printk: when dumping regs, show the stack, not thread_info
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55
56 #include "console_cmdline.h"
57 #include "braille.h"
58 #include "internal.h"
59
60 int console_printk[4] = {
61 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
62 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
63 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
64 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
65 };
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 /*
90 * Number of registered extended console drivers.
91 *
92 * If extended consoles are present, in-kernel cont reassembly is disabled
93 * and each fragment is stored as a separate log entry with proper
94 * continuation flag so that every emitted message has full metadata. This
95 * doesn't change the result for regular consoles or /proc/kmsg. For
96 * /dev/kmsg, as long as the reader concatenates messages according to
97 * consecutive continuation flags, the end result should be the same too.
98 */
99 static int nr_ext_console_drivers;
100
101 /*
102 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
103 * macros instead of functions so that _RET_IP_ contains useful information.
104 */
105 #define down_console_sem() do { \
106 down(&console_sem);\
107 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
108 } while (0)
109
110 static int __down_trylock_console_sem(unsigned long ip)
111 {
112 if (down_trylock(&console_sem))
113 return 1;
114 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
115 return 0;
116 }
117 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
118
119 #define up_console_sem() do { \
120 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
121 up(&console_sem);\
122 } while (0)
123
124 /*
125 * This is used for debugging the mess that is the VT code by
126 * keeping track if we have the console semaphore held. It's
127 * definitely not the perfect debug tool (we don't know if _WE_
128 * hold it and are racing, but it helps tracking those weird code
129 * paths in the console code where we end up in places I want
130 * locked without the console sempahore held).
131 */
132 static int console_locked, console_suspended;
133
134 /*
135 * If exclusive_console is non-NULL then only this console is to be printed to.
136 */
137 static struct console *exclusive_console;
138
139 /*
140 * Array of consoles built from command line options (console=)
141 */
142
143 #define MAX_CMDLINECONSOLES 8
144
145 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
146
147 static int selected_console = -1;
148 static int preferred_console = -1;
149 int console_set_on_cmdline;
150 EXPORT_SYMBOL(console_set_on_cmdline);
151
152 /* Flag: console code may call schedule() */
153 static int console_may_schedule;
154
155 /*
156 * The printk log buffer consists of a chain of concatenated variable
157 * length records. Every record starts with a record header, containing
158 * the overall length of the record.
159 *
160 * The heads to the first and last entry in the buffer, as well as the
161 * sequence numbers of these entries are maintained when messages are
162 * stored.
163 *
164 * If the heads indicate available messages, the length in the header
165 * tells the start next message. A length == 0 for the next message
166 * indicates a wrap-around to the beginning of the buffer.
167 *
168 * Every record carries the monotonic timestamp in microseconds, as well as
169 * the standard userspace syslog level and syslog facility. The usual
170 * kernel messages use LOG_KERN; userspace-injected messages always carry
171 * a matching syslog facility, by default LOG_USER. The origin of every
172 * message can be reliably determined that way.
173 *
174 * The human readable log message directly follows the message header. The
175 * length of the message text is stored in the header, the stored message
176 * is not terminated.
177 *
178 * Optionally, a message can carry a dictionary of properties (key/value pairs),
179 * to provide userspace with a machine-readable message context.
180 *
181 * Examples for well-defined, commonly used property names are:
182 * DEVICE=b12:8 device identifier
183 * b12:8 block dev_t
184 * c127:3 char dev_t
185 * n8 netdev ifindex
186 * +sound:card0 subsystem:devname
187 * SUBSYSTEM=pci driver-core subsystem name
188 *
189 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
190 * follows directly after a '=' character. Every property is terminated by
191 * a '\0' character. The last property is not terminated.
192 *
193 * Example of a message structure:
194 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
195 * 0008 34 00 record is 52 bytes long
196 * 000a 0b 00 text is 11 bytes long
197 * 000c 1f 00 dictionary is 23 bytes long
198 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
199 * 0010 69 74 27 73 20 61 20 6c "it's a l"
200 * 69 6e 65 "ine"
201 * 001b 44 45 56 49 43 "DEVIC"
202 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
203 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
204 * 67 "g"
205 * 0032 00 00 00 padding to next message header
206 *
207 * The 'struct printk_log' buffer header must never be directly exported to
208 * userspace, it is a kernel-private implementation detail that might
209 * need to be changed in the future, when the requirements change.
210 *
211 * /dev/kmsg exports the structured data in the following line format:
212 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
213 *
214 * Users of the export format should ignore possible additional values
215 * separated by ',', and find the message after the ';' character.
216 *
217 * The optional key/value pairs are attached as continuation lines starting
218 * with a space character and terminated by a newline. All possible
219 * non-prinatable characters are escaped in the "\xff" notation.
220 */
221
222 enum log_flags {
223 LOG_NOCONS = 1, /* already flushed, do not print to console */
224 LOG_NEWLINE = 2, /* text ended with a newline */
225 LOG_PREFIX = 4, /* text started with a prefix */
226 LOG_CONT = 8, /* text is a fragment of a continuation line */
227 };
228
229 struct printk_log {
230 u64 ts_nsec; /* timestamp in nanoseconds */
231 u16 len; /* length of entire record */
232 u16 text_len; /* length of text buffer */
233 u16 dict_len; /* length of dictionary buffer */
234 u8 facility; /* syslog facility */
235 u8 flags:5; /* internal record flags */
236 u8 level:3; /* syslog level */
237 }
238 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
239 __packed __aligned(4)
240 #endif
241 ;
242
243 /*
244 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
245 * within the scheduler's rq lock. It must be released before calling
246 * console_unlock() or anything else that might wake up a process.
247 */
248 DEFINE_RAW_SPINLOCK(logbuf_lock);
249
250 #ifdef CONFIG_PRINTK
251 DECLARE_WAIT_QUEUE_HEAD(log_wait);
252 /* the next printk record to read by syslog(READ) or /proc/kmsg */
253 static u64 syslog_seq;
254 static u32 syslog_idx;
255 static enum log_flags syslog_prev;
256 static size_t syslog_partial;
257
258 /* index and sequence number of the first record stored in the buffer */
259 static u64 log_first_seq;
260 static u32 log_first_idx;
261
262 /* index and sequence number of the next record to store in the buffer */
263 static u64 log_next_seq;
264 static u32 log_next_idx;
265
266 /* the next printk record to write to the console */
267 static u64 console_seq;
268 static u32 console_idx;
269 static enum log_flags console_prev;
270
271 /* the next printk record to read after the last 'clear' command */
272 static u64 clear_seq;
273 static u32 clear_idx;
274
275 #define PREFIX_MAX 32
276 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
277
278 #define LOG_LEVEL(v) ((v) & 0x07)
279 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
280
281 /* record buffer */
282 #define LOG_ALIGN __alignof__(struct printk_log)
283 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
284 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
285 static char *log_buf = __log_buf;
286 static u32 log_buf_len = __LOG_BUF_LEN;
287
288 /* Return log buffer address */
289 char *log_buf_addr_get(void)
290 {
291 return log_buf;
292 }
293
294 /* Return log buffer size */
295 u32 log_buf_len_get(void)
296 {
297 return log_buf_len;
298 }
299
300 /* human readable text of the record */
301 static char *log_text(const struct printk_log *msg)
302 {
303 return (char *)msg + sizeof(struct printk_log);
304 }
305
306 /* optional key/value pair dictionary attached to the record */
307 static char *log_dict(const struct printk_log *msg)
308 {
309 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
310 }
311
312 /* get record by index; idx must point to valid msg */
313 static struct printk_log *log_from_idx(u32 idx)
314 {
315 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
316
317 /*
318 * A length == 0 record is the end of buffer marker. Wrap around and
319 * read the message at the start of the buffer.
320 */
321 if (!msg->len)
322 return (struct printk_log *)log_buf;
323 return msg;
324 }
325
326 /* get next record; idx must point to valid msg */
327 static u32 log_next(u32 idx)
328 {
329 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
330
331 /* length == 0 indicates the end of the buffer; wrap */
332 /*
333 * A length == 0 record is the end of buffer marker. Wrap around and
334 * read the message at the start of the buffer as *this* one, and
335 * return the one after that.
336 */
337 if (!msg->len) {
338 msg = (struct printk_log *)log_buf;
339 return msg->len;
340 }
341 return idx + msg->len;
342 }
343
344 /*
345 * Check whether there is enough free space for the given message.
346 *
347 * The same values of first_idx and next_idx mean that the buffer
348 * is either empty or full.
349 *
350 * If the buffer is empty, we must respect the position of the indexes.
351 * They cannot be reset to the beginning of the buffer.
352 */
353 static int logbuf_has_space(u32 msg_size, bool empty)
354 {
355 u32 free;
356
357 if (log_next_idx > log_first_idx || empty)
358 free = max(log_buf_len - log_next_idx, log_first_idx);
359 else
360 free = log_first_idx - log_next_idx;
361
362 /*
363 * We need space also for an empty header that signalizes wrapping
364 * of the buffer.
365 */
366 return free >= msg_size + sizeof(struct printk_log);
367 }
368
369 static int log_make_free_space(u32 msg_size)
370 {
371 while (log_first_seq < log_next_seq &&
372 !logbuf_has_space(msg_size, false)) {
373 /* drop old messages until we have enough contiguous space */
374 log_first_idx = log_next(log_first_idx);
375 log_first_seq++;
376 }
377
378 if (clear_seq < log_first_seq) {
379 clear_seq = log_first_seq;
380 clear_idx = log_first_idx;
381 }
382
383 /* sequence numbers are equal, so the log buffer is empty */
384 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
385 return 0;
386
387 return -ENOMEM;
388 }
389
390 /* compute the message size including the padding bytes */
391 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
392 {
393 u32 size;
394
395 size = sizeof(struct printk_log) + text_len + dict_len;
396 *pad_len = (-size) & (LOG_ALIGN - 1);
397 size += *pad_len;
398
399 return size;
400 }
401
402 /*
403 * Define how much of the log buffer we could take at maximum. The value
404 * must be greater than two. Note that only half of the buffer is available
405 * when the index points to the middle.
406 */
407 #define MAX_LOG_TAKE_PART 4
408 static const char trunc_msg[] = "<truncated>";
409
410 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
411 u16 *dict_len, u32 *pad_len)
412 {
413 /*
414 * The message should not take the whole buffer. Otherwise, it might
415 * get removed too soon.
416 */
417 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
418 if (*text_len > max_text_len)
419 *text_len = max_text_len;
420 /* enable the warning message */
421 *trunc_msg_len = strlen(trunc_msg);
422 /* disable the "dict" completely */
423 *dict_len = 0;
424 /* compute the size again, count also the warning message */
425 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
426 }
427
428 /* insert record into the buffer, discard old ones, update heads */
429 static int log_store(int facility, int level,
430 enum log_flags flags, u64 ts_nsec,
431 const char *dict, u16 dict_len,
432 const char *text, u16 text_len)
433 {
434 struct printk_log *msg;
435 u32 size, pad_len;
436 u16 trunc_msg_len = 0;
437
438 /* number of '\0' padding bytes to next message */
439 size = msg_used_size(text_len, dict_len, &pad_len);
440
441 if (log_make_free_space(size)) {
442 /* truncate the message if it is too long for empty buffer */
443 size = truncate_msg(&text_len, &trunc_msg_len,
444 &dict_len, &pad_len);
445 /* survive when the log buffer is too small for trunc_msg */
446 if (log_make_free_space(size))
447 return 0;
448 }
449
450 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
451 /*
452 * This message + an additional empty header does not fit
453 * at the end of the buffer. Add an empty header with len == 0
454 * to signify a wrap around.
455 */
456 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
457 log_next_idx = 0;
458 }
459
460 /* fill message */
461 msg = (struct printk_log *)(log_buf + log_next_idx);
462 memcpy(log_text(msg), text, text_len);
463 msg->text_len = text_len;
464 if (trunc_msg_len) {
465 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
466 msg->text_len += trunc_msg_len;
467 }
468 memcpy(log_dict(msg), dict, dict_len);
469 msg->dict_len = dict_len;
470 msg->facility = facility;
471 msg->level = level & 7;
472 msg->flags = flags & 0x1f;
473 if (ts_nsec > 0)
474 msg->ts_nsec = ts_nsec;
475 else
476 msg->ts_nsec = local_clock();
477 memset(log_dict(msg) + dict_len, 0, pad_len);
478 msg->len = size;
479
480 /* insert message */
481 log_next_idx += msg->len;
482 log_next_seq++;
483
484 return msg->text_len;
485 }
486
487 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
488
489 static int syslog_action_restricted(int type)
490 {
491 if (dmesg_restrict)
492 return 1;
493 /*
494 * Unless restricted, we allow "read all" and "get buffer size"
495 * for everybody.
496 */
497 return type != SYSLOG_ACTION_READ_ALL &&
498 type != SYSLOG_ACTION_SIZE_BUFFER;
499 }
500
501 int check_syslog_permissions(int type, int source)
502 {
503 /*
504 * If this is from /proc/kmsg and we've already opened it, then we've
505 * already done the capabilities checks at open time.
506 */
507 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
508 goto ok;
509
510 if (syslog_action_restricted(type)) {
511 if (capable(CAP_SYSLOG))
512 goto ok;
513 /*
514 * For historical reasons, accept CAP_SYS_ADMIN too, with
515 * a warning.
516 */
517 if (capable(CAP_SYS_ADMIN)) {
518 pr_warn_once("%s (%d): Attempt to access syslog with "
519 "CAP_SYS_ADMIN but no CAP_SYSLOG "
520 "(deprecated).\n",
521 current->comm, task_pid_nr(current));
522 goto ok;
523 }
524 return -EPERM;
525 }
526 ok:
527 return security_syslog(type);
528 }
529 EXPORT_SYMBOL_GPL(check_syslog_permissions);
530
531 static void append_char(char **pp, char *e, char c)
532 {
533 if (*pp < e)
534 *(*pp)++ = c;
535 }
536
537 static ssize_t msg_print_ext_header(char *buf, size_t size,
538 struct printk_log *msg, u64 seq,
539 enum log_flags prev_flags)
540 {
541 u64 ts_usec = msg->ts_nsec;
542 char cont = '-';
543
544 do_div(ts_usec, 1000);
545
546 /*
547 * If we couldn't merge continuation line fragments during the print,
548 * export the stored flags to allow an optional external merge of the
549 * records. Merging the records isn't always neccessarily correct, like
550 * when we hit a race during printing. In most cases though, it produces
551 * better readable output. 'c' in the record flags mark the first
552 * fragment of a line, '+' the following.
553 */
554 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
555 cont = 'c';
556 else if ((msg->flags & LOG_CONT) ||
557 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
558 cont = '+';
559
560 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
561 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
562 }
563
564 static ssize_t msg_print_ext_body(char *buf, size_t size,
565 char *dict, size_t dict_len,
566 char *text, size_t text_len)
567 {
568 char *p = buf, *e = buf + size;
569 size_t i;
570
571 /* escape non-printable characters */
572 for (i = 0; i < text_len; i++) {
573 unsigned char c = text[i];
574
575 if (c < ' ' || c >= 127 || c == '\\')
576 p += scnprintf(p, e - p, "\\x%02x", c);
577 else
578 append_char(&p, e, c);
579 }
580 append_char(&p, e, '\n');
581
582 if (dict_len) {
583 bool line = true;
584
585 for (i = 0; i < dict_len; i++) {
586 unsigned char c = dict[i];
587
588 if (line) {
589 append_char(&p, e, ' ');
590 line = false;
591 }
592
593 if (c == '\0') {
594 append_char(&p, e, '\n');
595 line = true;
596 continue;
597 }
598
599 if (c < ' ' || c >= 127 || c == '\\') {
600 p += scnprintf(p, e - p, "\\x%02x", c);
601 continue;
602 }
603
604 append_char(&p, e, c);
605 }
606 append_char(&p, e, '\n');
607 }
608
609 return p - buf;
610 }
611
612 /* /dev/kmsg - userspace message inject/listen interface */
613 struct devkmsg_user {
614 u64 seq;
615 u32 idx;
616 enum log_flags prev;
617 struct mutex lock;
618 char buf[CONSOLE_EXT_LOG_MAX];
619 };
620
621 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
622 {
623 char *buf, *line;
624 int level = default_message_loglevel;
625 int facility = 1; /* LOG_USER */
626 size_t len = iov_iter_count(from);
627 ssize_t ret = len;
628
629 if (len > LOG_LINE_MAX)
630 return -EINVAL;
631 buf = kmalloc(len+1, GFP_KERNEL);
632 if (buf == NULL)
633 return -ENOMEM;
634
635 buf[len] = '\0';
636 if (copy_from_iter(buf, len, from) != len) {
637 kfree(buf);
638 return -EFAULT;
639 }
640
641 /*
642 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
643 * the decimal value represents 32bit, the lower 3 bit are the log
644 * level, the rest are the log facility.
645 *
646 * If no prefix or no userspace facility is specified, we
647 * enforce LOG_USER, to be able to reliably distinguish
648 * kernel-generated messages from userspace-injected ones.
649 */
650 line = buf;
651 if (line[0] == '<') {
652 char *endp = NULL;
653 unsigned int u;
654
655 u = simple_strtoul(line + 1, &endp, 10);
656 if (endp && endp[0] == '>') {
657 level = LOG_LEVEL(u);
658 if (LOG_FACILITY(u) != 0)
659 facility = LOG_FACILITY(u);
660 endp++;
661 len -= endp - line;
662 line = endp;
663 }
664 }
665
666 printk_emit(facility, level, NULL, 0, "%s", line);
667 kfree(buf);
668 return ret;
669 }
670
671 static ssize_t devkmsg_read(struct file *file, char __user *buf,
672 size_t count, loff_t *ppos)
673 {
674 struct devkmsg_user *user = file->private_data;
675 struct printk_log *msg;
676 size_t len;
677 ssize_t ret;
678
679 if (!user)
680 return -EBADF;
681
682 ret = mutex_lock_interruptible(&user->lock);
683 if (ret)
684 return ret;
685 raw_spin_lock_irq(&logbuf_lock);
686 while (user->seq == log_next_seq) {
687 if (file->f_flags & O_NONBLOCK) {
688 ret = -EAGAIN;
689 raw_spin_unlock_irq(&logbuf_lock);
690 goto out;
691 }
692
693 raw_spin_unlock_irq(&logbuf_lock);
694 ret = wait_event_interruptible(log_wait,
695 user->seq != log_next_seq);
696 if (ret)
697 goto out;
698 raw_spin_lock_irq(&logbuf_lock);
699 }
700
701 if (user->seq < log_first_seq) {
702 /* our last seen message is gone, return error and reset */
703 user->idx = log_first_idx;
704 user->seq = log_first_seq;
705 ret = -EPIPE;
706 raw_spin_unlock_irq(&logbuf_lock);
707 goto out;
708 }
709
710 msg = log_from_idx(user->idx);
711 len = msg_print_ext_header(user->buf, sizeof(user->buf),
712 msg, user->seq, user->prev);
713 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
714 log_dict(msg), msg->dict_len,
715 log_text(msg), msg->text_len);
716
717 user->prev = msg->flags;
718 user->idx = log_next(user->idx);
719 user->seq++;
720 raw_spin_unlock_irq(&logbuf_lock);
721
722 if (len > count) {
723 ret = -EINVAL;
724 goto out;
725 }
726
727 if (copy_to_user(buf, user->buf, len)) {
728 ret = -EFAULT;
729 goto out;
730 }
731 ret = len;
732 out:
733 mutex_unlock(&user->lock);
734 return ret;
735 }
736
737 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
738 {
739 struct devkmsg_user *user = file->private_data;
740 loff_t ret = 0;
741
742 if (!user)
743 return -EBADF;
744 if (offset)
745 return -ESPIPE;
746
747 raw_spin_lock_irq(&logbuf_lock);
748 switch (whence) {
749 case SEEK_SET:
750 /* the first record */
751 user->idx = log_first_idx;
752 user->seq = log_first_seq;
753 break;
754 case SEEK_DATA:
755 /*
756 * The first record after the last SYSLOG_ACTION_CLEAR,
757 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
758 * changes no global state, and does not clear anything.
759 */
760 user->idx = clear_idx;
761 user->seq = clear_seq;
762 break;
763 case SEEK_END:
764 /* after the last record */
765 user->idx = log_next_idx;
766 user->seq = log_next_seq;
767 break;
768 default:
769 ret = -EINVAL;
770 }
771 raw_spin_unlock_irq(&logbuf_lock);
772 return ret;
773 }
774
775 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
776 {
777 struct devkmsg_user *user = file->private_data;
778 int ret = 0;
779
780 if (!user)
781 return POLLERR|POLLNVAL;
782
783 poll_wait(file, &log_wait, wait);
784
785 raw_spin_lock_irq(&logbuf_lock);
786 if (user->seq < log_next_seq) {
787 /* return error when data has vanished underneath us */
788 if (user->seq < log_first_seq)
789 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
790 else
791 ret = POLLIN|POLLRDNORM;
792 }
793 raw_spin_unlock_irq(&logbuf_lock);
794
795 return ret;
796 }
797
798 static int devkmsg_open(struct inode *inode, struct file *file)
799 {
800 struct devkmsg_user *user;
801 int err;
802
803 /* write-only does not need any file context */
804 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
805 return 0;
806
807 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
808 SYSLOG_FROM_READER);
809 if (err)
810 return err;
811
812 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
813 if (!user)
814 return -ENOMEM;
815
816 mutex_init(&user->lock);
817
818 raw_spin_lock_irq(&logbuf_lock);
819 user->idx = log_first_idx;
820 user->seq = log_first_seq;
821 raw_spin_unlock_irq(&logbuf_lock);
822
823 file->private_data = user;
824 return 0;
825 }
826
827 static int devkmsg_release(struct inode *inode, struct file *file)
828 {
829 struct devkmsg_user *user = file->private_data;
830
831 if (!user)
832 return 0;
833
834 mutex_destroy(&user->lock);
835 kfree(user);
836 return 0;
837 }
838
839 const struct file_operations kmsg_fops = {
840 .open = devkmsg_open,
841 .read = devkmsg_read,
842 .write_iter = devkmsg_write,
843 .llseek = devkmsg_llseek,
844 .poll = devkmsg_poll,
845 .release = devkmsg_release,
846 };
847
848 #ifdef CONFIG_KEXEC_CORE
849 /*
850 * This appends the listed symbols to /proc/vmcore
851 *
852 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
853 * obtain access to symbols that are otherwise very difficult to locate. These
854 * symbols are specifically used so that utilities can access and extract the
855 * dmesg log from a vmcore file after a crash.
856 */
857 void log_buf_kexec_setup(void)
858 {
859 VMCOREINFO_SYMBOL(log_buf);
860 VMCOREINFO_SYMBOL(log_buf_len);
861 VMCOREINFO_SYMBOL(log_first_idx);
862 VMCOREINFO_SYMBOL(clear_idx);
863 VMCOREINFO_SYMBOL(log_next_idx);
864 /*
865 * Export struct printk_log size and field offsets. User space tools can
866 * parse it and detect any changes to structure down the line.
867 */
868 VMCOREINFO_STRUCT_SIZE(printk_log);
869 VMCOREINFO_OFFSET(printk_log, ts_nsec);
870 VMCOREINFO_OFFSET(printk_log, len);
871 VMCOREINFO_OFFSET(printk_log, text_len);
872 VMCOREINFO_OFFSET(printk_log, dict_len);
873 }
874 #endif
875
876 /* requested log_buf_len from kernel cmdline */
877 static unsigned long __initdata new_log_buf_len;
878
879 /* we practice scaling the ring buffer by powers of 2 */
880 static void __init log_buf_len_update(unsigned size)
881 {
882 if (size)
883 size = roundup_pow_of_two(size);
884 if (size > log_buf_len)
885 new_log_buf_len = size;
886 }
887
888 /* save requested log_buf_len since it's too early to process it */
889 static int __init log_buf_len_setup(char *str)
890 {
891 unsigned size = memparse(str, &str);
892
893 log_buf_len_update(size);
894
895 return 0;
896 }
897 early_param("log_buf_len", log_buf_len_setup);
898
899 #ifdef CONFIG_SMP
900 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
901
902 static void __init log_buf_add_cpu(void)
903 {
904 unsigned int cpu_extra;
905
906 /*
907 * archs should set up cpu_possible_bits properly with
908 * set_cpu_possible() after setup_arch() but just in
909 * case lets ensure this is valid.
910 */
911 if (num_possible_cpus() == 1)
912 return;
913
914 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
915
916 /* by default this will only continue through for large > 64 CPUs */
917 if (cpu_extra <= __LOG_BUF_LEN / 2)
918 return;
919
920 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
921 __LOG_CPU_MAX_BUF_LEN);
922 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
923 cpu_extra);
924 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
925
926 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
927 }
928 #else /* !CONFIG_SMP */
929 static inline void log_buf_add_cpu(void) {}
930 #endif /* CONFIG_SMP */
931
932 void __init setup_log_buf(int early)
933 {
934 unsigned long flags;
935 char *new_log_buf;
936 int free;
937
938 if (log_buf != __log_buf)
939 return;
940
941 if (!early && !new_log_buf_len)
942 log_buf_add_cpu();
943
944 if (!new_log_buf_len)
945 return;
946
947 if (early) {
948 new_log_buf =
949 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
950 } else {
951 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
952 LOG_ALIGN);
953 }
954
955 if (unlikely(!new_log_buf)) {
956 pr_err("log_buf_len: %ld bytes not available\n",
957 new_log_buf_len);
958 return;
959 }
960
961 raw_spin_lock_irqsave(&logbuf_lock, flags);
962 log_buf_len = new_log_buf_len;
963 log_buf = new_log_buf;
964 new_log_buf_len = 0;
965 free = __LOG_BUF_LEN - log_next_idx;
966 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
967 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
968
969 pr_info("log_buf_len: %d bytes\n", log_buf_len);
970 pr_info("early log buf free: %d(%d%%)\n",
971 free, (free * 100) / __LOG_BUF_LEN);
972 }
973
974 static bool __read_mostly ignore_loglevel;
975
976 static int __init ignore_loglevel_setup(char *str)
977 {
978 ignore_loglevel = true;
979 pr_info("debug: ignoring loglevel setting.\n");
980
981 return 0;
982 }
983
984 early_param("ignore_loglevel", ignore_loglevel_setup);
985 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
986 MODULE_PARM_DESC(ignore_loglevel,
987 "ignore loglevel setting (prints all kernel messages to the console)");
988
989 #ifdef CONFIG_BOOT_PRINTK_DELAY
990
991 static int boot_delay; /* msecs delay after each printk during bootup */
992 static unsigned long long loops_per_msec; /* based on boot_delay */
993
994 static int __init boot_delay_setup(char *str)
995 {
996 unsigned long lpj;
997
998 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
999 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1000
1001 get_option(&str, &boot_delay);
1002 if (boot_delay > 10 * 1000)
1003 boot_delay = 0;
1004
1005 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1006 "HZ: %d, loops_per_msec: %llu\n",
1007 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1008 return 0;
1009 }
1010 early_param("boot_delay", boot_delay_setup);
1011
1012 static void boot_delay_msec(int level)
1013 {
1014 unsigned long long k;
1015 unsigned long timeout;
1016
1017 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1018 || (level >= console_loglevel && !ignore_loglevel)) {
1019 return;
1020 }
1021
1022 k = (unsigned long long)loops_per_msec * boot_delay;
1023
1024 timeout = jiffies + msecs_to_jiffies(boot_delay);
1025 while (k) {
1026 k--;
1027 cpu_relax();
1028 /*
1029 * use (volatile) jiffies to prevent
1030 * compiler reduction; loop termination via jiffies
1031 * is secondary and may or may not happen.
1032 */
1033 if (time_after(jiffies, timeout))
1034 break;
1035 touch_nmi_watchdog();
1036 }
1037 }
1038 #else
1039 static inline void boot_delay_msec(int level)
1040 {
1041 }
1042 #endif
1043
1044 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1045 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1046
1047 static size_t print_time(u64 ts, char *buf)
1048 {
1049 unsigned long rem_nsec;
1050
1051 if (!printk_time)
1052 return 0;
1053
1054 rem_nsec = do_div(ts, 1000000000);
1055
1056 if (!buf)
1057 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1058
1059 return sprintf(buf, "[%5lu.%06lu] ",
1060 (unsigned long)ts, rem_nsec / 1000);
1061 }
1062
1063 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1064 {
1065 size_t len = 0;
1066 unsigned int prefix = (msg->facility << 3) | msg->level;
1067
1068 if (syslog) {
1069 if (buf) {
1070 len += sprintf(buf, "<%u>", prefix);
1071 } else {
1072 len += 3;
1073 if (prefix > 999)
1074 len += 3;
1075 else if (prefix > 99)
1076 len += 2;
1077 else if (prefix > 9)
1078 len++;
1079 }
1080 }
1081
1082 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1083 return len;
1084 }
1085
1086 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1087 bool syslog, char *buf, size_t size)
1088 {
1089 const char *text = log_text(msg);
1090 size_t text_size = msg->text_len;
1091 bool prefix = true;
1092 bool newline = true;
1093 size_t len = 0;
1094
1095 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1096 prefix = false;
1097
1098 if (msg->flags & LOG_CONT) {
1099 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1100 prefix = false;
1101
1102 if (!(msg->flags & LOG_NEWLINE))
1103 newline = false;
1104 }
1105
1106 do {
1107 const char *next = memchr(text, '\n', text_size);
1108 size_t text_len;
1109
1110 if (next) {
1111 text_len = next - text;
1112 next++;
1113 text_size -= next - text;
1114 } else {
1115 text_len = text_size;
1116 }
1117
1118 if (buf) {
1119 if (print_prefix(msg, syslog, NULL) +
1120 text_len + 1 >= size - len)
1121 break;
1122
1123 if (prefix)
1124 len += print_prefix(msg, syslog, buf + len);
1125 memcpy(buf + len, text, text_len);
1126 len += text_len;
1127 if (next || newline)
1128 buf[len++] = '\n';
1129 } else {
1130 /* SYSLOG_ACTION_* buffer size only calculation */
1131 if (prefix)
1132 len += print_prefix(msg, syslog, NULL);
1133 len += text_len;
1134 if (next || newline)
1135 len++;
1136 }
1137
1138 prefix = true;
1139 text = next;
1140 } while (text);
1141
1142 return len;
1143 }
1144
1145 static int syslog_print(char __user *buf, int size)
1146 {
1147 char *text;
1148 struct printk_log *msg;
1149 int len = 0;
1150
1151 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1152 if (!text)
1153 return -ENOMEM;
1154
1155 while (size > 0) {
1156 size_t n;
1157 size_t skip;
1158
1159 raw_spin_lock_irq(&logbuf_lock);
1160 if (syslog_seq < log_first_seq) {
1161 /* messages are gone, move to first one */
1162 syslog_seq = log_first_seq;
1163 syslog_idx = log_first_idx;
1164 syslog_prev = 0;
1165 syslog_partial = 0;
1166 }
1167 if (syslog_seq == log_next_seq) {
1168 raw_spin_unlock_irq(&logbuf_lock);
1169 break;
1170 }
1171
1172 skip = syslog_partial;
1173 msg = log_from_idx(syslog_idx);
1174 n = msg_print_text(msg, syslog_prev, true, text,
1175 LOG_LINE_MAX + PREFIX_MAX);
1176 if (n - syslog_partial <= size) {
1177 /* message fits into buffer, move forward */
1178 syslog_idx = log_next(syslog_idx);
1179 syslog_seq++;
1180 syslog_prev = msg->flags;
1181 n -= syslog_partial;
1182 syslog_partial = 0;
1183 } else if (!len){
1184 /* partial read(), remember position */
1185 n = size;
1186 syslog_partial += n;
1187 } else
1188 n = 0;
1189 raw_spin_unlock_irq(&logbuf_lock);
1190
1191 if (!n)
1192 break;
1193
1194 if (copy_to_user(buf, text + skip, n)) {
1195 if (!len)
1196 len = -EFAULT;
1197 break;
1198 }
1199
1200 len += n;
1201 size -= n;
1202 buf += n;
1203 }
1204
1205 kfree(text);
1206 return len;
1207 }
1208
1209 static int syslog_print_all(char __user *buf, int size, bool clear)
1210 {
1211 char *text;
1212 int len = 0;
1213
1214 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1215 if (!text)
1216 return -ENOMEM;
1217
1218 raw_spin_lock_irq(&logbuf_lock);
1219 if (buf) {
1220 u64 next_seq;
1221 u64 seq;
1222 u32 idx;
1223 enum log_flags prev;
1224
1225 /*
1226 * Find first record that fits, including all following records,
1227 * into the user-provided buffer for this dump.
1228 */
1229 seq = clear_seq;
1230 idx = clear_idx;
1231 prev = 0;
1232 while (seq < log_next_seq) {
1233 struct printk_log *msg = log_from_idx(idx);
1234
1235 len += msg_print_text(msg, prev, true, NULL, 0);
1236 prev = msg->flags;
1237 idx = log_next(idx);
1238 seq++;
1239 }
1240
1241 /* move first record forward until length fits into the buffer */
1242 seq = clear_seq;
1243 idx = clear_idx;
1244 prev = 0;
1245 while (len > size && seq < log_next_seq) {
1246 struct printk_log *msg = log_from_idx(idx);
1247
1248 len -= msg_print_text(msg, prev, true, NULL, 0);
1249 prev = msg->flags;
1250 idx = log_next(idx);
1251 seq++;
1252 }
1253
1254 /* last message fitting into this dump */
1255 next_seq = log_next_seq;
1256
1257 len = 0;
1258 while (len >= 0 && seq < next_seq) {
1259 struct printk_log *msg = log_from_idx(idx);
1260 int textlen;
1261
1262 textlen = msg_print_text(msg, prev, true, text,
1263 LOG_LINE_MAX + PREFIX_MAX);
1264 if (textlen < 0) {
1265 len = textlen;
1266 break;
1267 }
1268 idx = log_next(idx);
1269 seq++;
1270 prev = msg->flags;
1271
1272 raw_spin_unlock_irq(&logbuf_lock);
1273 if (copy_to_user(buf + len, text, textlen))
1274 len = -EFAULT;
1275 else
1276 len += textlen;
1277 raw_spin_lock_irq(&logbuf_lock);
1278
1279 if (seq < log_first_seq) {
1280 /* messages are gone, move to next one */
1281 seq = log_first_seq;
1282 idx = log_first_idx;
1283 prev = 0;
1284 }
1285 }
1286 }
1287
1288 if (clear) {
1289 clear_seq = log_next_seq;
1290 clear_idx = log_next_idx;
1291 }
1292 raw_spin_unlock_irq(&logbuf_lock);
1293
1294 kfree(text);
1295 return len;
1296 }
1297
1298 int do_syslog(int type, char __user *buf, int len, int source)
1299 {
1300 bool clear = false;
1301 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1302 int error;
1303
1304 error = check_syslog_permissions(type, source);
1305 if (error)
1306 goto out;
1307
1308 switch (type) {
1309 case SYSLOG_ACTION_CLOSE: /* Close log */
1310 break;
1311 case SYSLOG_ACTION_OPEN: /* Open log */
1312 break;
1313 case SYSLOG_ACTION_READ: /* Read from log */
1314 error = -EINVAL;
1315 if (!buf || len < 0)
1316 goto out;
1317 error = 0;
1318 if (!len)
1319 goto out;
1320 if (!access_ok(VERIFY_WRITE, buf, len)) {
1321 error = -EFAULT;
1322 goto out;
1323 }
1324 error = wait_event_interruptible(log_wait,
1325 syslog_seq != log_next_seq);
1326 if (error)
1327 goto out;
1328 error = syslog_print(buf, len);
1329 break;
1330 /* Read/clear last kernel messages */
1331 case SYSLOG_ACTION_READ_CLEAR:
1332 clear = true;
1333 /* FALL THRU */
1334 /* Read last kernel messages */
1335 case SYSLOG_ACTION_READ_ALL:
1336 error = -EINVAL;
1337 if (!buf || len < 0)
1338 goto out;
1339 error = 0;
1340 if (!len)
1341 goto out;
1342 if (!access_ok(VERIFY_WRITE, buf, len)) {
1343 error = -EFAULT;
1344 goto out;
1345 }
1346 error = syslog_print_all(buf, len, clear);
1347 break;
1348 /* Clear ring buffer */
1349 case SYSLOG_ACTION_CLEAR:
1350 syslog_print_all(NULL, 0, true);
1351 break;
1352 /* Disable logging to console */
1353 case SYSLOG_ACTION_CONSOLE_OFF:
1354 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1355 saved_console_loglevel = console_loglevel;
1356 console_loglevel = minimum_console_loglevel;
1357 break;
1358 /* Enable logging to console */
1359 case SYSLOG_ACTION_CONSOLE_ON:
1360 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1361 console_loglevel = saved_console_loglevel;
1362 saved_console_loglevel = LOGLEVEL_DEFAULT;
1363 }
1364 break;
1365 /* Set level of messages printed to console */
1366 case SYSLOG_ACTION_CONSOLE_LEVEL:
1367 error = -EINVAL;
1368 if (len < 1 || len > 8)
1369 goto out;
1370 if (len < minimum_console_loglevel)
1371 len = minimum_console_loglevel;
1372 console_loglevel = len;
1373 /* Implicitly re-enable logging to console */
1374 saved_console_loglevel = LOGLEVEL_DEFAULT;
1375 error = 0;
1376 break;
1377 /* Number of chars in the log buffer */
1378 case SYSLOG_ACTION_SIZE_UNREAD:
1379 raw_spin_lock_irq(&logbuf_lock);
1380 if (syslog_seq < log_first_seq) {
1381 /* messages are gone, move to first one */
1382 syslog_seq = log_first_seq;
1383 syslog_idx = log_first_idx;
1384 syslog_prev = 0;
1385 syslog_partial = 0;
1386 }
1387 if (source == SYSLOG_FROM_PROC) {
1388 /*
1389 * Short-cut for poll(/"proc/kmsg") which simply checks
1390 * for pending data, not the size; return the count of
1391 * records, not the length.
1392 */
1393 error = log_next_seq - syslog_seq;
1394 } else {
1395 u64 seq = syslog_seq;
1396 u32 idx = syslog_idx;
1397 enum log_flags prev = syslog_prev;
1398
1399 error = 0;
1400 while (seq < log_next_seq) {
1401 struct printk_log *msg = log_from_idx(idx);
1402
1403 error += msg_print_text(msg, prev, true, NULL, 0);
1404 idx = log_next(idx);
1405 seq++;
1406 prev = msg->flags;
1407 }
1408 error -= syslog_partial;
1409 }
1410 raw_spin_unlock_irq(&logbuf_lock);
1411 break;
1412 /* Size of the log buffer */
1413 case SYSLOG_ACTION_SIZE_BUFFER:
1414 error = log_buf_len;
1415 break;
1416 default:
1417 error = -EINVAL;
1418 break;
1419 }
1420 out:
1421 return error;
1422 }
1423
1424 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1425 {
1426 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1427 }
1428
1429 /*
1430 * Call the console drivers, asking them to write out
1431 * log_buf[start] to log_buf[end - 1].
1432 * The console_lock must be held.
1433 */
1434 static void call_console_drivers(int level,
1435 const char *ext_text, size_t ext_len,
1436 const char *text, size_t len)
1437 {
1438 struct console *con;
1439
1440 trace_console(text, len);
1441
1442 if (level >= console_loglevel && !ignore_loglevel)
1443 return;
1444 if (!console_drivers)
1445 return;
1446
1447 for_each_console(con) {
1448 if (exclusive_console && con != exclusive_console)
1449 continue;
1450 if (!(con->flags & CON_ENABLED))
1451 continue;
1452 if (!con->write)
1453 continue;
1454 if (!cpu_online(smp_processor_id()) &&
1455 !(con->flags & CON_ANYTIME))
1456 continue;
1457 if (con->flags & CON_EXTENDED)
1458 con->write(con, ext_text, ext_len);
1459 else
1460 con->write(con, text, len);
1461 }
1462 }
1463
1464 /*
1465 * Zap console related locks when oopsing.
1466 * To leave time for slow consoles to print a full oops,
1467 * only zap at most once every 30 seconds.
1468 */
1469 static void zap_locks(void)
1470 {
1471 static unsigned long oops_timestamp;
1472
1473 if (time_after_eq(jiffies, oops_timestamp) &&
1474 !time_after(jiffies, oops_timestamp + 30 * HZ))
1475 return;
1476
1477 oops_timestamp = jiffies;
1478
1479 debug_locks_off();
1480 /* If a crash is occurring, make sure we can't deadlock */
1481 raw_spin_lock_init(&logbuf_lock);
1482 /* And make sure that we print immediately */
1483 sema_init(&console_sem, 1);
1484 }
1485
1486 int printk_delay_msec __read_mostly;
1487
1488 static inline void printk_delay(void)
1489 {
1490 if (unlikely(printk_delay_msec)) {
1491 int m = printk_delay_msec;
1492
1493 while (m--) {
1494 mdelay(1);
1495 touch_nmi_watchdog();
1496 }
1497 }
1498 }
1499
1500 /*
1501 * Continuation lines are buffered, and not committed to the record buffer
1502 * until the line is complete, or a race forces it. The line fragments
1503 * though, are printed immediately to the consoles to ensure everything has
1504 * reached the console in case of a kernel crash.
1505 */
1506 static struct cont {
1507 char buf[LOG_LINE_MAX];
1508 size_t len; /* length == 0 means unused buffer */
1509 size_t cons; /* bytes written to console */
1510 struct task_struct *owner; /* task of first print*/
1511 u64 ts_nsec; /* time of first print */
1512 u8 level; /* log level of first message */
1513 u8 facility; /* log facility of first message */
1514 enum log_flags flags; /* prefix, newline flags */
1515 bool flushed:1; /* buffer sealed and committed */
1516 } cont;
1517
1518 static void cont_flush(enum log_flags flags)
1519 {
1520 if (cont.flushed)
1521 return;
1522 if (cont.len == 0)
1523 return;
1524
1525 if (cont.cons) {
1526 /*
1527 * If a fragment of this line was directly flushed to the
1528 * console; wait for the console to pick up the rest of the
1529 * line. LOG_NOCONS suppresses a duplicated output.
1530 */
1531 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1532 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1533 cont.flags = flags;
1534 cont.flushed = true;
1535 } else {
1536 /*
1537 * If no fragment of this line ever reached the console,
1538 * just submit it to the store and free the buffer.
1539 */
1540 log_store(cont.facility, cont.level, flags, 0,
1541 NULL, 0, cont.buf, cont.len);
1542 cont.len = 0;
1543 }
1544 }
1545
1546 static bool cont_add(int facility, int level, const char *text, size_t len)
1547 {
1548 if (cont.len && cont.flushed)
1549 return false;
1550
1551 /*
1552 * If ext consoles are present, flush and skip in-kernel
1553 * continuation. See nr_ext_console_drivers definition. Also, if
1554 * the line gets too long, split it up in separate records.
1555 */
1556 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1557 cont_flush(LOG_CONT);
1558 return false;
1559 }
1560
1561 if (!cont.len) {
1562 cont.facility = facility;
1563 cont.level = level;
1564 cont.owner = current;
1565 cont.ts_nsec = local_clock();
1566 cont.flags = 0;
1567 cont.cons = 0;
1568 cont.flushed = false;
1569 }
1570
1571 memcpy(cont.buf + cont.len, text, len);
1572 cont.len += len;
1573
1574 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1575 cont_flush(LOG_CONT);
1576
1577 return true;
1578 }
1579
1580 static size_t cont_print_text(char *text, size_t size)
1581 {
1582 size_t textlen = 0;
1583 size_t len;
1584
1585 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1586 textlen += print_time(cont.ts_nsec, text);
1587 size -= textlen;
1588 }
1589
1590 len = cont.len - cont.cons;
1591 if (len > 0) {
1592 if (len+1 > size)
1593 len = size-1;
1594 memcpy(text + textlen, cont.buf + cont.cons, len);
1595 textlen += len;
1596 cont.cons = cont.len;
1597 }
1598
1599 if (cont.flushed) {
1600 if (cont.flags & LOG_NEWLINE)
1601 text[textlen++] = '\n';
1602 /* got everything, release buffer */
1603 cont.len = 0;
1604 }
1605 return textlen;
1606 }
1607
1608 asmlinkage int vprintk_emit(int facility, int level,
1609 const char *dict, size_t dictlen,
1610 const char *fmt, va_list args)
1611 {
1612 static bool recursion_bug;
1613 static char textbuf[LOG_LINE_MAX];
1614 char *text = textbuf;
1615 size_t text_len = 0;
1616 enum log_flags lflags = 0;
1617 unsigned long flags;
1618 int this_cpu;
1619 int printed_len = 0;
1620 int nmi_message_lost;
1621 bool in_sched = false;
1622 /* cpu currently holding logbuf_lock in this function */
1623 static unsigned int logbuf_cpu = UINT_MAX;
1624
1625 if (level == LOGLEVEL_SCHED) {
1626 level = LOGLEVEL_DEFAULT;
1627 in_sched = true;
1628 }
1629
1630 boot_delay_msec(level);
1631 printk_delay();
1632
1633 local_irq_save(flags);
1634 this_cpu = smp_processor_id();
1635
1636 /*
1637 * Ouch, printk recursed into itself!
1638 */
1639 if (unlikely(logbuf_cpu == this_cpu)) {
1640 /*
1641 * If a crash is occurring during printk() on this CPU,
1642 * then try to get the crash message out but make sure
1643 * we can't deadlock. Otherwise just return to avoid the
1644 * recursion and return - but flag the recursion so that
1645 * it can be printed at the next appropriate moment:
1646 */
1647 if (!oops_in_progress && !lockdep_recursing(current)) {
1648 recursion_bug = true;
1649 local_irq_restore(flags);
1650 return 0;
1651 }
1652 zap_locks();
1653 }
1654
1655 lockdep_off();
1656 /* This stops the holder of console_sem just where we want him */
1657 raw_spin_lock(&logbuf_lock);
1658 logbuf_cpu = this_cpu;
1659
1660 if (unlikely(recursion_bug)) {
1661 static const char recursion_msg[] =
1662 "BUG: recent printk recursion!";
1663
1664 recursion_bug = false;
1665 /* emit KERN_CRIT message */
1666 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1667 NULL, 0, recursion_msg,
1668 strlen(recursion_msg));
1669 }
1670
1671 nmi_message_lost = get_nmi_message_lost();
1672 if (unlikely(nmi_message_lost)) {
1673 text_len = scnprintf(textbuf, sizeof(textbuf),
1674 "BAD LUCK: lost %d message(s) from NMI context!",
1675 nmi_message_lost);
1676 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1677 NULL, 0, textbuf, text_len);
1678 }
1679
1680 /*
1681 * The printf needs to come first; we need the syslog
1682 * prefix which might be passed-in as a parameter.
1683 */
1684 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1685
1686 /* mark and strip a trailing newline */
1687 if (text_len && text[text_len-1] == '\n') {
1688 text_len--;
1689 lflags |= LOG_NEWLINE;
1690 }
1691
1692 /* strip kernel syslog prefix and extract log level or control flags */
1693 if (facility == 0) {
1694 int kern_level = printk_get_level(text);
1695
1696 if (kern_level) {
1697 const char *end_of_header = printk_skip_level(text);
1698 switch (kern_level) {
1699 case '0' ... '7':
1700 if (level == LOGLEVEL_DEFAULT)
1701 level = kern_level - '0';
1702 /* fallthrough */
1703 case 'd': /* KERN_DEFAULT */
1704 lflags |= LOG_PREFIX;
1705 }
1706 /*
1707 * No need to check length here because vscnprintf
1708 * put '\0' at the end of the string. Only valid and
1709 * newly printed level is detected.
1710 */
1711 text_len -= end_of_header - text;
1712 text = (char *)end_of_header;
1713 }
1714 }
1715
1716 if (level == LOGLEVEL_DEFAULT)
1717 level = default_message_loglevel;
1718
1719 if (dict)
1720 lflags |= LOG_PREFIX|LOG_NEWLINE;
1721
1722 if (!(lflags & LOG_NEWLINE)) {
1723 /*
1724 * Flush the conflicting buffer. An earlier newline was missing,
1725 * or another task also prints continuation lines.
1726 */
1727 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1728 cont_flush(LOG_NEWLINE);
1729
1730 /* buffer line if possible, otherwise store it right away */
1731 if (cont_add(facility, level, text, text_len))
1732 printed_len += text_len;
1733 else
1734 printed_len += log_store(facility, level,
1735 lflags | LOG_CONT, 0,
1736 dict, dictlen, text, text_len);
1737 } else {
1738 bool stored = false;
1739
1740 /*
1741 * If an earlier newline was missing and it was the same task,
1742 * either merge it with the current buffer and flush, or if
1743 * there was a race with interrupts (prefix == true) then just
1744 * flush it out and store this line separately.
1745 * If the preceding printk was from a different task and missed
1746 * a newline, flush and append the newline.
1747 */
1748 if (cont.len) {
1749 if (cont.owner == current && !(lflags & LOG_PREFIX))
1750 stored = cont_add(facility, level, text,
1751 text_len);
1752 cont_flush(LOG_NEWLINE);
1753 }
1754
1755 if (stored)
1756 printed_len += text_len;
1757 else
1758 printed_len += log_store(facility, level, lflags, 0,
1759 dict, dictlen, text, text_len);
1760 }
1761
1762 logbuf_cpu = UINT_MAX;
1763 raw_spin_unlock(&logbuf_lock);
1764 lockdep_on();
1765 local_irq_restore(flags);
1766
1767 /* If called from the scheduler, we can not call up(). */
1768 if (!in_sched) {
1769 lockdep_off();
1770 /*
1771 * Try to acquire and then immediately release the console
1772 * semaphore. The release will print out buffers and wake up
1773 * /dev/kmsg and syslog() users.
1774 */
1775 if (console_trylock())
1776 console_unlock();
1777 lockdep_on();
1778 }
1779
1780 return printed_len;
1781 }
1782 EXPORT_SYMBOL(vprintk_emit);
1783
1784 asmlinkage int vprintk(const char *fmt, va_list args)
1785 {
1786 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1787 }
1788 EXPORT_SYMBOL(vprintk);
1789
1790 asmlinkage int printk_emit(int facility, int level,
1791 const char *dict, size_t dictlen,
1792 const char *fmt, ...)
1793 {
1794 va_list args;
1795 int r;
1796
1797 va_start(args, fmt);
1798 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1799 va_end(args);
1800
1801 return r;
1802 }
1803 EXPORT_SYMBOL(printk_emit);
1804
1805 int vprintk_default(const char *fmt, va_list args)
1806 {
1807 int r;
1808
1809 #ifdef CONFIG_KGDB_KDB
1810 if (unlikely(kdb_trap_printk)) {
1811 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1812 return r;
1813 }
1814 #endif
1815 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1816
1817 return r;
1818 }
1819 EXPORT_SYMBOL_GPL(vprintk_default);
1820
1821 /**
1822 * printk - print a kernel message
1823 * @fmt: format string
1824 *
1825 * This is printk(). It can be called from any context. We want it to work.
1826 *
1827 * We try to grab the console_lock. If we succeed, it's easy - we log the
1828 * output and call the console drivers. If we fail to get the semaphore, we
1829 * place the output into the log buffer and return. The current holder of
1830 * the console_sem will notice the new output in console_unlock(); and will
1831 * send it to the consoles before releasing the lock.
1832 *
1833 * One effect of this deferred printing is that code which calls printk() and
1834 * then changes console_loglevel may break. This is because console_loglevel
1835 * is inspected when the actual printing occurs.
1836 *
1837 * See also:
1838 * printf(3)
1839 *
1840 * See the vsnprintf() documentation for format string extensions over C99.
1841 */
1842 asmlinkage __visible int printk(const char *fmt, ...)
1843 {
1844 va_list args;
1845 int r;
1846
1847 va_start(args, fmt);
1848 r = vprintk_func(fmt, args);
1849 va_end(args);
1850
1851 return r;
1852 }
1853 EXPORT_SYMBOL(printk);
1854
1855 #else /* CONFIG_PRINTK */
1856
1857 #define LOG_LINE_MAX 0
1858 #define PREFIX_MAX 0
1859
1860 static u64 syslog_seq;
1861 static u32 syslog_idx;
1862 static u64 console_seq;
1863 static u32 console_idx;
1864 static enum log_flags syslog_prev;
1865 static u64 log_first_seq;
1866 static u32 log_first_idx;
1867 static u64 log_next_seq;
1868 static enum log_flags console_prev;
1869 static struct cont {
1870 size_t len;
1871 size_t cons;
1872 u8 level;
1873 bool flushed:1;
1874 } cont;
1875 static char *log_text(const struct printk_log *msg) { return NULL; }
1876 static char *log_dict(const struct printk_log *msg) { return NULL; }
1877 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1878 static u32 log_next(u32 idx) { return 0; }
1879 static ssize_t msg_print_ext_header(char *buf, size_t size,
1880 struct printk_log *msg, u64 seq,
1881 enum log_flags prev_flags) { return 0; }
1882 static ssize_t msg_print_ext_body(char *buf, size_t size,
1883 char *dict, size_t dict_len,
1884 char *text, size_t text_len) { return 0; }
1885 static void call_console_drivers(int level,
1886 const char *ext_text, size_t ext_len,
1887 const char *text, size_t len) {}
1888 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1889 bool syslog, char *buf, size_t size) { return 0; }
1890 static size_t cont_print_text(char *text, size_t size) { return 0; }
1891
1892 /* Still needs to be defined for users */
1893 DEFINE_PER_CPU(printk_func_t, printk_func);
1894
1895 #endif /* CONFIG_PRINTK */
1896
1897 #ifdef CONFIG_EARLY_PRINTK
1898 struct console *early_console;
1899
1900 asmlinkage __visible void early_printk(const char *fmt, ...)
1901 {
1902 va_list ap;
1903 char buf[512];
1904 int n;
1905
1906 if (!early_console)
1907 return;
1908
1909 va_start(ap, fmt);
1910 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1911 va_end(ap);
1912
1913 early_console->write(early_console, buf, n);
1914 }
1915 #endif
1916
1917 static int __add_preferred_console(char *name, int idx, char *options,
1918 char *brl_options)
1919 {
1920 struct console_cmdline *c;
1921 int i;
1922
1923 /*
1924 * See if this tty is not yet registered, and
1925 * if we have a slot free.
1926 */
1927 for (i = 0, c = console_cmdline;
1928 i < MAX_CMDLINECONSOLES && c->name[0];
1929 i++, c++) {
1930 if (strcmp(c->name, name) == 0 && c->index == idx) {
1931 if (!brl_options)
1932 selected_console = i;
1933 return 0;
1934 }
1935 }
1936 if (i == MAX_CMDLINECONSOLES)
1937 return -E2BIG;
1938 if (!brl_options)
1939 selected_console = i;
1940 strlcpy(c->name, name, sizeof(c->name));
1941 c->options = options;
1942 braille_set_options(c, brl_options);
1943
1944 c->index = idx;
1945 return 0;
1946 }
1947 /*
1948 * Set up a console. Called via do_early_param() in init/main.c
1949 * for each "console=" parameter in the boot command line.
1950 */
1951 static int __init console_setup(char *str)
1952 {
1953 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1954 char *s, *options, *brl_options = NULL;
1955 int idx;
1956
1957 if (_braille_console_setup(&str, &brl_options))
1958 return 1;
1959
1960 /*
1961 * Decode str into name, index, options.
1962 */
1963 if (str[0] >= '0' && str[0] <= '9') {
1964 strcpy(buf, "ttyS");
1965 strncpy(buf + 4, str, sizeof(buf) - 5);
1966 } else {
1967 strncpy(buf, str, sizeof(buf) - 1);
1968 }
1969 buf[sizeof(buf) - 1] = 0;
1970 options = strchr(str, ',');
1971 if (options)
1972 *(options++) = 0;
1973 #ifdef __sparc__
1974 if (!strcmp(str, "ttya"))
1975 strcpy(buf, "ttyS0");
1976 if (!strcmp(str, "ttyb"))
1977 strcpy(buf, "ttyS1");
1978 #endif
1979 for (s = buf; *s; s++)
1980 if (isdigit(*s) || *s == ',')
1981 break;
1982 idx = simple_strtoul(s, NULL, 10);
1983 *s = 0;
1984
1985 __add_preferred_console(buf, idx, options, brl_options);
1986 console_set_on_cmdline = 1;
1987 return 1;
1988 }
1989 __setup("console=", console_setup);
1990
1991 /**
1992 * add_preferred_console - add a device to the list of preferred consoles.
1993 * @name: device name
1994 * @idx: device index
1995 * @options: options for this console
1996 *
1997 * The last preferred console added will be used for kernel messages
1998 * and stdin/out/err for init. Normally this is used by console_setup
1999 * above to handle user-supplied console arguments; however it can also
2000 * be used by arch-specific code either to override the user or more
2001 * commonly to provide a default console (ie from PROM variables) when
2002 * the user has not supplied one.
2003 */
2004 int add_preferred_console(char *name, int idx, char *options)
2005 {
2006 return __add_preferred_console(name, idx, options, NULL);
2007 }
2008
2009 bool console_suspend_enabled = true;
2010 EXPORT_SYMBOL(console_suspend_enabled);
2011
2012 static int __init console_suspend_disable(char *str)
2013 {
2014 console_suspend_enabled = false;
2015 return 1;
2016 }
2017 __setup("no_console_suspend", console_suspend_disable);
2018 module_param_named(console_suspend, console_suspend_enabled,
2019 bool, S_IRUGO | S_IWUSR);
2020 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2021 " and hibernate operations");
2022
2023 /**
2024 * suspend_console - suspend the console subsystem
2025 *
2026 * This disables printk() while we go into suspend states
2027 */
2028 void suspend_console(void)
2029 {
2030 if (!console_suspend_enabled)
2031 return;
2032 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2033 console_lock();
2034 console_suspended = 1;
2035 up_console_sem();
2036 }
2037
2038 void resume_console(void)
2039 {
2040 if (!console_suspend_enabled)
2041 return;
2042 down_console_sem();
2043 console_suspended = 0;
2044 console_unlock();
2045 }
2046
2047 /**
2048 * console_cpu_notify - print deferred console messages after CPU hotplug
2049 * @self: notifier struct
2050 * @action: CPU hotplug event
2051 * @hcpu: unused
2052 *
2053 * If printk() is called from a CPU that is not online yet, the messages
2054 * will be spooled but will not show up on the console. This function is
2055 * called when a new CPU comes online (or fails to come up), and ensures
2056 * that any such output gets printed.
2057 */
2058 static int console_cpu_notify(struct notifier_block *self,
2059 unsigned long action, void *hcpu)
2060 {
2061 switch (action) {
2062 case CPU_ONLINE:
2063 case CPU_DEAD:
2064 case CPU_DOWN_FAILED:
2065 case CPU_UP_CANCELED:
2066 console_lock();
2067 console_unlock();
2068 }
2069 return NOTIFY_OK;
2070 }
2071
2072 /**
2073 * console_lock - lock the console system for exclusive use.
2074 *
2075 * Acquires a lock which guarantees that the caller has
2076 * exclusive access to the console system and the console_drivers list.
2077 *
2078 * Can sleep, returns nothing.
2079 */
2080 void console_lock(void)
2081 {
2082 might_sleep();
2083
2084 down_console_sem();
2085 if (console_suspended)
2086 return;
2087 console_locked = 1;
2088 console_may_schedule = 1;
2089 }
2090 EXPORT_SYMBOL(console_lock);
2091
2092 /**
2093 * console_trylock - try to lock the console system for exclusive use.
2094 *
2095 * Try to acquire a lock which guarantees that the caller has exclusive
2096 * access to the console system and the console_drivers list.
2097 *
2098 * returns 1 on success, and 0 on failure to acquire the lock.
2099 */
2100 int console_trylock(void)
2101 {
2102 if (down_trylock_console_sem())
2103 return 0;
2104 if (console_suspended) {
2105 up_console_sem();
2106 return 0;
2107 }
2108 console_locked = 1;
2109 /*
2110 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2111 * safe to schedule (e.g. calling printk while holding a spin_lock),
2112 * because preempt_disable()/preempt_enable() are just barriers there
2113 * and preempt_count() is always 0.
2114 *
2115 * RCU read sections have a separate preemption counter when
2116 * PREEMPT_RCU enabled thus we must take extra care and check
2117 * rcu_preempt_depth(), otherwise RCU read sections modify
2118 * preempt_count().
2119 */
2120 console_may_schedule = !oops_in_progress &&
2121 preemptible() &&
2122 !rcu_preempt_depth();
2123 return 1;
2124 }
2125 EXPORT_SYMBOL(console_trylock);
2126
2127 int is_console_locked(void)
2128 {
2129 return console_locked;
2130 }
2131
2132 /*
2133 * Check if we have any console that is capable of printing while cpu is
2134 * booting or shutting down. Requires console_sem.
2135 */
2136 static int have_callable_console(void)
2137 {
2138 struct console *con;
2139
2140 for_each_console(con)
2141 if ((con->flags & CON_ENABLED) &&
2142 (con->flags & CON_ANYTIME))
2143 return 1;
2144
2145 return 0;
2146 }
2147
2148 /*
2149 * Can we actually use the console at this time on this cpu?
2150 *
2151 * Console drivers may assume that per-cpu resources have been allocated. So
2152 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2153 * call them until this CPU is officially up.
2154 */
2155 static inline int can_use_console(void)
2156 {
2157 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2158 }
2159
2160 static void console_cont_flush(char *text, size_t size)
2161 {
2162 unsigned long flags;
2163 size_t len;
2164
2165 raw_spin_lock_irqsave(&logbuf_lock, flags);
2166
2167 if (!cont.len)
2168 goto out;
2169
2170 /*
2171 * We still queue earlier records, likely because the console was
2172 * busy. The earlier ones need to be printed before this one, we
2173 * did not flush any fragment so far, so just let it queue up.
2174 */
2175 if (console_seq < log_next_seq && !cont.cons)
2176 goto out;
2177
2178 len = cont_print_text(text, size);
2179 raw_spin_unlock(&logbuf_lock);
2180 stop_critical_timings();
2181 call_console_drivers(cont.level, NULL, 0, text, len);
2182 start_critical_timings();
2183 local_irq_restore(flags);
2184 return;
2185 out:
2186 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2187 }
2188
2189 /**
2190 * console_unlock - unlock the console system
2191 *
2192 * Releases the console_lock which the caller holds on the console system
2193 * and the console driver list.
2194 *
2195 * While the console_lock was held, console output may have been buffered
2196 * by printk(). If this is the case, console_unlock(); emits
2197 * the output prior to releasing the lock.
2198 *
2199 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2200 *
2201 * console_unlock(); may be called from any context.
2202 */
2203 void console_unlock(void)
2204 {
2205 static char ext_text[CONSOLE_EXT_LOG_MAX];
2206 static char text[LOG_LINE_MAX + PREFIX_MAX];
2207 static u64 seen_seq;
2208 unsigned long flags;
2209 bool wake_klogd = false;
2210 bool do_cond_resched, retry;
2211
2212 if (console_suspended) {
2213 up_console_sem();
2214 return;
2215 }
2216
2217 /*
2218 * Console drivers are called under logbuf_lock, so
2219 * @console_may_schedule should be cleared before; however, we may
2220 * end up dumping a lot of lines, for example, if called from
2221 * console registration path, and should invoke cond_resched()
2222 * between lines if allowable. Not doing so can cause a very long
2223 * scheduling stall on a slow console leading to RCU stall and
2224 * softlockup warnings which exacerbate the issue with more
2225 * messages practically incapacitating the system.
2226 */
2227 do_cond_resched = console_may_schedule;
2228 console_may_schedule = 0;
2229
2230 again:
2231 /*
2232 * We released the console_sem lock, so we need to recheck if
2233 * cpu is online and (if not) is there at least one CON_ANYTIME
2234 * console.
2235 */
2236 if (!can_use_console()) {
2237 console_locked = 0;
2238 up_console_sem();
2239 return;
2240 }
2241
2242 /* flush buffered message fragment immediately to console */
2243 console_cont_flush(text, sizeof(text));
2244
2245 for (;;) {
2246 struct printk_log *msg;
2247 size_t ext_len = 0;
2248 size_t len;
2249 int level;
2250
2251 raw_spin_lock_irqsave(&logbuf_lock, flags);
2252 if (seen_seq != log_next_seq) {
2253 wake_klogd = true;
2254 seen_seq = log_next_seq;
2255 }
2256
2257 if (console_seq < log_first_seq) {
2258 len = sprintf(text, "** %u printk messages dropped ** ",
2259 (unsigned)(log_first_seq - console_seq));
2260
2261 /* messages are gone, move to first one */
2262 console_seq = log_first_seq;
2263 console_idx = log_first_idx;
2264 console_prev = 0;
2265 } else {
2266 len = 0;
2267 }
2268 skip:
2269 if (console_seq == log_next_seq)
2270 break;
2271
2272 msg = log_from_idx(console_idx);
2273 if (msg->flags & LOG_NOCONS) {
2274 /*
2275 * Skip record we have buffered and already printed
2276 * directly to the console when we received it.
2277 */
2278 console_idx = log_next(console_idx);
2279 console_seq++;
2280 /*
2281 * We will get here again when we register a new
2282 * CON_PRINTBUFFER console. Clear the flag so we
2283 * will properly dump everything later.
2284 */
2285 msg->flags &= ~LOG_NOCONS;
2286 console_prev = msg->flags;
2287 goto skip;
2288 }
2289
2290 level = msg->level;
2291 len += msg_print_text(msg, console_prev, false,
2292 text + len, sizeof(text) - len);
2293 if (nr_ext_console_drivers) {
2294 ext_len = msg_print_ext_header(ext_text,
2295 sizeof(ext_text),
2296 msg, console_seq, console_prev);
2297 ext_len += msg_print_ext_body(ext_text + ext_len,
2298 sizeof(ext_text) - ext_len,
2299 log_dict(msg), msg->dict_len,
2300 log_text(msg), msg->text_len);
2301 }
2302 console_idx = log_next(console_idx);
2303 console_seq++;
2304 console_prev = msg->flags;
2305 raw_spin_unlock(&logbuf_lock);
2306
2307 stop_critical_timings(); /* don't trace print latency */
2308 call_console_drivers(level, ext_text, ext_len, text, len);
2309 start_critical_timings();
2310 local_irq_restore(flags);
2311
2312 if (do_cond_resched)
2313 cond_resched();
2314 }
2315 console_locked = 0;
2316
2317 /* Release the exclusive_console once it is used */
2318 if (unlikely(exclusive_console))
2319 exclusive_console = NULL;
2320
2321 raw_spin_unlock(&logbuf_lock);
2322
2323 up_console_sem();
2324
2325 /*
2326 * Someone could have filled up the buffer again, so re-check if there's
2327 * something to flush. In case we cannot trylock the console_sem again,
2328 * there's a new owner and the console_unlock() from them will do the
2329 * flush, no worries.
2330 */
2331 raw_spin_lock(&logbuf_lock);
2332 retry = console_seq != log_next_seq;
2333 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2334
2335 if (retry && console_trylock())
2336 goto again;
2337
2338 if (wake_klogd)
2339 wake_up_klogd();
2340 }
2341 EXPORT_SYMBOL(console_unlock);
2342
2343 /**
2344 * console_conditional_schedule - yield the CPU if required
2345 *
2346 * If the console code is currently allowed to sleep, and
2347 * if this CPU should yield the CPU to another task, do
2348 * so here.
2349 *
2350 * Must be called within console_lock();.
2351 */
2352 void __sched console_conditional_schedule(void)
2353 {
2354 if (console_may_schedule)
2355 cond_resched();
2356 }
2357 EXPORT_SYMBOL(console_conditional_schedule);
2358
2359 void console_unblank(void)
2360 {
2361 struct console *c;
2362
2363 /*
2364 * console_unblank can no longer be called in interrupt context unless
2365 * oops_in_progress is set to 1..
2366 */
2367 if (oops_in_progress) {
2368 if (down_trylock_console_sem() != 0)
2369 return;
2370 } else
2371 console_lock();
2372
2373 console_locked = 1;
2374 console_may_schedule = 0;
2375 for_each_console(c)
2376 if ((c->flags & CON_ENABLED) && c->unblank)
2377 c->unblank();
2378 console_unlock();
2379 }
2380
2381 /**
2382 * console_flush_on_panic - flush console content on panic
2383 *
2384 * Immediately output all pending messages no matter what.
2385 */
2386 void console_flush_on_panic(void)
2387 {
2388 /*
2389 * If someone else is holding the console lock, trylock will fail
2390 * and may_schedule may be set. Ignore and proceed to unlock so
2391 * that messages are flushed out. As this can be called from any
2392 * context and we don't want to get preempted while flushing,
2393 * ensure may_schedule is cleared.
2394 */
2395 console_trylock();
2396 console_may_schedule = 0;
2397 console_unlock();
2398 }
2399
2400 /*
2401 * Return the console tty driver structure and its associated index
2402 */
2403 struct tty_driver *console_device(int *index)
2404 {
2405 struct console *c;
2406 struct tty_driver *driver = NULL;
2407
2408 console_lock();
2409 for_each_console(c) {
2410 if (!c->device)
2411 continue;
2412 driver = c->device(c, index);
2413 if (driver)
2414 break;
2415 }
2416 console_unlock();
2417 return driver;
2418 }
2419
2420 /*
2421 * Prevent further output on the passed console device so that (for example)
2422 * serial drivers can disable console output before suspending a port, and can
2423 * re-enable output afterwards.
2424 */
2425 void console_stop(struct console *console)
2426 {
2427 console_lock();
2428 console->flags &= ~CON_ENABLED;
2429 console_unlock();
2430 }
2431 EXPORT_SYMBOL(console_stop);
2432
2433 void console_start(struct console *console)
2434 {
2435 console_lock();
2436 console->flags |= CON_ENABLED;
2437 console_unlock();
2438 }
2439 EXPORT_SYMBOL(console_start);
2440
2441 static int __read_mostly keep_bootcon;
2442
2443 static int __init keep_bootcon_setup(char *str)
2444 {
2445 keep_bootcon = 1;
2446 pr_info("debug: skip boot console de-registration.\n");
2447
2448 return 0;
2449 }
2450
2451 early_param("keep_bootcon", keep_bootcon_setup);
2452
2453 /*
2454 * The console driver calls this routine during kernel initialization
2455 * to register the console printing procedure with printk() and to
2456 * print any messages that were printed by the kernel before the
2457 * console driver was initialized.
2458 *
2459 * This can happen pretty early during the boot process (because of
2460 * early_printk) - sometimes before setup_arch() completes - be careful
2461 * of what kernel features are used - they may not be initialised yet.
2462 *
2463 * There are two types of consoles - bootconsoles (early_printk) and
2464 * "real" consoles (everything which is not a bootconsole) which are
2465 * handled differently.
2466 * - Any number of bootconsoles can be registered at any time.
2467 * - As soon as a "real" console is registered, all bootconsoles
2468 * will be unregistered automatically.
2469 * - Once a "real" console is registered, any attempt to register a
2470 * bootconsoles will be rejected
2471 */
2472 void register_console(struct console *newcon)
2473 {
2474 int i;
2475 unsigned long flags;
2476 struct console *bcon = NULL;
2477 struct console_cmdline *c;
2478
2479 if (console_drivers)
2480 for_each_console(bcon)
2481 if (WARN(bcon == newcon,
2482 "console '%s%d' already registered\n",
2483 bcon->name, bcon->index))
2484 return;
2485
2486 /*
2487 * before we register a new CON_BOOT console, make sure we don't
2488 * already have a valid console
2489 */
2490 if (console_drivers && newcon->flags & CON_BOOT) {
2491 /* find the last or real console */
2492 for_each_console(bcon) {
2493 if (!(bcon->flags & CON_BOOT)) {
2494 pr_info("Too late to register bootconsole %s%d\n",
2495 newcon->name, newcon->index);
2496 return;
2497 }
2498 }
2499 }
2500
2501 if (console_drivers && console_drivers->flags & CON_BOOT)
2502 bcon = console_drivers;
2503
2504 if (preferred_console < 0 || bcon || !console_drivers)
2505 preferred_console = selected_console;
2506
2507 /*
2508 * See if we want to use this console driver. If we
2509 * didn't select a console we take the first one
2510 * that registers here.
2511 */
2512 if (preferred_console < 0) {
2513 if (newcon->index < 0)
2514 newcon->index = 0;
2515 if (newcon->setup == NULL ||
2516 newcon->setup(newcon, NULL) == 0) {
2517 newcon->flags |= CON_ENABLED;
2518 if (newcon->device) {
2519 newcon->flags |= CON_CONSDEV;
2520 preferred_console = 0;
2521 }
2522 }
2523 }
2524
2525 /*
2526 * See if this console matches one we selected on
2527 * the command line.
2528 */
2529 for (i = 0, c = console_cmdline;
2530 i < MAX_CMDLINECONSOLES && c->name[0];
2531 i++, c++) {
2532 if (!newcon->match ||
2533 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2534 /* default matching */
2535 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2536 if (strcmp(c->name, newcon->name) != 0)
2537 continue;
2538 if (newcon->index >= 0 &&
2539 newcon->index != c->index)
2540 continue;
2541 if (newcon->index < 0)
2542 newcon->index = c->index;
2543
2544 if (_braille_register_console(newcon, c))
2545 return;
2546
2547 if (newcon->setup &&
2548 newcon->setup(newcon, c->options) != 0)
2549 break;
2550 }
2551
2552 newcon->flags |= CON_ENABLED;
2553 if (i == selected_console) {
2554 newcon->flags |= CON_CONSDEV;
2555 preferred_console = selected_console;
2556 }
2557 break;
2558 }
2559
2560 if (!(newcon->flags & CON_ENABLED))
2561 return;
2562
2563 /*
2564 * If we have a bootconsole, and are switching to a real console,
2565 * don't print everything out again, since when the boot console, and
2566 * the real console are the same physical device, it's annoying to
2567 * see the beginning boot messages twice
2568 */
2569 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2570 newcon->flags &= ~CON_PRINTBUFFER;
2571
2572 /*
2573 * Put this console in the list - keep the
2574 * preferred driver at the head of the list.
2575 */
2576 console_lock();
2577 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2578 newcon->next = console_drivers;
2579 console_drivers = newcon;
2580 if (newcon->next)
2581 newcon->next->flags &= ~CON_CONSDEV;
2582 } else {
2583 newcon->next = console_drivers->next;
2584 console_drivers->next = newcon;
2585 }
2586
2587 if (newcon->flags & CON_EXTENDED)
2588 if (!nr_ext_console_drivers++)
2589 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2590
2591 if (newcon->flags & CON_PRINTBUFFER) {
2592 /*
2593 * console_unlock(); will print out the buffered messages
2594 * for us.
2595 */
2596 raw_spin_lock_irqsave(&logbuf_lock, flags);
2597 console_seq = syslog_seq;
2598 console_idx = syslog_idx;
2599 console_prev = syslog_prev;
2600 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2601 /*
2602 * We're about to replay the log buffer. Only do this to the
2603 * just-registered console to avoid excessive message spam to
2604 * the already-registered consoles.
2605 */
2606 exclusive_console = newcon;
2607 }
2608 console_unlock();
2609 console_sysfs_notify();
2610
2611 /*
2612 * By unregistering the bootconsoles after we enable the real console
2613 * we get the "console xxx enabled" message on all the consoles -
2614 * boot consoles, real consoles, etc - this is to ensure that end
2615 * users know there might be something in the kernel's log buffer that
2616 * went to the bootconsole (that they do not see on the real console)
2617 */
2618 pr_info("%sconsole [%s%d] enabled\n",
2619 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2620 newcon->name, newcon->index);
2621 if (bcon &&
2622 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2623 !keep_bootcon) {
2624 /* We need to iterate through all boot consoles, to make
2625 * sure we print everything out, before we unregister them.
2626 */
2627 for_each_console(bcon)
2628 if (bcon->flags & CON_BOOT)
2629 unregister_console(bcon);
2630 }
2631 }
2632 EXPORT_SYMBOL(register_console);
2633
2634 int unregister_console(struct console *console)
2635 {
2636 struct console *a, *b;
2637 int res;
2638
2639 pr_info("%sconsole [%s%d] disabled\n",
2640 (console->flags & CON_BOOT) ? "boot" : "" ,
2641 console->name, console->index);
2642
2643 res = _braille_unregister_console(console);
2644 if (res)
2645 return res;
2646
2647 res = 1;
2648 console_lock();
2649 if (console_drivers == console) {
2650 console_drivers=console->next;
2651 res = 0;
2652 } else if (console_drivers) {
2653 for (a=console_drivers->next, b=console_drivers ;
2654 a; b=a, a=b->next) {
2655 if (a == console) {
2656 b->next = a->next;
2657 res = 0;
2658 break;
2659 }
2660 }
2661 }
2662
2663 if (!res && (console->flags & CON_EXTENDED))
2664 nr_ext_console_drivers--;
2665
2666 /*
2667 * If this isn't the last console and it has CON_CONSDEV set, we
2668 * need to set it on the next preferred console.
2669 */
2670 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2671 console_drivers->flags |= CON_CONSDEV;
2672
2673 console->flags &= ~CON_ENABLED;
2674 console_unlock();
2675 console_sysfs_notify();
2676 return res;
2677 }
2678 EXPORT_SYMBOL(unregister_console);
2679
2680 /*
2681 * Some boot consoles access data that is in the init section and which will
2682 * be discarded after the initcalls have been run. To make sure that no code
2683 * will access this data, unregister the boot consoles in a late initcall.
2684 *
2685 * If for some reason, such as deferred probe or the driver being a loadable
2686 * module, the real console hasn't registered yet at this point, there will
2687 * be a brief interval in which no messages are logged to the console, which
2688 * makes it difficult to diagnose problems that occur during this time.
2689 *
2690 * To mitigate this problem somewhat, only unregister consoles whose memory
2691 * intersects with the init section. Note that code exists elsewhere to get
2692 * rid of the boot console as soon as the proper console shows up, so there
2693 * won't be side-effects from postponing the removal.
2694 */
2695 static int __init printk_late_init(void)
2696 {
2697 struct console *con;
2698
2699 for_each_console(con) {
2700 if (!keep_bootcon && con->flags & CON_BOOT) {
2701 /*
2702 * Make sure to unregister boot consoles whose data
2703 * resides in the init section before the init section
2704 * is discarded. Boot consoles whose data will stick
2705 * around will automatically be unregistered when the
2706 * proper console replaces them.
2707 */
2708 if (init_section_intersects(con, sizeof(*con)))
2709 unregister_console(con);
2710 }
2711 }
2712 hotcpu_notifier(console_cpu_notify, 0);
2713 return 0;
2714 }
2715 late_initcall(printk_late_init);
2716
2717 #if defined CONFIG_PRINTK
2718 /*
2719 * Delayed printk version, for scheduler-internal messages:
2720 */
2721 #define PRINTK_PENDING_WAKEUP 0x01
2722 #define PRINTK_PENDING_OUTPUT 0x02
2723
2724 static DEFINE_PER_CPU(int, printk_pending);
2725
2726 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2727 {
2728 int pending = __this_cpu_xchg(printk_pending, 0);
2729
2730 if (pending & PRINTK_PENDING_OUTPUT) {
2731 /* If trylock fails, someone else is doing the printing */
2732 if (console_trylock())
2733 console_unlock();
2734 }
2735
2736 if (pending & PRINTK_PENDING_WAKEUP)
2737 wake_up_interruptible(&log_wait);
2738 }
2739
2740 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2741 .func = wake_up_klogd_work_func,
2742 .flags = IRQ_WORK_LAZY,
2743 };
2744
2745 void wake_up_klogd(void)
2746 {
2747 preempt_disable();
2748 if (waitqueue_active(&log_wait)) {
2749 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2750 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2751 }
2752 preempt_enable();
2753 }
2754
2755 int printk_deferred(const char *fmt, ...)
2756 {
2757 va_list args;
2758 int r;
2759
2760 preempt_disable();
2761 va_start(args, fmt);
2762 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2763 va_end(args);
2764
2765 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2766 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2767 preempt_enable();
2768
2769 return r;
2770 }
2771
2772 /*
2773 * printk rate limiting, lifted from the networking subsystem.
2774 *
2775 * This enforces a rate limit: not more than 10 kernel messages
2776 * every 5s to make a denial-of-service attack impossible.
2777 */
2778 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2779
2780 int __printk_ratelimit(const char *func)
2781 {
2782 return ___ratelimit(&printk_ratelimit_state, func);
2783 }
2784 EXPORT_SYMBOL(__printk_ratelimit);
2785
2786 /**
2787 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2788 * @caller_jiffies: pointer to caller's state
2789 * @interval_msecs: minimum interval between prints
2790 *
2791 * printk_timed_ratelimit() returns true if more than @interval_msecs
2792 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2793 * returned true.
2794 */
2795 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2796 unsigned int interval_msecs)
2797 {
2798 unsigned long elapsed = jiffies - *caller_jiffies;
2799
2800 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2801 return false;
2802
2803 *caller_jiffies = jiffies;
2804 return true;
2805 }
2806 EXPORT_SYMBOL(printk_timed_ratelimit);
2807
2808 static DEFINE_SPINLOCK(dump_list_lock);
2809 static LIST_HEAD(dump_list);
2810
2811 /**
2812 * kmsg_dump_register - register a kernel log dumper.
2813 * @dumper: pointer to the kmsg_dumper structure
2814 *
2815 * Adds a kernel log dumper to the system. The dump callback in the
2816 * structure will be called when the kernel oopses or panics and must be
2817 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2818 */
2819 int kmsg_dump_register(struct kmsg_dumper *dumper)
2820 {
2821 unsigned long flags;
2822 int err = -EBUSY;
2823
2824 /* The dump callback needs to be set */
2825 if (!dumper->dump)
2826 return -EINVAL;
2827
2828 spin_lock_irqsave(&dump_list_lock, flags);
2829 /* Don't allow registering multiple times */
2830 if (!dumper->registered) {
2831 dumper->registered = 1;
2832 list_add_tail_rcu(&dumper->list, &dump_list);
2833 err = 0;
2834 }
2835 spin_unlock_irqrestore(&dump_list_lock, flags);
2836
2837 return err;
2838 }
2839 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2840
2841 /**
2842 * kmsg_dump_unregister - unregister a kmsg dumper.
2843 * @dumper: pointer to the kmsg_dumper structure
2844 *
2845 * Removes a dump device from the system. Returns zero on success and
2846 * %-EINVAL otherwise.
2847 */
2848 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2849 {
2850 unsigned long flags;
2851 int err = -EINVAL;
2852
2853 spin_lock_irqsave(&dump_list_lock, flags);
2854 if (dumper->registered) {
2855 dumper->registered = 0;
2856 list_del_rcu(&dumper->list);
2857 err = 0;
2858 }
2859 spin_unlock_irqrestore(&dump_list_lock, flags);
2860 synchronize_rcu();
2861
2862 return err;
2863 }
2864 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2865
2866 static bool always_kmsg_dump;
2867 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2868
2869 /**
2870 * kmsg_dump - dump kernel log to kernel message dumpers.
2871 * @reason: the reason (oops, panic etc) for dumping
2872 *
2873 * Call each of the registered dumper's dump() callback, which can
2874 * retrieve the kmsg records with kmsg_dump_get_line() or
2875 * kmsg_dump_get_buffer().
2876 */
2877 void kmsg_dump(enum kmsg_dump_reason reason)
2878 {
2879 struct kmsg_dumper *dumper;
2880 unsigned long flags;
2881
2882 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2883 return;
2884
2885 rcu_read_lock();
2886 list_for_each_entry_rcu(dumper, &dump_list, list) {
2887 if (dumper->max_reason && reason > dumper->max_reason)
2888 continue;
2889
2890 /* initialize iterator with data about the stored records */
2891 dumper->active = true;
2892
2893 raw_spin_lock_irqsave(&logbuf_lock, flags);
2894 dumper->cur_seq = clear_seq;
2895 dumper->cur_idx = clear_idx;
2896 dumper->next_seq = log_next_seq;
2897 dumper->next_idx = log_next_idx;
2898 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2899
2900 /* invoke dumper which will iterate over records */
2901 dumper->dump(dumper, reason);
2902
2903 /* reset iterator */
2904 dumper->active = false;
2905 }
2906 rcu_read_unlock();
2907 }
2908
2909 /**
2910 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2911 * @dumper: registered kmsg dumper
2912 * @syslog: include the "<4>" prefixes
2913 * @line: buffer to copy the line to
2914 * @size: maximum size of the buffer
2915 * @len: length of line placed into buffer
2916 *
2917 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2918 * record, and copy one record into the provided buffer.
2919 *
2920 * Consecutive calls will return the next available record moving
2921 * towards the end of the buffer with the youngest messages.
2922 *
2923 * A return value of FALSE indicates that there are no more records to
2924 * read.
2925 *
2926 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2927 */
2928 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2929 char *line, size_t size, size_t *len)
2930 {
2931 struct printk_log *msg;
2932 size_t l = 0;
2933 bool ret = false;
2934
2935 if (!dumper->active)
2936 goto out;
2937
2938 if (dumper->cur_seq < log_first_seq) {
2939 /* messages are gone, move to first available one */
2940 dumper->cur_seq = log_first_seq;
2941 dumper->cur_idx = log_first_idx;
2942 }
2943
2944 /* last entry */
2945 if (dumper->cur_seq >= log_next_seq)
2946 goto out;
2947
2948 msg = log_from_idx(dumper->cur_idx);
2949 l = msg_print_text(msg, 0, syslog, line, size);
2950
2951 dumper->cur_idx = log_next(dumper->cur_idx);
2952 dumper->cur_seq++;
2953 ret = true;
2954 out:
2955 if (len)
2956 *len = l;
2957 return ret;
2958 }
2959
2960 /**
2961 * kmsg_dump_get_line - retrieve one kmsg log line
2962 * @dumper: registered kmsg dumper
2963 * @syslog: include the "<4>" prefixes
2964 * @line: buffer to copy the line to
2965 * @size: maximum size of the buffer
2966 * @len: length of line placed into buffer
2967 *
2968 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2969 * record, and copy one record into the provided buffer.
2970 *
2971 * Consecutive calls will return the next available record moving
2972 * towards the end of the buffer with the youngest messages.
2973 *
2974 * A return value of FALSE indicates that there are no more records to
2975 * read.
2976 */
2977 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2978 char *line, size_t size, size_t *len)
2979 {
2980 unsigned long flags;
2981 bool ret;
2982
2983 raw_spin_lock_irqsave(&logbuf_lock, flags);
2984 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2985 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2986
2987 return ret;
2988 }
2989 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2990
2991 /**
2992 * kmsg_dump_get_buffer - copy kmsg log lines
2993 * @dumper: registered kmsg dumper
2994 * @syslog: include the "<4>" prefixes
2995 * @buf: buffer to copy the line to
2996 * @size: maximum size of the buffer
2997 * @len: length of line placed into buffer
2998 *
2999 * Start at the end of the kmsg buffer and fill the provided buffer
3000 * with as many of the the *youngest* kmsg records that fit into it.
3001 * If the buffer is large enough, all available kmsg records will be
3002 * copied with a single call.
3003 *
3004 * Consecutive calls will fill the buffer with the next block of
3005 * available older records, not including the earlier retrieved ones.
3006 *
3007 * A return value of FALSE indicates that there are no more records to
3008 * read.
3009 */
3010 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3011 char *buf, size_t size, size_t *len)
3012 {
3013 unsigned long flags;
3014 u64 seq;
3015 u32 idx;
3016 u64 next_seq;
3017 u32 next_idx;
3018 enum log_flags prev;
3019 size_t l = 0;
3020 bool ret = false;
3021
3022 if (!dumper->active)
3023 goto out;
3024
3025 raw_spin_lock_irqsave(&logbuf_lock, flags);
3026 if (dumper->cur_seq < log_first_seq) {
3027 /* messages are gone, move to first available one */
3028 dumper->cur_seq = log_first_seq;
3029 dumper->cur_idx = log_first_idx;
3030 }
3031
3032 /* last entry */
3033 if (dumper->cur_seq >= dumper->next_seq) {
3034 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3035 goto out;
3036 }
3037
3038 /* calculate length of entire buffer */
3039 seq = dumper->cur_seq;
3040 idx = dumper->cur_idx;
3041 prev = 0;
3042 while (seq < dumper->next_seq) {
3043 struct printk_log *msg = log_from_idx(idx);
3044
3045 l += msg_print_text(msg, prev, true, NULL, 0);
3046 idx = log_next(idx);
3047 seq++;
3048 prev = msg->flags;
3049 }
3050
3051 /* move first record forward until length fits into the buffer */
3052 seq = dumper->cur_seq;
3053 idx = dumper->cur_idx;
3054 prev = 0;
3055 while (l > size && seq < dumper->next_seq) {
3056 struct printk_log *msg = log_from_idx(idx);
3057
3058 l -= msg_print_text(msg, prev, true, NULL, 0);
3059 idx = log_next(idx);
3060 seq++;
3061 prev = msg->flags;
3062 }
3063
3064 /* last message in next interation */
3065 next_seq = seq;
3066 next_idx = idx;
3067
3068 l = 0;
3069 while (seq < dumper->next_seq) {
3070 struct printk_log *msg = log_from_idx(idx);
3071
3072 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3073 idx = log_next(idx);
3074 seq++;
3075 prev = msg->flags;
3076 }
3077
3078 dumper->next_seq = next_seq;
3079 dumper->next_idx = next_idx;
3080 ret = true;
3081 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3082 out:
3083 if (len)
3084 *len = l;
3085 return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3088
3089 /**
3090 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3091 * @dumper: registered kmsg dumper
3092 *
3093 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3094 * kmsg_dump_get_buffer() can be called again and used multiple
3095 * times within the same dumper.dump() callback.
3096 *
3097 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3098 */
3099 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3100 {
3101 dumper->cur_seq = clear_seq;
3102 dumper->cur_idx = clear_idx;
3103 dumper->next_seq = log_next_seq;
3104 dumper->next_idx = log_next_idx;
3105 }
3106
3107 /**
3108 * kmsg_dump_rewind - reset the interator
3109 * @dumper: registered kmsg dumper
3110 *
3111 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3112 * kmsg_dump_get_buffer() can be called again and used multiple
3113 * times within the same dumper.dump() callback.
3114 */
3115 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3116 {
3117 unsigned long flags;
3118
3119 raw_spin_lock_irqsave(&logbuf_lock, flags);
3120 kmsg_dump_rewind_nolock(dumper);
3121 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3122 }
3123 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3124
3125 static char dump_stack_arch_desc_str[128];
3126
3127 /**
3128 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3129 * @fmt: printf-style format string
3130 * @...: arguments for the format string
3131 *
3132 * The configured string will be printed right after utsname during task
3133 * dumps. Usually used to add arch-specific system identifiers. If an
3134 * arch wants to make use of such an ID string, it should initialize this
3135 * as soon as possible during boot.
3136 */
3137 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3138 {
3139 va_list args;
3140
3141 va_start(args, fmt);
3142 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3143 fmt, args);
3144 va_end(args);
3145 }
3146
3147 /**
3148 * dump_stack_print_info - print generic debug info for dump_stack()
3149 * @log_lvl: log level
3150 *
3151 * Arch-specific dump_stack() implementations can use this function to
3152 * print out the same debug information as the generic dump_stack().
3153 */
3154 void dump_stack_print_info(const char *log_lvl)
3155 {
3156 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3157 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3158 print_tainted(), init_utsname()->release,
3159 (int)strcspn(init_utsname()->version, " "),
3160 init_utsname()->version);
3161
3162 if (dump_stack_arch_desc_str[0] != '\0')
3163 printk("%sHardware name: %s\n",
3164 log_lvl, dump_stack_arch_desc_str);
3165
3166 print_worker_info(log_lvl, current);
3167 }
3168
3169 /**
3170 * show_regs_print_info - print generic debug info for show_regs()
3171 * @log_lvl: log level
3172 *
3173 * show_regs() implementations can use this function to print out generic
3174 * debug information.
3175 */
3176 void show_regs_print_info(const char *log_lvl)
3177 {
3178 dump_stack_print_info(log_lvl);
3179
3180 printk("%stask: %p task.stack: %p\n",
3181 log_lvl, current, task_stack_page(current));
3182 }
3183
3184 #endif
This page took 0.09846 seconds and 5 git commands to generate.