Merge branch 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 if (page)
168 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
169 1 << THREAD_SIZE_ORDER);
170
171 return page ? page_address(page) : NULL;
172 }
173
174 static inline void free_thread_info(struct thread_info *ti)
175 {
176 struct page *page = virt_to_page(ti);
177
178 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
179 -(1 << THREAD_SIZE_ORDER));
180 __free_kmem_pages(page, THREAD_SIZE_ORDER);
181 }
182 # else
183 static struct kmem_cache *thread_info_cache;
184
185 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
186 int node)
187 {
188 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
189 }
190
191 static void free_thread_info(struct thread_info *ti)
192 {
193 kmem_cache_free(thread_info_cache, ti);
194 }
195
196 void thread_info_cache_init(void)
197 {
198 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
199 THREAD_SIZE, 0, NULL);
200 BUG_ON(thread_info_cache == NULL);
201 }
202 # endif
203 #endif
204
205 /* SLAB cache for signal_struct structures (tsk->signal) */
206 static struct kmem_cache *signal_cachep;
207
208 /* SLAB cache for sighand_struct structures (tsk->sighand) */
209 struct kmem_cache *sighand_cachep;
210
211 /* SLAB cache for files_struct structures (tsk->files) */
212 struct kmem_cache *files_cachep;
213
214 /* SLAB cache for fs_struct structures (tsk->fs) */
215 struct kmem_cache *fs_cachep;
216
217 /* SLAB cache for vm_area_struct structures */
218 struct kmem_cache *vm_area_cachep;
219
220 /* SLAB cache for mm_struct structures (tsk->mm) */
221 static struct kmem_cache *mm_cachep;
222
223 static void account_kernel_stack(struct thread_info *ti, int account)
224 {
225 struct zone *zone = page_zone(virt_to_page(ti));
226
227 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
228 }
229
230 void free_task(struct task_struct *tsk)
231 {
232 account_kernel_stack(tsk->stack, -1);
233 arch_release_thread_info(tsk->stack);
234 free_thread_info(tsk->stack);
235 rt_mutex_debug_task_free(tsk);
236 ftrace_graph_exit_task(tsk);
237 put_seccomp_filter(tsk);
238 arch_release_task_struct(tsk);
239 free_task_struct(tsk);
240 }
241 EXPORT_SYMBOL(free_task);
242
243 static inline void free_signal_struct(struct signal_struct *sig)
244 {
245 taskstats_tgid_free(sig);
246 sched_autogroup_exit(sig);
247 kmem_cache_free(signal_cachep, sig);
248 }
249
250 static inline void put_signal_struct(struct signal_struct *sig)
251 {
252 if (atomic_dec_and_test(&sig->sigcnt))
253 free_signal_struct(sig);
254 }
255
256 void __put_task_struct(struct task_struct *tsk)
257 {
258 WARN_ON(!tsk->exit_state);
259 WARN_ON(atomic_read(&tsk->usage));
260 WARN_ON(tsk == current);
261
262 cgroup_free(tsk);
263 task_numa_free(tsk);
264 security_task_free(tsk);
265 exit_creds(tsk);
266 delayacct_tsk_free(tsk);
267 put_signal_struct(tsk->signal);
268
269 if (!profile_handoff_task(tsk))
270 free_task(tsk);
271 }
272 EXPORT_SYMBOL_GPL(__put_task_struct);
273
274 void __init __weak arch_task_cache_init(void) { }
275
276 /*
277 * set_max_threads
278 */
279 static void set_max_threads(unsigned int max_threads_suggested)
280 {
281 u64 threads;
282
283 /*
284 * The number of threads shall be limited such that the thread
285 * structures may only consume a small part of the available memory.
286 */
287 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
288 threads = MAX_THREADS;
289 else
290 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
291 (u64) THREAD_SIZE * 8UL);
292
293 if (threads > max_threads_suggested)
294 threads = max_threads_suggested;
295
296 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
297 }
298
299 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
300 /* Initialized by the architecture: */
301 int arch_task_struct_size __read_mostly;
302 #endif
303
304 void __init fork_init(void)
305 {
306 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
307 #ifndef ARCH_MIN_TASKALIGN
308 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
309 #endif
310 /* create a slab on which task_structs can be allocated */
311 task_struct_cachep = kmem_cache_create("task_struct",
312 arch_task_struct_size, ARCH_MIN_TASKALIGN,
313 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
314 #endif
315
316 /* do the arch specific task caches init */
317 arch_task_cache_init();
318
319 set_max_threads(MAX_THREADS);
320
321 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
322 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
323 init_task.signal->rlim[RLIMIT_SIGPENDING] =
324 init_task.signal->rlim[RLIMIT_NPROC];
325 }
326
327 int __weak arch_dup_task_struct(struct task_struct *dst,
328 struct task_struct *src)
329 {
330 *dst = *src;
331 return 0;
332 }
333
334 void set_task_stack_end_magic(struct task_struct *tsk)
335 {
336 unsigned long *stackend;
337
338 stackend = end_of_stack(tsk);
339 *stackend = STACK_END_MAGIC; /* for overflow detection */
340 }
341
342 static struct task_struct *dup_task_struct(struct task_struct *orig)
343 {
344 struct task_struct *tsk;
345 struct thread_info *ti;
346 int node = tsk_fork_get_node(orig);
347 int err;
348
349 tsk = alloc_task_struct_node(node);
350 if (!tsk)
351 return NULL;
352
353 ti = alloc_thread_info_node(tsk, node);
354 if (!ti)
355 goto free_tsk;
356
357 err = arch_dup_task_struct(tsk, orig);
358 if (err)
359 goto free_ti;
360
361 tsk->stack = ti;
362 #ifdef CONFIG_SECCOMP
363 /*
364 * We must handle setting up seccomp filters once we're under
365 * the sighand lock in case orig has changed between now and
366 * then. Until then, filter must be NULL to avoid messing up
367 * the usage counts on the error path calling free_task.
368 */
369 tsk->seccomp.filter = NULL;
370 #endif
371
372 setup_thread_stack(tsk, orig);
373 clear_user_return_notifier(tsk);
374 clear_tsk_need_resched(tsk);
375 set_task_stack_end_magic(tsk);
376
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 tsk->stack_canary = get_random_int();
379 #endif
380
381 /*
382 * One for us, one for whoever does the "release_task()" (usually
383 * parent)
384 */
385 atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387 tsk->btrace_seq = 0;
388 #endif
389 tsk->splice_pipe = NULL;
390 tsk->task_frag.page = NULL;
391 tsk->wake_q.next = NULL;
392
393 account_kernel_stack(ti, 1);
394
395 return tsk;
396
397 free_ti:
398 free_thread_info(ti);
399 free_tsk:
400 free_task_struct(tsk);
401 return NULL;
402 }
403
404 #ifdef CONFIG_MMU
405 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
406 {
407 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
408 struct rb_node **rb_link, *rb_parent;
409 int retval;
410 unsigned long charge;
411
412 uprobe_start_dup_mmap();
413 down_write(&oldmm->mmap_sem);
414 flush_cache_dup_mm(oldmm);
415 uprobe_dup_mmap(oldmm, mm);
416 /*
417 * Not linked in yet - no deadlock potential:
418 */
419 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
420
421 /* No ordering required: file already has been exposed. */
422 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
423
424 mm->total_vm = oldmm->total_vm;
425 mm->data_vm = oldmm->data_vm;
426 mm->exec_vm = oldmm->exec_vm;
427 mm->stack_vm = oldmm->stack_vm;
428
429 rb_link = &mm->mm_rb.rb_node;
430 rb_parent = NULL;
431 pprev = &mm->mmap;
432 retval = ksm_fork(mm, oldmm);
433 if (retval)
434 goto out;
435 retval = khugepaged_fork(mm, oldmm);
436 if (retval)
437 goto out;
438
439 prev = NULL;
440 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
441 struct file *file;
442
443 if (mpnt->vm_flags & VM_DONTCOPY) {
444 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
445 continue;
446 }
447 charge = 0;
448 if (mpnt->vm_flags & VM_ACCOUNT) {
449 unsigned long len = vma_pages(mpnt);
450
451 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
452 goto fail_nomem;
453 charge = len;
454 }
455 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
456 if (!tmp)
457 goto fail_nomem;
458 *tmp = *mpnt;
459 INIT_LIST_HEAD(&tmp->anon_vma_chain);
460 retval = vma_dup_policy(mpnt, tmp);
461 if (retval)
462 goto fail_nomem_policy;
463 tmp->vm_mm = mm;
464 if (anon_vma_fork(tmp, mpnt))
465 goto fail_nomem_anon_vma_fork;
466 tmp->vm_flags &=
467 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
468 tmp->vm_next = tmp->vm_prev = NULL;
469 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
470 file = tmp->vm_file;
471 if (file) {
472 struct inode *inode = file_inode(file);
473 struct address_space *mapping = file->f_mapping;
474
475 get_file(file);
476 if (tmp->vm_flags & VM_DENYWRITE)
477 atomic_dec(&inode->i_writecount);
478 i_mmap_lock_write(mapping);
479 if (tmp->vm_flags & VM_SHARED)
480 atomic_inc(&mapping->i_mmap_writable);
481 flush_dcache_mmap_lock(mapping);
482 /* insert tmp into the share list, just after mpnt */
483 vma_interval_tree_insert_after(tmp, mpnt,
484 &mapping->i_mmap);
485 flush_dcache_mmap_unlock(mapping);
486 i_mmap_unlock_write(mapping);
487 }
488
489 /*
490 * Clear hugetlb-related page reserves for children. This only
491 * affects MAP_PRIVATE mappings. Faults generated by the child
492 * are not guaranteed to succeed, even if read-only
493 */
494 if (is_vm_hugetlb_page(tmp))
495 reset_vma_resv_huge_pages(tmp);
496
497 /*
498 * Link in the new vma and copy the page table entries.
499 */
500 *pprev = tmp;
501 pprev = &tmp->vm_next;
502 tmp->vm_prev = prev;
503 prev = tmp;
504
505 __vma_link_rb(mm, tmp, rb_link, rb_parent);
506 rb_link = &tmp->vm_rb.rb_right;
507 rb_parent = &tmp->vm_rb;
508
509 mm->map_count++;
510 retval = copy_page_range(mm, oldmm, mpnt);
511
512 if (tmp->vm_ops && tmp->vm_ops->open)
513 tmp->vm_ops->open(tmp);
514
515 if (retval)
516 goto out;
517 }
518 /* a new mm has just been created */
519 arch_dup_mmap(oldmm, mm);
520 retval = 0;
521 out:
522 up_write(&mm->mmap_sem);
523 flush_tlb_mm(oldmm);
524 up_write(&oldmm->mmap_sem);
525 uprobe_end_dup_mmap();
526 return retval;
527 fail_nomem_anon_vma_fork:
528 mpol_put(vma_policy(tmp));
529 fail_nomem_policy:
530 kmem_cache_free(vm_area_cachep, tmp);
531 fail_nomem:
532 retval = -ENOMEM;
533 vm_unacct_memory(charge);
534 goto out;
535 }
536
537 static inline int mm_alloc_pgd(struct mm_struct *mm)
538 {
539 mm->pgd = pgd_alloc(mm);
540 if (unlikely(!mm->pgd))
541 return -ENOMEM;
542 return 0;
543 }
544
545 static inline void mm_free_pgd(struct mm_struct *mm)
546 {
547 pgd_free(mm, mm->pgd);
548 }
549 #else
550 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
551 {
552 down_write(&oldmm->mmap_sem);
553 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
554 up_write(&oldmm->mmap_sem);
555 return 0;
556 }
557 #define mm_alloc_pgd(mm) (0)
558 #define mm_free_pgd(mm)
559 #endif /* CONFIG_MMU */
560
561 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
562
563 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
564 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
565
566 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
567
568 static int __init coredump_filter_setup(char *s)
569 {
570 default_dump_filter =
571 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
572 MMF_DUMP_FILTER_MASK;
573 return 1;
574 }
575
576 __setup("coredump_filter=", coredump_filter_setup);
577
578 #include <linux/init_task.h>
579
580 static void mm_init_aio(struct mm_struct *mm)
581 {
582 #ifdef CONFIG_AIO
583 spin_lock_init(&mm->ioctx_lock);
584 mm->ioctx_table = NULL;
585 #endif
586 }
587
588 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
589 {
590 #ifdef CONFIG_MEMCG
591 mm->owner = p;
592 #endif
593 }
594
595 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
596 {
597 mm->mmap = NULL;
598 mm->mm_rb = RB_ROOT;
599 mm->vmacache_seqnum = 0;
600 atomic_set(&mm->mm_users, 1);
601 atomic_set(&mm->mm_count, 1);
602 init_rwsem(&mm->mmap_sem);
603 INIT_LIST_HEAD(&mm->mmlist);
604 mm->core_state = NULL;
605 atomic_long_set(&mm->nr_ptes, 0);
606 mm_nr_pmds_init(mm);
607 mm->map_count = 0;
608 mm->locked_vm = 0;
609 mm->pinned_vm = 0;
610 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
611 spin_lock_init(&mm->page_table_lock);
612 mm_init_cpumask(mm);
613 mm_init_aio(mm);
614 mm_init_owner(mm, p);
615 mmu_notifier_mm_init(mm);
616 clear_tlb_flush_pending(mm);
617 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
618 mm->pmd_huge_pte = NULL;
619 #endif
620
621 if (current->mm) {
622 mm->flags = current->mm->flags & MMF_INIT_MASK;
623 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
624 } else {
625 mm->flags = default_dump_filter;
626 mm->def_flags = 0;
627 }
628
629 if (mm_alloc_pgd(mm))
630 goto fail_nopgd;
631
632 if (init_new_context(p, mm))
633 goto fail_nocontext;
634
635 return mm;
636
637 fail_nocontext:
638 mm_free_pgd(mm);
639 fail_nopgd:
640 free_mm(mm);
641 return NULL;
642 }
643
644 static void check_mm(struct mm_struct *mm)
645 {
646 int i;
647
648 for (i = 0; i < NR_MM_COUNTERS; i++) {
649 long x = atomic_long_read(&mm->rss_stat.count[i]);
650
651 if (unlikely(x))
652 printk(KERN_ALERT "BUG: Bad rss-counter state "
653 "mm:%p idx:%d val:%ld\n", mm, i, x);
654 }
655
656 if (atomic_long_read(&mm->nr_ptes))
657 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
658 atomic_long_read(&mm->nr_ptes));
659 if (mm_nr_pmds(mm))
660 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
661 mm_nr_pmds(mm));
662
663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
664 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
665 #endif
666 }
667
668 /*
669 * Allocate and initialize an mm_struct.
670 */
671 struct mm_struct *mm_alloc(void)
672 {
673 struct mm_struct *mm;
674
675 mm = allocate_mm();
676 if (!mm)
677 return NULL;
678
679 memset(mm, 0, sizeof(*mm));
680 return mm_init(mm, current);
681 }
682
683 /*
684 * Called when the last reference to the mm
685 * is dropped: either by a lazy thread or by
686 * mmput. Free the page directory and the mm.
687 */
688 void __mmdrop(struct mm_struct *mm)
689 {
690 BUG_ON(mm == &init_mm);
691 mm_free_pgd(mm);
692 destroy_context(mm);
693 mmu_notifier_mm_destroy(mm);
694 check_mm(mm);
695 free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698
699 /*
700 * Decrement the use count and release all resources for an mm.
701 */
702 void mmput(struct mm_struct *mm)
703 {
704 might_sleep();
705
706 if (atomic_dec_and_test(&mm->mm_users)) {
707 uprobe_clear_state(mm);
708 exit_aio(mm);
709 ksm_exit(mm);
710 khugepaged_exit(mm); /* must run before exit_mmap */
711 exit_mmap(mm);
712 set_mm_exe_file(mm, NULL);
713 if (!list_empty(&mm->mmlist)) {
714 spin_lock(&mmlist_lock);
715 list_del(&mm->mmlist);
716 spin_unlock(&mmlist_lock);
717 }
718 if (mm->binfmt)
719 module_put(mm->binfmt->module);
720 mmdrop(mm);
721 }
722 }
723 EXPORT_SYMBOL_GPL(mmput);
724
725 /**
726 * set_mm_exe_file - change a reference to the mm's executable file
727 *
728 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
729 *
730 * Main users are mmput() and sys_execve(). Callers prevent concurrent
731 * invocations: in mmput() nobody alive left, in execve task is single
732 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
733 * mm->exe_file, but does so without using set_mm_exe_file() in order
734 * to do avoid the need for any locks.
735 */
736 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
737 {
738 struct file *old_exe_file;
739
740 /*
741 * It is safe to dereference the exe_file without RCU as
742 * this function is only called if nobody else can access
743 * this mm -- see comment above for justification.
744 */
745 old_exe_file = rcu_dereference_raw(mm->exe_file);
746
747 if (new_exe_file)
748 get_file(new_exe_file);
749 rcu_assign_pointer(mm->exe_file, new_exe_file);
750 if (old_exe_file)
751 fput(old_exe_file);
752 }
753
754 /**
755 * get_mm_exe_file - acquire a reference to the mm's executable file
756 *
757 * Returns %NULL if mm has no associated executable file.
758 * User must release file via fput().
759 */
760 struct file *get_mm_exe_file(struct mm_struct *mm)
761 {
762 struct file *exe_file;
763
764 rcu_read_lock();
765 exe_file = rcu_dereference(mm->exe_file);
766 if (exe_file && !get_file_rcu(exe_file))
767 exe_file = NULL;
768 rcu_read_unlock();
769 return exe_file;
770 }
771 EXPORT_SYMBOL(get_mm_exe_file);
772
773 /**
774 * get_task_mm - acquire a reference to the task's mm
775 *
776 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
777 * this kernel workthread has transiently adopted a user mm with use_mm,
778 * to do its AIO) is not set and if so returns a reference to it, after
779 * bumping up the use count. User must release the mm via mmput()
780 * after use. Typically used by /proc and ptrace.
781 */
782 struct mm_struct *get_task_mm(struct task_struct *task)
783 {
784 struct mm_struct *mm;
785
786 task_lock(task);
787 mm = task->mm;
788 if (mm) {
789 if (task->flags & PF_KTHREAD)
790 mm = NULL;
791 else
792 atomic_inc(&mm->mm_users);
793 }
794 task_unlock(task);
795 return mm;
796 }
797 EXPORT_SYMBOL_GPL(get_task_mm);
798
799 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
800 {
801 struct mm_struct *mm;
802 int err;
803
804 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
805 if (err)
806 return ERR_PTR(err);
807
808 mm = get_task_mm(task);
809 if (mm && mm != current->mm &&
810 !ptrace_may_access(task, mode)) {
811 mmput(mm);
812 mm = ERR_PTR(-EACCES);
813 }
814 mutex_unlock(&task->signal->cred_guard_mutex);
815
816 return mm;
817 }
818
819 static void complete_vfork_done(struct task_struct *tsk)
820 {
821 struct completion *vfork;
822
823 task_lock(tsk);
824 vfork = tsk->vfork_done;
825 if (likely(vfork)) {
826 tsk->vfork_done = NULL;
827 complete(vfork);
828 }
829 task_unlock(tsk);
830 }
831
832 static int wait_for_vfork_done(struct task_struct *child,
833 struct completion *vfork)
834 {
835 int killed;
836
837 freezer_do_not_count();
838 killed = wait_for_completion_killable(vfork);
839 freezer_count();
840
841 if (killed) {
842 task_lock(child);
843 child->vfork_done = NULL;
844 task_unlock(child);
845 }
846
847 put_task_struct(child);
848 return killed;
849 }
850
851 /* Please note the differences between mmput and mm_release.
852 * mmput is called whenever we stop holding onto a mm_struct,
853 * error success whatever.
854 *
855 * mm_release is called after a mm_struct has been removed
856 * from the current process.
857 *
858 * This difference is important for error handling, when we
859 * only half set up a mm_struct for a new process and need to restore
860 * the old one. Because we mmput the new mm_struct before
861 * restoring the old one. . .
862 * Eric Biederman 10 January 1998
863 */
864 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
865 {
866 /* Get rid of any futexes when releasing the mm */
867 #ifdef CONFIG_FUTEX
868 if (unlikely(tsk->robust_list)) {
869 exit_robust_list(tsk);
870 tsk->robust_list = NULL;
871 }
872 #ifdef CONFIG_COMPAT
873 if (unlikely(tsk->compat_robust_list)) {
874 compat_exit_robust_list(tsk);
875 tsk->compat_robust_list = NULL;
876 }
877 #endif
878 if (unlikely(!list_empty(&tsk->pi_state_list)))
879 exit_pi_state_list(tsk);
880 #endif
881
882 uprobe_free_utask(tsk);
883
884 /* Get rid of any cached register state */
885 deactivate_mm(tsk, mm);
886
887 /*
888 * If we're exiting normally, clear a user-space tid field if
889 * requested. We leave this alone when dying by signal, to leave
890 * the value intact in a core dump, and to save the unnecessary
891 * trouble, say, a killed vfork parent shouldn't touch this mm.
892 * Userland only wants this done for a sys_exit.
893 */
894 if (tsk->clear_child_tid) {
895 if (!(tsk->flags & PF_SIGNALED) &&
896 atomic_read(&mm->mm_users) > 1) {
897 /*
898 * We don't check the error code - if userspace has
899 * not set up a proper pointer then tough luck.
900 */
901 put_user(0, tsk->clear_child_tid);
902 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
903 1, NULL, NULL, 0);
904 }
905 tsk->clear_child_tid = NULL;
906 }
907
908 /*
909 * All done, finally we can wake up parent and return this mm to him.
910 * Also kthread_stop() uses this completion for synchronization.
911 */
912 if (tsk->vfork_done)
913 complete_vfork_done(tsk);
914 }
915
916 /*
917 * Allocate a new mm structure and copy contents from the
918 * mm structure of the passed in task structure.
919 */
920 static struct mm_struct *dup_mm(struct task_struct *tsk)
921 {
922 struct mm_struct *mm, *oldmm = current->mm;
923 int err;
924
925 mm = allocate_mm();
926 if (!mm)
927 goto fail_nomem;
928
929 memcpy(mm, oldmm, sizeof(*mm));
930
931 if (!mm_init(mm, tsk))
932 goto fail_nomem;
933
934 err = dup_mmap(mm, oldmm);
935 if (err)
936 goto free_pt;
937
938 mm->hiwater_rss = get_mm_rss(mm);
939 mm->hiwater_vm = mm->total_vm;
940
941 if (mm->binfmt && !try_module_get(mm->binfmt->module))
942 goto free_pt;
943
944 return mm;
945
946 free_pt:
947 /* don't put binfmt in mmput, we haven't got module yet */
948 mm->binfmt = NULL;
949 mmput(mm);
950
951 fail_nomem:
952 return NULL;
953 }
954
955 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
956 {
957 struct mm_struct *mm, *oldmm;
958 int retval;
959
960 tsk->min_flt = tsk->maj_flt = 0;
961 tsk->nvcsw = tsk->nivcsw = 0;
962 #ifdef CONFIG_DETECT_HUNG_TASK
963 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
964 #endif
965
966 tsk->mm = NULL;
967 tsk->active_mm = NULL;
968
969 /*
970 * Are we cloning a kernel thread?
971 *
972 * We need to steal a active VM for that..
973 */
974 oldmm = current->mm;
975 if (!oldmm)
976 return 0;
977
978 /* initialize the new vmacache entries */
979 vmacache_flush(tsk);
980
981 if (clone_flags & CLONE_VM) {
982 atomic_inc(&oldmm->mm_users);
983 mm = oldmm;
984 goto good_mm;
985 }
986
987 retval = -ENOMEM;
988 mm = dup_mm(tsk);
989 if (!mm)
990 goto fail_nomem;
991
992 good_mm:
993 tsk->mm = mm;
994 tsk->active_mm = mm;
995 return 0;
996
997 fail_nomem:
998 return retval;
999 }
1000
1001 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1002 {
1003 struct fs_struct *fs = current->fs;
1004 if (clone_flags & CLONE_FS) {
1005 /* tsk->fs is already what we want */
1006 spin_lock(&fs->lock);
1007 if (fs->in_exec) {
1008 spin_unlock(&fs->lock);
1009 return -EAGAIN;
1010 }
1011 fs->users++;
1012 spin_unlock(&fs->lock);
1013 return 0;
1014 }
1015 tsk->fs = copy_fs_struct(fs);
1016 if (!tsk->fs)
1017 return -ENOMEM;
1018 return 0;
1019 }
1020
1021 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1022 {
1023 struct files_struct *oldf, *newf;
1024 int error = 0;
1025
1026 /*
1027 * A background process may not have any files ...
1028 */
1029 oldf = current->files;
1030 if (!oldf)
1031 goto out;
1032
1033 if (clone_flags & CLONE_FILES) {
1034 atomic_inc(&oldf->count);
1035 goto out;
1036 }
1037
1038 newf = dup_fd(oldf, &error);
1039 if (!newf)
1040 goto out;
1041
1042 tsk->files = newf;
1043 error = 0;
1044 out:
1045 return error;
1046 }
1047
1048 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1049 {
1050 #ifdef CONFIG_BLOCK
1051 struct io_context *ioc = current->io_context;
1052 struct io_context *new_ioc;
1053
1054 if (!ioc)
1055 return 0;
1056 /*
1057 * Share io context with parent, if CLONE_IO is set
1058 */
1059 if (clone_flags & CLONE_IO) {
1060 ioc_task_link(ioc);
1061 tsk->io_context = ioc;
1062 } else if (ioprio_valid(ioc->ioprio)) {
1063 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1064 if (unlikely(!new_ioc))
1065 return -ENOMEM;
1066
1067 new_ioc->ioprio = ioc->ioprio;
1068 put_io_context(new_ioc);
1069 }
1070 #endif
1071 return 0;
1072 }
1073
1074 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1075 {
1076 struct sighand_struct *sig;
1077
1078 if (clone_flags & CLONE_SIGHAND) {
1079 atomic_inc(&current->sighand->count);
1080 return 0;
1081 }
1082 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1083 rcu_assign_pointer(tsk->sighand, sig);
1084 if (!sig)
1085 return -ENOMEM;
1086
1087 atomic_set(&sig->count, 1);
1088 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1089 return 0;
1090 }
1091
1092 void __cleanup_sighand(struct sighand_struct *sighand)
1093 {
1094 if (atomic_dec_and_test(&sighand->count)) {
1095 signalfd_cleanup(sighand);
1096 /*
1097 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1098 * without an RCU grace period, see __lock_task_sighand().
1099 */
1100 kmem_cache_free(sighand_cachep, sighand);
1101 }
1102 }
1103
1104 /*
1105 * Initialize POSIX timer handling for a thread group.
1106 */
1107 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1108 {
1109 unsigned long cpu_limit;
1110
1111 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1112 if (cpu_limit != RLIM_INFINITY) {
1113 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1114 sig->cputimer.running = true;
1115 }
1116
1117 /* The timer lists. */
1118 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1119 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1120 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1121 }
1122
1123 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1124 {
1125 struct signal_struct *sig;
1126
1127 if (clone_flags & CLONE_THREAD)
1128 return 0;
1129
1130 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1131 tsk->signal = sig;
1132 if (!sig)
1133 return -ENOMEM;
1134
1135 sig->nr_threads = 1;
1136 atomic_set(&sig->live, 1);
1137 atomic_set(&sig->sigcnt, 1);
1138
1139 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1140 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1141 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1142
1143 init_waitqueue_head(&sig->wait_chldexit);
1144 sig->curr_target = tsk;
1145 init_sigpending(&sig->shared_pending);
1146 INIT_LIST_HEAD(&sig->posix_timers);
1147 seqlock_init(&sig->stats_lock);
1148 prev_cputime_init(&sig->prev_cputime);
1149
1150 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 sig->real_timer.function = it_real_fn;
1152
1153 task_lock(current->group_leader);
1154 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1155 task_unlock(current->group_leader);
1156
1157 posix_cpu_timers_init_group(sig);
1158
1159 tty_audit_fork(sig);
1160 sched_autogroup_fork(sig);
1161
1162 sig->oom_score_adj = current->signal->oom_score_adj;
1163 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1164
1165 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1166 current->signal->is_child_subreaper;
1167
1168 mutex_init(&sig->cred_guard_mutex);
1169
1170 return 0;
1171 }
1172
1173 static void copy_seccomp(struct task_struct *p)
1174 {
1175 #ifdef CONFIG_SECCOMP
1176 /*
1177 * Must be called with sighand->lock held, which is common to
1178 * all threads in the group. Holding cred_guard_mutex is not
1179 * needed because this new task is not yet running and cannot
1180 * be racing exec.
1181 */
1182 assert_spin_locked(&current->sighand->siglock);
1183
1184 /* Ref-count the new filter user, and assign it. */
1185 get_seccomp_filter(current);
1186 p->seccomp = current->seccomp;
1187
1188 /*
1189 * Explicitly enable no_new_privs here in case it got set
1190 * between the task_struct being duplicated and holding the
1191 * sighand lock. The seccomp state and nnp must be in sync.
1192 */
1193 if (task_no_new_privs(current))
1194 task_set_no_new_privs(p);
1195
1196 /*
1197 * If the parent gained a seccomp mode after copying thread
1198 * flags and between before we held the sighand lock, we have
1199 * to manually enable the seccomp thread flag here.
1200 */
1201 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1202 set_tsk_thread_flag(p, TIF_SECCOMP);
1203 #endif
1204 }
1205
1206 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1207 {
1208 current->clear_child_tid = tidptr;
1209
1210 return task_pid_vnr(current);
1211 }
1212
1213 static void rt_mutex_init_task(struct task_struct *p)
1214 {
1215 raw_spin_lock_init(&p->pi_lock);
1216 #ifdef CONFIG_RT_MUTEXES
1217 p->pi_waiters = RB_ROOT;
1218 p->pi_waiters_leftmost = NULL;
1219 p->pi_blocked_on = NULL;
1220 #endif
1221 }
1222
1223 /*
1224 * Initialize POSIX timer handling for a single task.
1225 */
1226 static void posix_cpu_timers_init(struct task_struct *tsk)
1227 {
1228 tsk->cputime_expires.prof_exp = 0;
1229 tsk->cputime_expires.virt_exp = 0;
1230 tsk->cputime_expires.sched_exp = 0;
1231 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1232 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1233 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1234 }
1235
1236 static inline void
1237 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1238 {
1239 task->pids[type].pid = pid;
1240 }
1241
1242 /*
1243 * This creates a new process as a copy of the old one,
1244 * but does not actually start it yet.
1245 *
1246 * It copies the registers, and all the appropriate
1247 * parts of the process environment (as per the clone
1248 * flags). The actual kick-off is left to the caller.
1249 */
1250 static struct task_struct *copy_process(unsigned long clone_flags,
1251 unsigned long stack_start,
1252 unsigned long stack_size,
1253 int __user *child_tidptr,
1254 struct pid *pid,
1255 int trace,
1256 unsigned long tls)
1257 {
1258 int retval;
1259 struct task_struct *p;
1260
1261 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1262 return ERR_PTR(-EINVAL);
1263
1264 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1265 return ERR_PTR(-EINVAL);
1266
1267 /*
1268 * Thread groups must share signals as well, and detached threads
1269 * can only be started up within the thread group.
1270 */
1271 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1272 return ERR_PTR(-EINVAL);
1273
1274 /*
1275 * Shared signal handlers imply shared VM. By way of the above,
1276 * thread groups also imply shared VM. Blocking this case allows
1277 * for various simplifications in other code.
1278 */
1279 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1280 return ERR_PTR(-EINVAL);
1281
1282 /*
1283 * Siblings of global init remain as zombies on exit since they are
1284 * not reaped by their parent (swapper). To solve this and to avoid
1285 * multi-rooted process trees, prevent global and container-inits
1286 * from creating siblings.
1287 */
1288 if ((clone_flags & CLONE_PARENT) &&
1289 current->signal->flags & SIGNAL_UNKILLABLE)
1290 return ERR_PTR(-EINVAL);
1291
1292 /*
1293 * If the new process will be in a different pid or user namespace
1294 * do not allow it to share a thread group with the forking task.
1295 */
1296 if (clone_flags & CLONE_THREAD) {
1297 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1298 (task_active_pid_ns(current) !=
1299 current->nsproxy->pid_ns_for_children))
1300 return ERR_PTR(-EINVAL);
1301 }
1302
1303 retval = security_task_create(clone_flags);
1304 if (retval)
1305 goto fork_out;
1306
1307 retval = -ENOMEM;
1308 p = dup_task_struct(current);
1309 if (!p)
1310 goto fork_out;
1311
1312 ftrace_graph_init_task(p);
1313
1314 rt_mutex_init_task(p);
1315
1316 #ifdef CONFIG_PROVE_LOCKING
1317 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1318 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1319 #endif
1320 retval = -EAGAIN;
1321 if (atomic_read(&p->real_cred->user->processes) >=
1322 task_rlimit(p, RLIMIT_NPROC)) {
1323 if (p->real_cred->user != INIT_USER &&
1324 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1325 goto bad_fork_free;
1326 }
1327 current->flags &= ~PF_NPROC_EXCEEDED;
1328
1329 retval = copy_creds(p, clone_flags);
1330 if (retval < 0)
1331 goto bad_fork_free;
1332
1333 /*
1334 * If multiple threads are within copy_process(), then this check
1335 * triggers too late. This doesn't hurt, the check is only there
1336 * to stop root fork bombs.
1337 */
1338 retval = -EAGAIN;
1339 if (nr_threads >= max_threads)
1340 goto bad_fork_cleanup_count;
1341
1342 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1343 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1344 p->flags |= PF_FORKNOEXEC;
1345 INIT_LIST_HEAD(&p->children);
1346 INIT_LIST_HEAD(&p->sibling);
1347 rcu_copy_process(p);
1348 p->vfork_done = NULL;
1349 spin_lock_init(&p->alloc_lock);
1350
1351 init_sigpending(&p->pending);
1352
1353 p->utime = p->stime = p->gtime = 0;
1354 p->utimescaled = p->stimescaled = 0;
1355 prev_cputime_init(&p->prev_cputime);
1356
1357 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1358 seqcount_init(&p->vtime_seqcount);
1359 p->vtime_snap = 0;
1360 p->vtime_snap_whence = VTIME_INACTIVE;
1361 #endif
1362
1363 #if defined(SPLIT_RSS_COUNTING)
1364 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1365 #endif
1366
1367 p->default_timer_slack_ns = current->timer_slack_ns;
1368
1369 task_io_accounting_init(&p->ioac);
1370 acct_clear_integrals(p);
1371
1372 posix_cpu_timers_init(p);
1373
1374 p->start_time = ktime_get_ns();
1375 p->real_start_time = ktime_get_boot_ns();
1376 p->io_context = NULL;
1377 p->audit_context = NULL;
1378 threadgroup_change_begin(current);
1379 cgroup_fork(p);
1380 #ifdef CONFIG_NUMA
1381 p->mempolicy = mpol_dup(p->mempolicy);
1382 if (IS_ERR(p->mempolicy)) {
1383 retval = PTR_ERR(p->mempolicy);
1384 p->mempolicy = NULL;
1385 goto bad_fork_cleanup_threadgroup_lock;
1386 }
1387 #endif
1388 #ifdef CONFIG_CPUSETS
1389 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1390 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1391 seqcount_init(&p->mems_allowed_seq);
1392 #endif
1393 #ifdef CONFIG_TRACE_IRQFLAGS
1394 p->irq_events = 0;
1395 p->hardirqs_enabled = 0;
1396 p->hardirq_enable_ip = 0;
1397 p->hardirq_enable_event = 0;
1398 p->hardirq_disable_ip = _THIS_IP_;
1399 p->hardirq_disable_event = 0;
1400 p->softirqs_enabled = 1;
1401 p->softirq_enable_ip = _THIS_IP_;
1402 p->softirq_enable_event = 0;
1403 p->softirq_disable_ip = 0;
1404 p->softirq_disable_event = 0;
1405 p->hardirq_context = 0;
1406 p->softirq_context = 0;
1407 #endif
1408
1409 p->pagefault_disabled = 0;
1410
1411 #ifdef CONFIG_LOCKDEP
1412 p->lockdep_depth = 0; /* no locks held yet */
1413 p->curr_chain_key = 0;
1414 p->lockdep_recursion = 0;
1415 #endif
1416
1417 #ifdef CONFIG_DEBUG_MUTEXES
1418 p->blocked_on = NULL; /* not blocked yet */
1419 #endif
1420 #ifdef CONFIG_BCACHE
1421 p->sequential_io = 0;
1422 p->sequential_io_avg = 0;
1423 #endif
1424
1425 /* Perform scheduler related setup. Assign this task to a CPU. */
1426 retval = sched_fork(clone_flags, p);
1427 if (retval)
1428 goto bad_fork_cleanup_policy;
1429
1430 retval = perf_event_init_task(p);
1431 if (retval)
1432 goto bad_fork_cleanup_policy;
1433 retval = audit_alloc(p);
1434 if (retval)
1435 goto bad_fork_cleanup_perf;
1436 /* copy all the process information */
1437 shm_init_task(p);
1438 retval = copy_semundo(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_audit;
1441 retval = copy_files(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_semundo;
1444 retval = copy_fs(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_files;
1447 retval = copy_sighand(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_fs;
1450 retval = copy_signal(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_sighand;
1453 retval = copy_mm(clone_flags, p);
1454 if (retval)
1455 goto bad_fork_cleanup_signal;
1456 retval = copy_namespaces(clone_flags, p);
1457 if (retval)
1458 goto bad_fork_cleanup_mm;
1459 retval = copy_io(clone_flags, p);
1460 if (retval)
1461 goto bad_fork_cleanup_namespaces;
1462 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1463 if (retval)
1464 goto bad_fork_cleanup_io;
1465
1466 if (pid != &init_struct_pid) {
1467 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1468 if (IS_ERR(pid)) {
1469 retval = PTR_ERR(pid);
1470 goto bad_fork_cleanup_io;
1471 }
1472 }
1473
1474 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1475 /*
1476 * Clear TID on mm_release()?
1477 */
1478 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1479 #ifdef CONFIG_BLOCK
1480 p->plug = NULL;
1481 #endif
1482 #ifdef CONFIG_FUTEX
1483 p->robust_list = NULL;
1484 #ifdef CONFIG_COMPAT
1485 p->compat_robust_list = NULL;
1486 #endif
1487 INIT_LIST_HEAD(&p->pi_state_list);
1488 p->pi_state_cache = NULL;
1489 #endif
1490 /*
1491 * sigaltstack should be cleared when sharing the same VM
1492 */
1493 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1494 p->sas_ss_sp = p->sas_ss_size = 0;
1495
1496 /*
1497 * Syscall tracing and stepping should be turned off in the
1498 * child regardless of CLONE_PTRACE.
1499 */
1500 user_disable_single_step(p);
1501 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1502 #ifdef TIF_SYSCALL_EMU
1503 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1504 #endif
1505 clear_all_latency_tracing(p);
1506
1507 /* ok, now we should be set up.. */
1508 p->pid = pid_nr(pid);
1509 if (clone_flags & CLONE_THREAD) {
1510 p->exit_signal = -1;
1511 p->group_leader = current->group_leader;
1512 p->tgid = current->tgid;
1513 } else {
1514 if (clone_flags & CLONE_PARENT)
1515 p->exit_signal = current->group_leader->exit_signal;
1516 else
1517 p->exit_signal = (clone_flags & CSIGNAL);
1518 p->group_leader = p;
1519 p->tgid = p->pid;
1520 }
1521
1522 p->nr_dirtied = 0;
1523 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1524 p->dirty_paused_when = 0;
1525
1526 p->pdeath_signal = 0;
1527 INIT_LIST_HEAD(&p->thread_group);
1528 p->task_works = NULL;
1529
1530 /*
1531 * Ensure that the cgroup subsystem policies allow the new process to be
1532 * forked. It should be noted the the new process's css_set can be changed
1533 * between here and cgroup_post_fork() if an organisation operation is in
1534 * progress.
1535 */
1536 retval = cgroup_can_fork(p);
1537 if (retval)
1538 goto bad_fork_free_pid;
1539
1540 /*
1541 * Make it visible to the rest of the system, but dont wake it up yet.
1542 * Need tasklist lock for parent etc handling!
1543 */
1544 write_lock_irq(&tasklist_lock);
1545
1546 /* CLONE_PARENT re-uses the old parent */
1547 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1548 p->real_parent = current->real_parent;
1549 p->parent_exec_id = current->parent_exec_id;
1550 } else {
1551 p->real_parent = current;
1552 p->parent_exec_id = current->self_exec_id;
1553 }
1554
1555 spin_lock(&current->sighand->siglock);
1556
1557 /*
1558 * Copy seccomp details explicitly here, in case they were changed
1559 * before holding sighand lock.
1560 */
1561 copy_seccomp(p);
1562
1563 /*
1564 * Process group and session signals need to be delivered to just the
1565 * parent before the fork or both the parent and the child after the
1566 * fork. Restart if a signal comes in before we add the new process to
1567 * it's process group.
1568 * A fatal signal pending means that current will exit, so the new
1569 * thread can't slip out of an OOM kill (or normal SIGKILL).
1570 */
1571 recalc_sigpending();
1572 if (signal_pending(current)) {
1573 spin_unlock(&current->sighand->siglock);
1574 write_unlock_irq(&tasklist_lock);
1575 retval = -ERESTARTNOINTR;
1576 goto bad_fork_cancel_cgroup;
1577 }
1578
1579 if (likely(p->pid)) {
1580 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1581
1582 init_task_pid(p, PIDTYPE_PID, pid);
1583 if (thread_group_leader(p)) {
1584 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1585 init_task_pid(p, PIDTYPE_SID, task_session(current));
1586
1587 if (is_child_reaper(pid)) {
1588 ns_of_pid(pid)->child_reaper = p;
1589 p->signal->flags |= SIGNAL_UNKILLABLE;
1590 }
1591
1592 p->signal->leader_pid = pid;
1593 p->signal->tty = tty_kref_get(current->signal->tty);
1594 list_add_tail(&p->sibling, &p->real_parent->children);
1595 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1596 attach_pid(p, PIDTYPE_PGID);
1597 attach_pid(p, PIDTYPE_SID);
1598 __this_cpu_inc(process_counts);
1599 } else {
1600 current->signal->nr_threads++;
1601 atomic_inc(&current->signal->live);
1602 atomic_inc(&current->signal->sigcnt);
1603 list_add_tail_rcu(&p->thread_group,
1604 &p->group_leader->thread_group);
1605 list_add_tail_rcu(&p->thread_node,
1606 &p->signal->thread_head);
1607 }
1608 attach_pid(p, PIDTYPE_PID);
1609 nr_threads++;
1610 }
1611
1612 total_forks++;
1613 spin_unlock(&current->sighand->siglock);
1614 syscall_tracepoint_update(p);
1615 write_unlock_irq(&tasklist_lock);
1616
1617 proc_fork_connector(p);
1618 cgroup_post_fork(p);
1619 threadgroup_change_end(current);
1620 perf_event_fork(p);
1621
1622 trace_task_newtask(p, clone_flags);
1623 uprobe_copy_process(p, clone_flags);
1624
1625 return p;
1626
1627 bad_fork_cancel_cgroup:
1628 cgroup_cancel_fork(p);
1629 bad_fork_free_pid:
1630 if (pid != &init_struct_pid)
1631 free_pid(pid);
1632 bad_fork_cleanup_io:
1633 if (p->io_context)
1634 exit_io_context(p);
1635 bad_fork_cleanup_namespaces:
1636 exit_task_namespaces(p);
1637 bad_fork_cleanup_mm:
1638 if (p->mm)
1639 mmput(p->mm);
1640 bad_fork_cleanup_signal:
1641 if (!(clone_flags & CLONE_THREAD))
1642 free_signal_struct(p->signal);
1643 bad_fork_cleanup_sighand:
1644 __cleanup_sighand(p->sighand);
1645 bad_fork_cleanup_fs:
1646 exit_fs(p); /* blocking */
1647 bad_fork_cleanup_files:
1648 exit_files(p); /* blocking */
1649 bad_fork_cleanup_semundo:
1650 exit_sem(p);
1651 bad_fork_cleanup_audit:
1652 audit_free(p);
1653 bad_fork_cleanup_perf:
1654 perf_event_free_task(p);
1655 bad_fork_cleanup_policy:
1656 #ifdef CONFIG_NUMA
1657 mpol_put(p->mempolicy);
1658 bad_fork_cleanup_threadgroup_lock:
1659 #endif
1660 threadgroup_change_end(current);
1661 delayacct_tsk_free(p);
1662 bad_fork_cleanup_count:
1663 atomic_dec(&p->cred->user->processes);
1664 exit_creds(p);
1665 bad_fork_free:
1666 free_task(p);
1667 fork_out:
1668 return ERR_PTR(retval);
1669 }
1670
1671 static inline void init_idle_pids(struct pid_link *links)
1672 {
1673 enum pid_type type;
1674
1675 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1676 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1677 links[type].pid = &init_struct_pid;
1678 }
1679 }
1680
1681 struct task_struct *fork_idle(int cpu)
1682 {
1683 struct task_struct *task;
1684 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1685 if (!IS_ERR(task)) {
1686 init_idle_pids(task->pids);
1687 init_idle(task, cpu);
1688 }
1689
1690 return task;
1691 }
1692
1693 /*
1694 * Ok, this is the main fork-routine.
1695 *
1696 * It copies the process, and if successful kick-starts
1697 * it and waits for it to finish using the VM if required.
1698 */
1699 long _do_fork(unsigned long clone_flags,
1700 unsigned long stack_start,
1701 unsigned long stack_size,
1702 int __user *parent_tidptr,
1703 int __user *child_tidptr,
1704 unsigned long tls)
1705 {
1706 struct task_struct *p;
1707 int trace = 0;
1708 long nr;
1709
1710 /*
1711 * Determine whether and which event to report to ptracer. When
1712 * called from kernel_thread or CLONE_UNTRACED is explicitly
1713 * requested, no event is reported; otherwise, report if the event
1714 * for the type of forking is enabled.
1715 */
1716 if (!(clone_flags & CLONE_UNTRACED)) {
1717 if (clone_flags & CLONE_VFORK)
1718 trace = PTRACE_EVENT_VFORK;
1719 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1720 trace = PTRACE_EVENT_CLONE;
1721 else
1722 trace = PTRACE_EVENT_FORK;
1723
1724 if (likely(!ptrace_event_enabled(current, trace)))
1725 trace = 0;
1726 }
1727
1728 p = copy_process(clone_flags, stack_start, stack_size,
1729 child_tidptr, NULL, trace, tls);
1730 /*
1731 * Do this prior waking up the new thread - the thread pointer
1732 * might get invalid after that point, if the thread exits quickly.
1733 */
1734 if (!IS_ERR(p)) {
1735 struct completion vfork;
1736 struct pid *pid;
1737
1738 trace_sched_process_fork(current, p);
1739
1740 pid = get_task_pid(p, PIDTYPE_PID);
1741 nr = pid_vnr(pid);
1742
1743 if (clone_flags & CLONE_PARENT_SETTID)
1744 put_user(nr, parent_tidptr);
1745
1746 if (clone_flags & CLONE_VFORK) {
1747 p->vfork_done = &vfork;
1748 init_completion(&vfork);
1749 get_task_struct(p);
1750 }
1751
1752 wake_up_new_task(p);
1753
1754 /* forking complete and child started to run, tell ptracer */
1755 if (unlikely(trace))
1756 ptrace_event_pid(trace, pid);
1757
1758 if (clone_flags & CLONE_VFORK) {
1759 if (!wait_for_vfork_done(p, &vfork))
1760 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1761 }
1762
1763 put_pid(pid);
1764 } else {
1765 nr = PTR_ERR(p);
1766 }
1767 return nr;
1768 }
1769
1770 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1771 /* For compatibility with architectures that call do_fork directly rather than
1772 * using the syscall entry points below. */
1773 long do_fork(unsigned long clone_flags,
1774 unsigned long stack_start,
1775 unsigned long stack_size,
1776 int __user *parent_tidptr,
1777 int __user *child_tidptr)
1778 {
1779 return _do_fork(clone_flags, stack_start, stack_size,
1780 parent_tidptr, child_tidptr, 0);
1781 }
1782 #endif
1783
1784 /*
1785 * Create a kernel thread.
1786 */
1787 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1788 {
1789 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1790 (unsigned long)arg, NULL, NULL, 0);
1791 }
1792
1793 #ifdef __ARCH_WANT_SYS_FORK
1794 SYSCALL_DEFINE0(fork)
1795 {
1796 #ifdef CONFIG_MMU
1797 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1798 #else
1799 /* can not support in nommu mode */
1800 return -EINVAL;
1801 #endif
1802 }
1803 #endif
1804
1805 #ifdef __ARCH_WANT_SYS_VFORK
1806 SYSCALL_DEFINE0(vfork)
1807 {
1808 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1809 0, NULL, NULL, 0);
1810 }
1811 #endif
1812
1813 #ifdef __ARCH_WANT_SYS_CLONE
1814 #ifdef CONFIG_CLONE_BACKWARDS
1815 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1816 int __user *, parent_tidptr,
1817 unsigned long, tls,
1818 int __user *, child_tidptr)
1819 #elif defined(CONFIG_CLONE_BACKWARDS2)
1820 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1821 int __user *, parent_tidptr,
1822 int __user *, child_tidptr,
1823 unsigned long, tls)
1824 #elif defined(CONFIG_CLONE_BACKWARDS3)
1825 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1826 int, stack_size,
1827 int __user *, parent_tidptr,
1828 int __user *, child_tidptr,
1829 unsigned long, tls)
1830 #else
1831 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1832 int __user *, parent_tidptr,
1833 int __user *, child_tidptr,
1834 unsigned long, tls)
1835 #endif
1836 {
1837 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1838 }
1839 #endif
1840
1841 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1842 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1843 #endif
1844
1845 static void sighand_ctor(void *data)
1846 {
1847 struct sighand_struct *sighand = data;
1848
1849 spin_lock_init(&sighand->siglock);
1850 init_waitqueue_head(&sighand->signalfd_wqh);
1851 }
1852
1853 void __init proc_caches_init(void)
1854 {
1855 sighand_cachep = kmem_cache_create("sighand_cache",
1856 sizeof(struct sighand_struct), 0,
1857 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1858 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1859 signal_cachep = kmem_cache_create("signal_cache",
1860 sizeof(struct signal_struct), 0,
1861 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1862 NULL);
1863 files_cachep = kmem_cache_create("files_cache",
1864 sizeof(struct files_struct), 0,
1865 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1866 NULL);
1867 fs_cachep = kmem_cache_create("fs_cache",
1868 sizeof(struct fs_struct), 0,
1869 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1870 NULL);
1871 /*
1872 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1873 * whole struct cpumask for the OFFSTACK case. We could change
1874 * this to *only* allocate as much of it as required by the
1875 * maximum number of CPU's we can ever have. The cpumask_allocation
1876 * is at the end of the structure, exactly for that reason.
1877 */
1878 mm_cachep = kmem_cache_create("mm_struct",
1879 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1880 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1881 NULL);
1882 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1883 mmap_init();
1884 nsproxy_cache_init();
1885 }
1886
1887 /*
1888 * Check constraints on flags passed to the unshare system call.
1889 */
1890 static int check_unshare_flags(unsigned long unshare_flags)
1891 {
1892 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1893 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1894 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1895 CLONE_NEWUSER|CLONE_NEWPID))
1896 return -EINVAL;
1897 /*
1898 * Not implemented, but pretend it works if there is nothing
1899 * to unshare. Note that unsharing the address space or the
1900 * signal handlers also need to unshare the signal queues (aka
1901 * CLONE_THREAD).
1902 */
1903 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1904 if (!thread_group_empty(current))
1905 return -EINVAL;
1906 }
1907 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1908 if (atomic_read(&current->sighand->count) > 1)
1909 return -EINVAL;
1910 }
1911 if (unshare_flags & CLONE_VM) {
1912 if (!current_is_single_threaded())
1913 return -EINVAL;
1914 }
1915
1916 return 0;
1917 }
1918
1919 /*
1920 * Unshare the filesystem structure if it is being shared
1921 */
1922 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1923 {
1924 struct fs_struct *fs = current->fs;
1925
1926 if (!(unshare_flags & CLONE_FS) || !fs)
1927 return 0;
1928
1929 /* don't need lock here; in the worst case we'll do useless copy */
1930 if (fs->users == 1)
1931 return 0;
1932
1933 *new_fsp = copy_fs_struct(fs);
1934 if (!*new_fsp)
1935 return -ENOMEM;
1936
1937 return 0;
1938 }
1939
1940 /*
1941 * Unshare file descriptor table if it is being shared
1942 */
1943 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1944 {
1945 struct files_struct *fd = current->files;
1946 int error = 0;
1947
1948 if ((unshare_flags & CLONE_FILES) &&
1949 (fd && atomic_read(&fd->count) > 1)) {
1950 *new_fdp = dup_fd(fd, &error);
1951 if (!*new_fdp)
1952 return error;
1953 }
1954
1955 return 0;
1956 }
1957
1958 /*
1959 * unshare allows a process to 'unshare' part of the process
1960 * context which was originally shared using clone. copy_*
1961 * functions used by do_fork() cannot be used here directly
1962 * because they modify an inactive task_struct that is being
1963 * constructed. Here we are modifying the current, active,
1964 * task_struct.
1965 */
1966 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1967 {
1968 struct fs_struct *fs, *new_fs = NULL;
1969 struct files_struct *fd, *new_fd = NULL;
1970 struct cred *new_cred = NULL;
1971 struct nsproxy *new_nsproxy = NULL;
1972 int do_sysvsem = 0;
1973 int err;
1974
1975 /*
1976 * If unsharing a user namespace must also unshare the thread group
1977 * and unshare the filesystem root and working directories.
1978 */
1979 if (unshare_flags & CLONE_NEWUSER)
1980 unshare_flags |= CLONE_THREAD | CLONE_FS;
1981 /*
1982 * If unsharing vm, must also unshare signal handlers.
1983 */
1984 if (unshare_flags & CLONE_VM)
1985 unshare_flags |= CLONE_SIGHAND;
1986 /*
1987 * If unsharing a signal handlers, must also unshare the signal queues.
1988 */
1989 if (unshare_flags & CLONE_SIGHAND)
1990 unshare_flags |= CLONE_THREAD;
1991 /*
1992 * If unsharing namespace, must also unshare filesystem information.
1993 */
1994 if (unshare_flags & CLONE_NEWNS)
1995 unshare_flags |= CLONE_FS;
1996
1997 err = check_unshare_flags(unshare_flags);
1998 if (err)
1999 goto bad_unshare_out;
2000 /*
2001 * CLONE_NEWIPC must also detach from the undolist: after switching
2002 * to a new ipc namespace, the semaphore arrays from the old
2003 * namespace are unreachable.
2004 */
2005 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2006 do_sysvsem = 1;
2007 err = unshare_fs(unshare_flags, &new_fs);
2008 if (err)
2009 goto bad_unshare_out;
2010 err = unshare_fd(unshare_flags, &new_fd);
2011 if (err)
2012 goto bad_unshare_cleanup_fs;
2013 err = unshare_userns(unshare_flags, &new_cred);
2014 if (err)
2015 goto bad_unshare_cleanup_fd;
2016 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2017 new_cred, new_fs);
2018 if (err)
2019 goto bad_unshare_cleanup_cred;
2020
2021 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2022 if (do_sysvsem) {
2023 /*
2024 * CLONE_SYSVSEM is equivalent to sys_exit().
2025 */
2026 exit_sem(current);
2027 }
2028 if (unshare_flags & CLONE_NEWIPC) {
2029 /* Orphan segments in old ns (see sem above). */
2030 exit_shm(current);
2031 shm_init_task(current);
2032 }
2033
2034 if (new_nsproxy)
2035 switch_task_namespaces(current, new_nsproxy);
2036
2037 task_lock(current);
2038
2039 if (new_fs) {
2040 fs = current->fs;
2041 spin_lock(&fs->lock);
2042 current->fs = new_fs;
2043 if (--fs->users)
2044 new_fs = NULL;
2045 else
2046 new_fs = fs;
2047 spin_unlock(&fs->lock);
2048 }
2049
2050 if (new_fd) {
2051 fd = current->files;
2052 current->files = new_fd;
2053 new_fd = fd;
2054 }
2055
2056 task_unlock(current);
2057
2058 if (new_cred) {
2059 /* Install the new user namespace */
2060 commit_creds(new_cred);
2061 new_cred = NULL;
2062 }
2063 }
2064
2065 bad_unshare_cleanup_cred:
2066 if (new_cred)
2067 put_cred(new_cred);
2068 bad_unshare_cleanup_fd:
2069 if (new_fd)
2070 put_files_struct(new_fd);
2071
2072 bad_unshare_cleanup_fs:
2073 if (new_fs)
2074 free_fs_struct(new_fs);
2075
2076 bad_unshare_out:
2077 return err;
2078 }
2079
2080 /*
2081 * Helper to unshare the files of the current task.
2082 * We don't want to expose copy_files internals to
2083 * the exec layer of the kernel.
2084 */
2085
2086 int unshare_files(struct files_struct **displaced)
2087 {
2088 struct task_struct *task = current;
2089 struct files_struct *copy = NULL;
2090 int error;
2091
2092 error = unshare_fd(CLONE_FILES, &copy);
2093 if (error || !copy) {
2094 *displaced = NULL;
2095 return error;
2096 }
2097 *displaced = task->files;
2098 task_lock(task);
2099 task->files = copy;
2100 task_unlock(task);
2101 return 0;
2102 }
2103
2104 int sysctl_max_threads(struct ctl_table *table, int write,
2105 void __user *buffer, size_t *lenp, loff_t *ppos)
2106 {
2107 struct ctl_table t;
2108 int ret;
2109 int threads = max_threads;
2110 int min = MIN_THREADS;
2111 int max = MAX_THREADS;
2112
2113 t = *table;
2114 t.data = &threads;
2115 t.extra1 = &min;
2116 t.extra2 = &max;
2117
2118 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2119 if (ret || !write)
2120 return ret;
2121
2122 set_max_threads(threads);
2123
2124 return 0;
2125 }
This page took 0.070165 seconds and 6 git commands to generate.