Merge remote-tracking branch 'rtc/rtc-next'
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/dynamic_debug.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87
88 /*
89 * Mutex protects:
90 * 1) List of modules (also safely readable with preempt_disable),
91 * 2) module_use links,
92 * 3) module_addr_min/module_addr_max.
93 * (delete and add uses RCU list operations). */
94 DEFINE_MUTEX(module_mutex);
95 EXPORT_SYMBOL_GPL(module_mutex);
96 static LIST_HEAD(modules);
97
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99
100 /*
101 * Use a latched RB-tree for __module_address(); this allows us to use
102 * RCU-sched lookups of the address from any context.
103 *
104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
105 * __module_address() hard by doing a lot of stack unwinding; potentially from
106 * NMI context.
107 */
108
109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112
113 return (unsigned long)layout->base;
114 }
115
116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->size;
121 }
122
123 static __always_inline bool
124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128
129 static __always_inline int
130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 unsigned long val = (unsigned long)key;
133 unsigned long start, end;
134
135 start = __mod_tree_val(n);
136 if (val < start)
137 return -1;
138
139 end = start + __mod_tree_size(n);
140 if (val >= end)
141 return 1;
142
143 return 0;
144 }
145
146 static const struct latch_tree_ops mod_tree_ops = {
147 .less = mod_tree_less,
148 .comp = mod_tree_comp,
149 };
150
151 static struct mod_tree_root {
152 struct latch_tree_root root;
153 unsigned long addr_min;
154 unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 .addr_min = -1UL,
157 };
158
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161
162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166
167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171
172 /*
173 * These modifications: insert, remove_init and remove; are serialized by the
174 * module_mutex.
175 */
176 static void mod_tree_insert(struct module *mod)
177 {
178 mod->core_layout.mtn.mod = mod;
179 mod->init_layout.mtn.mod = mod;
180
181 __mod_tree_insert(&mod->core_layout.mtn);
182 if (mod->init_layout.size)
183 __mod_tree_insert(&mod->init_layout.mtn);
184 }
185
186 static void mod_tree_remove_init(struct module *mod)
187 {
188 if (mod->init_layout.size)
189 __mod_tree_remove(&mod->init_layout.mtn);
190 }
191
192 static void mod_tree_remove(struct module *mod)
193 {
194 __mod_tree_remove(&mod->core_layout.mtn);
195 mod_tree_remove_init(mod);
196 }
197
198 static struct module *mod_find(unsigned long addr)
199 {
200 struct latch_tree_node *ltn;
201
202 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 if (!ltn)
204 return NULL;
205
206 return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208
209 #else /* MODULES_TREE_LOOKUP */
210
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212
213 static void mod_tree_insert(struct module *mod) { }
214 static void mod_tree_remove_init(struct module *mod) { }
215 static void mod_tree_remove(struct module *mod) { }
216
217 static struct module *mod_find(unsigned long addr)
218 {
219 struct module *mod;
220
221 list_for_each_entry_rcu(mod, &modules, list) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227 }
228
229 #endif /* MODULES_TREE_LOOKUP */
230
231 /*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235 static void __mod_update_bounds(void *base, unsigned int size)
236 {
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244 }
245
246 static void mod_update_bounds(struct module *mod)
247 {
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 }
252
253 #ifdef CONFIG_KGDB_KDB
254 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255 #endif /* CONFIG_KGDB_KDB */
256
257 static void module_assert_mutex(void)
258 {
259 lockdep_assert_held(&module_mutex);
260 }
261
262 static void module_assert_mutex_or_preempt(void)
263 {
264 #ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270 #endif
271 }
272
273 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274 #ifndef CONFIG_MODULE_SIG_FORCE
275 module_param(sig_enforce, bool_enable_only, 0644);
276 #endif /* !CONFIG_MODULE_SIG_FORCE */
277
278 /* Block module loading/unloading? */
279 int modules_disabled = 0;
280 core_param(nomodule, modules_disabled, bint, 0);
281
282 /* Waiting for a module to finish initializing? */
283 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
284
285 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
286
287 int register_module_notifier(struct notifier_block *nb)
288 {
289 return blocking_notifier_chain_register(&module_notify_list, nb);
290 }
291 EXPORT_SYMBOL(register_module_notifier);
292
293 int unregister_module_notifier(struct notifier_block *nb)
294 {
295 return blocking_notifier_chain_unregister(&module_notify_list, nb);
296 }
297 EXPORT_SYMBOL(unregister_module_notifier);
298
299 struct load_info {
300 Elf_Ehdr *hdr;
301 unsigned long len;
302 Elf_Shdr *sechdrs;
303 char *secstrings, *strtab;
304 unsigned long symoffs, stroffs;
305 struct _ddebug *debug;
306 unsigned int num_debug;
307 bool sig_ok;
308 #ifdef CONFIG_KALLSYMS
309 unsigned long mod_kallsyms_init_off;
310 #endif
311 struct {
312 unsigned int sym, str, mod, vers, info, pcpu;
313 } index;
314 };
315
316 /* We require a truly strong try_module_get(): 0 means failure due to
317 ongoing or failed initialization etc. */
318 static inline int strong_try_module_get(struct module *mod)
319 {
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327 }
328
329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331 {
332 add_taint(flag, lockdep_ok);
333 mod->taints |= (1U << flag);
334 }
335
336 /*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit. nfsd and lockd use this.
339 */
340 void __noreturn __module_put_and_exit(struct module *mod, long code)
341 {
342 module_put(mod);
343 do_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_exit);
346
347 /* Find a module section: 0 means not found. */
348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360 }
361
362 /* Find a module section, or NULL. */
363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368
369 /* Find a module section, or NULL. Fill in number of "objects" in section. */
370 static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374 {
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380 }
381
382 /* Provided by the linker */
383 extern const struct kernel_symbol __start___ksymtab[];
384 extern const struct kernel_symbol __stop___ksymtab[];
385 extern const struct kernel_symbol __start___ksymtab_gpl[];
386 extern const struct kernel_symbol __stop___ksymtab_gpl[];
387 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
388 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
389 extern const unsigned long __start___kcrctab[];
390 extern const unsigned long __start___kcrctab_gpl[];
391 extern const unsigned long __start___kcrctab_gpl_future[];
392 #ifdef CONFIG_UNUSED_SYMBOLS
393 extern const struct kernel_symbol __start___ksymtab_unused[];
394 extern const struct kernel_symbol __stop___ksymtab_unused[];
395 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
396 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
397 extern const unsigned long __start___kcrctab_unused[];
398 extern const unsigned long __start___kcrctab_unused_gpl[];
399 #endif
400
401 #ifndef CONFIG_MODVERSIONS
402 #define symversion(base, idx) NULL
403 #else
404 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
405 #endif
406
407 static bool each_symbol_in_section(const struct symsearch *arr,
408 unsigned int arrsize,
409 struct module *owner,
410 bool (*fn)(const struct symsearch *syms,
411 struct module *owner,
412 void *data),
413 void *data)
414 {
415 unsigned int j;
416
417 for (j = 0; j < arrsize; j++) {
418 if (fn(&arr[j], owner, data))
419 return true;
420 }
421
422 return false;
423 }
424
425 /* Returns true as soon as fn returns true, otherwise false. */
426 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
427 struct module *owner,
428 void *data),
429 void *data)
430 {
431 struct module *mod;
432 static const struct symsearch arr[] = {
433 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
434 NOT_GPL_ONLY, false },
435 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
436 __start___kcrctab_gpl,
437 GPL_ONLY, false },
438 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
439 __start___kcrctab_gpl_future,
440 WILL_BE_GPL_ONLY, false },
441 #ifdef CONFIG_UNUSED_SYMBOLS
442 { __start___ksymtab_unused, __stop___ksymtab_unused,
443 __start___kcrctab_unused,
444 NOT_GPL_ONLY, true },
445 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
446 __start___kcrctab_unused_gpl,
447 GPL_ONLY, true },
448 #endif
449 };
450
451 module_assert_mutex_or_preempt();
452
453 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
454 return true;
455
456 list_for_each_entry_rcu(mod, &modules, list) {
457 struct symsearch arr[] = {
458 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
459 NOT_GPL_ONLY, false },
460 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
461 mod->gpl_crcs,
462 GPL_ONLY, false },
463 { mod->gpl_future_syms,
464 mod->gpl_future_syms + mod->num_gpl_future_syms,
465 mod->gpl_future_crcs,
466 WILL_BE_GPL_ONLY, false },
467 #ifdef CONFIG_UNUSED_SYMBOLS
468 { mod->unused_syms,
469 mod->unused_syms + mod->num_unused_syms,
470 mod->unused_crcs,
471 NOT_GPL_ONLY, true },
472 { mod->unused_gpl_syms,
473 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
474 mod->unused_gpl_crcs,
475 GPL_ONLY, true },
476 #endif
477 };
478
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481
482 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
483 return true;
484 }
485 return false;
486 }
487 EXPORT_SYMBOL_GPL(each_symbol_section);
488
489 struct find_symbol_arg {
490 /* Input */
491 const char *name;
492 bool gplok;
493 bool warn;
494
495 /* Output */
496 struct module *owner;
497 const unsigned long *crc;
498 const struct kernel_symbol *sym;
499 };
500
501 static bool check_symbol(const struct symsearch *syms,
502 struct module *owner,
503 unsigned int symnum, void *data)
504 {
505 struct find_symbol_arg *fsa = data;
506
507 if (!fsa->gplok) {
508 if (syms->licence == GPL_ONLY)
509 return false;
510 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
511 pr_warn("Symbol %s is being used by a non-GPL module, "
512 "which will not be allowed in the future\n",
513 fsa->name);
514 }
515 }
516
517 #ifdef CONFIG_UNUSED_SYMBOLS
518 if (syms->unused && fsa->warn) {
519 pr_warn("Symbol %s is marked as UNUSED, however this module is "
520 "using it.\n", fsa->name);
521 pr_warn("This symbol will go away in the future.\n");
522 pr_warn("Please evaluate if this is the right api to use and "
523 "if it really is, submit a report to the linux kernel "
524 "mailing list together with submitting your code for "
525 "inclusion.\n");
526 }
527 #endif
528
529 fsa->owner = owner;
530 fsa->crc = symversion(syms->crcs, symnum);
531 fsa->sym = &syms->start[symnum];
532 return true;
533 }
534
535 static int cmp_name(const void *va, const void *vb)
536 {
537 const char *a;
538 const struct kernel_symbol *b;
539 a = va; b = vb;
540 return strcmp(a, b->name);
541 }
542
543 static bool find_symbol_in_section(const struct symsearch *syms,
544 struct module *owner,
545 void *data)
546 {
547 struct find_symbol_arg *fsa = data;
548 struct kernel_symbol *sym;
549
550 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
551 sizeof(struct kernel_symbol), cmp_name);
552
553 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
554 return true;
555
556 return false;
557 }
558
559 /* Find a symbol and return it, along with, (optional) crc and
560 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
561 const struct kernel_symbol *find_symbol(const char *name,
562 struct module **owner,
563 const unsigned long **crc,
564 bool gplok,
565 bool warn)
566 {
567 struct find_symbol_arg fsa;
568
569 fsa.name = name;
570 fsa.gplok = gplok;
571 fsa.warn = warn;
572
573 if (each_symbol_section(find_symbol_in_section, &fsa)) {
574 if (owner)
575 *owner = fsa.owner;
576 if (crc)
577 *crc = fsa.crc;
578 return fsa.sym;
579 }
580
581 pr_debug("Failed to find symbol %s\n", name);
582 return NULL;
583 }
584 EXPORT_SYMBOL_GPL(find_symbol);
585
586 /*
587 * Search for module by name: must hold module_mutex (or preempt disabled
588 * for read-only access).
589 */
590 static struct module *find_module_all(const char *name, size_t len,
591 bool even_unformed)
592 {
593 struct module *mod;
594
595 module_assert_mutex_or_preempt();
596
597 list_for_each_entry(mod, &modules, list) {
598 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
599 continue;
600 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
601 return mod;
602 }
603 return NULL;
604 }
605
606 struct module *find_module(const char *name)
607 {
608 module_assert_mutex();
609 return find_module_all(name, strlen(name), false);
610 }
611 EXPORT_SYMBOL_GPL(find_module);
612
613 #ifdef CONFIG_SMP
614
615 static inline void __percpu *mod_percpu(struct module *mod)
616 {
617 return mod->percpu;
618 }
619
620 static int percpu_modalloc(struct module *mod, struct load_info *info)
621 {
622 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
623 unsigned long align = pcpusec->sh_addralign;
624
625 if (!pcpusec->sh_size)
626 return 0;
627
628 if (align > PAGE_SIZE) {
629 pr_warn("%s: per-cpu alignment %li > %li\n",
630 mod->name, align, PAGE_SIZE);
631 align = PAGE_SIZE;
632 }
633
634 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
635 if (!mod->percpu) {
636 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
637 mod->name, (unsigned long)pcpusec->sh_size);
638 return -ENOMEM;
639 }
640 mod->percpu_size = pcpusec->sh_size;
641 return 0;
642 }
643
644 static void percpu_modfree(struct module *mod)
645 {
646 free_percpu(mod->percpu);
647 }
648
649 static unsigned int find_pcpusec(struct load_info *info)
650 {
651 return find_sec(info, ".data..percpu");
652 }
653
654 static void percpu_modcopy(struct module *mod,
655 const void *from, unsigned long size)
656 {
657 int cpu;
658
659 for_each_possible_cpu(cpu)
660 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
661 }
662
663 /**
664 * is_module_percpu_address - test whether address is from module static percpu
665 * @addr: address to test
666 *
667 * Test whether @addr belongs to module static percpu area.
668 *
669 * RETURNS:
670 * %true if @addr is from module static percpu area
671 */
672 bool is_module_percpu_address(unsigned long addr)
673 {
674 struct module *mod;
675 unsigned int cpu;
676
677 preempt_disable();
678
679 list_for_each_entry_rcu(mod, &modules, list) {
680 if (mod->state == MODULE_STATE_UNFORMED)
681 continue;
682 if (!mod->percpu_size)
683 continue;
684 for_each_possible_cpu(cpu) {
685 void *start = per_cpu_ptr(mod->percpu, cpu);
686
687 if ((void *)addr >= start &&
688 (void *)addr < start + mod->percpu_size) {
689 preempt_enable();
690 return true;
691 }
692 }
693 }
694
695 preempt_enable();
696 return false;
697 }
698
699 #else /* ... !CONFIG_SMP */
700
701 static inline void __percpu *mod_percpu(struct module *mod)
702 {
703 return NULL;
704 }
705 static int percpu_modalloc(struct module *mod, struct load_info *info)
706 {
707 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
708 if (info->sechdrs[info->index.pcpu].sh_size != 0)
709 return -ENOMEM;
710 return 0;
711 }
712 static inline void percpu_modfree(struct module *mod)
713 {
714 }
715 static unsigned int find_pcpusec(struct load_info *info)
716 {
717 return 0;
718 }
719 static inline void percpu_modcopy(struct module *mod,
720 const void *from, unsigned long size)
721 {
722 /* pcpusec should be 0, and size of that section should be 0. */
723 BUG_ON(size != 0);
724 }
725 bool is_module_percpu_address(unsigned long addr)
726 {
727 return false;
728 }
729
730 #endif /* CONFIG_SMP */
731
732 #define MODINFO_ATTR(field) \
733 static void setup_modinfo_##field(struct module *mod, const char *s) \
734 { \
735 mod->field = kstrdup(s, GFP_KERNEL); \
736 } \
737 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
738 struct module_kobject *mk, char *buffer) \
739 { \
740 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
741 } \
742 static int modinfo_##field##_exists(struct module *mod) \
743 { \
744 return mod->field != NULL; \
745 } \
746 static void free_modinfo_##field(struct module *mod) \
747 { \
748 kfree(mod->field); \
749 mod->field = NULL; \
750 } \
751 static struct module_attribute modinfo_##field = { \
752 .attr = { .name = __stringify(field), .mode = 0444 }, \
753 .show = show_modinfo_##field, \
754 .setup = setup_modinfo_##field, \
755 .test = modinfo_##field##_exists, \
756 .free = free_modinfo_##field, \
757 };
758
759 MODINFO_ATTR(version);
760 MODINFO_ATTR(srcversion);
761
762 static char last_unloaded_module[MODULE_NAME_LEN+1];
763
764 #ifdef CONFIG_MODULE_UNLOAD
765
766 EXPORT_TRACEPOINT_SYMBOL(module_get);
767
768 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
769 #define MODULE_REF_BASE 1
770
771 /* Init the unload section of the module. */
772 static int module_unload_init(struct module *mod)
773 {
774 /*
775 * Initialize reference counter to MODULE_REF_BASE.
776 * refcnt == 0 means module is going.
777 */
778 atomic_set(&mod->refcnt, MODULE_REF_BASE);
779
780 INIT_LIST_HEAD(&mod->source_list);
781 INIT_LIST_HEAD(&mod->target_list);
782
783 /* Hold reference count during initialization. */
784 atomic_inc(&mod->refcnt);
785
786 return 0;
787 }
788
789 /* Does a already use b? */
790 static int already_uses(struct module *a, struct module *b)
791 {
792 struct module_use *use;
793
794 list_for_each_entry(use, &b->source_list, source_list) {
795 if (use->source == a) {
796 pr_debug("%s uses %s!\n", a->name, b->name);
797 return 1;
798 }
799 }
800 pr_debug("%s does not use %s!\n", a->name, b->name);
801 return 0;
802 }
803
804 /*
805 * Module a uses b
806 * - we add 'a' as a "source", 'b' as a "target" of module use
807 * - the module_use is added to the list of 'b' sources (so
808 * 'b' can walk the list to see who sourced them), and of 'a'
809 * targets (so 'a' can see what modules it targets).
810 */
811 static int add_module_usage(struct module *a, struct module *b)
812 {
813 struct module_use *use;
814
815 pr_debug("Allocating new usage for %s.\n", a->name);
816 use = kmalloc(sizeof(*use), GFP_ATOMIC);
817 if (!use) {
818 pr_warn("%s: out of memory loading\n", a->name);
819 return -ENOMEM;
820 }
821
822 use->source = a;
823 use->target = b;
824 list_add(&use->source_list, &b->source_list);
825 list_add(&use->target_list, &a->target_list);
826 return 0;
827 }
828
829 /* Module a uses b: caller needs module_mutex() */
830 int ref_module(struct module *a, struct module *b)
831 {
832 int err;
833
834 if (b == NULL || already_uses(a, b))
835 return 0;
836
837 /* If module isn't available, we fail. */
838 err = strong_try_module_get(b);
839 if (err)
840 return err;
841
842 err = add_module_usage(a, b);
843 if (err) {
844 module_put(b);
845 return err;
846 }
847 return 0;
848 }
849 EXPORT_SYMBOL_GPL(ref_module);
850
851 /* Clear the unload stuff of the module. */
852 static void module_unload_free(struct module *mod)
853 {
854 struct module_use *use, *tmp;
855
856 mutex_lock(&module_mutex);
857 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
858 struct module *i = use->target;
859 pr_debug("%s unusing %s\n", mod->name, i->name);
860 module_put(i);
861 list_del(&use->source_list);
862 list_del(&use->target_list);
863 kfree(use);
864 }
865 mutex_unlock(&module_mutex);
866 }
867
868 #ifdef CONFIG_MODULE_FORCE_UNLOAD
869 static inline int try_force_unload(unsigned int flags)
870 {
871 int ret = (flags & O_TRUNC);
872 if (ret)
873 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
874 return ret;
875 }
876 #else
877 static inline int try_force_unload(unsigned int flags)
878 {
879 return 0;
880 }
881 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
882
883 /* Try to release refcount of module, 0 means success. */
884 static int try_release_module_ref(struct module *mod)
885 {
886 int ret;
887
888 /* Try to decrement refcnt which we set at loading */
889 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
890 BUG_ON(ret < 0);
891 if (ret)
892 /* Someone can put this right now, recover with checking */
893 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
894
895 return ret;
896 }
897
898 static int try_stop_module(struct module *mod, int flags, int *forced)
899 {
900 /* If it's not unused, quit unless we're forcing. */
901 if (try_release_module_ref(mod) != 0) {
902 *forced = try_force_unload(flags);
903 if (!(*forced))
904 return -EWOULDBLOCK;
905 }
906
907 /* Mark it as dying. */
908 mod->state = MODULE_STATE_GOING;
909
910 return 0;
911 }
912
913 /**
914 * module_refcount - return the refcount or -1 if unloading
915 *
916 * @mod: the module we're checking
917 *
918 * Returns:
919 * -1 if the module is in the process of unloading
920 * otherwise the number of references in the kernel to the module
921 */
922 int module_refcount(struct module *mod)
923 {
924 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
925 }
926 EXPORT_SYMBOL(module_refcount);
927
928 /* This exists whether we can unload or not */
929 static void free_module(struct module *mod);
930
931 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
932 unsigned int, flags)
933 {
934 struct module *mod;
935 char name[MODULE_NAME_LEN];
936 int ret, forced = 0;
937
938 if (!capable(CAP_SYS_MODULE) || modules_disabled)
939 return -EPERM;
940
941 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
942 return -EFAULT;
943 name[MODULE_NAME_LEN-1] = '\0';
944
945 if (mutex_lock_interruptible(&module_mutex) != 0)
946 return -EINTR;
947
948 mod = find_module(name);
949 if (!mod) {
950 ret = -ENOENT;
951 goto out;
952 }
953
954 if (!list_empty(&mod->source_list)) {
955 /* Other modules depend on us: get rid of them first. */
956 ret = -EWOULDBLOCK;
957 goto out;
958 }
959
960 /* Doing init or already dying? */
961 if (mod->state != MODULE_STATE_LIVE) {
962 /* FIXME: if (force), slam module count damn the torpedoes */
963 pr_debug("%s already dying\n", mod->name);
964 ret = -EBUSY;
965 goto out;
966 }
967
968 /* If it has an init func, it must have an exit func to unload */
969 if (mod->init && !mod->exit) {
970 forced = try_force_unload(flags);
971 if (!forced) {
972 /* This module can't be removed */
973 ret = -EBUSY;
974 goto out;
975 }
976 }
977
978 /* Stop the machine so refcounts can't move and disable module. */
979 ret = try_stop_module(mod, flags, &forced);
980 if (ret != 0)
981 goto out;
982
983 mutex_unlock(&module_mutex);
984 /* Final destruction now no one is using it. */
985 if (mod->exit != NULL)
986 mod->exit();
987 blocking_notifier_call_chain(&module_notify_list,
988 MODULE_STATE_GOING, mod);
989 klp_module_going(mod);
990 ftrace_release_mod(mod);
991
992 async_synchronize_full();
993
994 /* Store the name of the last unloaded module for diagnostic purposes */
995 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
996
997 free_module(mod);
998 return 0;
999 out:
1000 mutex_unlock(&module_mutex);
1001 return ret;
1002 }
1003
1004 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1005 {
1006 struct module_use *use;
1007 int printed_something = 0;
1008
1009 seq_printf(m, " %i ", module_refcount(mod));
1010
1011 /*
1012 * Always include a trailing , so userspace can differentiate
1013 * between this and the old multi-field proc format.
1014 */
1015 list_for_each_entry(use, &mod->source_list, source_list) {
1016 printed_something = 1;
1017 seq_printf(m, "%s,", use->source->name);
1018 }
1019
1020 if (mod->init != NULL && mod->exit == NULL) {
1021 printed_something = 1;
1022 seq_puts(m, "[permanent],");
1023 }
1024
1025 if (!printed_something)
1026 seq_puts(m, "-");
1027 }
1028
1029 void __symbol_put(const char *symbol)
1030 {
1031 struct module *owner;
1032
1033 preempt_disable();
1034 if (!find_symbol(symbol, &owner, NULL, true, false))
1035 BUG();
1036 module_put(owner);
1037 preempt_enable();
1038 }
1039 EXPORT_SYMBOL(__symbol_put);
1040
1041 /* Note this assumes addr is a function, which it currently always is. */
1042 void symbol_put_addr(void *addr)
1043 {
1044 struct module *modaddr;
1045 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1046
1047 if (core_kernel_text(a))
1048 return;
1049
1050 /*
1051 * Even though we hold a reference on the module; we still need to
1052 * disable preemption in order to safely traverse the data structure.
1053 */
1054 preempt_disable();
1055 modaddr = __module_text_address(a);
1056 BUG_ON(!modaddr);
1057 module_put(modaddr);
1058 preempt_enable();
1059 }
1060 EXPORT_SYMBOL_GPL(symbol_put_addr);
1061
1062 static ssize_t show_refcnt(struct module_attribute *mattr,
1063 struct module_kobject *mk, char *buffer)
1064 {
1065 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1066 }
1067
1068 static struct module_attribute modinfo_refcnt =
1069 __ATTR(refcnt, 0444, show_refcnt, NULL);
1070
1071 void __module_get(struct module *module)
1072 {
1073 if (module) {
1074 preempt_disable();
1075 atomic_inc(&module->refcnt);
1076 trace_module_get(module, _RET_IP_);
1077 preempt_enable();
1078 }
1079 }
1080 EXPORT_SYMBOL(__module_get);
1081
1082 bool try_module_get(struct module *module)
1083 {
1084 bool ret = true;
1085
1086 if (module) {
1087 preempt_disable();
1088 /* Note: here, we can fail to get a reference */
1089 if (likely(module_is_live(module) &&
1090 atomic_inc_not_zero(&module->refcnt) != 0))
1091 trace_module_get(module, _RET_IP_);
1092 else
1093 ret = false;
1094
1095 preempt_enable();
1096 }
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(try_module_get);
1100
1101 void module_put(struct module *module)
1102 {
1103 int ret;
1104
1105 if (module) {
1106 preempt_disable();
1107 ret = atomic_dec_if_positive(&module->refcnt);
1108 WARN_ON(ret < 0); /* Failed to put refcount */
1109 trace_module_put(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(module_put);
1114
1115 #else /* !CONFIG_MODULE_UNLOAD */
1116 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1117 {
1118 /* We don't know the usage count, or what modules are using. */
1119 seq_puts(m, " - -");
1120 }
1121
1122 static inline void module_unload_free(struct module *mod)
1123 {
1124 }
1125
1126 int ref_module(struct module *a, struct module *b)
1127 {
1128 return strong_try_module_get(b);
1129 }
1130 EXPORT_SYMBOL_GPL(ref_module);
1131
1132 static inline int module_unload_init(struct module *mod)
1133 {
1134 return 0;
1135 }
1136 #endif /* CONFIG_MODULE_UNLOAD */
1137
1138 static size_t module_flags_taint(struct module *mod, char *buf)
1139 {
1140 size_t l = 0;
1141
1142 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1143 buf[l++] = 'P';
1144 if (mod->taints & (1 << TAINT_OOT_MODULE))
1145 buf[l++] = 'O';
1146 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1147 buf[l++] = 'F';
1148 if (mod->taints & (1 << TAINT_CRAP))
1149 buf[l++] = 'C';
1150 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1151 buf[l++] = 'E';
1152 if (mod->taints & (1 << TAINT_LIVEPATCH))
1153 buf[l++] = 'K';
1154 /*
1155 * TAINT_FORCED_RMMOD: could be added.
1156 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1157 * apply to modules.
1158 */
1159 return l;
1160 }
1161
1162 static ssize_t show_initstate(struct module_attribute *mattr,
1163 struct module_kobject *mk, char *buffer)
1164 {
1165 const char *state = "unknown";
1166
1167 switch (mk->mod->state) {
1168 case MODULE_STATE_LIVE:
1169 state = "live";
1170 break;
1171 case MODULE_STATE_COMING:
1172 state = "coming";
1173 break;
1174 case MODULE_STATE_GOING:
1175 state = "going";
1176 break;
1177 default:
1178 BUG();
1179 }
1180 return sprintf(buffer, "%s\n", state);
1181 }
1182
1183 static struct module_attribute modinfo_initstate =
1184 __ATTR(initstate, 0444, show_initstate, NULL);
1185
1186 static ssize_t store_uevent(struct module_attribute *mattr,
1187 struct module_kobject *mk,
1188 const char *buffer, size_t count)
1189 {
1190 enum kobject_action action;
1191
1192 if (kobject_action_type(buffer, count, &action) == 0)
1193 kobject_uevent(&mk->kobj, action);
1194 return count;
1195 }
1196
1197 struct module_attribute module_uevent =
1198 __ATTR(uevent, 0200, NULL, store_uevent);
1199
1200 static ssize_t show_coresize(struct module_attribute *mattr,
1201 struct module_kobject *mk, char *buffer)
1202 {
1203 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1204 }
1205
1206 static struct module_attribute modinfo_coresize =
1207 __ATTR(coresize, 0444, show_coresize, NULL);
1208
1209 static ssize_t show_initsize(struct module_attribute *mattr,
1210 struct module_kobject *mk, char *buffer)
1211 {
1212 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1213 }
1214
1215 static struct module_attribute modinfo_initsize =
1216 __ATTR(initsize, 0444, show_initsize, NULL);
1217
1218 static ssize_t show_taint(struct module_attribute *mattr,
1219 struct module_kobject *mk, char *buffer)
1220 {
1221 size_t l;
1222
1223 l = module_flags_taint(mk->mod, buffer);
1224 buffer[l++] = '\n';
1225 return l;
1226 }
1227
1228 static struct module_attribute modinfo_taint =
1229 __ATTR(taint, 0444, show_taint, NULL);
1230
1231 static struct module_attribute *modinfo_attrs[] = {
1232 &module_uevent,
1233 &modinfo_version,
1234 &modinfo_srcversion,
1235 &modinfo_initstate,
1236 &modinfo_coresize,
1237 &modinfo_initsize,
1238 &modinfo_taint,
1239 #ifdef CONFIG_MODULE_UNLOAD
1240 &modinfo_refcnt,
1241 #endif
1242 NULL,
1243 };
1244
1245 static const char vermagic[] = VERMAGIC_STRING;
1246
1247 static int try_to_force_load(struct module *mod, const char *reason)
1248 {
1249 #ifdef CONFIG_MODULE_FORCE_LOAD
1250 if (!test_taint(TAINT_FORCED_MODULE))
1251 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1252 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1253 return 0;
1254 #else
1255 return -ENOEXEC;
1256 #endif
1257 }
1258
1259 #ifdef CONFIG_MODVERSIONS
1260 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1261 static unsigned long maybe_relocated(unsigned long crc,
1262 const struct module *crc_owner)
1263 {
1264 #ifdef ARCH_RELOCATES_KCRCTAB
1265 if (crc_owner == NULL)
1266 return crc - (unsigned long)reloc_start;
1267 #endif
1268 return crc;
1269 }
1270
1271 static int check_version(Elf_Shdr *sechdrs,
1272 unsigned int versindex,
1273 const char *symname,
1274 struct module *mod,
1275 const unsigned long *crc,
1276 const struct module *crc_owner)
1277 {
1278 unsigned int i, num_versions;
1279 struct modversion_info *versions;
1280
1281 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1282 if (!crc)
1283 return 1;
1284
1285 /* No versions at all? modprobe --force does this. */
1286 if (versindex == 0)
1287 return try_to_force_load(mod, symname) == 0;
1288
1289 versions = (void *) sechdrs[versindex].sh_addr;
1290 num_versions = sechdrs[versindex].sh_size
1291 / sizeof(struct modversion_info);
1292
1293 for (i = 0; i < num_versions; i++) {
1294 if (strcmp(versions[i].name, symname) != 0)
1295 continue;
1296
1297 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1298 return 1;
1299 pr_debug("Found checksum %lX vs module %lX\n",
1300 maybe_relocated(*crc, crc_owner), versions[i].crc);
1301 goto bad_version;
1302 }
1303
1304 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1305 return 0;
1306
1307 bad_version:
1308 pr_warn("%s: disagrees about version of symbol %s\n",
1309 mod->name, symname);
1310 return 0;
1311 }
1312
1313 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1314 unsigned int versindex,
1315 struct module *mod)
1316 {
1317 const unsigned long *crc;
1318
1319 /*
1320 * Since this should be found in kernel (which can't be removed), no
1321 * locking is necessary -- use preempt_disable() to placate lockdep.
1322 */
1323 preempt_disable();
1324 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1325 &crc, true, false)) {
1326 preempt_enable();
1327 BUG();
1328 }
1329 preempt_enable();
1330 return check_version(sechdrs, versindex,
1331 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1332 NULL);
1333 }
1334
1335 /* First part is kernel version, which we ignore if module has crcs. */
1336 static inline int same_magic(const char *amagic, const char *bmagic,
1337 bool has_crcs)
1338 {
1339 if (has_crcs) {
1340 amagic += strcspn(amagic, " ");
1341 bmagic += strcspn(bmagic, " ");
1342 }
1343 return strcmp(amagic, bmagic) == 0;
1344 }
1345 #else
1346 static inline int check_version(Elf_Shdr *sechdrs,
1347 unsigned int versindex,
1348 const char *symname,
1349 struct module *mod,
1350 const unsigned long *crc,
1351 const struct module *crc_owner)
1352 {
1353 return 1;
1354 }
1355
1356 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1357 unsigned int versindex,
1358 struct module *mod)
1359 {
1360 return 1;
1361 }
1362
1363 static inline int same_magic(const char *amagic, const char *bmagic,
1364 bool has_crcs)
1365 {
1366 return strcmp(amagic, bmagic) == 0;
1367 }
1368 #endif /* CONFIG_MODVERSIONS */
1369
1370 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1371 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1372 const struct load_info *info,
1373 const char *name,
1374 char ownername[])
1375 {
1376 struct module *owner;
1377 const struct kernel_symbol *sym;
1378 const unsigned long *crc;
1379 int err;
1380
1381 /*
1382 * The module_mutex should not be a heavily contended lock;
1383 * if we get the occasional sleep here, we'll go an extra iteration
1384 * in the wait_event_interruptible(), which is harmless.
1385 */
1386 sched_annotate_sleep();
1387 mutex_lock(&module_mutex);
1388 sym = find_symbol(name, &owner, &crc,
1389 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1390 if (!sym)
1391 goto unlock;
1392
1393 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1394 owner)) {
1395 sym = ERR_PTR(-EINVAL);
1396 goto getname;
1397 }
1398
1399 err = ref_module(mod, owner);
1400 if (err) {
1401 sym = ERR_PTR(err);
1402 goto getname;
1403 }
1404
1405 getname:
1406 /* We must make copy under the lock if we failed to get ref. */
1407 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1408 unlock:
1409 mutex_unlock(&module_mutex);
1410 return sym;
1411 }
1412
1413 static const struct kernel_symbol *
1414 resolve_symbol_wait(struct module *mod,
1415 const struct load_info *info,
1416 const char *name)
1417 {
1418 const struct kernel_symbol *ksym;
1419 char owner[MODULE_NAME_LEN];
1420
1421 if (wait_event_interruptible_timeout(module_wq,
1422 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1423 || PTR_ERR(ksym) != -EBUSY,
1424 30 * HZ) <= 0) {
1425 pr_warn("%s: gave up waiting for init of module %s.\n",
1426 mod->name, owner);
1427 }
1428 return ksym;
1429 }
1430
1431 /*
1432 * /sys/module/foo/sections stuff
1433 * J. Corbet <corbet@lwn.net>
1434 */
1435 #ifdef CONFIG_SYSFS
1436
1437 #ifdef CONFIG_KALLSYMS
1438 static inline bool sect_empty(const Elf_Shdr *sect)
1439 {
1440 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1441 }
1442
1443 struct module_sect_attr {
1444 struct module_attribute mattr;
1445 char *name;
1446 unsigned long address;
1447 };
1448
1449 struct module_sect_attrs {
1450 struct attribute_group grp;
1451 unsigned int nsections;
1452 struct module_sect_attr attrs[0];
1453 };
1454
1455 static ssize_t module_sect_show(struct module_attribute *mattr,
1456 struct module_kobject *mk, char *buf)
1457 {
1458 struct module_sect_attr *sattr =
1459 container_of(mattr, struct module_sect_attr, mattr);
1460 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1461 }
1462
1463 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1464 {
1465 unsigned int section;
1466
1467 for (section = 0; section < sect_attrs->nsections; section++)
1468 kfree(sect_attrs->attrs[section].name);
1469 kfree(sect_attrs);
1470 }
1471
1472 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1473 {
1474 unsigned int nloaded = 0, i, size[2];
1475 struct module_sect_attrs *sect_attrs;
1476 struct module_sect_attr *sattr;
1477 struct attribute **gattr;
1478
1479 /* Count loaded sections and allocate structures */
1480 for (i = 0; i < info->hdr->e_shnum; i++)
1481 if (!sect_empty(&info->sechdrs[i]))
1482 nloaded++;
1483 size[0] = ALIGN(sizeof(*sect_attrs)
1484 + nloaded * sizeof(sect_attrs->attrs[0]),
1485 sizeof(sect_attrs->grp.attrs[0]));
1486 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1487 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1488 if (sect_attrs == NULL)
1489 return;
1490
1491 /* Setup section attributes. */
1492 sect_attrs->grp.name = "sections";
1493 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1494
1495 sect_attrs->nsections = 0;
1496 sattr = &sect_attrs->attrs[0];
1497 gattr = &sect_attrs->grp.attrs[0];
1498 for (i = 0; i < info->hdr->e_shnum; i++) {
1499 Elf_Shdr *sec = &info->sechdrs[i];
1500 if (sect_empty(sec))
1501 continue;
1502 sattr->address = sec->sh_addr;
1503 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1504 GFP_KERNEL);
1505 if (sattr->name == NULL)
1506 goto out;
1507 sect_attrs->nsections++;
1508 sysfs_attr_init(&sattr->mattr.attr);
1509 sattr->mattr.show = module_sect_show;
1510 sattr->mattr.store = NULL;
1511 sattr->mattr.attr.name = sattr->name;
1512 sattr->mattr.attr.mode = S_IRUGO;
1513 *(gattr++) = &(sattr++)->mattr.attr;
1514 }
1515 *gattr = NULL;
1516
1517 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1518 goto out;
1519
1520 mod->sect_attrs = sect_attrs;
1521 return;
1522 out:
1523 free_sect_attrs(sect_attrs);
1524 }
1525
1526 static void remove_sect_attrs(struct module *mod)
1527 {
1528 if (mod->sect_attrs) {
1529 sysfs_remove_group(&mod->mkobj.kobj,
1530 &mod->sect_attrs->grp);
1531 /* We are positive that no one is using any sect attrs
1532 * at this point. Deallocate immediately. */
1533 free_sect_attrs(mod->sect_attrs);
1534 mod->sect_attrs = NULL;
1535 }
1536 }
1537
1538 /*
1539 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1540 */
1541
1542 struct module_notes_attrs {
1543 struct kobject *dir;
1544 unsigned int notes;
1545 struct bin_attribute attrs[0];
1546 };
1547
1548 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1549 struct bin_attribute *bin_attr,
1550 char *buf, loff_t pos, size_t count)
1551 {
1552 /*
1553 * The caller checked the pos and count against our size.
1554 */
1555 memcpy(buf, bin_attr->private + pos, count);
1556 return count;
1557 }
1558
1559 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1560 unsigned int i)
1561 {
1562 if (notes_attrs->dir) {
1563 while (i-- > 0)
1564 sysfs_remove_bin_file(notes_attrs->dir,
1565 &notes_attrs->attrs[i]);
1566 kobject_put(notes_attrs->dir);
1567 }
1568 kfree(notes_attrs);
1569 }
1570
1571 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1572 {
1573 unsigned int notes, loaded, i;
1574 struct module_notes_attrs *notes_attrs;
1575 struct bin_attribute *nattr;
1576
1577 /* failed to create section attributes, so can't create notes */
1578 if (!mod->sect_attrs)
1579 return;
1580
1581 /* Count notes sections and allocate structures. */
1582 notes = 0;
1583 for (i = 0; i < info->hdr->e_shnum; i++)
1584 if (!sect_empty(&info->sechdrs[i]) &&
1585 (info->sechdrs[i].sh_type == SHT_NOTE))
1586 ++notes;
1587
1588 if (notes == 0)
1589 return;
1590
1591 notes_attrs = kzalloc(sizeof(*notes_attrs)
1592 + notes * sizeof(notes_attrs->attrs[0]),
1593 GFP_KERNEL);
1594 if (notes_attrs == NULL)
1595 return;
1596
1597 notes_attrs->notes = notes;
1598 nattr = &notes_attrs->attrs[0];
1599 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1600 if (sect_empty(&info->sechdrs[i]))
1601 continue;
1602 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1603 sysfs_bin_attr_init(nattr);
1604 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1605 nattr->attr.mode = S_IRUGO;
1606 nattr->size = info->sechdrs[i].sh_size;
1607 nattr->private = (void *) info->sechdrs[i].sh_addr;
1608 nattr->read = module_notes_read;
1609 ++nattr;
1610 }
1611 ++loaded;
1612 }
1613
1614 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1615 if (!notes_attrs->dir)
1616 goto out;
1617
1618 for (i = 0; i < notes; ++i)
1619 if (sysfs_create_bin_file(notes_attrs->dir,
1620 &notes_attrs->attrs[i]))
1621 goto out;
1622
1623 mod->notes_attrs = notes_attrs;
1624 return;
1625
1626 out:
1627 free_notes_attrs(notes_attrs, i);
1628 }
1629
1630 static void remove_notes_attrs(struct module *mod)
1631 {
1632 if (mod->notes_attrs)
1633 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1634 }
1635
1636 #else
1637
1638 static inline void add_sect_attrs(struct module *mod,
1639 const struct load_info *info)
1640 {
1641 }
1642
1643 static inline void remove_sect_attrs(struct module *mod)
1644 {
1645 }
1646
1647 static inline void add_notes_attrs(struct module *mod,
1648 const struct load_info *info)
1649 {
1650 }
1651
1652 static inline void remove_notes_attrs(struct module *mod)
1653 {
1654 }
1655 #endif /* CONFIG_KALLSYMS */
1656
1657 static void add_usage_links(struct module *mod)
1658 {
1659 #ifdef CONFIG_MODULE_UNLOAD
1660 struct module_use *use;
1661 int nowarn;
1662
1663 mutex_lock(&module_mutex);
1664 list_for_each_entry(use, &mod->target_list, target_list) {
1665 nowarn = sysfs_create_link(use->target->holders_dir,
1666 &mod->mkobj.kobj, mod->name);
1667 }
1668 mutex_unlock(&module_mutex);
1669 #endif
1670 }
1671
1672 static void del_usage_links(struct module *mod)
1673 {
1674 #ifdef CONFIG_MODULE_UNLOAD
1675 struct module_use *use;
1676
1677 mutex_lock(&module_mutex);
1678 list_for_each_entry(use, &mod->target_list, target_list)
1679 sysfs_remove_link(use->target->holders_dir, mod->name);
1680 mutex_unlock(&module_mutex);
1681 #endif
1682 }
1683
1684 static int module_add_modinfo_attrs(struct module *mod)
1685 {
1686 struct module_attribute *attr;
1687 struct module_attribute *temp_attr;
1688 int error = 0;
1689 int i;
1690
1691 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1692 (ARRAY_SIZE(modinfo_attrs) + 1)),
1693 GFP_KERNEL);
1694 if (!mod->modinfo_attrs)
1695 return -ENOMEM;
1696
1697 temp_attr = mod->modinfo_attrs;
1698 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1699 if (!attr->test || attr->test(mod)) {
1700 memcpy(temp_attr, attr, sizeof(*temp_attr));
1701 sysfs_attr_init(&temp_attr->attr);
1702 error = sysfs_create_file(&mod->mkobj.kobj,
1703 &temp_attr->attr);
1704 ++temp_attr;
1705 }
1706 }
1707 return error;
1708 }
1709
1710 static void module_remove_modinfo_attrs(struct module *mod)
1711 {
1712 struct module_attribute *attr;
1713 int i;
1714
1715 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1716 /* pick a field to test for end of list */
1717 if (!attr->attr.name)
1718 break;
1719 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1720 if (attr->free)
1721 attr->free(mod);
1722 }
1723 kfree(mod->modinfo_attrs);
1724 }
1725
1726 static void mod_kobject_put(struct module *mod)
1727 {
1728 DECLARE_COMPLETION_ONSTACK(c);
1729 mod->mkobj.kobj_completion = &c;
1730 kobject_put(&mod->mkobj.kobj);
1731 wait_for_completion(&c);
1732 }
1733
1734 static int mod_sysfs_init(struct module *mod)
1735 {
1736 int err;
1737 struct kobject *kobj;
1738
1739 if (!module_sysfs_initialized) {
1740 pr_err("%s: module sysfs not initialized\n", mod->name);
1741 err = -EINVAL;
1742 goto out;
1743 }
1744
1745 kobj = kset_find_obj(module_kset, mod->name);
1746 if (kobj) {
1747 pr_err("%s: module is already loaded\n", mod->name);
1748 kobject_put(kobj);
1749 err = -EINVAL;
1750 goto out;
1751 }
1752
1753 mod->mkobj.mod = mod;
1754
1755 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1756 mod->mkobj.kobj.kset = module_kset;
1757 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1758 "%s", mod->name);
1759 if (err)
1760 mod_kobject_put(mod);
1761
1762 /* delay uevent until full sysfs population */
1763 out:
1764 return err;
1765 }
1766
1767 static int mod_sysfs_setup(struct module *mod,
1768 const struct load_info *info,
1769 struct kernel_param *kparam,
1770 unsigned int num_params)
1771 {
1772 int err;
1773
1774 err = mod_sysfs_init(mod);
1775 if (err)
1776 goto out;
1777
1778 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1779 if (!mod->holders_dir) {
1780 err = -ENOMEM;
1781 goto out_unreg;
1782 }
1783
1784 err = module_param_sysfs_setup(mod, kparam, num_params);
1785 if (err)
1786 goto out_unreg_holders;
1787
1788 err = module_add_modinfo_attrs(mod);
1789 if (err)
1790 goto out_unreg_param;
1791
1792 add_usage_links(mod);
1793 add_sect_attrs(mod, info);
1794 add_notes_attrs(mod, info);
1795
1796 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1797 return 0;
1798
1799 out_unreg_param:
1800 module_param_sysfs_remove(mod);
1801 out_unreg_holders:
1802 kobject_put(mod->holders_dir);
1803 out_unreg:
1804 mod_kobject_put(mod);
1805 out:
1806 return err;
1807 }
1808
1809 static void mod_sysfs_fini(struct module *mod)
1810 {
1811 remove_notes_attrs(mod);
1812 remove_sect_attrs(mod);
1813 mod_kobject_put(mod);
1814 }
1815
1816 static void init_param_lock(struct module *mod)
1817 {
1818 mutex_init(&mod->param_lock);
1819 }
1820 #else /* !CONFIG_SYSFS */
1821
1822 static int mod_sysfs_setup(struct module *mod,
1823 const struct load_info *info,
1824 struct kernel_param *kparam,
1825 unsigned int num_params)
1826 {
1827 return 0;
1828 }
1829
1830 static void mod_sysfs_fini(struct module *mod)
1831 {
1832 }
1833
1834 static void module_remove_modinfo_attrs(struct module *mod)
1835 {
1836 }
1837
1838 static void del_usage_links(struct module *mod)
1839 {
1840 }
1841
1842 static void init_param_lock(struct module *mod)
1843 {
1844 }
1845 #endif /* CONFIG_SYSFS */
1846
1847 static void mod_sysfs_teardown(struct module *mod)
1848 {
1849 del_usage_links(mod);
1850 module_remove_modinfo_attrs(mod);
1851 module_param_sysfs_remove(mod);
1852 kobject_put(mod->mkobj.drivers_dir);
1853 kobject_put(mod->holders_dir);
1854 mod_sysfs_fini(mod);
1855 }
1856
1857 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1858 /*
1859 * LKM RO/NX protection: protect module's text/ro-data
1860 * from modification and any data from execution.
1861 *
1862 * General layout of module is:
1863 * [text] [read-only-data] [ro-after-init] [writable data]
1864 * text_size -----^ ^ ^ ^
1865 * ro_size ------------------------| | |
1866 * ro_after_init_size -----------------------------| |
1867 * size -----------------------------------------------------------|
1868 *
1869 * These values are always page-aligned (as is base)
1870 */
1871 static void frob_text(const struct module_layout *layout,
1872 int (*set_memory)(unsigned long start, int num_pages))
1873 {
1874 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1875 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1876 set_memory((unsigned long)layout->base,
1877 layout->text_size >> PAGE_SHIFT);
1878 }
1879
1880 static void frob_rodata(const struct module_layout *layout,
1881 int (*set_memory)(unsigned long start, int num_pages))
1882 {
1883 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1884 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1885 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1886 set_memory((unsigned long)layout->base + layout->text_size,
1887 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1888 }
1889
1890 static void frob_ro_after_init(const struct module_layout *layout,
1891 int (*set_memory)(unsigned long start, int num_pages))
1892 {
1893 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1894 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1895 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1896 set_memory((unsigned long)layout->base + layout->ro_size,
1897 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1898 }
1899
1900 static void frob_writable_data(const struct module_layout *layout,
1901 int (*set_memory)(unsigned long start, int num_pages))
1902 {
1903 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1904 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1905 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1906 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1907 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1908 }
1909
1910 /* livepatching wants to disable read-only so it can frob module. */
1911 void module_disable_ro(const struct module *mod)
1912 {
1913 frob_text(&mod->core_layout, set_memory_rw);
1914 frob_rodata(&mod->core_layout, set_memory_rw);
1915 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1916 frob_text(&mod->init_layout, set_memory_rw);
1917 frob_rodata(&mod->init_layout, set_memory_rw);
1918 }
1919
1920 void module_enable_ro(const struct module *mod, bool after_init)
1921 {
1922 frob_text(&mod->core_layout, set_memory_ro);
1923 frob_rodata(&mod->core_layout, set_memory_ro);
1924 frob_text(&mod->init_layout, set_memory_ro);
1925 frob_rodata(&mod->init_layout, set_memory_ro);
1926
1927 if (after_init)
1928 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1929 }
1930
1931 static void module_enable_nx(const struct module *mod)
1932 {
1933 frob_rodata(&mod->core_layout, set_memory_nx);
1934 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1935 frob_writable_data(&mod->core_layout, set_memory_nx);
1936 frob_rodata(&mod->init_layout, set_memory_nx);
1937 frob_writable_data(&mod->init_layout, set_memory_nx);
1938 }
1939
1940 static void module_disable_nx(const struct module *mod)
1941 {
1942 frob_rodata(&mod->core_layout, set_memory_x);
1943 frob_ro_after_init(&mod->core_layout, set_memory_x);
1944 frob_writable_data(&mod->core_layout, set_memory_x);
1945 frob_rodata(&mod->init_layout, set_memory_x);
1946 frob_writable_data(&mod->init_layout, set_memory_x);
1947 }
1948
1949 /* Iterate through all modules and set each module's text as RW */
1950 void set_all_modules_text_rw(void)
1951 {
1952 struct module *mod;
1953
1954 mutex_lock(&module_mutex);
1955 list_for_each_entry_rcu(mod, &modules, list) {
1956 if (mod->state == MODULE_STATE_UNFORMED)
1957 continue;
1958
1959 frob_text(&mod->core_layout, set_memory_rw);
1960 frob_text(&mod->init_layout, set_memory_rw);
1961 }
1962 mutex_unlock(&module_mutex);
1963 }
1964
1965 /* Iterate through all modules and set each module's text as RO */
1966 void set_all_modules_text_ro(void)
1967 {
1968 struct module *mod;
1969
1970 mutex_lock(&module_mutex);
1971 list_for_each_entry_rcu(mod, &modules, list) {
1972 if (mod->state == MODULE_STATE_UNFORMED)
1973 continue;
1974
1975 frob_text(&mod->core_layout, set_memory_ro);
1976 frob_text(&mod->init_layout, set_memory_ro);
1977 }
1978 mutex_unlock(&module_mutex);
1979 }
1980
1981 static void disable_ro_nx(const struct module_layout *layout)
1982 {
1983 frob_text(layout, set_memory_rw);
1984 frob_rodata(layout, set_memory_rw);
1985 frob_rodata(layout, set_memory_x);
1986 frob_ro_after_init(layout, set_memory_rw);
1987 frob_ro_after_init(layout, set_memory_x);
1988 frob_writable_data(layout, set_memory_x);
1989 }
1990
1991 #else
1992 static void disable_ro_nx(const struct module_layout *layout) { }
1993 static void module_enable_nx(const struct module *mod) { }
1994 static void module_disable_nx(const struct module *mod) { }
1995 #endif
1996
1997 #ifdef CONFIG_LIVEPATCH
1998 /*
1999 * Persist Elf information about a module. Copy the Elf header,
2000 * section header table, section string table, and symtab section
2001 * index from info to mod->klp_info.
2002 */
2003 static int copy_module_elf(struct module *mod, struct load_info *info)
2004 {
2005 unsigned int size, symndx;
2006 int ret;
2007
2008 size = sizeof(*mod->klp_info);
2009 mod->klp_info = kmalloc(size, GFP_KERNEL);
2010 if (mod->klp_info == NULL)
2011 return -ENOMEM;
2012
2013 /* Elf header */
2014 size = sizeof(mod->klp_info->hdr);
2015 memcpy(&mod->klp_info->hdr, info->hdr, size);
2016
2017 /* Elf section header table */
2018 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2019 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2020 if (mod->klp_info->sechdrs == NULL) {
2021 ret = -ENOMEM;
2022 goto free_info;
2023 }
2024 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2025
2026 /* Elf section name string table */
2027 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2028 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2029 if (mod->klp_info->secstrings == NULL) {
2030 ret = -ENOMEM;
2031 goto free_sechdrs;
2032 }
2033 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2034
2035 /* Elf symbol section index */
2036 symndx = info->index.sym;
2037 mod->klp_info->symndx = symndx;
2038
2039 /*
2040 * For livepatch modules, core_kallsyms.symtab is a complete
2041 * copy of the original symbol table. Adjust sh_addr to point
2042 * to core_kallsyms.symtab since the copy of the symtab in module
2043 * init memory is freed at the end of do_init_module().
2044 */
2045 mod->klp_info->sechdrs[symndx].sh_addr = \
2046 (unsigned long) mod->core_kallsyms.symtab;
2047
2048 return 0;
2049
2050 free_sechdrs:
2051 kfree(mod->klp_info->sechdrs);
2052 free_info:
2053 kfree(mod->klp_info);
2054 return ret;
2055 }
2056
2057 static void free_module_elf(struct module *mod)
2058 {
2059 kfree(mod->klp_info->sechdrs);
2060 kfree(mod->klp_info->secstrings);
2061 kfree(mod->klp_info);
2062 }
2063 #else /* !CONFIG_LIVEPATCH */
2064 static int copy_module_elf(struct module *mod, struct load_info *info)
2065 {
2066 return 0;
2067 }
2068
2069 static void free_module_elf(struct module *mod)
2070 {
2071 }
2072 #endif /* CONFIG_LIVEPATCH */
2073
2074 void __weak module_memfree(void *module_region)
2075 {
2076 vfree(module_region);
2077 }
2078
2079 void __weak module_arch_cleanup(struct module *mod)
2080 {
2081 }
2082
2083 void __weak module_arch_freeing_init(struct module *mod)
2084 {
2085 }
2086
2087 /* Free a module, remove from lists, etc. */
2088 static void free_module(struct module *mod)
2089 {
2090 trace_module_free(mod);
2091
2092 mod_sysfs_teardown(mod);
2093
2094 /* We leave it in list to prevent duplicate loads, but make sure
2095 * that noone uses it while it's being deconstructed. */
2096 mutex_lock(&module_mutex);
2097 mod->state = MODULE_STATE_UNFORMED;
2098 mutex_unlock(&module_mutex);
2099
2100 /* Remove dynamic debug info */
2101 ddebug_remove_module(mod->name);
2102
2103 /* Arch-specific cleanup. */
2104 module_arch_cleanup(mod);
2105
2106 /* Module unload stuff */
2107 module_unload_free(mod);
2108
2109 /* Free any allocated parameters. */
2110 destroy_params(mod->kp, mod->num_kp);
2111
2112 if (is_livepatch_module(mod))
2113 free_module_elf(mod);
2114
2115 /* Now we can delete it from the lists */
2116 mutex_lock(&module_mutex);
2117 /* Unlink carefully: kallsyms could be walking list. */
2118 list_del_rcu(&mod->list);
2119 mod_tree_remove(mod);
2120 /* Remove this module from bug list, this uses list_del_rcu */
2121 module_bug_cleanup(mod);
2122 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2123 synchronize_sched();
2124 mutex_unlock(&module_mutex);
2125
2126 /* This may be empty, but that's OK */
2127 disable_ro_nx(&mod->init_layout);
2128 module_arch_freeing_init(mod);
2129 module_memfree(mod->init_layout.base);
2130 kfree(mod->args);
2131 percpu_modfree(mod);
2132
2133 /* Free lock-classes; relies on the preceding sync_rcu(). */
2134 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2135
2136 /* Finally, free the core (containing the module structure) */
2137 disable_ro_nx(&mod->core_layout);
2138 module_memfree(mod->core_layout.base);
2139
2140 #ifdef CONFIG_MPU
2141 update_protections(current->mm);
2142 #endif
2143 }
2144
2145 void *__symbol_get(const char *symbol)
2146 {
2147 struct module *owner;
2148 const struct kernel_symbol *sym;
2149
2150 preempt_disable();
2151 sym = find_symbol(symbol, &owner, NULL, true, true);
2152 if (sym && strong_try_module_get(owner))
2153 sym = NULL;
2154 preempt_enable();
2155
2156 return sym ? (void *)sym->value : NULL;
2157 }
2158 EXPORT_SYMBOL_GPL(__symbol_get);
2159
2160 /*
2161 * Ensure that an exported symbol [global namespace] does not already exist
2162 * in the kernel or in some other module's exported symbol table.
2163 *
2164 * You must hold the module_mutex.
2165 */
2166 static int verify_export_symbols(struct module *mod)
2167 {
2168 unsigned int i;
2169 struct module *owner;
2170 const struct kernel_symbol *s;
2171 struct {
2172 const struct kernel_symbol *sym;
2173 unsigned int num;
2174 } arr[] = {
2175 { mod->syms, mod->num_syms },
2176 { mod->gpl_syms, mod->num_gpl_syms },
2177 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2178 #ifdef CONFIG_UNUSED_SYMBOLS
2179 { mod->unused_syms, mod->num_unused_syms },
2180 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2181 #endif
2182 };
2183
2184 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2185 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2186 if (find_symbol(s->name, &owner, NULL, true, false)) {
2187 pr_err("%s: exports duplicate symbol %s"
2188 " (owned by %s)\n",
2189 mod->name, s->name, module_name(owner));
2190 return -ENOEXEC;
2191 }
2192 }
2193 }
2194 return 0;
2195 }
2196
2197 /* Change all symbols so that st_value encodes the pointer directly. */
2198 static int simplify_symbols(struct module *mod, const struct load_info *info)
2199 {
2200 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2201 Elf_Sym *sym = (void *)symsec->sh_addr;
2202 unsigned long secbase;
2203 unsigned int i;
2204 int ret = 0;
2205 const struct kernel_symbol *ksym;
2206
2207 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2208 const char *name = info->strtab + sym[i].st_name;
2209
2210 switch (sym[i].st_shndx) {
2211 case SHN_COMMON:
2212 /* Ignore common symbols */
2213 if (!strncmp(name, "__gnu_lto", 9))
2214 break;
2215
2216 /* We compiled with -fno-common. These are not
2217 supposed to happen. */
2218 pr_debug("Common symbol: %s\n", name);
2219 pr_warn("%s: please compile with -fno-common\n",
2220 mod->name);
2221 ret = -ENOEXEC;
2222 break;
2223
2224 case SHN_ABS:
2225 /* Don't need to do anything */
2226 pr_debug("Absolute symbol: 0x%08lx\n",
2227 (long)sym[i].st_value);
2228 break;
2229
2230 case SHN_LIVEPATCH:
2231 /* Livepatch symbols are resolved by livepatch */
2232 break;
2233
2234 case SHN_UNDEF:
2235 ksym = resolve_symbol_wait(mod, info, name);
2236 /* Ok if resolved. */
2237 if (ksym && !IS_ERR(ksym)) {
2238 sym[i].st_value = ksym->value;
2239 break;
2240 }
2241
2242 /* Ok if weak. */
2243 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2244 break;
2245
2246 pr_warn("%s: Unknown symbol %s (err %li)\n",
2247 mod->name, name, PTR_ERR(ksym));
2248 ret = PTR_ERR(ksym) ?: -ENOENT;
2249 break;
2250
2251 default:
2252 /* Divert to percpu allocation if a percpu var. */
2253 if (sym[i].st_shndx == info->index.pcpu)
2254 secbase = (unsigned long)mod_percpu(mod);
2255 else
2256 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2257 sym[i].st_value += secbase;
2258 break;
2259 }
2260 }
2261
2262 return ret;
2263 }
2264
2265 static int apply_relocations(struct module *mod, const struct load_info *info)
2266 {
2267 unsigned int i;
2268 int err = 0;
2269
2270 /* Now do relocations. */
2271 for (i = 1; i < info->hdr->e_shnum; i++) {
2272 unsigned int infosec = info->sechdrs[i].sh_info;
2273
2274 /* Not a valid relocation section? */
2275 if (infosec >= info->hdr->e_shnum)
2276 continue;
2277
2278 /* Don't bother with non-allocated sections */
2279 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2280 continue;
2281
2282 /* Livepatch relocation sections are applied by livepatch */
2283 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2284 continue;
2285
2286 if (info->sechdrs[i].sh_type == SHT_REL)
2287 err = apply_relocate(info->sechdrs, info->strtab,
2288 info->index.sym, i, mod);
2289 else if (info->sechdrs[i].sh_type == SHT_RELA)
2290 err = apply_relocate_add(info->sechdrs, info->strtab,
2291 info->index.sym, i, mod);
2292 if (err < 0)
2293 break;
2294 }
2295 return err;
2296 }
2297
2298 /* Additional bytes needed by arch in front of individual sections */
2299 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2300 unsigned int section)
2301 {
2302 /* default implementation just returns zero */
2303 return 0;
2304 }
2305
2306 /* Update size with this section: return offset. */
2307 static long get_offset(struct module *mod, unsigned int *size,
2308 Elf_Shdr *sechdr, unsigned int section)
2309 {
2310 long ret;
2311
2312 *size += arch_mod_section_prepend(mod, section);
2313 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2314 *size = ret + sechdr->sh_size;
2315 return ret;
2316 }
2317
2318 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2319 might -- code, read-only data, read-write data, small data. Tally
2320 sizes, and place the offsets into sh_entsize fields: high bit means it
2321 belongs in init. */
2322 static void layout_sections(struct module *mod, struct load_info *info)
2323 {
2324 static unsigned long const masks[][2] = {
2325 /* NOTE: all executable code must be the first section
2326 * in this array; otherwise modify the text_size
2327 * finder in the two loops below */
2328 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2329 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2330 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2331 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2332 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2333 };
2334 unsigned int m, i;
2335
2336 for (i = 0; i < info->hdr->e_shnum; i++)
2337 info->sechdrs[i].sh_entsize = ~0UL;
2338
2339 pr_debug("Core section allocation order:\n");
2340 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2341 for (i = 0; i < info->hdr->e_shnum; ++i) {
2342 Elf_Shdr *s = &info->sechdrs[i];
2343 const char *sname = info->secstrings + s->sh_name;
2344
2345 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2346 || (s->sh_flags & masks[m][1])
2347 || s->sh_entsize != ~0UL
2348 || strstarts(sname, ".init"))
2349 continue;
2350 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2351 pr_debug("\t%s\n", sname);
2352 }
2353 switch (m) {
2354 case 0: /* executable */
2355 mod->core_layout.size = debug_align(mod->core_layout.size);
2356 mod->core_layout.text_size = mod->core_layout.size;
2357 break;
2358 case 1: /* RO: text and ro-data */
2359 mod->core_layout.size = debug_align(mod->core_layout.size);
2360 mod->core_layout.ro_size = mod->core_layout.size;
2361 break;
2362 case 2: /* RO after init */
2363 mod->core_layout.size = debug_align(mod->core_layout.size);
2364 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2365 break;
2366 case 4: /* whole core */
2367 mod->core_layout.size = debug_align(mod->core_layout.size);
2368 break;
2369 }
2370 }
2371
2372 pr_debug("Init section allocation order:\n");
2373 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2374 for (i = 0; i < info->hdr->e_shnum; ++i) {
2375 Elf_Shdr *s = &info->sechdrs[i];
2376 const char *sname = info->secstrings + s->sh_name;
2377
2378 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2379 || (s->sh_flags & masks[m][1])
2380 || s->sh_entsize != ~0UL
2381 || !strstarts(sname, ".init"))
2382 continue;
2383 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2384 | INIT_OFFSET_MASK);
2385 pr_debug("\t%s\n", sname);
2386 }
2387 switch (m) {
2388 case 0: /* executable */
2389 mod->init_layout.size = debug_align(mod->init_layout.size);
2390 mod->init_layout.text_size = mod->init_layout.size;
2391 break;
2392 case 1: /* RO: text and ro-data */
2393 mod->init_layout.size = debug_align(mod->init_layout.size);
2394 mod->init_layout.ro_size = mod->init_layout.size;
2395 break;
2396 case 2:
2397 /*
2398 * RO after init doesn't apply to init_layout (only
2399 * core_layout), so it just takes the value of ro_size.
2400 */
2401 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2402 break;
2403 case 4: /* whole init */
2404 mod->init_layout.size = debug_align(mod->init_layout.size);
2405 break;
2406 }
2407 }
2408 }
2409
2410 static void set_license(struct module *mod, const char *license)
2411 {
2412 if (!license)
2413 license = "unspecified";
2414
2415 if (!license_is_gpl_compatible(license)) {
2416 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2417 pr_warn("%s: module license '%s' taints kernel.\n",
2418 mod->name, license);
2419 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2420 LOCKDEP_NOW_UNRELIABLE);
2421 }
2422 }
2423
2424 /* Parse tag=value strings from .modinfo section */
2425 static char *next_string(char *string, unsigned long *secsize)
2426 {
2427 /* Skip non-zero chars */
2428 while (string[0]) {
2429 string++;
2430 if ((*secsize)-- <= 1)
2431 return NULL;
2432 }
2433
2434 /* Skip any zero padding. */
2435 while (!string[0]) {
2436 string++;
2437 if ((*secsize)-- <= 1)
2438 return NULL;
2439 }
2440 return string;
2441 }
2442
2443 static char *get_modinfo(struct load_info *info, const char *tag)
2444 {
2445 char *p;
2446 unsigned int taglen = strlen(tag);
2447 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2448 unsigned long size = infosec->sh_size;
2449
2450 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2451 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2452 return p + taglen + 1;
2453 }
2454 return NULL;
2455 }
2456
2457 static void setup_modinfo(struct module *mod, struct load_info *info)
2458 {
2459 struct module_attribute *attr;
2460 int i;
2461
2462 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2463 if (attr->setup)
2464 attr->setup(mod, get_modinfo(info, attr->attr.name));
2465 }
2466 }
2467
2468 static void free_modinfo(struct module *mod)
2469 {
2470 struct module_attribute *attr;
2471 int i;
2472
2473 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2474 if (attr->free)
2475 attr->free(mod);
2476 }
2477 }
2478
2479 #ifdef CONFIG_KALLSYMS
2480
2481 /* lookup symbol in given range of kernel_symbols */
2482 static const struct kernel_symbol *lookup_symbol(const char *name,
2483 const struct kernel_symbol *start,
2484 const struct kernel_symbol *stop)
2485 {
2486 return bsearch(name, start, stop - start,
2487 sizeof(struct kernel_symbol), cmp_name);
2488 }
2489
2490 static int is_exported(const char *name, unsigned long value,
2491 const struct module *mod)
2492 {
2493 const struct kernel_symbol *ks;
2494 if (!mod)
2495 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2496 else
2497 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2498 return ks != NULL && ks->value == value;
2499 }
2500
2501 /* As per nm */
2502 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2503 {
2504 const Elf_Shdr *sechdrs = info->sechdrs;
2505
2506 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2507 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2508 return 'v';
2509 else
2510 return 'w';
2511 }
2512 if (sym->st_shndx == SHN_UNDEF)
2513 return 'U';
2514 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2515 return 'a';
2516 if (sym->st_shndx >= SHN_LORESERVE)
2517 return '?';
2518 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2519 return 't';
2520 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2521 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2522 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2523 return 'r';
2524 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2525 return 'g';
2526 else
2527 return 'd';
2528 }
2529 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2530 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2531 return 's';
2532 else
2533 return 'b';
2534 }
2535 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2536 ".debug")) {
2537 return 'n';
2538 }
2539 return '?';
2540 }
2541
2542 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2543 unsigned int shnum, unsigned int pcpundx)
2544 {
2545 const Elf_Shdr *sec;
2546
2547 if (src->st_shndx == SHN_UNDEF
2548 || src->st_shndx >= shnum
2549 || !src->st_name)
2550 return false;
2551
2552 #ifdef CONFIG_KALLSYMS_ALL
2553 if (src->st_shndx == pcpundx)
2554 return true;
2555 #endif
2556
2557 sec = sechdrs + src->st_shndx;
2558 if (!(sec->sh_flags & SHF_ALLOC)
2559 #ifndef CONFIG_KALLSYMS_ALL
2560 || !(sec->sh_flags & SHF_EXECINSTR)
2561 #endif
2562 || (sec->sh_entsize & INIT_OFFSET_MASK))
2563 return false;
2564
2565 return true;
2566 }
2567
2568 /*
2569 * We only allocate and copy the strings needed by the parts of symtab
2570 * we keep. This is simple, but has the effect of making multiple
2571 * copies of duplicates. We could be more sophisticated, see
2572 * linux-kernel thread starting with
2573 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2574 */
2575 static void layout_symtab(struct module *mod, struct load_info *info)
2576 {
2577 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2578 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2579 const Elf_Sym *src;
2580 unsigned int i, nsrc, ndst, strtab_size = 0;
2581
2582 /* Put symbol section at end of init part of module. */
2583 symsect->sh_flags |= SHF_ALLOC;
2584 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2585 info->index.sym) | INIT_OFFSET_MASK;
2586 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2587
2588 src = (void *)info->hdr + symsect->sh_offset;
2589 nsrc = symsect->sh_size / sizeof(*src);
2590
2591 /* Compute total space required for the core symbols' strtab. */
2592 for (ndst = i = 0; i < nsrc; i++) {
2593 if (i == 0 || is_livepatch_module(mod) ||
2594 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2595 info->index.pcpu)) {
2596 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2597 ndst++;
2598 }
2599 }
2600
2601 /* Append room for core symbols at end of core part. */
2602 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2603 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2604 mod->core_layout.size += strtab_size;
2605 mod->core_layout.size = debug_align(mod->core_layout.size);
2606
2607 /* Put string table section at end of init part of module. */
2608 strsect->sh_flags |= SHF_ALLOC;
2609 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2610 info->index.str) | INIT_OFFSET_MASK;
2611 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2612
2613 /* We'll tack temporary mod_kallsyms on the end. */
2614 mod->init_layout.size = ALIGN(mod->init_layout.size,
2615 __alignof__(struct mod_kallsyms));
2616 info->mod_kallsyms_init_off = mod->init_layout.size;
2617 mod->init_layout.size += sizeof(struct mod_kallsyms);
2618 mod->init_layout.size = debug_align(mod->init_layout.size);
2619 }
2620
2621 /*
2622 * We use the full symtab and strtab which layout_symtab arranged to
2623 * be appended to the init section. Later we switch to the cut-down
2624 * core-only ones.
2625 */
2626 static void add_kallsyms(struct module *mod, const struct load_info *info)
2627 {
2628 unsigned int i, ndst;
2629 const Elf_Sym *src;
2630 Elf_Sym *dst;
2631 char *s;
2632 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2633
2634 /* Set up to point into init section. */
2635 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2636
2637 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2638 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2639 /* Make sure we get permanent strtab: don't use info->strtab. */
2640 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2641
2642 /* Set types up while we still have access to sections. */
2643 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2644 mod->kallsyms->symtab[i].st_info
2645 = elf_type(&mod->kallsyms->symtab[i], info);
2646
2647 /* Now populate the cut down core kallsyms for after init. */
2648 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2649 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2650 src = mod->kallsyms->symtab;
2651 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2652 if (i == 0 || is_livepatch_module(mod) ||
2653 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2654 info->index.pcpu)) {
2655 dst[ndst] = src[i];
2656 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2657 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2658 KSYM_NAME_LEN) + 1;
2659 }
2660 }
2661 mod->core_kallsyms.num_symtab = ndst;
2662 }
2663 #else
2664 static inline void layout_symtab(struct module *mod, struct load_info *info)
2665 {
2666 }
2667
2668 static void add_kallsyms(struct module *mod, const struct load_info *info)
2669 {
2670 }
2671 #endif /* CONFIG_KALLSYMS */
2672
2673 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2674 {
2675 if (!debug)
2676 return;
2677 #ifdef CONFIG_DYNAMIC_DEBUG
2678 if (ddebug_add_module(debug, num, debug->modname))
2679 pr_err("dynamic debug error adding module: %s\n",
2680 debug->modname);
2681 #endif
2682 }
2683
2684 static void dynamic_debug_remove(struct _ddebug *debug)
2685 {
2686 if (debug)
2687 ddebug_remove_module(debug->modname);
2688 }
2689
2690 void * __weak module_alloc(unsigned long size)
2691 {
2692 return vmalloc_exec(size);
2693 }
2694
2695 #ifdef CONFIG_DEBUG_KMEMLEAK
2696 static void kmemleak_load_module(const struct module *mod,
2697 const struct load_info *info)
2698 {
2699 unsigned int i;
2700
2701 /* only scan the sections containing data */
2702 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2703
2704 for (i = 1; i < info->hdr->e_shnum; i++) {
2705 /* Scan all writable sections that's not executable */
2706 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2707 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2708 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2709 continue;
2710
2711 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2712 info->sechdrs[i].sh_size, GFP_KERNEL);
2713 }
2714 }
2715 #else
2716 static inline void kmemleak_load_module(const struct module *mod,
2717 const struct load_info *info)
2718 {
2719 }
2720 #endif
2721
2722 #ifdef CONFIG_MODULE_SIG
2723 static int module_sig_check(struct load_info *info, int flags)
2724 {
2725 int err = -ENOKEY;
2726 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2727 const void *mod = info->hdr;
2728
2729 /*
2730 * Require flags == 0, as a module with version information
2731 * removed is no longer the module that was signed
2732 */
2733 if (flags == 0 &&
2734 info->len > markerlen &&
2735 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2736 /* We truncate the module to discard the signature */
2737 info->len -= markerlen;
2738 err = mod_verify_sig(mod, &info->len);
2739 }
2740
2741 if (!err) {
2742 info->sig_ok = true;
2743 return 0;
2744 }
2745
2746 /* Not having a signature is only an error if we're strict. */
2747 if (err == -ENOKEY && !sig_enforce)
2748 err = 0;
2749
2750 return err;
2751 }
2752 #else /* !CONFIG_MODULE_SIG */
2753 static int module_sig_check(struct load_info *info, int flags)
2754 {
2755 return 0;
2756 }
2757 #endif /* !CONFIG_MODULE_SIG */
2758
2759 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2760 static int elf_header_check(struct load_info *info)
2761 {
2762 if (info->len < sizeof(*(info->hdr)))
2763 return -ENOEXEC;
2764
2765 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2766 || info->hdr->e_type != ET_REL
2767 || !elf_check_arch(info->hdr)
2768 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2769 return -ENOEXEC;
2770
2771 if (info->hdr->e_shoff >= info->len
2772 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2773 info->len - info->hdr->e_shoff))
2774 return -ENOEXEC;
2775
2776 return 0;
2777 }
2778
2779 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2780
2781 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2782 {
2783 do {
2784 unsigned long n = min(len, COPY_CHUNK_SIZE);
2785
2786 if (copy_from_user(dst, usrc, n) != 0)
2787 return -EFAULT;
2788 cond_resched();
2789 dst += n;
2790 usrc += n;
2791 len -= n;
2792 } while (len);
2793 return 0;
2794 }
2795
2796 #ifdef CONFIG_LIVEPATCH
2797 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2798 {
2799 if (get_modinfo(info, "livepatch")) {
2800 mod->klp = true;
2801 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2802 }
2803
2804 return 0;
2805 }
2806 #else /* !CONFIG_LIVEPATCH */
2807 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2808 {
2809 if (get_modinfo(info, "livepatch")) {
2810 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2811 mod->name);
2812 return -ENOEXEC;
2813 }
2814
2815 return 0;
2816 }
2817 #endif /* CONFIG_LIVEPATCH */
2818
2819 /* Sets info->hdr and info->len. */
2820 static int copy_module_from_user(const void __user *umod, unsigned long len,
2821 struct load_info *info)
2822 {
2823 int err;
2824
2825 info->len = len;
2826 if (info->len < sizeof(*(info->hdr)))
2827 return -ENOEXEC;
2828
2829 err = security_kernel_read_file(NULL, READING_MODULE);
2830 if (err)
2831 return err;
2832
2833 /* Suck in entire file: we'll want most of it. */
2834 info->hdr = __vmalloc(info->len,
2835 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2836 if (!info->hdr)
2837 return -ENOMEM;
2838
2839 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2840 vfree(info->hdr);
2841 return -EFAULT;
2842 }
2843
2844 return 0;
2845 }
2846
2847 static void free_copy(struct load_info *info)
2848 {
2849 vfree(info->hdr);
2850 }
2851
2852 static int rewrite_section_headers(struct load_info *info, int flags)
2853 {
2854 unsigned int i;
2855
2856 /* This should always be true, but let's be sure. */
2857 info->sechdrs[0].sh_addr = 0;
2858
2859 for (i = 1; i < info->hdr->e_shnum; i++) {
2860 Elf_Shdr *shdr = &info->sechdrs[i];
2861 if (shdr->sh_type != SHT_NOBITS
2862 && info->len < shdr->sh_offset + shdr->sh_size) {
2863 pr_err("Module len %lu truncated\n", info->len);
2864 return -ENOEXEC;
2865 }
2866
2867 /* Mark all sections sh_addr with their address in the
2868 temporary image. */
2869 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2870
2871 #ifndef CONFIG_MODULE_UNLOAD
2872 /* Don't load .exit sections */
2873 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2874 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2875 #endif
2876 }
2877
2878 /* Track but don't keep modinfo and version sections. */
2879 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2880 info->index.vers = 0; /* Pretend no __versions section! */
2881 else
2882 info->index.vers = find_sec(info, "__versions");
2883 info->index.info = find_sec(info, ".modinfo");
2884 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2885 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2886 return 0;
2887 }
2888
2889 /*
2890 * Set up our basic convenience variables (pointers to section headers,
2891 * search for module section index etc), and do some basic section
2892 * verification.
2893 *
2894 * Return the temporary module pointer (we'll replace it with the final
2895 * one when we move the module sections around).
2896 */
2897 static struct module *setup_load_info(struct load_info *info, int flags)
2898 {
2899 unsigned int i;
2900 int err;
2901 struct module *mod;
2902
2903 /* Set up the convenience variables */
2904 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2905 info->secstrings = (void *)info->hdr
2906 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2907
2908 err = rewrite_section_headers(info, flags);
2909 if (err)
2910 return ERR_PTR(err);
2911
2912 /* Find internal symbols and strings. */
2913 for (i = 1; i < info->hdr->e_shnum; i++) {
2914 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2915 info->index.sym = i;
2916 info->index.str = info->sechdrs[i].sh_link;
2917 info->strtab = (char *)info->hdr
2918 + info->sechdrs[info->index.str].sh_offset;
2919 break;
2920 }
2921 }
2922
2923 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2924 if (!info->index.mod) {
2925 pr_warn("No module found in object\n");
2926 return ERR_PTR(-ENOEXEC);
2927 }
2928 /* This is temporary: point mod into copy of data. */
2929 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2930
2931 if (info->index.sym == 0) {
2932 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2933 return ERR_PTR(-ENOEXEC);
2934 }
2935
2936 info->index.pcpu = find_pcpusec(info);
2937
2938 /* Check module struct version now, before we try to use module. */
2939 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2940 return ERR_PTR(-ENOEXEC);
2941
2942 return mod;
2943 }
2944
2945 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2946 {
2947 const char *modmagic = get_modinfo(info, "vermagic");
2948 int err;
2949
2950 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2951 modmagic = NULL;
2952
2953 /* This is allowed: modprobe --force will invalidate it. */
2954 if (!modmagic) {
2955 err = try_to_force_load(mod, "bad vermagic");
2956 if (err)
2957 return err;
2958 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2959 pr_err("%s: version magic '%s' should be '%s'\n",
2960 mod->name, modmagic, vermagic);
2961 return -ENOEXEC;
2962 }
2963
2964 if (!get_modinfo(info, "intree")) {
2965 if (!test_taint(TAINT_OOT_MODULE))
2966 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2967 mod->name);
2968 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2969 }
2970
2971 if (get_modinfo(info, "staging")) {
2972 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2973 pr_warn("%s: module is from the staging directory, the quality "
2974 "is unknown, you have been warned.\n", mod->name);
2975 }
2976
2977 err = check_modinfo_livepatch(mod, info);
2978 if (err)
2979 return err;
2980
2981 /* Set up license info based on the info section */
2982 set_license(mod, get_modinfo(info, "license"));
2983
2984 return 0;
2985 }
2986
2987 static int find_module_sections(struct module *mod, struct load_info *info)
2988 {
2989 mod->kp = section_objs(info, "__param",
2990 sizeof(*mod->kp), &mod->num_kp);
2991 mod->syms = section_objs(info, "__ksymtab",
2992 sizeof(*mod->syms), &mod->num_syms);
2993 mod->crcs = section_addr(info, "__kcrctab");
2994 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2995 sizeof(*mod->gpl_syms),
2996 &mod->num_gpl_syms);
2997 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2998 mod->gpl_future_syms = section_objs(info,
2999 "__ksymtab_gpl_future",
3000 sizeof(*mod->gpl_future_syms),
3001 &mod->num_gpl_future_syms);
3002 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3003
3004 #ifdef CONFIG_UNUSED_SYMBOLS
3005 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3006 sizeof(*mod->unused_syms),
3007 &mod->num_unused_syms);
3008 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3009 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3010 sizeof(*mod->unused_gpl_syms),
3011 &mod->num_unused_gpl_syms);
3012 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3013 #endif
3014 #ifdef CONFIG_CONSTRUCTORS
3015 mod->ctors = section_objs(info, ".ctors",
3016 sizeof(*mod->ctors), &mod->num_ctors);
3017 if (!mod->ctors)
3018 mod->ctors = section_objs(info, ".init_array",
3019 sizeof(*mod->ctors), &mod->num_ctors);
3020 else if (find_sec(info, ".init_array")) {
3021 /*
3022 * This shouldn't happen with same compiler and binutils
3023 * building all parts of the module.
3024 */
3025 pr_warn("%s: has both .ctors and .init_array.\n",
3026 mod->name);
3027 return -EINVAL;
3028 }
3029 #endif
3030
3031 #ifdef CONFIG_TRACEPOINTS
3032 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3033 sizeof(*mod->tracepoints_ptrs),
3034 &mod->num_tracepoints);
3035 #endif
3036 #ifdef HAVE_JUMP_LABEL
3037 mod->jump_entries = section_objs(info, "__jump_table",
3038 sizeof(*mod->jump_entries),
3039 &mod->num_jump_entries);
3040 #endif
3041 #ifdef CONFIG_EVENT_TRACING
3042 mod->trace_events = section_objs(info, "_ftrace_events",
3043 sizeof(*mod->trace_events),
3044 &mod->num_trace_events);
3045 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3046 sizeof(*mod->trace_enums),
3047 &mod->num_trace_enums);
3048 #endif
3049 #ifdef CONFIG_TRACING
3050 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3051 sizeof(*mod->trace_bprintk_fmt_start),
3052 &mod->num_trace_bprintk_fmt);
3053 #endif
3054 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3055 /* sechdrs[0].sh_size is always zero */
3056 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3057 sizeof(*mod->ftrace_callsites),
3058 &mod->num_ftrace_callsites);
3059 #endif
3060
3061 mod->extable = section_objs(info, "__ex_table",
3062 sizeof(*mod->extable), &mod->num_exentries);
3063
3064 if (section_addr(info, "__obsparm"))
3065 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3066
3067 info->debug = section_objs(info, "__verbose",
3068 sizeof(*info->debug), &info->num_debug);
3069
3070 return 0;
3071 }
3072
3073 static int move_module(struct module *mod, struct load_info *info)
3074 {
3075 int i;
3076 void *ptr;
3077
3078 /* Do the allocs. */
3079 ptr = module_alloc(mod->core_layout.size);
3080 /*
3081 * The pointer to this block is stored in the module structure
3082 * which is inside the block. Just mark it as not being a
3083 * leak.
3084 */
3085 kmemleak_not_leak(ptr);
3086 if (!ptr)
3087 return -ENOMEM;
3088
3089 memset(ptr, 0, mod->core_layout.size);
3090 mod->core_layout.base = ptr;
3091
3092 if (mod->init_layout.size) {
3093 ptr = module_alloc(mod->init_layout.size);
3094 /*
3095 * The pointer to this block is stored in the module structure
3096 * which is inside the block. This block doesn't need to be
3097 * scanned as it contains data and code that will be freed
3098 * after the module is initialized.
3099 */
3100 kmemleak_ignore(ptr);
3101 if (!ptr) {
3102 module_memfree(mod->core_layout.base);
3103 return -ENOMEM;
3104 }
3105 memset(ptr, 0, mod->init_layout.size);
3106 mod->init_layout.base = ptr;
3107 } else
3108 mod->init_layout.base = NULL;
3109
3110 /* Transfer each section which specifies SHF_ALLOC */
3111 pr_debug("final section addresses:\n");
3112 for (i = 0; i < info->hdr->e_shnum; i++) {
3113 void *dest;
3114 Elf_Shdr *shdr = &info->sechdrs[i];
3115
3116 if (!(shdr->sh_flags & SHF_ALLOC))
3117 continue;
3118
3119 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3120 dest = mod->init_layout.base
3121 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3122 else
3123 dest = mod->core_layout.base + shdr->sh_entsize;
3124
3125 if (shdr->sh_type != SHT_NOBITS)
3126 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3127 /* Update sh_addr to point to copy in image. */
3128 shdr->sh_addr = (unsigned long)dest;
3129 pr_debug("\t0x%lx %s\n",
3130 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3131 }
3132
3133 return 0;
3134 }
3135
3136 static int check_module_license_and_versions(struct module *mod)
3137 {
3138 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3139
3140 /*
3141 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3142 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3143 * using GPL-only symbols it needs.
3144 */
3145 if (strcmp(mod->name, "ndiswrapper") == 0)
3146 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3147
3148 /* driverloader was caught wrongly pretending to be under GPL */
3149 if (strcmp(mod->name, "driverloader") == 0)
3150 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3151 LOCKDEP_NOW_UNRELIABLE);
3152
3153 /* lve claims to be GPL but upstream won't provide source */
3154 if (strcmp(mod->name, "lve") == 0)
3155 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3156 LOCKDEP_NOW_UNRELIABLE);
3157
3158 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3159 pr_warn("%s: module license taints kernel.\n", mod->name);
3160
3161 #ifdef CONFIG_MODVERSIONS
3162 if ((mod->num_syms && !mod->crcs)
3163 || (mod->num_gpl_syms && !mod->gpl_crcs)
3164 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3165 #ifdef CONFIG_UNUSED_SYMBOLS
3166 || (mod->num_unused_syms && !mod->unused_crcs)
3167 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3168 #endif
3169 ) {
3170 return try_to_force_load(mod,
3171 "no versions for exported symbols");
3172 }
3173 #endif
3174 return 0;
3175 }
3176
3177 static void flush_module_icache(const struct module *mod)
3178 {
3179 mm_segment_t old_fs;
3180
3181 /* flush the icache in correct context */
3182 old_fs = get_fs();
3183 set_fs(KERNEL_DS);
3184
3185 /*
3186 * Flush the instruction cache, since we've played with text.
3187 * Do it before processing of module parameters, so the module
3188 * can provide parameter accessor functions of its own.
3189 */
3190 if (mod->init_layout.base)
3191 flush_icache_range((unsigned long)mod->init_layout.base,
3192 (unsigned long)mod->init_layout.base
3193 + mod->init_layout.size);
3194 flush_icache_range((unsigned long)mod->core_layout.base,
3195 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3196
3197 set_fs(old_fs);
3198 }
3199
3200 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3201 Elf_Shdr *sechdrs,
3202 char *secstrings,
3203 struct module *mod)
3204 {
3205 return 0;
3206 }
3207
3208 /* module_blacklist is a comma-separated list of module names */
3209 static char *module_blacklist;
3210 static bool blacklisted(char *module_name)
3211 {
3212 const char *p;
3213 size_t len;
3214
3215 if (!module_blacklist)
3216 return false;
3217
3218 for (p = module_blacklist; *p; p += len) {
3219 len = strcspn(p, ",");
3220 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3221 return true;
3222 if (p[len] == ',')
3223 len++;
3224 }
3225 return false;
3226 }
3227 core_param(module_blacklist, module_blacklist, charp, 0400);
3228
3229 static struct module *layout_and_allocate(struct load_info *info, int flags)
3230 {
3231 /* Module within temporary copy. */
3232 struct module *mod;
3233 unsigned int ndx;
3234 int err;
3235
3236 mod = setup_load_info(info, flags);
3237 if (IS_ERR(mod))
3238 return mod;
3239
3240 if (blacklisted(mod->name))
3241 return ERR_PTR(-EPERM);
3242
3243 err = check_modinfo(mod, info, flags);
3244 if (err)
3245 return ERR_PTR(err);
3246
3247 /* Allow arches to frob section contents and sizes. */
3248 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3249 info->secstrings, mod);
3250 if (err < 0)
3251 return ERR_PTR(err);
3252
3253 /* We will do a special allocation for per-cpu sections later. */
3254 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3255
3256 /*
3257 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3258 * layout_sections() can put it in the right place.
3259 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3260 */
3261 ndx = find_sec(info, ".data..ro_after_init");
3262 if (ndx)
3263 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3264
3265 /* Determine total sizes, and put offsets in sh_entsize. For now
3266 this is done generically; there doesn't appear to be any
3267 special cases for the architectures. */
3268 layout_sections(mod, info);
3269 layout_symtab(mod, info);
3270
3271 /* Allocate and move to the final place */
3272 err = move_module(mod, info);
3273 if (err)
3274 return ERR_PTR(err);
3275
3276 /* Module has been copied to its final place now: return it. */
3277 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3278 kmemleak_load_module(mod, info);
3279 return mod;
3280 }
3281
3282 /* mod is no longer valid after this! */
3283 static void module_deallocate(struct module *mod, struct load_info *info)
3284 {
3285 percpu_modfree(mod);
3286 module_arch_freeing_init(mod);
3287 module_memfree(mod->init_layout.base);
3288 module_memfree(mod->core_layout.base);
3289 }
3290
3291 int __weak module_finalize(const Elf_Ehdr *hdr,
3292 const Elf_Shdr *sechdrs,
3293 struct module *me)
3294 {
3295 return 0;
3296 }
3297
3298 static int post_relocation(struct module *mod, const struct load_info *info)
3299 {
3300 /* Sort exception table now relocations are done. */
3301 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3302
3303 /* Copy relocated percpu area over. */
3304 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3305 info->sechdrs[info->index.pcpu].sh_size);
3306
3307 /* Setup kallsyms-specific fields. */
3308 add_kallsyms(mod, info);
3309
3310 /* Arch-specific module finalizing. */
3311 return module_finalize(info->hdr, info->sechdrs, mod);
3312 }
3313
3314 /* Is this module of this name done loading? No locks held. */
3315 static bool finished_loading(const char *name)
3316 {
3317 struct module *mod;
3318 bool ret;
3319
3320 /*
3321 * The module_mutex should not be a heavily contended lock;
3322 * if we get the occasional sleep here, we'll go an extra iteration
3323 * in the wait_event_interruptible(), which is harmless.
3324 */
3325 sched_annotate_sleep();
3326 mutex_lock(&module_mutex);
3327 mod = find_module_all(name, strlen(name), true);
3328 ret = !mod || mod->state == MODULE_STATE_LIVE
3329 || mod->state == MODULE_STATE_GOING;
3330 mutex_unlock(&module_mutex);
3331
3332 return ret;
3333 }
3334
3335 /* Call module constructors. */
3336 static void do_mod_ctors(struct module *mod)
3337 {
3338 #ifdef CONFIG_CONSTRUCTORS
3339 unsigned long i;
3340
3341 for (i = 0; i < mod->num_ctors; i++)
3342 mod->ctors[i]();
3343 #endif
3344 }
3345
3346 /* For freeing module_init on success, in case kallsyms traversing */
3347 struct mod_initfree {
3348 struct rcu_head rcu;
3349 void *module_init;
3350 };
3351
3352 static void do_free_init(struct rcu_head *head)
3353 {
3354 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3355 module_memfree(m->module_init);
3356 kfree(m);
3357 }
3358
3359 /*
3360 * This is where the real work happens.
3361 *
3362 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3363 * helper command 'lx-symbols'.
3364 */
3365 static noinline int do_init_module(struct module *mod)
3366 {
3367 int ret = 0;
3368 struct mod_initfree *freeinit;
3369
3370 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3371 if (!freeinit) {
3372 ret = -ENOMEM;
3373 goto fail;
3374 }
3375 freeinit->module_init = mod->init_layout.base;
3376
3377 /*
3378 * We want to find out whether @mod uses async during init. Clear
3379 * PF_USED_ASYNC. async_schedule*() will set it.
3380 */
3381 current->flags &= ~PF_USED_ASYNC;
3382
3383 do_mod_ctors(mod);
3384 /* Start the module */
3385 if (mod->init != NULL)
3386 ret = do_one_initcall(mod->init);
3387 if (ret < 0) {
3388 goto fail_free_freeinit;
3389 }
3390 if (ret > 0) {
3391 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3392 "follow 0/-E convention\n"
3393 "%s: loading module anyway...\n",
3394 __func__, mod->name, ret, __func__);
3395 dump_stack();
3396 }
3397
3398 /* Now it's a first class citizen! */
3399 mod->state = MODULE_STATE_LIVE;
3400 blocking_notifier_call_chain(&module_notify_list,
3401 MODULE_STATE_LIVE, mod);
3402
3403 /*
3404 * We need to finish all async code before the module init sequence
3405 * is done. This has potential to deadlock. For example, a newly
3406 * detected block device can trigger request_module() of the
3407 * default iosched from async probing task. Once userland helper
3408 * reaches here, async_synchronize_full() will wait on the async
3409 * task waiting on request_module() and deadlock.
3410 *
3411 * This deadlock is avoided by perfomring async_synchronize_full()
3412 * iff module init queued any async jobs. This isn't a full
3413 * solution as it will deadlock the same if module loading from
3414 * async jobs nests more than once; however, due to the various
3415 * constraints, this hack seems to be the best option for now.
3416 * Please refer to the following thread for details.
3417 *
3418 * http://thread.gmane.org/gmane.linux.kernel/1420814
3419 */
3420 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3421 async_synchronize_full();
3422
3423 mutex_lock(&module_mutex);
3424 /* Drop initial reference. */
3425 module_put(mod);
3426 trim_init_extable(mod);
3427 #ifdef CONFIG_KALLSYMS
3428 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3429 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3430 #endif
3431 module_enable_ro(mod, true);
3432 mod_tree_remove_init(mod);
3433 disable_ro_nx(&mod->init_layout);
3434 module_arch_freeing_init(mod);
3435 mod->init_layout.base = NULL;
3436 mod->init_layout.size = 0;
3437 mod->init_layout.ro_size = 0;
3438 mod->init_layout.ro_after_init_size = 0;
3439 mod->init_layout.text_size = 0;
3440 /*
3441 * We want to free module_init, but be aware that kallsyms may be
3442 * walking this with preempt disabled. In all the failure paths, we
3443 * call synchronize_sched(), but we don't want to slow down the success
3444 * path, so use actual RCU here.
3445 */
3446 call_rcu_sched(&freeinit->rcu, do_free_init);
3447 mutex_unlock(&module_mutex);
3448 wake_up_all(&module_wq);
3449
3450 return 0;
3451
3452 fail_free_freeinit:
3453 kfree(freeinit);
3454 fail:
3455 /* Try to protect us from buggy refcounters. */
3456 mod->state = MODULE_STATE_GOING;
3457 synchronize_sched();
3458 module_put(mod);
3459 blocking_notifier_call_chain(&module_notify_list,
3460 MODULE_STATE_GOING, mod);
3461 klp_module_going(mod);
3462 ftrace_release_mod(mod);
3463 free_module(mod);
3464 wake_up_all(&module_wq);
3465 return ret;
3466 }
3467
3468 static int may_init_module(void)
3469 {
3470 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3471 return -EPERM;
3472
3473 return 0;
3474 }
3475
3476 /*
3477 * We try to place it in the list now to make sure it's unique before
3478 * we dedicate too many resources. In particular, temporary percpu
3479 * memory exhaustion.
3480 */
3481 static int add_unformed_module(struct module *mod)
3482 {
3483 int err;
3484 struct module *old;
3485
3486 mod->state = MODULE_STATE_UNFORMED;
3487
3488 again:
3489 mutex_lock(&module_mutex);
3490 old = find_module_all(mod->name, strlen(mod->name), true);
3491 if (old != NULL) {
3492 if (old->state == MODULE_STATE_COMING
3493 || old->state == MODULE_STATE_UNFORMED) {
3494 /* Wait in case it fails to load. */
3495 mutex_unlock(&module_mutex);
3496 err = wait_event_interruptible(module_wq,
3497 finished_loading(mod->name));
3498 if (err)
3499 goto out_unlocked;
3500 goto again;
3501 }
3502 err = -EEXIST;
3503 goto out;
3504 }
3505 mod_update_bounds(mod);
3506 list_add_rcu(&mod->list, &modules);
3507 mod_tree_insert(mod);
3508 err = 0;
3509
3510 out:
3511 mutex_unlock(&module_mutex);
3512 out_unlocked:
3513 return err;
3514 }
3515
3516 static int complete_formation(struct module *mod, struct load_info *info)
3517 {
3518 int err;
3519
3520 mutex_lock(&module_mutex);
3521
3522 /* Find duplicate symbols (must be called under lock). */
3523 err = verify_export_symbols(mod);
3524 if (err < 0)
3525 goto out;
3526
3527 /* This relies on module_mutex for list integrity. */
3528 module_bug_finalize(info->hdr, info->sechdrs, mod);
3529
3530 module_enable_ro(mod, false);
3531 module_enable_nx(mod);
3532
3533 /* Mark state as coming so strong_try_module_get() ignores us,
3534 * but kallsyms etc. can see us. */
3535 mod->state = MODULE_STATE_COMING;
3536 mutex_unlock(&module_mutex);
3537
3538 return 0;
3539
3540 out:
3541 mutex_unlock(&module_mutex);
3542 return err;
3543 }
3544
3545 static int prepare_coming_module(struct module *mod)
3546 {
3547 int err;
3548
3549 ftrace_module_enable(mod);
3550 err = klp_module_coming(mod);
3551 if (err)
3552 return err;
3553
3554 blocking_notifier_call_chain(&module_notify_list,
3555 MODULE_STATE_COMING, mod);
3556 return 0;
3557 }
3558
3559 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3560 void *arg)
3561 {
3562 struct module *mod = arg;
3563 int ret;
3564
3565 if (strcmp(param, "async_probe") == 0) {
3566 mod->async_probe_requested = true;
3567 return 0;
3568 }
3569
3570 /* Check for magic 'dyndbg' arg */
3571 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3572 if (ret != 0)
3573 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3574 return 0;
3575 }
3576
3577 /* Allocate and load the module: note that size of section 0 is always
3578 zero, and we rely on this for optional sections. */
3579 static int load_module(struct load_info *info, const char __user *uargs,
3580 int flags)
3581 {
3582 struct module *mod;
3583 long err;
3584 char *after_dashes;
3585
3586 err = module_sig_check(info, flags);
3587 if (err)
3588 goto free_copy;
3589
3590 err = elf_header_check(info);
3591 if (err)
3592 goto free_copy;
3593
3594 /* Figure out module layout, and allocate all the memory. */
3595 mod = layout_and_allocate(info, flags);
3596 if (IS_ERR(mod)) {
3597 err = PTR_ERR(mod);
3598 goto free_copy;
3599 }
3600
3601 /* Reserve our place in the list. */
3602 err = add_unformed_module(mod);
3603 if (err)
3604 goto free_module;
3605
3606 #ifdef CONFIG_MODULE_SIG
3607 mod->sig_ok = info->sig_ok;
3608 if (!mod->sig_ok) {
3609 pr_notice_once("%s: module verification failed: signature "
3610 "and/or required key missing - tainting "
3611 "kernel\n", mod->name);
3612 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3613 }
3614 #endif
3615
3616 /* To avoid stressing percpu allocator, do this once we're unique. */
3617 err = percpu_modalloc(mod, info);
3618 if (err)
3619 goto unlink_mod;
3620
3621 /* Now module is in final location, initialize linked lists, etc. */
3622 err = module_unload_init(mod);
3623 if (err)
3624 goto unlink_mod;
3625
3626 init_param_lock(mod);
3627
3628 /* Now we've got everything in the final locations, we can
3629 * find optional sections. */
3630 err = find_module_sections(mod, info);
3631 if (err)
3632 goto free_unload;
3633
3634 err = check_module_license_and_versions(mod);
3635 if (err)
3636 goto free_unload;
3637
3638 /* Set up MODINFO_ATTR fields */
3639 setup_modinfo(mod, info);
3640
3641 /* Fix up syms, so that st_value is a pointer to location. */
3642 err = simplify_symbols(mod, info);
3643 if (err < 0)
3644 goto free_modinfo;
3645
3646 err = apply_relocations(mod, info);
3647 if (err < 0)
3648 goto free_modinfo;
3649
3650 err = post_relocation(mod, info);
3651 if (err < 0)
3652 goto free_modinfo;
3653
3654 flush_module_icache(mod);
3655
3656 /* Now copy in args */
3657 mod->args = strndup_user(uargs, ~0UL >> 1);
3658 if (IS_ERR(mod->args)) {
3659 err = PTR_ERR(mod->args);
3660 goto free_arch_cleanup;
3661 }
3662
3663 dynamic_debug_setup(info->debug, info->num_debug);
3664
3665 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3666 ftrace_module_init(mod);
3667
3668 /* Finally it's fully formed, ready to start executing. */
3669 err = complete_formation(mod, info);
3670 if (err)
3671 goto ddebug_cleanup;
3672
3673 err = prepare_coming_module(mod);
3674 if (err)
3675 goto bug_cleanup;
3676
3677 /* Module is ready to execute: parsing args may do that. */
3678 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3679 -32768, 32767, mod,
3680 unknown_module_param_cb);
3681 if (IS_ERR(after_dashes)) {
3682 err = PTR_ERR(after_dashes);
3683 goto coming_cleanup;
3684 } else if (after_dashes) {
3685 pr_warn("%s: parameters '%s' after `--' ignored\n",
3686 mod->name, after_dashes);
3687 }
3688
3689 /* Link in to syfs. */
3690 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3691 if (err < 0)
3692 goto coming_cleanup;
3693
3694 if (is_livepatch_module(mod)) {
3695 err = copy_module_elf(mod, info);
3696 if (err < 0)
3697 goto sysfs_cleanup;
3698 }
3699
3700 /* Get rid of temporary copy. */
3701 free_copy(info);
3702
3703 /* Done! */
3704 trace_module_load(mod);
3705
3706 return do_init_module(mod);
3707
3708 sysfs_cleanup:
3709 mod_sysfs_teardown(mod);
3710 coming_cleanup:
3711 blocking_notifier_call_chain(&module_notify_list,
3712 MODULE_STATE_GOING, mod);
3713 klp_module_going(mod);
3714 bug_cleanup:
3715 /* module_bug_cleanup needs module_mutex protection */
3716 mutex_lock(&module_mutex);
3717 module_bug_cleanup(mod);
3718 mutex_unlock(&module_mutex);
3719
3720 /* we can't deallocate the module until we clear memory protection */
3721 module_disable_ro(mod);
3722 module_disable_nx(mod);
3723
3724 ddebug_cleanup:
3725 dynamic_debug_remove(info->debug);
3726 synchronize_sched();
3727 kfree(mod->args);
3728 free_arch_cleanup:
3729 module_arch_cleanup(mod);
3730 free_modinfo:
3731 free_modinfo(mod);
3732 free_unload:
3733 module_unload_free(mod);
3734 unlink_mod:
3735 mutex_lock(&module_mutex);
3736 /* Unlink carefully: kallsyms could be walking list. */
3737 list_del_rcu(&mod->list);
3738 mod_tree_remove(mod);
3739 wake_up_all(&module_wq);
3740 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3741 synchronize_sched();
3742 mutex_unlock(&module_mutex);
3743 free_module:
3744 /*
3745 * Ftrace needs to clean up what it initialized.
3746 * This does nothing if ftrace_module_init() wasn't called,
3747 * but it must be called outside of module_mutex.
3748 */
3749 ftrace_release_mod(mod);
3750 /* Free lock-classes; relies on the preceding sync_rcu() */
3751 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3752
3753 module_deallocate(mod, info);
3754 free_copy:
3755 free_copy(info);
3756 return err;
3757 }
3758
3759 SYSCALL_DEFINE3(init_module, void __user *, umod,
3760 unsigned long, len, const char __user *, uargs)
3761 {
3762 int err;
3763 struct load_info info = { };
3764
3765 err = may_init_module();
3766 if (err)
3767 return err;
3768
3769 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3770 umod, len, uargs);
3771
3772 err = copy_module_from_user(umod, len, &info);
3773 if (err)
3774 return err;
3775
3776 return load_module(&info, uargs, 0);
3777 }
3778
3779 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3780 {
3781 struct load_info info = { };
3782 loff_t size;
3783 void *hdr;
3784 int err;
3785
3786 err = may_init_module();
3787 if (err)
3788 return err;
3789
3790 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3791
3792 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3793 |MODULE_INIT_IGNORE_VERMAGIC))
3794 return -EINVAL;
3795
3796 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3797 READING_MODULE);
3798 if (err)
3799 return err;
3800 info.hdr = hdr;
3801 info.len = size;
3802
3803 return load_module(&info, uargs, flags);
3804 }
3805
3806 static inline int within(unsigned long addr, void *start, unsigned long size)
3807 {
3808 return ((void *)addr >= start && (void *)addr < start + size);
3809 }
3810
3811 #ifdef CONFIG_KALLSYMS
3812 /*
3813 * This ignores the intensely annoying "mapping symbols" found
3814 * in ARM ELF files: $a, $t and $d.
3815 */
3816 static inline int is_arm_mapping_symbol(const char *str)
3817 {
3818 if (str[0] == '.' && str[1] == 'L')
3819 return true;
3820 return str[0] == '$' && strchr("axtd", str[1])
3821 && (str[2] == '\0' || str[2] == '.');
3822 }
3823
3824 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3825 {
3826 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3827 }
3828
3829 static const char *get_ksymbol(struct module *mod,
3830 unsigned long addr,
3831 unsigned long *size,
3832 unsigned long *offset)
3833 {
3834 unsigned int i, best = 0;
3835 unsigned long nextval;
3836 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3837
3838 /* At worse, next value is at end of module */
3839 if (within_module_init(addr, mod))
3840 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3841 else
3842 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3843
3844 /* Scan for closest preceding symbol, and next symbol. (ELF
3845 starts real symbols at 1). */
3846 for (i = 1; i < kallsyms->num_symtab; i++) {
3847 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3848 continue;
3849
3850 /* We ignore unnamed symbols: they're uninformative
3851 * and inserted at a whim. */
3852 if (*symname(kallsyms, i) == '\0'
3853 || is_arm_mapping_symbol(symname(kallsyms, i)))
3854 continue;
3855
3856 if (kallsyms->symtab[i].st_value <= addr
3857 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3858 best = i;
3859 if (kallsyms->symtab[i].st_value > addr
3860 && kallsyms->symtab[i].st_value < nextval)
3861 nextval = kallsyms->symtab[i].st_value;
3862 }
3863
3864 if (!best)
3865 return NULL;
3866
3867 if (size)
3868 *size = nextval - kallsyms->symtab[best].st_value;
3869 if (offset)
3870 *offset = addr - kallsyms->symtab[best].st_value;
3871 return symname(kallsyms, best);
3872 }
3873
3874 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3875 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3876 const char *module_address_lookup(unsigned long addr,
3877 unsigned long *size,
3878 unsigned long *offset,
3879 char **modname,
3880 char *namebuf)
3881 {
3882 const char *ret = NULL;
3883 struct module *mod;
3884
3885 preempt_disable();
3886 mod = __module_address(addr);
3887 if (mod) {
3888 if (modname)
3889 *modname = mod->name;
3890 ret = get_ksymbol(mod, addr, size, offset);
3891 }
3892 /* Make a copy in here where it's safe */
3893 if (ret) {
3894 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3895 ret = namebuf;
3896 }
3897 preempt_enable();
3898
3899 return ret;
3900 }
3901
3902 int lookup_module_symbol_name(unsigned long addr, char *symname)
3903 {
3904 struct module *mod;
3905
3906 preempt_disable();
3907 list_for_each_entry_rcu(mod, &modules, list) {
3908 if (mod->state == MODULE_STATE_UNFORMED)
3909 continue;
3910 if (within_module(addr, mod)) {
3911 const char *sym;
3912
3913 sym = get_ksymbol(mod, addr, NULL, NULL);
3914 if (!sym)
3915 goto out;
3916 strlcpy(symname, sym, KSYM_NAME_LEN);
3917 preempt_enable();
3918 return 0;
3919 }
3920 }
3921 out:
3922 preempt_enable();
3923 return -ERANGE;
3924 }
3925
3926 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3927 unsigned long *offset, char *modname, char *name)
3928 {
3929 struct module *mod;
3930
3931 preempt_disable();
3932 list_for_each_entry_rcu(mod, &modules, list) {
3933 if (mod->state == MODULE_STATE_UNFORMED)
3934 continue;
3935 if (within_module(addr, mod)) {
3936 const char *sym;
3937
3938 sym = get_ksymbol(mod, addr, size, offset);
3939 if (!sym)
3940 goto out;
3941 if (modname)
3942 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3943 if (name)
3944 strlcpy(name, sym, KSYM_NAME_LEN);
3945 preempt_enable();
3946 return 0;
3947 }
3948 }
3949 out:
3950 preempt_enable();
3951 return -ERANGE;
3952 }
3953
3954 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3955 char *name, char *module_name, int *exported)
3956 {
3957 struct module *mod;
3958
3959 preempt_disable();
3960 list_for_each_entry_rcu(mod, &modules, list) {
3961 struct mod_kallsyms *kallsyms;
3962
3963 if (mod->state == MODULE_STATE_UNFORMED)
3964 continue;
3965 kallsyms = rcu_dereference_sched(mod->kallsyms);
3966 if (symnum < kallsyms->num_symtab) {
3967 *value = kallsyms->symtab[symnum].st_value;
3968 *type = kallsyms->symtab[symnum].st_info;
3969 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3970 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3971 *exported = is_exported(name, *value, mod);
3972 preempt_enable();
3973 return 0;
3974 }
3975 symnum -= kallsyms->num_symtab;
3976 }
3977 preempt_enable();
3978 return -ERANGE;
3979 }
3980
3981 static unsigned long mod_find_symname(struct module *mod, const char *name)
3982 {
3983 unsigned int i;
3984 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3985
3986 for (i = 0; i < kallsyms->num_symtab; i++)
3987 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3988 kallsyms->symtab[i].st_info != 'U')
3989 return kallsyms->symtab[i].st_value;
3990 return 0;
3991 }
3992
3993 /* Look for this name: can be of form module:name. */
3994 unsigned long module_kallsyms_lookup_name(const char *name)
3995 {
3996 struct module *mod;
3997 char *colon;
3998 unsigned long ret = 0;
3999
4000 /* Don't lock: we're in enough trouble already. */
4001 preempt_disable();
4002 if ((colon = strchr(name, ':')) != NULL) {
4003 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4004 ret = mod_find_symname(mod, colon+1);
4005 } else {
4006 list_for_each_entry_rcu(mod, &modules, list) {
4007 if (mod->state == MODULE_STATE_UNFORMED)
4008 continue;
4009 if ((ret = mod_find_symname(mod, name)) != 0)
4010 break;
4011 }
4012 }
4013 preempt_enable();
4014 return ret;
4015 }
4016
4017 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4018 struct module *, unsigned long),
4019 void *data)
4020 {
4021 struct module *mod;
4022 unsigned int i;
4023 int ret;
4024
4025 module_assert_mutex();
4026
4027 list_for_each_entry(mod, &modules, list) {
4028 /* We hold module_mutex: no need for rcu_dereference_sched */
4029 struct mod_kallsyms *kallsyms = mod->kallsyms;
4030
4031 if (mod->state == MODULE_STATE_UNFORMED)
4032 continue;
4033 for (i = 0; i < kallsyms->num_symtab; i++) {
4034 ret = fn(data, symname(kallsyms, i),
4035 mod, kallsyms->symtab[i].st_value);
4036 if (ret != 0)
4037 return ret;
4038 }
4039 }
4040 return 0;
4041 }
4042 #endif /* CONFIG_KALLSYMS */
4043
4044 static char *module_flags(struct module *mod, char *buf)
4045 {
4046 int bx = 0;
4047
4048 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4049 if (mod->taints ||
4050 mod->state == MODULE_STATE_GOING ||
4051 mod->state == MODULE_STATE_COMING) {
4052 buf[bx++] = '(';
4053 bx += module_flags_taint(mod, buf + bx);
4054 /* Show a - for module-is-being-unloaded */
4055 if (mod->state == MODULE_STATE_GOING)
4056 buf[bx++] = '-';
4057 /* Show a + for module-is-being-loaded */
4058 if (mod->state == MODULE_STATE_COMING)
4059 buf[bx++] = '+';
4060 buf[bx++] = ')';
4061 }
4062 buf[bx] = '\0';
4063
4064 return buf;
4065 }
4066
4067 #ifdef CONFIG_PROC_FS
4068 /* Called by the /proc file system to return a list of modules. */
4069 static void *m_start(struct seq_file *m, loff_t *pos)
4070 {
4071 mutex_lock(&module_mutex);
4072 return seq_list_start(&modules, *pos);
4073 }
4074
4075 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4076 {
4077 return seq_list_next(p, &modules, pos);
4078 }
4079
4080 static void m_stop(struct seq_file *m, void *p)
4081 {
4082 mutex_unlock(&module_mutex);
4083 }
4084
4085 static int m_show(struct seq_file *m, void *p)
4086 {
4087 struct module *mod = list_entry(p, struct module, list);
4088 char buf[8];
4089
4090 /* We always ignore unformed modules. */
4091 if (mod->state == MODULE_STATE_UNFORMED)
4092 return 0;
4093
4094 seq_printf(m, "%s %u",
4095 mod->name, mod->init_layout.size + mod->core_layout.size);
4096 print_unload_info(m, mod);
4097
4098 /* Informative for users. */
4099 seq_printf(m, " %s",
4100 mod->state == MODULE_STATE_GOING ? "Unloading" :
4101 mod->state == MODULE_STATE_COMING ? "Loading" :
4102 "Live");
4103 /* Used by oprofile and other similar tools. */
4104 seq_printf(m, " 0x%pK", mod->core_layout.base);
4105
4106 /* Taints info */
4107 if (mod->taints)
4108 seq_printf(m, " %s", module_flags(mod, buf));
4109
4110 seq_puts(m, "\n");
4111 return 0;
4112 }
4113
4114 /* Format: modulename size refcount deps address
4115
4116 Where refcount is a number or -, and deps is a comma-separated list
4117 of depends or -.
4118 */
4119 static const struct seq_operations modules_op = {
4120 .start = m_start,
4121 .next = m_next,
4122 .stop = m_stop,
4123 .show = m_show
4124 };
4125
4126 static int modules_open(struct inode *inode, struct file *file)
4127 {
4128 return seq_open(file, &modules_op);
4129 }
4130
4131 static const struct file_operations proc_modules_operations = {
4132 .open = modules_open,
4133 .read = seq_read,
4134 .llseek = seq_lseek,
4135 .release = seq_release,
4136 };
4137
4138 static int __init proc_modules_init(void)
4139 {
4140 proc_create("modules", 0, NULL, &proc_modules_operations);
4141 return 0;
4142 }
4143 module_init(proc_modules_init);
4144 #endif
4145
4146 /* Given an address, look for it in the module exception tables. */
4147 const struct exception_table_entry *search_module_extables(unsigned long addr)
4148 {
4149 const struct exception_table_entry *e = NULL;
4150 struct module *mod;
4151
4152 preempt_disable();
4153 list_for_each_entry_rcu(mod, &modules, list) {
4154 if (mod->state == MODULE_STATE_UNFORMED)
4155 continue;
4156 if (mod->num_exentries == 0)
4157 continue;
4158
4159 e = search_extable(mod->extable,
4160 mod->extable + mod->num_exentries - 1,
4161 addr);
4162 if (e)
4163 break;
4164 }
4165 preempt_enable();
4166
4167 /* Now, if we found one, we are running inside it now, hence
4168 we cannot unload the module, hence no refcnt needed. */
4169 return e;
4170 }
4171
4172 /*
4173 * is_module_address - is this address inside a module?
4174 * @addr: the address to check.
4175 *
4176 * See is_module_text_address() if you simply want to see if the address
4177 * is code (not data).
4178 */
4179 bool is_module_address(unsigned long addr)
4180 {
4181 bool ret;
4182
4183 preempt_disable();
4184 ret = __module_address(addr) != NULL;
4185 preempt_enable();
4186
4187 return ret;
4188 }
4189
4190 /*
4191 * __module_address - get the module which contains an address.
4192 * @addr: the address.
4193 *
4194 * Must be called with preempt disabled or module mutex held so that
4195 * module doesn't get freed during this.
4196 */
4197 struct module *__module_address(unsigned long addr)
4198 {
4199 struct module *mod;
4200
4201 if (addr < module_addr_min || addr > module_addr_max)
4202 return NULL;
4203
4204 module_assert_mutex_or_preempt();
4205
4206 mod = mod_find(addr);
4207 if (mod) {
4208 BUG_ON(!within_module(addr, mod));
4209 if (mod->state == MODULE_STATE_UNFORMED)
4210 mod = NULL;
4211 }
4212 return mod;
4213 }
4214 EXPORT_SYMBOL_GPL(__module_address);
4215
4216 /*
4217 * is_module_text_address - is this address inside module code?
4218 * @addr: the address to check.
4219 *
4220 * See is_module_address() if you simply want to see if the address is
4221 * anywhere in a module. See kernel_text_address() for testing if an
4222 * address corresponds to kernel or module code.
4223 */
4224 bool is_module_text_address(unsigned long addr)
4225 {
4226 bool ret;
4227
4228 preempt_disable();
4229 ret = __module_text_address(addr) != NULL;
4230 preempt_enable();
4231
4232 return ret;
4233 }
4234
4235 /*
4236 * __module_text_address - get the module whose code contains an address.
4237 * @addr: the address.
4238 *
4239 * Must be called with preempt disabled or module mutex held so that
4240 * module doesn't get freed during this.
4241 */
4242 struct module *__module_text_address(unsigned long addr)
4243 {
4244 struct module *mod = __module_address(addr);
4245 if (mod) {
4246 /* Make sure it's within the text section. */
4247 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4248 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4249 mod = NULL;
4250 }
4251 return mod;
4252 }
4253 EXPORT_SYMBOL_GPL(__module_text_address);
4254
4255 /* Don't grab lock, we're oopsing. */
4256 void print_modules(void)
4257 {
4258 struct module *mod;
4259 char buf[8];
4260
4261 printk(KERN_DEFAULT "Modules linked in:");
4262 /* Most callers should already have preempt disabled, but make sure */
4263 preempt_disable();
4264 list_for_each_entry_rcu(mod, &modules, list) {
4265 if (mod->state == MODULE_STATE_UNFORMED)
4266 continue;
4267 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4268 }
4269 preempt_enable();
4270 if (last_unloaded_module[0])
4271 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4272 pr_cont("\n");
4273 }
4274
4275 #ifdef CONFIG_MODVERSIONS
4276 /* Generate the signature for all relevant module structures here.
4277 * If these change, we don't want to try to parse the module. */
4278 void module_layout(struct module *mod,
4279 struct modversion_info *ver,
4280 struct kernel_param *kp,
4281 struct kernel_symbol *ks,
4282 struct tracepoint * const *tp)
4283 {
4284 }
4285 EXPORT_SYMBOL(module_layout);
4286 #endif
This page took 0.130044 seconds and 5 git commands to generate.