Restartable sequences: tests: introduce simple rseq start/finish
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 enum devkmsg_log_bits {
89 __DEVKMSG_LOG_BIT_ON = 0,
90 __DEVKMSG_LOG_BIT_OFF,
91 __DEVKMSG_LOG_BIT_LOCK,
92 };
93
94 enum devkmsg_log_masks {
95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT 0
102
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104
105 static int __control_devkmsg(char *str)
106 {
107 if (!str)
108 return -EINVAL;
109
110 if (!strncmp(str, "on", 2)) {
111 devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 return 2;
113 } else if (!strncmp(str, "off", 3)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 return 3;
116 } else if (!strncmp(str, "ratelimit", 9)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 return 9;
119 }
120 return -EINVAL;
121 }
122
123 static int __init control_devkmsg(char *str)
124 {
125 if (__control_devkmsg(str) < 0)
126 return 1;
127
128 /*
129 * Set sysctl string accordingly:
130 */
131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 strncpy(devkmsg_log_str, "on", 2);
134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "off", 3);
137 }
138 /* else "ratelimit" which is set by default. */
139
140 /*
141 * Sysctl cannot change it anymore. The kernel command line setting of
142 * this parameter is to force the setting to be permanent throughout the
143 * runtime of the system. This is a precation measure against userspace
144 * trying to be a smarta** and attempting to change it up on us.
145 */
146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147
148 return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 char old_str[DEVKMSG_STR_MAX_SIZE];
158 unsigned int old;
159 int err;
160
161 if (write) {
162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 return -EINVAL;
164
165 old = devkmsg_log;
166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 }
168
169 err = proc_dostring(table, write, buffer, lenp, ppos);
170 if (err)
171 return err;
172
173 if (write) {
174 err = __control_devkmsg(devkmsg_log_str);
175
176 /*
177 * Do not accept an unknown string OR a known string with
178 * trailing crap...
179 */
180 if (err < 0 || (err + 1 != *lenp)) {
181
182 /* ... and restore old setting. */
183 devkmsg_log = old;
184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185
186 return -EINVAL;
187 }
188 }
189
190 return 0;
191 }
192
193 /*
194 * Number of registered extended console drivers.
195 *
196 * If extended consoles are present, in-kernel cont reassembly is disabled
197 * and each fragment is stored as a separate log entry with proper
198 * continuation flag so that every emitted message has full metadata. This
199 * doesn't change the result for regular consoles or /proc/kmsg. For
200 * /dev/kmsg, as long as the reader concatenates messages according to
201 * consecutive continuation flags, the end result should be the same too.
202 */
203 static int nr_ext_console_drivers;
204
205 /*
206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207 * macros instead of functions so that _RET_IP_ contains useful information.
208 */
209 #define down_console_sem() do { \
210 down(&console_sem);\
211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 if (down_trylock(&console_sem))
217 return 1;
218 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222
223 #define up_console_sem() do { \
224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 up(&console_sem);\
226 } while (0)
227
228 /*
229 * This is used for debugging the mess that is the VT code by
230 * keeping track if we have the console semaphore held. It's
231 * definitely not the perfect debug tool (we don't know if _WE_
232 * hold it and are racing, but it helps tracking those weird code
233 * paths in the console code where we end up in places I want
234 * locked without the console sempahore held).
235 */
236 static int console_locked, console_suspended;
237
238 /*
239 * If exclusive_console is non-NULL then only this console is to be printed to.
240 */
241 static struct console *exclusive_console;
242
243 /*
244 * Array of consoles built from command line options (console=)
245 */
246
247 #define MAX_CMDLINECONSOLES 8
248
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258
259 /*
260 * The printk log buffer consists of a chain of concatenated variable
261 * length records. Every record starts with a record header, containing
262 * the overall length of the record.
263 *
264 * The heads to the first and last entry in the buffer, as well as the
265 * sequence numbers of these entries are maintained when messages are
266 * stored.
267 *
268 * If the heads indicate available messages, the length in the header
269 * tells the start next message. A length == 0 for the next message
270 * indicates a wrap-around to the beginning of the buffer.
271 *
272 * Every record carries the monotonic timestamp in microseconds, as well as
273 * the standard userspace syslog level and syslog facility. The usual
274 * kernel messages use LOG_KERN; userspace-injected messages always carry
275 * a matching syslog facility, by default LOG_USER. The origin of every
276 * message can be reliably determined that way.
277 *
278 * The human readable log message directly follows the message header. The
279 * length of the message text is stored in the header, the stored message
280 * is not terminated.
281 *
282 * Optionally, a message can carry a dictionary of properties (key/value pairs),
283 * to provide userspace with a machine-readable message context.
284 *
285 * Examples for well-defined, commonly used property names are:
286 * DEVICE=b12:8 device identifier
287 * b12:8 block dev_t
288 * c127:3 char dev_t
289 * n8 netdev ifindex
290 * +sound:card0 subsystem:devname
291 * SUBSYSTEM=pci driver-core subsystem name
292 *
293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294 * follows directly after a '=' character. Every property is terminated by
295 * a '\0' character. The last property is not terminated.
296 *
297 * Example of a message structure:
298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
299 * 0008 34 00 record is 52 bytes long
300 * 000a 0b 00 text is 11 bytes long
301 * 000c 1f 00 dictionary is 23 bytes long
302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
303 * 0010 69 74 27 73 20 61 20 6c "it's a l"
304 * 69 6e 65 "ine"
305 * 001b 44 45 56 49 43 "DEVIC"
306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
307 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
308 * 67 "g"
309 * 0032 00 00 00 padding to next message header
310 *
311 * The 'struct printk_log' buffer header must never be directly exported to
312 * userspace, it is a kernel-private implementation detail that might
313 * need to be changed in the future, when the requirements change.
314 *
315 * /dev/kmsg exports the structured data in the following line format:
316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317 *
318 * Users of the export format should ignore possible additional values
319 * separated by ',', and find the message after the ';' character.
320 *
321 * The optional key/value pairs are attached as continuation lines starting
322 * with a space character and terminated by a newline. All possible
323 * non-prinatable characters are escaped in the "\xff" notation.
324 */
325
326 enum log_flags {
327 LOG_NOCONS = 1, /* already flushed, do not print to console */
328 LOG_NEWLINE = 2, /* text ended with a newline */
329 LOG_PREFIX = 4, /* text started with a prefix */
330 LOG_CONT = 8, /* text is a fragment of a continuation line */
331 };
332
333 struct printk_log {
334 u64 ts_nsec; /* timestamp in nanoseconds */
335 u16 len; /* length of entire record */
336 u16 text_len; /* length of text buffer */
337 u16 dict_len; /* length of dictionary buffer */
338 u8 facility; /* syslog facility */
339 u8 flags:5; /* internal record flags */
340 u8 level:3; /* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346
347 /*
348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
349 * within the scheduler's rq lock. It must be released before calling
350 * console_unlock() or anything else that might wake up a process.
351 */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static enum log_flags syslog_prev;
360 static size_t syslog_partial;
361
362 /* index and sequence number of the first record stored in the buffer */
363 static u64 log_first_seq;
364 static u32 log_first_idx;
365
366 /* index and sequence number of the next record to store in the buffer */
367 static u64 log_next_seq;
368 static u32 log_next_idx;
369
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u32 console_idx;
373 static enum log_flags console_prev;
374
375 /* the next printk record to read after the last 'clear' command */
376 static u64 clear_seq;
377 static u32 clear_idx;
378
379 #define PREFIX_MAX 32
380 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
381
382 #define LOG_LEVEL(v) ((v) & 0x07)
383 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
384
385 /* record buffer */
386 #define LOG_ALIGN __alignof__(struct printk_log)
387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
389 static char *log_buf = __log_buf;
390 static u32 log_buf_len = __LOG_BUF_LEN;
391
392 /* Return log buffer address */
393 char *log_buf_addr_get(void)
394 {
395 return log_buf;
396 }
397
398 /* Return log buffer size */
399 u32 log_buf_len_get(void)
400 {
401 return log_buf_len;
402 }
403
404 /* human readable text of the record */
405 static char *log_text(const struct printk_log *msg)
406 {
407 return (char *)msg + sizeof(struct printk_log);
408 }
409
410 /* optional key/value pair dictionary attached to the record */
411 static char *log_dict(const struct printk_log *msg)
412 {
413 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
414 }
415
416 /* get record by index; idx must point to valid msg */
417 static struct printk_log *log_from_idx(u32 idx)
418 {
419 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
420
421 /*
422 * A length == 0 record is the end of buffer marker. Wrap around and
423 * read the message at the start of the buffer.
424 */
425 if (!msg->len)
426 return (struct printk_log *)log_buf;
427 return msg;
428 }
429
430 /* get next record; idx must point to valid msg */
431 static u32 log_next(u32 idx)
432 {
433 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
434
435 /* length == 0 indicates the end of the buffer; wrap */
436 /*
437 * A length == 0 record is the end of buffer marker. Wrap around and
438 * read the message at the start of the buffer as *this* one, and
439 * return the one after that.
440 */
441 if (!msg->len) {
442 msg = (struct printk_log *)log_buf;
443 return msg->len;
444 }
445 return idx + msg->len;
446 }
447
448 /*
449 * Check whether there is enough free space for the given message.
450 *
451 * The same values of first_idx and next_idx mean that the buffer
452 * is either empty or full.
453 *
454 * If the buffer is empty, we must respect the position of the indexes.
455 * They cannot be reset to the beginning of the buffer.
456 */
457 static int logbuf_has_space(u32 msg_size, bool empty)
458 {
459 u32 free;
460
461 if (log_next_idx > log_first_idx || empty)
462 free = max(log_buf_len - log_next_idx, log_first_idx);
463 else
464 free = log_first_idx - log_next_idx;
465
466 /*
467 * We need space also for an empty header that signalizes wrapping
468 * of the buffer.
469 */
470 return free >= msg_size + sizeof(struct printk_log);
471 }
472
473 static int log_make_free_space(u32 msg_size)
474 {
475 while (log_first_seq < log_next_seq &&
476 !logbuf_has_space(msg_size, false)) {
477 /* drop old messages until we have enough contiguous space */
478 log_first_idx = log_next(log_first_idx);
479 log_first_seq++;
480 }
481
482 if (clear_seq < log_first_seq) {
483 clear_seq = log_first_seq;
484 clear_idx = log_first_idx;
485 }
486
487 /* sequence numbers are equal, so the log buffer is empty */
488 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
489 return 0;
490
491 return -ENOMEM;
492 }
493
494 /* compute the message size including the padding bytes */
495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
496 {
497 u32 size;
498
499 size = sizeof(struct printk_log) + text_len + dict_len;
500 *pad_len = (-size) & (LOG_ALIGN - 1);
501 size += *pad_len;
502
503 return size;
504 }
505
506 /*
507 * Define how much of the log buffer we could take at maximum. The value
508 * must be greater than two. Note that only half of the buffer is available
509 * when the index points to the middle.
510 */
511 #define MAX_LOG_TAKE_PART 4
512 static const char trunc_msg[] = "<truncated>";
513
514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
515 u16 *dict_len, u32 *pad_len)
516 {
517 /*
518 * The message should not take the whole buffer. Otherwise, it might
519 * get removed too soon.
520 */
521 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
522 if (*text_len > max_text_len)
523 *text_len = max_text_len;
524 /* enable the warning message */
525 *trunc_msg_len = strlen(trunc_msg);
526 /* disable the "dict" completely */
527 *dict_len = 0;
528 /* compute the size again, count also the warning message */
529 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
530 }
531
532 /* insert record into the buffer, discard old ones, update heads */
533 static int log_store(int facility, int level,
534 enum log_flags flags, u64 ts_nsec,
535 const char *dict, u16 dict_len,
536 const char *text, u16 text_len)
537 {
538 struct printk_log *msg;
539 u32 size, pad_len;
540 u16 trunc_msg_len = 0;
541
542 /* number of '\0' padding bytes to next message */
543 size = msg_used_size(text_len, dict_len, &pad_len);
544
545 if (log_make_free_space(size)) {
546 /* truncate the message if it is too long for empty buffer */
547 size = truncate_msg(&text_len, &trunc_msg_len,
548 &dict_len, &pad_len);
549 /* survive when the log buffer is too small for trunc_msg */
550 if (log_make_free_space(size))
551 return 0;
552 }
553
554 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
555 /*
556 * This message + an additional empty header does not fit
557 * at the end of the buffer. Add an empty header with len == 0
558 * to signify a wrap around.
559 */
560 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
561 log_next_idx = 0;
562 }
563
564 /* fill message */
565 msg = (struct printk_log *)(log_buf + log_next_idx);
566 memcpy(log_text(msg), text, text_len);
567 msg->text_len = text_len;
568 if (trunc_msg_len) {
569 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
570 msg->text_len += trunc_msg_len;
571 }
572 memcpy(log_dict(msg), dict, dict_len);
573 msg->dict_len = dict_len;
574 msg->facility = facility;
575 msg->level = level & 7;
576 msg->flags = flags & 0x1f;
577 if (ts_nsec > 0)
578 msg->ts_nsec = ts_nsec;
579 else
580 msg->ts_nsec = local_clock();
581 memset(log_dict(msg) + dict_len, 0, pad_len);
582 msg->len = size;
583
584 /* insert message */
585 log_next_idx += msg->len;
586 log_next_seq++;
587
588 return msg->text_len;
589 }
590
591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
592
593 static int syslog_action_restricted(int type)
594 {
595 if (dmesg_restrict)
596 return 1;
597 /*
598 * Unless restricted, we allow "read all" and "get buffer size"
599 * for everybody.
600 */
601 return type != SYSLOG_ACTION_READ_ALL &&
602 type != SYSLOG_ACTION_SIZE_BUFFER;
603 }
604
605 int check_syslog_permissions(int type, int source)
606 {
607 /*
608 * If this is from /proc/kmsg and we've already opened it, then we've
609 * already done the capabilities checks at open time.
610 */
611 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
612 goto ok;
613
614 if (syslog_action_restricted(type)) {
615 if (capable(CAP_SYSLOG))
616 goto ok;
617 /*
618 * For historical reasons, accept CAP_SYS_ADMIN too, with
619 * a warning.
620 */
621 if (capable(CAP_SYS_ADMIN)) {
622 pr_warn_once("%s (%d): Attempt to access syslog with "
623 "CAP_SYS_ADMIN but no CAP_SYSLOG "
624 "(deprecated).\n",
625 current->comm, task_pid_nr(current));
626 goto ok;
627 }
628 return -EPERM;
629 }
630 ok:
631 return security_syslog(type);
632 }
633 EXPORT_SYMBOL_GPL(check_syslog_permissions);
634
635 static void append_char(char **pp, char *e, char c)
636 {
637 if (*pp < e)
638 *(*pp)++ = c;
639 }
640
641 static ssize_t msg_print_ext_header(char *buf, size_t size,
642 struct printk_log *msg, u64 seq,
643 enum log_flags prev_flags)
644 {
645 u64 ts_usec = msg->ts_nsec;
646 char cont = '-';
647
648 do_div(ts_usec, 1000);
649
650 /*
651 * If we couldn't merge continuation line fragments during the print,
652 * export the stored flags to allow an optional external merge of the
653 * records. Merging the records isn't always neccessarily correct, like
654 * when we hit a race during printing. In most cases though, it produces
655 * better readable output. 'c' in the record flags mark the first
656 * fragment of a line, '+' the following.
657 */
658 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
659 cont = 'c';
660 else if ((msg->flags & LOG_CONT) ||
661 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
662 cont = '+';
663
664 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
665 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
666 }
667
668 static ssize_t msg_print_ext_body(char *buf, size_t size,
669 char *dict, size_t dict_len,
670 char *text, size_t text_len)
671 {
672 char *p = buf, *e = buf + size;
673 size_t i;
674
675 /* escape non-printable characters */
676 for (i = 0; i < text_len; i++) {
677 unsigned char c = text[i];
678
679 if (c < ' ' || c >= 127 || c == '\\')
680 p += scnprintf(p, e - p, "\\x%02x", c);
681 else
682 append_char(&p, e, c);
683 }
684 append_char(&p, e, '\n');
685
686 if (dict_len) {
687 bool line = true;
688
689 for (i = 0; i < dict_len; i++) {
690 unsigned char c = dict[i];
691
692 if (line) {
693 append_char(&p, e, ' ');
694 line = false;
695 }
696
697 if (c == '\0') {
698 append_char(&p, e, '\n');
699 line = true;
700 continue;
701 }
702
703 if (c < ' ' || c >= 127 || c == '\\') {
704 p += scnprintf(p, e - p, "\\x%02x", c);
705 continue;
706 }
707
708 append_char(&p, e, c);
709 }
710 append_char(&p, e, '\n');
711 }
712
713 return p - buf;
714 }
715
716 /* /dev/kmsg - userspace message inject/listen interface */
717 struct devkmsg_user {
718 u64 seq;
719 u32 idx;
720 enum log_flags prev;
721 struct ratelimit_state rs;
722 struct mutex lock;
723 char buf[CONSOLE_EXT_LOG_MAX];
724 };
725
726 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
727 {
728 char *buf, *line;
729 int level = default_message_loglevel;
730 int facility = 1; /* LOG_USER */
731 struct file *file = iocb->ki_filp;
732 struct devkmsg_user *user = file->private_data;
733 size_t len = iov_iter_count(from);
734 ssize_t ret = len;
735
736 if (!user || len > LOG_LINE_MAX)
737 return -EINVAL;
738
739 /* Ignore when user logging is disabled. */
740 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
741 return len;
742
743 /* Ratelimit when not explicitly enabled. */
744 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
745 if (!___ratelimit(&user->rs, current->comm))
746 return ret;
747 }
748
749 buf = kmalloc(len+1, GFP_KERNEL);
750 if (buf == NULL)
751 return -ENOMEM;
752
753 buf[len] = '\0';
754 if (copy_from_iter(buf, len, from) != len) {
755 kfree(buf);
756 return -EFAULT;
757 }
758
759 /*
760 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
761 * the decimal value represents 32bit, the lower 3 bit are the log
762 * level, the rest are the log facility.
763 *
764 * If no prefix or no userspace facility is specified, we
765 * enforce LOG_USER, to be able to reliably distinguish
766 * kernel-generated messages from userspace-injected ones.
767 */
768 line = buf;
769 if (line[0] == '<') {
770 char *endp = NULL;
771 unsigned int u;
772
773 u = simple_strtoul(line + 1, &endp, 10);
774 if (endp && endp[0] == '>') {
775 level = LOG_LEVEL(u);
776 if (LOG_FACILITY(u) != 0)
777 facility = LOG_FACILITY(u);
778 endp++;
779 len -= endp - line;
780 line = endp;
781 }
782 }
783
784 printk_emit(facility, level, NULL, 0, "%s", line);
785 kfree(buf);
786 return ret;
787 }
788
789 static ssize_t devkmsg_read(struct file *file, char __user *buf,
790 size_t count, loff_t *ppos)
791 {
792 struct devkmsg_user *user = file->private_data;
793 struct printk_log *msg;
794 size_t len;
795 ssize_t ret;
796
797 if (!user)
798 return -EBADF;
799
800 ret = mutex_lock_interruptible(&user->lock);
801 if (ret)
802 return ret;
803 raw_spin_lock_irq(&logbuf_lock);
804 while (user->seq == log_next_seq) {
805 if (file->f_flags & O_NONBLOCK) {
806 ret = -EAGAIN;
807 raw_spin_unlock_irq(&logbuf_lock);
808 goto out;
809 }
810
811 raw_spin_unlock_irq(&logbuf_lock);
812 ret = wait_event_interruptible(log_wait,
813 user->seq != log_next_seq);
814 if (ret)
815 goto out;
816 raw_spin_lock_irq(&logbuf_lock);
817 }
818
819 if (user->seq < log_first_seq) {
820 /* our last seen message is gone, return error and reset */
821 user->idx = log_first_idx;
822 user->seq = log_first_seq;
823 ret = -EPIPE;
824 raw_spin_unlock_irq(&logbuf_lock);
825 goto out;
826 }
827
828 msg = log_from_idx(user->idx);
829 len = msg_print_ext_header(user->buf, sizeof(user->buf),
830 msg, user->seq, user->prev);
831 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
832 log_dict(msg), msg->dict_len,
833 log_text(msg), msg->text_len);
834
835 user->prev = msg->flags;
836 user->idx = log_next(user->idx);
837 user->seq++;
838 raw_spin_unlock_irq(&logbuf_lock);
839
840 if (len > count) {
841 ret = -EINVAL;
842 goto out;
843 }
844
845 if (copy_to_user(buf, user->buf, len)) {
846 ret = -EFAULT;
847 goto out;
848 }
849 ret = len;
850 out:
851 mutex_unlock(&user->lock);
852 return ret;
853 }
854
855 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
856 {
857 struct devkmsg_user *user = file->private_data;
858 loff_t ret = 0;
859
860 if (!user)
861 return -EBADF;
862 if (offset)
863 return -ESPIPE;
864
865 raw_spin_lock_irq(&logbuf_lock);
866 switch (whence) {
867 case SEEK_SET:
868 /* the first record */
869 user->idx = log_first_idx;
870 user->seq = log_first_seq;
871 break;
872 case SEEK_DATA:
873 /*
874 * The first record after the last SYSLOG_ACTION_CLEAR,
875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 * changes no global state, and does not clear anything.
877 */
878 user->idx = clear_idx;
879 user->seq = clear_seq;
880 break;
881 case SEEK_END:
882 /* after the last record */
883 user->idx = log_next_idx;
884 user->seq = log_next_seq;
885 break;
886 default:
887 ret = -EINVAL;
888 }
889 raw_spin_unlock_irq(&logbuf_lock);
890 return ret;
891 }
892
893 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
894 {
895 struct devkmsg_user *user = file->private_data;
896 int ret = 0;
897
898 if (!user)
899 return POLLERR|POLLNVAL;
900
901 poll_wait(file, &log_wait, wait);
902
903 raw_spin_lock_irq(&logbuf_lock);
904 if (user->seq < log_next_seq) {
905 /* return error when data has vanished underneath us */
906 if (user->seq < log_first_seq)
907 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
908 else
909 ret = POLLIN|POLLRDNORM;
910 }
911 raw_spin_unlock_irq(&logbuf_lock);
912
913 return ret;
914 }
915
916 static int devkmsg_open(struct inode *inode, struct file *file)
917 {
918 struct devkmsg_user *user;
919 int err;
920
921 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
922 return -EPERM;
923
924 /* write-only does not need any file context */
925 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
926 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
927 SYSLOG_FROM_READER);
928 if (err)
929 return err;
930 }
931
932 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
933 if (!user)
934 return -ENOMEM;
935
936 ratelimit_default_init(&user->rs);
937 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
938
939 mutex_init(&user->lock);
940
941 raw_spin_lock_irq(&logbuf_lock);
942 user->idx = log_first_idx;
943 user->seq = log_first_seq;
944 raw_spin_unlock_irq(&logbuf_lock);
945
946 file->private_data = user;
947 return 0;
948 }
949
950 static int devkmsg_release(struct inode *inode, struct file *file)
951 {
952 struct devkmsg_user *user = file->private_data;
953
954 if (!user)
955 return 0;
956
957 ratelimit_state_exit(&user->rs);
958
959 mutex_destroy(&user->lock);
960 kfree(user);
961 return 0;
962 }
963
964 const struct file_operations kmsg_fops = {
965 .open = devkmsg_open,
966 .read = devkmsg_read,
967 .write_iter = devkmsg_write,
968 .llseek = devkmsg_llseek,
969 .poll = devkmsg_poll,
970 .release = devkmsg_release,
971 };
972
973 #ifdef CONFIG_KEXEC_CORE
974 /*
975 * This appends the listed symbols to /proc/vmcore
976 *
977 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
978 * obtain access to symbols that are otherwise very difficult to locate. These
979 * symbols are specifically used so that utilities can access and extract the
980 * dmesg log from a vmcore file after a crash.
981 */
982 void log_buf_kexec_setup(void)
983 {
984 VMCOREINFO_SYMBOL(log_buf);
985 VMCOREINFO_SYMBOL(log_buf_len);
986 VMCOREINFO_SYMBOL(log_first_idx);
987 VMCOREINFO_SYMBOL(clear_idx);
988 VMCOREINFO_SYMBOL(log_next_idx);
989 /*
990 * Export struct printk_log size and field offsets. User space tools can
991 * parse it and detect any changes to structure down the line.
992 */
993 VMCOREINFO_STRUCT_SIZE(printk_log);
994 VMCOREINFO_OFFSET(printk_log, ts_nsec);
995 VMCOREINFO_OFFSET(printk_log, len);
996 VMCOREINFO_OFFSET(printk_log, text_len);
997 VMCOREINFO_OFFSET(printk_log, dict_len);
998 }
999 #endif
1000
1001 /* requested log_buf_len from kernel cmdline */
1002 static unsigned long __initdata new_log_buf_len;
1003
1004 /* we practice scaling the ring buffer by powers of 2 */
1005 static void __init log_buf_len_update(unsigned size)
1006 {
1007 if (size)
1008 size = roundup_pow_of_two(size);
1009 if (size > log_buf_len)
1010 new_log_buf_len = size;
1011 }
1012
1013 /* save requested log_buf_len since it's too early to process it */
1014 static int __init log_buf_len_setup(char *str)
1015 {
1016 unsigned size = memparse(str, &str);
1017
1018 log_buf_len_update(size);
1019
1020 return 0;
1021 }
1022 early_param("log_buf_len", log_buf_len_setup);
1023
1024 #ifdef CONFIG_SMP
1025 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1026
1027 static void __init log_buf_add_cpu(void)
1028 {
1029 unsigned int cpu_extra;
1030
1031 /*
1032 * archs should set up cpu_possible_bits properly with
1033 * set_cpu_possible() after setup_arch() but just in
1034 * case lets ensure this is valid.
1035 */
1036 if (num_possible_cpus() == 1)
1037 return;
1038
1039 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1040
1041 /* by default this will only continue through for large > 64 CPUs */
1042 if (cpu_extra <= __LOG_BUF_LEN / 2)
1043 return;
1044
1045 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1046 __LOG_CPU_MAX_BUF_LEN);
1047 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1048 cpu_extra);
1049 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1050
1051 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1052 }
1053 #else /* !CONFIG_SMP */
1054 static inline void log_buf_add_cpu(void) {}
1055 #endif /* CONFIG_SMP */
1056
1057 void __init setup_log_buf(int early)
1058 {
1059 unsigned long flags;
1060 char *new_log_buf;
1061 int free;
1062
1063 if (log_buf != __log_buf)
1064 return;
1065
1066 if (!early && !new_log_buf_len)
1067 log_buf_add_cpu();
1068
1069 if (!new_log_buf_len)
1070 return;
1071
1072 if (early) {
1073 new_log_buf =
1074 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1075 } else {
1076 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1077 LOG_ALIGN);
1078 }
1079
1080 if (unlikely(!new_log_buf)) {
1081 pr_err("log_buf_len: %ld bytes not available\n",
1082 new_log_buf_len);
1083 return;
1084 }
1085
1086 raw_spin_lock_irqsave(&logbuf_lock, flags);
1087 log_buf_len = new_log_buf_len;
1088 log_buf = new_log_buf;
1089 new_log_buf_len = 0;
1090 free = __LOG_BUF_LEN - log_next_idx;
1091 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1092 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1093
1094 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1095 pr_info("early log buf free: %d(%d%%)\n",
1096 free, (free * 100) / __LOG_BUF_LEN);
1097 }
1098
1099 static bool __read_mostly ignore_loglevel;
1100
1101 static int __init ignore_loglevel_setup(char *str)
1102 {
1103 ignore_loglevel = true;
1104 pr_info("debug: ignoring loglevel setting.\n");
1105
1106 return 0;
1107 }
1108
1109 early_param("ignore_loglevel", ignore_loglevel_setup);
1110 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1111 MODULE_PARM_DESC(ignore_loglevel,
1112 "ignore loglevel setting (prints all kernel messages to the console)");
1113
1114 static bool suppress_message_printing(int level)
1115 {
1116 return (level >= console_loglevel && !ignore_loglevel);
1117 }
1118
1119 #ifdef CONFIG_BOOT_PRINTK_DELAY
1120
1121 static int boot_delay; /* msecs delay after each printk during bootup */
1122 static unsigned long long loops_per_msec; /* based on boot_delay */
1123
1124 static int __init boot_delay_setup(char *str)
1125 {
1126 unsigned long lpj;
1127
1128 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1129 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1130
1131 get_option(&str, &boot_delay);
1132 if (boot_delay > 10 * 1000)
1133 boot_delay = 0;
1134
1135 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1136 "HZ: %d, loops_per_msec: %llu\n",
1137 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1138 return 0;
1139 }
1140 early_param("boot_delay", boot_delay_setup);
1141
1142 static void boot_delay_msec(int level)
1143 {
1144 unsigned long long k;
1145 unsigned long timeout;
1146
1147 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1148 || suppress_message_printing(level)) {
1149 return;
1150 }
1151
1152 k = (unsigned long long)loops_per_msec * boot_delay;
1153
1154 timeout = jiffies + msecs_to_jiffies(boot_delay);
1155 while (k) {
1156 k--;
1157 cpu_relax();
1158 /*
1159 * use (volatile) jiffies to prevent
1160 * compiler reduction; loop termination via jiffies
1161 * is secondary and may or may not happen.
1162 */
1163 if (time_after(jiffies, timeout))
1164 break;
1165 touch_nmi_watchdog();
1166 }
1167 }
1168 #else
1169 static inline void boot_delay_msec(int level)
1170 {
1171 }
1172 #endif
1173
1174 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1175 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1176
1177 static size_t print_time(u64 ts, char *buf)
1178 {
1179 unsigned long rem_nsec;
1180
1181 if (!printk_time)
1182 return 0;
1183
1184 rem_nsec = do_div(ts, 1000000000);
1185
1186 if (!buf)
1187 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1188
1189 return sprintf(buf, "[%5lu.%06lu] ",
1190 (unsigned long)ts, rem_nsec / 1000);
1191 }
1192
1193 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1194 {
1195 size_t len = 0;
1196 unsigned int prefix = (msg->facility << 3) | msg->level;
1197
1198 if (syslog) {
1199 if (buf) {
1200 len += sprintf(buf, "<%u>", prefix);
1201 } else {
1202 len += 3;
1203 if (prefix > 999)
1204 len += 3;
1205 else if (prefix > 99)
1206 len += 2;
1207 else if (prefix > 9)
1208 len++;
1209 }
1210 }
1211
1212 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1213 return len;
1214 }
1215
1216 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1217 bool syslog, char *buf, size_t size)
1218 {
1219 const char *text = log_text(msg);
1220 size_t text_size = msg->text_len;
1221 bool prefix = true;
1222 bool newline = true;
1223 size_t len = 0;
1224
1225 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1226 prefix = false;
1227
1228 if (msg->flags & LOG_CONT) {
1229 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1230 prefix = false;
1231
1232 if (!(msg->flags & LOG_NEWLINE))
1233 newline = false;
1234 }
1235
1236 do {
1237 const char *next = memchr(text, '\n', text_size);
1238 size_t text_len;
1239
1240 if (next) {
1241 text_len = next - text;
1242 next++;
1243 text_size -= next - text;
1244 } else {
1245 text_len = text_size;
1246 }
1247
1248 if (buf) {
1249 if (print_prefix(msg, syslog, NULL) +
1250 text_len + 1 >= size - len)
1251 break;
1252
1253 if (prefix)
1254 len += print_prefix(msg, syslog, buf + len);
1255 memcpy(buf + len, text, text_len);
1256 len += text_len;
1257 if (next || newline)
1258 buf[len++] = '\n';
1259 } else {
1260 /* SYSLOG_ACTION_* buffer size only calculation */
1261 if (prefix)
1262 len += print_prefix(msg, syslog, NULL);
1263 len += text_len;
1264 if (next || newline)
1265 len++;
1266 }
1267
1268 prefix = true;
1269 text = next;
1270 } while (text);
1271
1272 return len;
1273 }
1274
1275 static int syslog_print(char __user *buf, int size)
1276 {
1277 char *text;
1278 struct printk_log *msg;
1279 int len = 0;
1280
1281 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1282 if (!text)
1283 return -ENOMEM;
1284
1285 while (size > 0) {
1286 size_t n;
1287 size_t skip;
1288
1289 raw_spin_lock_irq(&logbuf_lock);
1290 if (syslog_seq < log_first_seq) {
1291 /* messages are gone, move to first one */
1292 syslog_seq = log_first_seq;
1293 syslog_idx = log_first_idx;
1294 syslog_prev = 0;
1295 syslog_partial = 0;
1296 }
1297 if (syslog_seq == log_next_seq) {
1298 raw_spin_unlock_irq(&logbuf_lock);
1299 break;
1300 }
1301
1302 skip = syslog_partial;
1303 msg = log_from_idx(syslog_idx);
1304 n = msg_print_text(msg, syslog_prev, true, text,
1305 LOG_LINE_MAX + PREFIX_MAX);
1306 if (n - syslog_partial <= size) {
1307 /* message fits into buffer, move forward */
1308 syslog_idx = log_next(syslog_idx);
1309 syslog_seq++;
1310 syslog_prev = msg->flags;
1311 n -= syslog_partial;
1312 syslog_partial = 0;
1313 } else if (!len){
1314 /* partial read(), remember position */
1315 n = size;
1316 syslog_partial += n;
1317 } else
1318 n = 0;
1319 raw_spin_unlock_irq(&logbuf_lock);
1320
1321 if (!n)
1322 break;
1323
1324 if (copy_to_user(buf, text + skip, n)) {
1325 if (!len)
1326 len = -EFAULT;
1327 break;
1328 }
1329
1330 len += n;
1331 size -= n;
1332 buf += n;
1333 }
1334
1335 kfree(text);
1336 return len;
1337 }
1338
1339 static int syslog_print_all(char __user *buf, int size, bool clear)
1340 {
1341 char *text;
1342 int len = 0;
1343
1344 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1345 if (!text)
1346 return -ENOMEM;
1347
1348 raw_spin_lock_irq(&logbuf_lock);
1349 if (buf) {
1350 u64 next_seq;
1351 u64 seq;
1352 u32 idx;
1353 enum log_flags prev;
1354
1355 /*
1356 * Find first record that fits, including all following records,
1357 * into the user-provided buffer for this dump.
1358 */
1359 seq = clear_seq;
1360 idx = clear_idx;
1361 prev = 0;
1362 while (seq < log_next_seq) {
1363 struct printk_log *msg = log_from_idx(idx);
1364
1365 len += msg_print_text(msg, prev, true, NULL, 0);
1366 prev = msg->flags;
1367 idx = log_next(idx);
1368 seq++;
1369 }
1370
1371 /* move first record forward until length fits into the buffer */
1372 seq = clear_seq;
1373 idx = clear_idx;
1374 prev = 0;
1375 while (len > size && seq < log_next_seq) {
1376 struct printk_log *msg = log_from_idx(idx);
1377
1378 len -= msg_print_text(msg, prev, true, NULL, 0);
1379 prev = msg->flags;
1380 idx = log_next(idx);
1381 seq++;
1382 }
1383
1384 /* last message fitting into this dump */
1385 next_seq = log_next_seq;
1386
1387 len = 0;
1388 while (len >= 0 && seq < next_seq) {
1389 struct printk_log *msg = log_from_idx(idx);
1390 int textlen;
1391
1392 textlen = msg_print_text(msg, prev, true, text,
1393 LOG_LINE_MAX + PREFIX_MAX);
1394 if (textlen < 0) {
1395 len = textlen;
1396 break;
1397 }
1398 idx = log_next(idx);
1399 seq++;
1400 prev = msg->flags;
1401
1402 raw_spin_unlock_irq(&logbuf_lock);
1403 if (copy_to_user(buf + len, text, textlen))
1404 len = -EFAULT;
1405 else
1406 len += textlen;
1407 raw_spin_lock_irq(&logbuf_lock);
1408
1409 if (seq < log_first_seq) {
1410 /* messages are gone, move to next one */
1411 seq = log_first_seq;
1412 idx = log_first_idx;
1413 prev = 0;
1414 }
1415 }
1416 }
1417
1418 if (clear) {
1419 clear_seq = log_next_seq;
1420 clear_idx = log_next_idx;
1421 }
1422 raw_spin_unlock_irq(&logbuf_lock);
1423
1424 kfree(text);
1425 return len;
1426 }
1427
1428 int do_syslog(int type, char __user *buf, int len, int source)
1429 {
1430 bool clear = false;
1431 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1432 int error;
1433
1434 error = check_syslog_permissions(type, source);
1435 if (error)
1436 goto out;
1437
1438 switch (type) {
1439 case SYSLOG_ACTION_CLOSE: /* Close log */
1440 break;
1441 case SYSLOG_ACTION_OPEN: /* Open log */
1442 break;
1443 case SYSLOG_ACTION_READ: /* Read from log */
1444 error = -EINVAL;
1445 if (!buf || len < 0)
1446 goto out;
1447 error = 0;
1448 if (!len)
1449 goto out;
1450 if (!access_ok(VERIFY_WRITE, buf, len)) {
1451 error = -EFAULT;
1452 goto out;
1453 }
1454 error = wait_event_interruptible(log_wait,
1455 syslog_seq != log_next_seq);
1456 if (error)
1457 goto out;
1458 error = syslog_print(buf, len);
1459 break;
1460 /* Read/clear last kernel messages */
1461 case SYSLOG_ACTION_READ_CLEAR:
1462 clear = true;
1463 /* FALL THRU */
1464 /* Read last kernel messages */
1465 case SYSLOG_ACTION_READ_ALL:
1466 error = -EINVAL;
1467 if (!buf || len < 0)
1468 goto out;
1469 error = 0;
1470 if (!len)
1471 goto out;
1472 if (!access_ok(VERIFY_WRITE, buf, len)) {
1473 error = -EFAULT;
1474 goto out;
1475 }
1476 error = syslog_print_all(buf, len, clear);
1477 break;
1478 /* Clear ring buffer */
1479 case SYSLOG_ACTION_CLEAR:
1480 syslog_print_all(NULL, 0, true);
1481 break;
1482 /* Disable logging to console */
1483 case SYSLOG_ACTION_CONSOLE_OFF:
1484 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1485 saved_console_loglevel = console_loglevel;
1486 console_loglevel = minimum_console_loglevel;
1487 break;
1488 /* Enable logging to console */
1489 case SYSLOG_ACTION_CONSOLE_ON:
1490 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1491 console_loglevel = saved_console_loglevel;
1492 saved_console_loglevel = LOGLEVEL_DEFAULT;
1493 }
1494 break;
1495 /* Set level of messages printed to console */
1496 case SYSLOG_ACTION_CONSOLE_LEVEL:
1497 error = -EINVAL;
1498 if (len < 1 || len > 8)
1499 goto out;
1500 if (len < minimum_console_loglevel)
1501 len = minimum_console_loglevel;
1502 console_loglevel = len;
1503 /* Implicitly re-enable logging to console */
1504 saved_console_loglevel = LOGLEVEL_DEFAULT;
1505 error = 0;
1506 break;
1507 /* Number of chars in the log buffer */
1508 case SYSLOG_ACTION_SIZE_UNREAD:
1509 raw_spin_lock_irq(&logbuf_lock);
1510 if (syslog_seq < log_first_seq) {
1511 /* messages are gone, move to first one */
1512 syslog_seq = log_first_seq;
1513 syslog_idx = log_first_idx;
1514 syslog_prev = 0;
1515 syslog_partial = 0;
1516 }
1517 if (source == SYSLOG_FROM_PROC) {
1518 /*
1519 * Short-cut for poll(/"proc/kmsg") which simply checks
1520 * for pending data, not the size; return the count of
1521 * records, not the length.
1522 */
1523 error = log_next_seq - syslog_seq;
1524 } else {
1525 u64 seq = syslog_seq;
1526 u32 idx = syslog_idx;
1527 enum log_flags prev = syslog_prev;
1528
1529 error = 0;
1530 while (seq < log_next_seq) {
1531 struct printk_log *msg = log_from_idx(idx);
1532
1533 error += msg_print_text(msg, prev, true, NULL, 0);
1534 idx = log_next(idx);
1535 seq++;
1536 prev = msg->flags;
1537 }
1538 error -= syslog_partial;
1539 }
1540 raw_spin_unlock_irq(&logbuf_lock);
1541 break;
1542 /* Size of the log buffer */
1543 case SYSLOG_ACTION_SIZE_BUFFER:
1544 error = log_buf_len;
1545 break;
1546 default:
1547 error = -EINVAL;
1548 break;
1549 }
1550 out:
1551 return error;
1552 }
1553
1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1555 {
1556 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1557 }
1558
1559 /*
1560 * Call the console drivers, asking them to write out
1561 * log_buf[start] to log_buf[end - 1].
1562 * The console_lock must be held.
1563 */
1564 static void call_console_drivers(int level,
1565 const char *ext_text, size_t ext_len,
1566 const char *text, size_t len)
1567 {
1568 struct console *con;
1569
1570 trace_console(text, len);
1571
1572 if (!console_drivers)
1573 return;
1574
1575 for_each_console(con) {
1576 if (exclusive_console && con != exclusive_console)
1577 continue;
1578 if (!(con->flags & CON_ENABLED))
1579 continue;
1580 if (!con->write)
1581 continue;
1582 if (!cpu_online(smp_processor_id()) &&
1583 !(con->flags & CON_ANYTIME))
1584 continue;
1585 if (con->flags & CON_EXTENDED)
1586 con->write(con, ext_text, ext_len);
1587 else
1588 con->write(con, text, len);
1589 }
1590 }
1591
1592 /*
1593 * Zap console related locks when oopsing.
1594 * To leave time for slow consoles to print a full oops,
1595 * only zap at most once every 30 seconds.
1596 */
1597 static void zap_locks(void)
1598 {
1599 static unsigned long oops_timestamp;
1600
1601 if (time_after_eq(jiffies, oops_timestamp) &&
1602 !time_after(jiffies, oops_timestamp + 30 * HZ))
1603 return;
1604
1605 oops_timestamp = jiffies;
1606
1607 debug_locks_off();
1608 /* If a crash is occurring, make sure we can't deadlock */
1609 raw_spin_lock_init(&logbuf_lock);
1610 /* And make sure that we print immediately */
1611 sema_init(&console_sem, 1);
1612 }
1613
1614 int printk_delay_msec __read_mostly;
1615
1616 static inline void printk_delay(void)
1617 {
1618 if (unlikely(printk_delay_msec)) {
1619 int m = printk_delay_msec;
1620
1621 while (m--) {
1622 mdelay(1);
1623 touch_nmi_watchdog();
1624 }
1625 }
1626 }
1627
1628 /*
1629 * Continuation lines are buffered, and not committed to the record buffer
1630 * until the line is complete, or a race forces it. The line fragments
1631 * though, are printed immediately to the consoles to ensure everything has
1632 * reached the console in case of a kernel crash.
1633 */
1634 static struct cont {
1635 char buf[LOG_LINE_MAX];
1636 size_t len; /* length == 0 means unused buffer */
1637 size_t cons; /* bytes written to console */
1638 struct task_struct *owner; /* task of first print*/
1639 u64 ts_nsec; /* time of first print */
1640 u8 level; /* log level of first message */
1641 u8 facility; /* log facility of first message */
1642 enum log_flags flags; /* prefix, newline flags */
1643 bool flushed:1; /* buffer sealed and committed */
1644 } cont;
1645
1646 static void cont_flush(enum log_flags flags)
1647 {
1648 if (cont.flushed)
1649 return;
1650 if (cont.len == 0)
1651 return;
1652
1653 if (cont.cons) {
1654 /*
1655 * If a fragment of this line was directly flushed to the
1656 * console; wait for the console to pick up the rest of the
1657 * line. LOG_NOCONS suppresses a duplicated output.
1658 */
1659 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1660 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1661 cont.flags = flags;
1662 cont.flushed = true;
1663 } else {
1664 /*
1665 * If no fragment of this line ever reached the console,
1666 * just submit it to the store and free the buffer.
1667 */
1668 log_store(cont.facility, cont.level, flags, 0,
1669 NULL, 0, cont.buf, cont.len);
1670 cont.len = 0;
1671 }
1672 }
1673
1674 static bool cont_add(int facility, int level, const char *text, size_t len)
1675 {
1676 if (cont.len && cont.flushed)
1677 return false;
1678
1679 /*
1680 * If ext consoles are present, flush and skip in-kernel
1681 * continuation. See nr_ext_console_drivers definition. Also, if
1682 * the line gets too long, split it up in separate records.
1683 */
1684 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1685 cont_flush(LOG_CONT);
1686 return false;
1687 }
1688
1689 if (!cont.len) {
1690 cont.facility = facility;
1691 cont.level = level;
1692 cont.owner = current;
1693 cont.ts_nsec = local_clock();
1694 cont.flags = 0;
1695 cont.cons = 0;
1696 cont.flushed = false;
1697 }
1698
1699 memcpy(cont.buf + cont.len, text, len);
1700 cont.len += len;
1701
1702 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1703 cont_flush(LOG_CONT);
1704
1705 return true;
1706 }
1707
1708 static size_t cont_print_text(char *text, size_t size)
1709 {
1710 size_t textlen = 0;
1711 size_t len;
1712
1713 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1714 textlen += print_time(cont.ts_nsec, text);
1715 size -= textlen;
1716 }
1717
1718 len = cont.len - cont.cons;
1719 if (len > 0) {
1720 if (len+1 > size)
1721 len = size-1;
1722 memcpy(text + textlen, cont.buf + cont.cons, len);
1723 textlen += len;
1724 cont.cons = cont.len;
1725 }
1726
1727 if (cont.flushed) {
1728 if (cont.flags & LOG_NEWLINE)
1729 text[textlen++] = '\n';
1730 /* got everything, release buffer */
1731 cont.len = 0;
1732 }
1733 return textlen;
1734 }
1735
1736 asmlinkage int vprintk_emit(int facility, int level,
1737 const char *dict, size_t dictlen,
1738 const char *fmt, va_list args)
1739 {
1740 static bool recursion_bug;
1741 static char textbuf[LOG_LINE_MAX];
1742 char *text = textbuf;
1743 size_t text_len = 0;
1744 enum log_flags lflags = 0;
1745 unsigned long flags;
1746 int this_cpu;
1747 int printed_len = 0;
1748 int nmi_message_lost;
1749 bool in_sched = false;
1750 /* cpu currently holding logbuf_lock in this function */
1751 static unsigned int logbuf_cpu = UINT_MAX;
1752
1753 if (level == LOGLEVEL_SCHED) {
1754 level = LOGLEVEL_DEFAULT;
1755 in_sched = true;
1756 }
1757
1758 boot_delay_msec(level);
1759 printk_delay();
1760
1761 local_irq_save(flags);
1762 this_cpu = smp_processor_id();
1763
1764 /*
1765 * Ouch, printk recursed into itself!
1766 */
1767 if (unlikely(logbuf_cpu == this_cpu)) {
1768 /*
1769 * If a crash is occurring during printk() on this CPU,
1770 * then try to get the crash message out but make sure
1771 * we can't deadlock. Otherwise just return to avoid the
1772 * recursion and return - but flag the recursion so that
1773 * it can be printed at the next appropriate moment:
1774 */
1775 if (!oops_in_progress && !lockdep_recursing(current)) {
1776 recursion_bug = true;
1777 local_irq_restore(flags);
1778 return 0;
1779 }
1780 zap_locks();
1781 }
1782
1783 lockdep_off();
1784 /* This stops the holder of console_sem just where we want him */
1785 raw_spin_lock(&logbuf_lock);
1786 logbuf_cpu = this_cpu;
1787
1788 if (unlikely(recursion_bug)) {
1789 static const char recursion_msg[] =
1790 "BUG: recent printk recursion!";
1791
1792 recursion_bug = false;
1793 /* emit KERN_CRIT message */
1794 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1795 NULL, 0, recursion_msg,
1796 strlen(recursion_msg));
1797 }
1798
1799 nmi_message_lost = get_nmi_message_lost();
1800 if (unlikely(nmi_message_lost)) {
1801 text_len = scnprintf(textbuf, sizeof(textbuf),
1802 "BAD LUCK: lost %d message(s) from NMI context!",
1803 nmi_message_lost);
1804 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1805 NULL, 0, textbuf, text_len);
1806 }
1807
1808 /*
1809 * The printf needs to come first; we need the syslog
1810 * prefix which might be passed-in as a parameter.
1811 */
1812 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1813
1814 /* mark and strip a trailing newline */
1815 if (text_len && text[text_len-1] == '\n') {
1816 text_len--;
1817 lflags |= LOG_NEWLINE;
1818 }
1819
1820 /* strip kernel syslog prefix and extract log level or control flags */
1821 if (facility == 0) {
1822 int kern_level = printk_get_level(text);
1823
1824 if (kern_level) {
1825 const char *end_of_header = printk_skip_level(text);
1826 switch (kern_level) {
1827 case '0' ... '7':
1828 if (level == LOGLEVEL_DEFAULT)
1829 level = kern_level - '0';
1830 /* fallthrough */
1831 case 'd': /* KERN_DEFAULT */
1832 lflags |= LOG_PREFIX;
1833 }
1834 /*
1835 * No need to check length here because vscnprintf
1836 * put '\0' at the end of the string. Only valid and
1837 * newly printed level is detected.
1838 */
1839 text_len -= end_of_header - text;
1840 text = (char *)end_of_header;
1841 }
1842 }
1843
1844 if (level == LOGLEVEL_DEFAULT)
1845 level = default_message_loglevel;
1846
1847 if (dict)
1848 lflags |= LOG_PREFIX|LOG_NEWLINE;
1849
1850 if (!(lflags & LOG_NEWLINE)) {
1851 /*
1852 * Flush the conflicting buffer. An earlier newline was missing,
1853 * or another task also prints continuation lines.
1854 */
1855 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1856 cont_flush(LOG_NEWLINE);
1857
1858 /* buffer line if possible, otherwise store it right away */
1859 if (cont_add(facility, level, text, text_len))
1860 printed_len += text_len;
1861 else
1862 printed_len += log_store(facility, level,
1863 lflags | LOG_CONT, 0,
1864 dict, dictlen, text, text_len);
1865 } else {
1866 bool stored = false;
1867
1868 /*
1869 * If an earlier newline was missing and it was the same task,
1870 * either merge it with the current buffer and flush, or if
1871 * there was a race with interrupts (prefix == true) then just
1872 * flush it out and store this line separately.
1873 * If the preceding printk was from a different task and missed
1874 * a newline, flush and append the newline.
1875 */
1876 if (cont.len) {
1877 if (cont.owner == current && !(lflags & LOG_PREFIX))
1878 stored = cont_add(facility, level, text,
1879 text_len);
1880 cont_flush(LOG_NEWLINE);
1881 }
1882
1883 if (stored)
1884 printed_len += text_len;
1885 else
1886 printed_len += log_store(facility, level, lflags, 0,
1887 dict, dictlen, text, text_len);
1888 }
1889
1890 logbuf_cpu = UINT_MAX;
1891 raw_spin_unlock(&logbuf_lock);
1892 lockdep_on();
1893 local_irq_restore(flags);
1894
1895 /* If called from the scheduler, we can not call up(). */
1896 if (!in_sched) {
1897 lockdep_off();
1898 /*
1899 * Try to acquire and then immediately release the console
1900 * semaphore. The release will print out buffers and wake up
1901 * /dev/kmsg and syslog() users.
1902 */
1903 if (console_trylock())
1904 console_unlock();
1905 lockdep_on();
1906 }
1907
1908 return printed_len;
1909 }
1910 EXPORT_SYMBOL(vprintk_emit);
1911
1912 asmlinkage int vprintk(const char *fmt, va_list args)
1913 {
1914 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1915 }
1916 EXPORT_SYMBOL(vprintk);
1917
1918 asmlinkage int printk_emit(int facility, int level,
1919 const char *dict, size_t dictlen,
1920 const char *fmt, ...)
1921 {
1922 va_list args;
1923 int r;
1924
1925 va_start(args, fmt);
1926 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1927 va_end(args);
1928
1929 return r;
1930 }
1931 EXPORT_SYMBOL(printk_emit);
1932
1933 int vprintk_default(const char *fmt, va_list args)
1934 {
1935 int r;
1936
1937 #ifdef CONFIG_KGDB_KDB
1938 if (unlikely(kdb_trap_printk)) {
1939 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1940 return r;
1941 }
1942 #endif
1943 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1944
1945 return r;
1946 }
1947 EXPORT_SYMBOL_GPL(vprintk_default);
1948
1949 /**
1950 * printk - print a kernel message
1951 * @fmt: format string
1952 *
1953 * This is printk(). It can be called from any context. We want it to work.
1954 *
1955 * We try to grab the console_lock. If we succeed, it's easy - we log the
1956 * output and call the console drivers. If we fail to get the semaphore, we
1957 * place the output into the log buffer and return. The current holder of
1958 * the console_sem will notice the new output in console_unlock(); and will
1959 * send it to the consoles before releasing the lock.
1960 *
1961 * One effect of this deferred printing is that code which calls printk() and
1962 * then changes console_loglevel may break. This is because console_loglevel
1963 * is inspected when the actual printing occurs.
1964 *
1965 * See also:
1966 * printf(3)
1967 *
1968 * See the vsnprintf() documentation for format string extensions over C99.
1969 */
1970 asmlinkage __visible int printk(const char *fmt, ...)
1971 {
1972 va_list args;
1973 int r;
1974
1975 va_start(args, fmt);
1976 r = vprintk_func(fmt, args);
1977 va_end(args);
1978
1979 return r;
1980 }
1981 EXPORT_SYMBOL(printk);
1982
1983 #else /* CONFIG_PRINTK */
1984
1985 #define LOG_LINE_MAX 0
1986 #define PREFIX_MAX 0
1987
1988 static u64 syslog_seq;
1989 static u32 syslog_idx;
1990 static u64 console_seq;
1991 static u32 console_idx;
1992 static enum log_flags syslog_prev;
1993 static u64 log_first_seq;
1994 static u32 log_first_idx;
1995 static u64 log_next_seq;
1996 static enum log_flags console_prev;
1997 static struct cont {
1998 size_t len;
1999 size_t cons;
2000 u8 level;
2001 bool flushed:1;
2002 } cont;
2003 static char *log_text(const struct printk_log *msg) { return NULL; }
2004 static char *log_dict(const struct printk_log *msg) { return NULL; }
2005 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2006 static u32 log_next(u32 idx) { return 0; }
2007 static ssize_t msg_print_ext_header(char *buf, size_t size,
2008 struct printk_log *msg, u64 seq,
2009 enum log_flags prev_flags) { return 0; }
2010 static ssize_t msg_print_ext_body(char *buf, size_t size,
2011 char *dict, size_t dict_len,
2012 char *text, size_t text_len) { return 0; }
2013 static void call_console_drivers(int level,
2014 const char *ext_text, size_t ext_len,
2015 const char *text, size_t len) {}
2016 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2017 bool syslog, char *buf, size_t size) { return 0; }
2018 static size_t cont_print_text(char *text, size_t size) { return 0; }
2019 static bool suppress_message_printing(int level) { return false; }
2020
2021 /* Still needs to be defined for users */
2022 DEFINE_PER_CPU(printk_func_t, printk_func);
2023
2024 #endif /* CONFIG_PRINTK */
2025
2026 #ifdef CONFIG_EARLY_PRINTK
2027 struct console *early_console;
2028
2029 asmlinkage __visible void early_printk(const char *fmt, ...)
2030 {
2031 va_list ap;
2032 char buf[512];
2033 int n;
2034
2035 if (!early_console)
2036 return;
2037
2038 va_start(ap, fmt);
2039 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2040 va_end(ap);
2041
2042 early_console->write(early_console, buf, n);
2043 }
2044 #endif
2045
2046 static int __add_preferred_console(char *name, int idx, char *options,
2047 char *brl_options)
2048 {
2049 struct console_cmdline *c;
2050 int i;
2051
2052 /*
2053 * See if this tty is not yet registered, and
2054 * if we have a slot free.
2055 */
2056 for (i = 0, c = console_cmdline;
2057 i < MAX_CMDLINECONSOLES && c->name[0];
2058 i++, c++) {
2059 if (strcmp(c->name, name) == 0 && c->index == idx) {
2060 if (!brl_options)
2061 selected_console = i;
2062 return 0;
2063 }
2064 }
2065 if (i == MAX_CMDLINECONSOLES)
2066 return -E2BIG;
2067 if (!brl_options)
2068 selected_console = i;
2069 strlcpy(c->name, name, sizeof(c->name));
2070 c->options = options;
2071 braille_set_options(c, brl_options);
2072
2073 c->index = idx;
2074 return 0;
2075 }
2076 /*
2077 * Set up a console. Called via do_early_param() in init/main.c
2078 * for each "console=" parameter in the boot command line.
2079 */
2080 static int __init console_setup(char *str)
2081 {
2082 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2083 char *s, *options, *brl_options = NULL;
2084 int idx;
2085
2086 if (_braille_console_setup(&str, &brl_options))
2087 return 1;
2088
2089 /*
2090 * Decode str into name, index, options.
2091 */
2092 if (str[0] >= '0' && str[0] <= '9') {
2093 strcpy(buf, "ttyS");
2094 strncpy(buf + 4, str, sizeof(buf) - 5);
2095 } else {
2096 strncpy(buf, str, sizeof(buf) - 1);
2097 }
2098 buf[sizeof(buf) - 1] = 0;
2099 options = strchr(str, ',');
2100 if (options)
2101 *(options++) = 0;
2102 #ifdef __sparc__
2103 if (!strcmp(str, "ttya"))
2104 strcpy(buf, "ttyS0");
2105 if (!strcmp(str, "ttyb"))
2106 strcpy(buf, "ttyS1");
2107 #endif
2108 for (s = buf; *s; s++)
2109 if (isdigit(*s) || *s == ',')
2110 break;
2111 idx = simple_strtoul(s, NULL, 10);
2112 *s = 0;
2113
2114 __add_preferred_console(buf, idx, options, brl_options);
2115 console_set_on_cmdline = 1;
2116 return 1;
2117 }
2118 __setup("console=", console_setup);
2119
2120 /**
2121 * add_preferred_console - add a device to the list of preferred consoles.
2122 * @name: device name
2123 * @idx: device index
2124 * @options: options for this console
2125 *
2126 * The last preferred console added will be used for kernel messages
2127 * and stdin/out/err for init. Normally this is used by console_setup
2128 * above to handle user-supplied console arguments; however it can also
2129 * be used by arch-specific code either to override the user or more
2130 * commonly to provide a default console (ie from PROM variables) when
2131 * the user has not supplied one.
2132 */
2133 int add_preferred_console(char *name, int idx, char *options)
2134 {
2135 return __add_preferred_console(name, idx, options, NULL);
2136 }
2137
2138 bool console_suspend_enabled = true;
2139 EXPORT_SYMBOL(console_suspend_enabled);
2140
2141 static int __init console_suspend_disable(char *str)
2142 {
2143 console_suspend_enabled = false;
2144 return 1;
2145 }
2146 __setup("no_console_suspend", console_suspend_disable);
2147 module_param_named(console_suspend, console_suspend_enabled,
2148 bool, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2150 " and hibernate operations");
2151
2152 /**
2153 * suspend_console - suspend the console subsystem
2154 *
2155 * This disables printk() while we go into suspend states
2156 */
2157 void suspend_console(void)
2158 {
2159 if (!console_suspend_enabled)
2160 return;
2161 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2162 console_lock();
2163 console_suspended = 1;
2164 up_console_sem();
2165 }
2166
2167 void resume_console(void)
2168 {
2169 if (!console_suspend_enabled)
2170 return;
2171 down_console_sem();
2172 console_suspended = 0;
2173 console_unlock();
2174 }
2175
2176 /**
2177 * console_cpu_notify - print deferred console messages after CPU hotplug
2178 * @self: notifier struct
2179 * @action: CPU hotplug event
2180 * @hcpu: unused
2181 *
2182 * If printk() is called from a CPU that is not online yet, the messages
2183 * will be spooled but will not show up on the console. This function is
2184 * called when a new CPU comes online (or fails to come up), and ensures
2185 * that any such output gets printed.
2186 */
2187 static int console_cpu_notify(struct notifier_block *self,
2188 unsigned long action, void *hcpu)
2189 {
2190 switch (action) {
2191 case CPU_ONLINE:
2192 case CPU_DEAD:
2193 case CPU_DOWN_FAILED:
2194 case CPU_UP_CANCELED:
2195 console_lock();
2196 console_unlock();
2197 }
2198 return NOTIFY_OK;
2199 }
2200
2201 /**
2202 * console_lock - lock the console system for exclusive use.
2203 *
2204 * Acquires a lock which guarantees that the caller has
2205 * exclusive access to the console system and the console_drivers list.
2206 *
2207 * Can sleep, returns nothing.
2208 */
2209 void console_lock(void)
2210 {
2211 might_sleep();
2212
2213 down_console_sem();
2214 if (console_suspended)
2215 return;
2216 console_locked = 1;
2217 console_may_schedule = 1;
2218 }
2219 EXPORT_SYMBOL(console_lock);
2220
2221 /**
2222 * console_trylock - try to lock the console system for exclusive use.
2223 *
2224 * Try to acquire a lock which guarantees that the caller has exclusive
2225 * access to the console system and the console_drivers list.
2226 *
2227 * returns 1 on success, and 0 on failure to acquire the lock.
2228 */
2229 int console_trylock(void)
2230 {
2231 if (down_trylock_console_sem())
2232 return 0;
2233 if (console_suspended) {
2234 up_console_sem();
2235 return 0;
2236 }
2237 console_locked = 1;
2238 /*
2239 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2240 * safe to schedule (e.g. calling printk while holding a spin_lock),
2241 * because preempt_disable()/preempt_enable() are just barriers there
2242 * and preempt_count() is always 0.
2243 *
2244 * RCU read sections have a separate preemption counter when
2245 * PREEMPT_RCU enabled thus we must take extra care and check
2246 * rcu_preempt_depth(), otherwise RCU read sections modify
2247 * preempt_count().
2248 */
2249 console_may_schedule = !oops_in_progress &&
2250 preemptible() &&
2251 !rcu_preempt_depth();
2252 return 1;
2253 }
2254 EXPORT_SYMBOL(console_trylock);
2255
2256 int is_console_locked(void)
2257 {
2258 return console_locked;
2259 }
2260
2261 /*
2262 * Check if we have any console that is capable of printing while cpu is
2263 * booting or shutting down. Requires console_sem.
2264 */
2265 static int have_callable_console(void)
2266 {
2267 struct console *con;
2268
2269 for_each_console(con)
2270 if ((con->flags & CON_ENABLED) &&
2271 (con->flags & CON_ANYTIME))
2272 return 1;
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * Can we actually use the console at this time on this cpu?
2279 *
2280 * Console drivers may assume that per-cpu resources have been allocated. So
2281 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2282 * call them until this CPU is officially up.
2283 */
2284 static inline int can_use_console(void)
2285 {
2286 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2287 }
2288
2289 static void console_cont_flush(char *text, size_t size)
2290 {
2291 unsigned long flags;
2292 size_t len;
2293
2294 raw_spin_lock_irqsave(&logbuf_lock, flags);
2295
2296 if (!cont.len)
2297 goto out;
2298
2299 if (suppress_message_printing(cont.level)) {
2300 cont.cons = cont.len;
2301 if (cont.flushed)
2302 cont.len = 0;
2303 goto out;
2304 }
2305
2306 /*
2307 * We still queue earlier records, likely because the console was
2308 * busy. The earlier ones need to be printed before this one, we
2309 * did not flush any fragment so far, so just let it queue up.
2310 */
2311 if (console_seq < log_next_seq && !cont.cons)
2312 goto out;
2313
2314 len = cont_print_text(text, size);
2315 raw_spin_unlock(&logbuf_lock);
2316 stop_critical_timings();
2317 call_console_drivers(cont.level, NULL, 0, text, len);
2318 start_critical_timings();
2319 local_irq_restore(flags);
2320 return;
2321 out:
2322 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2323 }
2324
2325 /**
2326 * console_unlock - unlock the console system
2327 *
2328 * Releases the console_lock which the caller holds on the console system
2329 * and the console driver list.
2330 *
2331 * While the console_lock was held, console output may have been buffered
2332 * by printk(). If this is the case, console_unlock(); emits
2333 * the output prior to releasing the lock.
2334 *
2335 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2336 *
2337 * console_unlock(); may be called from any context.
2338 */
2339 void console_unlock(void)
2340 {
2341 static char ext_text[CONSOLE_EXT_LOG_MAX];
2342 static char text[LOG_LINE_MAX + PREFIX_MAX];
2343 static u64 seen_seq;
2344 unsigned long flags;
2345 bool wake_klogd = false;
2346 bool do_cond_resched, retry;
2347
2348 if (console_suspended) {
2349 up_console_sem();
2350 return;
2351 }
2352
2353 /*
2354 * Console drivers are called under logbuf_lock, so
2355 * @console_may_schedule should be cleared before; however, we may
2356 * end up dumping a lot of lines, for example, if called from
2357 * console registration path, and should invoke cond_resched()
2358 * between lines if allowable. Not doing so can cause a very long
2359 * scheduling stall on a slow console leading to RCU stall and
2360 * softlockup warnings which exacerbate the issue with more
2361 * messages practically incapacitating the system.
2362 */
2363 do_cond_resched = console_may_schedule;
2364 console_may_schedule = 0;
2365
2366 again:
2367 /*
2368 * We released the console_sem lock, so we need to recheck if
2369 * cpu is online and (if not) is there at least one CON_ANYTIME
2370 * console.
2371 */
2372 if (!can_use_console()) {
2373 console_locked = 0;
2374 up_console_sem();
2375 return;
2376 }
2377
2378 /* flush buffered message fragment immediately to console */
2379 console_cont_flush(text, sizeof(text));
2380
2381 for (;;) {
2382 struct printk_log *msg;
2383 size_t ext_len = 0;
2384 size_t len;
2385 int level;
2386
2387 raw_spin_lock_irqsave(&logbuf_lock, flags);
2388 if (seen_seq != log_next_seq) {
2389 wake_klogd = true;
2390 seen_seq = log_next_seq;
2391 }
2392
2393 if (console_seq < log_first_seq) {
2394 len = sprintf(text, "** %u printk messages dropped ** ",
2395 (unsigned)(log_first_seq - console_seq));
2396
2397 /* messages are gone, move to first one */
2398 console_seq = log_first_seq;
2399 console_idx = log_first_idx;
2400 console_prev = 0;
2401 } else {
2402 len = 0;
2403 }
2404 skip:
2405 if (console_seq == log_next_seq)
2406 break;
2407
2408 msg = log_from_idx(console_idx);
2409 level = msg->level;
2410 if ((msg->flags & LOG_NOCONS) ||
2411 suppress_message_printing(level)) {
2412 /*
2413 * Skip record we have buffered and already printed
2414 * directly to the console when we received it, and
2415 * record that has level above the console loglevel.
2416 */
2417 console_idx = log_next(console_idx);
2418 console_seq++;
2419 /*
2420 * We will get here again when we register a new
2421 * CON_PRINTBUFFER console. Clear the flag so we
2422 * will properly dump everything later.
2423 */
2424 msg->flags &= ~LOG_NOCONS;
2425 console_prev = msg->flags;
2426 goto skip;
2427 }
2428
2429 len += msg_print_text(msg, console_prev, false,
2430 text + len, sizeof(text) - len);
2431 if (nr_ext_console_drivers) {
2432 ext_len = msg_print_ext_header(ext_text,
2433 sizeof(ext_text),
2434 msg, console_seq, console_prev);
2435 ext_len += msg_print_ext_body(ext_text + ext_len,
2436 sizeof(ext_text) - ext_len,
2437 log_dict(msg), msg->dict_len,
2438 log_text(msg), msg->text_len);
2439 }
2440 console_idx = log_next(console_idx);
2441 console_seq++;
2442 console_prev = msg->flags;
2443 raw_spin_unlock(&logbuf_lock);
2444
2445 stop_critical_timings(); /* don't trace print latency */
2446 call_console_drivers(level, ext_text, ext_len, text, len);
2447 start_critical_timings();
2448 local_irq_restore(flags);
2449
2450 if (do_cond_resched)
2451 cond_resched();
2452 }
2453 console_locked = 0;
2454
2455 /* Release the exclusive_console once it is used */
2456 if (unlikely(exclusive_console))
2457 exclusive_console = NULL;
2458
2459 raw_spin_unlock(&logbuf_lock);
2460
2461 up_console_sem();
2462
2463 /*
2464 * Someone could have filled up the buffer again, so re-check if there's
2465 * something to flush. In case we cannot trylock the console_sem again,
2466 * there's a new owner and the console_unlock() from them will do the
2467 * flush, no worries.
2468 */
2469 raw_spin_lock(&logbuf_lock);
2470 retry = console_seq != log_next_seq;
2471 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2472
2473 if (retry && console_trylock())
2474 goto again;
2475
2476 if (wake_klogd)
2477 wake_up_klogd();
2478 }
2479 EXPORT_SYMBOL(console_unlock);
2480
2481 /**
2482 * console_conditional_schedule - yield the CPU if required
2483 *
2484 * If the console code is currently allowed to sleep, and
2485 * if this CPU should yield the CPU to another task, do
2486 * so here.
2487 *
2488 * Must be called within console_lock();.
2489 */
2490 void __sched console_conditional_schedule(void)
2491 {
2492 if (console_may_schedule)
2493 cond_resched();
2494 }
2495 EXPORT_SYMBOL(console_conditional_schedule);
2496
2497 void console_unblank(void)
2498 {
2499 struct console *c;
2500
2501 /*
2502 * console_unblank can no longer be called in interrupt context unless
2503 * oops_in_progress is set to 1..
2504 */
2505 if (oops_in_progress) {
2506 if (down_trylock_console_sem() != 0)
2507 return;
2508 } else
2509 console_lock();
2510
2511 console_locked = 1;
2512 console_may_schedule = 0;
2513 for_each_console(c)
2514 if ((c->flags & CON_ENABLED) && c->unblank)
2515 c->unblank();
2516 console_unlock();
2517 }
2518
2519 /**
2520 * console_flush_on_panic - flush console content on panic
2521 *
2522 * Immediately output all pending messages no matter what.
2523 */
2524 void console_flush_on_panic(void)
2525 {
2526 /*
2527 * If someone else is holding the console lock, trylock will fail
2528 * and may_schedule may be set. Ignore and proceed to unlock so
2529 * that messages are flushed out. As this can be called from any
2530 * context and we don't want to get preempted while flushing,
2531 * ensure may_schedule is cleared.
2532 */
2533 console_trylock();
2534 console_may_schedule = 0;
2535 console_unlock();
2536 }
2537
2538 /*
2539 * Return the console tty driver structure and its associated index
2540 */
2541 struct tty_driver *console_device(int *index)
2542 {
2543 struct console *c;
2544 struct tty_driver *driver = NULL;
2545
2546 console_lock();
2547 for_each_console(c) {
2548 if (!c->device)
2549 continue;
2550 driver = c->device(c, index);
2551 if (driver)
2552 break;
2553 }
2554 console_unlock();
2555 return driver;
2556 }
2557
2558 /*
2559 * Prevent further output on the passed console device so that (for example)
2560 * serial drivers can disable console output before suspending a port, and can
2561 * re-enable output afterwards.
2562 */
2563 void console_stop(struct console *console)
2564 {
2565 console_lock();
2566 console->flags &= ~CON_ENABLED;
2567 console_unlock();
2568 }
2569 EXPORT_SYMBOL(console_stop);
2570
2571 void console_start(struct console *console)
2572 {
2573 console_lock();
2574 console->flags |= CON_ENABLED;
2575 console_unlock();
2576 }
2577 EXPORT_SYMBOL(console_start);
2578
2579 static int __read_mostly keep_bootcon;
2580
2581 static int __init keep_bootcon_setup(char *str)
2582 {
2583 keep_bootcon = 1;
2584 pr_info("debug: skip boot console de-registration.\n");
2585
2586 return 0;
2587 }
2588
2589 early_param("keep_bootcon", keep_bootcon_setup);
2590
2591 /*
2592 * The console driver calls this routine during kernel initialization
2593 * to register the console printing procedure with printk() and to
2594 * print any messages that were printed by the kernel before the
2595 * console driver was initialized.
2596 *
2597 * This can happen pretty early during the boot process (because of
2598 * early_printk) - sometimes before setup_arch() completes - be careful
2599 * of what kernel features are used - they may not be initialised yet.
2600 *
2601 * There are two types of consoles - bootconsoles (early_printk) and
2602 * "real" consoles (everything which is not a bootconsole) which are
2603 * handled differently.
2604 * - Any number of bootconsoles can be registered at any time.
2605 * - As soon as a "real" console is registered, all bootconsoles
2606 * will be unregistered automatically.
2607 * - Once a "real" console is registered, any attempt to register a
2608 * bootconsoles will be rejected
2609 */
2610 void register_console(struct console *newcon)
2611 {
2612 int i;
2613 unsigned long flags;
2614 struct console *bcon = NULL;
2615 struct console_cmdline *c;
2616
2617 if (console_drivers)
2618 for_each_console(bcon)
2619 if (WARN(bcon == newcon,
2620 "console '%s%d' already registered\n",
2621 bcon->name, bcon->index))
2622 return;
2623
2624 /*
2625 * before we register a new CON_BOOT console, make sure we don't
2626 * already have a valid console
2627 */
2628 if (console_drivers && newcon->flags & CON_BOOT) {
2629 /* find the last or real console */
2630 for_each_console(bcon) {
2631 if (!(bcon->flags & CON_BOOT)) {
2632 pr_info("Too late to register bootconsole %s%d\n",
2633 newcon->name, newcon->index);
2634 return;
2635 }
2636 }
2637 }
2638
2639 if (console_drivers && console_drivers->flags & CON_BOOT)
2640 bcon = console_drivers;
2641
2642 if (preferred_console < 0 || bcon || !console_drivers)
2643 preferred_console = selected_console;
2644
2645 /*
2646 * See if we want to use this console driver. If we
2647 * didn't select a console we take the first one
2648 * that registers here.
2649 */
2650 if (preferred_console < 0) {
2651 if (newcon->index < 0)
2652 newcon->index = 0;
2653 if (newcon->setup == NULL ||
2654 newcon->setup(newcon, NULL) == 0) {
2655 newcon->flags |= CON_ENABLED;
2656 if (newcon->device) {
2657 newcon->flags |= CON_CONSDEV;
2658 preferred_console = 0;
2659 }
2660 }
2661 }
2662
2663 /*
2664 * See if this console matches one we selected on
2665 * the command line.
2666 */
2667 for (i = 0, c = console_cmdline;
2668 i < MAX_CMDLINECONSOLES && c->name[0];
2669 i++, c++) {
2670 if (!newcon->match ||
2671 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2672 /* default matching */
2673 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2674 if (strcmp(c->name, newcon->name) != 0)
2675 continue;
2676 if (newcon->index >= 0 &&
2677 newcon->index != c->index)
2678 continue;
2679 if (newcon->index < 0)
2680 newcon->index = c->index;
2681
2682 if (_braille_register_console(newcon, c))
2683 return;
2684
2685 if (newcon->setup &&
2686 newcon->setup(newcon, c->options) != 0)
2687 break;
2688 }
2689
2690 newcon->flags |= CON_ENABLED;
2691 if (i == selected_console) {
2692 newcon->flags |= CON_CONSDEV;
2693 preferred_console = selected_console;
2694 }
2695 break;
2696 }
2697
2698 if (!(newcon->flags & CON_ENABLED))
2699 return;
2700
2701 /*
2702 * If we have a bootconsole, and are switching to a real console,
2703 * don't print everything out again, since when the boot console, and
2704 * the real console are the same physical device, it's annoying to
2705 * see the beginning boot messages twice
2706 */
2707 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2708 newcon->flags &= ~CON_PRINTBUFFER;
2709
2710 /*
2711 * Put this console in the list - keep the
2712 * preferred driver at the head of the list.
2713 */
2714 console_lock();
2715 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2716 newcon->next = console_drivers;
2717 console_drivers = newcon;
2718 if (newcon->next)
2719 newcon->next->flags &= ~CON_CONSDEV;
2720 } else {
2721 newcon->next = console_drivers->next;
2722 console_drivers->next = newcon;
2723 }
2724
2725 if (newcon->flags & CON_EXTENDED)
2726 if (!nr_ext_console_drivers++)
2727 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2728
2729 if (newcon->flags & CON_PRINTBUFFER) {
2730 /*
2731 * console_unlock(); will print out the buffered messages
2732 * for us.
2733 */
2734 raw_spin_lock_irqsave(&logbuf_lock, flags);
2735 console_seq = syslog_seq;
2736 console_idx = syslog_idx;
2737 console_prev = syslog_prev;
2738 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2739 /*
2740 * We're about to replay the log buffer. Only do this to the
2741 * just-registered console to avoid excessive message spam to
2742 * the already-registered consoles.
2743 */
2744 exclusive_console = newcon;
2745 }
2746 console_unlock();
2747 console_sysfs_notify();
2748
2749 /*
2750 * By unregistering the bootconsoles after we enable the real console
2751 * we get the "console xxx enabled" message on all the consoles -
2752 * boot consoles, real consoles, etc - this is to ensure that end
2753 * users know there might be something in the kernel's log buffer that
2754 * went to the bootconsole (that they do not see on the real console)
2755 */
2756 pr_info("%sconsole [%s%d] enabled\n",
2757 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2758 newcon->name, newcon->index);
2759 if (bcon &&
2760 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2761 !keep_bootcon) {
2762 /* We need to iterate through all boot consoles, to make
2763 * sure we print everything out, before we unregister them.
2764 */
2765 for_each_console(bcon)
2766 if (bcon->flags & CON_BOOT)
2767 unregister_console(bcon);
2768 }
2769 }
2770 EXPORT_SYMBOL(register_console);
2771
2772 int unregister_console(struct console *console)
2773 {
2774 struct console *a, *b;
2775 int res;
2776
2777 pr_info("%sconsole [%s%d] disabled\n",
2778 (console->flags & CON_BOOT) ? "boot" : "" ,
2779 console->name, console->index);
2780
2781 res = _braille_unregister_console(console);
2782 if (res)
2783 return res;
2784
2785 res = 1;
2786 console_lock();
2787 if (console_drivers == console) {
2788 console_drivers=console->next;
2789 res = 0;
2790 } else if (console_drivers) {
2791 for (a=console_drivers->next, b=console_drivers ;
2792 a; b=a, a=b->next) {
2793 if (a == console) {
2794 b->next = a->next;
2795 res = 0;
2796 break;
2797 }
2798 }
2799 }
2800
2801 if (!res && (console->flags & CON_EXTENDED))
2802 nr_ext_console_drivers--;
2803
2804 /*
2805 * If this isn't the last console and it has CON_CONSDEV set, we
2806 * need to set it on the next preferred console.
2807 */
2808 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2809 console_drivers->flags |= CON_CONSDEV;
2810
2811 console->flags &= ~CON_ENABLED;
2812 console_unlock();
2813 console_sysfs_notify();
2814 return res;
2815 }
2816 EXPORT_SYMBOL(unregister_console);
2817
2818 /*
2819 * Some boot consoles access data that is in the init section and which will
2820 * be discarded after the initcalls have been run. To make sure that no code
2821 * will access this data, unregister the boot consoles in a late initcall.
2822 *
2823 * If for some reason, such as deferred probe or the driver being a loadable
2824 * module, the real console hasn't registered yet at this point, there will
2825 * be a brief interval in which no messages are logged to the console, which
2826 * makes it difficult to diagnose problems that occur during this time.
2827 *
2828 * To mitigate this problem somewhat, only unregister consoles whose memory
2829 * intersects with the init section. Note that code exists elsewhere to get
2830 * rid of the boot console as soon as the proper console shows up, so there
2831 * won't be side-effects from postponing the removal.
2832 */
2833 static int __init printk_late_init(void)
2834 {
2835 struct console *con;
2836
2837 for_each_console(con) {
2838 if (!keep_bootcon && con->flags & CON_BOOT) {
2839 /*
2840 * Make sure to unregister boot consoles whose data
2841 * resides in the init section before the init section
2842 * is discarded. Boot consoles whose data will stick
2843 * around will automatically be unregistered when the
2844 * proper console replaces them.
2845 */
2846 if (init_section_intersects(con, sizeof(*con)))
2847 unregister_console(con);
2848 }
2849 }
2850 hotcpu_notifier(console_cpu_notify, 0);
2851 return 0;
2852 }
2853 late_initcall(printk_late_init);
2854
2855 #if defined CONFIG_PRINTK
2856 /*
2857 * Delayed printk version, for scheduler-internal messages:
2858 */
2859 #define PRINTK_PENDING_WAKEUP 0x01
2860 #define PRINTK_PENDING_OUTPUT 0x02
2861
2862 static DEFINE_PER_CPU(int, printk_pending);
2863
2864 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2865 {
2866 int pending = __this_cpu_xchg(printk_pending, 0);
2867
2868 if (pending & PRINTK_PENDING_OUTPUT) {
2869 /* If trylock fails, someone else is doing the printing */
2870 if (console_trylock())
2871 console_unlock();
2872 }
2873
2874 if (pending & PRINTK_PENDING_WAKEUP)
2875 wake_up_interruptible(&log_wait);
2876 }
2877
2878 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2879 .func = wake_up_klogd_work_func,
2880 .flags = IRQ_WORK_LAZY,
2881 };
2882
2883 void wake_up_klogd(void)
2884 {
2885 preempt_disable();
2886 if (waitqueue_active(&log_wait)) {
2887 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2888 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2889 }
2890 preempt_enable();
2891 }
2892
2893 int printk_deferred(const char *fmt, ...)
2894 {
2895 va_list args;
2896 int r;
2897
2898 preempt_disable();
2899 va_start(args, fmt);
2900 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2901 va_end(args);
2902
2903 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2904 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2905 preempt_enable();
2906
2907 return r;
2908 }
2909
2910 /*
2911 * printk rate limiting, lifted from the networking subsystem.
2912 *
2913 * This enforces a rate limit: not more than 10 kernel messages
2914 * every 5s to make a denial-of-service attack impossible.
2915 */
2916 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2917
2918 int __printk_ratelimit(const char *func)
2919 {
2920 return ___ratelimit(&printk_ratelimit_state, func);
2921 }
2922 EXPORT_SYMBOL(__printk_ratelimit);
2923
2924 /**
2925 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2926 * @caller_jiffies: pointer to caller's state
2927 * @interval_msecs: minimum interval between prints
2928 *
2929 * printk_timed_ratelimit() returns true if more than @interval_msecs
2930 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2931 * returned true.
2932 */
2933 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2934 unsigned int interval_msecs)
2935 {
2936 unsigned long elapsed = jiffies - *caller_jiffies;
2937
2938 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2939 return false;
2940
2941 *caller_jiffies = jiffies;
2942 return true;
2943 }
2944 EXPORT_SYMBOL(printk_timed_ratelimit);
2945
2946 static DEFINE_SPINLOCK(dump_list_lock);
2947 static LIST_HEAD(dump_list);
2948
2949 /**
2950 * kmsg_dump_register - register a kernel log dumper.
2951 * @dumper: pointer to the kmsg_dumper structure
2952 *
2953 * Adds a kernel log dumper to the system. The dump callback in the
2954 * structure will be called when the kernel oopses or panics and must be
2955 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2956 */
2957 int kmsg_dump_register(struct kmsg_dumper *dumper)
2958 {
2959 unsigned long flags;
2960 int err = -EBUSY;
2961
2962 /* The dump callback needs to be set */
2963 if (!dumper->dump)
2964 return -EINVAL;
2965
2966 spin_lock_irqsave(&dump_list_lock, flags);
2967 /* Don't allow registering multiple times */
2968 if (!dumper->registered) {
2969 dumper->registered = 1;
2970 list_add_tail_rcu(&dumper->list, &dump_list);
2971 err = 0;
2972 }
2973 spin_unlock_irqrestore(&dump_list_lock, flags);
2974
2975 return err;
2976 }
2977 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2978
2979 /**
2980 * kmsg_dump_unregister - unregister a kmsg dumper.
2981 * @dumper: pointer to the kmsg_dumper structure
2982 *
2983 * Removes a dump device from the system. Returns zero on success and
2984 * %-EINVAL otherwise.
2985 */
2986 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2987 {
2988 unsigned long flags;
2989 int err = -EINVAL;
2990
2991 spin_lock_irqsave(&dump_list_lock, flags);
2992 if (dumper->registered) {
2993 dumper->registered = 0;
2994 list_del_rcu(&dumper->list);
2995 err = 0;
2996 }
2997 spin_unlock_irqrestore(&dump_list_lock, flags);
2998 synchronize_rcu();
2999
3000 return err;
3001 }
3002 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3003
3004 static bool always_kmsg_dump;
3005 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3006
3007 /**
3008 * kmsg_dump - dump kernel log to kernel message dumpers.
3009 * @reason: the reason (oops, panic etc) for dumping
3010 *
3011 * Call each of the registered dumper's dump() callback, which can
3012 * retrieve the kmsg records with kmsg_dump_get_line() or
3013 * kmsg_dump_get_buffer().
3014 */
3015 void kmsg_dump(enum kmsg_dump_reason reason)
3016 {
3017 struct kmsg_dumper *dumper;
3018 unsigned long flags;
3019
3020 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3021 return;
3022
3023 rcu_read_lock();
3024 list_for_each_entry_rcu(dumper, &dump_list, list) {
3025 if (dumper->max_reason && reason > dumper->max_reason)
3026 continue;
3027
3028 /* initialize iterator with data about the stored records */
3029 dumper->active = true;
3030
3031 raw_spin_lock_irqsave(&logbuf_lock, flags);
3032 dumper->cur_seq = clear_seq;
3033 dumper->cur_idx = clear_idx;
3034 dumper->next_seq = log_next_seq;
3035 dumper->next_idx = log_next_idx;
3036 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3037
3038 /* invoke dumper which will iterate over records */
3039 dumper->dump(dumper, reason);
3040
3041 /* reset iterator */
3042 dumper->active = false;
3043 }
3044 rcu_read_unlock();
3045 }
3046
3047 /**
3048 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3049 * @dumper: registered kmsg dumper
3050 * @syslog: include the "<4>" prefixes
3051 * @line: buffer to copy the line to
3052 * @size: maximum size of the buffer
3053 * @len: length of line placed into buffer
3054 *
3055 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3056 * record, and copy one record into the provided buffer.
3057 *
3058 * Consecutive calls will return the next available record moving
3059 * towards the end of the buffer with the youngest messages.
3060 *
3061 * A return value of FALSE indicates that there are no more records to
3062 * read.
3063 *
3064 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3065 */
3066 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3067 char *line, size_t size, size_t *len)
3068 {
3069 struct printk_log *msg;
3070 size_t l = 0;
3071 bool ret = false;
3072
3073 if (!dumper->active)
3074 goto out;
3075
3076 if (dumper->cur_seq < log_first_seq) {
3077 /* messages are gone, move to first available one */
3078 dumper->cur_seq = log_first_seq;
3079 dumper->cur_idx = log_first_idx;
3080 }
3081
3082 /* last entry */
3083 if (dumper->cur_seq >= log_next_seq)
3084 goto out;
3085
3086 msg = log_from_idx(dumper->cur_idx);
3087 l = msg_print_text(msg, 0, syslog, line, size);
3088
3089 dumper->cur_idx = log_next(dumper->cur_idx);
3090 dumper->cur_seq++;
3091 ret = true;
3092 out:
3093 if (len)
3094 *len = l;
3095 return ret;
3096 }
3097
3098 /**
3099 * kmsg_dump_get_line - retrieve one kmsg log line
3100 * @dumper: registered kmsg dumper
3101 * @syslog: include the "<4>" prefixes
3102 * @line: buffer to copy the line to
3103 * @size: maximum size of the buffer
3104 * @len: length of line placed into buffer
3105 *
3106 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3107 * record, and copy one record into the provided buffer.
3108 *
3109 * Consecutive calls will return the next available record moving
3110 * towards the end of the buffer with the youngest messages.
3111 *
3112 * A return value of FALSE indicates that there are no more records to
3113 * read.
3114 */
3115 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3116 char *line, size_t size, size_t *len)
3117 {
3118 unsigned long flags;
3119 bool ret;
3120
3121 raw_spin_lock_irqsave(&logbuf_lock, flags);
3122 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3123 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3124
3125 return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3128
3129 /**
3130 * kmsg_dump_get_buffer - copy kmsg log lines
3131 * @dumper: registered kmsg dumper
3132 * @syslog: include the "<4>" prefixes
3133 * @buf: buffer to copy the line to
3134 * @size: maximum size of the buffer
3135 * @len: length of line placed into buffer
3136 *
3137 * Start at the end of the kmsg buffer and fill the provided buffer
3138 * with as many of the the *youngest* kmsg records that fit into it.
3139 * If the buffer is large enough, all available kmsg records will be
3140 * copied with a single call.
3141 *
3142 * Consecutive calls will fill the buffer with the next block of
3143 * available older records, not including the earlier retrieved ones.
3144 *
3145 * A return value of FALSE indicates that there are no more records to
3146 * read.
3147 */
3148 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3149 char *buf, size_t size, size_t *len)
3150 {
3151 unsigned long flags;
3152 u64 seq;
3153 u32 idx;
3154 u64 next_seq;
3155 u32 next_idx;
3156 enum log_flags prev;
3157 size_t l = 0;
3158 bool ret = false;
3159
3160 if (!dumper->active)
3161 goto out;
3162
3163 raw_spin_lock_irqsave(&logbuf_lock, flags);
3164 if (dumper->cur_seq < log_first_seq) {
3165 /* messages are gone, move to first available one */
3166 dumper->cur_seq = log_first_seq;
3167 dumper->cur_idx = log_first_idx;
3168 }
3169
3170 /* last entry */
3171 if (dumper->cur_seq >= dumper->next_seq) {
3172 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3173 goto out;
3174 }
3175
3176 /* calculate length of entire buffer */
3177 seq = dumper->cur_seq;
3178 idx = dumper->cur_idx;
3179 prev = 0;
3180 while (seq < dumper->next_seq) {
3181 struct printk_log *msg = log_from_idx(idx);
3182
3183 l += msg_print_text(msg, prev, true, NULL, 0);
3184 idx = log_next(idx);
3185 seq++;
3186 prev = msg->flags;
3187 }
3188
3189 /* move first record forward until length fits into the buffer */
3190 seq = dumper->cur_seq;
3191 idx = dumper->cur_idx;
3192 prev = 0;
3193 while (l > size && seq < dumper->next_seq) {
3194 struct printk_log *msg = log_from_idx(idx);
3195
3196 l -= msg_print_text(msg, prev, true, NULL, 0);
3197 idx = log_next(idx);
3198 seq++;
3199 prev = msg->flags;
3200 }
3201
3202 /* last message in next interation */
3203 next_seq = seq;
3204 next_idx = idx;
3205
3206 l = 0;
3207 while (seq < dumper->next_seq) {
3208 struct printk_log *msg = log_from_idx(idx);
3209
3210 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3211 idx = log_next(idx);
3212 seq++;
3213 prev = msg->flags;
3214 }
3215
3216 dumper->next_seq = next_seq;
3217 dumper->next_idx = next_idx;
3218 ret = true;
3219 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3220 out:
3221 if (len)
3222 *len = l;
3223 return ret;
3224 }
3225 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3226
3227 /**
3228 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3229 * @dumper: registered kmsg dumper
3230 *
3231 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3232 * kmsg_dump_get_buffer() can be called again and used multiple
3233 * times within the same dumper.dump() callback.
3234 *
3235 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3236 */
3237 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3238 {
3239 dumper->cur_seq = clear_seq;
3240 dumper->cur_idx = clear_idx;
3241 dumper->next_seq = log_next_seq;
3242 dumper->next_idx = log_next_idx;
3243 }
3244
3245 /**
3246 * kmsg_dump_rewind - reset the interator
3247 * @dumper: registered kmsg dumper
3248 *
3249 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3250 * kmsg_dump_get_buffer() can be called again and used multiple
3251 * times within the same dumper.dump() callback.
3252 */
3253 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3254 {
3255 unsigned long flags;
3256
3257 raw_spin_lock_irqsave(&logbuf_lock, flags);
3258 kmsg_dump_rewind_nolock(dumper);
3259 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3260 }
3261 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3262
3263 static char dump_stack_arch_desc_str[128];
3264
3265 /**
3266 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3267 * @fmt: printf-style format string
3268 * @...: arguments for the format string
3269 *
3270 * The configured string will be printed right after utsname during task
3271 * dumps. Usually used to add arch-specific system identifiers. If an
3272 * arch wants to make use of such an ID string, it should initialize this
3273 * as soon as possible during boot.
3274 */
3275 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3276 {
3277 va_list args;
3278
3279 va_start(args, fmt);
3280 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3281 fmt, args);
3282 va_end(args);
3283 }
3284
3285 /**
3286 * dump_stack_print_info - print generic debug info for dump_stack()
3287 * @log_lvl: log level
3288 *
3289 * Arch-specific dump_stack() implementations can use this function to
3290 * print out the same debug information as the generic dump_stack().
3291 */
3292 void dump_stack_print_info(const char *log_lvl)
3293 {
3294 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3295 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3296 print_tainted(), init_utsname()->release,
3297 (int)strcspn(init_utsname()->version, " "),
3298 init_utsname()->version);
3299
3300 if (dump_stack_arch_desc_str[0] != '\0')
3301 printk("%sHardware name: %s\n",
3302 log_lvl, dump_stack_arch_desc_str);
3303
3304 print_worker_info(log_lvl, current);
3305 }
3306
3307 /**
3308 * show_regs_print_info - print generic debug info for show_regs()
3309 * @log_lvl: log level
3310 *
3311 * show_regs() implementations can use this function to print out generic
3312 * debug information.
3313 */
3314 void show_regs_print_info(const char *log_lvl)
3315 {
3316 dump_stack_print_info(log_lvl);
3317
3318 printk("%stask: %p task.stack: %p\n",
3319 log_lvl, current, task_stack_page(current));
3320 }
3321
3322 #endif
This page took 0.098903 seconds and 5 git commands to generate.