tree-wide: replace config_enabled() with IS_ENABLED()
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/dynamic_debug.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87
88 /*
89 * Mutex protects:
90 * 1) List of modules (also safely readable with preempt_disable),
91 * 2) module_use links,
92 * 3) module_addr_min/module_addr_max.
93 * (delete and add uses RCU list operations). */
94 DEFINE_MUTEX(module_mutex);
95 EXPORT_SYMBOL_GPL(module_mutex);
96 static LIST_HEAD(modules);
97
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99
100 /*
101 * Use a latched RB-tree for __module_address(); this allows us to use
102 * RCU-sched lookups of the address from any context.
103 *
104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
105 * __module_address() hard by doing a lot of stack unwinding; potentially from
106 * NMI context.
107 */
108
109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112
113 return (unsigned long)layout->base;
114 }
115
116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->size;
121 }
122
123 static __always_inline bool
124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128
129 static __always_inline int
130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 unsigned long val = (unsigned long)key;
133 unsigned long start, end;
134
135 start = __mod_tree_val(n);
136 if (val < start)
137 return -1;
138
139 end = start + __mod_tree_size(n);
140 if (val >= end)
141 return 1;
142
143 return 0;
144 }
145
146 static const struct latch_tree_ops mod_tree_ops = {
147 .less = mod_tree_less,
148 .comp = mod_tree_comp,
149 };
150
151 static struct mod_tree_root {
152 struct latch_tree_root root;
153 unsigned long addr_min;
154 unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 .addr_min = -1UL,
157 };
158
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161
162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166
167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171
172 /*
173 * These modifications: insert, remove_init and remove; are serialized by the
174 * module_mutex.
175 */
176 static void mod_tree_insert(struct module *mod)
177 {
178 mod->core_layout.mtn.mod = mod;
179 mod->init_layout.mtn.mod = mod;
180
181 __mod_tree_insert(&mod->core_layout.mtn);
182 if (mod->init_layout.size)
183 __mod_tree_insert(&mod->init_layout.mtn);
184 }
185
186 static void mod_tree_remove_init(struct module *mod)
187 {
188 if (mod->init_layout.size)
189 __mod_tree_remove(&mod->init_layout.mtn);
190 }
191
192 static void mod_tree_remove(struct module *mod)
193 {
194 __mod_tree_remove(&mod->core_layout.mtn);
195 mod_tree_remove_init(mod);
196 }
197
198 static struct module *mod_find(unsigned long addr)
199 {
200 struct latch_tree_node *ltn;
201
202 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 if (!ltn)
204 return NULL;
205
206 return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208
209 #else /* MODULES_TREE_LOOKUP */
210
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212
213 static void mod_tree_insert(struct module *mod) { }
214 static void mod_tree_remove_init(struct module *mod) { }
215 static void mod_tree_remove(struct module *mod) { }
216
217 static struct module *mod_find(unsigned long addr)
218 {
219 struct module *mod;
220
221 list_for_each_entry_rcu(mod, &modules, list) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227 }
228
229 #endif /* MODULES_TREE_LOOKUP */
230
231 /*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235 static void __mod_update_bounds(void *base, unsigned int size)
236 {
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244 }
245
246 static void mod_update_bounds(struct module *mod)
247 {
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 }
252
253 #ifdef CONFIG_KGDB_KDB
254 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255 #endif /* CONFIG_KGDB_KDB */
256
257 static void module_assert_mutex(void)
258 {
259 lockdep_assert_held(&module_mutex);
260 }
261
262 static void module_assert_mutex_or_preempt(void)
263 {
264 #ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270 #endif
271 }
272
273 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274 #ifndef CONFIG_MODULE_SIG_FORCE
275 module_param(sig_enforce, bool_enable_only, 0644);
276 #endif /* !CONFIG_MODULE_SIG_FORCE */
277
278 /* Block module loading/unloading? */
279 int modules_disabled = 0;
280 core_param(nomodule, modules_disabled, bint, 0);
281
282 /* Waiting for a module to finish initializing? */
283 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
284
285 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
286
287 int register_module_notifier(struct notifier_block *nb)
288 {
289 return blocking_notifier_chain_register(&module_notify_list, nb);
290 }
291 EXPORT_SYMBOL(register_module_notifier);
292
293 int unregister_module_notifier(struct notifier_block *nb)
294 {
295 return blocking_notifier_chain_unregister(&module_notify_list, nb);
296 }
297 EXPORT_SYMBOL(unregister_module_notifier);
298
299 struct load_info {
300 Elf_Ehdr *hdr;
301 unsigned long len;
302 Elf_Shdr *sechdrs;
303 char *secstrings, *strtab;
304 unsigned long symoffs, stroffs;
305 struct _ddebug *debug;
306 unsigned int num_debug;
307 bool sig_ok;
308 #ifdef CONFIG_KALLSYMS
309 unsigned long mod_kallsyms_init_off;
310 #endif
311 struct {
312 unsigned int sym, str, mod, vers, info, pcpu;
313 } index;
314 };
315
316 /* We require a truly strong try_module_get(): 0 means failure due to
317 ongoing or failed initialization etc. */
318 static inline int strong_try_module_get(struct module *mod)
319 {
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327 }
328
329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331 {
332 add_taint(flag, lockdep_ok);
333 mod->taints |= (1U << flag);
334 }
335
336 /*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit. nfsd and lockd use this.
339 */
340 void __module_put_and_exit(struct module *mod, long code)
341 {
342 module_put(mod);
343 do_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_exit);
346
347 /* Find a module section: 0 means not found. */
348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360 }
361
362 /* Find a module section, or NULL. */
363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368
369 /* Find a module section, or NULL. Fill in number of "objects" in section. */
370 static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374 {
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380 }
381
382 /* Provided by the linker */
383 extern const struct kernel_symbol __start___ksymtab[];
384 extern const struct kernel_symbol __stop___ksymtab[];
385 extern const struct kernel_symbol __start___ksymtab_gpl[];
386 extern const struct kernel_symbol __stop___ksymtab_gpl[];
387 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
388 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
389 extern const unsigned long __start___kcrctab[];
390 extern const unsigned long __start___kcrctab_gpl[];
391 extern const unsigned long __start___kcrctab_gpl_future[];
392 #ifdef CONFIG_UNUSED_SYMBOLS
393 extern const struct kernel_symbol __start___ksymtab_unused[];
394 extern const struct kernel_symbol __stop___ksymtab_unused[];
395 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
396 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
397 extern const unsigned long __start___kcrctab_unused[];
398 extern const unsigned long __start___kcrctab_unused_gpl[];
399 #endif
400
401 #ifndef CONFIG_MODVERSIONS
402 #define symversion(base, idx) NULL
403 #else
404 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
405 #endif
406
407 static bool each_symbol_in_section(const struct symsearch *arr,
408 unsigned int arrsize,
409 struct module *owner,
410 bool (*fn)(const struct symsearch *syms,
411 struct module *owner,
412 void *data),
413 void *data)
414 {
415 unsigned int j;
416
417 for (j = 0; j < arrsize; j++) {
418 if (fn(&arr[j], owner, data))
419 return true;
420 }
421
422 return false;
423 }
424
425 /* Returns true as soon as fn returns true, otherwise false. */
426 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
427 struct module *owner,
428 void *data),
429 void *data)
430 {
431 struct module *mod;
432 static const struct symsearch arr[] = {
433 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
434 NOT_GPL_ONLY, false },
435 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
436 __start___kcrctab_gpl,
437 GPL_ONLY, false },
438 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
439 __start___kcrctab_gpl_future,
440 WILL_BE_GPL_ONLY, false },
441 #ifdef CONFIG_UNUSED_SYMBOLS
442 { __start___ksymtab_unused, __stop___ksymtab_unused,
443 __start___kcrctab_unused,
444 NOT_GPL_ONLY, true },
445 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
446 __start___kcrctab_unused_gpl,
447 GPL_ONLY, true },
448 #endif
449 };
450
451 module_assert_mutex_or_preempt();
452
453 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
454 return true;
455
456 list_for_each_entry_rcu(mod, &modules, list) {
457 struct symsearch arr[] = {
458 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
459 NOT_GPL_ONLY, false },
460 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
461 mod->gpl_crcs,
462 GPL_ONLY, false },
463 { mod->gpl_future_syms,
464 mod->gpl_future_syms + mod->num_gpl_future_syms,
465 mod->gpl_future_crcs,
466 WILL_BE_GPL_ONLY, false },
467 #ifdef CONFIG_UNUSED_SYMBOLS
468 { mod->unused_syms,
469 mod->unused_syms + mod->num_unused_syms,
470 mod->unused_crcs,
471 NOT_GPL_ONLY, true },
472 { mod->unused_gpl_syms,
473 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
474 mod->unused_gpl_crcs,
475 GPL_ONLY, true },
476 #endif
477 };
478
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481
482 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
483 return true;
484 }
485 return false;
486 }
487 EXPORT_SYMBOL_GPL(each_symbol_section);
488
489 struct find_symbol_arg {
490 /* Input */
491 const char *name;
492 bool gplok;
493 bool warn;
494
495 /* Output */
496 struct module *owner;
497 const unsigned long *crc;
498 const struct kernel_symbol *sym;
499 };
500
501 static bool check_symbol(const struct symsearch *syms,
502 struct module *owner,
503 unsigned int symnum, void *data)
504 {
505 struct find_symbol_arg *fsa = data;
506
507 if (!fsa->gplok) {
508 if (syms->licence == GPL_ONLY)
509 return false;
510 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
511 pr_warn("Symbol %s is being used by a non-GPL module, "
512 "which will not be allowed in the future\n",
513 fsa->name);
514 }
515 }
516
517 #ifdef CONFIG_UNUSED_SYMBOLS
518 if (syms->unused && fsa->warn) {
519 pr_warn("Symbol %s is marked as UNUSED, however this module is "
520 "using it.\n", fsa->name);
521 pr_warn("This symbol will go away in the future.\n");
522 pr_warn("Please evaluate if this is the right api to use and "
523 "if it really is, submit a report to the linux kernel "
524 "mailing list together with submitting your code for "
525 "inclusion.\n");
526 }
527 #endif
528
529 fsa->owner = owner;
530 fsa->crc = symversion(syms->crcs, symnum);
531 fsa->sym = &syms->start[symnum];
532 return true;
533 }
534
535 static int cmp_name(const void *va, const void *vb)
536 {
537 const char *a;
538 const struct kernel_symbol *b;
539 a = va; b = vb;
540 return strcmp(a, b->name);
541 }
542
543 static bool find_symbol_in_section(const struct symsearch *syms,
544 struct module *owner,
545 void *data)
546 {
547 struct find_symbol_arg *fsa = data;
548 struct kernel_symbol *sym;
549
550 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
551 sizeof(struct kernel_symbol), cmp_name);
552
553 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
554 return true;
555
556 return false;
557 }
558
559 /* Find a symbol and return it, along with, (optional) crc and
560 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
561 const struct kernel_symbol *find_symbol(const char *name,
562 struct module **owner,
563 const unsigned long **crc,
564 bool gplok,
565 bool warn)
566 {
567 struct find_symbol_arg fsa;
568
569 fsa.name = name;
570 fsa.gplok = gplok;
571 fsa.warn = warn;
572
573 if (each_symbol_section(find_symbol_in_section, &fsa)) {
574 if (owner)
575 *owner = fsa.owner;
576 if (crc)
577 *crc = fsa.crc;
578 return fsa.sym;
579 }
580
581 pr_debug("Failed to find symbol %s\n", name);
582 return NULL;
583 }
584 EXPORT_SYMBOL_GPL(find_symbol);
585
586 /*
587 * Search for module by name: must hold module_mutex (or preempt disabled
588 * for read-only access).
589 */
590 static struct module *find_module_all(const char *name, size_t len,
591 bool even_unformed)
592 {
593 struct module *mod;
594
595 module_assert_mutex_or_preempt();
596
597 list_for_each_entry(mod, &modules, list) {
598 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
599 continue;
600 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
601 return mod;
602 }
603 return NULL;
604 }
605
606 struct module *find_module(const char *name)
607 {
608 module_assert_mutex();
609 return find_module_all(name, strlen(name), false);
610 }
611 EXPORT_SYMBOL_GPL(find_module);
612
613 #ifdef CONFIG_SMP
614
615 static inline void __percpu *mod_percpu(struct module *mod)
616 {
617 return mod->percpu;
618 }
619
620 static int percpu_modalloc(struct module *mod, struct load_info *info)
621 {
622 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
623 unsigned long align = pcpusec->sh_addralign;
624
625 if (!pcpusec->sh_size)
626 return 0;
627
628 if (align > PAGE_SIZE) {
629 pr_warn("%s: per-cpu alignment %li > %li\n",
630 mod->name, align, PAGE_SIZE);
631 align = PAGE_SIZE;
632 }
633
634 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
635 if (!mod->percpu) {
636 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
637 mod->name, (unsigned long)pcpusec->sh_size);
638 return -ENOMEM;
639 }
640 mod->percpu_size = pcpusec->sh_size;
641 return 0;
642 }
643
644 static void percpu_modfree(struct module *mod)
645 {
646 free_percpu(mod->percpu);
647 }
648
649 static unsigned int find_pcpusec(struct load_info *info)
650 {
651 return find_sec(info, ".data..percpu");
652 }
653
654 static void percpu_modcopy(struct module *mod,
655 const void *from, unsigned long size)
656 {
657 int cpu;
658
659 for_each_possible_cpu(cpu)
660 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
661 }
662
663 /**
664 * is_module_percpu_address - test whether address is from module static percpu
665 * @addr: address to test
666 *
667 * Test whether @addr belongs to module static percpu area.
668 *
669 * RETURNS:
670 * %true if @addr is from module static percpu area
671 */
672 bool is_module_percpu_address(unsigned long addr)
673 {
674 struct module *mod;
675 unsigned int cpu;
676
677 preempt_disable();
678
679 list_for_each_entry_rcu(mod, &modules, list) {
680 if (mod->state == MODULE_STATE_UNFORMED)
681 continue;
682 if (!mod->percpu_size)
683 continue;
684 for_each_possible_cpu(cpu) {
685 void *start = per_cpu_ptr(mod->percpu, cpu);
686
687 if ((void *)addr >= start &&
688 (void *)addr < start + mod->percpu_size) {
689 preempt_enable();
690 return true;
691 }
692 }
693 }
694
695 preempt_enable();
696 return false;
697 }
698
699 #else /* ... !CONFIG_SMP */
700
701 static inline void __percpu *mod_percpu(struct module *mod)
702 {
703 return NULL;
704 }
705 static int percpu_modalloc(struct module *mod, struct load_info *info)
706 {
707 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
708 if (info->sechdrs[info->index.pcpu].sh_size != 0)
709 return -ENOMEM;
710 return 0;
711 }
712 static inline void percpu_modfree(struct module *mod)
713 {
714 }
715 static unsigned int find_pcpusec(struct load_info *info)
716 {
717 return 0;
718 }
719 static inline void percpu_modcopy(struct module *mod,
720 const void *from, unsigned long size)
721 {
722 /* pcpusec should be 0, and size of that section should be 0. */
723 BUG_ON(size != 0);
724 }
725 bool is_module_percpu_address(unsigned long addr)
726 {
727 return false;
728 }
729
730 #endif /* CONFIG_SMP */
731
732 #define MODINFO_ATTR(field) \
733 static void setup_modinfo_##field(struct module *mod, const char *s) \
734 { \
735 mod->field = kstrdup(s, GFP_KERNEL); \
736 } \
737 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
738 struct module_kobject *mk, char *buffer) \
739 { \
740 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
741 } \
742 static int modinfo_##field##_exists(struct module *mod) \
743 { \
744 return mod->field != NULL; \
745 } \
746 static void free_modinfo_##field(struct module *mod) \
747 { \
748 kfree(mod->field); \
749 mod->field = NULL; \
750 } \
751 static struct module_attribute modinfo_##field = { \
752 .attr = { .name = __stringify(field), .mode = 0444 }, \
753 .show = show_modinfo_##field, \
754 .setup = setup_modinfo_##field, \
755 .test = modinfo_##field##_exists, \
756 .free = free_modinfo_##field, \
757 };
758
759 MODINFO_ATTR(version);
760 MODINFO_ATTR(srcversion);
761
762 static char last_unloaded_module[MODULE_NAME_LEN+1];
763
764 #ifdef CONFIG_MODULE_UNLOAD
765
766 EXPORT_TRACEPOINT_SYMBOL(module_get);
767
768 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
769 #define MODULE_REF_BASE 1
770
771 /* Init the unload section of the module. */
772 static int module_unload_init(struct module *mod)
773 {
774 /*
775 * Initialize reference counter to MODULE_REF_BASE.
776 * refcnt == 0 means module is going.
777 */
778 atomic_set(&mod->refcnt, MODULE_REF_BASE);
779
780 INIT_LIST_HEAD(&mod->source_list);
781 INIT_LIST_HEAD(&mod->target_list);
782
783 /* Hold reference count during initialization. */
784 atomic_inc(&mod->refcnt);
785
786 return 0;
787 }
788
789 /* Does a already use b? */
790 static int already_uses(struct module *a, struct module *b)
791 {
792 struct module_use *use;
793
794 list_for_each_entry(use, &b->source_list, source_list) {
795 if (use->source == a) {
796 pr_debug("%s uses %s!\n", a->name, b->name);
797 return 1;
798 }
799 }
800 pr_debug("%s does not use %s!\n", a->name, b->name);
801 return 0;
802 }
803
804 /*
805 * Module a uses b
806 * - we add 'a' as a "source", 'b' as a "target" of module use
807 * - the module_use is added to the list of 'b' sources (so
808 * 'b' can walk the list to see who sourced them), and of 'a'
809 * targets (so 'a' can see what modules it targets).
810 */
811 static int add_module_usage(struct module *a, struct module *b)
812 {
813 struct module_use *use;
814
815 pr_debug("Allocating new usage for %s.\n", a->name);
816 use = kmalloc(sizeof(*use), GFP_ATOMIC);
817 if (!use) {
818 pr_warn("%s: out of memory loading\n", a->name);
819 return -ENOMEM;
820 }
821
822 use->source = a;
823 use->target = b;
824 list_add(&use->source_list, &b->source_list);
825 list_add(&use->target_list, &a->target_list);
826 return 0;
827 }
828
829 /* Module a uses b: caller needs module_mutex() */
830 int ref_module(struct module *a, struct module *b)
831 {
832 int err;
833
834 if (b == NULL || already_uses(a, b))
835 return 0;
836
837 /* If module isn't available, we fail. */
838 err = strong_try_module_get(b);
839 if (err)
840 return err;
841
842 err = add_module_usage(a, b);
843 if (err) {
844 module_put(b);
845 return err;
846 }
847 return 0;
848 }
849 EXPORT_SYMBOL_GPL(ref_module);
850
851 /* Clear the unload stuff of the module. */
852 static void module_unload_free(struct module *mod)
853 {
854 struct module_use *use, *tmp;
855
856 mutex_lock(&module_mutex);
857 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
858 struct module *i = use->target;
859 pr_debug("%s unusing %s\n", mod->name, i->name);
860 module_put(i);
861 list_del(&use->source_list);
862 list_del(&use->target_list);
863 kfree(use);
864 }
865 mutex_unlock(&module_mutex);
866 }
867
868 #ifdef CONFIG_MODULE_FORCE_UNLOAD
869 static inline int try_force_unload(unsigned int flags)
870 {
871 int ret = (flags & O_TRUNC);
872 if (ret)
873 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
874 return ret;
875 }
876 #else
877 static inline int try_force_unload(unsigned int flags)
878 {
879 return 0;
880 }
881 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
882
883 /* Try to release refcount of module, 0 means success. */
884 static int try_release_module_ref(struct module *mod)
885 {
886 int ret;
887
888 /* Try to decrement refcnt which we set at loading */
889 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
890 BUG_ON(ret < 0);
891 if (ret)
892 /* Someone can put this right now, recover with checking */
893 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
894
895 return ret;
896 }
897
898 static int try_stop_module(struct module *mod, int flags, int *forced)
899 {
900 /* If it's not unused, quit unless we're forcing. */
901 if (try_release_module_ref(mod) != 0) {
902 *forced = try_force_unload(flags);
903 if (!(*forced))
904 return -EWOULDBLOCK;
905 }
906
907 /* Mark it as dying. */
908 mod->state = MODULE_STATE_GOING;
909
910 return 0;
911 }
912
913 /**
914 * module_refcount - return the refcount or -1 if unloading
915 *
916 * @mod: the module we're checking
917 *
918 * Returns:
919 * -1 if the module is in the process of unloading
920 * otherwise the number of references in the kernel to the module
921 */
922 int module_refcount(struct module *mod)
923 {
924 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
925 }
926 EXPORT_SYMBOL(module_refcount);
927
928 /* This exists whether we can unload or not */
929 static void free_module(struct module *mod);
930
931 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
932 unsigned int, flags)
933 {
934 struct module *mod;
935 char name[MODULE_NAME_LEN];
936 int ret, forced = 0;
937
938 if (!capable(CAP_SYS_MODULE) || modules_disabled)
939 return -EPERM;
940
941 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
942 return -EFAULT;
943 name[MODULE_NAME_LEN-1] = '\0';
944
945 if (mutex_lock_interruptible(&module_mutex) != 0)
946 return -EINTR;
947
948 mod = find_module(name);
949 if (!mod) {
950 ret = -ENOENT;
951 goto out;
952 }
953
954 if (!list_empty(&mod->source_list)) {
955 /* Other modules depend on us: get rid of them first. */
956 ret = -EWOULDBLOCK;
957 goto out;
958 }
959
960 /* Doing init or already dying? */
961 if (mod->state != MODULE_STATE_LIVE) {
962 /* FIXME: if (force), slam module count damn the torpedoes */
963 pr_debug("%s already dying\n", mod->name);
964 ret = -EBUSY;
965 goto out;
966 }
967
968 /* If it has an init func, it must have an exit func to unload */
969 if (mod->init && !mod->exit) {
970 forced = try_force_unload(flags);
971 if (!forced) {
972 /* This module can't be removed */
973 ret = -EBUSY;
974 goto out;
975 }
976 }
977
978 /* Stop the machine so refcounts can't move and disable module. */
979 ret = try_stop_module(mod, flags, &forced);
980 if (ret != 0)
981 goto out;
982
983 mutex_unlock(&module_mutex);
984 /* Final destruction now no one is using it. */
985 if (mod->exit != NULL)
986 mod->exit();
987 blocking_notifier_call_chain(&module_notify_list,
988 MODULE_STATE_GOING, mod);
989 klp_module_going(mod);
990 ftrace_release_mod(mod);
991
992 async_synchronize_full();
993
994 /* Store the name of the last unloaded module for diagnostic purposes */
995 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
996
997 free_module(mod);
998 return 0;
999 out:
1000 mutex_unlock(&module_mutex);
1001 return ret;
1002 }
1003
1004 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1005 {
1006 struct module_use *use;
1007 int printed_something = 0;
1008
1009 seq_printf(m, " %i ", module_refcount(mod));
1010
1011 /*
1012 * Always include a trailing , so userspace can differentiate
1013 * between this and the old multi-field proc format.
1014 */
1015 list_for_each_entry(use, &mod->source_list, source_list) {
1016 printed_something = 1;
1017 seq_printf(m, "%s,", use->source->name);
1018 }
1019
1020 if (mod->init != NULL && mod->exit == NULL) {
1021 printed_something = 1;
1022 seq_puts(m, "[permanent],");
1023 }
1024
1025 if (!printed_something)
1026 seq_puts(m, "-");
1027 }
1028
1029 void __symbol_put(const char *symbol)
1030 {
1031 struct module *owner;
1032
1033 preempt_disable();
1034 if (!find_symbol(symbol, &owner, NULL, true, false))
1035 BUG();
1036 module_put(owner);
1037 preempt_enable();
1038 }
1039 EXPORT_SYMBOL(__symbol_put);
1040
1041 /* Note this assumes addr is a function, which it currently always is. */
1042 void symbol_put_addr(void *addr)
1043 {
1044 struct module *modaddr;
1045 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1046
1047 if (core_kernel_text(a))
1048 return;
1049
1050 /*
1051 * Even though we hold a reference on the module; we still need to
1052 * disable preemption in order to safely traverse the data structure.
1053 */
1054 preempt_disable();
1055 modaddr = __module_text_address(a);
1056 BUG_ON(!modaddr);
1057 module_put(modaddr);
1058 preempt_enable();
1059 }
1060 EXPORT_SYMBOL_GPL(symbol_put_addr);
1061
1062 static ssize_t show_refcnt(struct module_attribute *mattr,
1063 struct module_kobject *mk, char *buffer)
1064 {
1065 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1066 }
1067
1068 static struct module_attribute modinfo_refcnt =
1069 __ATTR(refcnt, 0444, show_refcnt, NULL);
1070
1071 void __module_get(struct module *module)
1072 {
1073 if (module) {
1074 preempt_disable();
1075 atomic_inc(&module->refcnt);
1076 trace_module_get(module, _RET_IP_);
1077 preempt_enable();
1078 }
1079 }
1080 EXPORT_SYMBOL(__module_get);
1081
1082 bool try_module_get(struct module *module)
1083 {
1084 bool ret = true;
1085
1086 if (module) {
1087 preempt_disable();
1088 /* Note: here, we can fail to get a reference */
1089 if (likely(module_is_live(module) &&
1090 atomic_inc_not_zero(&module->refcnt) != 0))
1091 trace_module_get(module, _RET_IP_);
1092 else
1093 ret = false;
1094
1095 preempt_enable();
1096 }
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(try_module_get);
1100
1101 void module_put(struct module *module)
1102 {
1103 int ret;
1104
1105 if (module) {
1106 preempt_disable();
1107 ret = atomic_dec_if_positive(&module->refcnt);
1108 WARN_ON(ret < 0); /* Failed to put refcount */
1109 trace_module_put(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(module_put);
1114
1115 #else /* !CONFIG_MODULE_UNLOAD */
1116 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1117 {
1118 /* We don't know the usage count, or what modules are using. */
1119 seq_puts(m, " - -");
1120 }
1121
1122 static inline void module_unload_free(struct module *mod)
1123 {
1124 }
1125
1126 int ref_module(struct module *a, struct module *b)
1127 {
1128 return strong_try_module_get(b);
1129 }
1130 EXPORT_SYMBOL_GPL(ref_module);
1131
1132 static inline int module_unload_init(struct module *mod)
1133 {
1134 return 0;
1135 }
1136 #endif /* CONFIG_MODULE_UNLOAD */
1137
1138 static size_t module_flags_taint(struct module *mod, char *buf)
1139 {
1140 size_t l = 0;
1141
1142 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1143 buf[l++] = 'P';
1144 if (mod->taints & (1 << TAINT_OOT_MODULE))
1145 buf[l++] = 'O';
1146 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1147 buf[l++] = 'F';
1148 if (mod->taints & (1 << TAINT_CRAP))
1149 buf[l++] = 'C';
1150 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1151 buf[l++] = 'E';
1152 /*
1153 * TAINT_FORCED_RMMOD: could be added.
1154 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1155 * apply to modules.
1156 */
1157 return l;
1158 }
1159
1160 static ssize_t show_initstate(struct module_attribute *mattr,
1161 struct module_kobject *mk, char *buffer)
1162 {
1163 const char *state = "unknown";
1164
1165 switch (mk->mod->state) {
1166 case MODULE_STATE_LIVE:
1167 state = "live";
1168 break;
1169 case MODULE_STATE_COMING:
1170 state = "coming";
1171 break;
1172 case MODULE_STATE_GOING:
1173 state = "going";
1174 break;
1175 default:
1176 BUG();
1177 }
1178 return sprintf(buffer, "%s\n", state);
1179 }
1180
1181 static struct module_attribute modinfo_initstate =
1182 __ATTR(initstate, 0444, show_initstate, NULL);
1183
1184 static ssize_t store_uevent(struct module_attribute *mattr,
1185 struct module_kobject *mk,
1186 const char *buffer, size_t count)
1187 {
1188 enum kobject_action action;
1189
1190 if (kobject_action_type(buffer, count, &action) == 0)
1191 kobject_uevent(&mk->kobj, action);
1192 return count;
1193 }
1194
1195 struct module_attribute module_uevent =
1196 __ATTR(uevent, 0200, NULL, store_uevent);
1197
1198 static ssize_t show_coresize(struct module_attribute *mattr,
1199 struct module_kobject *mk, char *buffer)
1200 {
1201 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1202 }
1203
1204 static struct module_attribute modinfo_coresize =
1205 __ATTR(coresize, 0444, show_coresize, NULL);
1206
1207 static ssize_t show_initsize(struct module_attribute *mattr,
1208 struct module_kobject *mk, char *buffer)
1209 {
1210 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1211 }
1212
1213 static struct module_attribute modinfo_initsize =
1214 __ATTR(initsize, 0444, show_initsize, NULL);
1215
1216 static ssize_t show_taint(struct module_attribute *mattr,
1217 struct module_kobject *mk, char *buffer)
1218 {
1219 size_t l;
1220
1221 l = module_flags_taint(mk->mod, buffer);
1222 buffer[l++] = '\n';
1223 return l;
1224 }
1225
1226 static struct module_attribute modinfo_taint =
1227 __ATTR(taint, 0444, show_taint, NULL);
1228
1229 static struct module_attribute *modinfo_attrs[] = {
1230 &module_uevent,
1231 &modinfo_version,
1232 &modinfo_srcversion,
1233 &modinfo_initstate,
1234 &modinfo_coresize,
1235 &modinfo_initsize,
1236 &modinfo_taint,
1237 #ifdef CONFIG_MODULE_UNLOAD
1238 &modinfo_refcnt,
1239 #endif
1240 NULL,
1241 };
1242
1243 static const char vermagic[] = VERMAGIC_STRING;
1244
1245 static int try_to_force_load(struct module *mod, const char *reason)
1246 {
1247 #ifdef CONFIG_MODULE_FORCE_LOAD
1248 if (!test_taint(TAINT_FORCED_MODULE))
1249 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1250 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1251 return 0;
1252 #else
1253 return -ENOEXEC;
1254 #endif
1255 }
1256
1257 #ifdef CONFIG_MODVERSIONS
1258 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1259 static unsigned long maybe_relocated(unsigned long crc,
1260 const struct module *crc_owner)
1261 {
1262 #ifdef ARCH_RELOCATES_KCRCTAB
1263 if (crc_owner == NULL)
1264 return crc - (unsigned long)reloc_start;
1265 #endif
1266 return crc;
1267 }
1268
1269 static int check_version(Elf_Shdr *sechdrs,
1270 unsigned int versindex,
1271 const char *symname,
1272 struct module *mod,
1273 const unsigned long *crc,
1274 const struct module *crc_owner)
1275 {
1276 unsigned int i, num_versions;
1277 struct modversion_info *versions;
1278
1279 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1280 if (!crc)
1281 return 1;
1282
1283 /* No versions at all? modprobe --force does this. */
1284 if (versindex == 0)
1285 return try_to_force_load(mod, symname) == 0;
1286
1287 versions = (void *) sechdrs[versindex].sh_addr;
1288 num_versions = sechdrs[versindex].sh_size
1289 / sizeof(struct modversion_info);
1290
1291 for (i = 0; i < num_versions; i++) {
1292 if (strcmp(versions[i].name, symname) != 0)
1293 continue;
1294
1295 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1296 return 1;
1297 pr_debug("Found checksum %lX vs module %lX\n",
1298 maybe_relocated(*crc, crc_owner), versions[i].crc);
1299 goto bad_version;
1300 }
1301
1302 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1303 return 0;
1304
1305 bad_version:
1306 pr_warn("%s: disagrees about version of symbol %s\n",
1307 mod->name, symname);
1308 return 0;
1309 }
1310
1311 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1312 unsigned int versindex,
1313 struct module *mod)
1314 {
1315 const unsigned long *crc;
1316
1317 /*
1318 * Since this should be found in kernel (which can't be removed), no
1319 * locking is necessary -- use preempt_disable() to placate lockdep.
1320 */
1321 preempt_disable();
1322 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1323 &crc, true, false)) {
1324 preempt_enable();
1325 BUG();
1326 }
1327 preempt_enable();
1328 return check_version(sechdrs, versindex,
1329 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1330 NULL);
1331 }
1332
1333 /* First part is kernel version, which we ignore if module has crcs. */
1334 static inline int same_magic(const char *amagic, const char *bmagic,
1335 bool has_crcs)
1336 {
1337 if (has_crcs) {
1338 amagic += strcspn(amagic, " ");
1339 bmagic += strcspn(bmagic, " ");
1340 }
1341 return strcmp(amagic, bmagic) == 0;
1342 }
1343 #else
1344 static inline int check_version(Elf_Shdr *sechdrs,
1345 unsigned int versindex,
1346 const char *symname,
1347 struct module *mod,
1348 const unsigned long *crc,
1349 const struct module *crc_owner)
1350 {
1351 return 1;
1352 }
1353
1354 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1355 unsigned int versindex,
1356 struct module *mod)
1357 {
1358 return 1;
1359 }
1360
1361 static inline int same_magic(const char *amagic, const char *bmagic,
1362 bool has_crcs)
1363 {
1364 return strcmp(amagic, bmagic) == 0;
1365 }
1366 #endif /* CONFIG_MODVERSIONS */
1367
1368 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1369 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1370 const struct load_info *info,
1371 const char *name,
1372 char ownername[])
1373 {
1374 struct module *owner;
1375 const struct kernel_symbol *sym;
1376 const unsigned long *crc;
1377 int err;
1378
1379 /*
1380 * The module_mutex should not be a heavily contended lock;
1381 * if we get the occasional sleep here, we'll go an extra iteration
1382 * in the wait_event_interruptible(), which is harmless.
1383 */
1384 sched_annotate_sleep();
1385 mutex_lock(&module_mutex);
1386 sym = find_symbol(name, &owner, &crc,
1387 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1388 if (!sym)
1389 goto unlock;
1390
1391 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1392 owner)) {
1393 sym = ERR_PTR(-EINVAL);
1394 goto getname;
1395 }
1396
1397 err = ref_module(mod, owner);
1398 if (err) {
1399 sym = ERR_PTR(err);
1400 goto getname;
1401 }
1402
1403 getname:
1404 /* We must make copy under the lock if we failed to get ref. */
1405 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1406 unlock:
1407 mutex_unlock(&module_mutex);
1408 return sym;
1409 }
1410
1411 static const struct kernel_symbol *
1412 resolve_symbol_wait(struct module *mod,
1413 const struct load_info *info,
1414 const char *name)
1415 {
1416 const struct kernel_symbol *ksym;
1417 char owner[MODULE_NAME_LEN];
1418
1419 if (wait_event_interruptible_timeout(module_wq,
1420 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1421 || PTR_ERR(ksym) != -EBUSY,
1422 30 * HZ) <= 0) {
1423 pr_warn("%s: gave up waiting for init of module %s.\n",
1424 mod->name, owner);
1425 }
1426 return ksym;
1427 }
1428
1429 /*
1430 * /sys/module/foo/sections stuff
1431 * J. Corbet <corbet@lwn.net>
1432 */
1433 #ifdef CONFIG_SYSFS
1434
1435 #ifdef CONFIG_KALLSYMS
1436 static inline bool sect_empty(const Elf_Shdr *sect)
1437 {
1438 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1439 }
1440
1441 struct module_sect_attr {
1442 struct module_attribute mattr;
1443 char *name;
1444 unsigned long address;
1445 };
1446
1447 struct module_sect_attrs {
1448 struct attribute_group grp;
1449 unsigned int nsections;
1450 struct module_sect_attr attrs[0];
1451 };
1452
1453 static ssize_t module_sect_show(struct module_attribute *mattr,
1454 struct module_kobject *mk, char *buf)
1455 {
1456 struct module_sect_attr *sattr =
1457 container_of(mattr, struct module_sect_attr, mattr);
1458 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1459 }
1460
1461 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1462 {
1463 unsigned int section;
1464
1465 for (section = 0; section < sect_attrs->nsections; section++)
1466 kfree(sect_attrs->attrs[section].name);
1467 kfree(sect_attrs);
1468 }
1469
1470 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1471 {
1472 unsigned int nloaded = 0, i, size[2];
1473 struct module_sect_attrs *sect_attrs;
1474 struct module_sect_attr *sattr;
1475 struct attribute **gattr;
1476
1477 /* Count loaded sections and allocate structures */
1478 for (i = 0; i < info->hdr->e_shnum; i++)
1479 if (!sect_empty(&info->sechdrs[i]))
1480 nloaded++;
1481 size[0] = ALIGN(sizeof(*sect_attrs)
1482 + nloaded * sizeof(sect_attrs->attrs[0]),
1483 sizeof(sect_attrs->grp.attrs[0]));
1484 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1485 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1486 if (sect_attrs == NULL)
1487 return;
1488
1489 /* Setup section attributes. */
1490 sect_attrs->grp.name = "sections";
1491 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1492
1493 sect_attrs->nsections = 0;
1494 sattr = &sect_attrs->attrs[0];
1495 gattr = &sect_attrs->grp.attrs[0];
1496 for (i = 0; i < info->hdr->e_shnum; i++) {
1497 Elf_Shdr *sec = &info->sechdrs[i];
1498 if (sect_empty(sec))
1499 continue;
1500 sattr->address = sec->sh_addr;
1501 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1502 GFP_KERNEL);
1503 if (sattr->name == NULL)
1504 goto out;
1505 sect_attrs->nsections++;
1506 sysfs_attr_init(&sattr->mattr.attr);
1507 sattr->mattr.show = module_sect_show;
1508 sattr->mattr.store = NULL;
1509 sattr->mattr.attr.name = sattr->name;
1510 sattr->mattr.attr.mode = S_IRUGO;
1511 *(gattr++) = &(sattr++)->mattr.attr;
1512 }
1513 *gattr = NULL;
1514
1515 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1516 goto out;
1517
1518 mod->sect_attrs = sect_attrs;
1519 return;
1520 out:
1521 free_sect_attrs(sect_attrs);
1522 }
1523
1524 static void remove_sect_attrs(struct module *mod)
1525 {
1526 if (mod->sect_attrs) {
1527 sysfs_remove_group(&mod->mkobj.kobj,
1528 &mod->sect_attrs->grp);
1529 /* We are positive that no one is using any sect attrs
1530 * at this point. Deallocate immediately. */
1531 free_sect_attrs(mod->sect_attrs);
1532 mod->sect_attrs = NULL;
1533 }
1534 }
1535
1536 /*
1537 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1538 */
1539
1540 struct module_notes_attrs {
1541 struct kobject *dir;
1542 unsigned int notes;
1543 struct bin_attribute attrs[0];
1544 };
1545
1546 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1547 struct bin_attribute *bin_attr,
1548 char *buf, loff_t pos, size_t count)
1549 {
1550 /*
1551 * The caller checked the pos and count against our size.
1552 */
1553 memcpy(buf, bin_attr->private + pos, count);
1554 return count;
1555 }
1556
1557 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1558 unsigned int i)
1559 {
1560 if (notes_attrs->dir) {
1561 while (i-- > 0)
1562 sysfs_remove_bin_file(notes_attrs->dir,
1563 &notes_attrs->attrs[i]);
1564 kobject_put(notes_attrs->dir);
1565 }
1566 kfree(notes_attrs);
1567 }
1568
1569 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1570 {
1571 unsigned int notes, loaded, i;
1572 struct module_notes_attrs *notes_attrs;
1573 struct bin_attribute *nattr;
1574
1575 /* failed to create section attributes, so can't create notes */
1576 if (!mod->sect_attrs)
1577 return;
1578
1579 /* Count notes sections and allocate structures. */
1580 notes = 0;
1581 for (i = 0; i < info->hdr->e_shnum; i++)
1582 if (!sect_empty(&info->sechdrs[i]) &&
1583 (info->sechdrs[i].sh_type == SHT_NOTE))
1584 ++notes;
1585
1586 if (notes == 0)
1587 return;
1588
1589 notes_attrs = kzalloc(sizeof(*notes_attrs)
1590 + notes * sizeof(notes_attrs->attrs[0]),
1591 GFP_KERNEL);
1592 if (notes_attrs == NULL)
1593 return;
1594
1595 notes_attrs->notes = notes;
1596 nattr = &notes_attrs->attrs[0];
1597 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1598 if (sect_empty(&info->sechdrs[i]))
1599 continue;
1600 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1601 sysfs_bin_attr_init(nattr);
1602 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1603 nattr->attr.mode = S_IRUGO;
1604 nattr->size = info->sechdrs[i].sh_size;
1605 nattr->private = (void *) info->sechdrs[i].sh_addr;
1606 nattr->read = module_notes_read;
1607 ++nattr;
1608 }
1609 ++loaded;
1610 }
1611
1612 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1613 if (!notes_attrs->dir)
1614 goto out;
1615
1616 for (i = 0; i < notes; ++i)
1617 if (sysfs_create_bin_file(notes_attrs->dir,
1618 &notes_attrs->attrs[i]))
1619 goto out;
1620
1621 mod->notes_attrs = notes_attrs;
1622 return;
1623
1624 out:
1625 free_notes_attrs(notes_attrs, i);
1626 }
1627
1628 static void remove_notes_attrs(struct module *mod)
1629 {
1630 if (mod->notes_attrs)
1631 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1632 }
1633
1634 #else
1635
1636 static inline void add_sect_attrs(struct module *mod,
1637 const struct load_info *info)
1638 {
1639 }
1640
1641 static inline void remove_sect_attrs(struct module *mod)
1642 {
1643 }
1644
1645 static inline void add_notes_attrs(struct module *mod,
1646 const struct load_info *info)
1647 {
1648 }
1649
1650 static inline void remove_notes_attrs(struct module *mod)
1651 {
1652 }
1653 #endif /* CONFIG_KALLSYMS */
1654
1655 static void add_usage_links(struct module *mod)
1656 {
1657 #ifdef CONFIG_MODULE_UNLOAD
1658 struct module_use *use;
1659 int nowarn;
1660
1661 mutex_lock(&module_mutex);
1662 list_for_each_entry(use, &mod->target_list, target_list) {
1663 nowarn = sysfs_create_link(use->target->holders_dir,
1664 &mod->mkobj.kobj, mod->name);
1665 }
1666 mutex_unlock(&module_mutex);
1667 #endif
1668 }
1669
1670 static void del_usage_links(struct module *mod)
1671 {
1672 #ifdef CONFIG_MODULE_UNLOAD
1673 struct module_use *use;
1674
1675 mutex_lock(&module_mutex);
1676 list_for_each_entry(use, &mod->target_list, target_list)
1677 sysfs_remove_link(use->target->holders_dir, mod->name);
1678 mutex_unlock(&module_mutex);
1679 #endif
1680 }
1681
1682 static int module_add_modinfo_attrs(struct module *mod)
1683 {
1684 struct module_attribute *attr;
1685 struct module_attribute *temp_attr;
1686 int error = 0;
1687 int i;
1688
1689 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1690 (ARRAY_SIZE(modinfo_attrs) + 1)),
1691 GFP_KERNEL);
1692 if (!mod->modinfo_attrs)
1693 return -ENOMEM;
1694
1695 temp_attr = mod->modinfo_attrs;
1696 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1697 if (!attr->test ||
1698 (attr->test && attr->test(mod))) {
1699 memcpy(temp_attr, attr, sizeof(*temp_attr));
1700 sysfs_attr_init(&temp_attr->attr);
1701 error = sysfs_create_file(&mod->mkobj.kobj,
1702 &temp_attr->attr);
1703 ++temp_attr;
1704 }
1705 }
1706 return error;
1707 }
1708
1709 static void module_remove_modinfo_attrs(struct module *mod)
1710 {
1711 struct module_attribute *attr;
1712 int i;
1713
1714 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1715 /* pick a field to test for end of list */
1716 if (!attr->attr.name)
1717 break;
1718 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1719 if (attr->free)
1720 attr->free(mod);
1721 }
1722 kfree(mod->modinfo_attrs);
1723 }
1724
1725 static void mod_kobject_put(struct module *mod)
1726 {
1727 DECLARE_COMPLETION_ONSTACK(c);
1728 mod->mkobj.kobj_completion = &c;
1729 kobject_put(&mod->mkobj.kobj);
1730 wait_for_completion(&c);
1731 }
1732
1733 static int mod_sysfs_init(struct module *mod)
1734 {
1735 int err;
1736 struct kobject *kobj;
1737
1738 if (!module_sysfs_initialized) {
1739 pr_err("%s: module sysfs not initialized\n", mod->name);
1740 err = -EINVAL;
1741 goto out;
1742 }
1743
1744 kobj = kset_find_obj(module_kset, mod->name);
1745 if (kobj) {
1746 pr_err("%s: module is already loaded\n", mod->name);
1747 kobject_put(kobj);
1748 err = -EINVAL;
1749 goto out;
1750 }
1751
1752 mod->mkobj.mod = mod;
1753
1754 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1755 mod->mkobj.kobj.kset = module_kset;
1756 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1757 "%s", mod->name);
1758 if (err)
1759 mod_kobject_put(mod);
1760
1761 /* delay uevent until full sysfs population */
1762 out:
1763 return err;
1764 }
1765
1766 static int mod_sysfs_setup(struct module *mod,
1767 const struct load_info *info,
1768 struct kernel_param *kparam,
1769 unsigned int num_params)
1770 {
1771 int err;
1772
1773 err = mod_sysfs_init(mod);
1774 if (err)
1775 goto out;
1776
1777 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1778 if (!mod->holders_dir) {
1779 err = -ENOMEM;
1780 goto out_unreg;
1781 }
1782
1783 err = module_param_sysfs_setup(mod, kparam, num_params);
1784 if (err)
1785 goto out_unreg_holders;
1786
1787 err = module_add_modinfo_attrs(mod);
1788 if (err)
1789 goto out_unreg_param;
1790
1791 add_usage_links(mod);
1792 add_sect_attrs(mod, info);
1793 add_notes_attrs(mod, info);
1794
1795 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1796 return 0;
1797
1798 out_unreg_param:
1799 module_param_sysfs_remove(mod);
1800 out_unreg_holders:
1801 kobject_put(mod->holders_dir);
1802 out_unreg:
1803 mod_kobject_put(mod);
1804 out:
1805 return err;
1806 }
1807
1808 static void mod_sysfs_fini(struct module *mod)
1809 {
1810 remove_notes_attrs(mod);
1811 remove_sect_attrs(mod);
1812 mod_kobject_put(mod);
1813 }
1814
1815 static void init_param_lock(struct module *mod)
1816 {
1817 mutex_init(&mod->param_lock);
1818 }
1819 #else /* !CONFIG_SYSFS */
1820
1821 static int mod_sysfs_setup(struct module *mod,
1822 const struct load_info *info,
1823 struct kernel_param *kparam,
1824 unsigned int num_params)
1825 {
1826 return 0;
1827 }
1828
1829 static void mod_sysfs_fini(struct module *mod)
1830 {
1831 }
1832
1833 static void module_remove_modinfo_attrs(struct module *mod)
1834 {
1835 }
1836
1837 static void del_usage_links(struct module *mod)
1838 {
1839 }
1840
1841 static void init_param_lock(struct module *mod)
1842 {
1843 }
1844 #endif /* CONFIG_SYSFS */
1845
1846 static void mod_sysfs_teardown(struct module *mod)
1847 {
1848 del_usage_links(mod);
1849 module_remove_modinfo_attrs(mod);
1850 module_param_sysfs_remove(mod);
1851 kobject_put(mod->mkobj.drivers_dir);
1852 kobject_put(mod->holders_dir);
1853 mod_sysfs_fini(mod);
1854 }
1855
1856 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1857 /*
1858 * LKM RO/NX protection: protect module's text/ro-data
1859 * from modification and any data from execution.
1860 *
1861 * General layout of module is:
1862 * [text] [read-only-data] [writable data]
1863 * text_size -----^ ^ ^
1864 * ro_size ------------------------| |
1865 * size -------------------------------------------|
1866 *
1867 * These values are always page-aligned (as is base)
1868 */
1869 static void frob_text(const struct module_layout *layout,
1870 int (*set_memory)(unsigned long start, int num_pages))
1871 {
1872 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1873 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1874 set_memory((unsigned long)layout->base,
1875 layout->text_size >> PAGE_SHIFT);
1876 }
1877
1878 static void frob_rodata(const struct module_layout *layout,
1879 int (*set_memory)(unsigned long start, int num_pages))
1880 {
1881 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1882 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1883 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1884 set_memory((unsigned long)layout->base + layout->text_size,
1885 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1886 }
1887
1888 static void frob_writable_data(const struct module_layout *layout,
1889 int (*set_memory)(unsigned long start, int num_pages))
1890 {
1891 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1892 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1893 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1894 set_memory((unsigned long)layout->base + layout->ro_size,
1895 (layout->size - layout->ro_size) >> PAGE_SHIFT);
1896 }
1897
1898 /* livepatching wants to disable read-only so it can frob module. */
1899 void module_disable_ro(const struct module *mod)
1900 {
1901 frob_text(&mod->core_layout, set_memory_rw);
1902 frob_rodata(&mod->core_layout, set_memory_rw);
1903 frob_text(&mod->init_layout, set_memory_rw);
1904 frob_rodata(&mod->init_layout, set_memory_rw);
1905 }
1906
1907 void module_enable_ro(const struct module *mod)
1908 {
1909 frob_text(&mod->core_layout, set_memory_ro);
1910 frob_rodata(&mod->core_layout, set_memory_ro);
1911 frob_text(&mod->init_layout, set_memory_ro);
1912 frob_rodata(&mod->init_layout, set_memory_ro);
1913 }
1914
1915 static void module_enable_nx(const struct module *mod)
1916 {
1917 frob_rodata(&mod->core_layout, set_memory_nx);
1918 frob_writable_data(&mod->core_layout, set_memory_nx);
1919 frob_rodata(&mod->init_layout, set_memory_nx);
1920 frob_writable_data(&mod->init_layout, set_memory_nx);
1921 }
1922
1923 static void module_disable_nx(const struct module *mod)
1924 {
1925 frob_rodata(&mod->core_layout, set_memory_x);
1926 frob_writable_data(&mod->core_layout, set_memory_x);
1927 frob_rodata(&mod->init_layout, set_memory_x);
1928 frob_writable_data(&mod->init_layout, set_memory_x);
1929 }
1930
1931 /* Iterate through all modules and set each module's text as RW */
1932 void set_all_modules_text_rw(void)
1933 {
1934 struct module *mod;
1935
1936 mutex_lock(&module_mutex);
1937 list_for_each_entry_rcu(mod, &modules, list) {
1938 if (mod->state == MODULE_STATE_UNFORMED)
1939 continue;
1940
1941 frob_text(&mod->core_layout, set_memory_rw);
1942 frob_text(&mod->init_layout, set_memory_rw);
1943 }
1944 mutex_unlock(&module_mutex);
1945 }
1946
1947 /* Iterate through all modules and set each module's text as RO */
1948 void set_all_modules_text_ro(void)
1949 {
1950 struct module *mod;
1951
1952 mutex_lock(&module_mutex);
1953 list_for_each_entry_rcu(mod, &modules, list) {
1954 if (mod->state == MODULE_STATE_UNFORMED)
1955 continue;
1956
1957 frob_text(&mod->core_layout, set_memory_ro);
1958 frob_text(&mod->init_layout, set_memory_ro);
1959 }
1960 mutex_unlock(&module_mutex);
1961 }
1962
1963 static void disable_ro_nx(const struct module_layout *layout)
1964 {
1965 frob_text(layout, set_memory_rw);
1966 frob_rodata(layout, set_memory_rw);
1967 frob_rodata(layout, set_memory_x);
1968 frob_writable_data(layout, set_memory_x);
1969 }
1970
1971 #else
1972 static void disable_ro_nx(const struct module_layout *layout) { }
1973 static void module_enable_nx(const struct module *mod) { }
1974 static void module_disable_nx(const struct module *mod) { }
1975 #endif
1976
1977 #ifdef CONFIG_LIVEPATCH
1978 /*
1979 * Persist Elf information about a module. Copy the Elf header,
1980 * section header table, section string table, and symtab section
1981 * index from info to mod->klp_info.
1982 */
1983 static int copy_module_elf(struct module *mod, struct load_info *info)
1984 {
1985 unsigned int size, symndx;
1986 int ret;
1987
1988 size = sizeof(*mod->klp_info);
1989 mod->klp_info = kmalloc(size, GFP_KERNEL);
1990 if (mod->klp_info == NULL)
1991 return -ENOMEM;
1992
1993 /* Elf header */
1994 size = sizeof(mod->klp_info->hdr);
1995 memcpy(&mod->klp_info->hdr, info->hdr, size);
1996
1997 /* Elf section header table */
1998 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
1999 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2000 if (mod->klp_info->sechdrs == NULL) {
2001 ret = -ENOMEM;
2002 goto free_info;
2003 }
2004 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2005
2006 /* Elf section name string table */
2007 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2008 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2009 if (mod->klp_info->secstrings == NULL) {
2010 ret = -ENOMEM;
2011 goto free_sechdrs;
2012 }
2013 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2014
2015 /* Elf symbol section index */
2016 symndx = info->index.sym;
2017 mod->klp_info->symndx = symndx;
2018
2019 /*
2020 * For livepatch modules, core_kallsyms.symtab is a complete
2021 * copy of the original symbol table. Adjust sh_addr to point
2022 * to core_kallsyms.symtab since the copy of the symtab in module
2023 * init memory is freed at the end of do_init_module().
2024 */
2025 mod->klp_info->sechdrs[symndx].sh_addr = \
2026 (unsigned long) mod->core_kallsyms.symtab;
2027
2028 return 0;
2029
2030 free_sechdrs:
2031 kfree(mod->klp_info->sechdrs);
2032 free_info:
2033 kfree(mod->klp_info);
2034 return ret;
2035 }
2036
2037 static void free_module_elf(struct module *mod)
2038 {
2039 kfree(mod->klp_info->sechdrs);
2040 kfree(mod->klp_info->secstrings);
2041 kfree(mod->klp_info);
2042 }
2043 #else /* !CONFIG_LIVEPATCH */
2044 static int copy_module_elf(struct module *mod, struct load_info *info)
2045 {
2046 return 0;
2047 }
2048
2049 static void free_module_elf(struct module *mod)
2050 {
2051 }
2052 #endif /* CONFIG_LIVEPATCH */
2053
2054 void __weak module_memfree(void *module_region)
2055 {
2056 vfree(module_region);
2057 }
2058
2059 void __weak module_arch_cleanup(struct module *mod)
2060 {
2061 }
2062
2063 void __weak module_arch_freeing_init(struct module *mod)
2064 {
2065 }
2066
2067 /* Free a module, remove from lists, etc. */
2068 static void free_module(struct module *mod)
2069 {
2070 trace_module_free(mod);
2071
2072 mod_sysfs_teardown(mod);
2073
2074 /* We leave it in list to prevent duplicate loads, but make sure
2075 * that noone uses it while it's being deconstructed. */
2076 mutex_lock(&module_mutex);
2077 mod->state = MODULE_STATE_UNFORMED;
2078 mutex_unlock(&module_mutex);
2079
2080 /* Remove dynamic debug info */
2081 ddebug_remove_module(mod->name);
2082
2083 /* Arch-specific cleanup. */
2084 module_arch_cleanup(mod);
2085
2086 /* Module unload stuff */
2087 module_unload_free(mod);
2088
2089 /* Free any allocated parameters. */
2090 destroy_params(mod->kp, mod->num_kp);
2091
2092 if (is_livepatch_module(mod))
2093 free_module_elf(mod);
2094
2095 /* Now we can delete it from the lists */
2096 mutex_lock(&module_mutex);
2097 /* Unlink carefully: kallsyms could be walking list. */
2098 list_del_rcu(&mod->list);
2099 mod_tree_remove(mod);
2100 /* Remove this module from bug list, this uses list_del_rcu */
2101 module_bug_cleanup(mod);
2102 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2103 synchronize_sched();
2104 mutex_unlock(&module_mutex);
2105
2106 /* This may be empty, but that's OK */
2107 disable_ro_nx(&mod->init_layout);
2108 module_arch_freeing_init(mod);
2109 module_memfree(mod->init_layout.base);
2110 kfree(mod->args);
2111 percpu_modfree(mod);
2112
2113 /* Free lock-classes; relies on the preceding sync_rcu(). */
2114 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2115
2116 /* Finally, free the core (containing the module structure) */
2117 disable_ro_nx(&mod->core_layout);
2118 module_memfree(mod->core_layout.base);
2119
2120 #ifdef CONFIG_MPU
2121 update_protections(current->mm);
2122 #endif
2123 }
2124
2125 void *__symbol_get(const char *symbol)
2126 {
2127 struct module *owner;
2128 const struct kernel_symbol *sym;
2129
2130 preempt_disable();
2131 sym = find_symbol(symbol, &owner, NULL, true, true);
2132 if (sym && strong_try_module_get(owner))
2133 sym = NULL;
2134 preempt_enable();
2135
2136 return sym ? (void *)sym->value : NULL;
2137 }
2138 EXPORT_SYMBOL_GPL(__symbol_get);
2139
2140 /*
2141 * Ensure that an exported symbol [global namespace] does not already exist
2142 * in the kernel or in some other module's exported symbol table.
2143 *
2144 * You must hold the module_mutex.
2145 */
2146 static int verify_export_symbols(struct module *mod)
2147 {
2148 unsigned int i;
2149 struct module *owner;
2150 const struct kernel_symbol *s;
2151 struct {
2152 const struct kernel_symbol *sym;
2153 unsigned int num;
2154 } arr[] = {
2155 { mod->syms, mod->num_syms },
2156 { mod->gpl_syms, mod->num_gpl_syms },
2157 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2158 #ifdef CONFIG_UNUSED_SYMBOLS
2159 { mod->unused_syms, mod->num_unused_syms },
2160 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2161 #endif
2162 };
2163
2164 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2165 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2166 if (find_symbol(s->name, &owner, NULL, true, false)) {
2167 pr_err("%s: exports duplicate symbol %s"
2168 " (owned by %s)\n",
2169 mod->name, s->name, module_name(owner));
2170 return -ENOEXEC;
2171 }
2172 }
2173 }
2174 return 0;
2175 }
2176
2177 /* Change all symbols so that st_value encodes the pointer directly. */
2178 static int simplify_symbols(struct module *mod, const struct load_info *info)
2179 {
2180 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2181 Elf_Sym *sym = (void *)symsec->sh_addr;
2182 unsigned long secbase;
2183 unsigned int i;
2184 int ret = 0;
2185 const struct kernel_symbol *ksym;
2186
2187 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2188 const char *name = info->strtab + sym[i].st_name;
2189
2190 switch (sym[i].st_shndx) {
2191 case SHN_COMMON:
2192 /* Ignore common symbols */
2193 if (!strncmp(name, "__gnu_lto", 9))
2194 break;
2195
2196 /* We compiled with -fno-common. These are not
2197 supposed to happen. */
2198 pr_debug("Common symbol: %s\n", name);
2199 pr_warn("%s: please compile with -fno-common\n",
2200 mod->name);
2201 ret = -ENOEXEC;
2202 break;
2203
2204 case SHN_ABS:
2205 /* Don't need to do anything */
2206 pr_debug("Absolute symbol: 0x%08lx\n",
2207 (long)sym[i].st_value);
2208 break;
2209
2210 case SHN_LIVEPATCH:
2211 /* Livepatch symbols are resolved by livepatch */
2212 break;
2213
2214 case SHN_UNDEF:
2215 ksym = resolve_symbol_wait(mod, info, name);
2216 /* Ok if resolved. */
2217 if (ksym && !IS_ERR(ksym)) {
2218 sym[i].st_value = ksym->value;
2219 break;
2220 }
2221
2222 /* Ok if weak. */
2223 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2224 break;
2225
2226 pr_warn("%s: Unknown symbol %s (err %li)\n",
2227 mod->name, name, PTR_ERR(ksym));
2228 ret = PTR_ERR(ksym) ?: -ENOENT;
2229 break;
2230
2231 default:
2232 /* Divert to percpu allocation if a percpu var. */
2233 if (sym[i].st_shndx == info->index.pcpu)
2234 secbase = (unsigned long)mod_percpu(mod);
2235 else
2236 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2237 sym[i].st_value += secbase;
2238 break;
2239 }
2240 }
2241
2242 return ret;
2243 }
2244
2245 static int apply_relocations(struct module *mod, const struct load_info *info)
2246 {
2247 unsigned int i;
2248 int err = 0;
2249
2250 /* Now do relocations. */
2251 for (i = 1; i < info->hdr->e_shnum; i++) {
2252 unsigned int infosec = info->sechdrs[i].sh_info;
2253
2254 /* Not a valid relocation section? */
2255 if (infosec >= info->hdr->e_shnum)
2256 continue;
2257
2258 /* Don't bother with non-allocated sections */
2259 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2260 continue;
2261
2262 /* Livepatch relocation sections are applied by livepatch */
2263 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2264 continue;
2265
2266 if (info->sechdrs[i].sh_type == SHT_REL)
2267 err = apply_relocate(info->sechdrs, info->strtab,
2268 info->index.sym, i, mod);
2269 else if (info->sechdrs[i].sh_type == SHT_RELA)
2270 err = apply_relocate_add(info->sechdrs, info->strtab,
2271 info->index.sym, i, mod);
2272 if (err < 0)
2273 break;
2274 }
2275 return err;
2276 }
2277
2278 /* Additional bytes needed by arch in front of individual sections */
2279 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2280 unsigned int section)
2281 {
2282 /* default implementation just returns zero */
2283 return 0;
2284 }
2285
2286 /* Update size with this section: return offset. */
2287 static long get_offset(struct module *mod, unsigned int *size,
2288 Elf_Shdr *sechdr, unsigned int section)
2289 {
2290 long ret;
2291
2292 *size += arch_mod_section_prepend(mod, section);
2293 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2294 *size = ret + sechdr->sh_size;
2295 return ret;
2296 }
2297
2298 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2299 might -- code, read-only data, read-write data, small data. Tally
2300 sizes, and place the offsets into sh_entsize fields: high bit means it
2301 belongs in init. */
2302 static void layout_sections(struct module *mod, struct load_info *info)
2303 {
2304 static unsigned long const masks[][2] = {
2305 /* NOTE: all executable code must be the first section
2306 * in this array; otherwise modify the text_size
2307 * finder in the two loops below */
2308 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2309 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2310 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2311 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2312 };
2313 unsigned int m, i;
2314
2315 for (i = 0; i < info->hdr->e_shnum; i++)
2316 info->sechdrs[i].sh_entsize = ~0UL;
2317
2318 pr_debug("Core section allocation order:\n");
2319 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2320 for (i = 0; i < info->hdr->e_shnum; ++i) {
2321 Elf_Shdr *s = &info->sechdrs[i];
2322 const char *sname = info->secstrings + s->sh_name;
2323
2324 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2325 || (s->sh_flags & masks[m][1])
2326 || s->sh_entsize != ~0UL
2327 || strstarts(sname, ".init"))
2328 continue;
2329 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2330 pr_debug("\t%s\n", sname);
2331 }
2332 switch (m) {
2333 case 0: /* executable */
2334 mod->core_layout.size = debug_align(mod->core_layout.size);
2335 mod->core_layout.text_size = mod->core_layout.size;
2336 break;
2337 case 1: /* RO: text and ro-data */
2338 mod->core_layout.size = debug_align(mod->core_layout.size);
2339 mod->core_layout.ro_size = mod->core_layout.size;
2340 break;
2341 case 3: /* whole core */
2342 mod->core_layout.size = debug_align(mod->core_layout.size);
2343 break;
2344 }
2345 }
2346
2347 pr_debug("Init section allocation order:\n");
2348 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2349 for (i = 0; i < info->hdr->e_shnum; ++i) {
2350 Elf_Shdr *s = &info->sechdrs[i];
2351 const char *sname = info->secstrings + s->sh_name;
2352
2353 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2354 || (s->sh_flags & masks[m][1])
2355 || s->sh_entsize != ~0UL
2356 || !strstarts(sname, ".init"))
2357 continue;
2358 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2359 | INIT_OFFSET_MASK);
2360 pr_debug("\t%s\n", sname);
2361 }
2362 switch (m) {
2363 case 0: /* executable */
2364 mod->init_layout.size = debug_align(mod->init_layout.size);
2365 mod->init_layout.text_size = mod->init_layout.size;
2366 break;
2367 case 1: /* RO: text and ro-data */
2368 mod->init_layout.size = debug_align(mod->init_layout.size);
2369 mod->init_layout.ro_size = mod->init_layout.size;
2370 break;
2371 case 3: /* whole init */
2372 mod->init_layout.size = debug_align(mod->init_layout.size);
2373 break;
2374 }
2375 }
2376 }
2377
2378 static void set_license(struct module *mod, const char *license)
2379 {
2380 if (!license)
2381 license = "unspecified";
2382
2383 if (!license_is_gpl_compatible(license)) {
2384 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2385 pr_warn("%s: module license '%s' taints kernel.\n",
2386 mod->name, license);
2387 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2388 LOCKDEP_NOW_UNRELIABLE);
2389 }
2390 }
2391
2392 /* Parse tag=value strings from .modinfo section */
2393 static char *next_string(char *string, unsigned long *secsize)
2394 {
2395 /* Skip non-zero chars */
2396 while (string[0]) {
2397 string++;
2398 if ((*secsize)-- <= 1)
2399 return NULL;
2400 }
2401
2402 /* Skip any zero padding. */
2403 while (!string[0]) {
2404 string++;
2405 if ((*secsize)-- <= 1)
2406 return NULL;
2407 }
2408 return string;
2409 }
2410
2411 static char *get_modinfo(struct load_info *info, const char *tag)
2412 {
2413 char *p;
2414 unsigned int taglen = strlen(tag);
2415 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2416 unsigned long size = infosec->sh_size;
2417
2418 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2419 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2420 return p + taglen + 1;
2421 }
2422 return NULL;
2423 }
2424
2425 static void setup_modinfo(struct module *mod, struct load_info *info)
2426 {
2427 struct module_attribute *attr;
2428 int i;
2429
2430 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2431 if (attr->setup)
2432 attr->setup(mod, get_modinfo(info, attr->attr.name));
2433 }
2434 }
2435
2436 static void free_modinfo(struct module *mod)
2437 {
2438 struct module_attribute *attr;
2439 int i;
2440
2441 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2442 if (attr->free)
2443 attr->free(mod);
2444 }
2445 }
2446
2447 #ifdef CONFIG_KALLSYMS
2448
2449 /* lookup symbol in given range of kernel_symbols */
2450 static const struct kernel_symbol *lookup_symbol(const char *name,
2451 const struct kernel_symbol *start,
2452 const struct kernel_symbol *stop)
2453 {
2454 return bsearch(name, start, stop - start,
2455 sizeof(struct kernel_symbol), cmp_name);
2456 }
2457
2458 static int is_exported(const char *name, unsigned long value,
2459 const struct module *mod)
2460 {
2461 const struct kernel_symbol *ks;
2462 if (!mod)
2463 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2464 else
2465 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2466 return ks != NULL && ks->value == value;
2467 }
2468
2469 /* As per nm */
2470 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2471 {
2472 const Elf_Shdr *sechdrs = info->sechdrs;
2473
2474 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2475 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2476 return 'v';
2477 else
2478 return 'w';
2479 }
2480 if (sym->st_shndx == SHN_UNDEF)
2481 return 'U';
2482 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2483 return 'a';
2484 if (sym->st_shndx >= SHN_LORESERVE)
2485 return '?';
2486 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2487 return 't';
2488 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2489 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2490 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2491 return 'r';
2492 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2493 return 'g';
2494 else
2495 return 'd';
2496 }
2497 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2498 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2499 return 's';
2500 else
2501 return 'b';
2502 }
2503 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2504 ".debug")) {
2505 return 'n';
2506 }
2507 return '?';
2508 }
2509
2510 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2511 unsigned int shnum, unsigned int pcpundx)
2512 {
2513 const Elf_Shdr *sec;
2514
2515 if (src->st_shndx == SHN_UNDEF
2516 || src->st_shndx >= shnum
2517 || !src->st_name)
2518 return false;
2519
2520 #ifdef CONFIG_KALLSYMS_ALL
2521 if (src->st_shndx == pcpundx)
2522 return true;
2523 #endif
2524
2525 sec = sechdrs + src->st_shndx;
2526 if (!(sec->sh_flags & SHF_ALLOC)
2527 #ifndef CONFIG_KALLSYMS_ALL
2528 || !(sec->sh_flags & SHF_EXECINSTR)
2529 #endif
2530 || (sec->sh_entsize & INIT_OFFSET_MASK))
2531 return false;
2532
2533 return true;
2534 }
2535
2536 /*
2537 * We only allocate and copy the strings needed by the parts of symtab
2538 * we keep. This is simple, but has the effect of making multiple
2539 * copies of duplicates. We could be more sophisticated, see
2540 * linux-kernel thread starting with
2541 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2542 */
2543 static void layout_symtab(struct module *mod, struct load_info *info)
2544 {
2545 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2546 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2547 const Elf_Sym *src;
2548 unsigned int i, nsrc, ndst, strtab_size = 0;
2549
2550 /* Put symbol section at end of init part of module. */
2551 symsect->sh_flags |= SHF_ALLOC;
2552 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2553 info->index.sym) | INIT_OFFSET_MASK;
2554 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2555
2556 src = (void *)info->hdr + symsect->sh_offset;
2557 nsrc = symsect->sh_size / sizeof(*src);
2558
2559 /* Compute total space required for the core symbols' strtab. */
2560 for (ndst = i = 0; i < nsrc; i++) {
2561 if (i == 0 || is_livepatch_module(mod) ||
2562 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2563 info->index.pcpu)) {
2564 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2565 ndst++;
2566 }
2567 }
2568
2569 /* Append room for core symbols at end of core part. */
2570 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2571 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2572 mod->core_layout.size += strtab_size;
2573 mod->core_layout.size = debug_align(mod->core_layout.size);
2574
2575 /* Put string table section at end of init part of module. */
2576 strsect->sh_flags |= SHF_ALLOC;
2577 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2578 info->index.str) | INIT_OFFSET_MASK;
2579 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2580
2581 /* We'll tack temporary mod_kallsyms on the end. */
2582 mod->init_layout.size = ALIGN(mod->init_layout.size,
2583 __alignof__(struct mod_kallsyms));
2584 info->mod_kallsyms_init_off = mod->init_layout.size;
2585 mod->init_layout.size += sizeof(struct mod_kallsyms);
2586 mod->init_layout.size = debug_align(mod->init_layout.size);
2587 }
2588
2589 /*
2590 * We use the full symtab and strtab which layout_symtab arranged to
2591 * be appended to the init section. Later we switch to the cut-down
2592 * core-only ones.
2593 */
2594 static void add_kallsyms(struct module *mod, const struct load_info *info)
2595 {
2596 unsigned int i, ndst;
2597 const Elf_Sym *src;
2598 Elf_Sym *dst;
2599 char *s;
2600 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2601
2602 /* Set up to point into init section. */
2603 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2604
2605 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2606 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2607 /* Make sure we get permanent strtab: don't use info->strtab. */
2608 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2609
2610 /* Set types up while we still have access to sections. */
2611 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2612 mod->kallsyms->symtab[i].st_info
2613 = elf_type(&mod->kallsyms->symtab[i], info);
2614
2615 /* Now populate the cut down core kallsyms for after init. */
2616 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2617 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2618 src = mod->kallsyms->symtab;
2619 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2620 if (i == 0 || is_livepatch_module(mod) ||
2621 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2622 info->index.pcpu)) {
2623 dst[ndst] = src[i];
2624 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2625 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2626 KSYM_NAME_LEN) + 1;
2627 }
2628 }
2629 mod->core_kallsyms.num_symtab = ndst;
2630 }
2631 #else
2632 static inline void layout_symtab(struct module *mod, struct load_info *info)
2633 {
2634 }
2635
2636 static void add_kallsyms(struct module *mod, const struct load_info *info)
2637 {
2638 }
2639 #endif /* CONFIG_KALLSYMS */
2640
2641 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2642 {
2643 if (!debug)
2644 return;
2645 #ifdef CONFIG_DYNAMIC_DEBUG
2646 if (ddebug_add_module(debug, num, debug->modname))
2647 pr_err("dynamic debug error adding module: %s\n",
2648 debug->modname);
2649 #endif
2650 }
2651
2652 static void dynamic_debug_remove(struct _ddebug *debug)
2653 {
2654 if (debug)
2655 ddebug_remove_module(debug->modname);
2656 }
2657
2658 void * __weak module_alloc(unsigned long size)
2659 {
2660 return vmalloc_exec(size);
2661 }
2662
2663 #ifdef CONFIG_DEBUG_KMEMLEAK
2664 static void kmemleak_load_module(const struct module *mod,
2665 const struct load_info *info)
2666 {
2667 unsigned int i;
2668
2669 /* only scan the sections containing data */
2670 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2671
2672 for (i = 1; i < info->hdr->e_shnum; i++) {
2673 /* Scan all writable sections that's not executable */
2674 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2675 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2676 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2677 continue;
2678
2679 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2680 info->sechdrs[i].sh_size, GFP_KERNEL);
2681 }
2682 }
2683 #else
2684 static inline void kmemleak_load_module(const struct module *mod,
2685 const struct load_info *info)
2686 {
2687 }
2688 #endif
2689
2690 #ifdef CONFIG_MODULE_SIG
2691 static int module_sig_check(struct load_info *info)
2692 {
2693 int err = -ENOKEY;
2694 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2695 const void *mod = info->hdr;
2696
2697 if (info->len > markerlen &&
2698 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2699 /* We truncate the module to discard the signature */
2700 info->len -= markerlen;
2701 err = mod_verify_sig(mod, &info->len);
2702 }
2703
2704 if (!err) {
2705 info->sig_ok = true;
2706 return 0;
2707 }
2708
2709 /* Not having a signature is only an error if we're strict. */
2710 if (err == -ENOKEY && !sig_enforce)
2711 err = 0;
2712
2713 return err;
2714 }
2715 #else /* !CONFIG_MODULE_SIG */
2716 static int module_sig_check(struct load_info *info)
2717 {
2718 return 0;
2719 }
2720 #endif /* !CONFIG_MODULE_SIG */
2721
2722 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2723 static int elf_header_check(struct load_info *info)
2724 {
2725 if (info->len < sizeof(*(info->hdr)))
2726 return -ENOEXEC;
2727
2728 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2729 || info->hdr->e_type != ET_REL
2730 || !elf_check_arch(info->hdr)
2731 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2732 return -ENOEXEC;
2733
2734 if (info->hdr->e_shoff >= info->len
2735 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2736 info->len - info->hdr->e_shoff))
2737 return -ENOEXEC;
2738
2739 return 0;
2740 }
2741
2742 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2743
2744 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2745 {
2746 do {
2747 unsigned long n = min(len, COPY_CHUNK_SIZE);
2748
2749 if (copy_from_user(dst, usrc, n) != 0)
2750 return -EFAULT;
2751 cond_resched();
2752 dst += n;
2753 usrc += n;
2754 len -= n;
2755 } while (len);
2756 return 0;
2757 }
2758
2759 #ifdef CONFIG_LIVEPATCH
2760 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2761 {
2762 mod->klp = get_modinfo(info, "livepatch") ? true : false;
2763
2764 return 0;
2765 }
2766 #else /* !CONFIG_LIVEPATCH */
2767 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2768 {
2769 if (get_modinfo(info, "livepatch")) {
2770 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2771 mod->name);
2772 return -ENOEXEC;
2773 }
2774
2775 return 0;
2776 }
2777 #endif /* CONFIG_LIVEPATCH */
2778
2779 /* Sets info->hdr and info->len. */
2780 static int copy_module_from_user(const void __user *umod, unsigned long len,
2781 struct load_info *info)
2782 {
2783 int err;
2784
2785 info->len = len;
2786 if (info->len < sizeof(*(info->hdr)))
2787 return -ENOEXEC;
2788
2789 err = security_kernel_read_file(NULL, READING_MODULE);
2790 if (err)
2791 return err;
2792
2793 /* Suck in entire file: we'll want most of it. */
2794 info->hdr = __vmalloc(info->len,
2795 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2796 if (!info->hdr)
2797 return -ENOMEM;
2798
2799 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2800 vfree(info->hdr);
2801 return -EFAULT;
2802 }
2803
2804 return 0;
2805 }
2806
2807 static void free_copy(struct load_info *info)
2808 {
2809 vfree(info->hdr);
2810 }
2811
2812 static int rewrite_section_headers(struct load_info *info, int flags)
2813 {
2814 unsigned int i;
2815
2816 /* This should always be true, but let's be sure. */
2817 info->sechdrs[0].sh_addr = 0;
2818
2819 for (i = 1; i < info->hdr->e_shnum; i++) {
2820 Elf_Shdr *shdr = &info->sechdrs[i];
2821 if (shdr->sh_type != SHT_NOBITS
2822 && info->len < shdr->sh_offset + shdr->sh_size) {
2823 pr_err("Module len %lu truncated\n", info->len);
2824 return -ENOEXEC;
2825 }
2826
2827 /* Mark all sections sh_addr with their address in the
2828 temporary image. */
2829 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2830
2831 #ifndef CONFIG_MODULE_UNLOAD
2832 /* Don't load .exit sections */
2833 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2834 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2835 #endif
2836 }
2837
2838 /* Track but don't keep modinfo and version sections. */
2839 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2840 info->index.vers = 0; /* Pretend no __versions section! */
2841 else
2842 info->index.vers = find_sec(info, "__versions");
2843 info->index.info = find_sec(info, ".modinfo");
2844 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2845 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2846 return 0;
2847 }
2848
2849 /*
2850 * Set up our basic convenience variables (pointers to section headers,
2851 * search for module section index etc), and do some basic section
2852 * verification.
2853 *
2854 * Return the temporary module pointer (we'll replace it with the final
2855 * one when we move the module sections around).
2856 */
2857 static struct module *setup_load_info(struct load_info *info, int flags)
2858 {
2859 unsigned int i;
2860 int err;
2861 struct module *mod;
2862
2863 /* Set up the convenience variables */
2864 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2865 info->secstrings = (void *)info->hdr
2866 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2867
2868 err = rewrite_section_headers(info, flags);
2869 if (err)
2870 return ERR_PTR(err);
2871
2872 /* Find internal symbols and strings. */
2873 for (i = 1; i < info->hdr->e_shnum; i++) {
2874 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2875 info->index.sym = i;
2876 info->index.str = info->sechdrs[i].sh_link;
2877 info->strtab = (char *)info->hdr
2878 + info->sechdrs[info->index.str].sh_offset;
2879 break;
2880 }
2881 }
2882
2883 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2884 if (!info->index.mod) {
2885 pr_warn("No module found in object\n");
2886 return ERR_PTR(-ENOEXEC);
2887 }
2888 /* This is temporary: point mod into copy of data. */
2889 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2890
2891 if (info->index.sym == 0) {
2892 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2893 return ERR_PTR(-ENOEXEC);
2894 }
2895
2896 info->index.pcpu = find_pcpusec(info);
2897
2898 /* Check module struct version now, before we try to use module. */
2899 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2900 return ERR_PTR(-ENOEXEC);
2901
2902 return mod;
2903 }
2904
2905 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2906 {
2907 const char *modmagic = get_modinfo(info, "vermagic");
2908 int err;
2909
2910 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2911 modmagic = NULL;
2912
2913 /* This is allowed: modprobe --force will invalidate it. */
2914 if (!modmagic) {
2915 err = try_to_force_load(mod, "bad vermagic");
2916 if (err)
2917 return err;
2918 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2919 pr_err("%s: version magic '%s' should be '%s'\n",
2920 mod->name, modmagic, vermagic);
2921 return -ENOEXEC;
2922 }
2923
2924 if (!get_modinfo(info, "intree"))
2925 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2926
2927 if (get_modinfo(info, "staging")) {
2928 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2929 pr_warn("%s: module is from the staging directory, the quality "
2930 "is unknown, you have been warned.\n", mod->name);
2931 }
2932
2933 err = find_livepatch_modinfo(mod, info);
2934 if (err)
2935 return err;
2936
2937 /* Set up license info based on the info section */
2938 set_license(mod, get_modinfo(info, "license"));
2939
2940 return 0;
2941 }
2942
2943 static int find_module_sections(struct module *mod, struct load_info *info)
2944 {
2945 mod->kp = section_objs(info, "__param",
2946 sizeof(*mod->kp), &mod->num_kp);
2947 mod->syms = section_objs(info, "__ksymtab",
2948 sizeof(*mod->syms), &mod->num_syms);
2949 mod->crcs = section_addr(info, "__kcrctab");
2950 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2951 sizeof(*mod->gpl_syms),
2952 &mod->num_gpl_syms);
2953 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2954 mod->gpl_future_syms = section_objs(info,
2955 "__ksymtab_gpl_future",
2956 sizeof(*mod->gpl_future_syms),
2957 &mod->num_gpl_future_syms);
2958 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2959
2960 #ifdef CONFIG_UNUSED_SYMBOLS
2961 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2962 sizeof(*mod->unused_syms),
2963 &mod->num_unused_syms);
2964 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2965 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2966 sizeof(*mod->unused_gpl_syms),
2967 &mod->num_unused_gpl_syms);
2968 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2969 #endif
2970 #ifdef CONFIG_CONSTRUCTORS
2971 mod->ctors = section_objs(info, ".ctors",
2972 sizeof(*mod->ctors), &mod->num_ctors);
2973 if (!mod->ctors)
2974 mod->ctors = section_objs(info, ".init_array",
2975 sizeof(*mod->ctors), &mod->num_ctors);
2976 else if (find_sec(info, ".init_array")) {
2977 /*
2978 * This shouldn't happen with same compiler and binutils
2979 * building all parts of the module.
2980 */
2981 pr_warn("%s: has both .ctors and .init_array.\n",
2982 mod->name);
2983 return -EINVAL;
2984 }
2985 #endif
2986
2987 #ifdef CONFIG_TRACEPOINTS
2988 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2989 sizeof(*mod->tracepoints_ptrs),
2990 &mod->num_tracepoints);
2991 #endif
2992 #ifdef HAVE_JUMP_LABEL
2993 mod->jump_entries = section_objs(info, "__jump_table",
2994 sizeof(*mod->jump_entries),
2995 &mod->num_jump_entries);
2996 #endif
2997 #ifdef CONFIG_EVENT_TRACING
2998 mod->trace_events = section_objs(info, "_ftrace_events",
2999 sizeof(*mod->trace_events),
3000 &mod->num_trace_events);
3001 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3002 sizeof(*mod->trace_enums),
3003 &mod->num_trace_enums);
3004 #endif
3005 #ifdef CONFIG_TRACING
3006 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3007 sizeof(*mod->trace_bprintk_fmt_start),
3008 &mod->num_trace_bprintk_fmt);
3009 #endif
3010 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3011 /* sechdrs[0].sh_size is always zero */
3012 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3013 sizeof(*mod->ftrace_callsites),
3014 &mod->num_ftrace_callsites);
3015 #endif
3016
3017 mod->extable = section_objs(info, "__ex_table",
3018 sizeof(*mod->extable), &mod->num_exentries);
3019
3020 if (section_addr(info, "__obsparm"))
3021 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3022
3023 info->debug = section_objs(info, "__verbose",
3024 sizeof(*info->debug), &info->num_debug);
3025
3026 return 0;
3027 }
3028
3029 static int move_module(struct module *mod, struct load_info *info)
3030 {
3031 int i;
3032 void *ptr;
3033
3034 /* Do the allocs. */
3035 ptr = module_alloc(mod->core_layout.size);
3036 /*
3037 * The pointer to this block is stored in the module structure
3038 * which is inside the block. Just mark it as not being a
3039 * leak.
3040 */
3041 kmemleak_not_leak(ptr);
3042 if (!ptr)
3043 return -ENOMEM;
3044
3045 memset(ptr, 0, mod->core_layout.size);
3046 mod->core_layout.base = ptr;
3047
3048 if (mod->init_layout.size) {
3049 ptr = module_alloc(mod->init_layout.size);
3050 /*
3051 * The pointer to this block is stored in the module structure
3052 * which is inside the block. This block doesn't need to be
3053 * scanned as it contains data and code that will be freed
3054 * after the module is initialized.
3055 */
3056 kmemleak_ignore(ptr);
3057 if (!ptr) {
3058 module_memfree(mod->core_layout.base);
3059 return -ENOMEM;
3060 }
3061 memset(ptr, 0, mod->init_layout.size);
3062 mod->init_layout.base = ptr;
3063 } else
3064 mod->init_layout.base = NULL;
3065
3066 /* Transfer each section which specifies SHF_ALLOC */
3067 pr_debug("final section addresses:\n");
3068 for (i = 0; i < info->hdr->e_shnum; i++) {
3069 void *dest;
3070 Elf_Shdr *shdr = &info->sechdrs[i];
3071
3072 if (!(shdr->sh_flags & SHF_ALLOC))
3073 continue;
3074
3075 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3076 dest = mod->init_layout.base
3077 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3078 else
3079 dest = mod->core_layout.base + shdr->sh_entsize;
3080
3081 if (shdr->sh_type != SHT_NOBITS)
3082 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3083 /* Update sh_addr to point to copy in image. */
3084 shdr->sh_addr = (unsigned long)dest;
3085 pr_debug("\t0x%lx %s\n",
3086 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3087 }
3088
3089 return 0;
3090 }
3091
3092 static int check_module_license_and_versions(struct module *mod)
3093 {
3094 /*
3095 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3096 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3097 * using GPL-only symbols it needs.
3098 */
3099 if (strcmp(mod->name, "ndiswrapper") == 0)
3100 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3101
3102 /* driverloader was caught wrongly pretending to be under GPL */
3103 if (strcmp(mod->name, "driverloader") == 0)
3104 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3105 LOCKDEP_NOW_UNRELIABLE);
3106
3107 /* lve claims to be GPL but upstream won't provide source */
3108 if (strcmp(mod->name, "lve") == 0)
3109 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3110 LOCKDEP_NOW_UNRELIABLE);
3111
3112 #ifdef CONFIG_MODVERSIONS
3113 if ((mod->num_syms && !mod->crcs)
3114 || (mod->num_gpl_syms && !mod->gpl_crcs)
3115 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3116 #ifdef CONFIG_UNUSED_SYMBOLS
3117 || (mod->num_unused_syms && !mod->unused_crcs)
3118 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3119 #endif
3120 ) {
3121 return try_to_force_load(mod,
3122 "no versions for exported symbols");
3123 }
3124 #endif
3125 return 0;
3126 }
3127
3128 static void flush_module_icache(const struct module *mod)
3129 {
3130 mm_segment_t old_fs;
3131
3132 /* flush the icache in correct context */
3133 old_fs = get_fs();
3134 set_fs(KERNEL_DS);
3135
3136 /*
3137 * Flush the instruction cache, since we've played with text.
3138 * Do it before processing of module parameters, so the module
3139 * can provide parameter accessor functions of its own.
3140 */
3141 if (mod->init_layout.base)
3142 flush_icache_range((unsigned long)mod->init_layout.base,
3143 (unsigned long)mod->init_layout.base
3144 + mod->init_layout.size);
3145 flush_icache_range((unsigned long)mod->core_layout.base,
3146 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3147
3148 set_fs(old_fs);
3149 }
3150
3151 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3152 Elf_Shdr *sechdrs,
3153 char *secstrings,
3154 struct module *mod)
3155 {
3156 return 0;
3157 }
3158
3159 static struct module *layout_and_allocate(struct load_info *info, int flags)
3160 {
3161 /* Module within temporary copy. */
3162 struct module *mod;
3163 int err;
3164
3165 mod = setup_load_info(info, flags);
3166 if (IS_ERR(mod))
3167 return mod;
3168
3169 err = check_modinfo(mod, info, flags);
3170 if (err)
3171 return ERR_PTR(err);
3172
3173 /* Allow arches to frob section contents and sizes. */
3174 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3175 info->secstrings, mod);
3176 if (err < 0)
3177 return ERR_PTR(err);
3178
3179 /* We will do a special allocation for per-cpu sections later. */
3180 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3181
3182 /* Determine total sizes, and put offsets in sh_entsize. For now
3183 this is done generically; there doesn't appear to be any
3184 special cases for the architectures. */
3185 layout_sections(mod, info);
3186 layout_symtab(mod, info);
3187
3188 /* Allocate and move to the final place */
3189 err = move_module(mod, info);
3190 if (err)
3191 return ERR_PTR(err);
3192
3193 /* Module has been copied to its final place now: return it. */
3194 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3195 kmemleak_load_module(mod, info);
3196 return mod;
3197 }
3198
3199 /* mod is no longer valid after this! */
3200 static void module_deallocate(struct module *mod, struct load_info *info)
3201 {
3202 percpu_modfree(mod);
3203 module_arch_freeing_init(mod);
3204 module_memfree(mod->init_layout.base);
3205 module_memfree(mod->core_layout.base);
3206 }
3207
3208 int __weak module_finalize(const Elf_Ehdr *hdr,
3209 const Elf_Shdr *sechdrs,
3210 struct module *me)
3211 {
3212 return 0;
3213 }
3214
3215 static int post_relocation(struct module *mod, const struct load_info *info)
3216 {
3217 /* Sort exception table now relocations are done. */
3218 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3219
3220 /* Copy relocated percpu area over. */
3221 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3222 info->sechdrs[info->index.pcpu].sh_size);
3223
3224 /* Setup kallsyms-specific fields. */
3225 add_kallsyms(mod, info);
3226
3227 /* Arch-specific module finalizing. */
3228 return module_finalize(info->hdr, info->sechdrs, mod);
3229 }
3230
3231 /* Is this module of this name done loading? No locks held. */
3232 static bool finished_loading(const char *name)
3233 {
3234 struct module *mod;
3235 bool ret;
3236
3237 /*
3238 * The module_mutex should not be a heavily contended lock;
3239 * if we get the occasional sleep here, we'll go an extra iteration
3240 * in the wait_event_interruptible(), which is harmless.
3241 */
3242 sched_annotate_sleep();
3243 mutex_lock(&module_mutex);
3244 mod = find_module_all(name, strlen(name), true);
3245 ret = !mod || mod->state == MODULE_STATE_LIVE
3246 || mod->state == MODULE_STATE_GOING;
3247 mutex_unlock(&module_mutex);
3248
3249 return ret;
3250 }
3251
3252 /* Call module constructors. */
3253 static void do_mod_ctors(struct module *mod)
3254 {
3255 #ifdef CONFIG_CONSTRUCTORS
3256 unsigned long i;
3257
3258 for (i = 0; i < mod->num_ctors; i++)
3259 mod->ctors[i]();
3260 #endif
3261 }
3262
3263 /* For freeing module_init on success, in case kallsyms traversing */
3264 struct mod_initfree {
3265 struct rcu_head rcu;
3266 void *module_init;
3267 };
3268
3269 static void do_free_init(struct rcu_head *head)
3270 {
3271 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3272 module_memfree(m->module_init);
3273 kfree(m);
3274 }
3275
3276 /*
3277 * This is where the real work happens.
3278 *
3279 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3280 * helper command 'lx-symbols'.
3281 */
3282 static noinline int do_init_module(struct module *mod)
3283 {
3284 int ret = 0;
3285 struct mod_initfree *freeinit;
3286
3287 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3288 if (!freeinit) {
3289 ret = -ENOMEM;
3290 goto fail;
3291 }
3292 freeinit->module_init = mod->init_layout.base;
3293
3294 /*
3295 * We want to find out whether @mod uses async during init. Clear
3296 * PF_USED_ASYNC. async_schedule*() will set it.
3297 */
3298 current->flags &= ~PF_USED_ASYNC;
3299
3300 do_mod_ctors(mod);
3301 /* Start the module */
3302 if (mod->init != NULL)
3303 ret = do_one_initcall(mod->init);
3304 if (ret < 0) {
3305 goto fail_free_freeinit;
3306 }
3307 if (ret > 0) {
3308 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3309 "follow 0/-E convention\n"
3310 "%s: loading module anyway...\n",
3311 __func__, mod->name, ret, __func__);
3312 dump_stack();
3313 }
3314
3315 /* Now it's a first class citizen! */
3316 mod->state = MODULE_STATE_LIVE;
3317 blocking_notifier_call_chain(&module_notify_list,
3318 MODULE_STATE_LIVE, mod);
3319
3320 /*
3321 * We need to finish all async code before the module init sequence
3322 * is done. This has potential to deadlock. For example, a newly
3323 * detected block device can trigger request_module() of the
3324 * default iosched from async probing task. Once userland helper
3325 * reaches here, async_synchronize_full() will wait on the async
3326 * task waiting on request_module() and deadlock.
3327 *
3328 * This deadlock is avoided by perfomring async_synchronize_full()
3329 * iff module init queued any async jobs. This isn't a full
3330 * solution as it will deadlock the same if module loading from
3331 * async jobs nests more than once; however, due to the various
3332 * constraints, this hack seems to be the best option for now.
3333 * Please refer to the following thread for details.
3334 *
3335 * http://thread.gmane.org/gmane.linux.kernel/1420814
3336 */
3337 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3338 async_synchronize_full();
3339
3340 mutex_lock(&module_mutex);
3341 /* Drop initial reference. */
3342 module_put(mod);
3343 trim_init_extable(mod);
3344 #ifdef CONFIG_KALLSYMS
3345 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3346 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3347 #endif
3348 mod_tree_remove_init(mod);
3349 disable_ro_nx(&mod->init_layout);
3350 module_arch_freeing_init(mod);
3351 mod->init_layout.base = NULL;
3352 mod->init_layout.size = 0;
3353 mod->init_layout.ro_size = 0;
3354 mod->init_layout.text_size = 0;
3355 /*
3356 * We want to free module_init, but be aware that kallsyms may be
3357 * walking this with preempt disabled. In all the failure paths, we
3358 * call synchronize_sched(), but we don't want to slow down the success
3359 * path, so use actual RCU here.
3360 */
3361 call_rcu_sched(&freeinit->rcu, do_free_init);
3362 mutex_unlock(&module_mutex);
3363 wake_up_all(&module_wq);
3364
3365 return 0;
3366
3367 fail_free_freeinit:
3368 kfree(freeinit);
3369 fail:
3370 /* Try to protect us from buggy refcounters. */
3371 mod->state = MODULE_STATE_GOING;
3372 synchronize_sched();
3373 module_put(mod);
3374 blocking_notifier_call_chain(&module_notify_list,
3375 MODULE_STATE_GOING, mod);
3376 klp_module_going(mod);
3377 ftrace_release_mod(mod);
3378 free_module(mod);
3379 wake_up_all(&module_wq);
3380 return ret;
3381 }
3382
3383 static int may_init_module(void)
3384 {
3385 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3386 return -EPERM;
3387
3388 return 0;
3389 }
3390
3391 /*
3392 * We try to place it in the list now to make sure it's unique before
3393 * we dedicate too many resources. In particular, temporary percpu
3394 * memory exhaustion.
3395 */
3396 static int add_unformed_module(struct module *mod)
3397 {
3398 int err;
3399 struct module *old;
3400
3401 mod->state = MODULE_STATE_UNFORMED;
3402
3403 again:
3404 mutex_lock(&module_mutex);
3405 old = find_module_all(mod->name, strlen(mod->name), true);
3406 if (old != NULL) {
3407 if (old->state == MODULE_STATE_COMING
3408 || old->state == MODULE_STATE_UNFORMED) {
3409 /* Wait in case it fails to load. */
3410 mutex_unlock(&module_mutex);
3411 err = wait_event_interruptible(module_wq,
3412 finished_loading(mod->name));
3413 if (err)
3414 goto out_unlocked;
3415 goto again;
3416 }
3417 err = -EEXIST;
3418 goto out;
3419 }
3420 mod_update_bounds(mod);
3421 list_add_rcu(&mod->list, &modules);
3422 mod_tree_insert(mod);
3423 err = 0;
3424
3425 out:
3426 mutex_unlock(&module_mutex);
3427 out_unlocked:
3428 return err;
3429 }
3430
3431 static int complete_formation(struct module *mod, struct load_info *info)
3432 {
3433 int err;
3434
3435 mutex_lock(&module_mutex);
3436
3437 /* Find duplicate symbols (must be called under lock). */
3438 err = verify_export_symbols(mod);
3439 if (err < 0)
3440 goto out;
3441
3442 /* This relies on module_mutex for list integrity. */
3443 module_bug_finalize(info->hdr, info->sechdrs, mod);
3444
3445 /* Set RO and NX regions */
3446 module_enable_ro(mod);
3447 module_enable_nx(mod);
3448
3449 /* Mark state as coming so strong_try_module_get() ignores us,
3450 * but kallsyms etc. can see us. */
3451 mod->state = MODULE_STATE_COMING;
3452 mutex_unlock(&module_mutex);
3453
3454 return 0;
3455
3456 out:
3457 mutex_unlock(&module_mutex);
3458 return err;
3459 }
3460
3461 static int prepare_coming_module(struct module *mod)
3462 {
3463 int err;
3464
3465 ftrace_module_enable(mod);
3466 err = klp_module_coming(mod);
3467 if (err)
3468 return err;
3469
3470 blocking_notifier_call_chain(&module_notify_list,
3471 MODULE_STATE_COMING, mod);
3472 return 0;
3473 }
3474
3475 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3476 void *arg)
3477 {
3478 struct module *mod = arg;
3479 int ret;
3480
3481 if (strcmp(param, "async_probe") == 0) {
3482 mod->async_probe_requested = true;
3483 return 0;
3484 }
3485
3486 /* Check for magic 'dyndbg' arg */
3487 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3488 if (ret != 0)
3489 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3490 return 0;
3491 }
3492
3493 /* Allocate and load the module: note that size of section 0 is always
3494 zero, and we rely on this for optional sections. */
3495 static int load_module(struct load_info *info, const char __user *uargs,
3496 int flags)
3497 {
3498 struct module *mod;
3499 long err;
3500 char *after_dashes;
3501
3502 err = module_sig_check(info);
3503 if (err)
3504 goto free_copy;
3505
3506 err = elf_header_check(info);
3507 if (err)
3508 goto free_copy;
3509
3510 /* Figure out module layout, and allocate all the memory. */
3511 mod = layout_and_allocate(info, flags);
3512 if (IS_ERR(mod)) {
3513 err = PTR_ERR(mod);
3514 goto free_copy;
3515 }
3516
3517 /* Reserve our place in the list. */
3518 err = add_unformed_module(mod);
3519 if (err)
3520 goto free_module;
3521
3522 #ifdef CONFIG_MODULE_SIG
3523 mod->sig_ok = info->sig_ok;
3524 if (!mod->sig_ok) {
3525 pr_notice_once("%s: module verification failed: signature "
3526 "and/or required key missing - tainting "
3527 "kernel\n", mod->name);
3528 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3529 }
3530 #endif
3531
3532 /* To avoid stressing percpu allocator, do this once we're unique. */
3533 err = percpu_modalloc(mod, info);
3534 if (err)
3535 goto unlink_mod;
3536
3537 /* Now module is in final location, initialize linked lists, etc. */
3538 err = module_unload_init(mod);
3539 if (err)
3540 goto unlink_mod;
3541
3542 init_param_lock(mod);
3543
3544 /* Now we've got everything in the final locations, we can
3545 * find optional sections. */
3546 err = find_module_sections(mod, info);
3547 if (err)
3548 goto free_unload;
3549
3550 err = check_module_license_and_versions(mod);
3551 if (err)
3552 goto free_unload;
3553
3554 /* Set up MODINFO_ATTR fields */
3555 setup_modinfo(mod, info);
3556
3557 /* Fix up syms, so that st_value is a pointer to location. */
3558 err = simplify_symbols(mod, info);
3559 if (err < 0)
3560 goto free_modinfo;
3561
3562 err = apply_relocations(mod, info);
3563 if (err < 0)
3564 goto free_modinfo;
3565
3566 err = post_relocation(mod, info);
3567 if (err < 0)
3568 goto free_modinfo;
3569
3570 flush_module_icache(mod);
3571
3572 /* Now copy in args */
3573 mod->args = strndup_user(uargs, ~0UL >> 1);
3574 if (IS_ERR(mod->args)) {
3575 err = PTR_ERR(mod->args);
3576 goto free_arch_cleanup;
3577 }
3578
3579 dynamic_debug_setup(info->debug, info->num_debug);
3580
3581 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3582 ftrace_module_init(mod);
3583
3584 /* Finally it's fully formed, ready to start executing. */
3585 err = complete_formation(mod, info);
3586 if (err)
3587 goto ddebug_cleanup;
3588
3589 err = prepare_coming_module(mod);
3590 if (err)
3591 goto bug_cleanup;
3592
3593 /* Module is ready to execute: parsing args may do that. */
3594 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3595 -32768, 32767, mod,
3596 unknown_module_param_cb);
3597 if (IS_ERR(after_dashes)) {
3598 err = PTR_ERR(after_dashes);
3599 goto coming_cleanup;
3600 } else if (after_dashes) {
3601 pr_warn("%s: parameters '%s' after `--' ignored\n",
3602 mod->name, after_dashes);
3603 }
3604
3605 /* Link in to syfs. */
3606 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3607 if (err < 0)
3608 goto coming_cleanup;
3609
3610 if (is_livepatch_module(mod)) {
3611 err = copy_module_elf(mod, info);
3612 if (err < 0)
3613 goto sysfs_cleanup;
3614 }
3615
3616 /* Get rid of temporary copy. */
3617 free_copy(info);
3618
3619 /* Done! */
3620 trace_module_load(mod);
3621
3622 return do_init_module(mod);
3623
3624 sysfs_cleanup:
3625 mod_sysfs_teardown(mod);
3626 coming_cleanup:
3627 blocking_notifier_call_chain(&module_notify_list,
3628 MODULE_STATE_GOING, mod);
3629 klp_module_going(mod);
3630 bug_cleanup:
3631 /* module_bug_cleanup needs module_mutex protection */
3632 mutex_lock(&module_mutex);
3633 module_bug_cleanup(mod);
3634 mutex_unlock(&module_mutex);
3635
3636 /* we can't deallocate the module until we clear memory protection */
3637 module_disable_ro(mod);
3638 module_disable_nx(mod);
3639
3640 ddebug_cleanup:
3641 dynamic_debug_remove(info->debug);
3642 synchronize_sched();
3643 kfree(mod->args);
3644 free_arch_cleanup:
3645 module_arch_cleanup(mod);
3646 free_modinfo:
3647 free_modinfo(mod);
3648 free_unload:
3649 module_unload_free(mod);
3650 unlink_mod:
3651 mutex_lock(&module_mutex);
3652 /* Unlink carefully: kallsyms could be walking list. */
3653 list_del_rcu(&mod->list);
3654 mod_tree_remove(mod);
3655 wake_up_all(&module_wq);
3656 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3657 synchronize_sched();
3658 mutex_unlock(&module_mutex);
3659 free_module:
3660 /*
3661 * Ftrace needs to clean up what it initialized.
3662 * This does nothing if ftrace_module_init() wasn't called,
3663 * but it must be called outside of module_mutex.
3664 */
3665 ftrace_release_mod(mod);
3666 /* Free lock-classes; relies on the preceding sync_rcu() */
3667 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3668
3669 module_deallocate(mod, info);
3670 free_copy:
3671 free_copy(info);
3672 return err;
3673 }
3674
3675 SYSCALL_DEFINE3(init_module, void __user *, umod,
3676 unsigned long, len, const char __user *, uargs)
3677 {
3678 int err;
3679 struct load_info info = { };
3680
3681 err = may_init_module();
3682 if (err)
3683 return err;
3684
3685 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3686 umod, len, uargs);
3687
3688 err = copy_module_from_user(umod, len, &info);
3689 if (err)
3690 return err;
3691
3692 return load_module(&info, uargs, 0);
3693 }
3694
3695 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3696 {
3697 struct load_info info = { };
3698 loff_t size;
3699 void *hdr;
3700 int err;
3701
3702 err = may_init_module();
3703 if (err)
3704 return err;
3705
3706 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3707
3708 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3709 |MODULE_INIT_IGNORE_VERMAGIC))
3710 return -EINVAL;
3711
3712 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3713 READING_MODULE);
3714 if (err)
3715 return err;
3716 info.hdr = hdr;
3717 info.len = size;
3718
3719 return load_module(&info, uargs, flags);
3720 }
3721
3722 static inline int within(unsigned long addr, void *start, unsigned long size)
3723 {
3724 return ((void *)addr >= start && (void *)addr < start + size);
3725 }
3726
3727 #ifdef CONFIG_KALLSYMS
3728 /*
3729 * This ignores the intensely annoying "mapping symbols" found
3730 * in ARM ELF files: $a, $t and $d.
3731 */
3732 static inline int is_arm_mapping_symbol(const char *str)
3733 {
3734 if (str[0] == '.' && str[1] == 'L')
3735 return true;
3736 return str[0] == '$' && strchr("axtd", str[1])
3737 && (str[2] == '\0' || str[2] == '.');
3738 }
3739
3740 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3741 {
3742 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3743 }
3744
3745 static const char *get_ksymbol(struct module *mod,
3746 unsigned long addr,
3747 unsigned long *size,
3748 unsigned long *offset)
3749 {
3750 unsigned int i, best = 0;
3751 unsigned long nextval;
3752 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3753
3754 /* At worse, next value is at end of module */
3755 if (within_module_init(addr, mod))
3756 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3757 else
3758 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3759
3760 /* Scan for closest preceding symbol, and next symbol. (ELF
3761 starts real symbols at 1). */
3762 for (i = 1; i < kallsyms->num_symtab; i++) {
3763 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3764 continue;
3765
3766 /* We ignore unnamed symbols: they're uninformative
3767 * and inserted at a whim. */
3768 if (*symname(kallsyms, i) == '\0'
3769 || is_arm_mapping_symbol(symname(kallsyms, i)))
3770 continue;
3771
3772 if (kallsyms->symtab[i].st_value <= addr
3773 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3774 best = i;
3775 if (kallsyms->symtab[i].st_value > addr
3776 && kallsyms->symtab[i].st_value < nextval)
3777 nextval = kallsyms->symtab[i].st_value;
3778 }
3779
3780 if (!best)
3781 return NULL;
3782
3783 if (size)
3784 *size = nextval - kallsyms->symtab[best].st_value;
3785 if (offset)
3786 *offset = addr - kallsyms->symtab[best].st_value;
3787 return symname(kallsyms, best);
3788 }
3789
3790 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3791 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3792 const char *module_address_lookup(unsigned long addr,
3793 unsigned long *size,
3794 unsigned long *offset,
3795 char **modname,
3796 char *namebuf)
3797 {
3798 const char *ret = NULL;
3799 struct module *mod;
3800
3801 preempt_disable();
3802 mod = __module_address(addr);
3803 if (mod) {
3804 if (modname)
3805 *modname = mod->name;
3806 ret = get_ksymbol(mod, addr, size, offset);
3807 }
3808 /* Make a copy in here where it's safe */
3809 if (ret) {
3810 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3811 ret = namebuf;
3812 }
3813 preempt_enable();
3814
3815 return ret;
3816 }
3817
3818 int lookup_module_symbol_name(unsigned long addr, char *symname)
3819 {
3820 struct module *mod;
3821
3822 preempt_disable();
3823 list_for_each_entry_rcu(mod, &modules, list) {
3824 if (mod->state == MODULE_STATE_UNFORMED)
3825 continue;
3826 if (within_module(addr, mod)) {
3827 const char *sym;
3828
3829 sym = get_ksymbol(mod, addr, NULL, NULL);
3830 if (!sym)
3831 goto out;
3832 strlcpy(symname, sym, KSYM_NAME_LEN);
3833 preempt_enable();
3834 return 0;
3835 }
3836 }
3837 out:
3838 preempt_enable();
3839 return -ERANGE;
3840 }
3841
3842 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3843 unsigned long *offset, char *modname, char *name)
3844 {
3845 struct module *mod;
3846
3847 preempt_disable();
3848 list_for_each_entry_rcu(mod, &modules, list) {
3849 if (mod->state == MODULE_STATE_UNFORMED)
3850 continue;
3851 if (within_module(addr, mod)) {
3852 const char *sym;
3853
3854 sym = get_ksymbol(mod, addr, size, offset);
3855 if (!sym)
3856 goto out;
3857 if (modname)
3858 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3859 if (name)
3860 strlcpy(name, sym, KSYM_NAME_LEN);
3861 preempt_enable();
3862 return 0;
3863 }
3864 }
3865 out:
3866 preempt_enable();
3867 return -ERANGE;
3868 }
3869
3870 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3871 char *name, char *module_name, int *exported)
3872 {
3873 struct module *mod;
3874
3875 preempt_disable();
3876 list_for_each_entry_rcu(mod, &modules, list) {
3877 struct mod_kallsyms *kallsyms;
3878
3879 if (mod->state == MODULE_STATE_UNFORMED)
3880 continue;
3881 kallsyms = rcu_dereference_sched(mod->kallsyms);
3882 if (symnum < kallsyms->num_symtab) {
3883 *value = kallsyms->symtab[symnum].st_value;
3884 *type = kallsyms->symtab[symnum].st_info;
3885 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3886 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3887 *exported = is_exported(name, *value, mod);
3888 preempt_enable();
3889 return 0;
3890 }
3891 symnum -= kallsyms->num_symtab;
3892 }
3893 preempt_enable();
3894 return -ERANGE;
3895 }
3896
3897 static unsigned long mod_find_symname(struct module *mod, const char *name)
3898 {
3899 unsigned int i;
3900 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3901
3902 for (i = 0; i < kallsyms->num_symtab; i++)
3903 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3904 kallsyms->symtab[i].st_info != 'U')
3905 return kallsyms->symtab[i].st_value;
3906 return 0;
3907 }
3908
3909 /* Look for this name: can be of form module:name. */
3910 unsigned long module_kallsyms_lookup_name(const char *name)
3911 {
3912 struct module *mod;
3913 char *colon;
3914 unsigned long ret = 0;
3915
3916 /* Don't lock: we're in enough trouble already. */
3917 preempt_disable();
3918 if ((colon = strchr(name, ':')) != NULL) {
3919 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3920 ret = mod_find_symname(mod, colon+1);
3921 } else {
3922 list_for_each_entry_rcu(mod, &modules, list) {
3923 if (mod->state == MODULE_STATE_UNFORMED)
3924 continue;
3925 if ((ret = mod_find_symname(mod, name)) != 0)
3926 break;
3927 }
3928 }
3929 preempt_enable();
3930 return ret;
3931 }
3932
3933 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3934 struct module *, unsigned long),
3935 void *data)
3936 {
3937 struct module *mod;
3938 unsigned int i;
3939 int ret;
3940
3941 module_assert_mutex();
3942
3943 list_for_each_entry(mod, &modules, list) {
3944 /* We hold module_mutex: no need for rcu_dereference_sched */
3945 struct mod_kallsyms *kallsyms = mod->kallsyms;
3946
3947 if (mod->state == MODULE_STATE_UNFORMED)
3948 continue;
3949 for (i = 0; i < kallsyms->num_symtab; i++) {
3950 ret = fn(data, symname(kallsyms, i),
3951 mod, kallsyms->symtab[i].st_value);
3952 if (ret != 0)
3953 return ret;
3954 }
3955 }
3956 return 0;
3957 }
3958 #endif /* CONFIG_KALLSYMS */
3959
3960 static char *module_flags(struct module *mod, char *buf)
3961 {
3962 int bx = 0;
3963
3964 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3965 if (mod->taints ||
3966 mod->state == MODULE_STATE_GOING ||
3967 mod->state == MODULE_STATE_COMING) {
3968 buf[bx++] = '(';
3969 bx += module_flags_taint(mod, buf + bx);
3970 /* Show a - for module-is-being-unloaded */
3971 if (mod->state == MODULE_STATE_GOING)
3972 buf[bx++] = '-';
3973 /* Show a + for module-is-being-loaded */
3974 if (mod->state == MODULE_STATE_COMING)
3975 buf[bx++] = '+';
3976 buf[bx++] = ')';
3977 }
3978 buf[bx] = '\0';
3979
3980 return buf;
3981 }
3982
3983 #ifdef CONFIG_PROC_FS
3984 /* Called by the /proc file system to return a list of modules. */
3985 static void *m_start(struct seq_file *m, loff_t *pos)
3986 {
3987 mutex_lock(&module_mutex);
3988 return seq_list_start(&modules, *pos);
3989 }
3990
3991 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3992 {
3993 return seq_list_next(p, &modules, pos);
3994 }
3995
3996 static void m_stop(struct seq_file *m, void *p)
3997 {
3998 mutex_unlock(&module_mutex);
3999 }
4000
4001 static int m_show(struct seq_file *m, void *p)
4002 {
4003 struct module *mod = list_entry(p, struct module, list);
4004 char buf[8];
4005
4006 /* We always ignore unformed modules. */
4007 if (mod->state == MODULE_STATE_UNFORMED)
4008 return 0;
4009
4010 seq_printf(m, "%s %u",
4011 mod->name, mod->init_layout.size + mod->core_layout.size);
4012 print_unload_info(m, mod);
4013
4014 /* Informative for users. */
4015 seq_printf(m, " %s",
4016 mod->state == MODULE_STATE_GOING ? "Unloading" :
4017 mod->state == MODULE_STATE_COMING ? "Loading" :
4018 "Live");
4019 /* Used by oprofile and other similar tools. */
4020 seq_printf(m, " 0x%pK", mod->core_layout.base);
4021
4022 /* Taints info */
4023 if (mod->taints)
4024 seq_printf(m, " %s", module_flags(mod, buf));
4025
4026 seq_puts(m, "\n");
4027 return 0;
4028 }
4029
4030 /* Format: modulename size refcount deps address
4031
4032 Where refcount is a number or -, and deps is a comma-separated list
4033 of depends or -.
4034 */
4035 static const struct seq_operations modules_op = {
4036 .start = m_start,
4037 .next = m_next,
4038 .stop = m_stop,
4039 .show = m_show
4040 };
4041
4042 static int modules_open(struct inode *inode, struct file *file)
4043 {
4044 return seq_open(file, &modules_op);
4045 }
4046
4047 static const struct file_operations proc_modules_operations = {
4048 .open = modules_open,
4049 .read = seq_read,
4050 .llseek = seq_lseek,
4051 .release = seq_release,
4052 };
4053
4054 static int __init proc_modules_init(void)
4055 {
4056 proc_create("modules", 0, NULL, &proc_modules_operations);
4057 return 0;
4058 }
4059 module_init(proc_modules_init);
4060 #endif
4061
4062 /* Given an address, look for it in the module exception tables. */
4063 const struct exception_table_entry *search_module_extables(unsigned long addr)
4064 {
4065 const struct exception_table_entry *e = NULL;
4066 struct module *mod;
4067
4068 preempt_disable();
4069 list_for_each_entry_rcu(mod, &modules, list) {
4070 if (mod->state == MODULE_STATE_UNFORMED)
4071 continue;
4072 if (mod->num_exentries == 0)
4073 continue;
4074
4075 e = search_extable(mod->extable,
4076 mod->extable + mod->num_exentries - 1,
4077 addr);
4078 if (e)
4079 break;
4080 }
4081 preempt_enable();
4082
4083 /* Now, if we found one, we are running inside it now, hence
4084 we cannot unload the module, hence no refcnt needed. */
4085 return e;
4086 }
4087
4088 /*
4089 * is_module_address - is this address inside a module?
4090 * @addr: the address to check.
4091 *
4092 * See is_module_text_address() if you simply want to see if the address
4093 * is code (not data).
4094 */
4095 bool is_module_address(unsigned long addr)
4096 {
4097 bool ret;
4098
4099 preempt_disable();
4100 ret = __module_address(addr) != NULL;
4101 preempt_enable();
4102
4103 return ret;
4104 }
4105
4106 /*
4107 * __module_address - get the module which contains an address.
4108 * @addr: the address.
4109 *
4110 * Must be called with preempt disabled or module mutex held so that
4111 * module doesn't get freed during this.
4112 */
4113 struct module *__module_address(unsigned long addr)
4114 {
4115 struct module *mod;
4116
4117 if (addr < module_addr_min || addr > module_addr_max)
4118 return NULL;
4119
4120 module_assert_mutex_or_preempt();
4121
4122 mod = mod_find(addr);
4123 if (mod) {
4124 BUG_ON(!within_module(addr, mod));
4125 if (mod->state == MODULE_STATE_UNFORMED)
4126 mod = NULL;
4127 }
4128 return mod;
4129 }
4130 EXPORT_SYMBOL_GPL(__module_address);
4131
4132 /*
4133 * is_module_text_address - is this address inside module code?
4134 * @addr: the address to check.
4135 *
4136 * See is_module_address() if you simply want to see if the address is
4137 * anywhere in a module. See kernel_text_address() for testing if an
4138 * address corresponds to kernel or module code.
4139 */
4140 bool is_module_text_address(unsigned long addr)
4141 {
4142 bool ret;
4143
4144 preempt_disable();
4145 ret = __module_text_address(addr) != NULL;
4146 preempt_enable();
4147
4148 return ret;
4149 }
4150
4151 /*
4152 * __module_text_address - get the module whose code contains an address.
4153 * @addr: the address.
4154 *
4155 * Must be called with preempt disabled or module mutex held so that
4156 * module doesn't get freed during this.
4157 */
4158 struct module *__module_text_address(unsigned long addr)
4159 {
4160 struct module *mod = __module_address(addr);
4161 if (mod) {
4162 /* Make sure it's within the text section. */
4163 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4164 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4165 mod = NULL;
4166 }
4167 return mod;
4168 }
4169 EXPORT_SYMBOL_GPL(__module_text_address);
4170
4171 /* Don't grab lock, we're oopsing. */
4172 void print_modules(void)
4173 {
4174 struct module *mod;
4175 char buf[8];
4176
4177 printk(KERN_DEFAULT "Modules linked in:");
4178 /* Most callers should already have preempt disabled, but make sure */
4179 preempt_disable();
4180 list_for_each_entry_rcu(mod, &modules, list) {
4181 if (mod->state == MODULE_STATE_UNFORMED)
4182 continue;
4183 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4184 }
4185 preempt_enable();
4186 if (last_unloaded_module[0])
4187 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4188 pr_cont("\n");
4189 }
4190
4191 #ifdef CONFIG_MODVERSIONS
4192 /* Generate the signature for all relevant module structures here.
4193 * If these change, we don't want to try to parse the module. */
4194 void module_layout(struct module *mod,
4195 struct modversion_info *ver,
4196 struct kernel_param *kp,
4197 struct kernel_symbol *ks,
4198 struct tracepoint * const *tp)
4199 {
4200 }
4201 EXPORT_SYMBOL(module_layout);
4202 #endif
This page took 0.120608 seconds and 5 git commands to generate.