tree-wide: replace config_enabled() with IS_ENABLED()
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
85 *
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
90 *
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
116 *
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
125 *
126 * waiters++; (a)
127 * smp_mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `--------> smp_mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
144 *
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
262 */
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272 * Fault injections for futexes.
273 */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277 struct fault_attr attr;
278
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287 return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293 if (fail_futex.ignore_private && !fshared)
294 return false;
295
296 return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
305
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
310
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
315 }
316
317 return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327 return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333 atomic_inc(&key->private.mm->mm_count);
334 /*
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as smp_mb(); (B), see the ordering comment above.
338 */
339 smp_mb__after_atomic();
340 }
341
342 /*
343 * Reflects a new waiter being added to the waitqueue.
344 */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348 atomic_inc(&hb->waiters);
349 /*
350 * Full barrier (A), see the ordering comment above.
351 */
352 smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
359 */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
371 #else
372 return 1;
373 #endif
374 }
375
376 /*
377 * We hash on the keys returned from get_futex_key (see below).
378 */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381 u32 hash = jhash2((u32*)&key->both.word,
382 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 key->both.offset);
384 return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388 * Return 1 if two futex_keys are equal, 0 otherwise.
389 */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392 return (key1 && key2
393 && key1->both.word == key2->both.word
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
401 *
402 */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405 if (!key->both.ptr)
406 return;
407
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
410 ihold(key->shared.inode); /* implies smp_mb(); (B) */
411 break;
412 case FUT_OFF_MMSHARED:
413 futex_get_mm(key); /* implies smp_mb(); (B) */
414 break;
415 default:
416 /*
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
420 */
421 smp_mb(); /* explicit smp_mb(); (B) */
422 }
423 }
424
425 /*
426 * Drop a reference to the resource addressed by a key.
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
430 */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
436 return;
437 }
438
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 iput(key->shared.inode);
442 break;
443 case FUT_OFF_MMSHARED:
444 mmdrop(key->private.mm);
445 break;
446 }
447 }
448
449 /**
450 * get_futex_key() - Get parameters which are the keys for a futex
451 * @uaddr: virtual address of the futex
452 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453 * @key: address where result is stored.
454 * @rw: mapping needs to be read/write (values: VERIFY_READ,
455 * VERIFY_WRITE)
456 *
457 * Return: a negative error code or 0
458 *
459 * The key words are stored in *key on success.
460 *
461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462 * offset_within_page). For private mappings, it's (uaddr, current->mm).
463 * We can usually work out the index without swapping in the page.
464 *
465 * lock_page() might sleep, the caller should not hold a spinlock.
466 */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470 unsigned long address = (unsigned long)uaddr;
471 struct mm_struct *mm = current->mm;
472 struct page *page, *tail;
473 struct address_space *mapping;
474 int err, ro = 0;
475
476 /*
477 * The futex address must be "naturally" aligned.
478 */
479 key->both.offset = address % PAGE_SIZE;
480 if (unlikely((address % sizeof(u32)) != 0))
481 return -EINVAL;
482 address -= key->both.offset;
483
484 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
485 return -EFAULT;
486
487 if (unlikely(should_fail_futex(fshared)))
488 return -EFAULT;
489
490 /*
491 * PROCESS_PRIVATE futexes are fast.
492 * As the mm cannot disappear under us and the 'key' only needs
493 * virtual address, we dont even have to find the underlying vma.
494 * Note : We do have to check 'uaddr' is a valid user address,
495 * but access_ok() should be faster than find_vma()
496 */
497 if (!fshared) {
498 key->private.mm = mm;
499 key->private.address = address;
500 get_futex_key_refs(key); /* implies smp_mb(); (B) */
501 return 0;
502 }
503
504 again:
505 /* Ignore any VERIFY_READ mapping (futex common case) */
506 if (unlikely(should_fail_futex(fshared)))
507 return -EFAULT;
508
509 err = get_user_pages_fast(address, 1, 1, &page);
510 /*
511 * If write access is not required (eg. FUTEX_WAIT), try
512 * and get read-only access.
513 */
514 if (err == -EFAULT && rw == VERIFY_READ) {
515 err = get_user_pages_fast(address, 1, 0, &page);
516 ro = 1;
517 }
518 if (err < 0)
519 return err;
520 else
521 err = 0;
522
523 /*
524 * The treatment of mapping from this point on is critical. The page
525 * lock protects many things but in this context the page lock
526 * stabilizes mapping, prevents inode freeing in the shared
527 * file-backed region case and guards against movement to swap cache.
528 *
529 * Strictly speaking the page lock is not needed in all cases being
530 * considered here and page lock forces unnecessarily serialization
531 * From this point on, mapping will be re-verified if necessary and
532 * page lock will be acquired only if it is unavoidable
533 *
534 * Mapping checks require the head page for any compound page so the
535 * head page and mapping is looked up now. For anonymous pages, it
536 * does not matter if the page splits in the future as the key is
537 * based on the address. For filesystem-backed pages, the tail is
538 * required as the index of the page determines the key. For
539 * base pages, there is no tail page and tail == page.
540 */
541 tail = page;
542 page = compound_head(page);
543 mapping = READ_ONCE(page->mapping);
544
545 /*
546 * If page->mapping is NULL, then it cannot be a PageAnon
547 * page; but it might be the ZERO_PAGE or in the gate area or
548 * in a special mapping (all cases which we are happy to fail);
549 * or it may have been a good file page when get_user_pages_fast
550 * found it, but truncated or holepunched or subjected to
551 * invalidate_complete_page2 before we got the page lock (also
552 * cases which we are happy to fail). And we hold a reference,
553 * so refcount care in invalidate_complete_page's remove_mapping
554 * prevents drop_caches from setting mapping to NULL beneath us.
555 *
556 * The case we do have to guard against is when memory pressure made
557 * shmem_writepage move it from filecache to swapcache beneath us:
558 * an unlikely race, but we do need to retry for page->mapping.
559 */
560 if (unlikely(!mapping)) {
561 int shmem_swizzled;
562
563 /*
564 * Page lock is required to identify which special case above
565 * applies. If this is really a shmem page then the page lock
566 * will prevent unexpected transitions.
567 */
568 lock_page(page);
569 shmem_swizzled = PageSwapCache(page) || page->mapping;
570 unlock_page(page);
571 put_page(page);
572
573 if (shmem_swizzled)
574 goto again;
575
576 return -EFAULT;
577 }
578
579 /*
580 * Private mappings are handled in a simple way.
581 *
582 * If the futex key is stored on an anonymous page, then the associated
583 * object is the mm which is implicitly pinned by the calling process.
584 *
585 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
586 * it's a read-only handle, it's expected that futexes attach to
587 * the object not the particular process.
588 */
589 if (PageAnon(page)) {
590 /*
591 * A RO anonymous page will never change and thus doesn't make
592 * sense for futex operations.
593 */
594 if (unlikely(should_fail_futex(fshared)) || ro) {
595 err = -EFAULT;
596 goto out;
597 }
598
599 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
600 key->private.mm = mm;
601 key->private.address = address;
602
603 get_futex_key_refs(key); /* implies smp_mb(); (B) */
604
605 } else {
606 struct inode *inode;
607
608 /*
609 * The associated futex object in this case is the inode and
610 * the page->mapping must be traversed. Ordinarily this should
611 * be stabilised under page lock but it's not strictly
612 * necessary in this case as we just want to pin the inode, not
613 * update the radix tree or anything like that.
614 *
615 * The RCU read lock is taken as the inode is finally freed
616 * under RCU. If the mapping still matches expectations then the
617 * mapping->host can be safely accessed as being a valid inode.
618 */
619 rcu_read_lock();
620
621 if (READ_ONCE(page->mapping) != mapping) {
622 rcu_read_unlock();
623 put_page(page);
624
625 goto again;
626 }
627
628 inode = READ_ONCE(mapping->host);
629 if (!inode) {
630 rcu_read_unlock();
631 put_page(page);
632
633 goto again;
634 }
635
636 /*
637 * Take a reference unless it is about to be freed. Previously
638 * this reference was taken by ihold under the page lock
639 * pinning the inode in place so i_lock was unnecessary. The
640 * only way for this check to fail is if the inode was
641 * truncated in parallel so warn for now if this happens.
642 *
643 * We are not calling into get_futex_key_refs() in file-backed
644 * cases, therefore a successful atomic_inc return below will
645 * guarantee that get_futex_key() will still imply smp_mb(); (B).
646 */
647 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
648 rcu_read_unlock();
649 put_page(page);
650
651 goto again;
652 }
653
654 /* Should be impossible but lets be paranoid for now */
655 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
656 err = -EFAULT;
657 rcu_read_unlock();
658 iput(inode);
659
660 goto out;
661 }
662
663 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
664 key->shared.inode = inode;
665 key->shared.pgoff = basepage_index(tail);
666 rcu_read_unlock();
667 }
668
669 out:
670 put_page(page);
671 return err;
672 }
673
674 static inline void put_futex_key(union futex_key *key)
675 {
676 drop_futex_key_refs(key);
677 }
678
679 /**
680 * fault_in_user_writeable() - Fault in user address and verify RW access
681 * @uaddr: pointer to faulting user space address
682 *
683 * Slow path to fixup the fault we just took in the atomic write
684 * access to @uaddr.
685 *
686 * We have no generic implementation of a non-destructive write to the
687 * user address. We know that we faulted in the atomic pagefault
688 * disabled section so we can as well avoid the #PF overhead by
689 * calling get_user_pages() right away.
690 */
691 static int fault_in_user_writeable(u32 __user *uaddr)
692 {
693 struct mm_struct *mm = current->mm;
694 int ret;
695
696 down_read(&mm->mmap_sem);
697 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
698 FAULT_FLAG_WRITE, NULL);
699 up_read(&mm->mmap_sem);
700
701 return ret < 0 ? ret : 0;
702 }
703
704 /**
705 * futex_top_waiter() - Return the highest priority waiter on a futex
706 * @hb: the hash bucket the futex_q's reside in
707 * @key: the futex key (to distinguish it from other futex futex_q's)
708 *
709 * Must be called with the hb lock held.
710 */
711 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
712 union futex_key *key)
713 {
714 struct futex_q *this;
715
716 plist_for_each_entry(this, &hb->chain, list) {
717 if (match_futex(&this->key, key))
718 return this;
719 }
720 return NULL;
721 }
722
723 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
724 u32 uval, u32 newval)
725 {
726 int ret;
727
728 pagefault_disable();
729 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
730 pagefault_enable();
731
732 return ret;
733 }
734
735 static int get_futex_value_locked(u32 *dest, u32 __user *from)
736 {
737 int ret;
738
739 pagefault_disable();
740 ret = __get_user(*dest, from);
741 pagefault_enable();
742
743 return ret ? -EFAULT : 0;
744 }
745
746
747 /*
748 * PI code:
749 */
750 static int refill_pi_state_cache(void)
751 {
752 struct futex_pi_state *pi_state;
753
754 if (likely(current->pi_state_cache))
755 return 0;
756
757 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
758
759 if (!pi_state)
760 return -ENOMEM;
761
762 INIT_LIST_HEAD(&pi_state->list);
763 /* pi_mutex gets initialized later */
764 pi_state->owner = NULL;
765 atomic_set(&pi_state->refcount, 1);
766 pi_state->key = FUTEX_KEY_INIT;
767
768 current->pi_state_cache = pi_state;
769
770 return 0;
771 }
772
773 static struct futex_pi_state * alloc_pi_state(void)
774 {
775 struct futex_pi_state *pi_state = current->pi_state_cache;
776
777 WARN_ON(!pi_state);
778 current->pi_state_cache = NULL;
779
780 return pi_state;
781 }
782
783 /*
784 * Drops a reference to the pi_state object and frees or caches it
785 * when the last reference is gone.
786 *
787 * Must be called with the hb lock held.
788 */
789 static void put_pi_state(struct futex_pi_state *pi_state)
790 {
791 if (!pi_state)
792 return;
793
794 if (!atomic_dec_and_test(&pi_state->refcount))
795 return;
796
797 /*
798 * If pi_state->owner is NULL, the owner is most probably dying
799 * and has cleaned up the pi_state already
800 */
801 if (pi_state->owner) {
802 raw_spin_lock_irq(&pi_state->owner->pi_lock);
803 list_del_init(&pi_state->list);
804 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
805
806 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
807 }
808
809 if (current->pi_state_cache)
810 kfree(pi_state);
811 else {
812 /*
813 * pi_state->list is already empty.
814 * clear pi_state->owner.
815 * refcount is at 0 - put it back to 1.
816 */
817 pi_state->owner = NULL;
818 atomic_set(&pi_state->refcount, 1);
819 current->pi_state_cache = pi_state;
820 }
821 }
822
823 /*
824 * Look up the task based on what TID userspace gave us.
825 * We dont trust it.
826 */
827 static struct task_struct * futex_find_get_task(pid_t pid)
828 {
829 struct task_struct *p;
830
831 rcu_read_lock();
832 p = find_task_by_vpid(pid);
833 if (p)
834 get_task_struct(p);
835
836 rcu_read_unlock();
837
838 return p;
839 }
840
841 /*
842 * This task is holding PI mutexes at exit time => bad.
843 * Kernel cleans up PI-state, but userspace is likely hosed.
844 * (Robust-futex cleanup is separate and might save the day for userspace.)
845 */
846 void exit_pi_state_list(struct task_struct *curr)
847 {
848 struct list_head *next, *head = &curr->pi_state_list;
849 struct futex_pi_state *pi_state;
850 struct futex_hash_bucket *hb;
851 union futex_key key = FUTEX_KEY_INIT;
852
853 if (!futex_cmpxchg_enabled)
854 return;
855 /*
856 * We are a ZOMBIE and nobody can enqueue itself on
857 * pi_state_list anymore, but we have to be careful
858 * versus waiters unqueueing themselves:
859 */
860 raw_spin_lock_irq(&curr->pi_lock);
861 while (!list_empty(head)) {
862
863 next = head->next;
864 pi_state = list_entry(next, struct futex_pi_state, list);
865 key = pi_state->key;
866 hb = hash_futex(&key);
867 raw_spin_unlock_irq(&curr->pi_lock);
868
869 spin_lock(&hb->lock);
870
871 raw_spin_lock_irq(&curr->pi_lock);
872 /*
873 * We dropped the pi-lock, so re-check whether this
874 * task still owns the PI-state:
875 */
876 if (head->next != next) {
877 spin_unlock(&hb->lock);
878 continue;
879 }
880
881 WARN_ON(pi_state->owner != curr);
882 WARN_ON(list_empty(&pi_state->list));
883 list_del_init(&pi_state->list);
884 pi_state->owner = NULL;
885 raw_spin_unlock_irq(&curr->pi_lock);
886
887 rt_mutex_unlock(&pi_state->pi_mutex);
888
889 spin_unlock(&hb->lock);
890
891 raw_spin_lock_irq(&curr->pi_lock);
892 }
893 raw_spin_unlock_irq(&curr->pi_lock);
894 }
895
896 /*
897 * We need to check the following states:
898 *
899 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
900 *
901 * [1] NULL | --- | --- | 0 | 0/1 | Valid
902 * [2] NULL | --- | --- | >0 | 0/1 | Valid
903 *
904 * [3] Found | NULL | -- | Any | 0/1 | Invalid
905 *
906 * [4] Found | Found | NULL | 0 | 1 | Valid
907 * [5] Found | Found | NULL | >0 | 1 | Invalid
908 *
909 * [6] Found | Found | task | 0 | 1 | Valid
910 *
911 * [7] Found | Found | NULL | Any | 0 | Invalid
912 *
913 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
914 * [9] Found | Found | task | 0 | 0 | Invalid
915 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
916 *
917 * [1] Indicates that the kernel can acquire the futex atomically. We
918 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
919 *
920 * [2] Valid, if TID does not belong to a kernel thread. If no matching
921 * thread is found then it indicates that the owner TID has died.
922 *
923 * [3] Invalid. The waiter is queued on a non PI futex
924 *
925 * [4] Valid state after exit_robust_list(), which sets the user space
926 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
927 *
928 * [5] The user space value got manipulated between exit_robust_list()
929 * and exit_pi_state_list()
930 *
931 * [6] Valid state after exit_pi_state_list() which sets the new owner in
932 * the pi_state but cannot access the user space value.
933 *
934 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
935 *
936 * [8] Owner and user space value match
937 *
938 * [9] There is no transient state which sets the user space TID to 0
939 * except exit_robust_list(), but this is indicated by the
940 * FUTEX_OWNER_DIED bit. See [4]
941 *
942 * [10] There is no transient state which leaves owner and user space
943 * TID out of sync.
944 */
945
946 /*
947 * Validate that the existing waiter has a pi_state and sanity check
948 * the pi_state against the user space value. If correct, attach to
949 * it.
950 */
951 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
952 struct futex_pi_state **ps)
953 {
954 pid_t pid = uval & FUTEX_TID_MASK;
955
956 /*
957 * Userspace might have messed up non-PI and PI futexes [3]
958 */
959 if (unlikely(!pi_state))
960 return -EINVAL;
961
962 WARN_ON(!atomic_read(&pi_state->refcount));
963
964 /*
965 * Handle the owner died case:
966 */
967 if (uval & FUTEX_OWNER_DIED) {
968 /*
969 * exit_pi_state_list sets owner to NULL and wakes the
970 * topmost waiter. The task which acquires the
971 * pi_state->rt_mutex will fixup owner.
972 */
973 if (!pi_state->owner) {
974 /*
975 * No pi state owner, but the user space TID
976 * is not 0. Inconsistent state. [5]
977 */
978 if (pid)
979 return -EINVAL;
980 /*
981 * Take a ref on the state and return success. [4]
982 */
983 goto out_state;
984 }
985
986 /*
987 * If TID is 0, then either the dying owner has not
988 * yet executed exit_pi_state_list() or some waiter
989 * acquired the rtmutex in the pi state, but did not
990 * yet fixup the TID in user space.
991 *
992 * Take a ref on the state and return success. [6]
993 */
994 if (!pid)
995 goto out_state;
996 } else {
997 /*
998 * If the owner died bit is not set, then the pi_state
999 * must have an owner. [7]
1000 */
1001 if (!pi_state->owner)
1002 return -EINVAL;
1003 }
1004
1005 /*
1006 * Bail out if user space manipulated the futex value. If pi
1007 * state exists then the owner TID must be the same as the
1008 * user space TID. [9/10]
1009 */
1010 if (pid != task_pid_vnr(pi_state->owner))
1011 return -EINVAL;
1012 out_state:
1013 atomic_inc(&pi_state->refcount);
1014 *ps = pi_state;
1015 return 0;
1016 }
1017
1018 /*
1019 * Lookup the task for the TID provided from user space and attach to
1020 * it after doing proper sanity checks.
1021 */
1022 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1023 struct futex_pi_state **ps)
1024 {
1025 pid_t pid = uval & FUTEX_TID_MASK;
1026 struct futex_pi_state *pi_state;
1027 struct task_struct *p;
1028
1029 /*
1030 * We are the first waiter - try to look up the real owner and attach
1031 * the new pi_state to it, but bail out when TID = 0 [1]
1032 */
1033 if (!pid)
1034 return -ESRCH;
1035 p = futex_find_get_task(pid);
1036 if (!p)
1037 return -ESRCH;
1038
1039 if (unlikely(p->flags & PF_KTHREAD)) {
1040 put_task_struct(p);
1041 return -EPERM;
1042 }
1043
1044 /*
1045 * We need to look at the task state flags to figure out,
1046 * whether the task is exiting. To protect against the do_exit
1047 * change of the task flags, we do this protected by
1048 * p->pi_lock:
1049 */
1050 raw_spin_lock_irq(&p->pi_lock);
1051 if (unlikely(p->flags & PF_EXITING)) {
1052 /*
1053 * The task is on the way out. When PF_EXITPIDONE is
1054 * set, we know that the task has finished the
1055 * cleanup:
1056 */
1057 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1058
1059 raw_spin_unlock_irq(&p->pi_lock);
1060 put_task_struct(p);
1061 return ret;
1062 }
1063
1064 /*
1065 * No existing pi state. First waiter. [2]
1066 */
1067 pi_state = alloc_pi_state();
1068
1069 /*
1070 * Initialize the pi_mutex in locked state and make @p
1071 * the owner of it:
1072 */
1073 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1074
1075 /* Store the key for possible exit cleanups: */
1076 pi_state->key = *key;
1077
1078 WARN_ON(!list_empty(&pi_state->list));
1079 list_add(&pi_state->list, &p->pi_state_list);
1080 pi_state->owner = p;
1081 raw_spin_unlock_irq(&p->pi_lock);
1082
1083 put_task_struct(p);
1084
1085 *ps = pi_state;
1086
1087 return 0;
1088 }
1089
1090 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1091 union futex_key *key, struct futex_pi_state **ps)
1092 {
1093 struct futex_q *match = futex_top_waiter(hb, key);
1094
1095 /*
1096 * If there is a waiter on that futex, validate it and
1097 * attach to the pi_state when the validation succeeds.
1098 */
1099 if (match)
1100 return attach_to_pi_state(uval, match->pi_state, ps);
1101
1102 /*
1103 * We are the first waiter - try to look up the owner based on
1104 * @uval and attach to it.
1105 */
1106 return attach_to_pi_owner(uval, key, ps);
1107 }
1108
1109 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1110 {
1111 u32 uninitialized_var(curval);
1112
1113 if (unlikely(should_fail_futex(true)))
1114 return -EFAULT;
1115
1116 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1117 return -EFAULT;
1118
1119 /*If user space value changed, let the caller retry */
1120 return curval != uval ? -EAGAIN : 0;
1121 }
1122
1123 /**
1124 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1125 * @uaddr: the pi futex user address
1126 * @hb: the pi futex hash bucket
1127 * @key: the futex key associated with uaddr and hb
1128 * @ps: the pi_state pointer where we store the result of the
1129 * lookup
1130 * @task: the task to perform the atomic lock work for. This will
1131 * be "current" except in the case of requeue pi.
1132 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1133 *
1134 * Return:
1135 * 0 - ready to wait;
1136 * 1 - acquired the lock;
1137 * <0 - error
1138 *
1139 * The hb->lock and futex_key refs shall be held by the caller.
1140 */
1141 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1142 union futex_key *key,
1143 struct futex_pi_state **ps,
1144 struct task_struct *task, int set_waiters)
1145 {
1146 u32 uval, newval, vpid = task_pid_vnr(task);
1147 struct futex_q *match;
1148 int ret;
1149
1150 /*
1151 * Read the user space value first so we can validate a few
1152 * things before proceeding further.
1153 */
1154 if (get_futex_value_locked(&uval, uaddr))
1155 return -EFAULT;
1156
1157 if (unlikely(should_fail_futex(true)))
1158 return -EFAULT;
1159
1160 /*
1161 * Detect deadlocks.
1162 */
1163 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1164 return -EDEADLK;
1165
1166 if ((unlikely(should_fail_futex(true))))
1167 return -EDEADLK;
1168
1169 /*
1170 * Lookup existing state first. If it exists, try to attach to
1171 * its pi_state.
1172 */
1173 match = futex_top_waiter(hb, key);
1174 if (match)
1175 return attach_to_pi_state(uval, match->pi_state, ps);
1176
1177 /*
1178 * No waiter and user TID is 0. We are here because the
1179 * waiters or the owner died bit is set or called from
1180 * requeue_cmp_pi or for whatever reason something took the
1181 * syscall.
1182 */
1183 if (!(uval & FUTEX_TID_MASK)) {
1184 /*
1185 * We take over the futex. No other waiters and the user space
1186 * TID is 0. We preserve the owner died bit.
1187 */
1188 newval = uval & FUTEX_OWNER_DIED;
1189 newval |= vpid;
1190
1191 /* The futex requeue_pi code can enforce the waiters bit */
1192 if (set_waiters)
1193 newval |= FUTEX_WAITERS;
1194
1195 ret = lock_pi_update_atomic(uaddr, uval, newval);
1196 /* If the take over worked, return 1 */
1197 return ret < 0 ? ret : 1;
1198 }
1199
1200 /*
1201 * First waiter. Set the waiters bit before attaching ourself to
1202 * the owner. If owner tries to unlock, it will be forced into
1203 * the kernel and blocked on hb->lock.
1204 */
1205 newval = uval | FUTEX_WAITERS;
1206 ret = lock_pi_update_atomic(uaddr, uval, newval);
1207 if (ret)
1208 return ret;
1209 /*
1210 * If the update of the user space value succeeded, we try to
1211 * attach to the owner. If that fails, no harm done, we only
1212 * set the FUTEX_WAITERS bit in the user space variable.
1213 */
1214 return attach_to_pi_owner(uval, key, ps);
1215 }
1216
1217 /**
1218 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1219 * @q: The futex_q to unqueue
1220 *
1221 * The q->lock_ptr must not be NULL and must be held by the caller.
1222 */
1223 static void __unqueue_futex(struct futex_q *q)
1224 {
1225 struct futex_hash_bucket *hb;
1226
1227 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1228 || WARN_ON(plist_node_empty(&q->list)))
1229 return;
1230
1231 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1232 plist_del(&q->list, &hb->chain);
1233 hb_waiters_dec(hb);
1234 }
1235
1236 /*
1237 * The hash bucket lock must be held when this is called.
1238 * Afterwards, the futex_q must not be accessed. Callers
1239 * must ensure to later call wake_up_q() for the actual
1240 * wakeups to occur.
1241 */
1242 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1243 {
1244 struct task_struct *p = q->task;
1245
1246 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1247 return;
1248
1249 /*
1250 * Queue the task for later wakeup for after we've released
1251 * the hb->lock. wake_q_add() grabs reference to p.
1252 */
1253 wake_q_add(wake_q, p);
1254 __unqueue_futex(q);
1255 /*
1256 * The waiting task can free the futex_q as soon as
1257 * q->lock_ptr = NULL is written, without taking any locks. A
1258 * memory barrier is required here to prevent the following
1259 * store to lock_ptr from getting ahead of the plist_del.
1260 */
1261 smp_wmb();
1262 q->lock_ptr = NULL;
1263 }
1264
1265 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1266 struct futex_hash_bucket *hb)
1267 {
1268 struct task_struct *new_owner;
1269 struct futex_pi_state *pi_state = this->pi_state;
1270 u32 uninitialized_var(curval), newval;
1271 WAKE_Q(wake_q);
1272 bool deboost;
1273 int ret = 0;
1274
1275 if (!pi_state)
1276 return -EINVAL;
1277
1278 /*
1279 * If current does not own the pi_state then the futex is
1280 * inconsistent and user space fiddled with the futex value.
1281 */
1282 if (pi_state->owner != current)
1283 return -EINVAL;
1284
1285 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1286 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1287
1288 /*
1289 * It is possible that the next waiter (the one that brought
1290 * this owner to the kernel) timed out and is no longer
1291 * waiting on the lock.
1292 */
1293 if (!new_owner)
1294 new_owner = this->task;
1295
1296 /*
1297 * We pass it to the next owner. The WAITERS bit is always
1298 * kept enabled while there is PI state around. We cleanup the
1299 * owner died bit, because we are the owner.
1300 */
1301 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1302
1303 if (unlikely(should_fail_futex(true)))
1304 ret = -EFAULT;
1305
1306 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1307 ret = -EFAULT;
1308 } else if (curval != uval) {
1309 /*
1310 * If a unconditional UNLOCK_PI operation (user space did not
1311 * try the TID->0 transition) raced with a waiter setting the
1312 * FUTEX_WAITERS flag between get_user() and locking the hash
1313 * bucket lock, retry the operation.
1314 */
1315 if ((FUTEX_TID_MASK & curval) == uval)
1316 ret = -EAGAIN;
1317 else
1318 ret = -EINVAL;
1319 }
1320 if (ret) {
1321 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1322 return ret;
1323 }
1324
1325 raw_spin_lock(&pi_state->owner->pi_lock);
1326 WARN_ON(list_empty(&pi_state->list));
1327 list_del_init(&pi_state->list);
1328 raw_spin_unlock(&pi_state->owner->pi_lock);
1329
1330 raw_spin_lock(&new_owner->pi_lock);
1331 WARN_ON(!list_empty(&pi_state->list));
1332 list_add(&pi_state->list, &new_owner->pi_state_list);
1333 pi_state->owner = new_owner;
1334 raw_spin_unlock(&new_owner->pi_lock);
1335
1336 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1337
1338 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1339
1340 /*
1341 * First unlock HB so the waiter does not spin on it once he got woken
1342 * up. Second wake up the waiter before the priority is adjusted. If we
1343 * deboost first (and lose our higher priority), then the task might get
1344 * scheduled away before the wake up can take place.
1345 */
1346 spin_unlock(&hb->lock);
1347 wake_up_q(&wake_q);
1348 if (deboost)
1349 rt_mutex_adjust_prio(current);
1350
1351 return 0;
1352 }
1353
1354 /*
1355 * Express the locking dependencies for lockdep:
1356 */
1357 static inline void
1358 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1359 {
1360 if (hb1 <= hb2) {
1361 spin_lock(&hb1->lock);
1362 if (hb1 < hb2)
1363 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1364 } else { /* hb1 > hb2 */
1365 spin_lock(&hb2->lock);
1366 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1367 }
1368 }
1369
1370 static inline void
1371 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1372 {
1373 spin_unlock(&hb1->lock);
1374 if (hb1 != hb2)
1375 spin_unlock(&hb2->lock);
1376 }
1377
1378 /*
1379 * Wake up waiters matching bitset queued on this futex (uaddr).
1380 */
1381 static int
1382 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1383 {
1384 struct futex_hash_bucket *hb;
1385 struct futex_q *this, *next;
1386 union futex_key key = FUTEX_KEY_INIT;
1387 int ret;
1388 WAKE_Q(wake_q);
1389
1390 if (!bitset)
1391 return -EINVAL;
1392
1393 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1394 if (unlikely(ret != 0))
1395 goto out;
1396
1397 hb = hash_futex(&key);
1398
1399 /* Make sure we really have tasks to wakeup */
1400 if (!hb_waiters_pending(hb))
1401 goto out_put_key;
1402
1403 spin_lock(&hb->lock);
1404
1405 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1406 if (match_futex (&this->key, &key)) {
1407 if (this->pi_state || this->rt_waiter) {
1408 ret = -EINVAL;
1409 break;
1410 }
1411
1412 /* Check if one of the bits is set in both bitsets */
1413 if (!(this->bitset & bitset))
1414 continue;
1415
1416 mark_wake_futex(&wake_q, this);
1417 if (++ret >= nr_wake)
1418 break;
1419 }
1420 }
1421
1422 spin_unlock(&hb->lock);
1423 wake_up_q(&wake_q);
1424 out_put_key:
1425 put_futex_key(&key);
1426 out:
1427 return ret;
1428 }
1429
1430 /*
1431 * Wake up all waiters hashed on the physical page that is mapped
1432 * to this virtual address:
1433 */
1434 static int
1435 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1436 int nr_wake, int nr_wake2, int op)
1437 {
1438 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1439 struct futex_hash_bucket *hb1, *hb2;
1440 struct futex_q *this, *next;
1441 int ret, op_ret;
1442 WAKE_Q(wake_q);
1443
1444 retry:
1445 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1446 if (unlikely(ret != 0))
1447 goto out;
1448 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1449 if (unlikely(ret != 0))
1450 goto out_put_key1;
1451
1452 hb1 = hash_futex(&key1);
1453 hb2 = hash_futex(&key2);
1454
1455 retry_private:
1456 double_lock_hb(hb1, hb2);
1457 op_ret = futex_atomic_op_inuser(op, uaddr2);
1458 if (unlikely(op_ret < 0)) {
1459
1460 double_unlock_hb(hb1, hb2);
1461
1462 #ifndef CONFIG_MMU
1463 /*
1464 * we don't get EFAULT from MMU faults if we don't have an MMU,
1465 * but we might get them from range checking
1466 */
1467 ret = op_ret;
1468 goto out_put_keys;
1469 #endif
1470
1471 if (unlikely(op_ret != -EFAULT)) {
1472 ret = op_ret;
1473 goto out_put_keys;
1474 }
1475
1476 ret = fault_in_user_writeable(uaddr2);
1477 if (ret)
1478 goto out_put_keys;
1479
1480 if (!(flags & FLAGS_SHARED))
1481 goto retry_private;
1482
1483 put_futex_key(&key2);
1484 put_futex_key(&key1);
1485 goto retry;
1486 }
1487
1488 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1489 if (match_futex (&this->key, &key1)) {
1490 if (this->pi_state || this->rt_waiter) {
1491 ret = -EINVAL;
1492 goto out_unlock;
1493 }
1494 mark_wake_futex(&wake_q, this);
1495 if (++ret >= nr_wake)
1496 break;
1497 }
1498 }
1499
1500 if (op_ret > 0) {
1501 op_ret = 0;
1502 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1503 if (match_futex (&this->key, &key2)) {
1504 if (this->pi_state || this->rt_waiter) {
1505 ret = -EINVAL;
1506 goto out_unlock;
1507 }
1508 mark_wake_futex(&wake_q, this);
1509 if (++op_ret >= nr_wake2)
1510 break;
1511 }
1512 }
1513 ret += op_ret;
1514 }
1515
1516 out_unlock:
1517 double_unlock_hb(hb1, hb2);
1518 wake_up_q(&wake_q);
1519 out_put_keys:
1520 put_futex_key(&key2);
1521 out_put_key1:
1522 put_futex_key(&key1);
1523 out:
1524 return ret;
1525 }
1526
1527 /**
1528 * requeue_futex() - Requeue a futex_q from one hb to another
1529 * @q: the futex_q to requeue
1530 * @hb1: the source hash_bucket
1531 * @hb2: the target hash_bucket
1532 * @key2: the new key for the requeued futex_q
1533 */
1534 static inline
1535 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1536 struct futex_hash_bucket *hb2, union futex_key *key2)
1537 {
1538
1539 /*
1540 * If key1 and key2 hash to the same bucket, no need to
1541 * requeue.
1542 */
1543 if (likely(&hb1->chain != &hb2->chain)) {
1544 plist_del(&q->list, &hb1->chain);
1545 hb_waiters_dec(hb1);
1546 hb_waiters_inc(hb2);
1547 plist_add(&q->list, &hb2->chain);
1548 q->lock_ptr = &hb2->lock;
1549 }
1550 get_futex_key_refs(key2);
1551 q->key = *key2;
1552 }
1553
1554 /**
1555 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1556 * @q: the futex_q
1557 * @key: the key of the requeue target futex
1558 * @hb: the hash_bucket of the requeue target futex
1559 *
1560 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1561 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1562 * to the requeue target futex so the waiter can detect the wakeup on the right
1563 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1564 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1565 * to protect access to the pi_state to fixup the owner later. Must be called
1566 * with both q->lock_ptr and hb->lock held.
1567 */
1568 static inline
1569 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1570 struct futex_hash_bucket *hb)
1571 {
1572 get_futex_key_refs(key);
1573 q->key = *key;
1574
1575 __unqueue_futex(q);
1576
1577 WARN_ON(!q->rt_waiter);
1578 q->rt_waiter = NULL;
1579
1580 q->lock_ptr = &hb->lock;
1581
1582 wake_up_state(q->task, TASK_NORMAL);
1583 }
1584
1585 /**
1586 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1587 * @pifutex: the user address of the to futex
1588 * @hb1: the from futex hash bucket, must be locked by the caller
1589 * @hb2: the to futex hash bucket, must be locked by the caller
1590 * @key1: the from futex key
1591 * @key2: the to futex key
1592 * @ps: address to store the pi_state pointer
1593 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1594 *
1595 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1596 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1597 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1598 * hb1 and hb2 must be held by the caller.
1599 *
1600 * Return:
1601 * 0 - failed to acquire the lock atomically;
1602 * >0 - acquired the lock, return value is vpid of the top_waiter
1603 * <0 - error
1604 */
1605 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1606 struct futex_hash_bucket *hb1,
1607 struct futex_hash_bucket *hb2,
1608 union futex_key *key1, union futex_key *key2,
1609 struct futex_pi_state **ps, int set_waiters)
1610 {
1611 struct futex_q *top_waiter = NULL;
1612 u32 curval;
1613 int ret, vpid;
1614
1615 if (get_futex_value_locked(&curval, pifutex))
1616 return -EFAULT;
1617
1618 if (unlikely(should_fail_futex(true)))
1619 return -EFAULT;
1620
1621 /*
1622 * Find the top_waiter and determine if there are additional waiters.
1623 * If the caller intends to requeue more than 1 waiter to pifutex,
1624 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1625 * as we have means to handle the possible fault. If not, don't set
1626 * the bit unecessarily as it will force the subsequent unlock to enter
1627 * the kernel.
1628 */
1629 top_waiter = futex_top_waiter(hb1, key1);
1630
1631 /* There are no waiters, nothing for us to do. */
1632 if (!top_waiter)
1633 return 0;
1634
1635 /* Ensure we requeue to the expected futex. */
1636 if (!match_futex(top_waiter->requeue_pi_key, key2))
1637 return -EINVAL;
1638
1639 /*
1640 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1641 * the contended case or if set_waiters is 1. The pi_state is returned
1642 * in ps in contended cases.
1643 */
1644 vpid = task_pid_vnr(top_waiter->task);
1645 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1646 set_waiters);
1647 if (ret == 1) {
1648 requeue_pi_wake_futex(top_waiter, key2, hb2);
1649 return vpid;
1650 }
1651 return ret;
1652 }
1653
1654 /**
1655 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1656 * @uaddr1: source futex user address
1657 * @flags: futex flags (FLAGS_SHARED, etc.)
1658 * @uaddr2: target futex user address
1659 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1660 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1661 * @cmpval: @uaddr1 expected value (or %NULL)
1662 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1663 * pi futex (pi to pi requeue is not supported)
1664 *
1665 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1666 * uaddr2 atomically on behalf of the top waiter.
1667 *
1668 * Return:
1669 * >=0 - on success, the number of tasks requeued or woken;
1670 * <0 - on error
1671 */
1672 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1673 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1674 u32 *cmpval, int requeue_pi)
1675 {
1676 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1677 int drop_count = 0, task_count = 0, ret;
1678 struct futex_pi_state *pi_state = NULL;
1679 struct futex_hash_bucket *hb1, *hb2;
1680 struct futex_q *this, *next;
1681 WAKE_Q(wake_q);
1682
1683 if (requeue_pi) {
1684 /*
1685 * Requeue PI only works on two distinct uaddrs. This
1686 * check is only valid for private futexes. See below.
1687 */
1688 if (uaddr1 == uaddr2)
1689 return -EINVAL;
1690
1691 /*
1692 * requeue_pi requires a pi_state, try to allocate it now
1693 * without any locks in case it fails.
1694 */
1695 if (refill_pi_state_cache())
1696 return -ENOMEM;
1697 /*
1698 * requeue_pi must wake as many tasks as it can, up to nr_wake
1699 * + nr_requeue, since it acquires the rt_mutex prior to
1700 * returning to userspace, so as to not leave the rt_mutex with
1701 * waiters and no owner. However, second and third wake-ups
1702 * cannot be predicted as they involve race conditions with the
1703 * first wake and a fault while looking up the pi_state. Both
1704 * pthread_cond_signal() and pthread_cond_broadcast() should
1705 * use nr_wake=1.
1706 */
1707 if (nr_wake != 1)
1708 return -EINVAL;
1709 }
1710
1711 retry:
1712 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1713 if (unlikely(ret != 0))
1714 goto out;
1715 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1716 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1717 if (unlikely(ret != 0))
1718 goto out_put_key1;
1719
1720 /*
1721 * The check above which compares uaddrs is not sufficient for
1722 * shared futexes. We need to compare the keys:
1723 */
1724 if (requeue_pi && match_futex(&key1, &key2)) {
1725 ret = -EINVAL;
1726 goto out_put_keys;
1727 }
1728
1729 hb1 = hash_futex(&key1);
1730 hb2 = hash_futex(&key2);
1731
1732 retry_private:
1733 hb_waiters_inc(hb2);
1734 double_lock_hb(hb1, hb2);
1735
1736 if (likely(cmpval != NULL)) {
1737 u32 curval;
1738
1739 ret = get_futex_value_locked(&curval, uaddr1);
1740
1741 if (unlikely(ret)) {
1742 double_unlock_hb(hb1, hb2);
1743 hb_waiters_dec(hb2);
1744
1745 ret = get_user(curval, uaddr1);
1746 if (ret)
1747 goto out_put_keys;
1748
1749 if (!(flags & FLAGS_SHARED))
1750 goto retry_private;
1751
1752 put_futex_key(&key2);
1753 put_futex_key(&key1);
1754 goto retry;
1755 }
1756 if (curval != *cmpval) {
1757 ret = -EAGAIN;
1758 goto out_unlock;
1759 }
1760 }
1761
1762 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1763 /*
1764 * Attempt to acquire uaddr2 and wake the top waiter. If we
1765 * intend to requeue waiters, force setting the FUTEX_WAITERS
1766 * bit. We force this here where we are able to easily handle
1767 * faults rather in the requeue loop below.
1768 */
1769 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1770 &key2, &pi_state, nr_requeue);
1771
1772 /*
1773 * At this point the top_waiter has either taken uaddr2 or is
1774 * waiting on it. If the former, then the pi_state will not
1775 * exist yet, look it up one more time to ensure we have a
1776 * reference to it. If the lock was taken, ret contains the
1777 * vpid of the top waiter task.
1778 * If the lock was not taken, we have pi_state and an initial
1779 * refcount on it. In case of an error we have nothing.
1780 */
1781 if (ret > 0) {
1782 WARN_ON(pi_state);
1783 drop_count++;
1784 task_count++;
1785 /*
1786 * If we acquired the lock, then the user space value
1787 * of uaddr2 should be vpid. It cannot be changed by
1788 * the top waiter as it is blocked on hb2 lock if it
1789 * tries to do so. If something fiddled with it behind
1790 * our back the pi state lookup might unearth it. So
1791 * we rather use the known value than rereading and
1792 * handing potential crap to lookup_pi_state.
1793 *
1794 * If that call succeeds then we have pi_state and an
1795 * initial refcount on it.
1796 */
1797 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1798 }
1799
1800 switch (ret) {
1801 case 0:
1802 /* We hold a reference on the pi state. */
1803 break;
1804
1805 /* If the above failed, then pi_state is NULL */
1806 case -EFAULT:
1807 double_unlock_hb(hb1, hb2);
1808 hb_waiters_dec(hb2);
1809 put_futex_key(&key2);
1810 put_futex_key(&key1);
1811 ret = fault_in_user_writeable(uaddr2);
1812 if (!ret)
1813 goto retry;
1814 goto out;
1815 case -EAGAIN:
1816 /*
1817 * Two reasons for this:
1818 * - Owner is exiting and we just wait for the
1819 * exit to complete.
1820 * - The user space value changed.
1821 */
1822 double_unlock_hb(hb1, hb2);
1823 hb_waiters_dec(hb2);
1824 put_futex_key(&key2);
1825 put_futex_key(&key1);
1826 cond_resched();
1827 goto retry;
1828 default:
1829 goto out_unlock;
1830 }
1831 }
1832
1833 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1834 if (task_count - nr_wake >= nr_requeue)
1835 break;
1836
1837 if (!match_futex(&this->key, &key1))
1838 continue;
1839
1840 /*
1841 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1842 * be paired with each other and no other futex ops.
1843 *
1844 * We should never be requeueing a futex_q with a pi_state,
1845 * which is awaiting a futex_unlock_pi().
1846 */
1847 if ((requeue_pi && !this->rt_waiter) ||
1848 (!requeue_pi && this->rt_waiter) ||
1849 this->pi_state) {
1850 ret = -EINVAL;
1851 break;
1852 }
1853
1854 /*
1855 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1856 * lock, we already woke the top_waiter. If not, it will be
1857 * woken by futex_unlock_pi().
1858 */
1859 if (++task_count <= nr_wake && !requeue_pi) {
1860 mark_wake_futex(&wake_q, this);
1861 continue;
1862 }
1863
1864 /* Ensure we requeue to the expected futex for requeue_pi. */
1865 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1866 ret = -EINVAL;
1867 break;
1868 }
1869
1870 /*
1871 * Requeue nr_requeue waiters and possibly one more in the case
1872 * of requeue_pi if we couldn't acquire the lock atomically.
1873 */
1874 if (requeue_pi) {
1875 /*
1876 * Prepare the waiter to take the rt_mutex. Take a
1877 * refcount on the pi_state and store the pointer in
1878 * the futex_q object of the waiter.
1879 */
1880 atomic_inc(&pi_state->refcount);
1881 this->pi_state = pi_state;
1882 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1883 this->rt_waiter,
1884 this->task);
1885 if (ret == 1) {
1886 /*
1887 * We got the lock. We do neither drop the
1888 * refcount on pi_state nor clear
1889 * this->pi_state because the waiter needs the
1890 * pi_state for cleaning up the user space
1891 * value. It will drop the refcount after
1892 * doing so.
1893 */
1894 requeue_pi_wake_futex(this, &key2, hb2);
1895 drop_count++;
1896 continue;
1897 } else if (ret) {
1898 /*
1899 * rt_mutex_start_proxy_lock() detected a
1900 * potential deadlock when we tried to queue
1901 * that waiter. Drop the pi_state reference
1902 * which we took above and remove the pointer
1903 * to the state from the waiters futex_q
1904 * object.
1905 */
1906 this->pi_state = NULL;
1907 put_pi_state(pi_state);
1908 /*
1909 * We stop queueing more waiters and let user
1910 * space deal with the mess.
1911 */
1912 break;
1913 }
1914 }
1915 requeue_futex(this, hb1, hb2, &key2);
1916 drop_count++;
1917 }
1918
1919 /*
1920 * We took an extra initial reference to the pi_state either
1921 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1922 * need to drop it here again.
1923 */
1924 put_pi_state(pi_state);
1925
1926 out_unlock:
1927 double_unlock_hb(hb1, hb2);
1928 wake_up_q(&wake_q);
1929 hb_waiters_dec(hb2);
1930
1931 /*
1932 * drop_futex_key_refs() must be called outside the spinlocks. During
1933 * the requeue we moved futex_q's from the hash bucket at key1 to the
1934 * one at key2 and updated their key pointer. We no longer need to
1935 * hold the references to key1.
1936 */
1937 while (--drop_count >= 0)
1938 drop_futex_key_refs(&key1);
1939
1940 out_put_keys:
1941 put_futex_key(&key2);
1942 out_put_key1:
1943 put_futex_key(&key1);
1944 out:
1945 return ret ? ret : task_count;
1946 }
1947
1948 /* The key must be already stored in q->key. */
1949 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1950 __acquires(&hb->lock)
1951 {
1952 struct futex_hash_bucket *hb;
1953
1954 hb = hash_futex(&q->key);
1955
1956 /*
1957 * Increment the counter before taking the lock so that
1958 * a potential waker won't miss a to-be-slept task that is
1959 * waiting for the spinlock. This is safe as all queue_lock()
1960 * users end up calling queue_me(). Similarly, for housekeeping,
1961 * decrement the counter at queue_unlock() when some error has
1962 * occurred and we don't end up adding the task to the list.
1963 */
1964 hb_waiters_inc(hb);
1965
1966 q->lock_ptr = &hb->lock;
1967
1968 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1969 return hb;
1970 }
1971
1972 static inline void
1973 queue_unlock(struct futex_hash_bucket *hb)
1974 __releases(&hb->lock)
1975 {
1976 spin_unlock(&hb->lock);
1977 hb_waiters_dec(hb);
1978 }
1979
1980 /**
1981 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1982 * @q: The futex_q to enqueue
1983 * @hb: The destination hash bucket
1984 *
1985 * The hb->lock must be held by the caller, and is released here. A call to
1986 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1987 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1988 * or nothing if the unqueue is done as part of the wake process and the unqueue
1989 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1990 * an example).
1991 */
1992 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1993 __releases(&hb->lock)
1994 {
1995 int prio;
1996
1997 /*
1998 * The priority used to register this element is
1999 * - either the real thread-priority for the real-time threads
2000 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2001 * - or MAX_RT_PRIO for non-RT threads.
2002 * Thus, all RT-threads are woken first in priority order, and
2003 * the others are woken last, in FIFO order.
2004 */
2005 prio = min(current->normal_prio, MAX_RT_PRIO);
2006
2007 plist_node_init(&q->list, prio);
2008 plist_add(&q->list, &hb->chain);
2009 q->task = current;
2010 spin_unlock(&hb->lock);
2011 }
2012
2013 /**
2014 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2015 * @q: The futex_q to unqueue
2016 *
2017 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2018 * be paired with exactly one earlier call to queue_me().
2019 *
2020 * Return:
2021 * 1 - if the futex_q was still queued (and we removed unqueued it);
2022 * 0 - if the futex_q was already removed by the waking thread
2023 */
2024 static int unqueue_me(struct futex_q *q)
2025 {
2026 spinlock_t *lock_ptr;
2027 int ret = 0;
2028
2029 /* In the common case we don't take the spinlock, which is nice. */
2030 retry:
2031 /*
2032 * q->lock_ptr can change between this read and the following spin_lock.
2033 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2034 * optimizing lock_ptr out of the logic below.
2035 */
2036 lock_ptr = READ_ONCE(q->lock_ptr);
2037 if (lock_ptr != NULL) {
2038 spin_lock(lock_ptr);
2039 /*
2040 * q->lock_ptr can change between reading it and
2041 * spin_lock(), causing us to take the wrong lock. This
2042 * corrects the race condition.
2043 *
2044 * Reasoning goes like this: if we have the wrong lock,
2045 * q->lock_ptr must have changed (maybe several times)
2046 * between reading it and the spin_lock(). It can
2047 * change again after the spin_lock() but only if it was
2048 * already changed before the spin_lock(). It cannot,
2049 * however, change back to the original value. Therefore
2050 * we can detect whether we acquired the correct lock.
2051 */
2052 if (unlikely(lock_ptr != q->lock_ptr)) {
2053 spin_unlock(lock_ptr);
2054 goto retry;
2055 }
2056 __unqueue_futex(q);
2057
2058 BUG_ON(q->pi_state);
2059
2060 spin_unlock(lock_ptr);
2061 ret = 1;
2062 }
2063
2064 drop_futex_key_refs(&q->key);
2065 return ret;
2066 }
2067
2068 /*
2069 * PI futexes can not be requeued and must remove themself from the
2070 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2071 * and dropped here.
2072 */
2073 static void unqueue_me_pi(struct futex_q *q)
2074 __releases(q->lock_ptr)
2075 {
2076 __unqueue_futex(q);
2077
2078 BUG_ON(!q->pi_state);
2079 put_pi_state(q->pi_state);
2080 q->pi_state = NULL;
2081
2082 spin_unlock(q->lock_ptr);
2083 }
2084
2085 /*
2086 * Fixup the pi_state owner with the new owner.
2087 *
2088 * Must be called with hash bucket lock held and mm->sem held for non
2089 * private futexes.
2090 */
2091 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2092 struct task_struct *newowner)
2093 {
2094 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2095 struct futex_pi_state *pi_state = q->pi_state;
2096 struct task_struct *oldowner = pi_state->owner;
2097 u32 uval, uninitialized_var(curval), newval;
2098 int ret;
2099
2100 /* Owner died? */
2101 if (!pi_state->owner)
2102 newtid |= FUTEX_OWNER_DIED;
2103
2104 /*
2105 * We are here either because we stole the rtmutex from the
2106 * previous highest priority waiter or we are the highest priority
2107 * waiter but failed to get the rtmutex the first time.
2108 * We have to replace the newowner TID in the user space variable.
2109 * This must be atomic as we have to preserve the owner died bit here.
2110 *
2111 * Note: We write the user space value _before_ changing the pi_state
2112 * because we can fault here. Imagine swapped out pages or a fork
2113 * that marked all the anonymous memory readonly for cow.
2114 *
2115 * Modifying pi_state _before_ the user space value would
2116 * leave the pi_state in an inconsistent state when we fault
2117 * here, because we need to drop the hash bucket lock to
2118 * handle the fault. This might be observed in the PID check
2119 * in lookup_pi_state.
2120 */
2121 retry:
2122 if (get_futex_value_locked(&uval, uaddr))
2123 goto handle_fault;
2124
2125 while (1) {
2126 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2127
2128 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2129 goto handle_fault;
2130 if (curval == uval)
2131 break;
2132 uval = curval;
2133 }
2134
2135 /*
2136 * We fixed up user space. Now we need to fix the pi_state
2137 * itself.
2138 */
2139 if (pi_state->owner != NULL) {
2140 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2141 WARN_ON(list_empty(&pi_state->list));
2142 list_del_init(&pi_state->list);
2143 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2144 }
2145
2146 pi_state->owner = newowner;
2147
2148 raw_spin_lock_irq(&newowner->pi_lock);
2149 WARN_ON(!list_empty(&pi_state->list));
2150 list_add(&pi_state->list, &newowner->pi_state_list);
2151 raw_spin_unlock_irq(&newowner->pi_lock);
2152 return 0;
2153
2154 /*
2155 * To handle the page fault we need to drop the hash bucket
2156 * lock here. That gives the other task (either the highest priority
2157 * waiter itself or the task which stole the rtmutex) the
2158 * chance to try the fixup of the pi_state. So once we are
2159 * back from handling the fault we need to check the pi_state
2160 * after reacquiring the hash bucket lock and before trying to
2161 * do another fixup. When the fixup has been done already we
2162 * simply return.
2163 */
2164 handle_fault:
2165 spin_unlock(q->lock_ptr);
2166
2167 ret = fault_in_user_writeable(uaddr);
2168
2169 spin_lock(q->lock_ptr);
2170
2171 /*
2172 * Check if someone else fixed it for us:
2173 */
2174 if (pi_state->owner != oldowner)
2175 return 0;
2176
2177 if (ret)
2178 return ret;
2179
2180 goto retry;
2181 }
2182
2183 static long futex_wait_restart(struct restart_block *restart);
2184
2185 /**
2186 * fixup_owner() - Post lock pi_state and corner case management
2187 * @uaddr: user address of the futex
2188 * @q: futex_q (contains pi_state and access to the rt_mutex)
2189 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2190 *
2191 * After attempting to lock an rt_mutex, this function is called to cleanup
2192 * the pi_state owner as well as handle race conditions that may allow us to
2193 * acquire the lock. Must be called with the hb lock held.
2194 *
2195 * Return:
2196 * 1 - success, lock taken;
2197 * 0 - success, lock not taken;
2198 * <0 - on error (-EFAULT)
2199 */
2200 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2201 {
2202 struct task_struct *owner;
2203 int ret = 0;
2204
2205 if (locked) {
2206 /*
2207 * Got the lock. We might not be the anticipated owner if we
2208 * did a lock-steal - fix up the PI-state in that case:
2209 */
2210 if (q->pi_state->owner != current)
2211 ret = fixup_pi_state_owner(uaddr, q, current);
2212 goto out;
2213 }
2214
2215 /*
2216 * Catch the rare case, where the lock was released when we were on the
2217 * way back before we locked the hash bucket.
2218 */
2219 if (q->pi_state->owner == current) {
2220 /*
2221 * Try to get the rt_mutex now. This might fail as some other
2222 * task acquired the rt_mutex after we removed ourself from the
2223 * rt_mutex waiters list.
2224 */
2225 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2226 locked = 1;
2227 goto out;
2228 }
2229
2230 /*
2231 * pi_state is incorrect, some other task did a lock steal and
2232 * we returned due to timeout or signal without taking the
2233 * rt_mutex. Too late.
2234 */
2235 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2236 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2237 if (!owner)
2238 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2239 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2240 ret = fixup_pi_state_owner(uaddr, q, owner);
2241 goto out;
2242 }
2243
2244 /*
2245 * Paranoia check. If we did not take the lock, then we should not be
2246 * the owner of the rt_mutex.
2247 */
2248 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2249 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2250 "pi-state %p\n", ret,
2251 q->pi_state->pi_mutex.owner,
2252 q->pi_state->owner);
2253
2254 out:
2255 return ret ? ret : locked;
2256 }
2257
2258 /**
2259 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2260 * @hb: the futex hash bucket, must be locked by the caller
2261 * @q: the futex_q to queue up on
2262 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2263 */
2264 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2265 struct hrtimer_sleeper *timeout)
2266 {
2267 /*
2268 * The task state is guaranteed to be set before another task can
2269 * wake it. set_current_state() is implemented using smp_store_mb() and
2270 * queue_me() calls spin_unlock() upon completion, both serializing
2271 * access to the hash list and forcing another memory barrier.
2272 */
2273 set_current_state(TASK_INTERRUPTIBLE);
2274 queue_me(q, hb);
2275
2276 /* Arm the timer */
2277 if (timeout)
2278 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2279
2280 /*
2281 * If we have been removed from the hash list, then another task
2282 * has tried to wake us, and we can skip the call to schedule().
2283 */
2284 if (likely(!plist_node_empty(&q->list))) {
2285 /*
2286 * If the timer has already expired, current will already be
2287 * flagged for rescheduling. Only call schedule if there
2288 * is no timeout, or if it has yet to expire.
2289 */
2290 if (!timeout || timeout->task)
2291 freezable_schedule();
2292 }
2293 __set_current_state(TASK_RUNNING);
2294 }
2295
2296 /**
2297 * futex_wait_setup() - Prepare to wait on a futex
2298 * @uaddr: the futex userspace address
2299 * @val: the expected value
2300 * @flags: futex flags (FLAGS_SHARED, etc.)
2301 * @q: the associated futex_q
2302 * @hb: storage for hash_bucket pointer to be returned to caller
2303 *
2304 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2305 * compare it with the expected value. Handle atomic faults internally.
2306 * Return with the hb lock held and a q.key reference on success, and unlocked
2307 * with no q.key reference on failure.
2308 *
2309 * Return:
2310 * 0 - uaddr contains val and hb has been locked;
2311 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2312 */
2313 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2314 struct futex_q *q, struct futex_hash_bucket **hb)
2315 {
2316 u32 uval;
2317 int ret;
2318
2319 /*
2320 * Access the page AFTER the hash-bucket is locked.
2321 * Order is important:
2322 *
2323 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2324 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2325 *
2326 * The basic logical guarantee of a futex is that it blocks ONLY
2327 * if cond(var) is known to be true at the time of blocking, for
2328 * any cond. If we locked the hash-bucket after testing *uaddr, that
2329 * would open a race condition where we could block indefinitely with
2330 * cond(var) false, which would violate the guarantee.
2331 *
2332 * On the other hand, we insert q and release the hash-bucket only
2333 * after testing *uaddr. This guarantees that futex_wait() will NOT
2334 * absorb a wakeup if *uaddr does not match the desired values
2335 * while the syscall executes.
2336 */
2337 retry:
2338 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2339 if (unlikely(ret != 0))
2340 return ret;
2341
2342 retry_private:
2343 *hb = queue_lock(q);
2344
2345 ret = get_futex_value_locked(&uval, uaddr);
2346
2347 if (ret) {
2348 queue_unlock(*hb);
2349
2350 ret = get_user(uval, uaddr);
2351 if (ret)
2352 goto out;
2353
2354 if (!(flags & FLAGS_SHARED))
2355 goto retry_private;
2356
2357 put_futex_key(&q->key);
2358 goto retry;
2359 }
2360
2361 if (uval != val) {
2362 queue_unlock(*hb);
2363 ret = -EWOULDBLOCK;
2364 }
2365
2366 out:
2367 if (ret)
2368 put_futex_key(&q->key);
2369 return ret;
2370 }
2371
2372 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2373 ktime_t *abs_time, u32 bitset)
2374 {
2375 struct hrtimer_sleeper timeout, *to = NULL;
2376 struct restart_block *restart;
2377 struct futex_hash_bucket *hb;
2378 struct futex_q q = futex_q_init;
2379 int ret;
2380
2381 if (!bitset)
2382 return -EINVAL;
2383 q.bitset = bitset;
2384
2385 if (abs_time) {
2386 to = &timeout;
2387
2388 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2389 CLOCK_REALTIME : CLOCK_MONOTONIC,
2390 HRTIMER_MODE_ABS);
2391 hrtimer_init_sleeper(to, current);
2392 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2393 current->timer_slack_ns);
2394 }
2395
2396 retry:
2397 /*
2398 * Prepare to wait on uaddr. On success, holds hb lock and increments
2399 * q.key refs.
2400 */
2401 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2402 if (ret)
2403 goto out;
2404
2405 /* queue_me and wait for wakeup, timeout, or a signal. */
2406 futex_wait_queue_me(hb, &q, to);
2407
2408 /* If we were woken (and unqueued), we succeeded, whatever. */
2409 ret = 0;
2410 /* unqueue_me() drops q.key ref */
2411 if (!unqueue_me(&q))
2412 goto out;
2413 ret = -ETIMEDOUT;
2414 if (to && !to->task)
2415 goto out;
2416
2417 /*
2418 * We expect signal_pending(current), but we might be the
2419 * victim of a spurious wakeup as well.
2420 */
2421 if (!signal_pending(current))
2422 goto retry;
2423
2424 ret = -ERESTARTSYS;
2425 if (!abs_time)
2426 goto out;
2427
2428 restart = &current->restart_block;
2429 restart->fn = futex_wait_restart;
2430 restart->futex.uaddr = uaddr;
2431 restart->futex.val = val;
2432 restart->futex.time = abs_time->tv64;
2433 restart->futex.bitset = bitset;
2434 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2435
2436 ret = -ERESTART_RESTARTBLOCK;
2437
2438 out:
2439 if (to) {
2440 hrtimer_cancel(&to->timer);
2441 destroy_hrtimer_on_stack(&to->timer);
2442 }
2443 return ret;
2444 }
2445
2446
2447 static long futex_wait_restart(struct restart_block *restart)
2448 {
2449 u32 __user *uaddr = restart->futex.uaddr;
2450 ktime_t t, *tp = NULL;
2451
2452 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2453 t.tv64 = restart->futex.time;
2454 tp = &t;
2455 }
2456 restart->fn = do_no_restart_syscall;
2457
2458 return (long)futex_wait(uaddr, restart->futex.flags,
2459 restart->futex.val, tp, restart->futex.bitset);
2460 }
2461
2462
2463 /*
2464 * Userspace tried a 0 -> TID atomic transition of the futex value
2465 * and failed. The kernel side here does the whole locking operation:
2466 * if there are waiters then it will block as a consequence of relying
2467 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2468 * a 0 value of the futex too.).
2469 *
2470 * Also serves as futex trylock_pi()'ing, and due semantics.
2471 */
2472 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2473 ktime_t *time, int trylock)
2474 {
2475 struct hrtimer_sleeper timeout, *to = NULL;
2476 struct futex_hash_bucket *hb;
2477 struct futex_q q = futex_q_init;
2478 int res, ret;
2479
2480 if (refill_pi_state_cache())
2481 return -ENOMEM;
2482
2483 if (time) {
2484 to = &timeout;
2485 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2486 HRTIMER_MODE_ABS);
2487 hrtimer_init_sleeper(to, current);
2488 hrtimer_set_expires(&to->timer, *time);
2489 }
2490
2491 retry:
2492 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2493 if (unlikely(ret != 0))
2494 goto out;
2495
2496 retry_private:
2497 hb = queue_lock(&q);
2498
2499 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2500 if (unlikely(ret)) {
2501 /*
2502 * Atomic work succeeded and we got the lock,
2503 * or failed. Either way, we do _not_ block.
2504 */
2505 switch (ret) {
2506 case 1:
2507 /* We got the lock. */
2508 ret = 0;
2509 goto out_unlock_put_key;
2510 case -EFAULT:
2511 goto uaddr_faulted;
2512 case -EAGAIN:
2513 /*
2514 * Two reasons for this:
2515 * - Task is exiting and we just wait for the
2516 * exit to complete.
2517 * - The user space value changed.
2518 */
2519 queue_unlock(hb);
2520 put_futex_key(&q.key);
2521 cond_resched();
2522 goto retry;
2523 default:
2524 goto out_unlock_put_key;
2525 }
2526 }
2527
2528 /*
2529 * Only actually queue now that the atomic ops are done:
2530 */
2531 queue_me(&q, hb);
2532
2533 WARN_ON(!q.pi_state);
2534 /*
2535 * Block on the PI mutex:
2536 */
2537 if (!trylock) {
2538 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2539 } else {
2540 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2541 /* Fixup the trylock return value: */
2542 ret = ret ? 0 : -EWOULDBLOCK;
2543 }
2544
2545 spin_lock(q.lock_ptr);
2546 /*
2547 * Fixup the pi_state owner and possibly acquire the lock if we
2548 * haven't already.
2549 */
2550 res = fixup_owner(uaddr, &q, !ret);
2551 /*
2552 * If fixup_owner() returned an error, proprogate that. If it acquired
2553 * the lock, clear our -ETIMEDOUT or -EINTR.
2554 */
2555 if (res)
2556 ret = (res < 0) ? res : 0;
2557
2558 /*
2559 * If fixup_owner() faulted and was unable to handle the fault, unlock
2560 * it and return the fault to userspace.
2561 */
2562 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2563 rt_mutex_unlock(&q.pi_state->pi_mutex);
2564
2565 /* Unqueue and drop the lock */
2566 unqueue_me_pi(&q);
2567
2568 goto out_put_key;
2569
2570 out_unlock_put_key:
2571 queue_unlock(hb);
2572
2573 out_put_key:
2574 put_futex_key(&q.key);
2575 out:
2576 if (to)
2577 destroy_hrtimer_on_stack(&to->timer);
2578 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2579
2580 uaddr_faulted:
2581 queue_unlock(hb);
2582
2583 ret = fault_in_user_writeable(uaddr);
2584 if (ret)
2585 goto out_put_key;
2586
2587 if (!(flags & FLAGS_SHARED))
2588 goto retry_private;
2589
2590 put_futex_key(&q.key);
2591 goto retry;
2592 }
2593
2594 /*
2595 * Userspace attempted a TID -> 0 atomic transition, and failed.
2596 * This is the in-kernel slowpath: we look up the PI state (if any),
2597 * and do the rt-mutex unlock.
2598 */
2599 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2600 {
2601 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2602 union futex_key key = FUTEX_KEY_INIT;
2603 struct futex_hash_bucket *hb;
2604 struct futex_q *match;
2605 int ret;
2606
2607 retry:
2608 if (get_user(uval, uaddr))
2609 return -EFAULT;
2610 /*
2611 * We release only a lock we actually own:
2612 */
2613 if ((uval & FUTEX_TID_MASK) != vpid)
2614 return -EPERM;
2615
2616 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2617 if (ret)
2618 return ret;
2619
2620 hb = hash_futex(&key);
2621 spin_lock(&hb->lock);
2622
2623 /*
2624 * Check waiters first. We do not trust user space values at
2625 * all and we at least want to know if user space fiddled
2626 * with the futex value instead of blindly unlocking.
2627 */
2628 match = futex_top_waiter(hb, &key);
2629 if (match) {
2630 ret = wake_futex_pi(uaddr, uval, match, hb);
2631 /*
2632 * In case of success wake_futex_pi dropped the hash
2633 * bucket lock.
2634 */
2635 if (!ret)
2636 goto out_putkey;
2637 /*
2638 * The atomic access to the futex value generated a
2639 * pagefault, so retry the user-access and the wakeup:
2640 */
2641 if (ret == -EFAULT)
2642 goto pi_faulted;
2643 /*
2644 * A unconditional UNLOCK_PI op raced against a waiter
2645 * setting the FUTEX_WAITERS bit. Try again.
2646 */
2647 if (ret == -EAGAIN) {
2648 spin_unlock(&hb->lock);
2649 put_futex_key(&key);
2650 goto retry;
2651 }
2652 /*
2653 * wake_futex_pi has detected invalid state. Tell user
2654 * space.
2655 */
2656 goto out_unlock;
2657 }
2658
2659 /*
2660 * We have no kernel internal state, i.e. no waiters in the
2661 * kernel. Waiters which are about to queue themselves are stuck
2662 * on hb->lock. So we can safely ignore them. We do neither
2663 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2664 * owner.
2665 */
2666 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2667 goto pi_faulted;
2668
2669 /*
2670 * If uval has changed, let user space handle it.
2671 */
2672 ret = (curval == uval) ? 0 : -EAGAIN;
2673
2674 out_unlock:
2675 spin_unlock(&hb->lock);
2676 out_putkey:
2677 put_futex_key(&key);
2678 return ret;
2679
2680 pi_faulted:
2681 spin_unlock(&hb->lock);
2682 put_futex_key(&key);
2683
2684 ret = fault_in_user_writeable(uaddr);
2685 if (!ret)
2686 goto retry;
2687
2688 return ret;
2689 }
2690
2691 /**
2692 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2693 * @hb: the hash_bucket futex_q was original enqueued on
2694 * @q: the futex_q woken while waiting to be requeued
2695 * @key2: the futex_key of the requeue target futex
2696 * @timeout: the timeout associated with the wait (NULL if none)
2697 *
2698 * Detect if the task was woken on the initial futex as opposed to the requeue
2699 * target futex. If so, determine if it was a timeout or a signal that caused
2700 * the wakeup and return the appropriate error code to the caller. Must be
2701 * called with the hb lock held.
2702 *
2703 * Return:
2704 * 0 = no early wakeup detected;
2705 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2706 */
2707 static inline
2708 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2709 struct futex_q *q, union futex_key *key2,
2710 struct hrtimer_sleeper *timeout)
2711 {
2712 int ret = 0;
2713
2714 /*
2715 * With the hb lock held, we avoid races while we process the wakeup.
2716 * We only need to hold hb (and not hb2) to ensure atomicity as the
2717 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2718 * It can't be requeued from uaddr2 to something else since we don't
2719 * support a PI aware source futex for requeue.
2720 */
2721 if (!match_futex(&q->key, key2)) {
2722 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2723 /*
2724 * We were woken prior to requeue by a timeout or a signal.
2725 * Unqueue the futex_q and determine which it was.
2726 */
2727 plist_del(&q->list, &hb->chain);
2728 hb_waiters_dec(hb);
2729
2730 /* Handle spurious wakeups gracefully */
2731 ret = -EWOULDBLOCK;
2732 if (timeout && !timeout->task)
2733 ret = -ETIMEDOUT;
2734 else if (signal_pending(current))
2735 ret = -ERESTARTNOINTR;
2736 }
2737 return ret;
2738 }
2739
2740 /**
2741 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2742 * @uaddr: the futex we initially wait on (non-pi)
2743 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2744 * the same type, no requeueing from private to shared, etc.
2745 * @val: the expected value of uaddr
2746 * @abs_time: absolute timeout
2747 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2748 * @uaddr2: the pi futex we will take prior to returning to user-space
2749 *
2750 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2751 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2752 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2753 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2754 * without one, the pi logic would not know which task to boost/deboost, if
2755 * there was a need to.
2756 *
2757 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2758 * via the following--
2759 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2760 * 2) wakeup on uaddr2 after a requeue
2761 * 3) signal
2762 * 4) timeout
2763 *
2764 * If 3, cleanup and return -ERESTARTNOINTR.
2765 *
2766 * If 2, we may then block on trying to take the rt_mutex and return via:
2767 * 5) successful lock
2768 * 6) signal
2769 * 7) timeout
2770 * 8) other lock acquisition failure
2771 *
2772 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2773 *
2774 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2775 *
2776 * Return:
2777 * 0 - On success;
2778 * <0 - On error
2779 */
2780 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2781 u32 val, ktime_t *abs_time, u32 bitset,
2782 u32 __user *uaddr2)
2783 {
2784 struct hrtimer_sleeper timeout, *to = NULL;
2785 struct rt_mutex_waiter rt_waiter;
2786 struct rt_mutex *pi_mutex = NULL;
2787 struct futex_hash_bucket *hb;
2788 union futex_key key2 = FUTEX_KEY_INIT;
2789 struct futex_q q = futex_q_init;
2790 int res, ret;
2791
2792 if (uaddr == uaddr2)
2793 return -EINVAL;
2794
2795 if (!bitset)
2796 return -EINVAL;
2797
2798 if (abs_time) {
2799 to = &timeout;
2800 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2801 CLOCK_REALTIME : CLOCK_MONOTONIC,
2802 HRTIMER_MODE_ABS);
2803 hrtimer_init_sleeper(to, current);
2804 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2805 current->timer_slack_ns);
2806 }
2807
2808 /*
2809 * The waiter is allocated on our stack, manipulated by the requeue
2810 * code while we sleep on uaddr.
2811 */
2812 debug_rt_mutex_init_waiter(&rt_waiter);
2813 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2814 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2815 rt_waiter.task = NULL;
2816
2817 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2818 if (unlikely(ret != 0))
2819 goto out;
2820
2821 q.bitset = bitset;
2822 q.rt_waiter = &rt_waiter;
2823 q.requeue_pi_key = &key2;
2824
2825 /*
2826 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2827 * count.
2828 */
2829 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2830 if (ret)
2831 goto out_key2;
2832
2833 /*
2834 * The check above which compares uaddrs is not sufficient for
2835 * shared futexes. We need to compare the keys:
2836 */
2837 if (match_futex(&q.key, &key2)) {
2838 queue_unlock(hb);
2839 ret = -EINVAL;
2840 goto out_put_keys;
2841 }
2842
2843 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2844 futex_wait_queue_me(hb, &q, to);
2845
2846 spin_lock(&hb->lock);
2847 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2848 spin_unlock(&hb->lock);
2849 if (ret)
2850 goto out_put_keys;
2851
2852 /*
2853 * In order for us to be here, we know our q.key == key2, and since
2854 * we took the hb->lock above, we also know that futex_requeue() has
2855 * completed and we no longer have to concern ourselves with a wakeup
2856 * race with the atomic proxy lock acquisition by the requeue code. The
2857 * futex_requeue dropped our key1 reference and incremented our key2
2858 * reference count.
2859 */
2860
2861 /* Check if the requeue code acquired the second futex for us. */
2862 if (!q.rt_waiter) {
2863 /*
2864 * Got the lock. We might not be the anticipated owner if we
2865 * did a lock-steal - fix up the PI-state in that case.
2866 */
2867 if (q.pi_state && (q.pi_state->owner != current)) {
2868 spin_lock(q.lock_ptr);
2869 ret = fixup_pi_state_owner(uaddr2, &q, current);
2870 /*
2871 * Drop the reference to the pi state which
2872 * the requeue_pi() code acquired for us.
2873 */
2874 put_pi_state(q.pi_state);
2875 spin_unlock(q.lock_ptr);
2876 }
2877 } else {
2878 /*
2879 * We have been woken up by futex_unlock_pi(), a timeout, or a
2880 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2881 * the pi_state.
2882 */
2883 WARN_ON(!q.pi_state);
2884 pi_mutex = &q.pi_state->pi_mutex;
2885 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2886 debug_rt_mutex_free_waiter(&rt_waiter);
2887
2888 spin_lock(q.lock_ptr);
2889 /*
2890 * Fixup the pi_state owner and possibly acquire the lock if we
2891 * haven't already.
2892 */
2893 res = fixup_owner(uaddr2, &q, !ret);
2894 /*
2895 * If fixup_owner() returned an error, proprogate that. If it
2896 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2897 */
2898 if (res)
2899 ret = (res < 0) ? res : 0;
2900
2901 /* Unqueue and drop the lock. */
2902 unqueue_me_pi(&q);
2903 }
2904
2905 /*
2906 * If fixup_pi_state_owner() faulted and was unable to handle the
2907 * fault, unlock the rt_mutex and return the fault to userspace.
2908 */
2909 if (ret == -EFAULT) {
2910 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2911 rt_mutex_unlock(pi_mutex);
2912 } else if (ret == -EINTR) {
2913 /*
2914 * We've already been requeued, but cannot restart by calling
2915 * futex_lock_pi() directly. We could restart this syscall, but
2916 * it would detect that the user space "val" changed and return
2917 * -EWOULDBLOCK. Save the overhead of the restart and return
2918 * -EWOULDBLOCK directly.
2919 */
2920 ret = -EWOULDBLOCK;
2921 }
2922
2923 out_put_keys:
2924 put_futex_key(&q.key);
2925 out_key2:
2926 put_futex_key(&key2);
2927
2928 out:
2929 if (to) {
2930 hrtimer_cancel(&to->timer);
2931 destroy_hrtimer_on_stack(&to->timer);
2932 }
2933 return ret;
2934 }
2935
2936 /*
2937 * Support for robust futexes: the kernel cleans up held futexes at
2938 * thread exit time.
2939 *
2940 * Implementation: user-space maintains a per-thread list of locks it
2941 * is holding. Upon do_exit(), the kernel carefully walks this list,
2942 * and marks all locks that are owned by this thread with the
2943 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2944 * always manipulated with the lock held, so the list is private and
2945 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2946 * field, to allow the kernel to clean up if the thread dies after
2947 * acquiring the lock, but just before it could have added itself to
2948 * the list. There can only be one such pending lock.
2949 */
2950
2951 /**
2952 * sys_set_robust_list() - Set the robust-futex list head of a task
2953 * @head: pointer to the list-head
2954 * @len: length of the list-head, as userspace expects
2955 */
2956 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2957 size_t, len)
2958 {
2959 if (!futex_cmpxchg_enabled)
2960 return -ENOSYS;
2961 /*
2962 * The kernel knows only one size for now:
2963 */
2964 if (unlikely(len != sizeof(*head)))
2965 return -EINVAL;
2966
2967 current->robust_list = head;
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * sys_get_robust_list() - Get the robust-futex list head of a task
2974 * @pid: pid of the process [zero for current task]
2975 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2976 * @len_ptr: pointer to a length field, the kernel fills in the header size
2977 */
2978 SYSCALL_DEFINE3(get_robust_list, int, pid,
2979 struct robust_list_head __user * __user *, head_ptr,
2980 size_t __user *, len_ptr)
2981 {
2982 struct robust_list_head __user *head;
2983 unsigned long ret;
2984 struct task_struct *p;
2985
2986 if (!futex_cmpxchg_enabled)
2987 return -ENOSYS;
2988
2989 rcu_read_lock();
2990
2991 ret = -ESRCH;
2992 if (!pid)
2993 p = current;
2994 else {
2995 p = find_task_by_vpid(pid);
2996 if (!p)
2997 goto err_unlock;
2998 }
2999
3000 ret = -EPERM;
3001 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3002 goto err_unlock;
3003
3004 head = p->robust_list;
3005 rcu_read_unlock();
3006
3007 if (put_user(sizeof(*head), len_ptr))
3008 return -EFAULT;
3009 return put_user(head, head_ptr);
3010
3011 err_unlock:
3012 rcu_read_unlock();
3013
3014 return ret;
3015 }
3016
3017 /*
3018 * Process a futex-list entry, check whether it's owned by the
3019 * dying task, and do notification if so:
3020 */
3021 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3022 {
3023 u32 uval, uninitialized_var(nval), mval;
3024
3025 retry:
3026 if (get_user(uval, uaddr))
3027 return -1;
3028
3029 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3030 /*
3031 * Ok, this dying thread is truly holding a futex
3032 * of interest. Set the OWNER_DIED bit atomically
3033 * via cmpxchg, and if the value had FUTEX_WAITERS
3034 * set, wake up a waiter (if any). (We have to do a
3035 * futex_wake() even if OWNER_DIED is already set -
3036 * to handle the rare but possible case of recursive
3037 * thread-death.) The rest of the cleanup is done in
3038 * userspace.
3039 */
3040 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3041 /*
3042 * We are not holding a lock here, but we want to have
3043 * the pagefault_disable/enable() protection because
3044 * we want to handle the fault gracefully. If the
3045 * access fails we try to fault in the futex with R/W
3046 * verification via get_user_pages. get_user() above
3047 * does not guarantee R/W access. If that fails we
3048 * give up and leave the futex locked.
3049 */
3050 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3051 if (fault_in_user_writeable(uaddr))
3052 return -1;
3053 goto retry;
3054 }
3055 if (nval != uval)
3056 goto retry;
3057
3058 /*
3059 * Wake robust non-PI futexes here. The wakeup of
3060 * PI futexes happens in exit_pi_state():
3061 */
3062 if (!pi && (uval & FUTEX_WAITERS))
3063 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3064 }
3065 return 0;
3066 }
3067
3068 /*
3069 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3070 */
3071 static inline int fetch_robust_entry(struct robust_list __user **entry,
3072 struct robust_list __user * __user *head,
3073 unsigned int *pi)
3074 {
3075 unsigned long uentry;
3076
3077 if (get_user(uentry, (unsigned long __user *)head))
3078 return -EFAULT;
3079
3080 *entry = (void __user *)(uentry & ~1UL);
3081 *pi = uentry & 1;
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * Walk curr->robust_list (very carefully, it's a userspace list!)
3088 * and mark any locks found there dead, and notify any waiters.
3089 *
3090 * We silently return on any sign of list-walking problem.
3091 */
3092 void exit_robust_list(struct task_struct *curr)
3093 {
3094 struct robust_list_head __user *head = curr->robust_list;
3095 struct robust_list __user *entry, *next_entry, *pending;
3096 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3097 unsigned int uninitialized_var(next_pi);
3098 unsigned long futex_offset;
3099 int rc;
3100
3101 if (!futex_cmpxchg_enabled)
3102 return;
3103
3104 /*
3105 * Fetch the list head (which was registered earlier, via
3106 * sys_set_robust_list()):
3107 */
3108 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3109 return;
3110 /*
3111 * Fetch the relative futex offset:
3112 */
3113 if (get_user(futex_offset, &head->futex_offset))
3114 return;
3115 /*
3116 * Fetch any possibly pending lock-add first, and handle it
3117 * if it exists:
3118 */
3119 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3120 return;
3121
3122 next_entry = NULL; /* avoid warning with gcc */
3123 while (entry != &head->list) {
3124 /*
3125 * Fetch the next entry in the list before calling
3126 * handle_futex_death:
3127 */
3128 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3129 /*
3130 * A pending lock might already be on the list, so
3131 * don't process it twice:
3132 */
3133 if (entry != pending)
3134 if (handle_futex_death((void __user *)entry + futex_offset,
3135 curr, pi))
3136 return;
3137 if (rc)
3138 return;
3139 entry = next_entry;
3140 pi = next_pi;
3141 /*
3142 * Avoid excessively long or circular lists:
3143 */
3144 if (!--limit)
3145 break;
3146
3147 cond_resched();
3148 }
3149
3150 if (pending)
3151 handle_futex_death((void __user *)pending + futex_offset,
3152 curr, pip);
3153 }
3154
3155 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3156 u32 __user *uaddr2, u32 val2, u32 val3)
3157 {
3158 int cmd = op & FUTEX_CMD_MASK;
3159 unsigned int flags = 0;
3160
3161 if (!(op & FUTEX_PRIVATE_FLAG))
3162 flags |= FLAGS_SHARED;
3163
3164 if (op & FUTEX_CLOCK_REALTIME) {
3165 flags |= FLAGS_CLOCKRT;
3166 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3167 cmd != FUTEX_WAIT_REQUEUE_PI)
3168 return -ENOSYS;
3169 }
3170
3171 switch (cmd) {
3172 case FUTEX_LOCK_PI:
3173 case FUTEX_UNLOCK_PI:
3174 case FUTEX_TRYLOCK_PI:
3175 case FUTEX_WAIT_REQUEUE_PI:
3176 case FUTEX_CMP_REQUEUE_PI:
3177 if (!futex_cmpxchg_enabled)
3178 return -ENOSYS;
3179 }
3180
3181 switch (cmd) {
3182 case FUTEX_WAIT:
3183 val3 = FUTEX_BITSET_MATCH_ANY;
3184 case FUTEX_WAIT_BITSET:
3185 return futex_wait(uaddr, flags, val, timeout, val3);
3186 case FUTEX_WAKE:
3187 val3 = FUTEX_BITSET_MATCH_ANY;
3188 case FUTEX_WAKE_BITSET:
3189 return futex_wake(uaddr, flags, val, val3);
3190 case FUTEX_REQUEUE:
3191 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3192 case FUTEX_CMP_REQUEUE:
3193 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3194 case FUTEX_WAKE_OP:
3195 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3196 case FUTEX_LOCK_PI:
3197 return futex_lock_pi(uaddr, flags, timeout, 0);
3198 case FUTEX_UNLOCK_PI:
3199 return futex_unlock_pi(uaddr, flags);
3200 case FUTEX_TRYLOCK_PI:
3201 return futex_lock_pi(uaddr, flags, NULL, 1);
3202 case FUTEX_WAIT_REQUEUE_PI:
3203 val3 = FUTEX_BITSET_MATCH_ANY;
3204 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3205 uaddr2);
3206 case FUTEX_CMP_REQUEUE_PI:
3207 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3208 }
3209 return -ENOSYS;
3210 }
3211
3212
3213 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3214 struct timespec __user *, utime, u32 __user *, uaddr2,
3215 u32, val3)
3216 {
3217 struct timespec ts;
3218 ktime_t t, *tp = NULL;
3219 u32 val2 = 0;
3220 int cmd = op & FUTEX_CMD_MASK;
3221
3222 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3223 cmd == FUTEX_WAIT_BITSET ||
3224 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3225 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3226 return -EFAULT;
3227 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3228 return -EFAULT;
3229 if (!timespec_valid(&ts))
3230 return -EINVAL;
3231
3232 t = timespec_to_ktime(ts);
3233 if (cmd == FUTEX_WAIT)
3234 t = ktime_add_safe(ktime_get(), t);
3235 tp = &t;
3236 }
3237 /*
3238 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3239 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3240 */
3241 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3242 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3243 val2 = (u32) (unsigned long) utime;
3244
3245 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3246 }
3247
3248 static void __init futex_detect_cmpxchg(void)
3249 {
3250 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3251 u32 curval;
3252
3253 /*
3254 * This will fail and we want it. Some arch implementations do
3255 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3256 * functionality. We want to know that before we call in any
3257 * of the complex code paths. Also we want to prevent
3258 * registration of robust lists in that case. NULL is
3259 * guaranteed to fault and we get -EFAULT on functional
3260 * implementation, the non-functional ones will return
3261 * -ENOSYS.
3262 */
3263 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3264 futex_cmpxchg_enabled = 1;
3265 #endif
3266 }
3267
3268 static int __init futex_init(void)
3269 {
3270 unsigned int futex_shift;
3271 unsigned long i;
3272
3273 #if CONFIG_BASE_SMALL
3274 futex_hashsize = 16;
3275 #else
3276 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3277 #endif
3278
3279 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3280 futex_hashsize, 0,
3281 futex_hashsize < 256 ? HASH_SMALL : 0,
3282 &futex_shift, NULL,
3283 futex_hashsize, futex_hashsize);
3284 futex_hashsize = 1UL << futex_shift;
3285
3286 futex_detect_cmpxchg();
3287
3288 for (i = 0; i < futex_hashsize; i++) {
3289 atomic_set(&futex_queues[i].waiters, 0);
3290 plist_head_init(&futex_queues[i].chain);
3291 spin_lock_init(&futex_queues[i].lock);
3292 }
3293
3294 return 0;
3295 }
3296 __initcall(futex_init);
This page took 0.143857 seconds and 5 git commands to generate.