Merge branch 'perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59 * max perf event sample rate
60 */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void) { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69 return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 if (!(*count)++)
76 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
82 if (!--(*count))
83 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
92 */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
97
98 WARN_ON(!irqs_disabled());
99
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_event_context *ctx;
112
113 ctx = container_of(head, struct perf_event_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
133 }
134 }
135
136 /*
137 * If we inherit events we want to return the parent event id
138 * to userspace.
139 */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142 u64 id = event->id;
143
144 if (event->parent)
145 id = event->parent->id;
146
147 return id;
148 }
149
150 /*
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
154 */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158 struct perf_event_context *ctx;
159
160 rcu_read_lock();
161 retry:
162 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163 if (ctx) {
164 /*
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
173 */
174 raw_spin_lock_irqsave(&ctx->lock, *flags);
175 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 goto retry;
178 }
179
180 if (!atomic_inc_not_zero(&ctx->refcount)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 ctx = NULL;
183 }
184 }
185 rcu_read_unlock();
186 return ctx;
187 }
188
189 /*
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
193 */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197 struct perf_event_context *ctx;
198 unsigned long flags;
199
200 ctx = perf_lock_task_context(task, ctxn, &flags);
201 if (ctx) {
202 ++ctx->pin_count;
203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204 }
205 return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210 unsigned long flags;
211
212 raw_spin_lock_irqsave(&ctx->lock, flags);
213 --ctx->pin_count;
214 raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220 return local_clock();
221 }
222
223 /*
224 * Update the record of the current time in a context.
225 */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228 u64 now = perf_clock();
229
230 ctx->time += now - ctx->timestamp;
231 ctx->timestamp = now;
232 }
233
234 /*
235 * Update the total_time_enabled and total_time_running fields for a event.
236 */
237 static void update_event_times(struct perf_event *event)
238 {
239 struct perf_event_context *ctx = event->ctx;
240 u64 run_end;
241
242 if (event->state < PERF_EVENT_STATE_INACTIVE ||
243 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244 return;
245
246 if (ctx->is_active)
247 run_end = ctx->time;
248 else
249 run_end = event->tstamp_stopped;
250
251 event->total_time_enabled = run_end - event->tstamp_enabled;
252
253 if (event->state == PERF_EVENT_STATE_INACTIVE)
254 run_end = event->tstamp_stopped;
255 else
256 run_end = ctx->time;
257
258 event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262 * Update total_time_enabled and total_time_running for all events in a group.
263 */
264 static void update_group_times(struct perf_event *leader)
265 {
266 struct perf_event *event;
267
268 update_event_times(leader);
269 list_for_each_entry(event, &leader->sibling_list, group_entry)
270 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276 if (event->attr.pinned)
277 return &ctx->pinned_groups;
278 else
279 return &ctx->flexible_groups;
280 }
281
282 /*
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
285 */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290 event->attach_state |= PERF_ATTACH_CONTEXT;
291
292 /*
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
296 */
297 if (event->group_leader == event) {
298 struct list_head *list;
299
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
302
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
305 }
306
307 list_add_rcu(&event->event_entry, &ctx->event_list);
308 if (!ctx->nr_events)
309 perf_pmu_rotate_start(ctx->pmu);
310 ctx->nr_events++;
311 if (event->attr.inherit_stat)
312 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317 struct perf_event *group_leader = event->group_leader;
318
319 /*
320 * We can have double attach due to group movement in perf_event_open.
321 */
322 if (event->attach_state & PERF_ATTACH_GROUP)
323 return;
324
325 event->attach_state |= PERF_ATTACH_GROUP;
326
327 if (group_leader == event)
328 return;
329
330 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331 !is_software_event(event))
332 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333
334 list_add_tail(&event->group_entry, &group_leader->sibling_list);
335 group_leader->nr_siblings++;
336 }
337
338 /*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344 {
345 /*
346 * We can have double detach due to exit/hot-unplug + close.
347 */
348 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349 return;
350
351 event->attach_state &= ~PERF_ATTACH_CONTEXT;
352
353 ctx->nr_events--;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat--;
356
357 list_del_rcu(&event->event_entry);
358
359 if (event->group_leader == event)
360 list_del_init(&event->group_entry);
361
362 update_group_times(event);
363
364 /*
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
369 * of the event
370 */
371 if (event->state > PERF_EVENT_STATE_OFF)
372 event->state = PERF_EVENT_STATE_OFF;
373 }
374
375 static void perf_group_detach(struct perf_event *event)
376 {
377 struct perf_event *sibling, *tmp;
378 struct list_head *list = NULL;
379
380 /*
381 * We can have double detach due to exit/hot-unplug + close.
382 */
383 if (!(event->attach_state & PERF_ATTACH_GROUP))
384 return;
385
386 event->attach_state &= ~PERF_ATTACH_GROUP;
387
388 /*
389 * If this is a sibling, remove it from its group.
390 */
391 if (event->group_leader != event) {
392 list_del_init(&event->group_entry);
393 event->group_leader->nr_siblings--;
394 return;
395 }
396
397 if (!list_empty(&event->group_entry))
398 list = &event->group_entry;
399
400 /*
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
404 */
405 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 if (list)
407 list_move_tail(&sibling->group_entry, list);
408 sibling->group_leader = sibling;
409
410 /* Inherit group flags from the previous leader */
411 sibling->group_flags = event->group_flags;
412 }
413 }
414
415 static inline int
416 event_filter_match(struct perf_event *event)
417 {
418 return event->cpu == -1 || event->cpu == smp_processor_id();
419 }
420
421 static void
422 event_sched_out(struct perf_event *event,
423 struct perf_cpu_context *cpuctx,
424 struct perf_event_context *ctx)
425 {
426 u64 delta;
427 /*
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
432 */
433 if (event->state == PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event)) {
435 delta = ctx->time - event->tstamp_stopped;
436 event->tstamp_running += delta;
437 event->tstamp_stopped = ctx->time;
438 }
439
440 if (event->state != PERF_EVENT_STATE_ACTIVE)
441 return;
442
443 event->state = PERF_EVENT_STATE_INACTIVE;
444 if (event->pending_disable) {
445 event->pending_disable = 0;
446 event->state = PERF_EVENT_STATE_OFF;
447 }
448 event->tstamp_stopped = ctx->time;
449 event->pmu->del(event, 0);
450 event->oncpu = -1;
451
452 if (!is_software_event(event))
453 cpuctx->active_oncpu--;
454 ctx->nr_active--;
455 if (event->attr.exclusive || !cpuctx->active_oncpu)
456 cpuctx->exclusive = 0;
457 }
458
459 static void
460 group_sched_out(struct perf_event *group_event,
461 struct perf_cpu_context *cpuctx,
462 struct perf_event_context *ctx)
463 {
464 struct perf_event *event;
465 int state = group_event->state;
466
467 event_sched_out(group_event, cpuctx, ctx);
468
469 /*
470 * Schedule out siblings (if any):
471 */
472 list_for_each_entry(event, &group_event->sibling_list, group_entry)
473 event_sched_out(event, cpuctx, ctx);
474
475 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 cpuctx->exclusive = 0;
477 }
478
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
481 {
482 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
483 }
484
485 /*
486 * Cross CPU call to remove a performance event
487 *
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
490 */
491 static void __perf_event_remove_from_context(void *info)
492 {
493 struct perf_event *event = info;
494 struct perf_event_context *ctx = event->ctx;
495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
496
497 /*
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
501 */
502 if (ctx->task && cpuctx->task_ctx != ctx)
503 return;
504
505 raw_spin_lock(&ctx->lock);
506
507 event_sched_out(event, cpuctx, ctx);
508
509 list_del_event(event, ctx);
510
511 raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516 * Remove the event from a task's (or a CPU's) list of events.
517 *
518 * Must be called with ctx->mutex held.
519 *
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
522 *
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
529 */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
534
535 if (!task) {
536 /*
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
539 */
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
544 }
545
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
549
550 raw_spin_lock_irq(&ctx->lock);
551 /*
552 * If the context is active we need to retry the smp call.
553 */
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
557 }
558
559 /*
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
563 */
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570 * Cross CPU call to disable a performance event
571 */
572 static void __perf_event_disable(void *info)
573 {
574 struct perf_event *event = info;
575 struct perf_event_context *ctx = event->ctx;
576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577
578 /*
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
581 */
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
584
585 raw_spin_lock(&ctx->lock);
586
587 /*
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
590 */
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * Disable a event.
606 *
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
616 */
617 void perf_event_disable(struct perf_event *event)
618 {
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Disable the event on the cpu that it's on
625 */
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
629 }
630
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
633
634 raw_spin_lock_irq(&ctx->lock);
635 /*
636 * If the event is still active, we need to retry the cross-call.
637 */
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
641 }
642
643 /*
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
646 */
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
650 }
651
652 raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
659 {
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
662
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
665 /*
666 * The new state must be visible before we turn it on in the hardware:
667 */
668 smp_wmb();
669
670 if (event->pmu->add(event, PERF_EF_START)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
674 }
675
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678 event->shadow_ctx_time = ctx->time - ctx->timestamp;
679
680 if (!is_software_event(event))
681 cpuctx->active_oncpu++;
682 ctx->nr_active++;
683
684 if (event->attr.exclusive)
685 cpuctx->exclusive = 1;
686
687 return 0;
688 }
689
690 static int
691 group_sched_in(struct perf_event *group_event,
692 struct perf_cpu_context *cpuctx,
693 struct perf_event_context *ctx)
694 {
695 struct perf_event *event, *partial_group = NULL;
696 struct pmu *pmu = group_event->pmu;
697 u64 now = ctx->time;
698 bool simulate = false;
699
700 if (group_event->state == PERF_EVENT_STATE_OFF)
701 return 0;
702
703 pmu->start_txn(pmu);
704
705 if (event_sched_in(group_event, cpuctx, ctx)) {
706 pmu->cancel_txn(pmu);
707 return -EAGAIN;
708 }
709
710 /*
711 * Schedule in siblings as one group (if any):
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event_sched_in(event, cpuctx, ctx)) {
715 partial_group = event;
716 goto group_error;
717 }
718 }
719
720 if (!pmu->commit_txn(pmu))
721 return 0;
722
723 group_error:
724 /*
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
729 *
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
737 */
738 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739 if (event == partial_group)
740 simulate = true;
741
742 if (simulate) {
743 event->tstamp_running += now - event->tstamp_stopped;
744 event->tstamp_stopped = now;
745 } else {
746 event_sched_out(event, cpuctx, ctx);
747 }
748 }
749 event_sched_out(group_event, cpuctx, ctx);
750
751 pmu->cancel_txn(pmu);
752
753 return -EAGAIN;
754 }
755
756 /*
757 * Work out whether we can put this event group on the CPU now.
758 */
759 static int group_can_go_on(struct perf_event *event,
760 struct perf_cpu_context *cpuctx,
761 int can_add_hw)
762 {
763 /*
764 * Groups consisting entirely of software events can always go on.
765 */
766 if (event->group_flags & PERF_GROUP_SOFTWARE)
767 return 1;
768 /*
769 * If an exclusive group is already on, no other hardware
770 * events can go on.
771 */
772 if (cpuctx->exclusive)
773 return 0;
774 /*
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
777 */
778 if (event->attr.exclusive && cpuctx->active_oncpu)
779 return 0;
780 /*
781 * Otherwise, try to add it if all previous groups were able
782 * to go on.
783 */
784 return can_add_hw;
785 }
786
787 static void add_event_to_ctx(struct perf_event *event,
788 struct perf_event_context *ctx)
789 {
790 list_add_event(event, ctx);
791 perf_group_attach(event);
792 event->tstamp_enabled = ctx->time;
793 event->tstamp_running = ctx->time;
794 event->tstamp_stopped = ctx->time;
795 }
796
797 /*
798 * Cross CPU call to install and enable a performance event
799 *
800 * Must be called with ctx->mutex held
801 */
802 static void __perf_install_in_context(void *info)
803 {
804 struct perf_event *event = info;
805 struct perf_event_context *ctx = event->ctx;
806 struct perf_event *leader = event->group_leader;
807 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808 int err;
809
810 /*
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
816 */
817 if (ctx->task && cpuctx->task_ctx != ctx) {
818 if (cpuctx->task_ctx || ctx->task != current)
819 return;
820 cpuctx->task_ctx = ctx;
821 }
822
823 raw_spin_lock(&ctx->lock);
824 ctx->is_active = 1;
825 update_context_time(ctx);
826
827 add_event_to_ctx(event, ctx);
828
829 if (event->cpu != -1 && event->cpu != smp_processor_id())
830 goto unlock;
831
832 /*
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
835 */
836 if (event->state != PERF_EVENT_STATE_INACTIVE ||
837 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838 goto unlock;
839
840 /*
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
844 */
845 if (!group_can_go_on(event, cpuctx, 1))
846 err = -EEXIST;
847 else
848 err = event_sched_in(event, cpuctx, ctx);
849
850 if (err) {
851 /*
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
855 */
856 if (leader != event)
857 group_sched_out(leader, cpuctx, ctx);
858 if (leader->attr.pinned) {
859 update_group_times(leader);
860 leader->state = PERF_EVENT_STATE_ERROR;
861 }
862 }
863
864 unlock:
865 raw_spin_unlock(&ctx->lock);
866 }
867
868 /*
869 * Attach a performance event to a context
870 *
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
873 *
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
877 *
878 * Must be called with ctx->mutex held.
879 */
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882 struct perf_event *event,
883 int cpu)
884 {
885 struct task_struct *task = ctx->task;
886
887 event->ctx = ctx;
888
889 if (!task) {
890 /*
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
893 */
894 smp_call_function_single(cpu, __perf_install_in_context,
895 event, 1);
896 return;
897 }
898
899 retry:
900 task_oncpu_function_call(task, __perf_install_in_context,
901 event);
902
903 raw_spin_lock_irq(&ctx->lock);
904 /*
905 * we need to retry the smp call.
906 */
907 if (ctx->is_active && list_empty(&event->group_entry)) {
908 raw_spin_unlock_irq(&ctx->lock);
909 goto retry;
910 }
911
912 /*
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
915 * succeed.
916 */
917 if (list_empty(&event->group_entry))
918 add_event_to_ctx(event, ctx);
919 raw_spin_unlock_irq(&ctx->lock);
920 }
921
922 /*
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
929 */
930 static void __perf_event_mark_enabled(struct perf_event *event,
931 struct perf_event_context *ctx)
932 {
933 struct perf_event *sub;
934
935 event->state = PERF_EVENT_STATE_INACTIVE;
936 event->tstamp_enabled = ctx->time - event->total_time_enabled;
937 list_for_each_entry(sub, &event->sibling_list, group_entry) {
938 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 sub->tstamp_enabled =
940 ctx->time - sub->total_time_enabled;
941 }
942 }
943 }
944
945 /*
946 * Cross CPU call to enable a performance event
947 */
948 static void __perf_event_enable(void *info)
949 {
950 struct perf_event *event = info;
951 struct perf_event_context *ctx = event->ctx;
952 struct perf_event *leader = event->group_leader;
953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954 int err;
955
956 /*
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
959 */
960 if (ctx->task && cpuctx->task_ctx != ctx) {
961 if (cpuctx->task_ctx || ctx->task != current)
962 return;
963 cpuctx->task_ctx = ctx;
964 }
965
966 raw_spin_lock(&ctx->lock);
967 ctx->is_active = 1;
968 update_context_time(ctx);
969
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto unlock;
972 __perf_event_mark_enabled(event, ctx);
973
974 if (event->cpu != -1 && event->cpu != smp_processor_id())
975 goto unlock;
976
977 /*
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
980 */
981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982 goto unlock;
983
984 if (!group_can_go_on(event, cpuctx, 1)) {
985 err = -EEXIST;
986 } else {
987 if (event == leader)
988 err = group_sched_in(event, cpuctx, ctx);
989 else
990 err = event_sched_in(event, cpuctx, ctx);
991 }
992
993 if (err) {
994 /*
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
997 */
998 if (leader != event)
999 group_sched_out(leader, cpuctx, ctx);
1000 if (leader->attr.pinned) {
1001 update_group_times(leader);
1002 leader->state = PERF_EVENT_STATE_ERROR;
1003 }
1004 }
1005
1006 unlock:
1007 raw_spin_unlock(&ctx->lock);
1008 }
1009
1010 /*
1011 * Enable a event.
1012 *
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1018 */
1019 void perf_event_enable(struct perf_event *event)
1020 {
1021 struct perf_event_context *ctx = event->ctx;
1022 struct task_struct *task = ctx->task;
1023
1024 if (!task) {
1025 /*
1026 * Enable the event on the cpu that it's on
1027 */
1028 smp_call_function_single(event->cpu, __perf_event_enable,
1029 event, 1);
1030 return;
1031 }
1032
1033 raw_spin_lock_irq(&ctx->lock);
1034 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035 goto out;
1036
1037 /*
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1043 */
1044 if (event->state == PERF_EVENT_STATE_ERROR)
1045 event->state = PERF_EVENT_STATE_OFF;
1046
1047 retry:
1048 raw_spin_unlock_irq(&ctx->lock);
1049 task_oncpu_function_call(task, __perf_event_enable, event);
1050
1051 raw_spin_lock_irq(&ctx->lock);
1052
1053 /*
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1056 */
1057 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058 goto retry;
1059
1060 /*
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1063 */
1064 if (event->state == PERF_EVENT_STATE_OFF)
1065 __perf_event_mark_enabled(event, ctx);
1066
1067 out:
1068 raw_spin_unlock_irq(&ctx->lock);
1069 }
1070
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1072 {
1073 /*
1074 * not supported on inherited events
1075 */
1076 if (event->attr.inherit)
1077 return -EINVAL;
1078
1079 atomic_add(refresh, &event->event_limit);
1080 perf_event_enable(event);
1081
1082 return 0;
1083 }
1084
1085 enum event_type_t {
1086 EVENT_FLEXIBLE = 0x1,
1087 EVENT_PINNED = 0x2,
1088 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1089 };
1090
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092 struct perf_cpu_context *cpuctx,
1093 enum event_type_t event_type)
1094 {
1095 struct perf_event *event;
1096
1097 raw_spin_lock(&ctx->lock);
1098 perf_pmu_disable(ctx->pmu);
1099 ctx->is_active = 0;
1100 if (likely(!ctx->nr_events))
1101 goto out;
1102 update_context_time(ctx);
1103
1104 if (!ctx->nr_active)
1105 goto out;
1106
1107 if (event_type & EVENT_PINNED) {
1108 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109 group_sched_out(event, cpuctx, ctx);
1110 }
1111
1112 if (event_type & EVENT_FLEXIBLE) {
1113 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114 group_sched_out(event, cpuctx, ctx);
1115 }
1116 out:
1117 perf_pmu_enable(ctx->pmu);
1118 raw_spin_unlock(&ctx->lock);
1119 }
1120
1121 /*
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1131 */
1132 static int context_equiv(struct perf_event_context *ctx1,
1133 struct perf_event_context *ctx2)
1134 {
1135 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136 && ctx1->parent_gen == ctx2->parent_gen
1137 && !ctx1->pin_count && !ctx2->pin_count;
1138 }
1139
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141 struct perf_event *next_event)
1142 {
1143 u64 value;
1144
1145 if (!event->attr.inherit_stat)
1146 return;
1147
1148 /*
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1154 */
1155 switch (event->state) {
1156 case PERF_EVENT_STATE_ACTIVE:
1157 event->pmu->read(event);
1158 /* fall-through */
1159
1160 case PERF_EVENT_STATE_INACTIVE:
1161 update_event_times(event);
1162 break;
1163
1164 default:
1165 break;
1166 }
1167
1168 /*
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1171 */
1172 value = local64_read(&next_event->count);
1173 value = local64_xchg(&event->count, value);
1174 local64_set(&next_event->count, value);
1175
1176 swap(event->total_time_enabled, next_event->total_time_enabled);
1177 swap(event->total_time_running, next_event->total_time_running);
1178
1179 /*
1180 * Since we swizzled the values, update the user visible data too.
1181 */
1182 perf_event_update_userpage(event);
1183 perf_event_update_userpage(next_event);
1184 }
1185
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1188
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190 struct perf_event_context *next_ctx)
1191 {
1192 struct perf_event *event, *next_event;
1193
1194 if (!ctx->nr_stat)
1195 return;
1196
1197 update_context_time(ctx);
1198
1199 event = list_first_entry(&ctx->event_list,
1200 struct perf_event, event_entry);
1201
1202 next_event = list_first_entry(&next_ctx->event_list,
1203 struct perf_event, event_entry);
1204
1205 while (&event->event_entry != &ctx->event_list &&
1206 &next_event->event_entry != &next_ctx->event_list) {
1207
1208 __perf_event_sync_stat(event, next_event);
1209
1210 event = list_next_entry(event, event_entry);
1211 next_event = list_next_entry(next_event, event_entry);
1212 }
1213 }
1214
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216 struct task_struct *next)
1217 {
1218 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 struct perf_event_context *next_ctx;
1220 struct perf_event_context *parent;
1221 struct perf_cpu_context *cpuctx;
1222 int do_switch = 1;
1223
1224 if (likely(!ctx))
1225 return;
1226
1227 cpuctx = __get_cpu_context(ctx);
1228 if (!cpuctx->task_ctx)
1229 return;
1230
1231 rcu_read_lock();
1232 parent = rcu_dereference(ctx->parent_ctx);
1233 next_ctx = next->perf_event_ctxp[ctxn];
1234 if (parent && next_ctx &&
1235 rcu_dereference(next_ctx->parent_ctx) == parent) {
1236 /*
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1244 */
1245 raw_spin_lock(&ctx->lock);
1246 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247 if (context_equiv(ctx, next_ctx)) {
1248 /*
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1251 */
1252 task->perf_event_ctxp[ctxn] = next_ctx;
1253 next->perf_event_ctxp[ctxn] = ctx;
1254 ctx->task = next;
1255 next_ctx->task = task;
1256 do_switch = 0;
1257
1258 perf_event_sync_stat(ctx, next_ctx);
1259 }
1260 raw_spin_unlock(&next_ctx->lock);
1261 raw_spin_unlock(&ctx->lock);
1262 }
1263 rcu_read_unlock();
1264
1265 if (do_switch) {
1266 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 cpuctx->task_ctx = NULL;
1268 }
1269 }
1270
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1273
1274 /*
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1277 *
1278 * We stop each event and update the event value in event->count.
1279 *
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1284 */
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286 struct task_struct *next)
1287 {
1288 int ctxn;
1289
1290 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1291
1292 for_each_task_context_nr(ctxn)
1293 perf_event_context_sched_out(task, ctxn, next);
1294 }
1295
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297 enum event_type_t event_type)
1298 {
1299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1300
1301 if (!cpuctx->task_ctx)
1302 return;
1303
1304 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1305 return;
1306
1307 ctx_sched_out(ctx, cpuctx, event_type);
1308 cpuctx->task_ctx = NULL;
1309 }
1310
1311 /*
1312 * Called with IRQs disabled
1313 */
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315 enum event_type_t event_type)
1316 {
1317 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1318 }
1319
1320 static void
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322 struct perf_cpu_context *cpuctx)
1323 {
1324 struct perf_event *event;
1325
1326 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327 if (event->state <= PERF_EVENT_STATE_OFF)
1328 continue;
1329 if (event->cpu != -1 && event->cpu != smp_processor_id())
1330 continue;
1331
1332 if (group_can_go_on(event, cpuctx, 1))
1333 group_sched_in(event, cpuctx, ctx);
1334
1335 /*
1336 * If this pinned group hasn't been scheduled,
1337 * put it in error state.
1338 */
1339 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340 update_group_times(event);
1341 event->state = PERF_EVENT_STATE_ERROR;
1342 }
1343 }
1344 }
1345
1346 static void
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348 struct perf_cpu_context *cpuctx)
1349 {
1350 struct perf_event *event;
1351 int can_add_hw = 1;
1352
1353 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354 /* Ignore events in OFF or ERROR state */
1355 if (event->state <= PERF_EVENT_STATE_OFF)
1356 continue;
1357 /*
1358 * Listen to the 'cpu' scheduling filter constraint
1359 * of events:
1360 */
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362 continue;
1363
1364 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365 if (group_sched_in(event, cpuctx, ctx))
1366 can_add_hw = 0;
1367 }
1368 }
1369 }
1370
1371 static void
1372 ctx_sched_in(struct perf_event_context *ctx,
1373 struct perf_cpu_context *cpuctx,
1374 enum event_type_t event_type)
1375 {
1376 raw_spin_lock(&ctx->lock);
1377 ctx->is_active = 1;
1378 if (likely(!ctx->nr_events))
1379 goto out;
1380
1381 ctx->timestamp = perf_clock();
1382
1383 /*
1384 * First go through the list and put on any pinned groups
1385 * in order to give them the best chance of going on.
1386 */
1387 if (event_type & EVENT_PINNED)
1388 ctx_pinned_sched_in(ctx, cpuctx);
1389
1390 /* Then walk through the lower prio flexible groups */
1391 if (event_type & EVENT_FLEXIBLE)
1392 ctx_flexible_sched_in(ctx, cpuctx);
1393
1394 out:
1395 raw_spin_unlock(&ctx->lock);
1396 }
1397
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399 enum event_type_t event_type)
1400 {
1401 struct perf_event_context *ctx = &cpuctx->ctx;
1402
1403 ctx_sched_in(ctx, cpuctx, event_type);
1404 }
1405
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407 enum event_type_t event_type)
1408 {
1409 struct perf_cpu_context *cpuctx;
1410
1411 cpuctx = __get_cpu_context(ctx);
1412 if (cpuctx->task_ctx == ctx)
1413 return;
1414
1415 ctx_sched_in(ctx, cpuctx, event_type);
1416 cpuctx->task_ctx = ctx;
1417 }
1418
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1420 {
1421 struct perf_cpu_context *cpuctx;
1422
1423 cpuctx = __get_cpu_context(ctx);
1424 if (cpuctx->task_ctx == ctx)
1425 return;
1426
1427 perf_pmu_disable(ctx->pmu);
1428 /*
1429 * We want to keep the following priority order:
1430 * cpu pinned (that don't need to move), task pinned,
1431 * cpu flexible, task flexible.
1432 */
1433 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1434
1435 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1438
1439 cpuctx->task_ctx = ctx;
1440
1441 /*
1442 * Since these rotations are per-cpu, we need to ensure the
1443 * cpu-context we got scheduled on is actually rotating.
1444 */
1445 perf_pmu_rotate_start(ctx->pmu);
1446 perf_pmu_enable(ctx->pmu);
1447 }
1448
1449 /*
1450 * Called from scheduler to add the events of the current task
1451 * with interrupts disabled.
1452 *
1453 * We restore the event value and then enable it.
1454 *
1455 * This does not protect us against NMI, but enable()
1456 * sets the enabled bit in the control field of event _before_
1457 * accessing the event control register. If a NMI hits, then it will
1458 * keep the event running.
1459 */
1460 void __perf_event_task_sched_in(struct task_struct *task)
1461 {
1462 struct perf_event_context *ctx;
1463 int ctxn;
1464
1465 for_each_task_context_nr(ctxn) {
1466 ctx = task->perf_event_ctxp[ctxn];
1467 if (likely(!ctx))
1468 continue;
1469
1470 perf_event_context_sched_in(ctx);
1471 }
1472 }
1473
1474 #define MAX_INTERRUPTS (~0ULL)
1475
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1477
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1479 {
1480 u64 frequency = event->attr.sample_freq;
1481 u64 sec = NSEC_PER_SEC;
1482 u64 divisor, dividend;
1483
1484 int count_fls, nsec_fls, frequency_fls, sec_fls;
1485
1486 count_fls = fls64(count);
1487 nsec_fls = fls64(nsec);
1488 frequency_fls = fls64(frequency);
1489 sec_fls = 30;
1490
1491 /*
1492 * We got @count in @nsec, with a target of sample_freq HZ
1493 * the target period becomes:
1494 *
1495 * @count * 10^9
1496 * period = -------------------
1497 * @nsec * sample_freq
1498 *
1499 */
1500
1501 /*
1502 * Reduce accuracy by one bit such that @a and @b converge
1503 * to a similar magnitude.
1504 */
1505 #define REDUCE_FLS(a, b) \
1506 do { \
1507 if (a##_fls > b##_fls) { \
1508 a >>= 1; \
1509 a##_fls--; \
1510 } else { \
1511 b >>= 1; \
1512 b##_fls--; \
1513 } \
1514 } while (0)
1515
1516 /*
1517 * Reduce accuracy until either term fits in a u64, then proceed with
1518 * the other, so that finally we can do a u64/u64 division.
1519 */
1520 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521 REDUCE_FLS(nsec, frequency);
1522 REDUCE_FLS(sec, count);
1523 }
1524
1525 if (count_fls + sec_fls > 64) {
1526 divisor = nsec * frequency;
1527
1528 while (count_fls + sec_fls > 64) {
1529 REDUCE_FLS(count, sec);
1530 divisor >>= 1;
1531 }
1532
1533 dividend = count * sec;
1534 } else {
1535 dividend = count * sec;
1536
1537 while (nsec_fls + frequency_fls > 64) {
1538 REDUCE_FLS(nsec, frequency);
1539 dividend >>= 1;
1540 }
1541
1542 divisor = nsec * frequency;
1543 }
1544
1545 if (!divisor)
1546 return dividend;
1547
1548 return div64_u64(dividend, divisor);
1549 }
1550
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1552 {
1553 struct hw_perf_event *hwc = &event->hw;
1554 s64 period, sample_period;
1555 s64 delta;
1556
1557 period = perf_calculate_period(event, nsec, count);
1558
1559 delta = (s64)(period - hwc->sample_period);
1560 delta = (delta + 7) / 8; /* low pass filter */
1561
1562 sample_period = hwc->sample_period + delta;
1563
1564 if (!sample_period)
1565 sample_period = 1;
1566
1567 hwc->sample_period = sample_period;
1568
1569 if (local64_read(&hwc->period_left) > 8*sample_period) {
1570 event->pmu->stop(event, PERF_EF_UPDATE);
1571 local64_set(&hwc->period_left, 0);
1572 event->pmu->start(event, PERF_EF_RELOAD);
1573 }
1574 }
1575
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1577 {
1578 struct perf_event *event;
1579 struct hw_perf_event *hwc;
1580 u64 interrupts, now;
1581 s64 delta;
1582
1583 raw_spin_lock(&ctx->lock);
1584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585 if (event->state != PERF_EVENT_STATE_ACTIVE)
1586 continue;
1587
1588 if (event->cpu != -1 && event->cpu != smp_processor_id())
1589 continue;
1590
1591 hwc = &event->hw;
1592
1593 interrupts = hwc->interrupts;
1594 hwc->interrupts = 0;
1595
1596 /*
1597 * unthrottle events on the tick
1598 */
1599 if (interrupts == MAX_INTERRUPTS) {
1600 perf_log_throttle(event, 1);
1601 event->pmu->start(event, 0);
1602 }
1603
1604 if (!event->attr.freq || !event->attr.sample_freq)
1605 continue;
1606
1607 event->pmu->read(event);
1608 now = local64_read(&event->count);
1609 delta = now - hwc->freq_count_stamp;
1610 hwc->freq_count_stamp = now;
1611
1612 if (delta > 0)
1613 perf_adjust_period(event, period, delta);
1614 }
1615 raw_spin_unlock(&ctx->lock);
1616 }
1617
1618 /*
1619 * Round-robin a context's events:
1620 */
1621 static void rotate_ctx(struct perf_event_context *ctx)
1622 {
1623 raw_spin_lock(&ctx->lock);
1624
1625 /* Rotate the first entry last of non-pinned groups */
1626 list_rotate_left(&ctx->flexible_groups);
1627
1628 raw_spin_unlock(&ctx->lock);
1629 }
1630
1631 /*
1632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1633 * because they're strictly cpu affine and rotate_start is called with IRQs
1634 * disabled, while rotate_context is called from IRQ context.
1635 */
1636 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1637 {
1638 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1639 struct perf_event_context *ctx = NULL;
1640 int rotate = 0, remove = 1;
1641
1642 if (cpuctx->ctx.nr_events) {
1643 remove = 0;
1644 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1645 rotate = 1;
1646 }
1647
1648 ctx = cpuctx->task_ctx;
1649 if (ctx && ctx->nr_events) {
1650 remove = 0;
1651 if (ctx->nr_events != ctx->nr_active)
1652 rotate = 1;
1653 }
1654
1655 perf_pmu_disable(cpuctx->ctx.pmu);
1656 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1657 if (ctx)
1658 perf_ctx_adjust_freq(ctx, interval);
1659
1660 if (!rotate)
1661 goto done;
1662
1663 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1664 if (ctx)
1665 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1666
1667 rotate_ctx(&cpuctx->ctx);
1668 if (ctx)
1669 rotate_ctx(ctx);
1670
1671 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1672 if (ctx)
1673 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1674
1675 done:
1676 if (remove)
1677 list_del_init(&cpuctx->rotation_list);
1678
1679 perf_pmu_enable(cpuctx->ctx.pmu);
1680 }
1681
1682 void perf_event_task_tick(void)
1683 {
1684 struct list_head *head = &__get_cpu_var(rotation_list);
1685 struct perf_cpu_context *cpuctx, *tmp;
1686
1687 WARN_ON(!irqs_disabled());
1688
1689 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1690 if (cpuctx->jiffies_interval == 1 ||
1691 !(jiffies % cpuctx->jiffies_interval))
1692 perf_rotate_context(cpuctx);
1693 }
1694 }
1695
1696 static int event_enable_on_exec(struct perf_event *event,
1697 struct perf_event_context *ctx)
1698 {
1699 if (!event->attr.enable_on_exec)
1700 return 0;
1701
1702 event->attr.enable_on_exec = 0;
1703 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1704 return 0;
1705
1706 __perf_event_mark_enabled(event, ctx);
1707
1708 return 1;
1709 }
1710
1711 /*
1712 * Enable all of a task's events that have been marked enable-on-exec.
1713 * This expects task == current.
1714 */
1715 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1716 {
1717 struct perf_event *event;
1718 unsigned long flags;
1719 int enabled = 0;
1720 int ret;
1721
1722 local_irq_save(flags);
1723 if (!ctx || !ctx->nr_events)
1724 goto out;
1725
1726 task_ctx_sched_out(ctx, EVENT_ALL);
1727
1728 raw_spin_lock(&ctx->lock);
1729
1730 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1731 ret = event_enable_on_exec(event, ctx);
1732 if (ret)
1733 enabled = 1;
1734 }
1735
1736 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1737 ret = event_enable_on_exec(event, ctx);
1738 if (ret)
1739 enabled = 1;
1740 }
1741
1742 /*
1743 * Unclone this context if we enabled any event.
1744 */
1745 if (enabled)
1746 unclone_ctx(ctx);
1747
1748 raw_spin_unlock(&ctx->lock);
1749
1750 perf_event_context_sched_in(ctx);
1751 out:
1752 local_irq_restore(flags);
1753 }
1754
1755 /*
1756 * Cross CPU call to read the hardware event
1757 */
1758 static void __perf_event_read(void *info)
1759 {
1760 struct perf_event *event = info;
1761 struct perf_event_context *ctx = event->ctx;
1762 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1763
1764 /*
1765 * If this is a task context, we need to check whether it is
1766 * the current task context of this cpu. If not it has been
1767 * scheduled out before the smp call arrived. In that case
1768 * event->count would have been updated to a recent sample
1769 * when the event was scheduled out.
1770 */
1771 if (ctx->task && cpuctx->task_ctx != ctx)
1772 return;
1773
1774 raw_spin_lock(&ctx->lock);
1775 update_context_time(ctx);
1776 update_event_times(event);
1777 raw_spin_unlock(&ctx->lock);
1778
1779 event->pmu->read(event);
1780 }
1781
1782 static inline u64 perf_event_count(struct perf_event *event)
1783 {
1784 return local64_read(&event->count) + atomic64_read(&event->child_count);
1785 }
1786
1787 static u64 perf_event_read(struct perf_event *event)
1788 {
1789 /*
1790 * If event is enabled and currently active on a CPU, update the
1791 * value in the event structure:
1792 */
1793 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1794 smp_call_function_single(event->oncpu,
1795 __perf_event_read, event, 1);
1796 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1797 struct perf_event_context *ctx = event->ctx;
1798 unsigned long flags;
1799
1800 raw_spin_lock_irqsave(&ctx->lock, flags);
1801 /*
1802 * may read while context is not active
1803 * (e.g., thread is blocked), in that case
1804 * we cannot update context time
1805 */
1806 if (ctx->is_active)
1807 update_context_time(ctx);
1808 update_event_times(event);
1809 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1810 }
1811
1812 return perf_event_count(event);
1813 }
1814
1815 /*
1816 * Callchain support
1817 */
1818
1819 struct callchain_cpus_entries {
1820 struct rcu_head rcu_head;
1821 struct perf_callchain_entry *cpu_entries[0];
1822 };
1823
1824 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1825 static atomic_t nr_callchain_events;
1826 static DEFINE_MUTEX(callchain_mutex);
1827 struct callchain_cpus_entries *callchain_cpus_entries;
1828
1829
1830 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1831 struct pt_regs *regs)
1832 {
1833 }
1834
1835 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1836 struct pt_regs *regs)
1837 {
1838 }
1839
1840 static void release_callchain_buffers_rcu(struct rcu_head *head)
1841 {
1842 struct callchain_cpus_entries *entries;
1843 int cpu;
1844
1845 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1846
1847 for_each_possible_cpu(cpu)
1848 kfree(entries->cpu_entries[cpu]);
1849
1850 kfree(entries);
1851 }
1852
1853 static void release_callchain_buffers(void)
1854 {
1855 struct callchain_cpus_entries *entries;
1856
1857 entries = callchain_cpus_entries;
1858 rcu_assign_pointer(callchain_cpus_entries, NULL);
1859 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1860 }
1861
1862 static int alloc_callchain_buffers(void)
1863 {
1864 int cpu;
1865 int size;
1866 struct callchain_cpus_entries *entries;
1867
1868 /*
1869 * We can't use the percpu allocation API for data that can be
1870 * accessed from NMI. Use a temporary manual per cpu allocation
1871 * until that gets sorted out.
1872 */
1873 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1874 num_possible_cpus();
1875
1876 entries = kzalloc(size, GFP_KERNEL);
1877 if (!entries)
1878 return -ENOMEM;
1879
1880 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1881
1882 for_each_possible_cpu(cpu) {
1883 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1884 cpu_to_node(cpu));
1885 if (!entries->cpu_entries[cpu])
1886 goto fail;
1887 }
1888
1889 rcu_assign_pointer(callchain_cpus_entries, entries);
1890
1891 return 0;
1892
1893 fail:
1894 for_each_possible_cpu(cpu)
1895 kfree(entries->cpu_entries[cpu]);
1896 kfree(entries);
1897
1898 return -ENOMEM;
1899 }
1900
1901 static int get_callchain_buffers(void)
1902 {
1903 int err = 0;
1904 int count;
1905
1906 mutex_lock(&callchain_mutex);
1907
1908 count = atomic_inc_return(&nr_callchain_events);
1909 if (WARN_ON_ONCE(count < 1)) {
1910 err = -EINVAL;
1911 goto exit;
1912 }
1913
1914 if (count > 1) {
1915 /* If the allocation failed, give up */
1916 if (!callchain_cpus_entries)
1917 err = -ENOMEM;
1918 goto exit;
1919 }
1920
1921 err = alloc_callchain_buffers();
1922 if (err)
1923 release_callchain_buffers();
1924 exit:
1925 mutex_unlock(&callchain_mutex);
1926
1927 return err;
1928 }
1929
1930 static void put_callchain_buffers(void)
1931 {
1932 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1933 release_callchain_buffers();
1934 mutex_unlock(&callchain_mutex);
1935 }
1936 }
1937
1938 static int get_recursion_context(int *recursion)
1939 {
1940 int rctx;
1941
1942 if (in_nmi())
1943 rctx = 3;
1944 else if (in_irq())
1945 rctx = 2;
1946 else if (in_softirq())
1947 rctx = 1;
1948 else
1949 rctx = 0;
1950
1951 if (recursion[rctx])
1952 return -1;
1953
1954 recursion[rctx]++;
1955 barrier();
1956
1957 return rctx;
1958 }
1959
1960 static inline void put_recursion_context(int *recursion, int rctx)
1961 {
1962 barrier();
1963 recursion[rctx]--;
1964 }
1965
1966 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1967 {
1968 int cpu;
1969 struct callchain_cpus_entries *entries;
1970
1971 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1972 if (*rctx == -1)
1973 return NULL;
1974
1975 entries = rcu_dereference(callchain_cpus_entries);
1976 if (!entries)
1977 return NULL;
1978
1979 cpu = smp_processor_id();
1980
1981 return &entries->cpu_entries[cpu][*rctx];
1982 }
1983
1984 static void
1985 put_callchain_entry(int rctx)
1986 {
1987 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1988 }
1989
1990 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1991 {
1992 int rctx;
1993 struct perf_callchain_entry *entry;
1994
1995
1996 entry = get_callchain_entry(&rctx);
1997 if (rctx == -1)
1998 return NULL;
1999
2000 if (!entry)
2001 goto exit_put;
2002
2003 entry->nr = 0;
2004
2005 if (!user_mode(regs)) {
2006 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2007 perf_callchain_kernel(entry, regs);
2008 if (current->mm)
2009 regs = task_pt_regs(current);
2010 else
2011 regs = NULL;
2012 }
2013
2014 if (regs) {
2015 perf_callchain_store(entry, PERF_CONTEXT_USER);
2016 perf_callchain_user(entry, regs);
2017 }
2018
2019 exit_put:
2020 put_callchain_entry(rctx);
2021
2022 return entry;
2023 }
2024
2025 /*
2026 * Initialize the perf_event context in a task_struct:
2027 */
2028 static void __perf_event_init_context(struct perf_event_context *ctx)
2029 {
2030 raw_spin_lock_init(&ctx->lock);
2031 mutex_init(&ctx->mutex);
2032 INIT_LIST_HEAD(&ctx->pinned_groups);
2033 INIT_LIST_HEAD(&ctx->flexible_groups);
2034 INIT_LIST_HEAD(&ctx->event_list);
2035 atomic_set(&ctx->refcount, 1);
2036 }
2037
2038 static struct perf_event_context *
2039 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2040 {
2041 struct perf_event_context *ctx;
2042
2043 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2044 if (!ctx)
2045 return NULL;
2046
2047 __perf_event_init_context(ctx);
2048 if (task) {
2049 ctx->task = task;
2050 get_task_struct(task);
2051 }
2052 ctx->pmu = pmu;
2053
2054 return ctx;
2055 }
2056
2057 static struct task_struct *
2058 find_lively_task_by_vpid(pid_t vpid)
2059 {
2060 struct task_struct *task;
2061 int err;
2062
2063 rcu_read_lock();
2064 if (!vpid)
2065 task = current;
2066 else
2067 task = find_task_by_vpid(vpid);
2068 if (task)
2069 get_task_struct(task);
2070 rcu_read_unlock();
2071
2072 if (!task)
2073 return ERR_PTR(-ESRCH);
2074
2075 /*
2076 * Can't attach events to a dying task.
2077 */
2078 err = -ESRCH;
2079 if (task->flags & PF_EXITING)
2080 goto errout;
2081
2082 /* Reuse ptrace permission checks for now. */
2083 err = -EACCES;
2084 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2085 goto errout;
2086
2087 return task;
2088 errout:
2089 put_task_struct(task);
2090 return ERR_PTR(err);
2091
2092 }
2093
2094 static struct perf_event_context *
2095 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2096 {
2097 struct perf_event_context *ctx;
2098 struct perf_cpu_context *cpuctx;
2099 unsigned long flags;
2100 int ctxn, err;
2101
2102 if (!task && cpu != -1) {
2103 /* Must be root to operate on a CPU event: */
2104 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2105 return ERR_PTR(-EACCES);
2106
2107 if (cpu < 0 || cpu >= nr_cpumask_bits)
2108 return ERR_PTR(-EINVAL);
2109
2110 /*
2111 * We could be clever and allow to attach a event to an
2112 * offline CPU and activate it when the CPU comes up, but
2113 * that's for later.
2114 */
2115 if (!cpu_online(cpu))
2116 return ERR_PTR(-ENODEV);
2117
2118 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2119 ctx = &cpuctx->ctx;
2120 get_ctx(ctx);
2121
2122 return ctx;
2123 }
2124
2125 err = -EINVAL;
2126 ctxn = pmu->task_ctx_nr;
2127 if (ctxn < 0)
2128 goto errout;
2129
2130 retry:
2131 ctx = perf_lock_task_context(task, ctxn, &flags);
2132 if (ctx) {
2133 unclone_ctx(ctx);
2134 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2135 }
2136
2137 if (!ctx) {
2138 ctx = alloc_perf_context(pmu, task);
2139 err = -ENOMEM;
2140 if (!ctx)
2141 goto errout;
2142
2143 get_ctx(ctx);
2144
2145 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2146 /*
2147 * We raced with some other task; use
2148 * the context they set.
2149 */
2150 put_task_struct(task);
2151 kfree(ctx);
2152 goto retry;
2153 }
2154 }
2155
2156 return ctx;
2157
2158 errout:
2159 return ERR_PTR(err);
2160 }
2161
2162 static void perf_event_free_filter(struct perf_event *event);
2163
2164 static void free_event_rcu(struct rcu_head *head)
2165 {
2166 struct perf_event *event;
2167
2168 event = container_of(head, struct perf_event, rcu_head);
2169 if (event->ns)
2170 put_pid_ns(event->ns);
2171 perf_event_free_filter(event);
2172 kfree(event);
2173 }
2174
2175 static void perf_buffer_put(struct perf_buffer *buffer);
2176
2177 static void free_event(struct perf_event *event)
2178 {
2179 irq_work_sync(&event->pending);
2180
2181 if (!event->parent) {
2182 if (event->attach_state & PERF_ATTACH_TASK)
2183 jump_label_dec(&perf_task_events);
2184 if (event->attr.mmap || event->attr.mmap_data)
2185 atomic_dec(&nr_mmap_events);
2186 if (event->attr.comm)
2187 atomic_dec(&nr_comm_events);
2188 if (event->attr.task)
2189 atomic_dec(&nr_task_events);
2190 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2191 put_callchain_buffers();
2192 }
2193
2194 if (event->buffer) {
2195 perf_buffer_put(event->buffer);
2196 event->buffer = NULL;
2197 }
2198
2199 if (event->destroy)
2200 event->destroy(event);
2201
2202 if (event->ctx)
2203 put_ctx(event->ctx);
2204
2205 call_rcu(&event->rcu_head, free_event_rcu);
2206 }
2207
2208 int perf_event_release_kernel(struct perf_event *event)
2209 {
2210 struct perf_event_context *ctx = event->ctx;
2211
2212 /*
2213 * Remove from the PMU, can't get re-enabled since we got
2214 * here because the last ref went.
2215 */
2216 perf_event_disable(event);
2217
2218 WARN_ON_ONCE(ctx->parent_ctx);
2219 /*
2220 * There are two ways this annotation is useful:
2221 *
2222 * 1) there is a lock recursion from perf_event_exit_task
2223 * see the comment there.
2224 *
2225 * 2) there is a lock-inversion with mmap_sem through
2226 * perf_event_read_group(), which takes faults while
2227 * holding ctx->mutex, however this is called after
2228 * the last filedesc died, so there is no possibility
2229 * to trigger the AB-BA case.
2230 */
2231 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2232 raw_spin_lock_irq(&ctx->lock);
2233 perf_group_detach(event);
2234 list_del_event(event, ctx);
2235 raw_spin_unlock_irq(&ctx->lock);
2236 mutex_unlock(&ctx->mutex);
2237
2238 mutex_lock(&event->owner->perf_event_mutex);
2239 list_del_init(&event->owner_entry);
2240 mutex_unlock(&event->owner->perf_event_mutex);
2241 put_task_struct(event->owner);
2242
2243 free_event(event);
2244
2245 return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2248
2249 /*
2250 * Called when the last reference to the file is gone.
2251 */
2252 static int perf_release(struct inode *inode, struct file *file)
2253 {
2254 struct perf_event *event = file->private_data;
2255
2256 file->private_data = NULL;
2257
2258 return perf_event_release_kernel(event);
2259 }
2260
2261 static int perf_event_read_size(struct perf_event *event)
2262 {
2263 int entry = sizeof(u64); /* value */
2264 int size = 0;
2265 int nr = 1;
2266
2267 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2268 size += sizeof(u64);
2269
2270 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2271 size += sizeof(u64);
2272
2273 if (event->attr.read_format & PERF_FORMAT_ID)
2274 entry += sizeof(u64);
2275
2276 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2277 nr += event->group_leader->nr_siblings;
2278 size += sizeof(u64);
2279 }
2280
2281 size += entry * nr;
2282
2283 return size;
2284 }
2285
2286 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2287 {
2288 struct perf_event *child;
2289 u64 total = 0;
2290
2291 *enabled = 0;
2292 *running = 0;
2293
2294 mutex_lock(&event->child_mutex);
2295 total += perf_event_read(event);
2296 *enabled += event->total_time_enabled +
2297 atomic64_read(&event->child_total_time_enabled);
2298 *running += event->total_time_running +
2299 atomic64_read(&event->child_total_time_running);
2300
2301 list_for_each_entry(child, &event->child_list, child_list) {
2302 total += perf_event_read(child);
2303 *enabled += child->total_time_enabled;
2304 *running += child->total_time_running;
2305 }
2306 mutex_unlock(&event->child_mutex);
2307
2308 return total;
2309 }
2310 EXPORT_SYMBOL_GPL(perf_event_read_value);
2311
2312 static int perf_event_read_group(struct perf_event *event,
2313 u64 read_format, char __user *buf)
2314 {
2315 struct perf_event *leader = event->group_leader, *sub;
2316 int n = 0, size = 0, ret = -EFAULT;
2317 struct perf_event_context *ctx = leader->ctx;
2318 u64 values[5];
2319 u64 count, enabled, running;
2320
2321 mutex_lock(&ctx->mutex);
2322 count = perf_event_read_value(leader, &enabled, &running);
2323
2324 values[n++] = 1 + leader->nr_siblings;
2325 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2326 values[n++] = enabled;
2327 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2328 values[n++] = running;
2329 values[n++] = count;
2330 if (read_format & PERF_FORMAT_ID)
2331 values[n++] = primary_event_id(leader);
2332
2333 size = n * sizeof(u64);
2334
2335 if (copy_to_user(buf, values, size))
2336 goto unlock;
2337
2338 ret = size;
2339
2340 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2341 n = 0;
2342
2343 values[n++] = perf_event_read_value(sub, &enabled, &running);
2344 if (read_format & PERF_FORMAT_ID)
2345 values[n++] = primary_event_id(sub);
2346
2347 size = n * sizeof(u64);
2348
2349 if (copy_to_user(buf + ret, values, size)) {
2350 ret = -EFAULT;
2351 goto unlock;
2352 }
2353
2354 ret += size;
2355 }
2356 unlock:
2357 mutex_unlock(&ctx->mutex);
2358
2359 return ret;
2360 }
2361
2362 static int perf_event_read_one(struct perf_event *event,
2363 u64 read_format, char __user *buf)
2364 {
2365 u64 enabled, running;
2366 u64 values[4];
2367 int n = 0;
2368
2369 values[n++] = perf_event_read_value(event, &enabled, &running);
2370 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2371 values[n++] = enabled;
2372 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2373 values[n++] = running;
2374 if (read_format & PERF_FORMAT_ID)
2375 values[n++] = primary_event_id(event);
2376
2377 if (copy_to_user(buf, values, n * sizeof(u64)))
2378 return -EFAULT;
2379
2380 return n * sizeof(u64);
2381 }
2382
2383 /*
2384 * Read the performance event - simple non blocking version for now
2385 */
2386 static ssize_t
2387 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2388 {
2389 u64 read_format = event->attr.read_format;
2390 int ret;
2391
2392 /*
2393 * Return end-of-file for a read on a event that is in
2394 * error state (i.e. because it was pinned but it couldn't be
2395 * scheduled on to the CPU at some point).
2396 */
2397 if (event->state == PERF_EVENT_STATE_ERROR)
2398 return 0;
2399
2400 if (count < perf_event_read_size(event))
2401 return -ENOSPC;
2402
2403 WARN_ON_ONCE(event->ctx->parent_ctx);
2404 if (read_format & PERF_FORMAT_GROUP)
2405 ret = perf_event_read_group(event, read_format, buf);
2406 else
2407 ret = perf_event_read_one(event, read_format, buf);
2408
2409 return ret;
2410 }
2411
2412 static ssize_t
2413 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2414 {
2415 struct perf_event *event = file->private_data;
2416
2417 return perf_read_hw(event, buf, count);
2418 }
2419
2420 static unsigned int perf_poll(struct file *file, poll_table *wait)
2421 {
2422 struct perf_event *event = file->private_data;
2423 struct perf_buffer *buffer;
2424 unsigned int events = POLL_HUP;
2425
2426 rcu_read_lock();
2427 buffer = rcu_dereference(event->buffer);
2428 if (buffer)
2429 events = atomic_xchg(&buffer->poll, 0);
2430 rcu_read_unlock();
2431
2432 poll_wait(file, &event->waitq, wait);
2433
2434 return events;
2435 }
2436
2437 static void perf_event_reset(struct perf_event *event)
2438 {
2439 (void)perf_event_read(event);
2440 local64_set(&event->count, 0);
2441 perf_event_update_userpage(event);
2442 }
2443
2444 /*
2445 * Holding the top-level event's child_mutex means that any
2446 * descendant process that has inherited this event will block
2447 * in sync_child_event if it goes to exit, thus satisfying the
2448 * task existence requirements of perf_event_enable/disable.
2449 */
2450 static void perf_event_for_each_child(struct perf_event *event,
2451 void (*func)(struct perf_event *))
2452 {
2453 struct perf_event *child;
2454
2455 WARN_ON_ONCE(event->ctx->parent_ctx);
2456 mutex_lock(&event->child_mutex);
2457 func(event);
2458 list_for_each_entry(child, &event->child_list, child_list)
2459 func(child);
2460 mutex_unlock(&event->child_mutex);
2461 }
2462
2463 static void perf_event_for_each(struct perf_event *event,
2464 void (*func)(struct perf_event *))
2465 {
2466 struct perf_event_context *ctx = event->ctx;
2467 struct perf_event *sibling;
2468
2469 WARN_ON_ONCE(ctx->parent_ctx);
2470 mutex_lock(&ctx->mutex);
2471 event = event->group_leader;
2472
2473 perf_event_for_each_child(event, func);
2474 func(event);
2475 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2476 perf_event_for_each_child(event, func);
2477 mutex_unlock(&ctx->mutex);
2478 }
2479
2480 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2481 {
2482 struct perf_event_context *ctx = event->ctx;
2483 int ret = 0;
2484 u64 value;
2485
2486 if (!event->attr.sample_period)
2487 return -EINVAL;
2488
2489 if (copy_from_user(&value, arg, sizeof(value)))
2490 return -EFAULT;
2491
2492 if (!value)
2493 return -EINVAL;
2494
2495 raw_spin_lock_irq(&ctx->lock);
2496 if (event->attr.freq) {
2497 if (value > sysctl_perf_event_sample_rate) {
2498 ret = -EINVAL;
2499 goto unlock;
2500 }
2501
2502 event->attr.sample_freq = value;
2503 } else {
2504 event->attr.sample_period = value;
2505 event->hw.sample_period = value;
2506 }
2507 unlock:
2508 raw_spin_unlock_irq(&ctx->lock);
2509
2510 return ret;
2511 }
2512
2513 static const struct file_operations perf_fops;
2514
2515 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2516 {
2517 struct file *file;
2518
2519 file = fget_light(fd, fput_needed);
2520 if (!file)
2521 return ERR_PTR(-EBADF);
2522
2523 if (file->f_op != &perf_fops) {
2524 fput_light(file, *fput_needed);
2525 *fput_needed = 0;
2526 return ERR_PTR(-EBADF);
2527 }
2528
2529 return file->private_data;
2530 }
2531
2532 static int perf_event_set_output(struct perf_event *event,
2533 struct perf_event *output_event);
2534 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2535
2536 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2537 {
2538 struct perf_event *event = file->private_data;
2539 void (*func)(struct perf_event *);
2540 u32 flags = arg;
2541
2542 switch (cmd) {
2543 case PERF_EVENT_IOC_ENABLE:
2544 func = perf_event_enable;
2545 break;
2546 case PERF_EVENT_IOC_DISABLE:
2547 func = perf_event_disable;
2548 break;
2549 case PERF_EVENT_IOC_RESET:
2550 func = perf_event_reset;
2551 break;
2552
2553 case PERF_EVENT_IOC_REFRESH:
2554 return perf_event_refresh(event, arg);
2555
2556 case PERF_EVENT_IOC_PERIOD:
2557 return perf_event_period(event, (u64 __user *)arg);
2558
2559 case PERF_EVENT_IOC_SET_OUTPUT:
2560 {
2561 struct perf_event *output_event = NULL;
2562 int fput_needed = 0;
2563 int ret;
2564
2565 if (arg != -1) {
2566 output_event = perf_fget_light(arg, &fput_needed);
2567 if (IS_ERR(output_event))
2568 return PTR_ERR(output_event);
2569 }
2570
2571 ret = perf_event_set_output(event, output_event);
2572 if (output_event)
2573 fput_light(output_event->filp, fput_needed);
2574
2575 return ret;
2576 }
2577
2578 case PERF_EVENT_IOC_SET_FILTER:
2579 return perf_event_set_filter(event, (void __user *)arg);
2580
2581 default:
2582 return -ENOTTY;
2583 }
2584
2585 if (flags & PERF_IOC_FLAG_GROUP)
2586 perf_event_for_each(event, func);
2587 else
2588 perf_event_for_each_child(event, func);
2589
2590 return 0;
2591 }
2592
2593 int perf_event_task_enable(void)
2594 {
2595 struct perf_event *event;
2596
2597 mutex_lock(&current->perf_event_mutex);
2598 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2599 perf_event_for_each_child(event, perf_event_enable);
2600 mutex_unlock(&current->perf_event_mutex);
2601
2602 return 0;
2603 }
2604
2605 int perf_event_task_disable(void)
2606 {
2607 struct perf_event *event;
2608
2609 mutex_lock(&current->perf_event_mutex);
2610 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2611 perf_event_for_each_child(event, perf_event_disable);
2612 mutex_unlock(&current->perf_event_mutex);
2613
2614 return 0;
2615 }
2616
2617 #ifndef PERF_EVENT_INDEX_OFFSET
2618 # define PERF_EVENT_INDEX_OFFSET 0
2619 #endif
2620
2621 static int perf_event_index(struct perf_event *event)
2622 {
2623 if (event->hw.state & PERF_HES_STOPPED)
2624 return 0;
2625
2626 if (event->state != PERF_EVENT_STATE_ACTIVE)
2627 return 0;
2628
2629 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2630 }
2631
2632 /*
2633 * Callers need to ensure there can be no nesting of this function, otherwise
2634 * the seqlock logic goes bad. We can not serialize this because the arch
2635 * code calls this from NMI context.
2636 */
2637 void perf_event_update_userpage(struct perf_event *event)
2638 {
2639 struct perf_event_mmap_page *userpg;
2640 struct perf_buffer *buffer;
2641
2642 rcu_read_lock();
2643 buffer = rcu_dereference(event->buffer);
2644 if (!buffer)
2645 goto unlock;
2646
2647 userpg = buffer->user_page;
2648
2649 /*
2650 * Disable preemption so as to not let the corresponding user-space
2651 * spin too long if we get preempted.
2652 */
2653 preempt_disable();
2654 ++userpg->lock;
2655 barrier();
2656 userpg->index = perf_event_index(event);
2657 userpg->offset = perf_event_count(event);
2658 if (event->state == PERF_EVENT_STATE_ACTIVE)
2659 userpg->offset -= local64_read(&event->hw.prev_count);
2660
2661 userpg->time_enabled = event->total_time_enabled +
2662 atomic64_read(&event->child_total_time_enabled);
2663
2664 userpg->time_running = event->total_time_running +
2665 atomic64_read(&event->child_total_time_running);
2666
2667 barrier();
2668 ++userpg->lock;
2669 preempt_enable();
2670 unlock:
2671 rcu_read_unlock();
2672 }
2673
2674 static unsigned long perf_data_size(struct perf_buffer *buffer);
2675
2676 static void
2677 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2678 {
2679 long max_size = perf_data_size(buffer);
2680
2681 if (watermark)
2682 buffer->watermark = min(max_size, watermark);
2683
2684 if (!buffer->watermark)
2685 buffer->watermark = max_size / 2;
2686
2687 if (flags & PERF_BUFFER_WRITABLE)
2688 buffer->writable = 1;
2689
2690 atomic_set(&buffer->refcount, 1);
2691 }
2692
2693 #ifndef CONFIG_PERF_USE_VMALLOC
2694
2695 /*
2696 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2697 */
2698
2699 static struct page *
2700 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2701 {
2702 if (pgoff > buffer->nr_pages)
2703 return NULL;
2704
2705 if (pgoff == 0)
2706 return virt_to_page(buffer->user_page);
2707
2708 return virt_to_page(buffer->data_pages[pgoff - 1]);
2709 }
2710
2711 static void *perf_mmap_alloc_page(int cpu)
2712 {
2713 struct page *page;
2714 int node;
2715
2716 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2717 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2718 if (!page)
2719 return NULL;
2720
2721 return page_address(page);
2722 }
2723
2724 static struct perf_buffer *
2725 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2726 {
2727 struct perf_buffer *buffer;
2728 unsigned long size;
2729 int i;
2730
2731 size = sizeof(struct perf_buffer);
2732 size += nr_pages * sizeof(void *);
2733
2734 buffer = kzalloc(size, GFP_KERNEL);
2735 if (!buffer)
2736 goto fail;
2737
2738 buffer->user_page = perf_mmap_alloc_page(cpu);
2739 if (!buffer->user_page)
2740 goto fail_user_page;
2741
2742 for (i = 0; i < nr_pages; i++) {
2743 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2744 if (!buffer->data_pages[i])
2745 goto fail_data_pages;
2746 }
2747
2748 buffer->nr_pages = nr_pages;
2749
2750 perf_buffer_init(buffer, watermark, flags);
2751
2752 return buffer;
2753
2754 fail_data_pages:
2755 for (i--; i >= 0; i--)
2756 free_page((unsigned long)buffer->data_pages[i]);
2757
2758 free_page((unsigned long)buffer->user_page);
2759
2760 fail_user_page:
2761 kfree(buffer);
2762
2763 fail:
2764 return NULL;
2765 }
2766
2767 static void perf_mmap_free_page(unsigned long addr)
2768 {
2769 struct page *page = virt_to_page((void *)addr);
2770
2771 page->mapping = NULL;
2772 __free_page(page);
2773 }
2774
2775 static void perf_buffer_free(struct perf_buffer *buffer)
2776 {
2777 int i;
2778
2779 perf_mmap_free_page((unsigned long)buffer->user_page);
2780 for (i = 0; i < buffer->nr_pages; i++)
2781 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2782 kfree(buffer);
2783 }
2784
2785 static inline int page_order(struct perf_buffer *buffer)
2786 {
2787 return 0;
2788 }
2789
2790 #else
2791
2792 /*
2793 * Back perf_mmap() with vmalloc memory.
2794 *
2795 * Required for architectures that have d-cache aliasing issues.
2796 */
2797
2798 static inline int page_order(struct perf_buffer *buffer)
2799 {
2800 return buffer->page_order;
2801 }
2802
2803 static struct page *
2804 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2805 {
2806 if (pgoff > (1UL << page_order(buffer)))
2807 return NULL;
2808
2809 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2810 }
2811
2812 static void perf_mmap_unmark_page(void *addr)
2813 {
2814 struct page *page = vmalloc_to_page(addr);
2815
2816 page->mapping = NULL;
2817 }
2818
2819 static void perf_buffer_free_work(struct work_struct *work)
2820 {
2821 struct perf_buffer *buffer;
2822 void *base;
2823 int i, nr;
2824
2825 buffer = container_of(work, struct perf_buffer, work);
2826 nr = 1 << page_order(buffer);
2827
2828 base = buffer->user_page;
2829 for (i = 0; i < nr + 1; i++)
2830 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2831
2832 vfree(base);
2833 kfree(buffer);
2834 }
2835
2836 static void perf_buffer_free(struct perf_buffer *buffer)
2837 {
2838 schedule_work(&buffer->work);
2839 }
2840
2841 static struct perf_buffer *
2842 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2843 {
2844 struct perf_buffer *buffer;
2845 unsigned long size;
2846 void *all_buf;
2847
2848 size = sizeof(struct perf_buffer);
2849 size += sizeof(void *);
2850
2851 buffer = kzalloc(size, GFP_KERNEL);
2852 if (!buffer)
2853 goto fail;
2854
2855 INIT_WORK(&buffer->work, perf_buffer_free_work);
2856
2857 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2858 if (!all_buf)
2859 goto fail_all_buf;
2860
2861 buffer->user_page = all_buf;
2862 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2863 buffer->page_order = ilog2(nr_pages);
2864 buffer->nr_pages = 1;
2865
2866 perf_buffer_init(buffer, watermark, flags);
2867
2868 return buffer;
2869
2870 fail_all_buf:
2871 kfree(buffer);
2872
2873 fail:
2874 return NULL;
2875 }
2876
2877 #endif
2878
2879 static unsigned long perf_data_size(struct perf_buffer *buffer)
2880 {
2881 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2882 }
2883
2884 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2885 {
2886 struct perf_event *event = vma->vm_file->private_data;
2887 struct perf_buffer *buffer;
2888 int ret = VM_FAULT_SIGBUS;
2889
2890 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2891 if (vmf->pgoff == 0)
2892 ret = 0;
2893 return ret;
2894 }
2895
2896 rcu_read_lock();
2897 buffer = rcu_dereference(event->buffer);
2898 if (!buffer)
2899 goto unlock;
2900
2901 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2902 goto unlock;
2903
2904 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2905 if (!vmf->page)
2906 goto unlock;
2907
2908 get_page(vmf->page);
2909 vmf->page->mapping = vma->vm_file->f_mapping;
2910 vmf->page->index = vmf->pgoff;
2911
2912 ret = 0;
2913 unlock:
2914 rcu_read_unlock();
2915
2916 return ret;
2917 }
2918
2919 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2920 {
2921 struct perf_buffer *buffer;
2922
2923 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2924 perf_buffer_free(buffer);
2925 }
2926
2927 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2928 {
2929 struct perf_buffer *buffer;
2930
2931 rcu_read_lock();
2932 buffer = rcu_dereference(event->buffer);
2933 if (buffer) {
2934 if (!atomic_inc_not_zero(&buffer->refcount))
2935 buffer = NULL;
2936 }
2937 rcu_read_unlock();
2938
2939 return buffer;
2940 }
2941
2942 static void perf_buffer_put(struct perf_buffer *buffer)
2943 {
2944 if (!atomic_dec_and_test(&buffer->refcount))
2945 return;
2946
2947 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2948 }
2949
2950 static void perf_mmap_open(struct vm_area_struct *vma)
2951 {
2952 struct perf_event *event = vma->vm_file->private_data;
2953
2954 atomic_inc(&event->mmap_count);
2955 }
2956
2957 static void perf_mmap_close(struct vm_area_struct *vma)
2958 {
2959 struct perf_event *event = vma->vm_file->private_data;
2960
2961 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2962 unsigned long size = perf_data_size(event->buffer);
2963 struct user_struct *user = event->mmap_user;
2964 struct perf_buffer *buffer = event->buffer;
2965
2966 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2967 vma->vm_mm->locked_vm -= event->mmap_locked;
2968 rcu_assign_pointer(event->buffer, NULL);
2969 mutex_unlock(&event->mmap_mutex);
2970
2971 perf_buffer_put(buffer);
2972 free_uid(user);
2973 }
2974 }
2975
2976 static const struct vm_operations_struct perf_mmap_vmops = {
2977 .open = perf_mmap_open,
2978 .close = perf_mmap_close,
2979 .fault = perf_mmap_fault,
2980 .page_mkwrite = perf_mmap_fault,
2981 };
2982
2983 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2984 {
2985 struct perf_event *event = file->private_data;
2986 unsigned long user_locked, user_lock_limit;
2987 struct user_struct *user = current_user();
2988 unsigned long locked, lock_limit;
2989 struct perf_buffer *buffer;
2990 unsigned long vma_size;
2991 unsigned long nr_pages;
2992 long user_extra, extra;
2993 int ret = 0, flags = 0;
2994
2995 /*
2996 * Don't allow mmap() of inherited per-task counters. This would
2997 * create a performance issue due to all children writing to the
2998 * same buffer.
2999 */
3000 if (event->cpu == -1 && event->attr.inherit)
3001 return -EINVAL;
3002
3003 if (!(vma->vm_flags & VM_SHARED))
3004 return -EINVAL;
3005
3006 vma_size = vma->vm_end - vma->vm_start;
3007 nr_pages = (vma_size / PAGE_SIZE) - 1;
3008
3009 /*
3010 * If we have buffer pages ensure they're a power-of-two number, so we
3011 * can do bitmasks instead of modulo.
3012 */
3013 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3014 return -EINVAL;
3015
3016 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3017 return -EINVAL;
3018
3019 if (vma->vm_pgoff != 0)
3020 return -EINVAL;
3021
3022 WARN_ON_ONCE(event->ctx->parent_ctx);
3023 mutex_lock(&event->mmap_mutex);
3024 if (event->buffer) {
3025 if (event->buffer->nr_pages == nr_pages)
3026 atomic_inc(&event->buffer->refcount);
3027 else
3028 ret = -EINVAL;
3029 goto unlock;
3030 }
3031
3032 user_extra = nr_pages + 1;
3033 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3034
3035 /*
3036 * Increase the limit linearly with more CPUs:
3037 */
3038 user_lock_limit *= num_online_cpus();
3039
3040 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3041
3042 extra = 0;
3043 if (user_locked > user_lock_limit)
3044 extra = user_locked - user_lock_limit;
3045
3046 lock_limit = rlimit(RLIMIT_MEMLOCK);
3047 lock_limit >>= PAGE_SHIFT;
3048 locked = vma->vm_mm->locked_vm + extra;
3049
3050 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3051 !capable(CAP_IPC_LOCK)) {
3052 ret = -EPERM;
3053 goto unlock;
3054 }
3055
3056 WARN_ON(event->buffer);
3057
3058 if (vma->vm_flags & VM_WRITE)
3059 flags |= PERF_BUFFER_WRITABLE;
3060
3061 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3062 event->cpu, flags);
3063 if (!buffer) {
3064 ret = -ENOMEM;
3065 goto unlock;
3066 }
3067 rcu_assign_pointer(event->buffer, buffer);
3068
3069 atomic_long_add(user_extra, &user->locked_vm);
3070 event->mmap_locked = extra;
3071 event->mmap_user = get_current_user();
3072 vma->vm_mm->locked_vm += event->mmap_locked;
3073
3074 unlock:
3075 if (!ret)
3076 atomic_inc(&event->mmap_count);
3077 mutex_unlock(&event->mmap_mutex);
3078
3079 vma->vm_flags |= VM_RESERVED;
3080 vma->vm_ops = &perf_mmap_vmops;
3081
3082 return ret;
3083 }
3084
3085 static int perf_fasync(int fd, struct file *filp, int on)
3086 {
3087 struct inode *inode = filp->f_path.dentry->d_inode;
3088 struct perf_event *event = filp->private_data;
3089 int retval;
3090
3091 mutex_lock(&inode->i_mutex);
3092 retval = fasync_helper(fd, filp, on, &event->fasync);
3093 mutex_unlock(&inode->i_mutex);
3094
3095 if (retval < 0)
3096 return retval;
3097
3098 return 0;
3099 }
3100
3101 static const struct file_operations perf_fops = {
3102 .llseek = no_llseek,
3103 .release = perf_release,
3104 .read = perf_read,
3105 .poll = perf_poll,
3106 .unlocked_ioctl = perf_ioctl,
3107 .compat_ioctl = perf_ioctl,
3108 .mmap = perf_mmap,
3109 .fasync = perf_fasync,
3110 };
3111
3112 /*
3113 * Perf event wakeup
3114 *
3115 * If there's data, ensure we set the poll() state and publish everything
3116 * to user-space before waking everybody up.
3117 */
3118
3119 void perf_event_wakeup(struct perf_event *event)
3120 {
3121 wake_up_all(&event->waitq);
3122
3123 if (event->pending_kill) {
3124 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3125 event->pending_kill = 0;
3126 }
3127 }
3128
3129 static void perf_pending_event(struct irq_work *entry)
3130 {
3131 struct perf_event *event = container_of(entry,
3132 struct perf_event, pending);
3133
3134 if (event->pending_disable) {
3135 event->pending_disable = 0;
3136 __perf_event_disable(event);
3137 }
3138
3139 if (event->pending_wakeup) {
3140 event->pending_wakeup = 0;
3141 perf_event_wakeup(event);
3142 }
3143 }
3144
3145 /*
3146 * We assume there is only KVM supporting the callbacks.
3147 * Later on, we might change it to a list if there is
3148 * another virtualization implementation supporting the callbacks.
3149 */
3150 struct perf_guest_info_callbacks *perf_guest_cbs;
3151
3152 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3153 {
3154 perf_guest_cbs = cbs;
3155 return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3158
3159 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3160 {
3161 perf_guest_cbs = NULL;
3162 return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3165
3166 /*
3167 * Output
3168 */
3169 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3170 unsigned long offset, unsigned long head)
3171 {
3172 unsigned long mask;
3173
3174 if (!buffer->writable)
3175 return true;
3176
3177 mask = perf_data_size(buffer) - 1;
3178
3179 offset = (offset - tail) & mask;
3180 head = (head - tail) & mask;
3181
3182 if ((int)(head - offset) < 0)
3183 return false;
3184
3185 return true;
3186 }
3187
3188 static void perf_output_wakeup(struct perf_output_handle *handle)
3189 {
3190 atomic_set(&handle->buffer->poll, POLL_IN);
3191
3192 if (handle->nmi) {
3193 handle->event->pending_wakeup = 1;
3194 irq_work_queue(&handle->event->pending);
3195 } else
3196 perf_event_wakeup(handle->event);
3197 }
3198
3199 /*
3200 * We need to ensure a later event_id doesn't publish a head when a former
3201 * event isn't done writing. However since we need to deal with NMIs we
3202 * cannot fully serialize things.
3203 *
3204 * We only publish the head (and generate a wakeup) when the outer-most
3205 * event completes.
3206 */
3207 static void perf_output_get_handle(struct perf_output_handle *handle)
3208 {
3209 struct perf_buffer *buffer = handle->buffer;
3210
3211 preempt_disable();
3212 local_inc(&buffer->nest);
3213 handle->wakeup = local_read(&buffer->wakeup);
3214 }
3215
3216 static void perf_output_put_handle(struct perf_output_handle *handle)
3217 {
3218 struct perf_buffer *buffer = handle->buffer;
3219 unsigned long head;
3220
3221 again:
3222 head = local_read(&buffer->head);
3223
3224 /*
3225 * IRQ/NMI can happen here, which means we can miss a head update.
3226 */
3227
3228 if (!local_dec_and_test(&buffer->nest))
3229 goto out;
3230
3231 /*
3232 * Publish the known good head. Rely on the full barrier implied
3233 * by atomic_dec_and_test() order the buffer->head read and this
3234 * write.
3235 */
3236 buffer->user_page->data_head = head;
3237
3238 /*
3239 * Now check if we missed an update, rely on the (compiler)
3240 * barrier in atomic_dec_and_test() to re-read buffer->head.
3241 */
3242 if (unlikely(head != local_read(&buffer->head))) {
3243 local_inc(&buffer->nest);
3244 goto again;
3245 }
3246
3247 if (handle->wakeup != local_read(&buffer->wakeup))
3248 perf_output_wakeup(handle);
3249
3250 out:
3251 preempt_enable();
3252 }
3253
3254 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3255 const void *buf, unsigned int len)
3256 {
3257 do {
3258 unsigned long size = min_t(unsigned long, handle->size, len);
3259
3260 memcpy(handle->addr, buf, size);
3261
3262 len -= size;
3263 handle->addr += size;
3264 buf += size;
3265 handle->size -= size;
3266 if (!handle->size) {
3267 struct perf_buffer *buffer = handle->buffer;
3268
3269 handle->page++;
3270 handle->page &= buffer->nr_pages - 1;
3271 handle->addr = buffer->data_pages[handle->page];
3272 handle->size = PAGE_SIZE << page_order(buffer);
3273 }
3274 } while (len);
3275 }
3276
3277 int perf_output_begin(struct perf_output_handle *handle,
3278 struct perf_event *event, unsigned int size,
3279 int nmi, int sample)
3280 {
3281 struct perf_buffer *buffer;
3282 unsigned long tail, offset, head;
3283 int have_lost;
3284 struct {
3285 struct perf_event_header header;
3286 u64 id;
3287 u64 lost;
3288 } lost_event;
3289
3290 rcu_read_lock();
3291 /*
3292 * For inherited events we send all the output towards the parent.
3293 */
3294 if (event->parent)
3295 event = event->parent;
3296
3297 buffer = rcu_dereference(event->buffer);
3298 if (!buffer)
3299 goto out;
3300
3301 handle->buffer = buffer;
3302 handle->event = event;
3303 handle->nmi = nmi;
3304 handle->sample = sample;
3305
3306 if (!buffer->nr_pages)
3307 goto out;
3308
3309 have_lost = local_read(&buffer->lost);
3310 if (have_lost)
3311 size += sizeof(lost_event);
3312
3313 perf_output_get_handle(handle);
3314
3315 do {
3316 /*
3317 * Userspace could choose to issue a mb() before updating the
3318 * tail pointer. So that all reads will be completed before the
3319 * write is issued.
3320 */
3321 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3322 smp_rmb();
3323 offset = head = local_read(&buffer->head);
3324 head += size;
3325 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3326 goto fail;
3327 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3328
3329 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3330 local_add(buffer->watermark, &buffer->wakeup);
3331
3332 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3333 handle->page &= buffer->nr_pages - 1;
3334 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3335 handle->addr = buffer->data_pages[handle->page];
3336 handle->addr += handle->size;
3337 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3338
3339 if (have_lost) {
3340 lost_event.header.type = PERF_RECORD_LOST;
3341 lost_event.header.misc = 0;
3342 lost_event.header.size = sizeof(lost_event);
3343 lost_event.id = event->id;
3344 lost_event.lost = local_xchg(&buffer->lost, 0);
3345
3346 perf_output_put(handle, lost_event);
3347 }
3348
3349 return 0;
3350
3351 fail:
3352 local_inc(&buffer->lost);
3353 perf_output_put_handle(handle);
3354 out:
3355 rcu_read_unlock();
3356
3357 return -ENOSPC;
3358 }
3359
3360 void perf_output_end(struct perf_output_handle *handle)
3361 {
3362 struct perf_event *event = handle->event;
3363 struct perf_buffer *buffer = handle->buffer;
3364
3365 int wakeup_events = event->attr.wakeup_events;
3366
3367 if (handle->sample && wakeup_events) {
3368 int events = local_inc_return(&buffer->events);
3369 if (events >= wakeup_events) {
3370 local_sub(wakeup_events, &buffer->events);
3371 local_inc(&buffer->wakeup);
3372 }
3373 }
3374
3375 perf_output_put_handle(handle);
3376 rcu_read_unlock();
3377 }
3378
3379 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3380 {
3381 /*
3382 * only top level events have the pid namespace they were created in
3383 */
3384 if (event->parent)
3385 event = event->parent;
3386
3387 return task_tgid_nr_ns(p, event->ns);
3388 }
3389
3390 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3391 {
3392 /*
3393 * only top level events have the pid namespace they were created in
3394 */
3395 if (event->parent)
3396 event = event->parent;
3397
3398 return task_pid_nr_ns(p, event->ns);
3399 }
3400
3401 static void perf_output_read_one(struct perf_output_handle *handle,
3402 struct perf_event *event,
3403 u64 enabled, u64 running)
3404 {
3405 u64 read_format = event->attr.read_format;
3406 u64 values[4];
3407 int n = 0;
3408
3409 values[n++] = perf_event_count(event);
3410 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3411 values[n++] = enabled +
3412 atomic64_read(&event->child_total_time_enabled);
3413 }
3414 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3415 values[n++] = running +
3416 atomic64_read(&event->child_total_time_running);
3417 }
3418 if (read_format & PERF_FORMAT_ID)
3419 values[n++] = primary_event_id(event);
3420
3421 perf_output_copy(handle, values, n * sizeof(u64));
3422 }
3423
3424 /*
3425 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3426 */
3427 static void perf_output_read_group(struct perf_output_handle *handle,
3428 struct perf_event *event,
3429 u64 enabled, u64 running)
3430 {
3431 struct perf_event *leader = event->group_leader, *sub;
3432 u64 read_format = event->attr.read_format;
3433 u64 values[5];
3434 int n = 0;
3435
3436 values[n++] = 1 + leader->nr_siblings;
3437
3438 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3439 values[n++] = enabled;
3440
3441 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3442 values[n++] = running;
3443
3444 if (leader != event)
3445 leader->pmu->read(leader);
3446
3447 values[n++] = perf_event_count(leader);
3448 if (read_format & PERF_FORMAT_ID)
3449 values[n++] = primary_event_id(leader);
3450
3451 perf_output_copy(handle, values, n * sizeof(u64));
3452
3453 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3454 n = 0;
3455
3456 if (sub != event)
3457 sub->pmu->read(sub);
3458
3459 values[n++] = perf_event_count(sub);
3460 if (read_format & PERF_FORMAT_ID)
3461 values[n++] = primary_event_id(sub);
3462
3463 perf_output_copy(handle, values, n * sizeof(u64));
3464 }
3465 }
3466
3467 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3468 PERF_FORMAT_TOTAL_TIME_RUNNING)
3469
3470 static void perf_output_read(struct perf_output_handle *handle,
3471 struct perf_event *event)
3472 {
3473 u64 enabled = 0, running = 0, now, ctx_time;
3474 u64 read_format = event->attr.read_format;
3475
3476 /*
3477 * compute total_time_enabled, total_time_running
3478 * based on snapshot values taken when the event
3479 * was last scheduled in.
3480 *
3481 * we cannot simply called update_context_time()
3482 * because of locking issue as we are called in
3483 * NMI context
3484 */
3485 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3486 now = perf_clock();
3487 ctx_time = event->shadow_ctx_time + now;
3488 enabled = ctx_time - event->tstamp_enabled;
3489 running = ctx_time - event->tstamp_running;
3490 }
3491
3492 if (event->attr.read_format & PERF_FORMAT_GROUP)
3493 perf_output_read_group(handle, event, enabled, running);
3494 else
3495 perf_output_read_one(handle, event, enabled, running);
3496 }
3497
3498 void perf_output_sample(struct perf_output_handle *handle,
3499 struct perf_event_header *header,
3500 struct perf_sample_data *data,
3501 struct perf_event *event)
3502 {
3503 u64 sample_type = data->type;
3504
3505 perf_output_put(handle, *header);
3506
3507 if (sample_type & PERF_SAMPLE_IP)
3508 perf_output_put(handle, data->ip);
3509
3510 if (sample_type & PERF_SAMPLE_TID)
3511 perf_output_put(handle, data->tid_entry);
3512
3513 if (sample_type & PERF_SAMPLE_TIME)
3514 perf_output_put(handle, data->time);
3515
3516 if (sample_type & PERF_SAMPLE_ADDR)
3517 perf_output_put(handle, data->addr);
3518
3519 if (sample_type & PERF_SAMPLE_ID)
3520 perf_output_put(handle, data->id);
3521
3522 if (sample_type & PERF_SAMPLE_STREAM_ID)
3523 perf_output_put(handle, data->stream_id);
3524
3525 if (sample_type & PERF_SAMPLE_CPU)
3526 perf_output_put(handle, data->cpu_entry);
3527
3528 if (sample_type & PERF_SAMPLE_PERIOD)
3529 perf_output_put(handle, data->period);
3530
3531 if (sample_type & PERF_SAMPLE_READ)
3532 perf_output_read(handle, event);
3533
3534 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3535 if (data->callchain) {
3536 int size = 1;
3537
3538 if (data->callchain)
3539 size += data->callchain->nr;
3540
3541 size *= sizeof(u64);
3542
3543 perf_output_copy(handle, data->callchain, size);
3544 } else {
3545 u64 nr = 0;
3546 perf_output_put(handle, nr);
3547 }
3548 }
3549
3550 if (sample_type & PERF_SAMPLE_RAW) {
3551 if (data->raw) {
3552 perf_output_put(handle, data->raw->size);
3553 perf_output_copy(handle, data->raw->data,
3554 data->raw->size);
3555 } else {
3556 struct {
3557 u32 size;
3558 u32 data;
3559 } raw = {
3560 .size = sizeof(u32),
3561 .data = 0,
3562 };
3563 perf_output_put(handle, raw);
3564 }
3565 }
3566 }
3567
3568 void perf_prepare_sample(struct perf_event_header *header,
3569 struct perf_sample_data *data,
3570 struct perf_event *event,
3571 struct pt_regs *regs)
3572 {
3573 u64 sample_type = event->attr.sample_type;
3574
3575 data->type = sample_type;
3576
3577 header->type = PERF_RECORD_SAMPLE;
3578 header->size = sizeof(*header);
3579
3580 header->misc = 0;
3581 header->misc |= perf_misc_flags(regs);
3582
3583 if (sample_type & PERF_SAMPLE_IP) {
3584 data->ip = perf_instruction_pointer(regs);
3585
3586 header->size += sizeof(data->ip);
3587 }
3588
3589 if (sample_type & PERF_SAMPLE_TID) {
3590 /* namespace issues */
3591 data->tid_entry.pid = perf_event_pid(event, current);
3592 data->tid_entry.tid = perf_event_tid(event, current);
3593
3594 header->size += sizeof(data->tid_entry);
3595 }
3596
3597 if (sample_type & PERF_SAMPLE_TIME) {
3598 data->time = perf_clock();
3599
3600 header->size += sizeof(data->time);
3601 }
3602
3603 if (sample_type & PERF_SAMPLE_ADDR)
3604 header->size += sizeof(data->addr);
3605
3606 if (sample_type & PERF_SAMPLE_ID) {
3607 data->id = primary_event_id(event);
3608
3609 header->size += sizeof(data->id);
3610 }
3611
3612 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3613 data->stream_id = event->id;
3614
3615 header->size += sizeof(data->stream_id);
3616 }
3617
3618 if (sample_type & PERF_SAMPLE_CPU) {
3619 data->cpu_entry.cpu = raw_smp_processor_id();
3620 data->cpu_entry.reserved = 0;
3621
3622 header->size += sizeof(data->cpu_entry);
3623 }
3624
3625 if (sample_type & PERF_SAMPLE_PERIOD)
3626 header->size += sizeof(data->period);
3627
3628 if (sample_type & PERF_SAMPLE_READ)
3629 header->size += perf_event_read_size(event);
3630
3631 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3632 int size = 1;
3633
3634 data->callchain = perf_callchain(regs);
3635
3636 if (data->callchain)
3637 size += data->callchain->nr;
3638
3639 header->size += size * sizeof(u64);
3640 }
3641
3642 if (sample_type & PERF_SAMPLE_RAW) {
3643 int size = sizeof(u32);
3644
3645 if (data->raw)
3646 size += data->raw->size;
3647 else
3648 size += sizeof(u32);
3649
3650 WARN_ON_ONCE(size & (sizeof(u64)-1));
3651 header->size += size;
3652 }
3653 }
3654
3655 static void perf_event_output(struct perf_event *event, int nmi,
3656 struct perf_sample_data *data,
3657 struct pt_regs *regs)
3658 {
3659 struct perf_output_handle handle;
3660 struct perf_event_header header;
3661
3662 /* protect the callchain buffers */
3663 rcu_read_lock();
3664
3665 perf_prepare_sample(&header, data, event, regs);
3666
3667 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3668 goto exit;
3669
3670 perf_output_sample(&handle, &header, data, event);
3671
3672 perf_output_end(&handle);
3673
3674 exit:
3675 rcu_read_unlock();
3676 }
3677
3678 /*
3679 * read event_id
3680 */
3681
3682 struct perf_read_event {
3683 struct perf_event_header header;
3684
3685 u32 pid;
3686 u32 tid;
3687 };
3688
3689 static void
3690 perf_event_read_event(struct perf_event *event,
3691 struct task_struct *task)
3692 {
3693 struct perf_output_handle handle;
3694 struct perf_read_event read_event = {
3695 .header = {
3696 .type = PERF_RECORD_READ,
3697 .misc = 0,
3698 .size = sizeof(read_event) + perf_event_read_size(event),
3699 },
3700 .pid = perf_event_pid(event, task),
3701 .tid = perf_event_tid(event, task),
3702 };
3703 int ret;
3704
3705 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3706 if (ret)
3707 return;
3708
3709 perf_output_put(&handle, read_event);
3710 perf_output_read(&handle, event);
3711
3712 perf_output_end(&handle);
3713 }
3714
3715 /*
3716 * task tracking -- fork/exit
3717 *
3718 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3719 */
3720
3721 struct perf_task_event {
3722 struct task_struct *task;
3723 struct perf_event_context *task_ctx;
3724
3725 struct {
3726 struct perf_event_header header;
3727
3728 u32 pid;
3729 u32 ppid;
3730 u32 tid;
3731 u32 ptid;
3732 u64 time;
3733 } event_id;
3734 };
3735
3736 static void perf_event_task_output(struct perf_event *event,
3737 struct perf_task_event *task_event)
3738 {
3739 struct perf_output_handle handle;
3740 struct task_struct *task = task_event->task;
3741 int size, ret;
3742
3743 size = task_event->event_id.header.size;
3744 ret = perf_output_begin(&handle, event, size, 0, 0);
3745
3746 if (ret)
3747 return;
3748
3749 task_event->event_id.pid = perf_event_pid(event, task);
3750 task_event->event_id.ppid = perf_event_pid(event, current);
3751
3752 task_event->event_id.tid = perf_event_tid(event, task);
3753 task_event->event_id.ptid = perf_event_tid(event, current);
3754
3755 perf_output_put(&handle, task_event->event_id);
3756
3757 perf_output_end(&handle);
3758 }
3759
3760 static int perf_event_task_match(struct perf_event *event)
3761 {
3762 if (event->state < PERF_EVENT_STATE_INACTIVE)
3763 return 0;
3764
3765 if (event->cpu != -1 && event->cpu != smp_processor_id())
3766 return 0;
3767
3768 if (event->attr.comm || event->attr.mmap ||
3769 event->attr.mmap_data || event->attr.task)
3770 return 1;
3771
3772 return 0;
3773 }
3774
3775 static void perf_event_task_ctx(struct perf_event_context *ctx,
3776 struct perf_task_event *task_event)
3777 {
3778 struct perf_event *event;
3779
3780 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3781 if (perf_event_task_match(event))
3782 perf_event_task_output(event, task_event);
3783 }
3784 }
3785
3786 static void perf_event_task_event(struct perf_task_event *task_event)
3787 {
3788 struct perf_cpu_context *cpuctx;
3789 struct perf_event_context *ctx;
3790 struct pmu *pmu;
3791 int ctxn;
3792
3793 rcu_read_lock();
3794 list_for_each_entry_rcu(pmu, &pmus, entry) {
3795 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3796 perf_event_task_ctx(&cpuctx->ctx, task_event);
3797
3798 ctx = task_event->task_ctx;
3799 if (!ctx) {
3800 ctxn = pmu->task_ctx_nr;
3801 if (ctxn < 0)
3802 goto next;
3803 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3804 }
3805 if (ctx)
3806 perf_event_task_ctx(ctx, task_event);
3807 next:
3808 put_cpu_ptr(pmu->pmu_cpu_context);
3809 }
3810 rcu_read_unlock();
3811 }
3812
3813 static void perf_event_task(struct task_struct *task,
3814 struct perf_event_context *task_ctx,
3815 int new)
3816 {
3817 struct perf_task_event task_event;
3818
3819 if (!atomic_read(&nr_comm_events) &&
3820 !atomic_read(&nr_mmap_events) &&
3821 !atomic_read(&nr_task_events))
3822 return;
3823
3824 task_event = (struct perf_task_event){
3825 .task = task,
3826 .task_ctx = task_ctx,
3827 .event_id = {
3828 .header = {
3829 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3830 .misc = 0,
3831 .size = sizeof(task_event.event_id),
3832 },
3833 /* .pid */
3834 /* .ppid */
3835 /* .tid */
3836 /* .ptid */
3837 .time = perf_clock(),
3838 },
3839 };
3840
3841 perf_event_task_event(&task_event);
3842 }
3843
3844 void perf_event_fork(struct task_struct *task)
3845 {
3846 perf_event_task(task, NULL, 1);
3847 }
3848
3849 /*
3850 * comm tracking
3851 */
3852
3853 struct perf_comm_event {
3854 struct task_struct *task;
3855 char *comm;
3856 int comm_size;
3857
3858 struct {
3859 struct perf_event_header header;
3860
3861 u32 pid;
3862 u32 tid;
3863 } event_id;
3864 };
3865
3866 static void perf_event_comm_output(struct perf_event *event,
3867 struct perf_comm_event *comm_event)
3868 {
3869 struct perf_output_handle handle;
3870 int size = comm_event->event_id.header.size;
3871 int ret = perf_output_begin(&handle, event, size, 0, 0);
3872
3873 if (ret)
3874 return;
3875
3876 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3877 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3878
3879 perf_output_put(&handle, comm_event->event_id);
3880 perf_output_copy(&handle, comm_event->comm,
3881 comm_event->comm_size);
3882 perf_output_end(&handle);
3883 }
3884
3885 static int perf_event_comm_match(struct perf_event *event)
3886 {
3887 if (event->state < PERF_EVENT_STATE_INACTIVE)
3888 return 0;
3889
3890 if (event->cpu != -1 && event->cpu != smp_processor_id())
3891 return 0;
3892
3893 if (event->attr.comm)
3894 return 1;
3895
3896 return 0;
3897 }
3898
3899 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3900 struct perf_comm_event *comm_event)
3901 {
3902 struct perf_event *event;
3903
3904 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3905 if (perf_event_comm_match(event))
3906 perf_event_comm_output(event, comm_event);
3907 }
3908 }
3909
3910 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3911 {
3912 struct perf_cpu_context *cpuctx;
3913 struct perf_event_context *ctx;
3914 char comm[TASK_COMM_LEN];
3915 unsigned int size;
3916 struct pmu *pmu;
3917 int ctxn;
3918
3919 memset(comm, 0, sizeof(comm));
3920 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3921 size = ALIGN(strlen(comm)+1, sizeof(u64));
3922
3923 comm_event->comm = comm;
3924 comm_event->comm_size = size;
3925
3926 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3927
3928 rcu_read_lock();
3929 list_for_each_entry_rcu(pmu, &pmus, entry) {
3930 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3931 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3932
3933 ctxn = pmu->task_ctx_nr;
3934 if (ctxn < 0)
3935 goto next;
3936
3937 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3938 if (ctx)
3939 perf_event_comm_ctx(ctx, comm_event);
3940 next:
3941 put_cpu_ptr(pmu->pmu_cpu_context);
3942 }
3943 rcu_read_unlock();
3944 }
3945
3946 void perf_event_comm(struct task_struct *task)
3947 {
3948 struct perf_comm_event comm_event;
3949 struct perf_event_context *ctx;
3950 int ctxn;
3951
3952 for_each_task_context_nr(ctxn) {
3953 ctx = task->perf_event_ctxp[ctxn];
3954 if (!ctx)
3955 continue;
3956
3957 perf_event_enable_on_exec(ctx);
3958 }
3959
3960 if (!atomic_read(&nr_comm_events))
3961 return;
3962
3963 comm_event = (struct perf_comm_event){
3964 .task = task,
3965 /* .comm */
3966 /* .comm_size */
3967 .event_id = {
3968 .header = {
3969 .type = PERF_RECORD_COMM,
3970 .misc = 0,
3971 /* .size */
3972 },
3973 /* .pid */
3974 /* .tid */
3975 },
3976 };
3977
3978 perf_event_comm_event(&comm_event);
3979 }
3980
3981 /*
3982 * mmap tracking
3983 */
3984
3985 struct perf_mmap_event {
3986 struct vm_area_struct *vma;
3987
3988 const char *file_name;
3989 int file_size;
3990
3991 struct {
3992 struct perf_event_header header;
3993
3994 u32 pid;
3995 u32 tid;
3996 u64 start;
3997 u64 len;
3998 u64 pgoff;
3999 } event_id;
4000 };
4001
4002 static void perf_event_mmap_output(struct perf_event *event,
4003 struct perf_mmap_event *mmap_event)
4004 {
4005 struct perf_output_handle handle;
4006 int size = mmap_event->event_id.header.size;
4007 int ret = perf_output_begin(&handle, event, size, 0, 0);
4008
4009 if (ret)
4010 return;
4011
4012 mmap_event->event_id.pid = perf_event_pid(event, current);
4013 mmap_event->event_id.tid = perf_event_tid(event, current);
4014
4015 perf_output_put(&handle, mmap_event->event_id);
4016 perf_output_copy(&handle, mmap_event->file_name,
4017 mmap_event->file_size);
4018 perf_output_end(&handle);
4019 }
4020
4021 static int perf_event_mmap_match(struct perf_event *event,
4022 struct perf_mmap_event *mmap_event,
4023 int executable)
4024 {
4025 if (event->state < PERF_EVENT_STATE_INACTIVE)
4026 return 0;
4027
4028 if (event->cpu != -1 && event->cpu != smp_processor_id())
4029 return 0;
4030
4031 if ((!executable && event->attr.mmap_data) ||
4032 (executable && event->attr.mmap))
4033 return 1;
4034
4035 return 0;
4036 }
4037
4038 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4039 struct perf_mmap_event *mmap_event,
4040 int executable)
4041 {
4042 struct perf_event *event;
4043
4044 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4045 if (perf_event_mmap_match(event, mmap_event, executable))
4046 perf_event_mmap_output(event, mmap_event);
4047 }
4048 }
4049
4050 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4051 {
4052 struct perf_cpu_context *cpuctx;
4053 struct perf_event_context *ctx;
4054 struct vm_area_struct *vma = mmap_event->vma;
4055 struct file *file = vma->vm_file;
4056 unsigned int size;
4057 char tmp[16];
4058 char *buf = NULL;
4059 const char *name;
4060 struct pmu *pmu;
4061 int ctxn;
4062
4063 memset(tmp, 0, sizeof(tmp));
4064
4065 if (file) {
4066 /*
4067 * d_path works from the end of the buffer backwards, so we
4068 * need to add enough zero bytes after the string to handle
4069 * the 64bit alignment we do later.
4070 */
4071 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4072 if (!buf) {
4073 name = strncpy(tmp, "//enomem", sizeof(tmp));
4074 goto got_name;
4075 }
4076 name = d_path(&file->f_path, buf, PATH_MAX);
4077 if (IS_ERR(name)) {
4078 name = strncpy(tmp, "//toolong", sizeof(tmp));
4079 goto got_name;
4080 }
4081 } else {
4082 if (arch_vma_name(mmap_event->vma)) {
4083 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4084 sizeof(tmp));
4085 goto got_name;
4086 }
4087
4088 if (!vma->vm_mm) {
4089 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4090 goto got_name;
4091 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4092 vma->vm_end >= vma->vm_mm->brk) {
4093 name = strncpy(tmp, "[heap]", sizeof(tmp));
4094 goto got_name;
4095 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4096 vma->vm_end >= vma->vm_mm->start_stack) {
4097 name = strncpy(tmp, "[stack]", sizeof(tmp));
4098 goto got_name;
4099 }
4100
4101 name = strncpy(tmp, "//anon", sizeof(tmp));
4102 goto got_name;
4103 }
4104
4105 got_name:
4106 size = ALIGN(strlen(name)+1, sizeof(u64));
4107
4108 mmap_event->file_name = name;
4109 mmap_event->file_size = size;
4110
4111 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4112
4113 rcu_read_lock();
4114 list_for_each_entry_rcu(pmu, &pmus, entry) {
4115 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4116 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4117 vma->vm_flags & VM_EXEC);
4118
4119 ctxn = pmu->task_ctx_nr;
4120 if (ctxn < 0)
4121 goto next;
4122
4123 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4124 if (ctx) {
4125 perf_event_mmap_ctx(ctx, mmap_event,
4126 vma->vm_flags & VM_EXEC);
4127 }
4128 next:
4129 put_cpu_ptr(pmu->pmu_cpu_context);
4130 }
4131 rcu_read_unlock();
4132
4133 kfree(buf);
4134 }
4135
4136 void perf_event_mmap(struct vm_area_struct *vma)
4137 {
4138 struct perf_mmap_event mmap_event;
4139
4140 if (!atomic_read(&nr_mmap_events))
4141 return;
4142
4143 mmap_event = (struct perf_mmap_event){
4144 .vma = vma,
4145 /* .file_name */
4146 /* .file_size */
4147 .event_id = {
4148 .header = {
4149 .type = PERF_RECORD_MMAP,
4150 .misc = PERF_RECORD_MISC_USER,
4151 /* .size */
4152 },
4153 /* .pid */
4154 /* .tid */
4155 .start = vma->vm_start,
4156 .len = vma->vm_end - vma->vm_start,
4157 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4158 },
4159 };
4160
4161 perf_event_mmap_event(&mmap_event);
4162 }
4163
4164 /*
4165 * IRQ throttle logging
4166 */
4167
4168 static void perf_log_throttle(struct perf_event *event, int enable)
4169 {
4170 struct perf_output_handle handle;
4171 int ret;
4172
4173 struct {
4174 struct perf_event_header header;
4175 u64 time;
4176 u64 id;
4177 u64 stream_id;
4178 } throttle_event = {
4179 .header = {
4180 .type = PERF_RECORD_THROTTLE,
4181 .misc = 0,
4182 .size = sizeof(throttle_event),
4183 },
4184 .time = perf_clock(),
4185 .id = primary_event_id(event),
4186 .stream_id = event->id,
4187 };
4188
4189 if (enable)
4190 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4191
4192 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4193 if (ret)
4194 return;
4195
4196 perf_output_put(&handle, throttle_event);
4197 perf_output_end(&handle);
4198 }
4199
4200 /*
4201 * Generic event overflow handling, sampling.
4202 */
4203
4204 static int __perf_event_overflow(struct perf_event *event, int nmi,
4205 int throttle, struct perf_sample_data *data,
4206 struct pt_regs *regs)
4207 {
4208 int events = atomic_read(&event->event_limit);
4209 struct hw_perf_event *hwc = &event->hw;
4210 int ret = 0;
4211
4212 if (!throttle) {
4213 hwc->interrupts++;
4214 } else {
4215 if (hwc->interrupts != MAX_INTERRUPTS) {
4216 hwc->interrupts++;
4217 if (HZ * hwc->interrupts >
4218 (u64)sysctl_perf_event_sample_rate) {
4219 hwc->interrupts = MAX_INTERRUPTS;
4220 perf_log_throttle(event, 0);
4221 ret = 1;
4222 }
4223 } else {
4224 /*
4225 * Keep re-disabling events even though on the previous
4226 * pass we disabled it - just in case we raced with a
4227 * sched-in and the event got enabled again:
4228 */
4229 ret = 1;
4230 }
4231 }
4232
4233 if (event->attr.freq) {
4234 u64 now = perf_clock();
4235 s64 delta = now - hwc->freq_time_stamp;
4236
4237 hwc->freq_time_stamp = now;
4238
4239 if (delta > 0 && delta < 2*TICK_NSEC)
4240 perf_adjust_period(event, delta, hwc->last_period);
4241 }
4242
4243 /*
4244 * XXX event_limit might not quite work as expected on inherited
4245 * events
4246 */
4247
4248 event->pending_kill = POLL_IN;
4249 if (events && atomic_dec_and_test(&event->event_limit)) {
4250 ret = 1;
4251 event->pending_kill = POLL_HUP;
4252 if (nmi) {
4253 event->pending_disable = 1;
4254 irq_work_queue(&event->pending);
4255 } else
4256 perf_event_disable(event);
4257 }
4258
4259 if (event->overflow_handler)
4260 event->overflow_handler(event, nmi, data, regs);
4261 else
4262 perf_event_output(event, nmi, data, regs);
4263
4264 return ret;
4265 }
4266
4267 int perf_event_overflow(struct perf_event *event, int nmi,
4268 struct perf_sample_data *data,
4269 struct pt_regs *regs)
4270 {
4271 return __perf_event_overflow(event, nmi, 1, data, regs);
4272 }
4273
4274 /*
4275 * Generic software event infrastructure
4276 */
4277
4278 struct swevent_htable {
4279 struct swevent_hlist *swevent_hlist;
4280 struct mutex hlist_mutex;
4281 int hlist_refcount;
4282
4283 /* Recursion avoidance in each contexts */
4284 int recursion[PERF_NR_CONTEXTS];
4285 };
4286
4287 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4288
4289 /*
4290 * We directly increment event->count and keep a second value in
4291 * event->hw.period_left to count intervals. This period event
4292 * is kept in the range [-sample_period, 0] so that we can use the
4293 * sign as trigger.
4294 */
4295
4296 static u64 perf_swevent_set_period(struct perf_event *event)
4297 {
4298 struct hw_perf_event *hwc = &event->hw;
4299 u64 period = hwc->last_period;
4300 u64 nr, offset;
4301 s64 old, val;
4302
4303 hwc->last_period = hwc->sample_period;
4304
4305 again:
4306 old = val = local64_read(&hwc->period_left);
4307 if (val < 0)
4308 return 0;
4309
4310 nr = div64_u64(period + val, period);
4311 offset = nr * period;
4312 val -= offset;
4313 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4314 goto again;
4315
4316 return nr;
4317 }
4318
4319 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4320 int nmi, struct perf_sample_data *data,
4321 struct pt_regs *regs)
4322 {
4323 struct hw_perf_event *hwc = &event->hw;
4324 int throttle = 0;
4325
4326 data->period = event->hw.last_period;
4327 if (!overflow)
4328 overflow = perf_swevent_set_period(event);
4329
4330 if (hwc->interrupts == MAX_INTERRUPTS)
4331 return;
4332
4333 for (; overflow; overflow--) {
4334 if (__perf_event_overflow(event, nmi, throttle,
4335 data, regs)) {
4336 /*
4337 * We inhibit the overflow from happening when
4338 * hwc->interrupts == MAX_INTERRUPTS.
4339 */
4340 break;
4341 }
4342 throttle = 1;
4343 }
4344 }
4345
4346 static void perf_swevent_event(struct perf_event *event, u64 nr,
4347 int nmi, struct perf_sample_data *data,
4348 struct pt_regs *regs)
4349 {
4350 struct hw_perf_event *hwc = &event->hw;
4351
4352 local64_add(nr, &event->count);
4353
4354 if (!regs)
4355 return;
4356
4357 if (!hwc->sample_period)
4358 return;
4359
4360 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4361 return perf_swevent_overflow(event, 1, nmi, data, regs);
4362
4363 if (local64_add_negative(nr, &hwc->period_left))
4364 return;
4365
4366 perf_swevent_overflow(event, 0, nmi, data, regs);
4367 }
4368
4369 static int perf_exclude_event(struct perf_event *event,
4370 struct pt_regs *regs)
4371 {
4372 if (event->hw.state & PERF_HES_STOPPED)
4373 return 0;
4374
4375 if (regs) {
4376 if (event->attr.exclude_user && user_mode(regs))
4377 return 1;
4378
4379 if (event->attr.exclude_kernel && !user_mode(regs))
4380 return 1;
4381 }
4382
4383 return 0;
4384 }
4385
4386 static int perf_swevent_match(struct perf_event *event,
4387 enum perf_type_id type,
4388 u32 event_id,
4389 struct perf_sample_data *data,
4390 struct pt_regs *regs)
4391 {
4392 if (event->attr.type != type)
4393 return 0;
4394
4395 if (event->attr.config != event_id)
4396 return 0;
4397
4398 if (perf_exclude_event(event, regs))
4399 return 0;
4400
4401 return 1;
4402 }
4403
4404 static inline u64 swevent_hash(u64 type, u32 event_id)
4405 {
4406 u64 val = event_id | (type << 32);
4407
4408 return hash_64(val, SWEVENT_HLIST_BITS);
4409 }
4410
4411 static inline struct hlist_head *
4412 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4413 {
4414 u64 hash = swevent_hash(type, event_id);
4415
4416 return &hlist->heads[hash];
4417 }
4418
4419 /* For the read side: events when they trigger */
4420 static inline struct hlist_head *
4421 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4422 {
4423 struct swevent_hlist *hlist;
4424
4425 hlist = rcu_dereference(swhash->swevent_hlist);
4426 if (!hlist)
4427 return NULL;
4428
4429 return __find_swevent_head(hlist, type, event_id);
4430 }
4431
4432 /* For the event head insertion and removal in the hlist */
4433 static inline struct hlist_head *
4434 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4435 {
4436 struct swevent_hlist *hlist;
4437 u32 event_id = event->attr.config;
4438 u64 type = event->attr.type;
4439
4440 /*
4441 * Event scheduling is always serialized against hlist allocation
4442 * and release. Which makes the protected version suitable here.
4443 * The context lock guarantees that.
4444 */
4445 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4446 lockdep_is_held(&event->ctx->lock));
4447 if (!hlist)
4448 return NULL;
4449
4450 return __find_swevent_head(hlist, type, event_id);
4451 }
4452
4453 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4454 u64 nr, int nmi,
4455 struct perf_sample_data *data,
4456 struct pt_regs *regs)
4457 {
4458 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4459 struct perf_event *event;
4460 struct hlist_node *node;
4461 struct hlist_head *head;
4462
4463 rcu_read_lock();
4464 head = find_swevent_head_rcu(swhash, type, event_id);
4465 if (!head)
4466 goto end;
4467
4468 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4469 if (perf_swevent_match(event, type, event_id, data, regs))
4470 perf_swevent_event(event, nr, nmi, data, regs);
4471 }
4472 end:
4473 rcu_read_unlock();
4474 }
4475
4476 int perf_swevent_get_recursion_context(void)
4477 {
4478 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4479
4480 return get_recursion_context(swhash->recursion);
4481 }
4482 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4483
4484 void inline perf_swevent_put_recursion_context(int rctx)
4485 {
4486 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4487
4488 put_recursion_context(swhash->recursion, rctx);
4489 }
4490
4491 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4492 struct pt_regs *regs, u64 addr)
4493 {
4494 struct perf_sample_data data;
4495 int rctx;
4496
4497 preempt_disable_notrace();
4498 rctx = perf_swevent_get_recursion_context();
4499 if (rctx < 0)
4500 return;
4501
4502 perf_sample_data_init(&data, addr);
4503
4504 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4505
4506 perf_swevent_put_recursion_context(rctx);
4507 preempt_enable_notrace();
4508 }
4509
4510 static void perf_swevent_read(struct perf_event *event)
4511 {
4512 }
4513
4514 static int perf_swevent_add(struct perf_event *event, int flags)
4515 {
4516 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4517 struct hw_perf_event *hwc = &event->hw;
4518 struct hlist_head *head;
4519
4520 if (hwc->sample_period) {
4521 hwc->last_period = hwc->sample_period;
4522 perf_swevent_set_period(event);
4523 }
4524
4525 hwc->state = !(flags & PERF_EF_START);
4526
4527 head = find_swevent_head(swhash, event);
4528 if (WARN_ON_ONCE(!head))
4529 return -EINVAL;
4530
4531 hlist_add_head_rcu(&event->hlist_entry, head);
4532
4533 return 0;
4534 }
4535
4536 static void perf_swevent_del(struct perf_event *event, int flags)
4537 {
4538 hlist_del_rcu(&event->hlist_entry);
4539 }
4540
4541 static void perf_swevent_start(struct perf_event *event, int flags)
4542 {
4543 event->hw.state = 0;
4544 }
4545
4546 static void perf_swevent_stop(struct perf_event *event, int flags)
4547 {
4548 event->hw.state = PERF_HES_STOPPED;
4549 }
4550
4551 /* Deref the hlist from the update side */
4552 static inline struct swevent_hlist *
4553 swevent_hlist_deref(struct swevent_htable *swhash)
4554 {
4555 return rcu_dereference_protected(swhash->swevent_hlist,
4556 lockdep_is_held(&swhash->hlist_mutex));
4557 }
4558
4559 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4560 {
4561 struct swevent_hlist *hlist;
4562
4563 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4564 kfree(hlist);
4565 }
4566
4567 static void swevent_hlist_release(struct swevent_htable *swhash)
4568 {
4569 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4570
4571 if (!hlist)
4572 return;
4573
4574 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4575 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4576 }
4577
4578 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4579 {
4580 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4581
4582 mutex_lock(&swhash->hlist_mutex);
4583
4584 if (!--swhash->hlist_refcount)
4585 swevent_hlist_release(swhash);
4586
4587 mutex_unlock(&swhash->hlist_mutex);
4588 }
4589
4590 static void swevent_hlist_put(struct perf_event *event)
4591 {
4592 int cpu;
4593
4594 if (event->cpu != -1) {
4595 swevent_hlist_put_cpu(event, event->cpu);
4596 return;
4597 }
4598
4599 for_each_possible_cpu(cpu)
4600 swevent_hlist_put_cpu(event, cpu);
4601 }
4602
4603 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4604 {
4605 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4606 int err = 0;
4607
4608 mutex_lock(&swhash->hlist_mutex);
4609
4610 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4611 struct swevent_hlist *hlist;
4612
4613 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4614 if (!hlist) {
4615 err = -ENOMEM;
4616 goto exit;
4617 }
4618 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4619 }
4620 swhash->hlist_refcount++;
4621 exit:
4622 mutex_unlock(&swhash->hlist_mutex);
4623
4624 return err;
4625 }
4626
4627 static int swevent_hlist_get(struct perf_event *event)
4628 {
4629 int err;
4630 int cpu, failed_cpu;
4631
4632 if (event->cpu != -1)
4633 return swevent_hlist_get_cpu(event, event->cpu);
4634
4635 get_online_cpus();
4636 for_each_possible_cpu(cpu) {
4637 err = swevent_hlist_get_cpu(event, cpu);
4638 if (err) {
4639 failed_cpu = cpu;
4640 goto fail;
4641 }
4642 }
4643 put_online_cpus();
4644
4645 return 0;
4646 fail:
4647 for_each_possible_cpu(cpu) {
4648 if (cpu == failed_cpu)
4649 break;
4650 swevent_hlist_put_cpu(event, cpu);
4651 }
4652
4653 put_online_cpus();
4654 return err;
4655 }
4656
4657 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4658
4659 static void sw_perf_event_destroy(struct perf_event *event)
4660 {
4661 u64 event_id = event->attr.config;
4662
4663 WARN_ON(event->parent);
4664
4665 jump_label_dec(&perf_swevent_enabled[event_id]);
4666 swevent_hlist_put(event);
4667 }
4668
4669 static int perf_swevent_init(struct perf_event *event)
4670 {
4671 int event_id = event->attr.config;
4672
4673 if (event->attr.type != PERF_TYPE_SOFTWARE)
4674 return -ENOENT;
4675
4676 switch (event_id) {
4677 case PERF_COUNT_SW_CPU_CLOCK:
4678 case PERF_COUNT_SW_TASK_CLOCK:
4679 return -ENOENT;
4680
4681 default:
4682 break;
4683 }
4684
4685 if (event_id > PERF_COUNT_SW_MAX)
4686 return -ENOENT;
4687
4688 if (!event->parent) {
4689 int err;
4690
4691 err = swevent_hlist_get(event);
4692 if (err)
4693 return err;
4694
4695 jump_label_inc(&perf_swevent_enabled[event_id]);
4696 event->destroy = sw_perf_event_destroy;
4697 }
4698
4699 return 0;
4700 }
4701
4702 static struct pmu perf_swevent = {
4703 .task_ctx_nr = perf_sw_context,
4704
4705 .event_init = perf_swevent_init,
4706 .add = perf_swevent_add,
4707 .del = perf_swevent_del,
4708 .start = perf_swevent_start,
4709 .stop = perf_swevent_stop,
4710 .read = perf_swevent_read,
4711 };
4712
4713 #ifdef CONFIG_EVENT_TRACING
4714
4715 static int perf_tp_filter_match(struct perf_event *event,
4716 struct perf_sample_data *data)
4717 {
4718 void *record = data->raw->data;
4719
4720 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4721 return 1;
4722 return 0;
4723 }
4724
4725 static int perf_tp_event_match(struct perf_event *event,
4726 struct perf_sample_data *data,
4727 struct pt_regs *regs)
4728 {
4729 /*
4730 * All tracepoints are from kernel-space.
4731 */
4732 if (event->attr.exclude_kernel)
4733 return 0;
4734
4735 if (!perf_tp_filter_match(event, data))
4736 return 0;
4737
4738 return 1;
4739 }
4740
4741 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4742 struct pt_regs *regs, struct hlist_head *head, int rctx)
4743 {
4744 struct perf_sample_data data;
4745 struct perf_event *event;
4746 struct hlist_node *node;
4747
4748 struct perf_raw_record raw = {
4749 .size = entry_size,
4750 .data = record,
4751 };
4752
4753 perf_sample_data_init(&data, addr);
4754 data.raw = &raw;
4755
4756 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4757 if (perf_tp_event_match(event, &data, regs))
4758 perf_swevent_event(event, count, 1, &data, regs);
4759 }
4760
4761 perf_swevent_put_recursion_context(rctx);
4762 }
4763 EXPORT_SYMBOL_GPL(perf_tp_event);
4764
4765 static void tp_perf_event_destroy(struct perf_event *event)
4766 {
4767 perf_trace_destroy(event);
4768 }
4769
4770 static int perf_tp_event_init(struct perf_event *event)
4771 {
4772 int err;
4773
4774 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4775 return -ENOENT;
4776
4777 /*
4778 * Raw tracepoint data is a severe data leak, only allow root to
4779 * have these.
4780 */
4781 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4782 perf_paranoid_tracepoint_raw() &&
4783 !capable(CAP_SYS_ADMIN))
4784 return -EPERM;
4785
4786 err = perf_trace_init(event);
4787 if (err)
4788 return err;
4789
4790 event->destroy = tp_perf_event_destroy;
4791
4792 return 0;
4793 }
4794
4795 static struct pmu perf_tracepoint = {
4796 .task_ctx_nr = perf_sw_context,
4797
4798 .event_init = perf_tp_event_init,
4799 .add = perf_trace_add,
4800 .del = perf_trace_del,
4801 .start = perf_swevent_start,
4802 .stop = perf_swevent_stop,
4803 .read = perf_swevent_read,
4804 };
4805
4806 static inline void perf_tp_register(void)
4807 {
4808 perf_pmu_register(&perf_tracepoint);
4809 }
4810
4811 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4812 {
4813 char *filter_str;
4814 int ret;
4815
4816 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4817 return -EINVAL;
4818
4819 filter_str = strndup_user(arg, PAGE_SIZE);
4820 if (IS_ERR(filter_str))
4821 return PTR_ERR(filter_str);
4822
4823 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4824
4825 kfree(filter_str);
4826 return ret;
4827 }
4828
4829 static void perf_event_free_filter(struct perf_event *event)
4830 {
4831 ftrace_profile_free_filter(event);
4832 }
4833
4834 #else
4835
4836 static inline void perf_tp_register(void)
4837 {
4838 }
4839
4840 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4841 {
4842 return -ENOENT;
4843 }
4844
4845 static void perf_event_free_filter(struct perf_event *event)
4846 {
4847 }
4848
4849 #endif /* CONFIG_EVENT_TRACING */
4850
4851 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4852 void perf_bp_event(struct perf_event *bp, void *data)
4853 {
4854 struct perf_sample_data sample;
4855 struct pt_regs *regs = data;
4856
4857 perf_sample_data_init(&sample, bp->attr.bp_addr);
4858
4859 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4860 perf_swevent_event(bp, 1, 1, &sample, regs);
4861 }
4862 #endif
4863
4864 /*
4865 * hrtimer based swevent callback
4866 */
4867
4868 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4869 {
4870 enum hrtimer_restart ret = HRTIMER_RESTART;
4871 struct perf_sample_data data;
4872 struct pt_regs *regs;
4873 struct perf_event *event;
4874 u64 period;
4875
4876 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4877 event->pmu->read(event);
4878
4879 perf_sample_data_init(&data, 0);
4880 data.period = event->hw.last_period;
4881 regs = get_irq_regs();
4882
4883 if (regs && !perf_exclude_event(event, regs)) {
4884 if (!(event->attr.exclude_idle && current->pid == 0))
4885 if (perf_event_overflow(event, 0, &data, regs))
4886 ret = HRTIMER_NORESTART;
4887 }
4888
4889 period = max_t(u64, 10000, event->hw.sample_period);
4890 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4891
4892 return ret;
4893 }
4894
4895 static void perf_swevent_start_hrtimer(struct perf_event *event)
4896 {
4897 struct hw_perf_event *hwc = &event->hw;
4898
4899 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4900 hwc->hrtimer.function = perf_swevent_hrtimer;
4901 if (hwc->sample_period) {
4902 s64 period = local64_read(&hwc->period_left);
4903
4904 if (period) {
4905 if (period < 0)
4906 period = 10000;
4907
4908 local64_set(&hwc->period_left, 0);
4909 } else {
4910 period = max_t(u64, 10000, hwc->sample_period);
4911 }
4912 __hrtimer_start_range_ns(&hwc->hrtimer,
4913 ns_to_ktime(period), 0,
4914 HRTIMER_MODE_REL_PINNED, 0);
4915 }
4916 }
4917
4918 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4919 {
4920 struct hw_perf_event *hwc = &event->hw;
4921
4922 if (hwc->sample_period) {
4923 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4924 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4925
4926 hrtimer_cancel(&hwc->hrtimer);
4927 }
4928 }
4929
4930 /*
4931 * Software event: cpu wall time clock
4932 */
4933
4934 static void cpu_clock_event_update(struct perf_event *event)
4935 {
4936 s64 prev;
4937 u64 now;
4938
4939 now = local_clock();
4940 prev = local64_xchg(&event->hw.prev_count, now);
4941 local64_add(now - prev, &event->count);
4942 }
4943
4944 static void cpu_clock_event_start(struct perf_event *event, int flags)
4945 {
4946 local64_set(&event->hw.prev_count, local_clock());
4947 perf_swevent_start_hrtimer(event);
4948 }
4949
4950 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4951 {
4952 perf_swevent_cancel_hrtimer(event);
4953 cpu_clock_event_update(event);
4954 }
4955
4956 static int cpu_clock_event_add(struct perf_event *event, int flags)
4957 {
4958 if (flags & PERF_EF_START)
4959 cpu_clock_event_start(event, flags);
4960
4961 return 0;
4962 }
4963
4964 static void cpu_clock_event_del(struct perf_event *event, int flags)
4965 {
4966 cpu_clock_event_stop(event, flags);
4967 }
4968
4969 static void cpu_clock_event_read(struct perf_event *event)
4970 {
4971 cpu_clock_event_update(event);
4972 }
4973
4974 static int cpu_clock_event_init(struct perf_event *event)
4975 {
4976 if (event->attr.type != PERF_TYPE_SOFTWARE)
4977 return -ENOENT;
4978
4979 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4980 return -ENOENT;
4981
4982 return 0;
4983 }
4984
4985 static struct pmu perf_cpu_clock = {
4986 .task_ctx_nr = perf_sw_context,
4987
4988 .event_init = cpu_clock_event_init,
4989 .add = cpu_clock_event_add,
4990 .del = cpu_clock_event_del,
4991 .start = cpu_clock_event_start,
4992 .stop = cpu_clock_event_stop,
4993 .read = cpu_clock_event_read,
4994 };
4995
4996 /*
4997 * Software event: task time clock
4998 */
4999
5000 static void task_clock_event_update(struct perf_event *event, u64 now)
5001 {
5002 u64 prev;
5003 s64 delta;
5004
5005 prev = local64_xchg(&event->hw.prev_count, now);
5006 delta = now - prev;
5007 local64_add(delta, &event->count);
5008 }
5009
5010 static void task_clock_event_start(struct perf_event *event, int flags)
5011 {
5012 local64_set(&event->hw.prev_count, event->ctx->time);
5013 perf_swevent_start_hrtimer(event);
5014 }
5015
5016 static void task_clock_event_stop(struct perf_event *event, int flags)
5017 {
5018 perf_swevent_cancel_hrtimer(event);
5019 task_clock_event_update(event, event->ctx->time);
5020 }
5021
5022 static int task_clock_event_add(struct perf_event *event, int flags)
5023 {
5024 if (flags & PERF_EF_START)
5025 task_clock_event_start(event, flags);
5026
5027 return 0;
5028 }
5029
5030 static void task_clock_event_del(struct perf_event *event, int flags)
5031 {
5032 task_clock_event_stop(event, PERF_EF_UPDATE);
5033 }
5034
5035 static void task_clock_event_read(struct perf_event *event)
5036 {
5037 u64 time;
5038
5039 if (!in_nmi()) {
5040 update_context_time(event->ctx);
5041 time = event->ctx->time;
5042 } else {
5043 u64 now = perf_clock();
5044 u64 delta = now - event->ctx->timestamp;
5045 time = event->ctx->time + delta;
5046 }
5047
5048 task_clock_event_update(event, time);
5049 }
5050
5051 static int task_clock_event_init(struct perf_event *event)
5052 {
5053 if (event->attr.type != PERF_TYPE_SOFTWARE)
5054 return -ENOENT;
5055
5056 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5057 return -ENOENT;
5058
5059 return 0;
5060 }
5061
5062 static struct pmu perf_task_clock = {
5063 .task_ctx_nr = perf_sw_context,
5064
5065 .event_init = task_clock_event_init,
5066 .add = task_clock_event_add,
5067 .del = task_clock_event_del,
5068 .start = task_clock_event_start,
5069 .stop = task_clock_event_stop,
5070 .read = task_clock_event_read,
5071 };
5072
5073 static void perf_pmu_nop_void(struct pmu *pmu)
5074 {
5075 }
5076
5077 static int perf_pmu_nop_int(struct pmu *pmu)
5078 {
5079 return 0;
5080 }
5081
5082 static void perf_pmu_start_txn(struct pmu *pmu)
5083 {
5084 perf_pmu_disable(pmu);
5085 }
5086
5087 static int perf_pmu_commit_txn(struct pmu *pmu)
5088 {
5089 perf_pmu_enable(pmu);
5090 return 0;
5091 }
5092
5093 static void perf_pmu_cancel_txn(struct pmu *pmu)
5094 {
5095 perf_pmu_enable(pmu);
5096 }
5097
5098 /*
5099 * Ensures all contexts with the same task_ctx_nr have the same
5100 * pmu_cpu_context too.
5101 */
5102 static void *find_pmu_context(int ctxn)
5103 {
5104 struct pmu *pmu;
5105
5106 if (ctxn < 0)
5107 return NULL;
5108
5109 list_for_each_entry(pmu, &pmus, entry) {
5110 if (pmu->task_ctx_nr == ctxn)
5111 return pmu->pmu_cpu_context;
5112 }
5113
5114 return NULL;
5115 }
5116
5117 static void free_pmu_context(void * __percpu cpu_context)
5118 {
5119 struct pmu *pmu;
5120
5121 mutex_lock(&pmus_lock);
5122 /*
5123 * Like a real lame refcount.
5124 */
5125 list_for_each_entry(pmu, &pmus, entry) {
5126 if (pmu->pmu_cpu_context == cpu_context)
5127 goto out;
5128 }
5129
5130 free_percpu(cpu_context);
5131 out:
5132 mutex_unlock(&pmus_lock);
5133 }
5134
5135 int perf_pmu_register(struct pmu *pmu)
5136 {
5137 int cpu, ret;
5138
5139 mutex_lock(&pmus_lock);
5140 ret = -ENOMEM;
5141 pmu->pmu_disable_count = alloc_percpu(int);
5142 if (!pmu->pmu_disable_count)
5143 goto unlock;
5144
5145 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5146 if (pmu->pmu_cpu_context)
5147 goto got_cpu_context;
5148
5149 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5150 if (!pmu->pmu_cpu_context)
5151 goto free_pdc;
5152
5153 for_each_possible_cpu(cpu) {
5154 struct perf_cpu_context *cpuctx;
5155
5156 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5157 __perf_event_init_context(&cpuctx->ctx);
5158 cpuctx->ctx.type = cpu_context;
5159 cpuctx->ctx.pmu = pmu;
5160 cpuctx->jiffies_interval = 1;
5161 INIT_LIST_HEAD(&cpuctx->rotation_list);
5162 }
5163
5164 got_cpu_context:
5165 if (!pmu->start_txn) {
5166 if (pmu->pmu_enable) {
5167 /*
5168 * If we have pmu_enable/pmu_disable calls, install
5169 * transaction stubs that use that to try and batch
5170 * hardware accesses.
5171 */
5172 pmu->start_txn = perf_pmu_start_txn;
5173 pmu->commit_txn = perf_pmu_commit_txn;
5174 pmu->cancel_txn = perf_pmu_cancel_txn;
5175 } else {
5176 pmu->start_txn = perf_pmu_nop_void;
5177 pmu->commit_txn = perf_pmu_nop_int;
5178 pmu->cancel_txn = perf_pmu_nop_void;
5179 }
5180 }
5181
5182 if (!pmu->pmu_enable) {
5183 pmu->pmu_enable = perf_pmu_nop_void;
5184 pmu->pmu_disable = perf_pmu_nop_void;
5185 }
5186
5187 list_add_rcu(&pmu->entry, &pmus);
5188 ret = 0;
5189 unlock:
5190 mutex_unlock(&pmus_lock);
5191
5192 return ret;
5193
5194 free_pdc:
5195 free_percpu(pmu->pmu_disable_count);
5196 goto unlock;
5197 }
5198
5199 void perf_pmu_unregister(struct pmu *pmu)
5200 {
5201 mutex_lock(&pmus_lock);
5202 list_del_rcu(&pmu->entry);
5203 mutex_unlock(&pmus_lock);
5204
5205 /*
5206 * We dereference the pmu list under both SRCU and regular RCU, so
5207 * synchronize against both of those.
5208 */
5209 synchronize_srcu(&pmus_srcu);
5210 synchronize_rcu();
5211
5212 free_percpu(pmu->pmu_disable_count);
5213 free_pmu_context(pmu->pmu_cpu_context);
5214 }
5215
5216 struct pmu *perf_init_event(struct perf_event *event)
5217 {
5218 struct pmu *pmu = NULL;
5219 int idx;
5220
5221 idx = srcu_read_lock(&pmus_srcu);
5222 list_for_each_entry_rcu(pmu, &pmus, entry) {
5223 int ret = pmu->event_init(event);
5224 if (!ret)
5225 goto unlock;
5226
5227 if (ret != -ENOENT) {
5228 pmu = ERR_PTR(ret);
5229 goto unlock;
5230 }
5231 }
5232 pmu = ERR_PTR(-ENOENT);
5233 unlock:
5234 srcu_read_unlock(&pmus_srcu, idx);
5235
5236 return pmu;
5237 }
5238
5239 /*
5240 * Allocate and initialize a event structure
5241 */
5242 static struct perf_event *
5243 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5244 struct task_struct *task,
5245 struct perf_event *group_leader,
5246 struct perf_event *parent_event,
5247 perf_overflow_handler_t overflow_handler)
5248 {
5249 struct pmu *pmu;
5250 struct perf_event *event;
5251 struct hw_perf_event *hwc;
5252 long err;
5253
5254 event = kzalloc(sizeof(*event), GFP_KERNEL);
5255 if (!event)
5256 return ERR_PTR(-ENOMEM);
5257
5258 /*
5259 * Single events are their own group leaders, with an
5260 * empty sibling list:
5261 */
5262 if (!group_leader)
5263 group_leader = event;
5264
5265 mutex_init(&event->child_mutex);
5266 INIT_LIST_HEAD(&event->child_list);
5267
5268 INIT_LIST_HEAD(&event->group_entry);
5269 INIT_LIST_HEAD(&event->event_entry);
5270 INIT_LIST_HEAD(&event->sibling_list);
5271 init_waitqueue_head(&event->waitq);
5272 init_irq_work(&event->pending, perf_pending_event);
5273
5274 mutex_init(&event->mmap_mutex);
5275
5276 event->cpu = cpu;
5277 event->attr = *attr;
5278 event->group_leader = group_leader;
5279 event->pmu = NULL;
5280 event->oncpu = -1;
5281
5282 event->parent = parent_event;
5283
5284 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5285 event->id = atomic64_inc_return(&perf_event_id);
5286
5287 event->state = PERF_EVENT_STATE_INACTIVE;
5288
5289 if (task) {
5290 event->attach_state = PERF_ATTACH_TASK;
5291 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5292 /*
5293 * hw_breakpoint is a bit difficult here..
5294 */
5295 if (attr->type == PERF_TYPE_BREAKPOINT)
5296 event->hw.bp_target = task;
5297 #endif
5298 }
5299
5300 if (!overflow_handler && parent_event)
5301 overflow_handler = parent_event->overflow_handler;
5302
5303 event->overflow_handler = overflow_handler;
5304
5305 if (attr->disabled)
5306 event->state = PERF_EVENT_STATE_OFF;
5307
5308 pmu = NULL;
5309
5310 hwc = &event->hw;
5311 hwc->sample_period = attr->sample_period;
5312 if (attr->freq && attr->sample_freq)
5313 hwc->sample_period = 1;
5314 hwc->last_period = hwc->sample_period;
5315
5316 local64_set(&hwc->period_left, hwc->sample_period);
5317
5318 /*
5319 * we currently do not support PERF_FORMAT_GROUP on inherited events
5320 */
5321 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5322 goto done;
5323
5324 pmu = perf_init_event(event);
5325
5326 done:
5327 err = 0;
5328 if (!pmu)
5329 err = -EINVAL;
5330 else if (IS_ERR(pmu))
5331 err = PTR_ERR(pmu);
5332
5333 if (err) {
5334 if (event->ns)
5335 put_pid_ns(event->ns);
5336 kfree(event);
5337 return ERR_PTR(err);
5338 }
5339
5340 event->pmu = pmu;
5341
5342 if (!event->parent) {
5343 if (event->attach_state & PERF_ATTACH_TASK)
5344 jump_label_inc(&perf_task_events);
5345 if (event->attr.mmap || event->attr.mmap_data)
5346 atomic_inc(&nr_mmap_events);
5347 if (event->attr.comm)
5348 atomic_inc(&nr_comm_events);
5349 if (event->attr.task)
5350 atomic_inc(&nr_task_events);
5351 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5352 err = get_callchain_buffers();
5353 if (err) {
5354 free_event(event);
5355 return ERR_PTR(err);
5356 }
5357 }
5358 }
5359
5360 return event;
5361 }
5362
5363 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5364 struct perf_event_attr *attr)
5365 {
5366 u32 size;
5367 int ret;
5368
5369 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5370 return -EFAULT;
5371
5372 /*
5373 * zero the full structure, so that a short copy will be nice.
5374 */
5375 memset(attr, 0, sizeof(*attr));
5376
5377 ret = get_user(size, &uattr->size);
5378 if (ret)
5379 return ret;
5380
5381 if (size > PAGE_SIZE) /* silly large */
5382 goto err_size;
5383
5384 if (!size) /* abi compat */
5385 size = PERF_ATTR_SIZE_VER0;
5386
5387 if (size < PERF_ATTR_SIZE_VER0)
5388 goto err_size;
5389
5390 /*
5391 * If we're handed a bigger struct than we know of,
5392 * ensure all the unknown bits are 0 - i.e. new
5393 * user-space does not rely on any kernel feature
5394 * extensions we dont know about yet.
5395 */
5396 if (size > sizeof(*attr)) {
5397 unsigned char __user *addr;
5398 unsigned char __user *end;
5399 unsigned char val;
5400
5401 addr = (void __user *)uattr + sizeof(*attr);
5402 end = (void __user *)uattr + size;
5403
5404 for (; addr < end; addr++) {
5405 ret = get_user(val, addr);
5406 if (ret)
5407 return ret;
5408 if (val)
5409 goto err_size;
5410 }
5411 size = sizeof(*attr);
5412 }
5413
5414 ret = copy_from_user(attr, uattr, size);
5415 if (ret)
5416 return -EFAULT;
5417
5418 /*
5419 * If the type exists, the corresponding creation will verify
5420 * the attr->config.
5421 */
5422 if (attr->type >= PERF_TYPE_MAX)
5423 return -EINVAL;
5424
5425 if (attr->__reserved_1)
5426 return -EINVAL;
5427
5428 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5429 return -EINVAL;
5430
5431 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5432 return -EINVAL;
5433
5434 out:
5435 return ret;
5436
5437 err_size:
5438 put_user(sizeof(*attr), &uattr->size);
5439 ret = -E2BIG;
5440 goto out;
5441 }
5442
5443 static int
5444 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5445 {
5446 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5447 int ret = -EINVAL;
5448
5449 if (!output_event)
5450 goto set;
5451
5452 /* don't allow circular references */
5453 if (event == output_event)
5454 goto out;
5455
5456 /*
5457 * Don't allow cross-cpu buffers
5458 */
5459 if (output_event->cpu != event->cpu)
5460 goto out;
5461
5462 /*
5463 * If its not a per-cpu buffer, it must be the same task.
5464 */
5465 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5466 goto out;
5467
5468 set:
5469 mutex_lock(&event->mmap_mutex);
5470 /* Can't redirect output if we've got an active mmap() */
5471 if (atomic_read(&event->mmap_count))
5472 goto unlock;
5473
5474 if (output_event) {
5475 /* get the buffer we want to redirect to */
5476 buffer = perf_buffer_get(output_event);
5477 if (!buffer)
5478 goto unlock;
5479 }
5480
5481 old_buffer = event->buffer;
5482 rcu_assign_pointer(event->buffer, buffer);
5483 ret = 0;
5484 unlock:
5485 mutex_unlock(&event->mmap_mutex);
5486
5487 if (old_buffer)
5488 perf_buffer_put(old_buffer);
5489 out:
5490 return ret;
5491 }
5492
5493 /**
5494 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5495 *
5496 * @attr_uptr: event_id type attributes for monitoring/sampling
5497 * @pid: target pid
5498 * @cpu: target cpu
5499 * @group_fd: group leader event fd
5500 */
5501 SYSCALL_DEFINE5(perf_event_open,
5502 struct perf_event_attr __user *, attr_uptr,
5503 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5504 {
5505 struct perf_event *group_leader = NULL, *output_event = NULL;
5506 struct perf_event *event, *sibling;
5507 struct perf_event_attr attr;
5508 struct perf_event_context *ctx;
5509 struct file *event_file = NULL;
5510 struct file *group_file = NULL;
5511 struct task_struct *task = NULL;
5512 struct pmu *pmu;
5513 int event_fd;
5514 int move_group = 0;
5515 int fput_needed = 0;
5516 int err;
5517
5518 /* for future expandability... */
5519 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5520 return -EINVAL;
5521
5522 err = perf_copy_attr(attr_uptr, &attr);
5523 if (err)
5524 return err;
5525
5526 if (!attr.exclude_kernel) {
5527 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5528 return -EACCES;
5529 }
5530
5531 if (attr.freq) {
5532 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5533 return -EINVAL;
5534 }
5535
5536 event_fd = get_unused_fd_flags(O_RDWR);
5537 if (event_fd < 0)
5538 return event_fd;
5539
5540 if (group_fd != -1) {
5541 group_leader = perf_fget_light(group_fd, &fput_needed);
5542 if (IS_ERR(group_leader)) {
5543 err = PTR_ERR(group_leader);
5544 goto err_fd;
5545 }
5546 group_file = group_leader->filp;
5547 if (flags & PERF_FLAG_FD_OUTPUT)
5548 output_event = group_leader;
5549 if (flags & PERF_FLAG_FD_NO_GROUP)
5550 group_leader = NULL;
5551 }
5552
5553 if (pid != -1) {
5554 task = find_lively_task_by_vpid(pid);
5555 if (IS_ERR(task)) {
5556 err = PTR_ERR(task);
5557 goto err_group_fd;
5558 }
5559 }
5560
5561 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5562 if (IS_ERR(event)) {
5563 err = PTR_ERR(event);
5564 goto err_task;
5565 }
5566
5567 /*
5568 * Special case software events and allow them to be part of
5569 * any hardware group.
5570 */
5571 pmu = event->pmu;
5572
5573 if (group_leader &&
5574 (is_software_event(event) != is_software_event(group_leader))) {
5575 if (is_software_event(event)) {
5576 /*
5577 * If event and group_leader are not both a software
5578 * event, and event is, then group leader is not.
5579 *
5580 * Allow the addition of software events to !software
5581 * groups, this is safe because software events never
5582 * fail to schedule.
5583 */
5584 pmu = group_leader->pmu;
5585 } else if (is_software_event(group_leader) &&
5586 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5587 /*
5588 * In case the group is a pure software group, and we
5589 * try to add a hardware event, move the whole group to
5590 * the hardware context.
5591 */
5592 move_group = 1;
5593 }
5594 }
5595
5596 /*
5597 * Get the target context (task or percpu):
5598 */
5599 ctx = find_get_context(pmu, task, cpu);
5600 if (IS_ERR(ctx)) {
5601 err = PTR_ERR(ctx);
5602 goto err_alloc;
5603 }
5604
5605 /*
5606 * Look up the group leader (we will attach this event to it):
5607 */
5608 if (group_leader) {
5609 err = -EINVAL;
5610
5611 /*
5612 * Do not allow a recursive hierarchy (this new sibling
5613 * becoming part of another group-sibling):
5614 */
5615 if (group_leader->group_leader != group_leader)
5616 goto err_context;
5617 /*
5618 * Do not allow to attach to a group in a different
5619 * task or CPU context:
5620 */
5621 if (move_group) {
5622 if (group_leader->ctx->type != ctx->type)
5623 goto err_context;
5624 } else {
5625 if (group_leader->ctx != ctx)
5626 goto err_context;
5627 }
5628
5629 /*
5630 * Only a group leader can be exclusive or pinned
5631 */
5632 if (attr.exclusive || attr.pinned)
5633 goto err_context;
5634 }
5635
5636 if (output_event) {
5637 err = perf_event_set_output(event, output_event);
5638 if (err)
5639 goto err_context;
5640 }
5641
5642 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5643 if (IS_ERR(event_file)) {
5644 err = PTR_ERR(event_file);
5645 goto err_context;
5646 }
5647
5648 if (move_group) {
5649 struct perf_event_context *gctx = group_leader->ctx;
5650
5651 mutex_lock(&gctx->mutex);
5652 perf_event_remove_from_context(group_leader);
5653 list_for_each_entry(sibling, &group_leader->sibling_list,
5654 group_entry) {
5655 perf_event_remove_from_context(sibling);
5656 put_ctx(gctx);
5657 }
5658 mutex_unlock(&gctx->mutex);
5659 put_ctx(gctx);
5660 }
5661
5662 event->filp = event_file;
5663 WARN_ON_ONCE(ctx->parent_ctx);
5664 mutex_lock(&ctx->mutex);
5665
5666 if (move_group) {
5667 perf_install_in_context(ctx, group_leader, cpu);
5668 get_ctx(ctx);
5669 list_for_each_entry(sibling, &group_leader->sibling_list,
5670 group_entry) {
5671 perf_install_in_context(ctx, sibling, cpu);
5672 get_ctx(ctx);
5673 }
5674 }
5675
5676 perf_install_in_context(ctx, event, cpu);
5677 ++ctx->generation;
5678 mutex_unlock(&ctx->mutex);
5679
5680 event->owner = current;
5681 get_task_struct(current);
5682 mutex_lock(&current->perf_event_mutex);
5683 list_add_tail(&event->owner_entry, &current->perf_event_list);
5684 mutex_unlock(&current->perf_event_mutex);
5685
5686 /*
5687 * Drop the reference on the group_event after placing the
5688 * new event on the sibling_list. This ensures destruction
5689 * of the group leader will find the pointer to itself in
5690 * perf_group_detach().
5691 */
5692 fput_light(group_file, fput_needed);
5693 fd_install(event_fd, event_file);
5694 return event_fd;
5695
5696 err_context:
5697 put_ctx(ctx);
5698 err_alloc:
5699 free_event(event);
5700 err_task:
5701 if (task)
5702 put_task_struct(task);
5703 err_group_fd:
5704 fput_light(group_file, fput_needed);
5705 err_fd:
5706 put_unused_fd(event_fd);
5707 return err;
5708 }
5709
5710 /**
5711 * perf_event_create_kernel_counter
5712 *
5713 * @attr: attributes of the counter to create
5714 * @cpu: cpu in which the counter is bound
5715 * @task: task to profile (NULL for percpu)
5716 */
5717 struct perf_event *
5718 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5719 struct task_struct *task,
5720 perf_overflow_handler_t overflow_handler)
5721 {
5722 struct perf_event_context *ctx;
5723 struct perf_event *event;
5724 int err;
5725
5726 /*
5727 * Get the target context (task or percpu):
5728 */
5729
5730 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5731 if (IS_ERR(event)) {
5732 err = PTR_ERR(event);
5733 goto err;
5734 }
5735
5736 ctx = find_get_context(event->pmu, task, cpu);
5737 if (IS_ERR(ctx)) {
5738 err = PTR_ERR(ctx);
5739 goto err_free;
5740 }
5741
5742 event->filp = NULL;
5743 WARN_ON_ONCE(ctx->parent_ctx);
5744 mutex_lock(&ctx->mutex);
5745 perf_install_in_context(ctx, event, cpu);
5746 ++ctx->generation;
5747 mutex_unlock(&ctx->mutex);
5748
5749 event->owner = current;
5750 get_task_struct(current);
5751 mutex_lock(&current->perf_event_mutex);
5752 list_add_tail(&event->owner_entry, &current->perf_event_list);
5753 mutex_unlock(&current->perf_event_mutex);
5754
5755 return event;
5756
5757 err_free:
5758 free_event(event);
5759 err:
5760 return ERR_PTR(err);
5761 }
5762 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5763
5764 static void sync_child_event(struct perf_event *child_event,
5765 struct task_struct *child)
5766 {
5767 struct perf_event *parent_event = child_event->parent;
5768 u64 child_val;
5769
5770 if (child_event->attr.inherit_stat)
5771 perf_event_read_event(child_event, child);
5772
5773 child_val = perf_event_count(child_event);
5774
5775 /*
5776 * Add back the child's count to the parent's count:
5777 */
5778 atomic64_add(child_val, &parent_event->child_count);
5779 atomic64_add(child_event->total_time_enabled,
5780 &parent_event->child_total_time_enabled);
5781 atomic64_add(child_event->total_time_running,
5782 &parent_event->child_total_time_running);
5783
5784 /*
5785 * Remove this event from the parent's list
5786 */
5787 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5788 mutex_lock(&parent_event->child_mutex);
5789 list_del_init(&child_event->child_list);
5790 mutex_unlock(&parent_event->child_mutex);
5791
5792 /*
5793 * Release the parent event, if this was the last
5794 * reference to it.
5795 */
5796 fput(parent_event->filp);
5797 }
5798
5799 static void
5800 __perf_event_exit_task(struct perf_event *child_event,
5801 struct perf_event_context *child_ctx,
5802 struct task_struct *child)
5803 {
5804 struct perf_event *parent_event;
5805
5806 perf_event_remove_from_context(child_event);
5807
5808 parent_event = child_event->parent;
5809 /*
5810 * It can happen that parent exits first, and has events
5811 * that are still around due to the child reference. These
5812 * events need to be zapped - but otherwise linger.
5813 */
5814 if (parent_event) {
5815 sync_child_event(child_event, child);
5816 free_event(child_event);
5817 }
5818 }
5819
5820 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5821 {
5822 struct perf_event *child_event, *tmp;
5823 struct perf_event_context *child_ctx;
5824 unsigned long flags;
5825
5826 if (likely(!child->perf_event_ctxp[ctxn])) {
5827 perf_event_task(child, NULL, 0);
5828 return;
5829 }
5830
5831 local_irq_save(flags);
5832 /*
5833 * We can't reschedule here because interrupts are disabled,
5834 * and either child is current or it is a task that can't be
5835 * scheduled, so we are now safe from rescheduling changing
5836 * our context.
5837 */
5838 child_ctx = child->perf_event_ctxp[ctxn];
5839 task_ctx_sched_out(child_ctx, EVENT_ALL);
5840
5841 /*
5842 * Take the context lock here so that if find_get_context is
5843 * reading child->perf_event_ctxp, we wait until it has
5844 * incremented the context's refcount before we do put_ctx below.
5845 */
5846 raw_spin_lock(&child_ctx->lock);
5847 child->perf_event_ctxp[ctxn] = NULL;
5848 /*
5849 * If this context is a clone; unclone it so it can't get
5850 * swapped to another process while we're removing all
5851 * the events from it.
5852 */
5853 unclone_ctx(child_ctx);
5854 update_context_time(child_ctx);
5855 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5856
5857 /*
5858 * Report the task dead after unscheduling the events so that we
5859 * won't get any samples after PERF_RECORD_EXIT. We can however still
5860 * get a few PERF_RECORD_READ events.
5861 */
5862 perf_event_task(child, child_ctx, 0);
5863
5864 /*
5865 * We can recurse on the same lock type through:
5866 *
5867 * __perf_event_exit_task()
5868 * sync_child_event()
5869 * fput(parent_event->filp)
5870 * perf_release()
5871 * mutex_lock(&ctx->mutex)
5872 *
5873 * But since its the parent context it won't be the same instance.
5874 */
5875 mutex_lock(&child_ctx->mutex);
5876
5877 again:
5878 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5879 group_entry)
5880 __perf_event_exit_task(child_event, child_ctx, child);
5881
5882 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5883 group_entry)
5884 __perf_event_exit_task(child_event, child_ctx, child);
5885
5886 /*
5887 * If the last event was a group event, it will have appended all
5888 * its siblings to the list, but we obtained 'tmp' before that which
5889 * will still point to the list head terminating the iteration.
5890 */
5891 if (!list_empty(&child_ctx->pinned_groups) ||
5892 !list_empty(&child_ctx->flexible_groups))
5893 goto again;
5894
5895 mutex_unlock(&child_ctx->mutex);
5896
5897 put_ctx(child_ctx);
5898 }
5899
5900 /*
5901 * When a child task exits, feed back event values to parent events.
5902 */
5903 void perf_event_exit_task(struct task_struct *child)
5904 {
5905 int ctxn;
5906
5907 for_each_task_context_nr(ctxn)
5908 perf_event_exit_task_context(child, ctxn);
5909 }
5910
5911 static void perf_free_event(struct perf_event *event,
5912 struct perf_event_context *ctx)
5913 {
5914 struct perf_event *parent = event->parent;
5915
5916 if (WARN_ON_ONCE(!parent))
5917 return;
5918
5919 mutex_lock(&parent->child_mutex);
5920 list_del_init(&event->child_list);
5921 mutex_unlock(&parent->child_mutex);
5922
5923 fput(parent->filp);
5924
5925 perf_group_detach(event);
5926 list_del_event(event, ctx);
5927 free_event(event);
5928 }
5929
5930 /*
5931 * free an unexposed, unused context as created by inheritance by
5932 * perf_event_init_task below, used by fork() in case of fail.
5933 */
5934 void perf_event_free_task(struct task_struct *task)
5935 {
5936 struct perf_event_context *ctx;
5937 struct perf_event *event, *tmp;
5938 int ctxn;
5939
5940 for_each_task_context_nr(ctxn) {
5941 ctx = task->perf_event_ctxp[ctxn];
5942 if (!ctx)
5943 continue;
5944
5945 mutex_lock(&ctx->mutex);
5946 again:
5947 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5948 group_entry)
5949 perf_free_event(event, ctx);
5950
5951 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5952 group_entry)
5953 perf_free_event(event, ctx);
5954
5955 if (!list_empty(&ctx->pinned_groups) ||
5956 !list_empty(&ctx->flexible_groups))
5957 goto again;
5958
5959 mutex_unlock(&ctx->mutex);
5960
5961 put_ctx(ctx);
5962 }
5963 }
5964
5965 void perf_event_delayed_put(struct task_struct *task)
5966 {
5967 int ctxn;
5968
5969 for_each_task_context_nr(ctxn)
5970 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5971 }
5972
5973 /*
5974 * inherit a event from parent task to child task:
5975 */
5976 static struct perf_event *
5977 inherit_event(struct perf_event *parent_event,
5978 struct task_struct *parent,
5979 struct perf_event_context *parent_ctx,
5980 struct task_struct *child,
5981 struct perf_event *group_leader,
5982 struct perf_event_context *child_ctx)
5983 {
5984 struct perf_event *child_event;
5985 unsigned long flags;
5986
5987 /*
5988 * Instead of creating recursive hierarchies of events,
5989 * we link inherited events back to the original parent,
5990 * which has a filp for sure, which we use as the reference
5991 * count:
5992 */
5993 if (parent_event->parent)
5994 parent_event = parent_event->parent;
5995
5996 child_event = perf_event_alloc(&parent_event->attr,
5997 parent_event->cpu,
5998 child,
5999 group_leader, parent_event,
6000 NULL);
6001 if (IS_ERR(child_event))
6002 return child_event;
6003 get_ctx(child_ctx);
6004
6005 /*
6006 * Make the child state follow the state of the parent event,
6007 * not its attr.disabled bit. We hold the parent's mutex,
6008 * so we won't race with perf_event_{en, dis}able_family.
6009 */
6010 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6011 child_event->state = PERF_EVENT_STATE_INACTIVE;
6012 else
6013 child_event->state = PERF_EVENT_STATE_OFF;
6014
6015 if (parent_event->attr.freq) {
6016 u64 sample_period = parent_event->hw.sample_period;
6017 struct hw_perf_event *hwc = &child_event->hw;
6018
6019 hwc->sample_period = sample_period;
6020 hwc->last_period = sample_period;
6021
6022 local64_set(&hwc->period_left, sample_period);
6023 }
6024
6025 child_event->ctx = child_ctx;
6026 child_event->overflow_handler = parent_event->overflow_handler;
6027
6028 /*
6029 * Link it up in the child's context:
6030 */
6031 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6032 add_event_to_ctx(child_event, child_ctx);
6033 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6034
6035 /*
6036 * Get a reference to the parent filp - we will fput it
6037 * when the child event exits. This is safe to do because
6038 * we are in the parent and we know that the filp still
6039 * exists and has a nonzero count:
6040 */
6041 atomic_long_inc(&parent_event->filp->f_count);
6042
6043 /*
6044 * Link this into the parent event's child list
6045 */
6046 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6047 mutex_lock(&parent_event->child_mutex);
6048 list_add_tail(&child_event->child_list, &parent_event->child_list);
6049 mutex_unlock(&parent_event->child_mutex);
6050
6051 return child_event;
6052 }
6053
6054 static int inherit_group(struct perf_event *parent_event,
6055 struct task_struct *parent,
6056 struct perf_event_context *parent_ctx,
6057 struct task_struct *child,
6058 struct perf_event_context *child_ctx)
6059 {
6060 struct perf_event *leader;
6061 struct perf_event *sub;
6062 struct perf_event *child_ctr;
6063
6064 leader = inherit_event(parent_event, parent, parent_ctx,
6065 child, NULL, child_ctx);
6066 if (IS_ERR(leader))
6067 return PTR_ERR(leader);
6068 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6069 child_ctr = inherit_event(sub, parent, parent_ctx,
6070 child, leader, child_ctx);
6071 if (IS_ERR(child_ctr))
6072 return PTR_ERR(child_ctr);
6073 }
6074 return 0;
6075 }
6076
6077 static int
6078 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6079 struct perf_event_context *parent_ctx,
6080 struct task_struct *child, int ctxn,
6081 int *inherited_all)
6082 {
6083 int ret;
6084 struct perf_event_context *child_ctx;
6085
6086 if (!event->attr.inherit) {
6087 *inherited_all = 0;
6088 return 0;
6089 }
6090
6091 child_ctx = child->perf_event_ctxp[ctxn];
6092 if (!child_ctx) {
6093 /*
6094 * This is executed from the parent task context, so
6095 * inherit events that have been marked for cloning.
6096 * First allocate and initialize a context for the
6097 * child.
6098 */
6099
6100 child_ctx = alloc_perf_context(event->pmu, child);
6101 if (!child_ctx)
6102 return -ENOMEM;
6103
6104 child->perf_event_ctxp[ctxn] = child_ctx;
6105 }
6106
6107 ret = inherit_group(event, parent, parent_ctx,
6108 child, child_ctx);
6109
6110 if (ret)
6111 *inherited_all = 0;
6112
6113 return ret;
6114 }
6115
6116 /*
6117 * Initialize the perf_event context in task_struct
6118 */
6119 int perf_event_init_context(struct task_struct *child, int ctxn)
6120 {
6121 struct perf_event_context *child_ctx, *parent_ctx;
6122 struct perf_event_context *cloned_ctx;
6123 struct perf_event *event;
6124 struct task_struct *parent = current;
6125 int inherited_all = 1;
6126 int ret = 0;
6127
6128 child->perf_event_ctxp[ctxn] = NULL;
6129
6130 mutex_init(&child->perf_event_mutex);
6131 INIT_LIST_HEAD(&child->perf_event_list);
6132
6133 if (likely(!parent->perf_event_ctxp[ctxn]))
6134 return 0;
6135
6136 /*
6137 * If the parent's context is a clone, pin it so it won't get
6138 * swapped under us.
6139 */
6140 parent_ctx = perf_pin_task_context(parent, ctxn);
6141
6142 /*
6143 * No need to check if parent_ctx != NULL here; since we saw
6144 * it non-NULL earlier, the only reason for it to become NULL
6145 * is if we exit, and since we're currently in the middle of
6146 * a fork we can't be exiting at the same time.
6147 */
6148
6149 /*
6150 * Lock the parent list. No need to lock the child - not PID
6151 * hashed yet and not running, so nobody can access it.
6152 */
6153 mutex_lock(&parent_ctx->mutex);
6154
6155 /*
6156 * We dont have to disable NMIs - we are only looking at
6157 * the list, not manipulating it:
6158 */
6159 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6160 ret = inherit_task_group(event, parent, parent_ctx,
6161 child, ctxn, &inherited_all);
6162 if (ret)
6163 break;
6164 }
6165
6166 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6167 ret = inherit_task_group(event, parent, parent_ctx,
6168 child, ctxn, &inherited_all);
6169 if (ret)
6170 break;
6171 }
6172
6173 child_ctx = child->perf_event_ctxp[ctxn];
6174
6175 if (child_ctx && inherited_all) {
6176 /*
6177 * Mark the child context as a clone of the parent
6178 * context, or of whatever the parent is a clone of.
6179 * Note that if the parent is a clone, it could get
6180 * uncloned at any point, but that doesn't matter
6181 * because the list of events and the generation
6182 * count can't have changed since we took the mutex.
6183 */
6184 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6185 if (cloned_ctx) {
6186 child_ctx->parent_ctx = cloned_ctx;
6187 child_ctx->parent_gen = parent_ctx->parent_gen;
6188 } else {
6189 child_ctx->parent_ctx = parent_ctx;
6190 child_ctx->parent_gen = parent_ctx->generation;
6191 }
6192 get_ctx(child_ctx->parent_ctx);
6193 }
6194
6195 mutex_unlock(&parent_ctx->mutex);
6196
6197 perf_unpin_context(parent_ctx);
6198
6199 return ret;
6200 }
6201
6202 /*
6203 * Initialize the perf_event context in task_struct
6204 */
6205 int perf_event_init_task(struct task_struct *child)
6206 {
6207 int ctxn, ret;
6208
6209 for_each_task_context_nr(ctxn) {
6210 ret = perf_event_init_context(child, ctxn);
6211 if (ret)
6212 return ret;
6213 }
6214
6215 return 0;
6216 }
6217
6218 static void __init perf_event_init_all_cpus(void)
6219 {
6220 struct swevent_htable *swhash;
6221 int cpu;
6222
6223 for_each_possible_cpu(cpu) {
6224 swhash = &per_cpu(swevent_htable, cpu);
6225 mutex_init(&swhash->hlist_mutex);
6226 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6227 }
6228 }
6229
6230 static void __cpuinit perf_event_init_cpu(int cpu)
6231 {
6232 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6233
6234 mutex_lock(&swhash->hlist_mutex);
6235 if (swhash->hlist_refcount > 0) {
6236 struct swevent_hlist *hlist;
6237
6238 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6239 WARN_ON(!hlist);
6240 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6241 }
6242 mutex_unlock(&swhash->hlist_mutex);
6243 }
6244
6245 #ifdef CONFIG_HOTPLUG_CPU
6246 static void perf_pmu_rotate_stop(struct pmu *pmu)
6247 {
6248 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6249
6250 WARN_ON(!irqs_disabled());
6251
6252 list_del_init(&cpuctx->rotation_list);
6253 }
6254
6255 static void __perf_event_exit_context(void *__info)
6256 {
6257 struct perf_event_context *ctx = __info;
6258 struct perf_event *event, *tmp;
6259
6260 perf_pmu_rotate_stop(ctx->pmu);
6261
6262 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6263 __perf_event_remove_from_context(event);
6264 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6265 __perf_event_remove_from_context(event);
6266 }
6267
6268 static void perf_event_exit_cpu_context(int cpu)
6269 {
6270 struct perf_event_context *ctx;
6271 struct pmu *pmu;
6272 int idx;
6273
6274 idx = srcu_read_lock(&pmus_srcu);
6275 list_for_each_entry_rcu(pmu, &pmus, entry) {
6276 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6277
6278 mutex_lock(&ctx->mutex);
6279 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6280 mutex_unlock(&ctx->mutex);
6281 }
6282 srcu_read_unlock(&pmus_srcu, idx);
6283 }
6284
6285 static void perf_event_exit_cpu(int cpu)
6286 {
6287 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6288
6289 mutex_lock(&swhash->hlist_mutex);
6290 swevent_hlist_release(swhash);
6291 mutex_unlock(&swhash->hlist_mutex);
6292
6293 perf_event_exit_cpu_context(cpu);
6294 }
6295 #else
6296 static inline void perf_event_exit_cpu(int cpu) { }
6297 #endif
6298
6299 static int __cpuinit
6300 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6301 {
6302 unsigned int cpu = (long)hcpu;
6303
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305
6306 case CPU_UP_PREPARE:
6307 case CPU_DOWN_FAILED:
6308 perf_event_init_cpu(cpu);
6309 break;
6310
6311 case CPU_UP_CANCELED:
6312 case CPU_DOWN_PREPARE:
6313 perf_event_exit_cpu(cpu);
6314 break;
6315
6316 default:
6317 break;
6318 }
6319
6320 return NOTIFY_OK;
6321 }
6322
6323 void __init perf_event_init(void)
6324 {
6325 int ret;
6326
6327 perf_event_init_all_cpus();
6328 init_srcu_struct(&pmus_srcu);
6329 perf_pmu_register(&perf_swevent);
6330 perf_pmu_register(&perf_cpu_clock);
6331 perf_pmu_register(&perf_task_clock);
6332 perf_tp_register();
6333 perf_cpu_notifier(perf_cpu_notify);
6334
6335 ret = init_hw_breakpoint();
6336 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6337 }
This page took 0.179628 seconds and 5 git commands to generate.