_fork_cleanup_perf;
1468 /* copy all the process information */
1469 shm_init_task(p);
1470 retval = copy_semundo(clone_flags, p);
1471 if (retval)
1472 goto bad_fork_cleanup_audit;
1473 retval = copy_files(clone_flags, p);
1474 if (retval)
1475 goto bad_fork_cleanup_semundo;
1476 retval = copy_fs(clone_flags, p);
1477 if (retval)
1478 goto bad_fork_cleanup_files;
1479 retval = copy_sighand(clone_flags, p);
1480 if (retval)
1481 goto bad_fork_cleanup_fs;
1482 retval = copy_signal(clone_flags, p);
1483 if (retval)
1484 goto bad_fork_cleanup_sighand;
1485 retval = copy_mm(clone_flags, p);
1486 if (retval)
1487 goto bad_fork_cleanup_signal;
1488 retval = copy_namespaces(clone_flags, p);
1489 if (retval)
1490 goto bad_fork_cleanup_mm;
1491 retval = copy_io(clone_flags, p);
1492 if (retval)
1493 goto bad_fork_cleanup_namespaces;
1494 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1495 if (retval)
1496 goto bad_fork_cleanup_io;
1497
1498 if (pid != &init_struct_pid) {
1499 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1500 if (IS_ERR(pid)) {
1501 retval = PTR_ERR(pid);
1502 goto bad_fork_cleanup_thread;
1503 }
1504 }
1505
1506 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1507 /*
1508 * Clear TID on mm_release()?
1509 */
1510 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1511 #ifdef CONFIG_BLOCK
1512 p->plug = NULL;
1513 #endif
1514 #ifdef CONFIG_FUTEX
1515 p->robust_list = NULL;
1516 #ifdef CONFIG_COMPAT
1517 p->compat_robust_list = NULL;
1518 #endif
1519 INIT_LIST_HEAD(&p->pi_state_list);
1520 p->pi_state_cache = NULL;
1521 #endif
1522 /*
1523 * sigaltstack should be cleared when sharing the same VM
1524 */
1525 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1526 sas_ss_reset(p);
1527
1528 /*
1529 * Syscall tracing and stepping should be turned off in the
1530 * child regardless of CLONE_PTRACE.
1531 */
1532 user_disable_single_step(p);
1533 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1534 #ifdef TIF_SYSCALL_EMU
1535 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1536 #endif
1537 clear_all_latency_tracing(p);
1538
1539 /* ok, now we should be set up.. */
1540 p->pid = pid_nr(pid);
1541 if (clone_flags & CLONE_THREAD) {
1542 p->exit_signal = -1;
1543 p->group_leader = current->group_leader;
1544 p->tgid = current->tgid;
1545 } else {
1546 if (clone_flags & CLONE_PARENT)
1547 p->exit_signal = current->group_leader->exit_signal;
1548 else
1549 p->exit_signal = (clone_flags & CSIGNAL);
1550 p->group_leader = p;
1551 p->tgid = p->pid;
1552 }
1553
1554 p->nr_dirtied = 0;
1555 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1556 p->dirty_paused_when = 0;
1557
1558 p->pdeath_signal = 0;
1559 INIT_LIST_HEAD(&p->thread_group);
1560 p->task_works = NULL;
1561
1562 /*
1563 * Ensure that the cgroup subsystem policies allow the new process to be
1564 * forked. It should be noted the the new process's css_set can be changed
1565 * between here and cgroup_post_fork() if an organisation operation is in
1566 * progress.
1567 */
1568 retval = cgroup_can_fork(p);
1569 if (retval)
1570 goto bad_fork_free_pid;
1571
1572 /*
1573 * Make it visible to the rest of the system, but dont wake it up yet.
1574 * Need tasklist lock for parent etc handling!
1575 */
1576 write_lock_irq(&tasklist_lock);
1577
1578 /* CLONE_PARENT re-uses the old parent */
1579 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1580 p->real_parent = current->real_parent;
1581 p->parent_exec_id = current->parent_exec_id;
1582 } else {
1583 p->real_parent = current;
1584 p->parent_exec_id = current->self_exec_id;
1585 }
1586
1587 spin_lock(&current->sighand->siglock);
1588
1589 /*
1590 * Copy seccomp details explicitly here, in case they were changed
1591 * before holding sighand lock.
1592 */
1593 copy_seccomp(p);
1594
1595 /*
1596 * Process group and session signals need to be delivered to just the
1597 * parent before the fork or both the parent and the child after the
1598 * fork. Restart if a signal comes in before we add the new process to
1599 * it's process group.
1600 * A fatal signal pending means that current will exit, so the new
1601 * thread can't slip out of an OOM kill (or normal SIGKILL).
1602 */
1603 recalc_sigpending();
1604 if (signal_pending(current)) {
1605 spin_unlock(&current->sighand->siglock);
1606 write_unlock_irq(&tasklist_lock);
1607 retval = -ERESTARTNOINTR;
1608 goto bad_fork_cancel_cgroup;
1609 }
1610
1611 if (likely(p->pid)) {
1612 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1613
1614 init_task_pid(p, PIDTYPE_PID, pid);
1615 if (thread_group_leader(p)) {
1616 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1617 init_task_pid(p, PIDTYPE_SID, task_session(current));
1618
1619 if (is_child_reaper(pid)) {
1620 ns_of_pid(pid)->child_reaper = p;
1621 p->signal->flags |= SIGNAL_UNKILLABLE;
1622 }
1623
1624 p->signal->leader_pid = pid;
1625 p->signal->tty = tty_kref_get(current->signal->tty);
1626 list_add_tail(&p->sibling, &p->real_parent->children);
1627 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1628 attach_pid(p, PIDTYPE_PGID);
1629 attach_pid(p, PIDTYPE_SID);
1630 __this_cpu_inc(process_counts);
1631 } else {
1632 current->signal->nr_threads++;
1633 atomic_inc(&current->signal->live);
1634 atomic_inc(&current->signal->sigcnt);
1635 list_add_tail_rcu(&p->thread_group,
1636 &p->group_leader->thread_group);
1637 list_add_tail_rcu(&p->thread_node,
1638 &p->signal->thread_head);
1639 }
1640 attach_pid(p, PIDTYPE_PID);
1641 nr_threads++;
1642 }
1643
1644 total_forks++;
1645 spin_unlock(&current->sighand->siglock);
1646 syscall_tracepoint_update(p);
1647 write_unlock_irq(&tasklist_lock);
1648
1649 proc_fork_connector(p);
1650 cgroup_post_fork(p);
1651 threadgroup_change_end(current);
1652 perf_event_fork(p);
1653
1654 trace_task_newtask(p, clone_flags);
1655 uprobe_copy_process(p, clone_flags);
1656
1657 return p;
1658
1659 bad_fork_cancel_cgroup:
1660 cgroup_cancel_fork(p);
1661 bad_fork_free_pid:
1662 if (pid != &init_struct_pid)
1663 free_pid(pid);
1664 bad_fork_cleanup_thread:
1665 exit_thread(p);
1666 bad_fork_cleanup_io:
1667 if (p->io_context)
1668 exit_io_context(p);
1669 bad_fork_cleanup_namespaces:
1670 exit_task_namespaces(p);
1671 bad_fork_cleanup_mm:
1672 if (p->mm)
1673 mmput(p->mm);
1674 bad_fork_cleanup_signal:
1675 if (!(clone_flags & CLONE_THREAD))
1676 free_signal_struct(p->signal);
1677 bad_fork_cleanup_sighand:
1678 __cleanup_sighand(p->sighand);
1679 bad_fork_cleanup_fs:
1680 exit_fs(p); /* blocking */
1681 bad_fork_cleanup_files:
1682 exit_files(p); /* blocking */
1683 bad_fork_cleanup_semundo:
1684 exit_sem(p);
1685 bad_fork_cleanup_audit:
1686 audit_free(p);
1687 bad_fork_cleanup_perf:
1688 perf_event_free_task(p);
1689 bad_fork_cleanup_policy:
1690 #ifdef CONFIG_NUMA
1691 mpol_put(p->mempolicy);
1692 bad_fork_cleanup_threadgroup_lock:
1693 #endif
1694 threadgroup_change_end(current);
1695 delayacct_tsk_free(p);
1696 bad_fork_cleanup_count:
1697 atomic_dec(&p->cred->user->processes);
1698 exit_creds(p);
1699 bad_fork_free:
1700 free_task(p);
1701 fork_out:
1702 return ERR_PTR(retval);
1703 }
1704
1705 static inline void init_idle_pids(struct pid_link *links)
1706 {
1707 enum pid_type type;
1708
1709 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1710 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1711 links[type].pid = &init_struct_pid;
1712 }
1713 }
1714
1715 struct task_struct *fork_idle(int cpu)
1716 {
1717 struct task_struct *task;
1718 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1719 cpu_to_node(cpu));
1720 if (!IS_ERR(task)) {
1721 init_idle_pids(task->pids);
1722 init_idle(task, cpu);
1723 }
1724
1725 return task;
1726 }
1727
1728 /*
1729 * Ok, this is the main fork-routine.
1730 *
1731 * It copies the process, and if successful kick-starts
1732 * it and waits for it to finish using the VM if required.
1733 */
1734 long _do_fork(unsigned long clone_flags,
1735 unsigned long stack_start,
1736 unsigned long stack_size,
1737 int __user *parent_tidptr,
1738 int __user *child_tidptr,
1739 unsigned long tls)
1740 {
1741 struct task_struct *p;
1742 int trace = 0;
1743 long nr;
1744
1745 /*
1746 * Determine whether and which event to report to ptracer. When
1747 * called from kernel_thread or CLONE_UNTRACED is explicitly
1748 * requested, no event is reported; otherwise, report if the event
1749 * for the type of forking is enabled.
1750 */
1751 if (!(clone_flags & CLONE_UNTRACED)) {
1752 if (clone_flags & CLONE_VFORK)
1753 trace = PTRACE_EVENT_VFORK;
1754 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1755 trace = PTRACE_EVENT_CLONE;
1756 else
1757 trace = PTRACE_EVENT_FORK;
1758
1759 if (likely(!ptrace_event_enabled(current, trace)))
1760 trace = 0;
1761 }
1762
1763 p = copy_process(clone_flags, stack_start, stack_size,
1764 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1765 /*
1766 * Do this prior waking up the new thread - the thread pointer
1767 * might get invalid after that point, if the thread exits quickly.
1768 */
1769 if (!IS_ERR(p)) {
1770 struct completion vfork;
1771 struct pid *pid;
1772
1773 trace_sched_process_fork(current, p);
1774
1775 pid = get_task_pid(p, PIDTYPE_PID);
1776 nr = pid_vnr(pid);
1777
1778 if (clone_flags & CLONE_PARENT_SETTID)
1779 put_user(nr, parent_tidptr);
1780
1781 if (clone_flags & CLONE_VFORK) {
1782 p->vfork_done = &vfork;
1783 init_completion(&vfork);
1784 get_task_struct(p);
1785 }
1786
1787 wake_up_new_task(p);
1788
1789 /* forking complete and child started to run, tell ptracer */
1790 if (unlikely(trace))
1791 ptrace_event_pid(trace, pid);
1792
1793 if (clone_flags & CLONE_VFORK) {
1794 if (!wait_for_vfork_done(p, &vfork))
1795 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1796 }
1797
1798 put_pid(pid);
1799 } else {
1800 nr = PTR_ERR(p);
1801 }
1802 return nr;
1803 }
1804
1805 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1806 /* For compatibility with architectures that call do_fork directly rather than
1807 * using the syscall entry points below. */
1808 long do_fork(unsigned long clone_flags,
1809 unsigned long stack_start,
1810 unsigned long stack_size,
1811 int __user *parent_tidptr,
1812 int __user *child_tidptr)
1813 {
1814 return _do_fork(clone_flags, stack_start, stack_size,
1815 parent_tidptr, child_tidptr, 0);
1816 }
1817 #endif
1818
1819 /*
1820 * Create a kernel thread.
1821 */
1822 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1823 {
1824 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1825 (unsigned long)arg, NULL, NULL, 0);
1826 }
1827
1828 #ifdef __ARCH_WANT_SYS_FORK
1829 SYSCALL_DEFINE0(fork)
1830 {
1831 #ifdef CONFIG_MMU
1832 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1833 #else
1834 /* can not support in nommu mode */
1835 return -EINVAL;
1836 #endif
1837 }
1838 #endif
1839
1840 #ifdef __ARCH_WANT_SYS_VFORK
1841 SYSCALL_DEFINE0(vfork)
1842 {
1843 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1844 0, NULL, NULL, 0);
1845 }
1846 #endif
1847
1848 #ifdef __ARCH_WANT_SYS_CLONE
1849 #ifdef CONFIG_CLONE_BACKWARDS
1850 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1851 int __user *, parent_tidptr,
1852 unsigned long, tls,
1853 int __user *, child_tidptr)
1854 #elif defined(CONFIG_CLONE_BACKWARDS2)
1855 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1856 int __user *, parent_tidptr,
1857 int __user *, child_tidptr,
1858 unsigned long, tls)
1859 #elif defined(CONFIG_CLONE_BACKWARDS3)
1860 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1861 int, stack_size,
1862 int __user *, parent_tidptr,
1863 int __user *, child_tidptr,
1864 unsigned long, tls)
1865 #else
1866 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1867 int __user *, parent_tidptr,
1868 int __user *, child_tidptr,
1869 unsigned long, tls)
1870 #endif
1871 {
1872 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1873 }
1874 #endif
1875
1876 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1877 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1878 #endif
1879
1880 static void sighand_ctor(void *data)
1881 {
1882 struct sighand_struct *sighand = data;
1883
1884 spin_lock_init(&sighand->siglock);
1885 init_waitqueue_head(&sighand->signalfd_wqh);
1886 }
1887
1888 void __init proc_caches_init(void)
1889 {
1890 sighand_cachep = kmem_cache_create("sighand_cache",
1891 sizeof(struct sighand_struct), 0,
1892 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1893 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1894 signal_cachep = kmem_cache_create("signal_cache",
1895 sizeof(struct signal_struct), 0,
1896 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1897 NULL);
1898 files_cachep = kmem_cache_create("files_cache",
1899 sizeof(struct files_struct), 0,
1900 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1901 NULL);
1902 fs_cachep = kmem_cache_create("fs_cache",
1903 sizeof(struct fs_struct), 0,
1904 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1905 NULL);
1906 /*
1907 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1908 * whole struct cpumask for the OFFSTACK case. We could change
1909 * this to *only* allocate as much of it as required by the
1910 * maximum number of CPU's we can ever have. The cpumask_allocation
1911 * is at the end of the structure, exactly for that reason.
1912 */
1913 mm_cachep = kmem_cache_create("mm_struct",
1914 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1915 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1916 NULL);
1917 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1918 mmap_init();
1919 nsproxy_cache_init();
1920 }
1921
1922 /*
1923 * Check constraints on flags passed to the unshare system call.
1924 */
1925 static int check_unshare_flags(unsigned long unshare_flags)
1926 {
1927 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1928 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1929 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1930 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1931 return -EINVAL;
1932 /*
1933 * Not implemented, but pretend it works if there is nothing
1934 * to unshare. Note that unsharing the address space or the
1935 * signal handlers also need to unshare the signal queues (aka
1936 * CLONE_THREAD).
1937 */
1938 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1939 if (!thread_group_empty(current))
1940 return -EINVAL;
1941 }
1942 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1943 if (atomic_read(&current->sighand->count) > 1)
1944 return -EINVAL;
1945 }
1946 if (unshare_flags & CLONE_VM) {
1947 if (!current_is_single_threaded())
1948 return -EINVAL;
1949 }
1950
1951 return 0;
1952 }
1953
1954 /*
1955 * Unshare the filesystem structure if it is being shared
1956 */
1957 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1958 {
1959 struct fs_struct *fs = current->fs;
1960
1961 if (!(unshare_flags & CLONE_FS) || !fs)
1962 return 0;
1963
1964 /* don't need lock here; in the worst case we'll do useless copy */
1965 if (fs->users == 1)
1966 return 0;
1967
1968 *new_fsp = copy_fs_struct(fs);
1969 if (!*new_fsp)
1970 return -ENOMEM;
1971
1972 return 0;
1973 }
1974
1975 /*
1976 * Unshare file descriptor table if it is being shared
1977 */
1978 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1979 {
1980 struct files_struct *fd = current->files;
1981 int error = 0;
1982
1983 if ((unshare_flags & CLONE_FILES) &&
1984 (fd && atomic_read(&fd->count) > 1)) {
1985 *new_fdp = dup_fd(fd, &error);
1986 if (!*new_fdp)
1987 return error;
1988 }
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * unshare allows a process to 'unshare' part of the process
1995 * context which was originally shared using clone. copy_*
1996 * functions used by do_fork() cannot be used here directly
1997 * because they modify an inactive task_struct that is being
1998 * constructed. Here we are modifying the current, active,
1999 * task_struct.
2000 */
2001 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2002 {
2003 struct fs_struct *fs, *new_fs = NULL;
2004 struct files_struct *fd, *new_fd = NULL;
2005 struct cred *new_cred = NULL;
2006 struct nsproxy *new_nsproxy = NULL;
2007 int do_sysvsem = 0;
2008 int err;
2009
2010 /*
2011 * If unsharing a user namespace must also unshare the thread group
2012 * and unshare the filesystem root and working directories.
2013 */
2014 if (unshare_flags & CLONE_NEWUSER)
2015 unshare_flags |= CLONE_THREAD | CLONE_FS;
2016 /*
2017 * If unsharing vm, must also unshare signal handlers.
2018 */
2019 if (unshare_flags & CLONE_VM)
2020 unshare_flags |= CLONE_SIGHAND;
2021 /*
2022 * If unsharing a signal handlers, must also unshare the signal queues.
2023 */
2024 if (unshare_flags & CLONE_SIGHAND)
2025 unshare_flags |= CLONE_THREAD;
2026 /*
2027 * If unsharing namespace, must also unshare filesystem information.
2028 */
2029 if (unshare_flags & CLONE_NEWNS)
2030 unshare_flags |= CLONE_FS;
2031
2032 err = check_unshare_flags(unshare_flags);
2033 if (err)
2034 goto bad_unshare_out;
2035 /*
2036 * CLONE_NEWIPC must also detach from the undolist: after switching
2037 * to a new ipc namespace, the semaphore arrays from the old
2038 * namespace are unreachable.
2039 */
2040 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2041 do_sysvsem = 1;
2042 err = unshare_fs(unshare_flags, &new_fs);
2043 if (err)
2044 goto bad_unshare_out;
2045 err = unshare_fd(unshare_flags, &new_fd);
2046 if (err)
2047 goto bad_unshare_cleanup_fs;
2048 err = unshare_userns(unshare_flags, &new_cred);
2049 if (err)
2050 goto bad_unshare_cleanup_fd;
2051 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2052 new_cred, new_fs);
2053 if (err)
2054 goto bad_unshare_cleanup_cred;
2055
2056 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2057 if (do_sysvsem) {
2058 /*
2059 * CLONE_SYSVSEM is equivalent to sys_exit().
2060 */
2061 exit_sem(current);
2062 }
2063 if (unshare_flags & CLONE_NEWIPC) {
2064 /* Orphan segments in old ns (see sem above). */
2065 exit_shm(current);
2066 shm_init_task(current);
2067 }
2068
2069 if (new_nsproxy)
2070 switch_task_namespaces(current, new_nsproxy);
2071
2072 task_lock(current);
2073
2074 if (new_fs) {
2075 fs = current->fs;
2076 spin_lock(&fs->lock);
2077 current->fs = new_fs;
2078 if (--fs->users)
2079 new_fs = NULL;
2080 else
2081 new_fs = fs;
2082 spin_unlock(&fs->lock);
2083 }
2084
2085 if (new_fd) {
2086 fd = current->files;
2087 current->files = new_fd;
2088 new_fd = fd;
2089 }
2090
2091 task_unlock(current);
2092
2093 if (new_cred) {
2094 /* Install the new user namespace */
2095 commit_creds(new_cred);
2096 new_cred = NULL;
2097 }
2098 }
2099
2100 bad_unshare_cleanup_cred:
2101 if (new_cred)
2102 put_cred(new_cred);
2103 bad_unshare_cleanup_fd:
2104 if (new_fd)
2105 put_files_struct(new_fd);
2106
2107 bad_unshare_cleanup_fs:
2108 if (new_fs)
2109 free_fs_struct(new_fs);
2110
2111 bad_unshare_out:
2112 return err;
2113 }
2114
2115 /*
2116 * Helper to unshare the files of the current task.
2117 * We don't want to expose copy_files internals to
2118 * the exec layer of the kernel.
2119 */
2120
2121 int unshare_files(struct files_struct **displaced)
2122 {
2123 struct task_struct *task = current;
2124 struct files_struct *copy = NULL;
2125 int error;
2126
2127 error = unshare_fd(CLONE_FILES, &copy);
2128 if (error || !copy) {
2129 *displaced = NULL;
2130 return error;
2131 }
2132 *displaced = task->files;
2133 task_lock(task);
2134 task->files = copy;
2135 task_unlock(task);
2136 return 0;
2137 }
2138
2139 int sysctl_max_threads(struct ctl_table *table, int write,
2140 void __user *buffer, size_t *lenp, loff_t *ppos)
2141 {
2142 struct ctl_table t;
2143 int ret;
2144 int threads = max_threads;
2145 int min = MIN_THREADS;
2146 int max = MAX_THREADS;
2147
2148 t = *table;
2149 t.data = &threads;
2150 t.extra1 = &min;
2151 t.extra2 = &max;
2152
2153 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2154 if (ret || !write)
2155 return ret;
2156
2157 set_max_threads(threads);
2158
2159 return 0;
2160 }
This page took 0.111061 seconds and 4 git commands to generate.