modpost: reduce visibility of symbols and constify r/o arrays
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 }
347 }
348
349 /*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
359 }
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369 }
370
371 /**
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
378 *
379 * Return: a negative error code or 0
380 *
381 * The key words are stored in *key on success.
382 *
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
387 * lock_page() might sleep, the caller should not hold a spinlock.
388 */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
404
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
420 }
421
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
432 if (err < 0)
433 return err;
434 else
435 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471 #endif
472
473 lock_page(page_head);
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
497 }
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
505 */
506 if (PageAnon(page_head)) {
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
523 }
524
525 get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535 drop_futex_key_refs(key);
536 }
537
538 /**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
559
560 return ret < 0 ? ret : 0;
561 }
562
563 /**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
567 *
568 * Must be called with the hb lock held.
569 */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572 {
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
584 {
585 int ret;
586
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
590
591 return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596 int ret;
597
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
601
602 return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607 * PI code:
608 */
609 static int refill_pi_state_cache(void)
610 {
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618 if (!pi_state)
619 return -ENOMEM;
620
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671 }
672
673 /*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679 struct task_struct *p;
680
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
685
686 rcu_read_unlock();
687
688 return p;
689 }
690
691 /*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
702
703 if (!futex_cmpxchg_enabled)
704 return;
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
709 */
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
718
719 spin_lock(&hb->lock);
720
721 raw_spin_lock_irq(&curr->pi_lock);
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
741 raw_spin_lock_irq(&curr->pi_lock);
742 }
743 raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 /*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
795
796 /*
797 * Validate that the existing waiter has a pi_state and sanity check
798 * the pi_state against the user space value. If correct, attach to
799 * it.
800 */
801 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
802 struct futex_pi_state **ps)
803 {
804 pid_t pid = uval & FUTEX_TID_MASK;
805
806 /*
807 * Userspace might have messed up non-PI and PI futexes [3]
808 */
809 if (unlikely(!pi_state))
810 return -EINVAL;
811
812 WARN_ON(!atomic_read(&pi_state->refcount));
813
814 /*
815 * Handle the owner died case:
816 */
817 if (uval & FUTEX_OWNER_DIED) {
818 /*
819 * exit_pi_state_list sets owner to NULL and wakes the
820 * topmost waiter. The task which acquires the
821 * pi_state->rt_mutex will fixup owner.
822 */
823 if (!pi_state->owner) {
824 /*
825 * No pi state owner, but the user space TID
826 * is not 0. Inconsistent state. [5]
827 */
828 if (pid)
829 return -EINVAL;
830 /*
831 * Take a ref on the state and return success. [4]
832 */
833 goto out_state;
834 }
835
836 /*
837 * If TID is 0, then either the dying owner has not
838 * yet executed exit_pi_state_list() or some waiter
839 * acquired the rtmutex in the pi state, but did not
840 * yet fixup the TID in user space.
841 *
842 * Take a ref on the state and return success. [6]
843 */
844 if (!pid)
845 goto out_state;
846 } else {
847 /*
848 * If the owner died bit is not set, then the pi_state
849 * must have an owner. [7]
850 */
851 if (!pi_state->owner)
852 return -EINVAL;
853 }
854
855 /*
856 * Bail out if user space manipulated the futex value. If pi
857 * state exists then the owner TID must be the same as the
858 * user space TID. [9/10]
859 */
860 if (pid != task_pid_vnr(pi_state->owner))
861 return -EINVAL;
862 out_state:
863 atomic_inc(&pi_state->refcount);
864 *ps = pi_state;
865 return 0;
866 }
867
868 /*
869 * Lookup the task for the TID provided from user space and attach to
870 * it after doing proper sanity checks.
871 */
872 static int attach_to_pi_owner(u32 uval, union futex_key *key,
873 struct futex_pi_state **ps)
874 {
875 pid_t pid = uval & FUTEX_TID_MASK;
876 struct futex_pi_state *pi_state;
877 struct task_struct *p;
878
879 /*
880 * We are the first waiter - try to look up the real owner and attach
881 * the new pi_state to it, but bail out when TID = 0 [1]
882 */
883 if (!pid)
884 return -ESRCH;
885 p = futex_find_get_task(pid);
886 if (!p)
887 return -ESRCH;
888
889 if (!p->mm) {
890 put_task_struct(p);
891 return -EPERM;
892 }
893
894 /*
895 * We need to look at the task state flags to figure out,
896 * whether the task is exiting. To protect against the do_exit
897 * change of the task flags, we do this protected by
898 * p->pi_lock:
899 */
900 raw_spin_lock_irq(&p->pi_lock);
901 if (unlikely(p->flags & PF_EXITING)) {
902 /*
903 * The task is on the way out. When PF_EXITPIDONE is
904 * set, we know that the task has finished the
905 * cleanup:
906 */
907 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
908
909 raw_spin_unlock_irq(&p->pi_lock);
910 put_task_struct(p);
911 return ret;
912 }
913
914 /*
915 * No existing pi state. First waiter. [2]
916 */
917 pi_state = alloc_pi_state();
918
919 /*
920 * Initialize the pi_mutex in locked state and make @p
921 * the owner of it:
922 */
923 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
924
925 /* Store the key for possible exit cleanups: */
926 pi_state->key = *key;
927
928 WARN_ON(!list_empty(&pi_state->list));
929 list_add(&pi_state->list, &p->pi_state_list);
930 pi_state->owner = p;
931 raw_spin_unlock_irq(&p->pi_lock);
932
933 put_task_struct(p);
934
935 *ps = pi_state;
936
937 return 0;
938 }
939
940 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
941 union futex_key *key, struct futex_pi_state **ps)
942 {
943 struct futex_q *match = futex_top_waiter(hb, key);
944
945 /*
946 * If there is a waiter on that futex, validate it and
947 * attach to the pi_state when the validation succeeds.
948 */
949 if (match)
950 return attach_to_pi_state(uval, match->pi_state, ps);
951
952 /*
953 * We are the first waiter - try to look up the owner based on
954 * @uval and attach to it.
955 */
956 return attach_to_pi_owner(uval, key, ps);
957 }
958
959 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
960 {
961 u32 uninitialized_var(curval);
962
963 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
964 return -EFAULT;
965
966 /*If user space value changed, let the caller retry */
967 return curval != uval ? -EAGAIN : 0;
968 }
969
970 /**
971 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
972 * @uaddr: the pi futex user address
973 * @hb: the pi futex hash bucket
974 * @key: the futex key associated with uaddr and hb
975 * @ps: the pi_state pointer where we store the result of the
976 * lookup
977 * @task: the task to perform the atomic lock work for. This will
978 * be "current" except in the case of requeue pi.
979 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
980 *
981 * Return:
982 * 0 - ready to wait;
983 * 1 - acquired the lock;
984 * <0 - error
985 *
986 * The hb->lock and futex_key refs shall be held by the caller.
987 */
988 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
989 union futex_key *key,
990 struct futex_pi_state **ps,
991 struct task_struct *task, int set_waiters)
992 {
993 u32 uval, newval, vpid = task_pid_vnr(task);
994 struct futex_q *match;
995 int ret;
996
997 /*
998 * Read the user space value first so we can validate a few
999 * things before proceeding further.
1000 */
1001 if (get_futex_value_locked(&uval, uaddr))
1002 return -EFAULT;
1003
1004 /*
1005 * Detect deadlocks.
1006 */
1007 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1008 return -EDEADLK;
1009
1010 /*
1011 * Lookup existing state first. If it exists, try to attach to
1012 * its pi_state.
1013 */
1014 match = futex_top_waiter(hb, key);
1015 if (match)
1016 return attach_to_pi_state(uval, match->pi_state, ps);
1017
1018 /*
1019 * No waiter and user TID is 0. We are here because the
1020 * waiters or the owner died bit is set or called from
1021 * requeue_cmp_pi or for whatever reason something took the
1022 * syscall.
1023 */
1024 if (!(uval & FUTEX_TID_MASK)) {
1025 /*
1026 * We take over the futex. No other waiters and the user space
1027 * TID is 0. We preserve the owner died bit.
1028 */
1029 newval = uval & FUTEX_OWNER_DIED;
1030 newval |= vpid;
1031
1032 /* The futex requeue_pi code can enforce the waiters bit */
1033 if (set_waiters)
1034 newval |= FUTEX_WAITERS;
1035
1036 ret = lock_pi_update_atomic(uaddr, uval, newval);
1037 /* If the take over worked, return 1 */
1038 return ret < 0 ? ret : 1;
1039 }
1040
1041 /*
1042 * First waiter. Set the waiters bit before attaching ourself to
1043 * the owner. If owner tries to unlock, it will be forced into
1044 * the kernel and blocked on hb->lock.
1045 */
1046 newval = uval | FUTEX_WAITERS;
1047 ret = lock_pi_update_atomic(uaddr, uval, newval);
1048 if (ret)
1049 return ret;
1050 /*
1051 * If the update of the user space value succeeded, we try to
1052 * attach to the owner. If that fails, no harm done, we only
1053 * set the FUTEX_WAITERS bit in the user space variable.
1054 */
1055 return attach_to_pi_owner(uval, key, ps);
1056 }
1057
1058 /**
1059 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1060 * @q: The futex_q to unqueue
1061 *
1062 * The q->lock_ptr must not be NULL and must be held by the caller.
1063 */
1064 static void __unqueue_futex(struct futex_q *q)
1065 {
1066 struct futex_hash_bucket *hb;
1067
1068 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1069 || WARN_ON(plist_node_empty(&q->list)))
1070 return;
1071
1072 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1073 plist_del(&q->list, &hb->chain);
1074 hb_waiters_dec(hb);
1075 }
1076
1077 /*
1078 * The hash bucket lock must be held when this is called.
1079 * Afterwards, the futex_q must not be accessed.
1080 */
1081 static void wake_futex(struct futex_q *q)
1082 {
1083 struct task_struct *p = q->task;
1084
1085 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1086 return;
1087
1088 /*
1089 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1090 * a non-futex wake up happens on another CPU then the task
1091 * might exit and p would dereference a non-existing task
1092 * struct. Prevent this by holding a reference on p across the
1093 * wake up.
1094 */
1095 get_task_struct(p);
1096
1097 __unqueue_futex(q);
1098 /*
1099 * The waiting task can free the futex_q as soon as
1100 * q->lock_ptr = NULL is written, without taking any locks. A
1101 * memory barrier is required here to prevent the following
1102 * store to lock_ptr from getting ahead of the plist_del.
1103 */
1104 smp_wmb();
1105 q->lock_ptr = NULL;
1106
1107 wake_up_state(p, TASK_NORMAL);
1108 put_task_struct(p);
1109 }
1110
1111 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1112 {
1113 struct task_struct *new_owner;
1114 struct futex_pi_state *pi_state = this->pi_state;
1115 u32 uninitialized_var(curval), newval;
1116 int ret = 0;
1117
1118 if (!pi_state)
1119 return -EINVAL;
1120
1121 /*
1122 * If current does not own the pi_state then the futex is
1123 * inconsistent and user space fiddled with the futex value.
1124 */
1125 if (pi_state->owner != current)
1126 return -EINVAL;
1127
1128 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1129 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1130
1131 /*
1132 * It is possible that the next waiter (the one that brought
1133 * this owner to the kernel) timed out and is no longer
1134 * waiting on the lock.
1135 */
1136 if (!new_owner)
1137 new_owner = this->task;
1138
1139 /*
1140 * We pass it to the next owner. The WAITERS bit is always
1141 * kept enabled while there is PI state around. We cleanup the
1142 * owner died bit, because we are the owner.
1143 */
1144 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1145
1146 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1147 ret = -EFAULT;
1148 else if (curval != uval)
1149 ret = -EINVAL;
1150 if (ret) {
1151 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1152 return ret;
1153 }
1154
1155 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1156 WARN_ON(list_empty(&pi_state->list));
1157 list_del_init(&pi_state->list);
1158 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1159
1160 raw_spin_lock_irq(&new_owner->pi_lock);
1161 WARN_ON(!list_empty(&pi_state->list));
1162 list_add(&pi_state->list, &new_owner->pi_state_list);
1163 pi_state->owner = new_owner;
1164 raw_spin_unlock_irq(&new_owner->pi_lock);
1165
1166 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1167 rt_mutex_unlock(&pi_state->pi_mutex);
1168
1169 return 0;
1170 }
1171
1172 /*
1173 * Express the locking dependencies for lockdep:
1174 */
1175 static inline void
1176 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1177 {
1178 if (hb1 <= hb2) {
1179 spin_lock(&hb1->lock);
1180 if (hb1 < hb2)
1181 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1182 } else { /* hb1 > hb2 */
1183 spin_lock(&hb2->lock);
1184 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1185 }
1186 }
1187
1188 static inline void
1189 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1190 {
1191 spin_unlock(&hb1->lock);
1192 if (hb1 != hb2)
1193 spin_unlock(&hb2->lock);
1194 }
1195
1196 /*
1197 * Wake up waiters matching bitset queued on this futex (uaddr).
1198 */
1199 static int
1200 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1201 {
1202 struct futex_hash_bucket *hb;
1203 struct futex_q *this, *next;
1204 union futex_key key = FUTEX_KEY_INIT;
1205 int ret;
1206
1207 if (!bitset)
1208 return -EINVAL;
1209
1210 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1211 if (unlikely(ret != 0))
1212 goto out;
1213
1214 hb = hash_futex(&key);
1215
1216 /* Make sure we really have tasks to wakeup */
1217 if (!hb_waiters_pending(hb))
1218 goto out_put_key;
1219
1220 spin_lock(&hb->lock);
1221
1222 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1223 if (match_futex (&this->key, &key)) {
1224 if (this->pi_state || this->rt_waiter) {
1225 ret = -EINVAL;
1226 break;
1227 }
1228
1229 /* Check if one of the bits is set in both bitsets */
1230 if (!(this->bitset & bitset))
1231 continue;
1232
1233 wake_futex(this);
1234 if (++ret >= nr_wake)
1235 break;
1236 }
1237 }
1238
1239 spin_unlock(&hb->lock);
1240 out_put_key:
1241 put_futex_key(&key);
1242 out:
1243 return ret;
1244 }
1245
1246 /*
1247 * Wake up all waiters hashed on the physical page that is mapped
1248 * to this virtual address:
1249 */
1250 static int
1251 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1252 int nr_wake, int nr_wake2, int op)
1253 {
1254 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1255 struct futex_hash_bucket *hb1, *hb2;
1256 struct futex_q *this, *next;
1257 int ret, op_ret;
1258
1259 retry:
1260 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1261 if (unlikely(ret != 0))
1262 goto out;
1263 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1264 if (unlikely(ret != 0))
1265 goto out_put_key1;
1266
1267 hb1 = hash_futex(&key1);
1268 hb2 = hash_futex(&key2);
1269
1270 retry_private:
1271 double_lock_hb(hb1, hb2);
1272 op_ret = futex_atomic_op_inuser(op, uaddr2);
1273 if (unlikely(op_ret < 0)) {
1274
1275 double_unlock_hb(hb1, hb2);
1276
1277 #ifndef CONFIG_MMU
1278 /*
1279 * we don't get EFAULT from MMU faults if we don't have an MMU,
1280 * but we might get them from range checking
1281 */
1282 ret = op_ret;
1283 goto out_put_keys;
1284 #endif
1285
1286 if (unlikely(op_ret != -EFAULT)) {
1287 ret = op_ret;
1288 goto out_put_keys;
1289 }
1290
1291 ret = fault_in_user_writeable(uaddr2);
1292 if (ret)
1293 goto out_put_keys;
1294
1295 if (!(flags & FLAGS_SHARED))
1296 goto retry_private;
1297
1298 put_futex_key(&key2);
1299 put_futex_key(&key1);
1300 goto retry;
1301 }
1302
1303 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1304 if (match_futex (&this->key, &key1)) {
1305 if (this->pi_state || this->rt_waiter) {
1306 ret = -EINVAL;
1307 goto out_unlock;
1308 }
1309 wake_futex(this);
1310 if (++ret >= nr_wake)
1311 break;
1312 }
1313 }
1314
1315 if (op_ret > 0) {
1316 op_ret = 0;
1317 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1318 if (match_futex (&this->key, &key2)) {
1319 if (this->pi_state || this->rt_waiter) {
1320 ret = -EINVAL;
1321 goto out_unlock;
1322 }
1323 wake_futex(this);
1324 if (++op_ret >= nr_wake2)
1325 break;
1326 }
1327 }
1328 ret += op_ret;
1329 }
1330
1331 out_unlock:
1332 double_unlock_hb(hb1, hb2);
1333 out_put_keys:
1334 put_futex_key(&key2);
1335 out_put_key1:
1336 put_futex_key(&key1);
1337 out:
1338 return ret;
1339 }
1340
1341 /**
1342 * requeue_futex() - Requeue a futex_q from one hb to another
1343 * @q: the futex_q to requeue
1344 * @hb1: the source hash_bucket
1345 * @hb2: the target hash_bucket
1346 * @key2: the new key for the requeued futex_q
1347 */
1348 static inline
1349 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1350 struct futex_hash_bucket *hb2, union futex_key *key2)
1351 {
1352
1353 /*
1354 * If key1 and key2 hash to the same bucket, no need to
1355 * requeue.
1356 */
1357 if (likely(&hb1->chain != &hb2->chain)) {
1358 plist_del(&q->list, &hb1->chain);
1359 hb_waiters_dec(hb1);
1360 plist_add(&q->list, &hb2->chain);
1361 hb_waiters_inc(hb2);
1362 q->lock_ptr = &hb2->lock;
1363 }
1364 get_futex_key_refs(key2);
1365 q->key = *key2;
1366 }
1367
1368 /**
1369 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1370 * @q: the futex_q
1371 * @key: the key of the requeue target futex
1372 * @hb: the hash_bucket of the requeue target futex
1373 *
1374 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1375 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1376 * to the requeue target futex so the waiter can detect the wakeup on the right
1377 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1378 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1379 * to protect access to the pi_state to fixup the owner later. Must be called
1380 * with both q->lock_ptr and hb->lock held.
1381 */
1382 static inline
1383 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1384 struct futex_hash_bucket *hb)
1385 {
1386 get_futex_key_refs(key);
1387 q->key = *key;
1388
1389 __unqueue_futex(q);
1390
1391 WARN_ON(!q->rt_waiter);
1392 q->rt_waiter = NULL;
1393
1394 q->lock_ptr = &hb->lock;
1395
1396 wake_up_state(q->task, TASK_NORMAL);
1397 }
1398
1399 /**
1400 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1401 * @pifutex: the user address of the to futex
1402 * @hb1: the from futex hash bucket, must be locked by the caller
1403 * @hb2: the to futex hash bucket, must be locked by the caller
1404 * @key1: the from futex key
1405 * @key2: the to futex key
1406 * @ps: address to store the pi_state pointer
1407 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1408 *
1409 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1410 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1411 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1412 * hb1 and hb2 must be held by the caller.
1413 *
1414 * Return:
1415 * 0 - failed to acquire the lock atomically;
1416 * >0 - acquired the lock, return value is vpid of the top_waiter
1417 * <0 - error
1418 */
1419 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1420 struct futex_hash_bucket *hb1,
1421 struct futex_hash_bucket *hb2,
1422 union futex_key *key1, union futex_key *key2,
1423 struct futex_pi_state **ps, int set_waiters)
1424 {
1425 struct futex_q *top_waiter = NULL;
1426 u32 curval;
1427 int ret, vpid;
1428
1429 if (get_futex_value_locked(&curval, pifutex))
1430 return -EFAULT;
1431
1432 /*
1433 * Find the top_waiter and determine if there are additional waiters.
1434 * If the caller intends to requeue more than 1 waiter to pifutex,
1435 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1436 * as we have means to handle the possible fault. If not, don't set
1437 * the bit unecessarily as it will force the subsequent unlock to enter
1438 * the kernel.
1439 */
1440 top_waiter = futex_top_waiter(hb1, key1);
1441
1442 /* There are no waiters, nothing for us to do. */
1443 if (!top_waiter)
1444 return 0;
1445
1446 /* Ensure we requeue to the expected futex. */
1447 if (!match_futex(top_waiter->requeue_pi_key, key2))
1448 return -EINVAL;
1449
1450 /*
1451 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1452 * the contended case or if set_waiters is 1. The pi_state is returned
1453 * in ps in contended cases.
1454 */
1455 vpid = task_pid_vnr(top_waiter->task);
1456 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1457 set_waiters);
1458 if (ret == 1) {
1459 requeue_pi_wake_futex(top_waiter, key2, hb2);
1460 return vpid;
1461 }
1462 return ret;
1463 }
1464
1465 /**
1466 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1467 * @uaddr1: source futex user address
1468 * @flags: futex flags (FLAGS_SHARED, etc.)
1469 * @uaddr2: target futex user address
1470 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1471 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1472 * @cmpval: @uaddr1 expected value (or %NULL)
1473 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1474 * pi futex (pi to pi requeue is not supported)
1475 *
1476 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1477 * uaddr2 atomically on behalf of the top waiter.
1478 *
1479 * Return:
1480 * >=0 - on success, the number of tasks requeued or woken;
1481 * <0 - on error
1482 */
1483 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1484 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1485 u32 *cmpval, int requeue_pi)
1486 {
1487 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1488 int drop_count = 0, task_count = 0, ret;
1489 struct futex_pi_state *pi_state = NULL;
1490 struct futex_hash_bucket *hb1, *hb2;
1491 struct futex_q *this, *next;
1492
1493 if (requeue_pi) {
1494 /*
1495 * Requeue PI only works on two distinct uaddrs. This
1496 * check is only valid for private futexes. See below.
1497 */
1498 if (uaddr1 == uaddr2)
1499 return -EINVAL;
1500
1501 /*
1502 * requeue_pi requires a pi_state, try to allocate it now
1503 * without any locks in case it fails.
1504 */
1505 if (refill_pi_state_cache())
1506 return -ENOMEM;
1507 /*
1508 * requeue_pi must wake as many tasks as it can, up to nr_wake
1509 * + nr_requeue, since it acquires the rt_mutex prior to
1510 * returning to userspace, so as to not leave the rt_mutex with
1511 * waiters and no owner. However, second and third wake-ups
1512 * cannot be predicted as they involve race conditions with the
1513 * first wake and a fault while looking up the pi_state. Both
1514 * pthread_cond_signal() and pthread_cond_broadcast() should
1515 * use nr_wake=1.
1516 */
1517 if (nr_wake != 1)
1518 return -EINVAL;
1519 }
1520
1521 retry:
1522 if (pi_state != NULL) {
1523 /*
1524 * We will have to lookup the pi_state again, so free this one
1525 * to keep the accounting correct.
1526 */
1527 free_pi_state(pi_state);
1528 pi_state = NULL;
1529 }
1530
1531 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1532 if (unlikely(ret != 0))
1533 goto out;
1534 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1535 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1536 if (unlikely(ret != 0))
1537 goto out_put_key1;
1538
1539 /*
1540 * The check above which compares uaddrs is not sufficient for
1541 * shared futexes. We need to compare the keys:
1542 */
1543 if (requeue_pi && match_futex(&key1, &key2)) {
1544 ret = -EINVAL;
1545 goto out_put_keys;
1546 }
1547
1548 hb1 = hash_futex(&key1);
1549 hb2 = hash_futex(&key2);
1550
1551 retry_private:
1552 hb_waiters_inc(hb2);
1553 double_lock_hb(hb1, hb2);
1554
1555 if (likely(cmpval != NULL)) {
1556 u32 curval;
1557
1558 ret = get_futex_value_locked(&curval, uaddr1);
1559
1560 if (unlikely(ret)) {
1561 double_unlock_hb(hb1, hb2);
1562 hb_waiters_dec(hb2);
1563
1564 ret = get_user(curval, uaddr1);
1565 if (ret)
1566 goto out_put_keys;
1567
1568 if (!(flags & FLAGS_SHARED))
1569 goto retry_private;
1570
1571 put_futex_key(&key2);
1572 put_futex_key(&key1);
1573 goto retry;
1574 }
1575 if (curval != *cmpval) {
1576 ret = -EAGAIN;
1577 goto out_unlock;
1578 }
1579 }
1580
1581 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1582 /*
1583 * Attempt to acquire uaddr2 and wake the top waiter. If we
1584 * intend to requeue waiters, force setting the FUTEX_WAITERS
1585 * bit. We force this here where we are able to easily handle
1586 * faults rather in the requeue loop below.
1587 */
1588 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1589 &key2, &pi_state, nr_requeue);
1590
1591 /*
1592 * At this point the top_waiter has either taken uaddr2 or is
1593 * waiting on it. If the former, then the pi_state will not
1594 * exist yet, look it up one more time to ensure we have a
1595 * reference to it. If the lock was taken, ret contains the
1596 * vpid of the top waiter task.
1597 */
1598 if (ret > 0) {
1599 WARN_ON(pi_state);
1600 drop_count++;
1601 task_count++;
1602 /*
1603 * If we acquired the lock, then the user
1604 * space value of uaddr2 should be vpid. It
1605 * cannot be changed by the top waiter as it
1606 * is blocked on hb2 lock if it tries to do
1607 * so. If something fiddled with it behind our
1608 * back the pi state lookup might unearth
1609 * it. So we rather use the known value than
1610 * rereading and handing potential crap to
1611 * lookup_pi_state.
1612 */
1613 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1614 }
1615
1616 switch (ret) {
1617 case 0:
1618 break;
1619 case -EFAULT:
1620 double_unlock_hb(hb1, hb2);
1621 hb_waiters_dec(hb2);
1622 put_futex_key(&key2);
1623 put_futex_key(&key1);
1624 ret = fault_in_user_writeable(uaddr2);
1625 if (!ret)
1626 goto retry;
1627 goto out;
1628 case -EAGAIN:
1629 /*
1630 * Two reasons for this:
1631 * - Owner is exiting and we just wait for the
1632 * exit to complete.
1633 * - The user space value changed.
1634 */
1635 double_unlock_hb(hb1, hb2);
1636 hb_waiters_dec(hb2);
1637 put_futex_key(&key2);
1638 put_futex_key(&key1);
1639 cond_resched();
1640 goto retry;
1641 default:
1642 goto out_unlock;
1643 }
1644 }
1645
1646 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1647 if (task_count - nr_wake >= nr_requeue)
1648 break;
1649
1650 if (!match_futex(&this->key, &key1))
1651 continue;
1652
1653 /*
1654 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1655 * be paired with each other and no other futex ops.
1656 *
1657 * We should never be requeueing a futex_q with a pi_state,
1658 * which is awaiting a futex_unlock_pi().
1659 */
1660 if ((requeue_pi && !this->rt_waiter) ||
1661 (!requeue_pi && this->rt_waiter) ||
1662 this->pi_state) {
1663 ret = -EINVAL;
1664 break;
1665 }
1666
1667 /*
1668 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1669 * lock, we already woke the top_waiter. If not, it will be
1670 * woken by futex_unlock_pi().
1671 */
1672 if (++task_count <= nr_wake && !requeue_pi) {
1673 wake_futex(this);
1674 continue;
1675 }
1676
1677 /* Ensure we requeue to the expected futex for requeue_pi. */
1678 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1679 ret = -EINVAL;
1680 break;
1681 }
1682
1683 /*
1684 * Requeue nr_requeue waiters and possibly one more in the case
1685 * of requeue_pi if we couldn't acquire the lock atomically.
1686 */
1687 if (requeue_pi) {
1688 /* Prepare the waiter to take the rt_mutex. */
1689 atomic_inc(&pi_state->refcount);
1690 this->pi_state = pi_state;
1691 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1692 this->rt_waiter,
1693 this->task);
1694 if (ret == 1) {
1695 /* We got the lock. */
1696 requeue_pi_wake_futex(this, &key2, hb2);
1697 drop_count++;
1698 continue;
1699 } else if (ret) {
1700 /* -EDEADLK */
1701 this->pi_state = NULL;
1702 free_pi_state(pi_state);
1703 goto out_unlock;
1704 }
1705 }
1706 requeue_futex(this, hb1, hb2, &key2);
1707 drop_count++;
1708 }
1709
1710 out_unlock:
1711 double_unlock_hb(hb1, hb2);
1712 hb_waiters_dec(hb2);
1713
1714 /*
1715 * drop_futex_key_refs() must be called outside the spinlocks. During
1716 * the requeue we moved futex_q's from the hash bucket at key1 to the
1717 * one at key2 and updated their key pointer. We no longer need to
1718 * hold the references to key1.
1719 */
1720 while (--drop_count >= 0)
1721 drop_futex_key_refs(&key1);
1722
1723 out_put_keys:
1724 put_futex_key(&key2);
1725 out_put_key1:
1726 put_futex_key(&key1);
1727 out:
1728 if (pi_state != NULL)
1729 free_pi_state(pi_state);
1730 return ret ? ret : task_count;
1731 }
1732
1733 /* The key must be already stored in q->key. */
1734 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1735 __acquires(&hb->lock)
1736 {
1737 struct futex_hash_bucket *hb;
1738
1739 hb = hash_futex(&q->key);
1740
1741 /*
1742 * Increment the counter before taking the lock so that
1743 * a potential waker won't miss a to-be-slept task that is
1744 * waiting for the spinlock. This is safe as all queue_lock()
1745 * users end up calling queue_me(). Similarly, for housekeeping,
1746 * decrement the counter at queue_unlock() when some error has
1747 * occurred and we don't end up adding the task to the list.
1748 */
1749 hb_waiters_inc(hb);
1750
1751 q->lock_ptr = &hb->lock;
1752
1753 spin_lock(&hb->lock); /* implies MB (A) */
1754 return hb;
1755 }
1756
1757 static inline void
1758 queue_unlock(struct futex_hash_bucket *hb)
1759 __releases(&hb->lock)
1760 {
1761 spin_unlock(&hb->lock);
1762 hb_waiters_dec(hb);
1763 }
1764
1765 /**
1766 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1767 * @q: The futex_q to enqueue
1768 * @hb: The destination hash bucket
1769 *
1770 * The hb->lock must be held by the caller, and is released here. A call to
1771 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1772 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1773 * or nothing if the unqueue is done as part of the wake process and the unqueue
1774 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1775 * an example).
1776 */
1777 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1778 __releases(&hb->lock)
1779 {
1780 int prio;
1781
1782 /*
1783 * The priority used to register this element is
1784 * - either the real thread-priority for the real-time threads
1785 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1786 * - or MAX_RT_PRIO for non-RT threads.
1787 * Thus, all RT-threads are woken first in priority order, and
1788 * the others are woken last, in FIFO order.
1789 */
1790 prio = min(current->normal_prio, MAX_RT_PRIO);
1791
1792 plist_node_init(&q->list, prio);
1793 plist_add(&q->list, &hb->chain);
1794 q->task = current;
1795 spin_unlock(&hb->lock);
1796 }
1797
1798 /**
1799 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1800 * @q: The futex_q to unqueue
1801 *
1802 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1803 * be paired with exactly one earlier call to queue_me().
1804 *
1805 * Return:
1806 * 1 - if the futex_q was still queued (and we removed unqueued it);
1807 * 0 - if the futex_q was already removed by the waking thread
1808 */
1809 static int unqueue_me(struct futex_q *q)
1810 {
1811 spinlock_t *lock_ptr;
1812 int ret = 0;
1813
1814 /* In the common case we don't take the spinlock, which is nice. */
1815 retry:
1816 lock_ptr = q->lock_ptr;
1817 barrier();
1818 if (lock_ptr != NULL) {
1819 spin_lock(lock_ptr);
1820 /*
1821 * q->lock_ptr can change between reading it and
1822 * spin_lock(), causing us to take the wrong lock. This
1823 * corrects the race condition.
1824 *
1825 * Reasoning goes like this: if we have the wrong lock,
1826 * q->lock_ptr must have changed (maybe several times)
1827 * between reading it and the spin_lock(). It can
1828 * change again after the spin_lock() but only if it was
1829 * already changed before the spin_lock(). It cannot,
1830 * however, change back to the original value. Therefore
1831 * we can detect whether we acquired the correct lock.
1832 */
1833 if (unlikely(lock_ptr != q->lock_ptr)) {
1834 spin_unlock(lock_ptr);
1835 goto retry;
1836 }
1837 __unqueue_futex(q);
1838
1839 BUG_ON(q->pi_state);
1840
1841 spin_unlock(lock_ptr);
1842 ret = 1;
1843 }
1844
1845 drop_futex_key_refs(&q->key);
1846 return ret;
1847 }
1848
1849 /*
1850 * PI futexes can not be requeued and must remove themself from the
1851 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1852 * and dropped here.
1853 */
1854 static void unqueue_me_pi(struct futex_q *q)
1855 __releases(q->lock_ptr)
1856 {
1857 __unqueue_futex(q);
1858
1859 BUG_ON(!q->pi_state);
1860 free_pi_state(q->pi_state);
1861 q->pi_state = NULL;
1862
1863 spin_unlock(q->lock_ptr);
1864 }
1865
1866 /*
1867 * Fixup the pi_state owner with the new owner.
1868 *
1869 * Must be called with hash bucket lock held and mm->sem held for non
1870 * private futexes.
1871 */
1872 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1873 struct task_struct *newowner)
1874 {
1875 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1876 struct futex_pi_state *pi_state = q->pi_state;
1877 struct task_struct *oldowner = pi_state->owner;
1878 u32 uval, uninitialized_var(curval), newval;
1879 int ret;
1880
1881 /* Owner died? */
1882 if (!pi_state->owner)
1883 newtid |= FUTEX_OWNER_DIED;
1884
1885 /*
1886 * We are here either because we stole the rtmutex from the
1887 * previous highest priority waiter or we are the highest priority
1888 * waiter but failed to get the rtmutex the first time.
1889 * We have to replace the newowner TID in the user space variable.
1890 * This must be atomic as we have to preserve the owner died bit here.
1891 *
1892 * Note: We write the user space value _before_ changing the pi_state
1893 * because we can fault here. Imagine swapped out pages or a fork
1894 * that marked all the anonymous memory readonly for cow.
1895 *
1896 * Modifying pi_state _before_ the user space value would
1897 * leave the pi_state in an inconsistent state when we fault
1898 * here, because we need to drop the hash bucket lock to
1899 * handle the fault. This might be observed in the PID check
1900 * in lookup_pi_state.
1901 */
1902 retry:
1903 if (get_futex_value_locked(&uval, uaddr))
1904 goto handle_fault;
1905
1906 while (1) {
1907 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1908
1909 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1910 goto handle_fault;
1911 if (curval == uval)
1912 break;
1913 uval = curval;
1914 }
1915
1916 /*
1917 * We fixed up user space. Now we need to fix the pi_state
1918 * itself.
1919 */
1920 if (pi_state->owner != NULL) {
1921 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1922 WARN_ON(list_empty(&pi_state->list));
1923 list_del_init(&pi_state->list);
1924 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1925 }
1926
1927 pi_state->owner = newowner;
1928
1929 raw_spin_lock_irq(&newowner->pi_lock);
1930 WARN_ON(!list_empty(&pi_state->list));
1931 list_add(&pi_state->list, &newowner->pi_state_list);
1932 raw_spin_unlock_irq(&newowner->pi_lock);
1933 return 0;
1934
1935 /*
1936 * To handle the page fault we need to drop the hash bucket
1937 * lock here. That gives the other task (either the highest priority
1938 * waiter itself or the task which stole the rtmutex) the
1939 * chance to try the fixup of the pi_state. So once we are
1940 * back from handling the fault we need to check the pi_state
1941 * after reacquiring the hash bucket lock and before trying to
1942 * do another fixup. When the fixup has been done already we
1943 * simply return.
1944 */
1945 handle_fault:
1946 spin_unlock(q->lock_ptr);
1947
1948 ret = fault_in_user_writeable(uaddr);
1949
1950 spin_lock(q->lock_ptr);
1951
1952 /*
1953 * Check if someone else fixed it for us:
1954 */
1955 if (pi_state->owner != oldowner)
1956 return 0;
1957
1958 if (ret)
1959 return ret;
1960
1961 goto retry;
1962 }
1963
1964 static long futex_wait_restart(struct restart_block *restart);
1965
1966 /**
1967 * fixup_owner() - Post lock pi_state and corner case management
1968 * @uaddr: user address of the futex
1969 * @q: futex_q (contains pi_state and access to the rt_mutex)
1970 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1971 *
1972 * After attempting to lock an rt_mutex, this function is called to cleanup
1973 * the pi_state owner as well as handle race conditions that may allow us to
1974 * acquire the lock. Must be called with the hb lock held.
1975 *
1976 * Return:
1977 * 1 - success, lock taken;
1978 * 0 - success, lock not taken;
1979 * <0 - on error (-EFAULT)
1980 */
1981 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1982 {
1983 struct task_struct *owner;
1984 int ret = 0;
1985
1986 if (locked) {
1987 /*
1988 * Got the lock. We might not be the anticipated owner if we
1989 * did a lock-steal - fix up the PI-state in that case:
1990 */
1991 if (q->pi_state->owner != current)
1992 ret = fixup_pi_state_owner(uaddr, q, current);
1993 goto out;
1994 }
1995
1996 /*
1997 * Catch the rare case, where the lock was released when we were on the
1998 * way back before we locked the hash bucket.
1999 */
2000 if (q->pi_state->owner == current) {
2001 /*
2002 * Try to get the rt_mutex now. This might fail as some other
2003 * task acquired the rt_mutex after we removed ourself from the
2004 * rt_mutex waiters list.
2005 */
2006 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2007 locked = 1;
2008 goto out;
2009 }
2010
2011 /*
2012 * pi_state is incorrect, some other task did a lock steal and
2013 * we returned due to timeout or signal without taking the
2014 * rt_mutex. Too late.
2015 */
2016 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2017 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2018 if (!owner)
2019 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2020 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2021 ret = fixup_pi_state_owner(uaddr, q, owner);
2022 goto out;
2023 }
2024
2025 /*
2026 * Paranoia check. If we did not take the lock, then we should not be
2027 * the owner of the rt_mutex.
2028 */
2029 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2030 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2031 "pi-state %p\n", ret,
2032 q->pi_state->pi_mutex.owner,
2033 q->pi_state->owner);
2034
2035 out:
2036 return ret ? ret : locked;
2037 }
2038
2039 /**
2040 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2041 * @hb: the futex hash bucket, must be locked by the caller
2042 * @q: the futex_q to queue up on
2043 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2044 */
2045 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2046 struct hrtimer_sleeper *timeout)
2047 {
2048 /*
2049 * The task state is guaranteed to be set before another task can
2050 * wake it. set_current_state() is implemented using set_mb() and
2051 * queue_me() calls spin_unlock() upon completion, both serializing
2052 * access to the hash list and forcing another memory barrier.
2053 */
2054 set_current_state(TASK_INTERRUPTIBLE);
2055 queue_me(q, hb);
2056
2057 /* Arm the timer */
2058 if (timeout) {
2059 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2060 if (!hrtimer_active(&timeout->timer))
2061 timeout->task = NULL;
2062 }
2063
2064 /*
2065 * If we have been removed from the hash list, then another task
2066 * has tried to wake us, and we can skip the call to schedule().
2067 */
2068 if (likely(!plist_node_empty(&q->list))) {
2069 /*
2070 * If the timer has already expired, current will already be
2071 * flagged for rescheduling. Only call schedule if there
2072 * is no timeout, or if it has yet to expire.
2073 */
2074 if (!timeout || timeout->task)
2075 freezable_schedule();
2076 }
2077 __set_current_state(TASK_RUNNING);
2078 }
2079
2080 /**
2081 * futex_wait_setup() - Prepare to wait on a futex
2082 * @uaddr: the futex userspace address
2083 * @val: the expected value
2084 * @flags: futex flags (FLAGS_SHARED, etc.)
2085 * @q: the associated futex_q
2086 * @hb: storage for hash_bucket pointer to be returned to caller
2087 *
2088 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2089 * compare it with the expected value. Handle atomic faults internally.
2090 * Return with the hb lock held and a q.key reference on success, and unlocked
2091 * with no q.key reference on failure.
2092 *
2093 * Return:
2094 * 0 - uaddr contains val and hb has been locked;
2095 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2096 */
2097 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2098 struct futex_q *q, struct futex_hash_bucket **hb)
2099 {
2100 u32 uval;
2101 int ret;
2102
2103 /*
2104 * Access the page AFTER the hash-bucket is locked.
2105 * Order is important:
2106 *
2107 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2108 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2109 *
2110 * The basic logical guarantee of a futex is that it blocks ONLY
2111 * if cond(var) is known to be true at the time of blocking, for
2112 * any cond. If we locked the hash-bucket after testing *uaddr, that
2113 * would open a race condition where we could block indefinitely with
2114 * cond(var) false, which would violate the guarantee.
2115 *
2116 * On the other hand, we insert q and release the hash-bucket only
2117 * after testing *uaddr. This guarantees that futex_wait() will NOT
2118 * absorb a wakeup if *uaddr does not match the desired values
2119 * while the syscall executes.
2120 */
2121 retry:
2122 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2123 if (unlikely(ret != 0))
2124 return ret;
2125
2126 retry_private:
2127 *hb = queue_lock(q);
2128
2129 ret = get_futex_value_locked(&uval, uaddr);
2130
2131 if (ret) {
2132 queue_unlock(*hb);
2133
2134 ret = get_user(uval, uaddr);
2135 if (ret)
2136 goto out;
2137
2138 if (!(flags & FLAGS_SHARED))
2139 goto retry_private;
2140
2141 put_futex_key(&q->key);
2142 goto retry;
2143 }
2144
2145 if (uval != val) {
2146 queue_unlock(*hb);
2147 ret = -EWOULDBLOCK;
2148 }
2149
2150 out:
2151 if (ret)
2152 put_futex_key(&q->key);
2153 return ret;
2154 }
2155
2156 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2157 ktime_t *abs_time, u32 bitset)
2158 {
2159 struct hrtimer_sleeper timeout, *to = NULL;
2160 struct restart_block *restart;
2161 struct futex_hash_bucket *hb;
2162 struct futex_q q = futex_q_init;
2163 int ret;
2164
2165 if (!bitset)
2166 return -EINVAL;
2167 q.bitset = bitset;
2168
2169 if (abs_time) {
2170 to = &timeout;
2171
2172 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2173 CLOCK_REALTIME : CLOCK_MONOTONIC,
2174 HRTIMER_MODE_ABS);
2175 hrtimer_init_sleeper(to, current);
2176 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2177 current->timer_slack_ns);
2178 }
2179
2180 retry:
2181 /*
2182 * Prepare to wait on uaddr. On success, holds hb lock and increments
2183 * q.key refs.
2184 */
2185 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2186 if (ret)
2187 goto out;
2188
2189 /* queue_me and wait for wakeup, timeout, or a signal. */
2190 futex_wait_queue_me(hb, &q, to);
2191
2192 /* If we were woken (and unqueued), we succeeded, whatever. */
2193 ret = 0;
2194 /* unqueue_me() drops q.key ref */
2195 if (!unqueue_me(&q))
2196 goto out;
2197 ret = -ETIMEDOUT;
2198 if (to && !to->task)
2199 goto out;
2200
2201 /*
2202 * We expect signal_pending(current), but we might be the
2203 * victim of a spurious wakeup as well.
2204 */
2205 if (!signal_pending(current))
2206 goto retry;
2207
2208 ret = -ERESTARTSYS;
2209 if (!abs_time)
2210 goto out;
2211
2212 restart = &current_thread_info()->restart_block;
2213 restart->fn = futex_wait_restart;
2214 restart->futex.uaddr = uaddr;
2215 restart->futex.val = val;
2216 restart->futex.time = abs_time->tv64;
2217 restart->futex.bitset = bitset;
2218 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2219
2220 ret = -ERESTART_RESTARTBLOCK;
2221
2222 out:
2223 if (to) {
2224 hrtimer_cancel(&to->timer);
2225 destroy_hrtimer_on_stack(&to->timer);
2226 }
2227 return ret;
2228 }
2229
2230
2231 static long futex_wait_restart(struct restart_block *restart)
2232 {
2233 u32 __user *uaddr = restart->futex.uaddr;
2234 ktime_t t, *tp = NULL;
2235
2236 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2237 t.tv64 = restart->futex.time;
2238 tp = &t;
2239 }
2240 restart->fn = do_no_restart_syscall;
2241
2242 return (long)futex_wait(uaddr, restart->futex.flags,
2243 restart->futex.val, tp, restart->futex.bitset);
2244 }
2245
2246
2247 /*
2248 * Userspace tried a 0 -> TID atomic transition of the futex value
2249 * and failed. The kernel side here does the whole locking operation:
2250 * if there are waiters then it will block, it does PI, etc. (Due to
2251 * races the kernel might see a 0 value of the futex too.)
2252 */
2253 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2254 ktime_t *time, int trylock)
2255 {
2256 struct hrtimer_sleeper timeout, *to = NULL;
2257 struct futex_hash_bucket *hb;
2258 struct futex_q q = futex_q_init;
2259 int res, ret;
2260
2261 if (refill_pi_state_cache())
2262 return -ENOMEM;
2263
2264 if (time) {
2265 to = &timeout;
2266 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2267 HRTIMER_MODE_ABS);
2268 hrtimer_init_sleeper(to, current);
2269 hrtimer_set_expires(&to->timer, *time);
2270 }
2271
2272 retry:
2273 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2274 if (unlikely(ret != 0))
2275 goto out;
2276
2277 retry_private:
2278 hb = queue_lock(&q);
2279
2280 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2281 if (unlikely(ret)) {
2282 switch (ret) {
2283 case 1:
2284 /* We got the lock. */
2285 ret = 0;
2286 goto out_unlock_put_key;
2287 case -EFAULT:
2288 goto uaddr_faulted;
2289 case -EAGAIN:
2290 /*
2291 * Two reasons for this:
2292 * - Task is exiting and we just wait for the
2293 * exit to complete.
2294 * - The user space value changed.
2295 */
2296 queue_unlock(hb);
2297 put_futex_key(&q.key);
2298 cond_resched();
2299 goto retry;
2300 default:
2301 goto out_unlock_put_key;
2302 }
2303 }
2304
2305 /*
2306 * Only actually queue now that the atomic ops are done:
2307 */
2308 queue_me(&q, hb);
2309
2310 WARN_ON(!q.pi_state);
2311 /*
2312 * Block on the PI mutex:
2313 */
2314 if (!trylock) {
2315 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2316 } else {
2317 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2318 /* Fixup the trylock return value: */
2319 ret = ret ? 0 : -EWOULDBLOCK;
2320 }
2321
2322 spin_lock(q.lock_ptr);
2323 /*
2324 * Fixup the pi_state owner and possibly acquire the lock if we
2325 * haven't already.
2326 */
2327 res = fixup_owner(uaddr, &q, !ret);
2328 /*
2329 * If fixup_owner() returned an error, proprogate that. If it acquired
2330 * the lock, clear our -ETIMEDOUT or -EINTR.
2331 */
2332 if (res)
2333 ret = (res < 0) ? res : 0;
2334
2335 /*
2336 * If fixup_owner() faulted and was unable to handle the fault, unlock
2337 * it and return the fault to userspace.
2338 */
2339 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2340 rt_mutex_unlock(&q.pi_state->pi_mutex);
2341
2342 /* Unqueue and drop the lock */
2343 unqueue_me_pi(&q);
2344
2345 goto out_put_key;
2346
2347 out_unlock_put_key:
2348 queue_unlock(hb);
2349
2350 out_put_key:
2351 put_futex_key(&q.key);
2352 out:
2353 if (to)
2354 destroy_hrtimer_on_stack(&to->timer);
2355 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2356
2357 uaddr_faulted:
2358 queue_unlock(hb);
2359
2360 ret = fault_in_user_writeable(uaddr);
2361 if (ret)
2362 goto out_put_key;
2363
2364 if (!(flags & FLAGS_SHARED))
2365 goto retry_private;
2366
2367 put_futex_key(&q.key);
2368 goto retry;
2369 }
2370
2371 /*
2372 * Userspace attempted a TID -> 0 atomic transition, and failed.
2373 * This is the in-kernel slowpath: we look up the PI state (if any),
2374 * and do the rt-mutex unlock.
2375 */
2376 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2377 {
2378 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2379 union futex_key key = FUTEX_KEY_INIT;
2380 struct futex_hash_bucket *hb;
2381 struct futex_q *match;
2382 int ret;
2383
2384 retry:
2385 if (get_user(uval, uaddr))
2386 return -EFAULT;
2387 /*
2388 * We release only a lock we actually own:
2389 */
2390 if ((uval & FUTEX_TID_MASK) != vpid)
2391 return -EPERM;
2392
2393 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2394 if (ret)
2395 return ret;
2396
2397 hb = hash_futex(&key);
2398 spin_lock(&hb->lock);
2399
2400 /*
2401 * Check waiters first. We do not trust user space values at
2402 * all and we at least want to know if user space fiddled
2403 * with the futex value instead of blindly unlocking.
2404 */
2405 match = futex_top_waiter(hb, &key);
2406 if (match) {
2407 ret = wake_futex_pi(uaddr, uval, match);
2408 /*
2409 * The atomic access to the futex value generated a
2410 * pagefault, so retry the user-access and the wakeup:
2411 */
2412 if (ret == -EFAULT)
2413 goto pi_faulted;
2414 goto out_unlock;
2415 }
2416
2417 /*
2418 * We have no kernel internal state, i.e. no waiters in the
2419 * kernel. Waiters which are about to queue themselves are stuck
2420 * on hb->lock. So we can safely ignore them. We do neither
2421 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2422 * owner.
2423 */
2424 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2425 goto pi_faulted;
2426
2427 /*
2428 * If uval has changed, let user space handle it.
2429 */
2430 ret = (curval == uval) ? 0 : -EAGAIN;
2431
2432 out_unlock:
2433 spin_unlock(&hb->lock);
2434 put_futex_key(&key);
2435 return ret;
2436
2437 pi_faulted:
2438 spin_unlock(&hb->lock);
2439 put_futex_key(&key);
2440
2441 ret = fault_in_user_writeable(uaddr);
2442 if (!ret)
2443 goto retry;
2444
2445 return ret;
2446 }
2447
2448 /**
2449 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2450 * @hb: the hash_bucket futex_q was original enqueued on
2451 * @q: the futex_q woken while waiting to be requeued
2452 * @key2: the futex_key of the requeue target futex
2453 * @timeout: the timeout associated with the wait (NULL if none)
2454 *
2455 * Detect if the task was woken on the initial futex as opposed to the requeue
2456 * target futex. If so, determine if it was a timeout or a signal that caused
2457 * the wakeup and return the appropriate error code to the caller. Must be
2458 * called with the hb lock held.
2459 *
2460 * Return:
2461 * 0 = no early wakeup detected;
2462 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2463 */
2464 static inline
2465 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2466 struct futex_q *q, union futex_key *key2,
2467 struct hrtimer_sleeper *timeout)
2468 {
2469 int ret = 0;
2470
2471 /*
2472 * With the hb lock held, we avoid races while we process the wakeup.
2473 * We only need to hold hb (and not hb2) to ensure atomicity as the
2474 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2475 * It can't be requeued from uaddr2 to something else since we don't
2476 * support a PI aware source futex for requeue.
2477 */
2478 if (!match_futex(&q->key, key2)) {
2479 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2480 /*
2481 * We were woken prior to requeue by a timeout or a signal.
2482 * Unqueue the futex_q and determine which it was.
2483 */
2484 plist_del(&q->list, &hb->chain);
2485 hb_waiters_dec(hb);
2486
2487 /* Handle spurious wakeups gracefully */
2488 ret = -EWOULDBLOCK;
2489 if (timeout && !timeout->task)
2490 ret = -ETIMEDOUT;
2491 else if (signal_pending(current))
2492 ret = -ERESTARTNOINTR;
2493 }
2494 return ret;
2495 }
2496
2497 /**
2498 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2499 * @uaddr: the futex we initially wait on (non-pi)
2500 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2501 * the same type, no requeueing from private to shared, etc.
2502 * @val: the expected value of uaddr
2503 * @abs_time: absolute timeout
2504 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2505 * @uaddr2: the pi futex we will take prior to returning to user-space
2506 *
2507 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2508 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2509 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2510 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2511 * without one, the pi logic would not know which task to boost/deboost, if
2512 * there was a need to.
2513 *
2514 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2515 * via the following--
2516 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2517 * 2) wakeup on uaddr2 after a requeue
2518 * 3) signal
2519 * 4) timeout
2520 *
2521 * If 3, cleanup and return -ERESTARTNOINTR.
2522 *
2523 * If 2, we may then block on trying to take the rt_mutex and return via:
2524 * 5) successful lock
2525 * 6) signal
2526 * 7) timeout
2527 * 8) other lock acquisition failure
2528 *
2529 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2530 *
2531 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2532 *
2533 * Return:
2534 * 0 - On success;
2535 * <0 - On error
2536 */
2537 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2538 u32 val, ktime_t *abs_time, u32 bitset,
2539 u32 __user *uaddr2)
2540 {
2541 struct hrtimer_sleeper timeout, *to = NULL;
2542 struct rt_mutex_waiter rt_waiter;
2543 struct rt_mutex *pi_mutex = NULL;
2544 struct futex_hash_bucket *hb;
2545 union futex_key key2 = FUTEX_KEY_INIT;
2546 struct futex_q q = futex_q_init;
2547 int res, ret;
2548
2549 if (uaddr == uaddr2)
2550 return -EINVAL;
2551
2552 if (!bitset)
2553 return -EINVAL;
2554
2555 if (abs_time) {
2556 to = &timeout;
2557 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2558 CLOCK_REALTIME : CLOCK_MONOTONIC,
2559 HRTIMER_MODE_ABS);
2560 hrtimer_init_sleeper(to, current);
2561 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2562 current->timer_slack_ns);
2563 }
2564
2565 /*
2566 * The waiter is allocated on our stack, manipulated by the requeue
2567 * code while we sleep on uaddr.
2568 */
2569 debug_rt_mutex_init_waiter(&rt_waiter);
2570 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2571 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2572 rt_waiter.task = NULL;
2573
2574 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2575 if (unlikely(ret != 0))
2576 goto out;
2577
2578 q.bitset = bitset;
2579 q.rt_waiter = &rt_waiter;
2580 q.requeue_pi_key = &key2;
2581
2582 /*
2583 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2584 * count.
2585 */
2586 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2587 if (ret)
2588 goto out_key2;
2589
2590 /*
2591 * The check above which compares uaddrs is not sufficient for
2592 * shared futexes. We need to compare the keys:
2593 */
2594 if (match_futex(&q.key, &key2)) {
2595 ret = -EINVAL;
2596 goto out_put_keys;
2597 }
2598
2599 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2600 futex_wait_queue_me(hb, &q, to);
2601
2602 spin_lock(&hb->lock);
2603 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2604 spin_unlock(&hb->lock);
2605 if (ret)
2606 goto out_put_keys;
2607
2608 /*
2609 * In order for us to be here, we know our q.key == key2, and since
2610 * we took the hb->lock above, we also know that futex_requeue() has
2611 * completed and we no longer have to concern ourselves with a wakeup
2612 * race with the atomic proxy lock acquisition by the requeue code. The
2613 * futex_requeue dropped our key1 reference and incremented our key2
2614 * reference count.
2615 */
2616
2617 /* Check if the requeue code acquired the second futex for us. */
2618 if (!q.rt_waiter) {
2619 /*
2620 * Got the lock. We might not be the anticipated owner if we
2621 * did a lock-steal - fix up the PI-state in that case.
2622 */
2623 if (q.pi_state && (q.pi_state->owner != current)) {
2624 spin_lock(q.lock_ptr);
2625 ret = fixup_pi_state_owner(uaddr2, &q, current);
2626 spin_unlock(q.lock_ptr);
2627 }
2628 } else {
2629 /*
2630 * We have been woken up by futex_unlock_pi(), a timeout, or a
2631 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2632 * the pi_state.
2633 */
2634 WARN_ON(!q.pi_state);
2635 pi_mutex = &q.pi_state->pi_mutex;
2636 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2637 debug_rt_mutex_free_waiter(&rt_waiter);
2638
2639 spin_lock(q.lock_ptr);
2640 /*
2641 * Fixup the pi_state owner and possibly acquire the lock if we
2642 * haven't already.
2643 */
2644 res = fixup_owner(uaddr2, &q, !ret);
2645 /*
2646 * If fixup_owner() returned an error, proprogate that. If it
2647 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2648 */
2649 if (res)
2650 ret = (res < 0) ? res : 0;
2651
2652 /* Unqueue and drop the lock. */
2653 unqueue_me_pi(&q);
2654 }
2655
2656 /*
2657 * If fixup_pi_state_owner() faulted and was unable to handle the
2658 * fault, unlock the rt_mutex and return the fault to userspace.
2659 */
2660 if (ret == -EFAULT) {
2661 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2662 rt_mutex_unlock(pi_mutex);
2663 } else if (ret == -EINTR) {
2664 /*
2665 * We've already been requeued, but cannot restart by calling
2666 * futex_lock_pi() directly. We could restart this syscall, but
2667 * it would detect that the user space "val" changed and return
2668 * -EWOULDBLOCK. Save the overhead of the restart and return
2669 * -EWOULDBLOCK directly.
2670 */
2671 ret = -EWOULDBLOCK;
2672 }
2673
2674 out_put_keys:
2675 put_futex_key(&q.key);
2676 out_key2:
2677 put_futex_key(&key2);
2678
2679 out:
2680 if (to) {
2681 hrtimer_cancel(&to->timer);
2682 destroy_hrtimer_on_stack(&to->timer);
2683 }
2684 return ret;
2685 }
2686
2687 /*
2688 * Support for robust futexes: the kernel cleans up held futexes at
2689 * thread exit time.
2690 *
2691 * Implementation: user-space maintains a per-thread list of locks it
2692 * is holding. Upon do_exit(), the kernel carefully walks this list,
2693 * and marks all locks that are owned by this thread with the
2694 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2695 * always manipulated with the lock held, so the list is private and
2696 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2697 * field, to allow the kernel to clean up if the thread dies after
2698 * acquiring the lock, but just before it could have added itself to
2699 * the list. There can only be one such pending lock.
2700 */
2701
2702 /**
2703 * sys_set_robust_list() - Set the robust-futex list head of a task
2704 * @head: pointer to the list-head
2705 * @len: length of the list-head, as userspace expects
2706 */
2707 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2708 size_t, len)
2709 {
2710 if (!futex_cmpxchg_enabled)
2711 return -ENOSYS;
2712 /*
2713 * The kernel knows only one size for now:
2714 */
2715 if (unlikely(len != sizeof(*head)))
2716 return -EINVAL;
2717
2718 current->robust_list = head;
2719
2720 return 0;
2721 }
2722
2723 /**
2724 * sys_get_robust_list() - Get the robust-futex list head of a task
2725 * @pid: pid of the process [zero for current task]
2726 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2727 * @len_ptr: pointer to a length field, the kernel fills in the header size
2728 */
2729 SYSCALL_DEFINE3(get_robust_list, int, pid,
2730 struct robust_list_head __user * __user *, head_ptr,
2731 size_t __user *, len_ptr)
2732 {
2733 struct robust_list_head __user *head;
2734 unsigned long ret;
2735 struct task_struct *p;
2736
2737 if (!futex_cmpxchg_enabled)
2738 return -ENOSYS;
2739
2740 rcu_read_lock();
2741
2742 ret = -ESRCH;
2743 if (!pid)
2744 p = current;
2745 else {
2746 p = find_task_by_vpid(pid);
2747 if (!p)
2748 goto err_unlock;
2749 }
2750
2751 ret = -EPERM;
2752 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2753 goto err_unlock;
2754
2755 head = p->robust_list;
2756 rcu_read_unlock();
2757
2758 if (put_user(sizeof(*head), len_ptr))
2759 return -EFAULT;
2760 return put_user(head, head_ptr);
2761
2762 err_unlock:
2763 rcu_read_unlock();
2764
2765 return ret;
2766 }
2767
2768 /*
2769 * Process a futex-list entry, check whether it's owned by the
2770 * dying task, and do notification if so:
2771 */
2772 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2773 {
2774 u32 uval, uninitialized_var(nval), mval;
2775
2776 retry:
2777 if (get_user(uval, uaddr))
2778 return -1;
2779
2780 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2781 /*
2782 * Ok, this dying thread is truly holding a futex
2783 * of interest. Set the OWNER_DIED bit atomically
2784 * via cmpxchg, and if the value had FUTEX_WAITERS
2785 * set, wake up a waiter (if any). (We have to do a
2786 * futex_wake() even if OWNER_DIED is already set -
2787 * to handle the rare but possible case of recursive
2788 * thread-death.) The rest of the cleanup is done in
2789 * userspace.
2790 */
2791 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2792 /*
2793 * We are not holding a lock here, but we want to have
2794 * the pagefault_disable/enable() protection because
2795 * we want to handle the fault gracefully. If the
2796 * access fails we try to fault in the futex with R/W
2797 * verification via get_user_pages. get_user() above
2798 * does not guarantee R/W access. If that fails we
2799 * give up and leave the futex locked.
2800 */
2801 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2802 if (fault_in_user_writeable(uaddr))
2803 return -1;
2804 goto retry;
2805 }
2806 if (nval != uval)
2807 goto retry;
2808
2809 /*
2810 * Wake robust non-PI futexes here. The wakeup of
2811 * PI futexes happens in exit_pi_state():
2812 */
2813 if (!pi && (uval & FUTEX_WAITERS))
2814 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2815 }
2816 return 0;
2817 }
2818
2819 /*
2820 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2821 */
2822 static inline int fetch_robust_entry(struct robust_list __user **entry,
2823 struct robust_list __user * __user *head,
2824 unsigned int *pi)
2825 {
2826 unsigned long uentry;
2827
2828 if (get_user(uentry, (unsigned long __user *)head))
2829 return -EFAULT;
2830
2831 *entry = (void __user *)(uentry & ~1UL);
2832 *pi = uentry & 1;
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * Walk curr->robust_list (very carefully, it's a userspace list!)
2839 * and mark any locks found there dead, and notify any waiters.
2840 *
2841 * We silently return on any sign of list-walking problem.
2842 */
2843 void exit_robust_list(struct task_struct *curr)
2844 {
2845 struct robust_list_head __user *head = curr->robust_list;
2846 struct robust_list __user *entry, *next_entry, *pending;
2847 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2848 unsigned int uninitialized_var(next_pi);
2849 unsigned long futex_offset;
2850 int rc;
2851
2852 if (!futex_cmpxchg_enabled)
2853 return;
2854
2855 /*
2856 * Fetch the list head (which was registered earlier, via
2857 * sys_set_robust_list()):
2858 */
2859 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2860 return;
2861 /*
2862 * Fetch the relative futex offset:
2863 */
2864 if (get_user(futex_offset, &head->futex_offset))
2865 return;
2866 /*
2867 * Fetch any possibly pending lock-add first, and handle it
2868 * if it exists:
2869 */
2870 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2871 return;
2872
2873 next_entry = NULL; /* avoid warning with gcc */
2874 while (entry != &head->list) {
2875 /*
2876 * Fetch the next entry in the list before calling
2877 * handle_futex_death:
2878 */
2879 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2880 /*
2881 * A pending lock might already be on the list, so
2882 * don't process it twice:
2883 */
2884 if (entry != pending)
2885 if (handle_futex_death((void __user *)entry + futex_offset,
2886 curr, pi))
2887 return;
2888 if (rc)
2889 return;
2890 entry = next_entry;
2891 pi = next_pi;
2892 /*
2893 * Avoid excessively long or circular lists:
2894 */
2895 if (!--limit)
2896 break;
2897
2898 cond_resched();
2899 }
2900
2901 if (pending)
2902 handle_futex_death((void __user *)pending + futex_offset,
2903 curr, pip);
2904 }
2905
2906 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2907 u32 __user *uaddr2, u32 val2, u32 val3)
2908 {
2909 int cmd = op & FUTEX_CMD_MASK;
2910 unsigned int flags = 0;
2911
2912 if (!(op & FUTEX_PRIVATE_FLAG))
2913 flags |= FLAGS_SHARED;
2914
2915 if (op & FUTEX_CLOCK_REALTIME) {
2916 flags |= FLAGS_CLOCKRT;
2917 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2918 return -ENOSYS;
2919 }
2920
2921 switch (cmd) {
2922 case FUTEX_LOCK_PI:
2923 case FUTEX_UNLOCK_PI:
2924 case FUTEX_TRYLOCK_PI:
2925 case FUTEX_WAIT_REQUEUE_PI:
2926 case FUTEX_CMP_REQUEUE_PI:
2927 if (!futex_cmpxchg_enabled)
2928 return -ENOSYS;
2929 }
2930
2931 switch (cmd) {
2932 case FUTEX_WAIT:
2933 val3 = FUTEX_BITSET_MATCH_ANY;
2934 case FUTEX_WAIT_BITSET:
2935 return futex_wait(uaddr, flags, val, timeout, val3);
2936 case FUTEX_WAKE:
2937 val3 = FUTEX_BITSET_MATCH_ANY;
2938 case FUTEX_WAKE_BITSET:
2939 return futex_wake(uaddr, flags, val, val3);
2940 case FUTEX_REQUEUE:
2941 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2942 case FUTEX_CMP_REQUEUE:
2943 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2944 case FUTEX_WAKE_OP:
2945 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2946 case FUTEX_LOCK_PI:
2947 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2948 case FUTEX_UNLOCK_PI:
2949 return futex_unlock_pi(uaddr, flags);
2950 case FUTEX_TRYLOCK_PI:
2951 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2952 case FUTEX_WAIT_REQUEUE_PI:
2953 val3 = FUTEX_BITSET_MATCH_ANY;
2954 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2955 uaddr2);
2956 case FUTEX_CMP_REQUEUE_PI:
2957 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2958 }
2959 return -ENOSYS;
2960 }
2961
2962
2963 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2964 struct timespec __user *, utime, u32 __user *, uaddr2,
2965 u32, val3)
2966 {
2967 struct timespec ts;
2968 ktime_t t, *tp = NULL;
2969 u32 val2 = 0;
2970 int cmd = op & FUTEX_CMD_MASK;
2971
2972 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2973 cmd == FUTEX_WAIT_BITSET ||
2974 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2975 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2976 return -EFAULT;
2977 if (!timespec_valid(&ts))
2978 return -EINVAL;
2979
2980 t = timespec_to_ktime(ts);
2981 if (cmd == FUTEX_WAIT)
2982 t = ktime_add_safe(ktime_get(), t);
2983 tp = &t;
2984 }
2985 /*
2986 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2987 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2988 */
2989 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2990 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2991 val2 = (u32) (unsigned long) utime;
2992
2993 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2994 }
2995
2996 static void __init futex_detect_cmpxchg(void)
2997 {
2998 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2999 u32 curval;
3000
3001 /*
3002 * This will fail and we want it. Some arch implementations do
3003 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3004 * functionality. We want to know that before we call in any
3005 * of the complex code paths. Also we want to prevent
3006 * registration of robust lists in that case. NULL is
3007 * guaranteed to fault and we get -EFAULT on functional
3008 * implementation, the non-functional ones will return
3009 * -ENOSYS.
3010 */
3011 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3012 futex_cmpxchg_enabled = 1;
3013 #endif
3014 }
3015
3016 static int __init futex_init(void)
3017 {
3018 unsigned int futex_shift;
3019 unsigned long i;
3020
3021 #if CONFIG_BASE_SMALL
3022 futex_hashsize = 16;
3023 #else
3024 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3025 #endif
3026
3027 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3028 futex_hashsize, 0,
3029 futex_hashsize < 256 ? HASH_SMALL : 0,
3030 &futex_shift, NULL,
3031 futex_hashsize, futex_hashsize);
3032 futex_hashsize = 1UL << futex_shift;
3033
3034 futex_detect_cmpxchg();
3035
3036 for (i = 0; i < futex_hashsize; i++) {
3037 atomic_set(&futex_queues[i].waiters, 0);
3038 plist_head_init(&futex_queues[i].chain);
3039 spin_lock_init(&futex_queues[i].lock);
3040 }
3041
3042 return 0;
3043 }
3044 __initcall(futex_init);
This page took 0.12241 seconds and 5 git commands to generate.