printk: return really stored message length
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63
64 int console_printk[4] = {
65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
69 };
70
71 /*
72 * Low level drivers may need that to know if they can schedule in
73 * their unblank() callback or not. So let's export it.
74 */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77
78 /*
79 * console_sem protects the console_drivers list, and also
80 * provides serialisation for access to the entire console
81 * driver system.
82 */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 .name = "console_lock"
90 };
91 #endif
92
93 /*
94 * This is used for debugging the mess that is the VT code by
95 * keeping track if we have the console semaphore held. It's
96 * definitely not the perfect debug tool (we don't know if _WE_
97 * hold it are racing, but it helps tracking those weird code
98 * path in the console code where we end up in places I want
99 * locked without the console sempahore held
100 */
101 static int console_locked, console_suspended;
102
103 /*
104 * If exclusive_console is non-NULL then only this console is to be printed to.
105 */
106 static struct console *exclusive_console;
107
108 /*
109 * Array of consoles built from command line options (console=)
110 */
111
112 #define MAX_CMDLINECONSOLES 8
113
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123
124 /*
125 * The printk log buffer consists of a chain of concatenated variable
126 * length records. Every record starts with a record header, containing
127 * the overall length of the record.
128 *
129 * The heads to the first and last entry in the buffer, as well as the
130 * sequence numbers of these both entries are maintained when messages
131 * are stored..
132 *
133 * If the heads indicate available messages, the length in the header
134 * tells the start next message. A length == 0 for the next message
135 * indicates a wrap-around to the beginning of the buffer.
136 *
137 * Every record carries the monotonic timestamp in microseconds, as well as
138 * the standard userspace syslog level and syslog facility. The usual
139 * kernel messages use LOG_KERN; userspace-injected messages always carry
140 * a matching syslog facility, by default LOG_USER. The origin of every
141 * message can be reliably determined that way.
142 *
143 * The human readable log message directly follows the message header. The
144 * length of the message text is stored in the header, the stored message
145 * is not terminated.
146 *
147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
148 * to provide userspace with a machine-readable message context.
149 *
150 * Examples for well-defined, commonly used property names are:
151 * DEVICE=b12:8 device identifier
152 * b12:8 block dev_t
153 * c127:3 char dev_t
154 * n8 netdev ifindex
155 * +sound:card0 subsystem:devname
156 * SUBSYSTEM=pci driver-core subsystem name
157 *
158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159 * follows directly after a '=' character. Every property is terminated by
160 * a '\0' character. The last property is not terminated.
161 *
162 * Example of a message structure:
163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
164 * 0008 34 00 record is 52 bytes long
165 * 000a 0b 00 text is 11 bytes long
166 * 000c 1f 00 dictionary is 23 bytes long
167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
168 * 0010 69 74 27 73 20 61 20 6c "it's a l"
169 * 69 6e 65 "ine"
170 * 001b 44 45 56 49 43 "DEVIC"
171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
172 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
173 * 67 "g"
174 * 0032 00 00 00 padding to next message header
175 *
176 * The 'struct printk_log' buffer header must never be directly exported to
177 * userspace, it is a kernel-private implementation detail that might
178 * need to be changed in the future, when the requirements change.
179 *
180 * /dev/kmsg exports the structured data in the following line format:
181 * "level,sequnum,timestamp;<message text>\n"
182 *
183 * The optional key/value pairs are attached as continuation lines starting
184 * with a space character and terminated by a newline. All possible
185 * non-prinatable characters are escaped in the "\xff" notation.
186 *
187 * Users of the export format should ignore possible additional values
188 * separated by ',', and find the message after the ';' character.
189 */
190
191 enum log_flags {
192 LOG_NOCONS = 1, /* already flushed, do not print to console */
193 LOG_NEWLINE = 2, /* text ended with a newline */
194 LOG_PREFIX = 4, /* text started with a prefix */
195 LOG_CONT = 8, /* text is a fragment of a continuation line */
196 };
197
198 struct printk_log {
199 u64 ts_nsec; /* timestamp in nanoseconds */
200 u16 len; /* length of entire record */
201 u16 text_len; /* length of text buffer */
202 u16 dict_len; /* length of dictionary buffer */
203 u8 facility; /* syslog facility */
204 u8 flags:5; /* internal record flags */
205 u8 level:3; /* syslog level */
206 };
207
208 /*
209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210 * used in interesting ways to provide interlocking in console_unlock();
211 */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238
239 #define PREFIX_MAX 32
240 #define LOG_LINE_MAX 1024 - PREFIX_MAX
241
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 return (char *)msg + sizeof(struct printk_log);
260 }
261
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272
273 /*
274 * A length == 0 record is the end of buffer marker. Wrap around and
275 * read the message at the start of the buffer.
276 */
277 if (!msg->len)
278 return (struct printk_log *)log_buf;
279 return msg;
280 }
281
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286
287 /* length == 0 indicates the end of the buffer; wrap */
288 /*
289 * A length == 0 record is the end of buffer marker. Wrap around and
290 * read the message at the start of the buffer as *this* one, and
291 * return the one after that.
292 */
293 if (!msg->len) {
294 msg = (struct printk_log *)log_buf;
295 return msg->len;
296 }
297 return idx + msg->len;
298 }
299
300 /*
301 * Check whether there is enough free space for the given message.
302 *
303 * The same values of first_idx and next_idx mean that the buffer
304 * is either empty or full.
305 *
306 * If the buffer is empty, we must respect the position of the indexes.
307 * They cannot be reset to the beginning of the buffer.
308 */
309 static int logbuf_has_space(u32 msg_size, bool empty)
310 {
311 u32 free;
312
313 if (log_next_idx > log_first_idx || empty)
314 free = max(log_buf_len - log_next_idx, log_first_idx);
315 else
316 free = log_first_idx - log_next_idx;
317
318 /*
319 * We need space also for an empty header that signalizes wrapping
320 * of the buffer.
321 */
322 return free >= msg_size + sizeof(struct printk_log);
323 }
324
325 static int log_make_free_space(u32 msg_size)
326 {
327 while (log_first_seq < log_next_seq) {
328 if (logbuf_has_space(msg_size, false))
329 return 0;
330 /* drop old messages until we have enough continuous space */
331 log_first_idx = log_next(log_first_idx);
332 log_first_seq++;
333 }
334
335 /* sequence numbers are equal, so the log buffer is empty */
336 if (logbuf_has_space(msg_size, true))
337 return 0;
338
339 return -ENOMEM;
340 }
341
342 /* compute the message size including the padding bytes */
343 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
344 {
345 u32 size;
346
347 size = sizeof(struct printk_log) + text_len + dict_len;
348 *pad_len = (-size) & (LOG_ALIGN - 1);
349 size += *pad_len;
350
351 return size;
352 }
353
354 /*
355 * Define how much of the log buffer we could take at maximum. The value
356 * must be greater than two. Note that only half of the buffer is available
357 * when the index points to the middle.
358 */
359 #define MAX_LOG_TAKE_PART 4
360 static const char trunc_msg[] = "<truncated>";
361
362 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
363 u16 *dict_len, u32 *pad_len)
364 {
365 /*
366 * The message should not take the whole buffer. Otherwise, it might
367 * get removed too soon.
368 */
369 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
370 if (*text_len > max_text_len)
371 *text_len = max_text_len;
372 /* enable the warning message */
373 *trunc_msg_len = strlen(trunc_msg);
374 /* disable the "dict" completely */
375 *dict_len = 0;
376 /* compute the size again, count also the warning message */
377 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
378 }
379
380 /* insert record into the buffer, discard old ones, update heads */
381 static int log_store(int facility, int level,
382 enum log_flags flags, u64 ts_nsec,
383 const char *dict, u16 dict_len,
384 const char *text, u16 text_len)
385 {
386 struct printk_log *msg;
387 u32 size, pad_len;
388 u16 trunc_msg_len = 0;
389
390 /* number of '\0' padding bytes to next message */
391 size = msg_used_size(text_len, dict_len, &pad_len);
392
393 if (log_make_free_space(size)) {
394 /* truncate the message if it is too long for empty buffer */
395 size = truncate_msg(&text_len, &trunc_msg_len,
396 &dict_len, &pad_len);
397 /* survive when the log buffer is too small for trunc_msg */
398 if (log_make_free_space(size))
399 return 0;
400 }
401
402 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
403 /*
404 * This message + an additional empty header does not fit
405 * at the end of the buffer. Add an empty header with len == 0
406 * to signify a wrap around.
407 */
408 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
409 log_next_idx = 0;
410 }
411
412 /* fill message */
413 msg = (struct printk_log *)(log_buf + log_next_idx);
414 memcpy(log_text(msg), text, text_len);
415 msg->text_len = text_len;
416 if (trunc_msg_len) {
417 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
418 msg->text_len += trunc_msg_len;
419 }
420 memcpy(log_dict(msg), dict, dict_len);
421 msg->dict_len = dict_len;
422 msg->facility = facility;
423 msg->level = level & 7;
424 msg->flags = flags & 0x1f;
425 if (ts_nsec > 0)
426 msg->ts_nsec = ts_nsec;
427 else
428 msg->ts_nsec = local_clock();
429 memset(log_dict(msg) + dict_len, 0, pad_len);
430 msg->len = size;
431
432 /* insert message */
433 log_next_idx += msg->len;
434 log_next_seq++;
435
436 return msg->text_len;
437 }
438
439 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
440 int dmesg_restrict = 1;
441 #else
442 int dmesg_restrict;
443 #endif
444
445 static int syslog_action_restricted(int type)
446 {
447 if (dmesg_restrict)
448 return 1;
449 /*
450 * Unless restricted, we allow "read all" and "get buffer size"
451 * for everybody.
452 */
453 return type != SYSLOG_ACTION_READ_ALL &&
454 type != SYSLOG_ACTION_SIZE_BUFFER;
455 }
456
457 static int check_syslog_permissions(int type, bool from_file)
458 {
459 /*
460 * If this is from /proc/kmsg and we've already opened it, then we've
461 * already done the capabilities checks at open time.
462 */
463 if (from_file && type != SYSLOG_ACTION_OPEN)
464 return 0;
465
466 if (syslog_action_restricted(type)) {
467 if (capable(CAP_SYSLOG))
468 return 0;
469 /*
470 * For historical reasons, accept CAP_SYS_ADMIN too, with
471 * a warning.
472 */
473 if (capable(CAP_SYS_ADMIN)) {
474 pr_warn_once("%s (%d): Attempt to access syslog with "
475 "CAP_SYS_ADMIN but no CAP_SYSLOG "
476 "(deprecated).\n",
477 current->comm, task_pid_nr(current));
478 return 0;
479 }
480 return -EPERM;
481 }
482 return security_syslog(type);
483 }
484
485
486 /* /dev/kmsg - userspace message inject/listen interface */
487 struct devkmsg_user {
488 u64 seq;
489 u32 idx;
490 enum log_flags prev;
491 struct mutex lock;
492 char buf[8192];
493 };
494
495 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
496 unsigned long count, loff_t pos)
497 {
498 char *buf, *line;
499 int i;
500 int level = default_message_loglevel;
501 int facility = 1; /* LOG_USER */
502 size_t len = iov_length(iv, count);
503 ssize_t ret = len;
504
505 if (len > LOG_LINE_MAX)
506 return -EINVAL;
507 buf = kmalloc(len+1, GFP_KERNEL);
508 if (buf == NULL)
509 return -ENOMEM;
510
511 line = buf;
512 for (i = 0; i < count; i++) {
513 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
514 ret = -EFAULT;
515 goto out;
516 }
517 line += iv[i].iov_len;
518 }
519
520 /*
521 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
522 * the decimal value represents 32bit, the lower 3 bit are the log
523 * level, the rest are the log facility.
524 *
525 * If no prefix or no userspace facility is specified, we
526 * enforce LOG_USER, to be able to reliably distinguish
527 * kernel-generated messages from userspace-injected ones.
528 */
529 line = buf;
530 if (line[0] == '<') {
531 char *endp = NULL;
532
533 i = simple_strtoul(line+1, &endp, 10);
534 if (endp && endp[0] == '>') {
535 level = i & 7;
536 if (i >> 3)
537 facility = i >> 3;
538 endp++;
539 len -= endp - line;
540 line = endp;
541 }
542 }
543 line[len] = '\0';
544
545 printk_emit(facility, level, NULL, 0, "%s", line);
546 out:
547 kfree(buf);
548 return ret;
549 }
550
551 static ssize_t devkmsg_read(struct file *file, char __user *buf,
552 size_t count, loff_t *ppos)
553 {
554 struct devkmsg_user *user = file->private_data;
555 struct printk_log *msg;
556 u64 ts_usec;
557 size_t i;
558 char cont = '-';
559 size_t len;
560 ssize_t ret;
561
562 if (!user)
563 return -EBADF;
564
565 ret = mutex_lock_interruptible(&user->lock);
566 if (ret)
567 return ret;
568 raw_spin_lock_irq(&logbuf_lock);
569 while (user->seq == log_next_seq) {
570 if (file->f_flags & O_NONBLOCK) {
571 ret = -EAGAIN;
572 raw_spin_unlock_irq(&logbuf_lock);
573 goto out;
574 }
575
576 raw_spin_unlock_irq(&logbuf_lock);
577 ret = wait_event_interruptible(log_wait,
578 user->seq != log_next_seq);
579 if (ret)
580 goto out;
581 raw_spin_lock_irq(&logbuf_lock);
582 }
583
584 if (user->seq < log_first_seq) {
585 /* our last seen message is gone, return error and reset */
586 user->idx = log_first_idx;
587 user->seq = log_first_seq;
588 ret = -EPIPE;
589 raw_spin_unlock_irq(&logbuf_lock);
590 goto out;
591 }
592
593 msg = log_from_idx(user->idx);
594 ts_usec = msg->ts_nsec;
595 do_div(ts_usec, 1000);
596
597 /*
598 * If we couldn't merge continuation line fragments during the print,
599 * export the stored flags to allow an optional external merge of the
600 * records. Merging the records isn't always neccessarily correct, like
601 * when we hit a race during printing. In most cases though, it produces
602 * better readable output. 'c' in the record flags mark the first
603 * fragment of a line, '+' the following.
604 */
605 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
606 cont = 'c';
607 else if ((msg->flags & LOG_CONT) ||
608 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
609 cont = '+';
610
611 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
612 (msg->facility << 3) | msg->level,
613 user->seq, ts_usec, cont);
614 user->prev = msg->flags;
615
616 /* escape non-printable characters */
617 for (i = 0; i < msg->text_len; i++) {
618 unsigned char c = log_text(msg)[i];
619
620 if (c < ' ' || c >= 127 || c == '\\')
621 len += sprintf(user->buf + len, "\\x%02x", c);
622 else
623 user->buf[len++] = c;
624 }
625 user->buf[len++] = '\n';
626
627 if (msg->dict_len) {
628 bool line = true;
629
630 for (i = 0; i < msg->dict_len; i++) {
631 unsigned char c = log_dict(msg)[i];
632
633 if (line) {
634 user->buf[len++] = ' ';
635 line = false;
636 }
637
638 if (c == '\0') {
639 user->buf[len++] = '\n';
640 line = true;
641 continue;
642 }
643
644 if (c < ' ' || c >= 127 || c == '\\') {
645 len += sprintf(user->buf + len, "\\x%02x", c);
646 continue;
647 }
648
649 user->buf[len++] = c;
650 }
651 user->buf[len++] = '\n';
652 }
653
654 user->idx = log_next(user->idx);
655 user->seq++;
656 raw_spin_unlock_irq(&logbuf_lock);
657
658 if (len > count) {
659 ret = -EINVAL;
660 goto out;
661 }
662
663 if (copy_to_user(buf, user->buf, len)) {
664 ret = -EFAULT;
665 goto out;
666 }
667 ret = len;
668 out:
669 mutex_unlock(&user->lock);
670 return ret;
671 }
672
673 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
674 {
675 struct devkmsg_user *user = file->private_data;
676 loff_t ret = 0;
677
678 if (!user)
679 return -EBADF;
680 if (offset)
681 return -ESPIPE;
682
683 raw_spin_lock_irq(&logbuf_lock);
684 switch (whence) {
685 case SEEK_SET:
686 /* the first record */
687 user->idx = log_first_idx;
688 user->seq = log_first_seq;
689 break;
690 case SEEK_DATA:
691 /*
692 * The first record after the last SYSLOG_ACTION_CLEAR,
693 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
694 * changes no global state, and does not clear anything.
695 */
696 user->idx = clear_idx;
697 user->seq = clear_seq;
698 break;
699 case SEEK_END:
700 /* after the last record */
701 user->idx = log_next_idx;
702 user->seq = log_next_seq;
703 break;
704 default:
705 ret = -EINVAL;
706 }
707 raw_spin_unlock_irq(&logbuf_lock);
708 return ret;
709 }
710
711 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
712 {
713 struct devkmsg_user *user = file->private_data;
714 int ret = 0;
715
716 if (!user)
717 return POLLERR|POLLNVAL;
718
719 poll_wait(file, &log_wait, wait);
720
721 raw_spin_lock_irq(&logbuf_lock);
722 if (user->seq < log_next_seq) {
723 /* return error when data has vanished underneath us */
724 if (user->seq < log_first_seq)
725 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
726 else
727 ret = POLLIN|POLLRDNORM;
728 }
729 raw_spin_unlock_irq(&logbuf_lock);
730
731 return ret;
732 }
733
734 static int devkmsg_open(struct inode *inode, struct file *file)
735 {
736 struct devkmsg_user *user;
737 int err;
738
739 /* write-only does not need any file context */
740 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
741 return 0;
742
743 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
744 SYSLOG_FROM_READER);
745 if (err)
746 return err;
747
748 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
749 if (!user)
750 return -ENOMEM;
751
752 mutex_init(&user->lock);
753
754 raw_spin_lock_irq(&logbuf_lock);
755 user->idx = log_first_idx;
756 user->seq = log_first_seq;
757 raw_spin_unlock_irq(&logbuf_lock);
758
759 file->private_data = user;
760 return 0;
761 }
762
763 static int devkmsg_release(struct inode *inode, struct file *file)
764 {
765 struct devkmsg_user *user = file->private_data;
766
767 if (!user)
768 return 0;
769
770 mutex_destroy(&user->lock);
771 kfree(user);
772 return 0;
773 }
774
775 const struct file_operations kmsg_fops = {
776 .open = devkmsg_open,
777 .read = devkmsg_read,
778 .aio_write = devkmsg_writev,
779 .llseek = devkmsg_llseek,
780 .poll = devkmsg_poll,
781 .release = devkmsg_release,
782 };
783
784 #ifdef CONFIG_KEXEC
785 /*
786 * This appends the listed symbols to /proc/vmcore
787 *
788 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
789 * obtain access to symbols that are otherwise very difficult to locate. These
790 * symbols are specifically used so that utilities can access and extract the
791 * dmesg log from a vmcore file after a crash.
792 */
793 void log_buf_kexec_setup(void)
794 {
795 VMCOREINFO_SYMBOL(log_buf);
796 VMCOREINFO_SYMBOL(log_buf_len);
797 VMCOREINFO_SYMBOL(log_first_idx);
798 VMCOREINFO_SYMBOL(log_next_idx);
799 /*
800 * Export struct printk_log size and field offsets. User space tools can
801 * parse it and detect any changes to structure down the line.
802 */
803 VMCOREINFO_STRUCT_SIZE(printk_log);
804 VMCOREINFO_OFFSET(printk_log, ts_nsec);
805 VMCOREINFO_OFFSET(printk_log, len);
806 VMCOREINFO_OFFSET(printk_log, text_len);
807 VMCOREINFO_OFFSET(printk_log, dict_len);
808 }
809 #endif
810
811 /* requested log_buf_len from kernel cmdline */
812 static unsigned long __initdata new_log_buf_len;
813
814 /* save requested log_buf_len since it's too early to process it */
815 static int __init log_buf_len_setup(char *str)
816 {
817 unsigned size = memparse(str, &str);
818
819 if (size)
820 size = roundup_pow_of_two(size);
821 if (size > log_buf_len)
822 new_log_buf_len = size;
823
824 return 0;
825 }
826 early_param("log_buf_len", log_buf_len_setup);
827
828 void __init setup_log_buf(int early)
829 {
830 unsigned long flags;
831 char *new_log_buf;
832 int free;
833
834 if (!new_log_buf_len)
835 return;
836
837 if (early) {
838 new_log_buf =
839 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
840 } else {
841 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
842 }
843
844 if (unlikely(!new_log_buf)) {
845 pr_err("log_buf_len: %ld bytes not available\n",
846 new_log_buf_len);
847 return;
848 }
849
850 raw_spin_lock_irqsave(&logbuf_lock, flags);
851 log_buf_len = new_log_buf_len;
852 log_buf = new_log_buf;
853 new_log_buf_len = 0;
854 free = __LOG_BUF_LEN - log_next_idx;
855 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
856 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
857
858 pr_info("log_buf_len: %d\n", log_buf_len);
859 pr_info("early log buf free: %d(%d%%)\n",
860 free, (free * 100) / __LOG_BUF_LEN);
861 }
862
863 static bool __read_mostly ignore_loglevel;
864
865 static int __init ignore_loglevel_setup(char *str)
866 {
867 ignore_loglevel = 1;
868 pr_info("debug: ignoring loglevel setting.\n");
869
870 return 0;
871 }
872
873 early_param("ignore_loglevel", ignore_loglevel_setup);
874 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
875 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
876 "print all kernel messages to the console.");
877
878 #ifdef CONFIG_BOOT_PRINTK_DELAY
879
880 static int boot_delay; /* msecs delay after each printk during bootup */
881 static unsigned long long loops_per_msec; /* based on boot_delay */
882
883 static int __init boot_delay_setup(char *str)
884 {
885 unsigned long lpj;
886
887 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
888 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
889
890 get_option(&str, &boot_delay);
891 if (boot_delay > 10 * 1000)
892 boot_delay = 0;
893
894 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
895 "HZ: %d, loops_per_msec: %llu\n",
896 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
897 return 0;
898 }
899 early_param("boot_delay", boot_delay_setup);
900
901 static void boot_delay_msec(int level)
902 {
903 unsigned long long k;
904 unsigned long timeout;
905
906 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
907 || (level >= console_loglevel && !ignore_loglevel)) {
908 return;
909 }
910
911 k = (unsigned long long)loops_per_msec * boot_delay;
912
913 timeout = jiffies + msecs_to_jiffies(boot_delay);
914 while (k) {
915 k--;
916 cpu_relax();
917 /*
918 * use (volatile) jiffies to prevent
919 * compiler reduction; loop termination via jiffies
920 * is secondary and may or may not happen.
921 */
922 if (time_after(jiffies, timeout))
923 break;
924 touch_nmi_watchdog();
925 }
926 }
927 #else
928 static inline void boot_delay_msec(int level)
929 {
930 }
931 #endif
932
933 #if defined(CONFIG_PRINTK_TIME)
934 static bool printk_time = 1;
935 #else
936 static bool printk_time;
937 #endif
938 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
939
940 static size_t print_time(u64 ts, char *buf)
941 {
942 unsigned long rem_nsec;
943
944 if (!printk_time)
945 return 0;
946
947 rem_nsec = do_div(ts, 1000000000);
948
949 if (!buf)
950 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
951
952 return sprintf(buf, "[%5lu.%06lu] ",
953 (unsigned long)ts, rem_nsec / 1000);
954 }
955
956 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
957 {
958 size_t len = 0;
959 unsigned int prefix = (msg->facility << 3) | msg->level;
960
961 if (syslog) {
962 if (buf) {
963 len += sprintf(buf, "<%u>", prefix);
964 } else {
965 len += 3;
966 if (prefix > 999)
967 len += 3;
968 else if (prefix > 99)
969 len += 2;
970 else if (prefix > 9)
971 len++;
972 }
973 }
974
975 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
976 return len;
977 }
978
979 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
980 bool syslog, char *buf, size_t size)
981 {
982 const char *text = log_text(msg);
983 size_t text_size = msg->text_len;
984 bool prefix = true;
985 bool newline = true;
986 size_t len = 0;
987
988 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
989 prefix = false;
990
991 if (msg->flags & LOG_CONT) {
992 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
993 prefix = false;
994
995 if (!(msg->flags & LOG_NEWLINE))
996 newline = false;
997 }
998
999 do {
1000 const char *next = memchr(text, '\n', text_size);
1001 size_t text_len;
1002
1003 if (next) {
1004 text_len = next - text;
1005 next++;
1006 text_size -= next - text;
1007 } else {
1008 text_len = text_size;
1009 }
1010
1011 if (buf) {
1012 if (print_prefix(msg, syslog, NULL) +
1013 text_len + 1 >= size - len)
1014 break;
1015
1016 if (prefix)
1017 len += print_prefix(msg, syslog, buf + len);
1018 memcpy(buf + len, text, text_len);
1019 len += text_len;
1020 if (next || newline)
1021 buf[len++] = '\n';
1022 } else {
1023 /* SYSLOG_ACTION_* buffer size only calculation */
1024 if (prefix)
1025 len += print_prefix(msg, syslog, NULL);
1026 len += text_len;
1027 if (next || newline)
1028 len++;
1029 }
1030
1031 prefix = true;
1032 text = next;
1033 } while (text);
1034
1035 return len;
1036 }
1037
1038 static int syslog_print(char __user *buf, int size)
1039 {
1040 char *text;
1041 struct printk_log *msg;
1042 int len = 0;
1043
1044 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1045 if (!text)
1046 return -ENOMEM;
1047
1048 while (size > 0) {
1049 size_t n;
1050 size_t skip;
1051
1052 raw_spin_lock_irq(&logbuf_lock);
1053 if (syslog_seq < log_first_seq) {
1054 /* messages are gone, move to first one */
1055 syslog_seq = log_first_seq;
1056 syslog_idx = log_first_idx;
1057 syslog_prev = 0;
1058 syslog_partial = 0;
1059 }
1060 if (syslog_seq == log_next_seq) {
1061 raw_spin_unlock_irq(&logbuf_lock);
1062 break;
1063 }
1064
1065 skip = syslog_partial;
1066 msg = log_from_idx(syslog_idx);
1067 n = msg_print_text(msg, syslog_prev, true, text,
1068 LOG_LINE_MAX + PREFIX_MAX);
1069 if (n - syslog_partial <= size) {
1070 /* message fits into buffer, move forward */
1071 syslog_idx = log_next(syslog_idx);
1072 syslog_seq++;
1073 syslog_prev = msg->flags;
1074 n -= syslog_partial;
1075 syslog_partial = 0;
1076 } else if (!len){
1077 /* partial read(), remember position */
1078 n = size;
1079 syslog_partial += n;
1080 } else
1081 n = 0;
1082 raw_spin_unlock_irq(&logbuf_lock);
1083
1084 if (!n)
1085 break;
1086
1087 if (copy_to_user(buf, text + skip, n)) {
1088 if (!len)
1089 len = -EFAULT;
1090 break;
1091 }
1092
1093 len += n;
1094 size -= n;
1095 buf += n;
1096 }
1097
1098 kfree(text);
1099 return len;
1100 }
1101
1102 static int syslog_print_all(char __user *buf, int size, bool clear)
1103 {
1104 char *text;
1105 int len = 0;
1106
1107 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1108 if (!text)
1109 return -ENOMEM;
1110
1111 raw_spin_lock_irq(&logbuf_lock);
1112 if (buf) {
1113 u64 next_seq;
1114 u64 seq;
1115 u32 idx;
1116 enum log_flags prev;
1117
1118 if (clear_seq < log_first_seq) {
1119 /* messages are gone, move to first available one */
1120 clear_seq = log_first_seq;
1121 clear_idx = log_first_idx;
1122 }
1123
1124 /*
1125 * Find first record that fits, including all following records,
1126 * into the user-provided buffer for this dump.
1127 */
1128 seq = clear_seq;
1129 idx = clear_idx;
1130 prev = 0;
1131 while (seq < log_next_seq) {
1132 struct printk_log *msg = log_from_idx(idx);
1133
1134 len += msg_print_text(msg, prev, true, NULL, 0);
1135 prev = msg->flags;
1136 idx = log_next(idx);
1137 seq++;
1138 }
1139
1140 /* move first record forward until length fits into the buffer */
1141 seq = clear_seq;
1142 idx = clear_idx;
1143 prev = 0;
1144 while (len > size && seq < log_next_seq) {
1145 struct printk_log *msg = log_from_idx(idx);
1146
1147 len -= msg_print_text(msg, prev, true, NULL, 0);
1148 prev = msg->flags;
1149 idx = log_next(idx);
1150 seq++;
1151 }
1152
1153 /* last message fitting into this dump */
1154 next_seq = log_next_seq;
1155
1156 len = 0;
1157 while (len >= 0 && seq < next_seq) {
1158 struct printk_log *msg = log_from_idx(idx);
1159 int textlen;
1160
1161 textlen = msg_print_text(msg, prev, true, text,
1162 LOG_LINE_MAX + PREFIX_MAX);
1163 if (textlen < 0) {
1164 len = textlen;
1165 break;
1166 }
1167 idx = log_next(idx);
1168 seq++;
1169 prev = msg->flags;
1170
1171 raw_spin_unlock_irq(&logbuf_lock);
1172 if (copy_to_user(buf + len, text, textlen))
1173 len = -EFAULT;
1174 else
1175 len += textlen;
1176 raw_spin_lock_irq(&logbuf_lock);
1177
1178 if (seq < log_first_seq) {
1179 /* messages are gone, move to next one */
1180 seq = log_first_seq;
1181 idx = log_first_idx;
1182 prev = 0;
1183 }
1184 }
1185 }
1186
1187 if (clear) {
1188 clear_seq = log_next_seq;
1189 clear_idx = log_next_idx;
1190 }
1191 raw_spin_unlock_irq(&logbuf_lock);
1192
1193 kfree(text);
1194 return len;
1195 }
1196
1197 int do_syslog(int type, char __user *buf, int len, bool from_file)
1198 {
1199 bool clear = false;
1200 static int saved_console_loglevel = -1;
1201 int error;
1202
1203 error = check_syslog_permissions(type, from_file);
1204 if (error)
1205 goto out;
1206
1207 error = security_syslog(type);
1208 if (error)
1209 return error;
1210
1211 switch (type) {
1212 case SYSLOG_ACTION_CLOSE: /* Close log */
1213 break;
1214 case SYSLOG_ACTION_OPEN: /* Open log */
1215 break;
1216 case SYSLOG_ACTION_READ: /* Read from log */
1217 error = -EINVAL;
1218 if (!buf || len < 0)
1219 goto out;
1220 error = 0;
1221 if (!len)
1222 goto out;
1223 if (!access_ok(VERIFY_WRITE, buf, len)) {
1224 error = -EFAULT;
1225 goto out;
1226 }
1227 error = wait_event_interruptible(log_wait,
1228 syslog_seq != log_next_seq);
1229 if (error)
1230 goto out;
1231 error = syslog_print(buf, len);
1232 break;
1233 /* Read/clear last kernel messages */
1234 case SYSLOG_ACTION_READ_CLEAR:
1235 clear = true;
1236 /* FALL THRU */
1237 /* Read last kernel messages */
1238 case SYSLOG_ACTION_READ_ALL:
1239 error = -EINVAL;
1240 if (!buf || len < 0)
1241 goto out;
1242 error = 0;
1243 if (!len)
1244 goto out;
1245 if (!access_ok(VERIFY_WRITE, buf, len)) {
1246 error = -EFAULT;
1247 goto out;
1248 }
1249 error = syslog_print_all(buf, len, clear);
1250 break;
1251 /* Clear ring buffer */
1252 case SYSLOG_ACTION_CLEAR:
1253 syslog_print_all(NULL, 0, true);
1254 break;
1255 /* Disable logging to console */
1256 case SYSLOG_ACTION_CONSOLE_OFF:
1257 if (saved_console_loglevel == -1)
1258 saved_console_loglevel = console_loglevel;
1259 console_loglevel = minimum_console_loglevel;
1260 break;
1261 /* Enable logging to console */
1262 case SYSLOG_ACTION_CONSOLE_ON:
1263 if (saved_console_loglevel != -1) {
1264 console_loglevel = saved_console_loglevel;
1265 saved_console_loglevel = -1;
1266 }
1267 break;
1268 /* Set level of messages printed to console */
1269 case SYSLOG_ACTION_CONSOLE_LEVEL:
1270 error = -EINVAL;
1271 if (len < 1 || len > 8)
1272 goto out;
1273 if (len < minimum_console_loglevel)
1274 len = minimum_console_loglevel;
1275 console_loglevel = len;
1276 /* Implicitly re-enable logging to console */
1277 saved_console_loglevel = -1;
1278 error = 0;
1279 break;
1280 /* Number of chars in the log buffer */
1281 case SYSLOG_ACTION_SIZE_UNREAD:
1282 raw_spin_lock_irq(&logbuf_lock);
1283 if (syslog_seq < log_first_seq) {
1284 /* messages are gone, move to first one */
1285 syslog_seq = log_first_seq;
1286 syslog_idx = log_first_idx;
1287 syslog_prev = 0;
1288 syslog_partial = 0;
1289 }
1290 if (from_file) {
1291 /*
1292 * Short-cut for poll(/"proc/kmsg") which simply checks
1293 * for pending data, not the size; return the count of
1294 * records, not the length.
1295 */
1296 error = log_next_idx - syslog_idx;
1297 } else {
1298 u64 seq = syslog_seq;
1299 u32 idx = syslog_idx;
1300 enum log_flags prev = syslog_prev;
1301
1302 error = 0;
1303 while (seq < log_next_seq) {
1304 struct printk_log *msg = log_from_idx(idx);
1305
1306 error += msg_print_text(msg, prev, true, NULL, 0);
1307 idx = log_next(idx);
1308 seq++;
1309 prev = msg->flags;
1310 }
1311 error -= syslog_partial;
1312 }
1313 raw_spin_unlock_irq(&logbuf_lock);
1314 break;
1315 /* Size of the log buffer */
1316 case SYSLOG_ACTION_SIZE_BUFFER:
1317 error = log_buf_len;
1318 break;
1319 default:
1320 error = -EINVAL;
1321 break;
1322 }
1323 out:
1324 return error;
1325 }
1326
1327 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1328 {
1329 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1330 }
1331
1332 /*
1333 * Call the console drivers, asking them to write out
1334 * log_buf[start] to log_buf[end - 1].
1335 * The console_lock must be held.
1336 */
1337 static void call_console_drivers(int level, const char *text, size_t len)
1338 {
1339 struct console *con;
1340
1341 trace_console(text, len);
1342
1343 if (level >= console_loglevel && !ignore_loglevel)
1344 return;
1345 if (!console_drivers)
1346 return;
1347
1348 for_each_console(con) {
1349 if (exclusive_console && con != exclusive_console)
1350 continue;
1351 if (!(con->flags & CON_ENABLED))
1352 continue;
1353 if (!con->write)
1354 continue;
1355 if (!cpu_online(smp_processor_id()) &&
1356 !(con->flags & CON_ANYTIME))
1357 continue;
1358 con->write(con, text, len);
1359 }
1360 }
1361
1362 /*
1363 * Zap console related locks when oopsing. Only zap at most once
1364 * every 10 seconds, to leave time for slow consoles to print a
1365 * full oops.
1366 */
1367 static void zap_locks(void)
1368 {
1369 static unsigned long oops_timestamp;
1370
1371 if (time_after_eq(jiffies, oops_timestamp) &&
1372 !time_after(jiffies, oops_timestamp + 30 * HZ))
1373 return;
1374
1375 oops_timestamp = jiffies;
1376
1377 debug_locks_off();
1378 /* If a crash is occurring, make sure we can't deadlock */
1379 raw_spin_lock_init(&logbuf_lock);
1380 /* And make sure that we print immediately */
1381 sema_init(&console_sem, 1);
1382 }
1383
1384 /* Check if we have any console registered that can be called early in boot. */
1385 static int have_callable_console(void)
1386 {
1387 struct console *con;
1388
1389 for_each_console(con)
1390 if (con->flags & CON_ANYTIME)
1391 return 1;
1392
1393 return 0;
1394 }
1395
1396 /*
1397 * Can we actually use the console at this time on this cpu?
1398 *
1399 * Console drivers may assume that per-cpu resources have
1400 * been allocated. So unless they're explicitly marked as
1401 * being able to cope (CON_ANYTIME) don't call them until
1402 * this CPU is officially up.
1403 */
1404 static inline int can_use_console(unsigned int cpu)
1405 {
1406 return cpu_online(cpu) || have_callable_console();
1407 }
1408
1409 /*
1410 * Try to get console ownership to actually show the kernel
1411 * messages from a 'printk'. Return true (and with the
1412 * console_lock held, and 'console_locked' set) if it
1413 * is successful, false otherwise.
1414 *
1415 * This gets called with the 'logbuf_lock' spinlock held and
1416 * interrupts disabled. It should return with 'lockbuf_lock'
1417 * released but interrupts still disabled.
1418 */
1419 static int console_trylock_for_printk(unsigned int cpu)
1420 __releases(&logbuf_lock)
1421 {
1422 int retval = 0, wake = 0;
1423
1424 if (console_trylock()) {
1425 retval = 1;
1426
1427 /*
1428 * If we can't use the console, we need to release
1429 * the console semaphore by hand to avoid flushing
1430 * the buffer. We need to hold the console semaphore
1431 * in order to do this test safely.
1432 */
1433 if (!can_use_console(cpu)) {
1434 console_locked = 0;
1435 wake = 1;
1436 retval = 0;
1437 }
1438 }
1439 logbuf_cpu = UINT_MAX;
1440 raw_spin_unlock(&logbuf_lock);
1441 if (wake)
1442 up(&console_sem);
1443 return retval;
1444 }
1445
1446 int printk_delay_msec __read_mostly;
1447
1448 static inline void printk_delay(void)
1449 {
1450 if (unlikely(printk_delay_msec)) {
1451 int m = printk_delay_msec;
1452
1453 while (m--) {
1454 mdelay(1);
1455 touch_nmi_watchdog();
1456 }
1457 }
1458 }
1459
1460 /*
1461 * Continuation lines are buffered, and not committed to the record buffer
1462 * until the line is complete, or a race forces it. The line fragments
1463 * though, are printed immediately to the consoles to ensure everything has
1464 * reached the console in case of a kernel crash.
1465 */
1466 static struct cont {
1467 char buf[LOG_LINE_MAX];
1468 size_t len; /* length == 0 means unused buffer */
1469 size_t cons; /* bytes written to console */
1470 struct task_struct *owner; /* task of first print*/
1471 u64 ts_nsec; /* time of first print */
1472 u8 level; /* log level of first message */
1473 u8 facility; /* log level of first message */
1474 enum log_flags flags; /* prefix, newline flags */
1475 bool flushed:1; /* buffer sealed and committed */
1476 } cont;
1477
1478 static void cont_flush(enum log_flags flags)
1479 {
1480 if (cont.flushed)
1481 return;
1482 if (cont.len == 0)
1483 return;
1484
1485 if (cont.cons) {
1486 /*
1487 * If a fragment of this line was directly flushed to the
1488 * console; wait for the console to pick up the rest of the
1489 * line. LOG_NOCONS suppresses a duplicated output.
1490 */
1491 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1492 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1493 cont.flags = flags;
1494 cont.flushed = true;
1495 } else {
1496 /*
1497 * If no fragment of this line ever reached the console,
1498 * just submit it to the store and free the buffer.
1499 */
1500 log_store(cont.facility, cont.level, flags, 0,
1501 NULL, 0, cont.buf, cont.len);
1502 cont.len = 0;
1503 }
1504 }
1505
1506 static bool cont_add(int facility, int level, const char *text, size_t len)
1507 {
1508 if (cont.len && cont.flushed)
1509 return false;
1510
1511 if (cont.len + len > sizeof(cont.buf)) {
1512 /* the line gets too long, split it up in separate records */
1513 cont_flush(LOG_CONT);
1514 return false;
1515 }
1516
1517 if (!cont.len) {
1518 cont.facility = facility;
1519 cont.level = level;
1520 cont.owner = current;
1521 cont.ts_nsec = local_clock();
1522 cont.flags = 0;
1523 cont.cons = 0;
1524 cont.flushed = false;
1525 }
1526
1527 memcpy(cont.buf + cont.len, text, len);
1528 cont.len += len;
1529
1530 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1531 cont_flush(LOG_CONT);
1532
1533 return true;
1534 }
1535
1536 static size_t cont_print_text(char *text, size_t size)
1537 {
1538 size_t textlen = 0;
1539 size_t len;
1540
1541 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1542 textlen += print_time(cont.ts_nsec, text);
1543 size -= textlen;
1544 }
1545
1546 len = cont.len - cont.cons;
1547 if (len > 0) {
1548 if (len+1 > size)
1549 len = size-1;
1550 memcpy(text + textlen, cont.buf + cont.cons, len);
1551 textlen += len;
1552 cont.cons = cont.len;
1553 }
1554
1555 if (cont.flushed) {
1556 if (cont.flags & LOG_NEWLINE)
1557 text[textlen++] = '\n';
1558 /* got everything, release buffer */
1559 cont.len = 0;
1560 }
1561 return textlen;
1562 }
1563
1564 asmlinkage int vprintk_emit(int facility, int level,
1565 const char *dict, size_t dictlen,
1566 const char *fmt, va_list args)
1567 {
1568 static int recursion_bug;
1569 static char textbuf[LOG_LINE_MAX];
1570 char *text = textbuf;
1571 size_t text_len;
1572 enum log_flags lflags = 0;
1573 unsigned long flags;
1574 int this_cpu;
1575 int printed_len = 0;
1576
1577 boot_delay_msec(level);
1578 printk_delay();
1579
1580 /* This stops the holder of console_sem just where we want him */
1581 local_irq_save(flags);
1582 this_cpu = smp_processor_id();
1583
1584 /*
1585 * Ouch, printk recursed into itself!
1586 */
1587 if (unlikely(logbuf_cpu == this_cpu)) {
1588 /*
1589 * If a crash is occurring during printk() on this CPU,
1590 * then try to get the crash message out but make sure
1591 * we can't deadlock. Otherwise just return to avoid the
1592 * recursion and return - but flag the recursion so that
1593 * it can be printed at the next appropriate moment:
1594 */
1595 if (!oops_in_progress && !lockdep_recursing(current)) {
1596 recursion_bug = 1;
1597 goto out_restore_irqs;
1598 }
1599 zap_locks();
1600 }
1601
1602 lockdep_off();
1603 raw_spin_lock(&logbuf_lock);
1604 logbuf_cpu = this_cpu;
1605
1606 if (recursion_bug) {
1607 static const char recursion_msg[] =
1608 "BUG: recent printk recursion!";
1609
1610 recursion_bug = 0;
1611 text_len = strlen(recursion_msg);
1612 /* emit KERN_CRIT message */
1613 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1614 NULL, 0, recursion_msg, text_len);
1615 }
1616
1617 /*
1618 * The printf needs to come first; we need the syslog
1619 * prefix which might be passed-in as a parameter.
1620 */
1621 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1622
1623 /* mark and strip a trailing newline */
1624 if (text_len && text[text_len-1] == '\n') {
1625 text_len--;
1626 lflags |= LOG_NEWLINE;
1627 }
1628
1629 /* strip kernel syslog prefix and extract log level or control flags */
1630 if (facility == 0) {
1631 int kern_level = printk_get_level(text);
1632
1633 if (kern_level) {
1634 const char *end_of_header = printk_skip_level(text);
1635 switch (kern_level) {
1636 case '0' ... '7':
1637 if (level == -1)
1638 level = kern_level - '0';
1639 case 'd': /* KERN_DEFAULT */
1640 lflags |= LOG_PREFIX;
1641 }
1642 /*
1643 * No need to check length here because vscnprintf
1644 * put '\0' at the end of the string. Only valid and
1645 * newly printed level is detected.
1646 */
1647 text_len -= end_of_header - text;
1648 text = (char *)end_of_header;
1649 }
1650 }
1651
1652 if (level == -1)
1653 level = default_message_loglevel;
1654
1655 if (dict)
1656 lflags |= LOG_PREFIX|LOG_NEWLINE;
1657
1658 if (!(lflags & LOG_NEWLINE)) {
1659 /*
1660 * Flush the conflicting buffer. An earlier newline was missing,
1661 * or another task also prints continuation lines.
1662 */
1663 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1664 cont_flush(LOG_NEWLINE);
1665
1666 /* buffer line if possible, otherwise store it right away */
1667 if (cont_add(facility, level, text, text_len))
1668 printed_len += text_len;
1669 else
1670 printed_len += log_store(facility, level,
1671 lflags | LOG_CONT, 0,
1672 dict, dictlen, text, text_len);
1673 } else {
1674 bool stored = false;
1675
1676 /*
1677 * If an earlier newline was missing and it was the same task,
1678 * either merge it with the current buffer and flush, or if
1679 * there was a race with interrupts (prefix == true) then just
1680 * flush it out and store this line separately.
1681 * If the preceding printk was from a different task and missed
1682 * a newline, flush and append the newline.
1683 */
1684 if (cont.len) {
1685 if (cont.owner == current && !(lflags & LOG_PREFIX))
1686 stored = cont_add(facility, level, text,
1687 text_len);
1688 cont_flush(LOG_NEWLINE);
1689 }
1690
1691 if (stored)
1692 printed_len += text_len;
1693 else
1694 printed_len += log_store(facility, level, lflags, 0,
1695 dict, dictlen, text, text_len);
1696 }
1697
1698 /*
1699 * Try to acquire and then immediately release the console semaphore.
1700 * The release will print out buffers and wake up /dev/kmsg and syslog()
1701 * users.
1702 *
1703 * The console_trylock_for_printk() function will release 'logbuf_lock'
1704 * regardless of whether it actually gets the console semaphore or not.
1705 */
1706 if (console_trylock_for_printk(this_cpu))
1707 console_unlock();
1708
1709 lockdep_on();
1710 out_restore_irqs:
1711 local_irq_restore(flags);
1712
1713 return printed_len;
1714 }
1715 EXPORT_SYMBOL(vprintk_emit);
1716
1717 asmlinkage int vprintk(const char *fmt, va_list args)
1718 {
1719 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1720 }
1721 EXPORT_SYMBOL(vprintk);
1722
1723 asmlinkage int printk_emit(int facility, int level,
1724 const char *dict, size_t dictlen,
1725 const char *fmt, ...)
1726 {
1727 va_list args;
1728 int r;
1729
1730 va_start(args, fmt);
1731 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1732 va_end(args);
1733
1734 return r;
1735 }
1736 EXPORT_SYMBOL(printk_emit);
1737
1738 /**
1739 * printk - print a kernel message
1740 * @fmt: format string
1741 *
1742 * This is printk(). It can be called from any context. We want it to work.
1743 *
1744 * We try to grab the console_lock. If we succeed, it's easy - we log the
1745 * output and call the console drivers. If we fail to get the semaphore, we
1746 * place the output into the log buffer and return. The current holder of
1747 * the console_sem will notice the new output in console_unlock(); and will
1748 * send it to the consoles before releasing the lock.
1749 *
1750 * One effect of this deferred printing is that code which calls printk() and
1751 * then changes console_loglevel may break. This is because console_loglevel
1752 * is inspected when the actual printing occurs.
1753 *
1754 * See also:
1755 * printf(3)
1756 *
1757 * See the vsnprintf() documentation for format string extensions over C99.
1758 */
1759 asmlinkage __visible int printk(const char *fmt, ...)
1760 {
1761 va_list args;
1762 int r;
1763
1764 #ifdef CONFIG_KGDB_KDB
1765 if (unlikely(kdb_trap_printk)) {
1766 va_start(args, fmt);
1767 r = vkdb_printf(fmt, args);
1768 va_end(args);
1769 return r;
1770 }
1771 #endif
1772 va_start(args, fmt);
1773 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1774 va_end(args);
1775
1776 return r;
1777 }
1778 EXPORT_SYMBOL(printk);
1779
1780 #else /* CONFIG_PRINTK */
1781
1782 #define LOG_LINE_MAX 0
1783 #define PREFIX_MAX 0
1784 #define LOG_LINE_MAX 0
1785 static u64 syslog_seq;
1786 static u32 syslog_idx;
1787 static u64 console_seq;
1788 static u32 console_idx;
1789 static enum log_flags syslog_prev;
1790 static u64 log_first_seq;
1791 static u32 log_first_idx;
1792 static u64 log_next_seq;
1793 static enum log_flags console_prev;
1794 static struct cont {
1795 size_t len;
1796 size_t cons;
1797 u8 level;
1798 bool flushed:1;
1799 } cont;
1800 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1801 static u32 log_next(u32 idx) { return 0; }
1802 static void call_console_drivers(int level, const char *text, size_t len) {}
1803 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1804 bool syslog, char *buf, size_t size) { return 0; }
1805 static size_t cont_print_text(char *text, size_t size) { return 0; }
1806
1807 #endif /* CONFIG_PRINTK */
1808
1809 #ifdef CONFIG_EARLY_PRINTK
1810 struct console *early_console;
1811
1812 void early_vprintk(const char *fmt, va_list ap)
1813 {
1814 if (early_console) {
1815 char buf[512];
1816 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1817
1818 early_console->write(early_console, buf, n);
1819 }
1820 }
1821
1822 asmlinkage __visible void early_printk(const char *fmt, ...)
1823 {
1824 va_list ap;
1825
1826 va_start(ap, fmt);
1827 early_vprintk(fmt, ap);
1828 va_end(ap);
1829 }
1830 #endif
1831
1832 static int __add_preferred_console(char *name, int idx, char *options,
1833 char *brl_options)
1834 {
1835 struct console_cmdline *c;
1836 int i;
1837
1838 /*
1839 * See if this tty is not yet registered, and
1840 * if we have a slot free.
1841 */
1842 for (i = 0, c = console_cmdline;
1843 i < MAX_CMDLINECONSOLES && c->name[0];
1844 i++, c++) {
1845 if (strcmp(c->name, name) == 0 && c->index == idx) {
1846 if (!brl_options)
1847 selected_console = i;
1848 return 0;
1849 }
1850 }
1851 if (i == MAX_CMDLINECONSOLES)
1852 return -E2BIG;
1853 if (!brl_options)
1854 selected_console = i;
1855 strlcpy(c->name, name, sizeof(c->name));
1856 c->options = options;
1857 braille_set_options(c, brl_options);
1858
1859 c->index = idx;
1860 return 0;
1861 }
1862 /*
1863 * Set up a list of consoles. Called from init/main.c
1864 */
1865 static int __init console_setup(char *str)
1866 {
1867 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1868 char *s, *options, *brl_options = NULL;
1869 int idx;
1870
1871 if (_braille_console_setup(&str, &brl_options))
1872 return 1;
1873
1874 /*
1875 * Decode str into name, index, options.
1876 */
1877 if (str[0] >= '0' && str[0] <= '9') {
1878 strcpy(buf, "ttyS");
1879 strncpy(buf + 4, str, sizeof(buf) - 5);
1880 } else {
1881 strncpy(buf, str, sizeof(buf) - 1);
1882 }
1883 buf[sizeof(buf) - 1] = 0;
1884 if ((options = strchr(str, ',')) != NULL)
1885 *(options++) = 0;
1886 #ifdef __sparc__
1887 if (!strcmp(str, "ttya"))
1888 strcpy(buf, "ttyS0");
1889 if (!strcmp(str, "ttyb"))
1890 strcpy(buf, "ttyS1");
1891 #endif
1892 for (s = buf; *s; s++)
1893 if ((*s >= '0' && *s <= '9') || *s == ',')
1894 break;
1895 idx = simple_strtoul(s, NULL, 10);
1896 *s = 0;
1897
1898 __add_preferred_console(buf, idx, options, brl_options);
1899 console_set_on_cmdline = 1;
1900 return 1;
1901 }
1902 __setup("console=", console_setup);
1903
1904 /**
1905 * add_preferred_console - add a device to the list of preferred consoles.
1906 * @name: device name
1907 * @idx: device index
1908 * @options: options for this console
1909 *
1910 * The last preferred console added will be used for kernel messages
1911 * and stdin/out/err for init. Normally this is used by console_setup
1912 * above to handle user-supplied console arguments; however it can also
1913 * be used by arch-specific code either to override the user or more
1914 * commonly to provide a default console (ie from PROM variables) when
1915 * the user has not supplied one.
1916 */
1917 int add_preferred_console(char *name, int idx, char *options)
1918 {
1919 return __add_preferred_console(name, idx, options, NULL);
1920 }
1921
1922 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1923 {
1924 struct console_cmdline *c;
1925 int i;
1926
1927 for (i = 0, c = console_cmdline;
1928 i < MAX_CMDLINECONSOLES && c->name[0];
1929 i++, c++)
1930 if (strcmp(c->name, name) == 0 && c->index == idx) {
1931 strlcpy(c->name, name_new, sizeof(c->name));
1932 c->name[sizeof(c->name) - 1] = 0;
1933 c->options = options;
1934 c->index = idx_new;
1935 return i;
1936 }
1937 /* not found */
1938 return -1;
1939 }
1940
1941 bool console_suspend_enabled = 1;
1942 EXPORT_SYMBOL(console_suspend_enabled);
1943
1944 static int __init console_suspend_disable(char *str)
1945 {
1946 console_suspend_enabled = 0;
1947 return 1;
1948 }
1949 __setup("no_console_suspend", console_suspend_disable);
1950 module_param_named(console_suspend, console_suspend_enabled,
1951 bool, S_IRUGO | S_IWUSR);
1952 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1953 " and hibernate operations");
1954
1955 /**
1956 * suspend_console - suspend the console subsystem
1957 *
1958 * This disables printk() while we go into suspend states
1959 */
1960 void suspend_console(void)
1961 {
1962 if (!console_suspend_enabled)
1963 return;
1964 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1965 console_lock();
1966 console_suspended = 1;
1967 up(&console_sem);
1968 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
1969 }
1970
1971 void resume_console(void)
1972 {
1973 if (!console_suspend_enabled)
1974 return;
1975 down(&console_sem);
1976 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1977 console_suspended = 0;
1978 console_unlock();
1979 }
1980
1981 /**
1982 * console_cpu_notify - print deferred console messages after CPU hotplug
1983 * @self: notifier struct
1984 * @action: CPU hotplug event
1985 * @hcpu: unused
1986 *
1987 * If printk() is called from a CPU that is not online yet, the messages
1988 * will be spooled but will not show up on the console. This function is
1989 * called when a new CPU comes online (or fails to come up), and ensures
1990 * that any such output gets printed.
1991 */
1992 static int console_cpu_notify(struct notifier_block *self,
1993 unsigned long action, void *hcpu)
1994 {
1995 switch (action) {
1996 case CPU_ONLINE:
1997 case CPU_DEAD:
1998 case CPU_DOWN_FAILED:
1999 case CPU_UP_CANCELED:
2000 console_lock();
2001 console_unlock();
2002 }
2003 return NOTIFY_OK;
2004 }
2005
2006 /**
2007 * console_lock - lock the console system for exclusive use.
2008 *
2009 * Acquires a lock which guarantees that the caller has
2010 * exclusive access to the console system and the console_drivers list.
2011 *
2012 * Can sleep, returns nothing.
2013 */
2014 void console_lock(void)
2015 {
2016 might_sleep();
2017
2018 down(&console_sem);
2019 if (console_suspended)
2020 return;
2021 console_locked = 1;
2022 console_may_schedule = 1;
2023 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
2024 }
2025 EXPORT_SYMBOL(console_lock);
2026
2027 /**
2028 * console_trylock - try to lock the console system for exclusive use.
2029 *
2030 * Tried to acquire a lock which guarantees that the caller has
2031 * exclusive access to the console system and the console_drivers list.
2032 *
2033 * returns 1 on success, and 0 on failure to acquire the lock.
2034 */
2035 int console_trylock(void)
2036 {
2037 if (down_trylock(&console_sem))
2038 return 0;
2039 if (console_suspended) {
2040 up(&console_sem);
2041 return 0;
2042 }
2043 console_locked = 1;
2044 console_may_schedule = 0;
2045 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
2046 return 1;
2047 }
2048 EXPORT_SYMBOL(console_trylock);
2049
2050 int is_console_locked(void)
2051 {
2052 return console_locked;
2053 }
2054
2055 static void console_cont_flush(char *text, size_t size)
2056 {
2057 unsigned long flags;
2058 size_t len;
2059
2060 raw_spin_lock_irqsave(&logbuf_lock, flags);
2061
2062 if (!cont.len)
2063 goto out;
2064
2065 /*
2066 * We still queue earlier records, likely because the console was
2067 * busy. The earlier ones need to be printed before this one, we
2068 * did not flush any fragment so far, so just let it queue up.
2069 */
2070 if (console_seq < log_next_seq && !cont.cons)
2071 goto out;
2072
2073 len = cont_print_text(text, size);
2074 raw_spin_unlock(&logbuf_lock);
2075 stop_critical_timings();
2076 call_console_drivers(cont.level, text, len);
2077 start_critical_timings();
2078 local_irq_restore(flags);
2079 return;
2080 out:
2081 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2082 }
2083
2084 /**
2085 * console_unlock - unlock the console system
2086 *
2087 * Releases the console_lock which the caller holds on the console system
2088 * and the console driver list.
2089 *
2090 * While the console_lock was held, console output may have been buffered
2091 * by printk(). If this is the case, console_unlock(); emits
2092 * the output prior to releasing the lock.
2093 *
2094 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2095 *
2096 * console_unlock(); may be called from any context.
2097 */
2098 void console_unlock(void)
2099 {
2100 static char text[LOG_LINE_MAX + PREFIX_MAX];
2101 static u64 seen_seq;
2102 unsigned long flags;
2103 bool wake_klogd = false;
2104 bool retry;
2105
2106 if (console_suspended) {
2107 up(&console_sem);
2108 return;
2109 }
2110
2111 console_may_schedule = 0;
2112
2113 /* flush buffered message fragment immediately to console */
2114 console_cont_flush(text, sizeof(text));
2115 again:
2116 for (;;) {
2117 struct printk_log *msg;
2118 size_t len;
2119 int level;
2120
2121 raw_spin_lock_irqsave(&logbuf_lock, flags);
2122 if (seen_seq != log_next_seq) {
2123 wake_klogd = true;
2124 seen_seq = log_next_seq;
2125 }
2126
2127 if (console_seq < log_first_seq) {
2128 /* messages are gone, move to first one */
2129 console_seq = log_first_seq;
2130 console_idx = log_first_idx;
2131 console_prev = 0;
2132 }
2133 skip:
2134 if (console_seq == log_next_seq)
2135 break;
2136
2137 msg = log_from_idx(console_idx);
2138 if (msg->flags & LOG_NOCONS) {
2139 /*
2140 * Skip record we have buffered and already printed
2141 * directly to the console when we received it.
2142 */
2143 console_idx = log_next(console_idx);
2144 console_seq++;
2145 /*
2146 * We will get here again when we register a new
2147 * CON_PRINTBUFFER console. Clear the flag so we
2148 * will properly dump everything later.
2149 */
2150 msg->flags &= ~LOG_NOCONS;
2151 console_prev = msg->flags;
2152 goto skip;
2153 }
2154
2155 level = msg->level;
2156 len = msg_print_text(msg, console_prev, false,
2157 text, sizeof(text));
2158 console_idx = log_next(console_idx);
2159 console_seq++;
2160 console_prev = msg->flags;
2161 raw_spin_unlock(&logbuf_lock);
2162
2163 stop_critical_timings(); /* don't trace print latency */
2164 call_console_drivers(level, text, len);
2165 start_critical_timings();
2166 local_irq_restore(flags);
2167 }
2168 console_locked = 0;
2169 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2170
2171 /* Release the exclusive_console once it is used */
2172 if (unlikely(exclusive_console))
2173 exclusive_console = NULL;
2174
2175 raw_spin_unlock(&logbuf_lock);
2176
2177 up(&console_sem);
2178
2179 /*
2180 * Someone could have filled up the buffer again, so re-check if there's
2181 * something to flush. In case we cannot trylock the console_sem again,
2182 * there's a new owner and the console_unlock() from them will do the
2183 * flush, no worries.
2184 */
2185 raw_spin_lock(&logbuf_lock);
2186 retry = console_seq != log_next_seq;
2187 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2188
2189 if (retry && console_trylock())
2190 goto again;
2191
2192 if (wake_klogd)
2193 wake_up_klogd();
2194 }
2195 EXPORT_SYMBOL(console_unlock);
2196
2197 /**
2198 * console_conditional_schedule - yield the CPU if required
2199 *
2200 * If the console code is currently allowed to sleep, and
2201 * if this CPU should yield the CPU to another task, do
2202 * so here.
2203 *
2204 * Must be called within console_lock();.
2205 */
2206 void __sched console_conditional_schedule(void)
2207 {
2208 if (console_may_schedule)
2209 cond_resched();
2210 }
2211 EXPORT_SYMBOL(console_conditional_schedule);
2212
2213 void console_unblank(void)
2214 {
2215 struct console *c;
2216
2217 /*
2218 * console_unblank can no longer be called in interrupt context unless
2219 * oops_in_progress is set to 1..
2220 */
2221 if (oops_in_progress) {
2222 if (down_trylock(&console_sem) != 0)
2223 return;
2224 } else
2225 console_lock();
2226
2227 console_locked = 1;
2228 console_may_schedule = 0;
2229 for_each_console(c)
2230 if ((c->flags & CON_ENABLED) && c->unblank)
2231 c->unblank();
2232 console_unlock();
2233 }
2234
2235 /*
2236 * Return the console tty driver structure and its associated index
2237 */
2238 struct tty_driver *console_device(int *index)
2239 {
2240 struct console *c;
2241 struct tty_driver *driver = NULL;
2242
2243 console_lock();
2244 for_each_console(c) {
2245 if (!c->device)
2246 continue;
2247 driver = c->device(c, index);
2248 if (driver)
2249 break;
2250 }
2251 console_unlock();
2252 return driver;
2253 }
2254
2255 /*
2256 * Prevent further output on the passed console device so that (for example)
2257 * serial drivers can disable console output before suspending a port, and can
2258 * re-enable output afterwards.
2259 */
2260 void console_stop(struct console *console)
2261 {
2262 console_lock();
2263 console->flags &= ~CON_ENABLED;
2264 console_unlock();
2265 }
2266 EXPORT_SYMBOL(console_stop);
2267
2268 void console_start(struct console *console)
2269 {
2270 console_lock();
2271 console->flags |= CON_ENABLED;
2272 console_unlock();
2273 }
2274 EXPORT_SYMBOL(console_start);
2275
2276 static int __read_mostly keep_bootcon;
2277
2278 static int __init keep_bootcon_setup(char *str)
2279 {
2280 keep_bootcon = 1;
2281 pr_info("debug: skip boot console de-registration.\n");
2282
2283 return 0;
2284 }
2285
2286 early_param("keep_bootcon", keep_bootcon_setup);
2287
2288 /*
2289 * The console driver calls this routine during kernel initialization
2290 * to register the console printing procedure with printk() and to
2291 * print any messages that were printed by the kernel before the
2292 * console driver was initialized.
2293 *
2294 * This can happen pretty early during the boot process (because of
2295 * early_printk) - sometimes before setup_arch() completes - be careful
2296 * of what kernel features are used - they may not be initialised yet.
2297 *
2298 * There are two types of consoles - bootconsoles (early_printk) and
2299 * "real" consoles (everything which is not a bootconsole) which are
2300 * handled differently.
2301 * - Any number of bootconsoles can be registered at any time.
2302 * - As soon as a "real" console is registered, all bootconsoles
2303 * will be unregistered automatically.
2304 * - Once a "real" console is registered, any attempt to register a
2305 * bootconsoles will be rejected
2306 */
2307 void register_console(struct console *newcon)
2308 {
2309 int i;
2310 unsigned long flags;
2311 struct console *bcon = NULL;
2312 struct console_cmdline *c;
2313
2314 if (console_drivers)
2315 for_each_console(bcon)
2316 if (WARN(bcon == newcon,
2317 "console '%s%d' already registered\n",
2318 bcon->name, bcon->index))
2319 return;
2320
2321 /*
2322 * before we register a new CON_BOOT console, make sure we don't
2323 * already have a valid console
2324 */
2325 if (console_drivers && newcon->flags & CON_BOOT) {
2326 /* find the last or real console */
2327 for_each_console(bcon) {
2328 if (!(bcon->flags & CON_BOOT)) {
2329 pr_info("Too late to register bootconsole %s%d\n",
2330 newcon->name, newcon->index);
2331 return;
2332 }
2333 }
2334 }
2335
2336 if (console_drivers && console_drivers->flags & CON_BOOT)
2337 bcon = console_drivers;
2338
2339 if (preferred_console < 0 || bcon || !console_drivers)
2340 preferred_console = selected_console;
2341
2342 if (newcon->early_setup)
2343 newcon->early_setup();
2344
2345 /*
2346 * See if we want to use this console driver. If we
2347 * didn't select a console we take the first one
2348 * that registers here.
2349 */
2350 if (preferred_console < 0) {
2351 if (newcon->index < 0)
2352 newcon->index = 0;
2353 if (newcon->setup == NULL ||
2354 newcon->setup(newcon, NULL) == 0) {
2355 newcon->flags |= CON_ENABLED;
2356 if (newcon->device) {
2357 newcon->flags |= CON_CONSDEV;
2358 preferred_console = 0;
2359 }
2360 }
2361 }
2362
2363 /*
2364 * See if this console matches one we selected on
2365 * the command line.
2366 */
2367 for (i = 0, c = console_cmdline;
2368 i < MAX_CMDLINECONSOLES && c->name[0];
2369 i++, c++) {
2370 if (strcmp(c->name, newcon->name) != 0)
2371 continue;
2372 if (newcon->index >= 0 &&
2373 newcon->index != c->index)
2374 continue;
2375 if (newcon->index < 0)
2376 newcon->index = c->index;
2377
2378 if (_braille_register_console(newcon, c))
2379 return;
2380
2381 if (newcon->setup &&
2382 newcon->setup(newcon, console_cmdline[i].options) != 0)
2383 break;
2384 newcon->flags |= CON_ENABLED;
2385 newcon->index = c->index;
2386 if (i == selected_console) {
2387 newcon->flags |= CON_CONSDEV;
2388 preferred_console = selected_console;
2389 }
2390 break;
2391 }
2392
2393 if (!(newcon->flags & CON_ENABLED))
2394 return;
2395
2396 /*
2397 * If we have a bootconsole, and are switching to a real console,
2398 * don't print everything out again, since when the boot console, and
2399 * the real console are the same physical device, it's annoying to
2400 * see the beginning boot messages twice
2401 */
2402 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2403 newcon->flags &= ~CON_PRINTBUFFER;
2404
2405 /*
2406 * Put this console in the list - keep the
2407 * preferred driver at the head of the list.
2408 */
2409 console_lock();
2410 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2411 newcon->next = console_drivers;
2412 console_drivers = newcon;
2413 if (newcon->next)
2414 newcon->next->flags &= ~CON_CONSDEV;
2415 } else {
2416 newcon->next = console_drivers->next;
2417 console_drivers->next = newcon;
2418 }
2419 if (newcon->flags & CON_PRINTBUFFER) {
2420 /*
2421 * console_unlock(); will print out the buffered messages
2422 * for us.
2423 */
2424 raw_spin_lock_irqsave(&logbuf_lock, flags);
2425 console_seq = syslog_seq;
2426 console_idx = syslog_idx;
2427 console_prev = syslog_prev;
2428 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2429 /*
2430 * We're about to replay the log buffer. Only do this to the
2431 * just-registered console to avoid excessive message spam to
2432 * the already-registered consoles.
2433 */
2434 exclusive_console = newcon;
2435 }
2436 console_unlock();
2437 console_sysfs_notify();
2438
2439 /*
2440 * By unregistering the bootconsoles after we enable the real console
2441 * we get the "console xxx enabled" message on all the consoles -
2442 * boot consoles, real consoles, etc - this is to ensure that end
2443 * users know there might be something in the kernel's log buffer that
2444 * went to the bootconsole (that they do not see on the real console)
2445 */
2446 pr_info("%sconsole [%s%d] enabled\n",
2447 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2448 newcon->name, newcon->index);
2449 if (bcon &&
2450 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2451 !keep_bootcon) {
2452 /* We need to iterate through all boot consoles, to make
2453 * sure we print everything out, before we unregister them.
2454 */
2455 for_each_console(bcon)
2456 if (bcon->flags & CON_BOOT)
2457 unregister_console(bcon);
2458 }
2459 }
2460 EXPORT_SYMBOL(register_console);
2461
2462 int unregister_console(struct console *console)
2463 {
2464 struct console *a, *b;
2465 int res;
2466
2467 pr_info("%sconsole [%s%d] disabled\n",
2468 (console->flags & CON_BOOT) ? "boot" : "" ,
2469 console->name, console->index);
2470
2471 res = _braille_unregister_console(console);
2472 if (res)
2473 return res;
2474
2475 res = 1;
2476 console_lock();
2477 if (console_drivers == console) {
2478 console_drivers=console->next;
2479 res = 0;
2480 } else if (console_drivers) {
2481 for (a=console_drivers->next, b=console_drivers ;
2482 a; b=a, a=b->next) {
2483 if (a == console) {
2484 b->next = a->next;
2485 res = 0;
2486 break;
2487 }
2488 }
2489 }
2490
2491 /*
2492 * If this isn't the last console and it has CON_CONSDEV set, we
2493 * need to set it on the next preferred console.
2494 */
2495 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2496 console_drivers->flags |= CON_CONSDEV;
2497
2498 console->flags &= ~CON_ENABLED;
2499 console_unlock();
2500 console_sysfs_notify();
2501 return res;
2502 }
2503 EXPORT_SYMBOL(unregister_console);
2504
2505 static int __init printk_late_init(void)
2506 {
2507 struct console *con;
2508
2509 for_each_console(con) {
2510 if (!keep_bootcon && con->flags & CON_BOOT) {
2511 unregister_console(con);
2512 }
2513 }
2514 hotcpu_notifier(console_cpu_notify, 0);
2515 return 0;
2516 }
2517 late_initcall(printk_late_init);
2518
2519 #if defined CONFIG_PRINTK
2520 /*
2521 * Delayed printk version, for scheduler-internal messages:
2522 */
2523 #define PRINTK_BUF_SIZE 512
2524
2525 #define PRINTK_PENDING_WAKEUP 0x01
2526 #define PRINTK_PENDING_SCHED 0x02
2527
2528 static DEFINE_PER_CPU(int, printk_pending);
2529 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2530
2531 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2532 {
2533 int pending = __this_cpu_xchg(printk_pending, 0);
2534
2535 if (pending & PRINTK_PENDING_SCHED) {
2536 char *buf = __get_cpu_var(printk_sched_buf);
2537 pr_warn("[sched_delayed] %s", buf);
2538 }
2539
2540 if (pending & PRINTK_PENDING_WAKEUP)
2541 wake_up_interruptible(&log_wait);
2542 }
2543
2544 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2545 .func = wake_up_klogd_work_func,
2546 .flags = IRQ_WORK_LAZY,
2547 };
2548
2549 void wake_up_klogd(void)
2550 {
2551 preempt_disable();
2552 if (waitqueue_active(&log_wait)) {
2553 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2554 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2555 }
2556 preempt_enable();
2557 }
2558
2559 int printk_sched(const char *fmt, ...)
2560 {
2561 unsigned long flags;
2562 va_list args;
2563 char *buf;
2564 int r;
2565
2566 local_irq_save(flags);
2567 buf = __get_cpu_var(printk_sched_buf);
2568
2569 va_start(args, fmt);
2570 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2571 va_end(args);
2572
2573 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2574 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2575 local_irq_restore(flags);
2576
2577 return r;
2578 }
2579
2580 /*
2581 * printk rate limiting, lifted from the networking subsystem.
2582 *
2583 * This enforces a rate limit: not more than 10 kernel messages
2584 * every 5s to make a denial-of-service attack impossible.
2585 */
2586 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2587
2588 int __printk_ratelimit(const char *func)
2589 {
2590 return ___ratelimit(&printk_ratelimit_state, func);
2591 }
2592 EXPORT_SYMBOL(__printk_ratelimit);
2593
2594 /**
2595 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2596 * @caller_jiffies: pointer to caller's state
2597 * @interval_msecs: minimum interval between prints
2598 *
2599 * printk_timed_ratelimit() returns true if more than @interval_msecs
2600 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2601 * returned true.
2602 */
2603 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2604 unsigned int interval_msecs)
2605 {
2606 if (*caller_jiffies == 0
2607 || !time_in_range(jiffies, *caller_jiffies,
2608 *caller_jiffies
2609 + msecs_to_jiffies(interval_msecs))) {
2610 *caller_jiffies = jiffies;
2611 return true;
2612 }
2613 return false;
2614 }
2615 EXPORT_SYMBOL(printk_timed_ratelimit);
2616
2617 static DEFINE_SPINLOCK(dump_list_lock);
2618 static LIST_HEAD(dump_list);
2619
2620 /**
2621 * kmsg_dump_register - register a kernel log dumper.
2622 * @dumper: pointer to the kmsg_dumper structure
2623 *
2624 * Adds a kernel log dumper to the system. The dump callback in the
2625 * structure will be called when the kernel oopses or panics and must be
2626 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2627 */
2628 int kmsg_dump_register(struct kmsg_dumper *dumper)
2629 {
2630 unsigned long flags;
2631 int err = -EBUSY;
2632
2633 /* The dump callback needs to be set */
2634 if (!dumper->dump)
2635 return -EINVAL;
2636
2637 spin_lock_irqsave(&dump_list_lock, flags);
2638 /* Don't allow registering multiple times */
2639 if (!dumper->registered) {
2640 dumper->registered = 1;
2641 list_add_tail_rcu(&dumper->list, &dump_list);
2642 err = 0;
2643 }
2644 spin_unlock_irqrestore(&dump_list_lock, flags);
2645
2646 return err;
2647 }
2648 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2649
2650 /**
2651 * kmsg_dump_unregister - unregister a kmsg dumper.
2652 * @dumper: pointer to the kmsg_dumper structure
2653 *
2654 * Removes a dump device from the system. Returns zero on success and
2655 * %-EINVAL otherwise.
2656 */
2657 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2658 {
2659 unsigned long flags;
2660 int err = -EINVAL;
2661
2662 spin_lock_irqsave(&dump_list_lock, flags);
2663 if (dumper->registered) {
2664 dumper->registered = 0;
2665 list_del_rcu(&dumper->list);
2666 err = 0;
2667 }
2668 spin_unlock_irqrestore(&dump_list_lock, flags);
2669 synchronize_rcu();
2670
2671 return err;
2672 }
2673 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2674
2675 static bool always_kmsg_dump;
2676 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2677
2678 /**
2679 * kmsg_dump - dump kernel log to kernel message dumpers.
2680 * @reason: the reason (oops, panic etc) for dumping
2681 *
2682 * Call each of the registered dumper's dump() callback, which can
2683 * retrieve the kmsg records with kmsg_dump_get_line() or
2684 * kmsg_dump_get_buffer().
2685 */
2686 void kmsg_dump(enum kmsg_dump_reason reason)
2687 {
2688 struct kmsg_dumper *dumper;
2689 unsigned long flags;
2690
2691 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2692 return;
2693
2694 rcu_read_lock();
2695 list_for_each_entry_rcu(dumper, &dump_list, list) {
2696 if (dumper->max_reason && reason > dumper->max_reason)
2697 continue;
2698
2699 /* initialize iterator with data about the stored records */
2700 dumper->active = true;
2701
2702 raw_spin_lock_irqsave(&logbuf_lock, flags);
2703 dumper->cur_seq = clear_seq;
2704 dumper->cur_idx = clear_idx;
2705 dumper->next_seq = log_next_seq;
2706 dumper->next_idx = log_next_idx;
2707 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2708
2709 /* invoke dumper which will iterate over records */
2710 dumper->dump(dumper, reason);
2711
2712 /* reset iterator */
2713 dumper->active = false;
2714 }
2715 rcu_read_unlock();
2716 }
2717
2718 /**
2719 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2720 * @dumper: registered kmsg dumper
2721 * @syslog: include the "<4>" prefixes
2722 * @line: buffer to copy the line to
2723 * @size: maximum size of the buffer
2724 * @len: length of line placed into buffer
2725 *
2726 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2727 * record, and copy one record into the provided buffer.
2728 *
2729 * Consecutive calls will return the next available record moving
2730 * towards the end of the buffer with the youngest messages.
2731 *
2732 * A return value of FALSE indicates that there are no more records to
2733 * read.
2734 *
2735 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2736 */
2737 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2738 char *line, size_t size, size_t *len)
2739 {
2740 struct printk_log *msg;
2741 size_t l = 0;
2742 bool ret = false;
2743
2744 if (!dumper->active)
2745 goto out;
2746
2747 if (dumper->cur_seq < log_first_seq) {
2748 /* messages are gone, move to first available one */
2749 dumper->cur_seq = log_first_seq;
2750 dumper->cur_idx = log_first_idx;
2751 }
2752
2753 /* last entry */
2754 if (dumper->cur_seq >= log_next_seq)
2755 goto out;
2756
2757 msg = log_from_idx(dumper->cur_idx);
2758 l = msg_print_text(msg, 0, syslog, line, size);
2759
2760 dumper->cur_idx = log_next(dumper->cur_idx);
2761 dumper->cur_seq++;
2762 ret = true;
2763 out:
2764 if (len)
2765 *len = l;
2766 return ret;
2767 }
2768
2769 /**
2770 * kmsg_dump_get_line - retrieve one kmsg log line
2771 * @dumper: registered kmsg dumper
2772 * @syslog: include the "<4>" prefixes
2773 * @line: buffer to copy the line to
2774 * @size: maximum size of the buffer
2775 * @len: length of line placed into buffer
2776 *
2777 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2778 * record, and copy one record into the provided buffer.
2779 *
2780 * Consecutive calls will return the next available record moving
2781 * towards the end of the buffer with the youngest messages.
2782 *
2783 * A return value of FALSE indicates that there are no more records to
2784 * read.
2785 */
2786 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2787 char *line, size_t size, size_t *len)
2788 {
2789 unsigned long flags;
2790 bool ret;
2791
2792 raw_spin_lock_irqsave(&logbuf_lock, flags);
2793 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2794 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2795
2796 return ret;
2797 }
2798 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2799
2800 /**
2801 * kmsg_dump_get_buffer - copy kmsg log lines
2802 * @dumper: registered kmsg dumper
2803 * @syslog: include the "<4>" prefixes
2804 * @buf: buffer to copy the line to
2805 * @size: maximum size of the buffer
2806 * @len: length of line placed into buffer
2807 *
2808 * Start at the end of the kmsg buffer and fill the provided buffer
2809 * with as many of the the *youngest* kmsg records that fit into it.
2810 * If the buffer is large enough, all available kmsg records will be
2811 * copied with a single call.
2812 *
2813 * Consecutive calls will fill the buffer with the next block of
2814 * available older records, not including the earlier retrieved ones.
2815 *
2816 * A return value of FALSE indicates that there are no more records to
2817 * read.
2818 */
2819 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2820 char *buf, size_t size, size_t *len)
2821 {
2822 unsigned long flags;
2823 u64 seq;
2824 u32 idx;
2825 u64 next_seq;
2826 u32 next_idx;
2827 enum log_flags prev;
2828 size_t l = 0;
2829 bool ret = false;
2830
2831 if (!dumper->active)
2832 goto out;
2833
2834 raw_spin_lock_irqsave(&logbuf_lock, flags);
2835 if (dumper->cur_seq < log_first_seq) {
2836 /* messages are gone, move to first available one */
2837 dumper->cur_seq = log_first_seq;
2838 dumper->cur_idx = log_first_idx;
2839 }
2840
2841 /* last entry */
2842 if (dumper->cur_seq >= dumper->next_seq) {
2843 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2844 goto out;
2845 }
2846
2847 /* calculate length of entire buffer */
2848 seq = dumper->cur_seq;
2849 idx = dumper->cur_idx;
2850 prev = 0;
2851 while (seq < dumper->next_seq) {
2852 struct printk_log *msg = log_from_idx(idx);
2853
2854 l += msg_print_text(msg, prev, true, NULL, 0);
2855 idx = log_next(idx);
2856 seq++;
2857 prev = msg->flags;
2858 }
2859
2860 /* move first record forward until length fits into the buffer */
2861 seq = dumper->cur_seq;
2862 idx = dumper->cur_idx;
2863 prev = 0;
2864 while (l > size && seq < dumper->next_seq) {
2865 struct printk_log *msg = log_from_idx(idx);
2866
2867 l -= msg_print_text(msg, prev, true, NULL, 0);
2868 idx = log_next(idx);
2869 seq++;
2870 prev = msg->flags;
2871 }
2872
2873 /* last message in next interation */
2874 next_seq = seq;
2875 next_idx = idx;
2876
2877 l = 0;
2878 while (seq < dumper->next_seq) {
2879 struct printk_log *msg = log_from_idx(idx);
2880
2881 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2882 idx = log_next(idx);
2883 seq++;
2884 prev = msg->flags;
2885 }
2886
2887 dumper->next_seq = next_seq;
2888 dumper->next_idx = next_idx;
2889 ret = true;
2890 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2891 out:
2892 if (len)
2893 *len = l;
2894 return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2897
2898 /**
2899 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2900 * @dumper: registered kmsg dumper
2901 *
2902 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2903 * kmsg_dump_get_buffer() can be called again and used multiple
2904 * times within the same dumper.dump() callback.
2905 *
2906 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2907 */
2908 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2909 {
2910 dumper->cur_seq = clear_seq;
2911 dumper->cur_idx = clear_idx;
2912 dumper->next_seq = log_next_seq;
2913 dumper->next_idx = log_next_idx;
2914 }
2915
2916 /**
2917 * kmsg_dump_rewind - reset the interator
2918 * @dumper: registered kmsg dumper
2919 *
2920 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2921 * kmsg_dump_get_buffer() can be called again and used multiple
2922 * times within the same dumper.dump() callback.
2923 */
2924 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2925 {
2926 unsigned long flags;
2927
2928 raw_spin_lock_irqsave(&logbuf_lock, flags);
2929 kmsg_dump_rewind_nolock(dumper);
2930 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2931 }
2932 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2933
2934 static char dump_stack_arch_desc_str[128];
2935
2936 /**
2937 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2938 * @fmt: printf-style format string
2939 * @...: arguments for the format string
2940 *
2941 * The configured string will be printed right after utsname during task
2942 * dumps. Usually used to add arch-specific system identifiers. If an
2943 * arch wants to make use of such an ID string, it should initialize this
2944 * as soon as possible during boot.
2945 */
2946 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2947 {
2948 va_list args;
2949
2950 va_start(args, fmt);
2951 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2952 fmt, args);
2953 va_end(args);
2954 }
2955
2956 /**
2957 * dump_stack_print_info - print generic debug info for dump_stack()
2958 * @log_lvl: log level
2959 *
2960 * Arch-specific dump_stack() implementations can use this function to
2961 * print out the same debug information as the generic dump_stack().
2962 */
2963 void dump_stack_print_info(const char *log_lvl)
2964 {
2965 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2966 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2967 print_tainted(), init_utsname()->release,
2968 (int)strcspn(init_utsname()->version, " "),
2969 init_utsname()->version);
2970
2971 if (dump_stack_arch_desc_str[0] != '\0')
2972 printk("%sHardware name: %s\n",
2973 log_lvl, dump_stack_arch_desc_str);
2974
2975 print_worker_info(log_lvl, current);
2976 }
2977
2978 /**
2979 * show_regs_print_info - print generic debug info for show_regs()
2980 * @log_lvl: log level
2981 *
2982 * show_regs() implementations can use this function to print out generic
2983 * debug information.
2984 */
2985 void show_regs_print_info(const char *log_lvl)
2986 {
2987 dump_stack_print_info(log_lvl);
2988
2989 printk("%stask: %p ti: %p task.ti: %p\n",
2990 log_lvl, current, current_thread_info(),
2991 task_thread_info(current));
2992 }
2993
2994 #endif
This page took 0.098758 seconds and 5 git commands to generate.