Merge remote-tracking branch 'iommu/next'
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 /*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 }
108
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
114
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly;
130
131 /*
132 * The rcu_scheduler_active variable transitions from zero to one just
133 * before the first task is spawned. So when this variable is zero, RCU
134 * can assume that there is but one task, allowing RCU to (for example)
135 * optimize synchronize_rcu() to a simple barrier(). When this variable
136 * is one, RCU must actually do all the hard work required to detect real
137 * grace periods. This variable is also used to suppress boot-time false
138 * positives from lockdep-RCU error checking.
139 */
140 int rcu_scheduler_active __read_mostly;
141 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
142
143 /*
144 * The rcu_scheduler_fully_active variable transitions from zero to one
145 * during the early_initcall() processing, which is after the scheduler
146 * is capable of creating new tasks. So RCU processing (for example,
147 * creating tasks for RCU priority boosting) must be delayed until after
148 * rcu_scheduler_fully_active transitions from zero to one. We also
149 * currently delay invocation of any RCU callbacks until after this point.
150 *
151 * It might later prove better for people registering RCU callbacks during
152 * early boot to take responsibility for these callbacks, but one step at
153 * a time.
154 */
155 static int rcu_scheduler_fully_active __read_mostly;
156
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162 static void rcu_report_exp_rdp(struct rcu_state *rsp,
163 struct rcu_data *rdp, bool wake);
164 static void sync_sched_exp_online_cleanup(int cpu);
165
166 /* rcuc/rcub kthread realtime priority */
167 #ifdef CONFIG_RCU_KTHREAD_PRIO
168 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
169 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 module_param(kthread_prio, int, 0644);
173
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
175
176 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178 module_param(gp_preinit_delay, int, 0644);
179 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180 static const int gp_preinit_delay;
181 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
182
183 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
185 module_param(gp_init_delay, int, 0644);
186 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187 static const int gp_init_delay;
188 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
189
190 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192 module_param(gp_cleanup_delay, int, 0644);
193 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 static const int gp_cleanup_delay;
195 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196
197 /*
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
205 */
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
207
208 /*
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
216 */
217 unsigned long rcutorture_testseq;
218 unsigned long rcutorture_vernum;
219
220 /*
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
224 * in most contexts.
225 */
226 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
227 {
228 return READ_ONCE(rnp->qsmaskinitnext);
229 }
230
231 /*
232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
235 */
236 static int rcu_gp_in_progress(struct rcu_state *rsp)
237 {
238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
239 }
240
241 /*
242 * Note a quiescent state. Because we do not need to know
243 * how many quiescent states passed, just if there was at least
244 * one since the start of the grace period, this just sets a flag.
245 * The caller must have disabled preemption.
246 */
247 void rcu_sched_qs(void)
248 {
249 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
250 return;
251 trace_rcu_grace_period(TPS("rcu_sched"),
252 __this_cpu_read(rcu_sched_data.gpnum),
253 TPS("cpuqs"));
254 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
255 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
256 return;
257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
258 rcu_report_exp_rdp(&rcu_sched_state,
259 this_cpu_ptr(&rcu_sched_data), true);
260 }
261
262 void rcu_bh_qs(void)
263 {
264 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
265 trace_rcu_grace_period(TPS("rcu_bh"),
266 __this_cpu_read(rcu_bh_data.gpnum),
267 TPS("cpuqs"));
268 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
269 }
270 }
271
272 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
273
274 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
275 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
276 .dynticks = ATOMIC_INIT(1),
277 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
278 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
279 .dynticks_idle = ATOMIC_INIT(1),
280 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
281 };
282
283 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
284 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
285
286 /*
287 * Let the RCU core know that this CPU has gone through the scheduler,
288 * which is a quiescent state. This is called when the need for a
289 * quiescent state is urgent, so we burn an atomic operation and full
290 * memory barriers to let the RCU core know about it, regardless of what
291 * this CPU might (or might not) do in the near future.
292 *
293 * We inform the RCU core by emulating a zero-duration dyntick-idle
294 * period, which we in turn do by incrementing the ->dynticks counter
295 * by two.
296 *
297 * The caller must have disabled interrupts.
298 */
299 static void rcu_momentary_dyntick_idle(void)
300 {
301 struct rcu_data *rdp;
302 struct rcu_dynticks *rdtp;
303 int resched_mask;
304 struct rcu_state *rsp;
305
306 /*
307 * Yes, we can lose flag-setting operations. This is OK, because
308 * the flag will be set again after some delay.
309 */
310 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
311 raw_cpu_write(rcu_sched_qs_mask, 0);
312
313 /* Find the flavor that needs a quiescent state. */
314 for_each_rcu_flavor(rsp) {
315 rdp = raw_cpu_ptr(rsp->rda);
316 if (!(resched_mask & rsp->flavor_mask))
317 continue;
318 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
319 if (READ_ONCE(rdp->mynode->completed) !=
320 READ_ONCE(rdp->cond_resched_completed))
321 continue;
322
323 /*
324 * Pretend to be momentarily idle for the quiescent state.
325 * This allows the grace-period kthread to record the
326 * quiescent state, with no need for this CPU to do anything
327 * further.
328 */
329 rdtp = this_cpu_ptr(&rcu_dynticks);
330 smp_mb__before_atomic(); /* Earlier stuff before QS. */
331 atomic_add(2, &rdtp->dynticks); /* QS. */
332 smp_mb__after_atomic(); /* Later stuff after QS. */
333 break;
334 }
335 }
336
337 /*
338 * Note a context switch. This is a quiescent state for RCU-sched,
339 * and requires special handling for preemptible RCU.
340 * The caller must have disabled interrupts.
341 */
342 void rcu_note_context_switch(void)
343 {
344 barrier(); /* Avoid RCU read-side critical sections leaking down. */
345 trace_rcu_utilization(TPS("Start context switch"));
346 rcu_sched_qs();
347 rcu_preempt_note_context_switch();
348 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
349 rcu_momentary_dyntick_idle();
350 trace_rcu_utilization(TPS("End context switch"));
351 barrier(); /* Avoid RCU read-side critical sections leaking up. */
352 }
353 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
354
355 /*
356 * Register a quiescent state for all RCU flavors. If there is an
357 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
358 * dyntick-idle quiescent state visible to other CPUs (but only for those
359 * RCU flavors in desperate need of a quiescent state, which will normally
360 * be none of them). Either way, do a lightweight quiescent state for
361 * all RCU flavors.
362 *
363 * The barrier() calls are redundant in the common case when this is
364 * called externally, but just in case this is called from within this
365 * file.
366 *
367 */
368 void rcu_all_qs(void)
369 {
370 unsigned long flags;
371
372 barrier(); /* Avoid RCU read-side critical sections leaking down. */
373 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
374 local_irq_save(flags);
375 rcu_momentary_dyntick_idle();
376 local_irq_restore(flags);
377 }
378 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
379 /*
380 * Yes, we just checked a per-CPU variable with preemption
381 * enabled, so we might be migrated to some other CPU at
382 * this point. That is OK because in that case, the
383 * migration will supply the needed quiescent state.
384 * We might end up needlessly disabling preemption and
385 * invoking rcu_sched_qs() on the destination CPU, but
386 * the probability and cost are both quite low, so this
387 * should not be a problem in practice.
388 */
389 preempt_disable();
390 rcu_sched_qs();
391 preempt_enable();
392 }
393 this_cpu_inc(rcu_qs_ctr);
394 barrier(); /* Avoid RCU read-side critical sections leaking up. */
395 }
396 EXPORT_SYMBOL_GPL(rcu_all_qs);
397
398 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
399 static long qhimark = 10000; /* If this many pending, ignore blimit. */
400 static long qlowmark = 100; /* Once only this many pending, use blimit. */
401
402 module_param(blimit, long, 0444);
403 module_param(qhimark, long, 0444);
404 module_param(qlowmark, long, 0444);
405
406 static ulong jiffies_till_first_fqs = ULONG_MAX;
407 static ulong jiffies_till_next_fqs = ULONG_MAX;
408 static bool rcu_kick_kthreads;
409
410 module_param(jiffies_till_first_fqs, ulong, 0644);
411 module_param(jiffies_till_next_fqs, ulong, 0644);
412 module_param(rcu_kick_kthreads, bool, 0644);
413
414 /*
415 * How long the grace period must be before we start recruiting
416 * quiescent-state help from rcu_note_context_switch().
417 */
418 static ulong jiffies_till_sched_qs = HZ / 20;
419 module_param(jiffies_till_sched_qs, ulong, 0644);
420
421 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
422 struct rcu_data *rdp);
423 static void force_qs_rnp(struct rcu_state *rsp,
424 int (*f)(struct rcu_data *rsp, bool *isidle,
425 unsigned long *maxj),
426 bool *isidle, unsigned long *maxj);
427 static void force_quiescent_state(struct rcu_state *rsp);
428 static int rcu_pending(void);
429
430 /*
431 * Return the number of RCU batches started thus far for debug & stats.
432 */
433 unsigned long rcu_batches_started(void)
434 {
435 return rcu_state_p->gpnum;
436 }
437 EXPORT_SYMBOL_GPL(rcu_batches_started);
438
439 /*
440 * Return the number of RCU-sched batches started thus far for debug & stats.
441 */
442 unsigned long rcu_batches_started_sched(void)
443 {
444 return rcu_sched_state.gpnum;
445 }
446 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
447
448 /*
449 * Return the number of RCU BH batches started thus far for debug & stats.
450 */
451 unsigned long rcu_batches_started_bh(void)
452 {
453 return rcu_bh_state.gpnum;
454 }
455 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
456
457 /*
458 * Return the number of RCU batches completed thus far for debug & stats.
459 */
460 unsigned long rcu_batches_completed(void)
461 {
462 return rcu_state_p->completed;
463 }
464 EXPORT_SYMBOL_GPL(rcu_batches_completed);
465
466 /*
467 * Return the number of RCU-sched batches completed thus far for debug & stats.
468 */
469 unsigned long rcu_batches_completed_sched(void)
470 {
471 return rcu_sched_state.completed;
472 }
473 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
474
475 /*
476 * Return the number of RCU BH batches completed thus far for debug & stats.
477 */
478 unsigned long rcu_batches_completed_bh(void)
479 {
480 return rcu_bh_state.completed;
481 }
482 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
483
484 /*
485 * Return the number of RCU expedited batches completed thus far for
486 * debug & stats. Odd numbers mean that a batch is in progress, even
487 * numbers mean idle. The value returned will thus be roughly double
488 * the cumulative batches since boot.
489 */
490 unsigned long rcu_exp_batches_completed(void)
491 {
492 return rcu_state_p->expedited_sequence;
493 }
494 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
495
496 /*
497 * Return the number of RCU-sched expedited batches completed thus far
498 * for debug & stats. Similar to rcu_exp_batches_completed().
499 */
500 unsigned long rcu_exp_batches_completed_sched(void)
501 {
502 return rcu_sched_state.expedited_sequence;
503 }
504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
505
506 /*
507 * Force a quiescent state.
508 */
509 void rcu_force_quiescent_state(void)
510 {
511 force_quiescent_state(rcu_state_p);
512 }
513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
514
515 /*
516 * Force a quiescent state for RCU BH.
517 */
518 void rcu_bh_force_quiescent_state(void)
519 {
520 force_quiescent_state(&rcu_bh_state);
521 }
522 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
523
524 /*
525 * Force a quiescent state for RCU-sched.
526 */
527 void rcu_sched_force_quiescent_state(void)
528 {
529 force_quiescent_state(&rcu_sched_state);
530 }
531 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
532
533 /*
534 * Show the state of the grace-period kthreads.
535 */
536 void show_rcu_gp_kthreads(void)
537 {
538 struct rcu_state *rsp;
539
540 for_each_rcu_flavor(rsp) {
541 pr_info("%s: wait state: %d ->state: %#lx\n",
542 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
543 /* sched_show_task(rsp->gp_kthread); */
544 }
545 }
546 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
547
548 /*
549 * Record the number of times rcutorture tests have been initiated and
550 * terminated. This information allows the debugfs tracing stats to be
551 * correlated to the rcutorture messages, even when the rcutorture module
552 * is being repeatedly loaded and unloaded. In other words, we cannot
553 * store this state in rcutorture itself.
554 */
555 void rcutorture_record_test_transition(void)
556 {
557 rcutorture_testseq++;
558 rcutorture_vernum = 0;
559 }
560 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
561
562 /*
563 * Send along grace-period-related data for rcutorture diagnostics.
564 */
565 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
566 unsigned long *gpnum, unsigned long *completed)
567 {
568 struct rcu_state *rsp = NULL;
569
570 switch (test_type) {
571 case RCU_FLAVOR:
572 rsp = rcu_state_p;
573 break;
574 case RCU_BH_FLAVOR:
575 rsp = &rcu_bh_state;
576 break;
577 case RCU_SCHED_FLAVOR:
578 rsp = &rcu_sched_state;
579 break;
580 default:
581 break;
582 }
583 if (rsp != NULL) {
584 *flags = READ_ONCE(rsp->gp_flags);
585 *gpnum = READ_ONCE(rsp->gpnum);
586 *completed = READ_ONCE(rsp->completed);
587 return;
588 }
589 *flags = 0;
590 *gpnum = 0;
591 *completed = 0;
592 }
593 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
594
595 /*
596 * Record the number of writer passes through the current rcutorture test.
597 * This is also used to correlate debugfs tracing stats with the rcutorture
598 * messages.
599 */
600 void rcutorture_record_progress(unsigned long vernum)
601 {
602 rcutorture_vernum++;
603 }
604 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
605
606 /*
607 * Does the CPU have callbacks ready to be invoked?
608 */
609 static int
610 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
611 {
612 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
613 rdp->nxttail[RCU_DONE_TAIL] != NULL;
614 }
615
616 /*
617 * Return the root node of the specified rcu_state structure.
618 */
619 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
620 {
621 return &rsp->node[0];
622 }
623
624 /*
625 * Is there any need for future grace periods?
626 * Interrupts must be disabled. If the caller does not hold the root
627 * rnp_node structure's ->lock, the results are advisory only.
628 */
629 static int rcu_future_needs_gp(struct rcu_state *rsp)
630 {
631 struct rcu_node *rnp = rcu_get_root(rsp);
632 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
633 int *fp = &rnp->need_future_gp[idx];
634
635 return READ_ONCE(*fp);
636 }
637
638 /*
639 * Does the current CPU require a not-yet-started grace period?
640 * The caller must have disabled interrupts to prevent races with
641 * normal callback registry.
642 */
643 static bool
644 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
645 {
646 int i;
647
648 if (rcu_gp_in_progress(rsp))
649 return false; /* No, a grace period is already in progress. */
650 if (rcu_future_needs_gp(rsp))
651 return true; /* Yes, a no-CBs CPU needs one. */
652 if (!rdp->nxttail[RCU_NEXT_TAIL])
653 return false; /* No, this is a no-CBs (or offline) CPU. */
654 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
655 return true; /* Yes, CPU has newly registered callbacks. */
656 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
657 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
658 ULONG_CMP_LT(READ_ONCE(rsp->completed),
659 rdp->nxtcompleted[i]))
660 return true; /* Yes, CBs for future grace period. */
661 return false; /* No grace period needed. */
662 }
663
664 /*
665 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
666 *
667 * If the new value of the ->dynticks_nesting counter now is zero,
668 * we really have entered idle, and must do the appropriate accounting.
669 * The caller must have disabled interrupts.
670 */
671 static void rcu_eqs_enter_common(long long oldval, bool user)
672 {
673 struct rcu_state *rsp;
674 struct rcu_data *rdp;
675 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
676
677 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
678 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
679 !user && !is_idle_task(current)) {
680 struct task_struct *idle __maybe_unused =
681 idle_task(smp_processor_id());
682
683 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
684 rcu_ftrace_dump(DUMP_ORIG);
685 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
686 current->pid, current->comm,
687 idle->pid, idle->comm); /* must be idle task! */
688 }
689 for_each_rcu_flavor(rsp) {
690 rdp = this_cpu_ptr(rsp->rda);
691 do_nocb_deferred_wakeup(rdp);
692 }
693 rcu_prepare_for_idle();
694 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
695 smp_mb__before_atomic(); /* See above. */
696 atomic_inc(&rdtp->dynticks);
697 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
698 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
699 atomic_read(&rdtp->dynticks) & 0x1);
700 rcu_dynticks_task_enter();
701
702 /*
703 * It is illegal to enter an extended quiescent state while
704 * in an RCU read-side critical section.
705 */
706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
707 "Illegal idle entry in RCU read-side critical section.");
708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
709 "Illegal idle entry in RCU-bh read-side critical section.");
710 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
711 "Illegal idle entry in RCU-sched read-side critical section.");
712 }
713
714 /*
715 * Enter an RCU extended quiescent state, which can be either the
716 * idle loop or adaptive-tickless usermode execution.
717 */
718 static void rcu_eqs_enter(bool user)
719 {
720 long long oldval;
721 struct rcu_dynticks *rdtp;
722
723 rdtp = this_cpu_ptr(&rcu_dynticks);
724 oldval = rdtp->dynticks_nesting;
725 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
726 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
727 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
728 rdtp->dynticks_nesting = 0;
729 rcu_eqs_enter_common(oldval, user);
730 } else {
731 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
732 }
733 }
734
735 /**
736 * rcu_idle_enter - inform RCU that current CPU is entering idle
737 *
738 * Enter idle mode, in other words, -leave- the mode in which RCU
739 * read-side critical sections can occur. (Though RCU read-side
740 * critical sections can occur in irq handlers in idle, a possibility
741 * handled by irq_enter() and irq_exit().)
742 *
743 * We crowbar the ->dynticks_nesting field to zero to allow for
744 * the possibility of usermode upcalls having messed up our count
745 * of interrupt nesting level during the prior busy period.
746 */
747 void rcu_idle_enter(void)
748 {
749 unsigned long flags;
750
751 local_irq_save(flags);
752 rcu_eqs_enter(false);
753 rcu_sysidle_enter(0);
754 local_irq_restore(flags);
755 }
756 EXPORT_SYMBOL_GPL(rcu_idle_enter);
757
758 #ifdef CONFIG_NO_HZ_FULL
759 /**
760 * rcu_user_enter - inform RCU that we are resuming userspace.
761 *
762 * Enter RCU idle mode right before resuming userspace. No use of RCU
763 * is permitted between this call and rcu_user_exit(). This way the
764 * CPU doesn't need to maintain the tick for RCU maintenance purposes
765 * when the CPU runs in userspace.
766 */
767 void rcu_user_enter(void)
768 {
769 rcu_eqs_enter(1);
770 }
771 #endif /* CONFIG_NO_HZ_FULL */
772
773 /**
774 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
775 *
776 * Exit from an interrupt handler, which might possibly result in entering
777 * idle mode, in other words, leaving the mode in which read-side critical
778 * sections can occur. The caller must have disabled interrupts.
779 *
780 * This code assumes that the idle loop never does anything that might
781 * result in unbalanced calls to irq_enter() and irq_exit(). If your
782 * architecture violates this assumption, RCU will give you what you
783 * deserve, good and hard. But very infrequently and irreproducibly.
784 *
785 * Use things like work queues to work around this limitation.
786 *
787 * You have been warned.
788 */
789 void rcu_irq_exit(void)
790 {
791 long long oldval;
792 struct rcu_dynticks *rdtp;
793
794 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
795 rdtp = this_cpu_ptr(&rcu_dynticks);
796 oldval = rdtp->dynticks_nesting;
797 rdtp->dynticks_nesting--;
798 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
799 rdtp->dynticks_nesting < 0);
800 if (rdtp->dynticks_nesting)
801 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
802 else
803 rcu_eqs_enter_common(oldval, true);
804 rcu_sysidle_enter(1);
805 }
806
807 /*
808 * Wrapper for rcu_irq_exit() where interrupts are enabled.
809 */
810 void rcu_irq_exit_irqson(void)
811 {
812 unsigned long flags;
813
814 local_irq_save(flags);
815 rcu_irq_exit();
816 local_irq_restore(flags);
817 }
818
819 /*
820 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
821 *
822 * If the new value of the ->dynticks_nesting counter was previously zero,
823 * we really have exited idle, and must do the appropriate accounting.
824 * The caller must have disabled interrupts.
825 */
826 static void rcu_eqs_exit_common(long long oldval, int user)
827 {
828 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
829
830 rcu_dynticks_task_exit();
831 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
832 atomic_inc(&rdtp->dynticks);
833 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
834 smp_mb__after_atomic(); /* See above. */
835 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
836 !(atomic_read(&rdtp->dynticks) & 0x1));
837 rcu_cleanup_after_idle();
838 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
839 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
840 !user && !is_idle_task(current)) {
841 struct task_struct *idle __maybe_unused =
842 idle_task(smp_processor_id());
843
844 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
845 oldval, rdtp->dynticks_nesting);
846 rcu_ftrace_dump(DUMP_ORIG);
847 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
848 current->pid, current->comm,
849 idle->pid, idle->comm); /* must be idle task! */
850 }
851 }
852
853 /*
854 * Exit an RCU extended quiescent state, which can be either the
855 * idle loop or adaptive-tickless usermode execution.
856 */
857 static void rcu_eqs_exit(bool user)
858 {
859 struct rcu_dynticks *rdtp;
860 long long oldval;
861
862 rdtp = this_cpu_ptr(&rcu_dynticks);
863 oldval = rdtp->dynticks_nesting;
864 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
865 if (oldval & DYNTICK_TASK_NEST_MASK) {
866 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
867 } else {
868 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
869 rcu_eqs_exit_common(oldval, user);
870 }
871 }
872
873 /**
874 * rcu_idle_exit - inform RCU that current CPU is leaving idle
875 *
876 * Exit idle mode, in other words, -enter- the mode in which RCU
877 * read-side critical sections can occur.
878 *
879 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
880 * allow for the possibility of usermode upcalls messing up our count
881 * of interrupt nesting level during the busy period that is just
882 * now starting.
883 */
884 void rcu_idle_exit(void)
885 {
886 unsigned long flags;
887
888 local_irq_save(flags);
889 rcu_eqs_exit(false);
890 rcu_sysidle_exit(0);
891 local_irq_restore(flags);
892 }
893 EXPORT_SYMBOL_GPL(rcu_idle_exit);
894
895 #ifdef CONFIG_NO_HZ_FULL
896 /**
897 * rcu_user_exit - inform RCU that we are exiting userspace.
898 *
899 * Exit RCU idle mode while entering the kernel because it can
900 * run a RCU read side critical section anytime.
901 */
902 void rcu_user_exit(void)
903 {
904 rcu_eqs_exit(1);
905 }
906 #endif /* CONFIG_NO_HZ_FULL */
907
908 /**
909 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
910 *
911 * Enter an interrupt handler, which might possibly result in exiting
912 * idle mode, in other words, entering the mode in which read-side critical
913 * sections can occur. The caller must have disabled interrupts.
914 *
915 * Note that the Linux kernel is fully capable of entering an interrupt
916 * handler that it never exits, for example when doing upcalls to
917 * user mode! This code assumes that the idle loop never does upcalls to
918 * user mode. If your architecture does do upcalls from the idle loop (or
919 * does anything else that results in unbalanced calls to the irq_enter()
920 * and irq_exit() functions), RCU will give you what you deserve, good
921 * and hard. But very infrequently and irreproducibly.
922 *
923 * Use things like work queues to work around this limitation.
924 *
925 * You have been warned.
926 */
927 void rcu_irq_enter(void)
928 {
929 struct rcu_dynticks *rdtp;
930 long long oldval;
931
932 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
933 rdtp = this_cpu_ptr(&rcu_dynticks);
934 oldval = rdtp->dynticks_nesting;
935 rdtp->dynticks_nesting++;
936 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
937 rdtp->dynticks_nesting == 0);
938 if (oldval)
939 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
940 else
941 rcu_eqs_exit_common(oldval, true);
942 rcu_sysidle_exit(1);
943 }
944
945 /*
946 * Wrapper for rcu_irq_enter() where interrupts are enabled.
947 */
948 void rcu_irq_enter_irqson(void)
949 {
950 unsigned long flags;
951
952 local_irq_save(flags);
953 rcu_irq_enter();
954 local_irq_restore(flags);
955 }
956
957 /**
958 * rcu_nmi_enter - inform RCU of entry to NMI context
959 *
960 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
961 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
962 * that the CPU is active. This implementation permits nested NMIs, as
963 * long as the nesting level does not overflow an int. (You will probably
964 * run out of stack space first.)
965 */
966 void rcu_nmi_enter(void)
967 {
968 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
969 int incby = 2;
970
971 /* Complain about underflow. */
972 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
973
974 /*
975 * If idle from RCU viewpoint, atomically increment ->dynticks
976 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
977 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
978 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
979 * to be in the outermost NMI handler that interrupted an RCU-idle
980 * period (observation due to Andy Lutomirski).
981 */
982 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
983 smp_mb__before_atomic(); /* Force delay from prior write. */
984 atomic_inc(&rdtp->dynticks);
985 /* atomic_inc() before later RCU read-side crit sects */
986 smp_mb__after_atomic(); /* See above. */
987 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
988 incby = 1;
989 }
990 rdtp->dynticks_nmi_nesting += incby;
991 barrier();
992 }
993
994 /**
995 * rcu_nmi_exit - inform RCU of exit from NMI context
996 *
997 * If we are returning from the outermost NMI handler that interrupted an
998 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
999 * to let the RCU grace-period handling know that the CPU is back to
1000 * being RCU-idle.
1001 */
1002 void rcu_nmi_exit(void)
1003 {
1004 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1005
1006 /*
1007 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1008 * (We are exiting an NMI handler, so RCU better be paying attention
1009 * to us!)
1010 */
1011 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1012 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1013
1014 /*
1015 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1016 * leave it in non-RCU-idle state.
1017 */
1018 if (rdtp->dynticks_nmi_nesting != 1) {
1019 rdtp->dynticks_nmi_nesting -= 2;
1020 return;
1021 }
1022
1023 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1024 rdtp->dynticks_nmi_nesting = 0;
1025 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1026 smp_mb__before_atomic(); /* See above. */
1027 atomic_inc(&rdtp->dynticks);
1028 smp_mb__after_atomic(); /* Force delay to next write. */
1029 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1030 }
1031
1032 /**
1033 * __rcu_is_watching - are RCU read-side critical sections safe?
1034 *
1035 * Return true if RCU is watching the running CPU, which means that
1036 * this CPU can safely enter RCU read-side critical sections. Unlike
1037 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1038 * least disabled preemption.
1039 */
1040 bool notrace __rcu_is_watching(void)
1041 {
1042 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1043 }
1044
1045 /**
1046 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1047 *
1048 * If the current CPU is in its idle loop and is neither in an interrupt
1049 * or NMI handler, return true.
1050 */
1051 bool notrace rcu_is_watching(void)
1052 {
1053 bool ret;
1054
1055 preempt_disable_notrace();
1056 ret = __rcu_is_watching();
1057 preempt_enable_notrace();
1058 return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(rcu_is_watching);
1061
1062 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1063
1064 /*
1065 * Is the current CPU online? Disable preemption to avoid false positives
1066 * that could otherwise happen due to the current CPU number being sampled,
1067 * this task being preempted, its old CPU being taken offline, resuming
1068 * on some other CPU, then determining that its old CPU is now offline.
1069 * It is OK to use RCU on an offline processor during initial boot, hence
1070 * the check for rcu_scheduler_fully_active. Note also that it is OK
1071 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1072 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1073 * offline to continue to use RCU for one jiffy after marking itself
1074 * offline in the cpu_online_mask. This leniency is necessary given the
1075 * non-atomic nature of the online and offline processing, for example,
1076 * the fact that a CPU enters the scheduler after completing the teardown
1077 * of the CPU.
1078 *
1079 * This is also why RCU internally marks CPUs online during in the
1080 * preparation phase and offline after the CPU has been taken down.
1081 *
1082 * Disable checking if in an NMI handler because we cannot safely report
1083 * errors from NMI handlers anyway.
1084 */
1085 bool rcu_lockdep_current_cpu_online(void)
1086 {
1087 struct rcu_data *rdp;
1088 struct rcu_node *rnp;
1089 bool ret;
1090
1091 if (in_nmi())
1092 return true;
1093 preempt_disable();
1094 rdp = this_cpu_ptr(&rcu_sched_data);
1095 rnp = rdp->mynode;
1096 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1097 !rcu_scheduler_fully_active;
1098 preempt_enable();
1099 return ret;
1100 }
1101 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1102
1103 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1104
1105 /**
1106 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1107 *
1108 * If the current CPU is idle or running at a first-level (not nested)
1109 * interrupt from idle, return true. The caller must have at least
1110 * disabled preemption.
1111 */
1112 static int rcu_is_cpu_rrupt_from_idle(void)
1113 {
1114 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1115 }
1116
1117 /*
1118 * Snapshot the specified CPU's dynticks counter so that we can later
1119 * credit them with an implicit quiescent state. Return 1 if this CPU
1120 * is in dynticks idle mode, which is an extended quiescent state.
1121 */
1122 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1123 bool *isidle, unsigned long *maxj)
1124 {
1125 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1126 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1127 if ((rdp->dynticks_snap & 0x1) == 0) {
1128 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1129 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1130 rdp->mynode->gpnum))
1131 WRITE_ONCE(rdp->gpwrap, true);
1132 return 1;
1133 }
1134 return 0;
1135 }
1136
1137 /*
1138 * Return true if the specified CPU has passed through a quiescent
1139 * state by virtue of being in or having passed through an dynticks
1140 * idle state since the last call to dyntick_save_progress_counter()
1141 * for this same CPU, or by virtue of having been offline.
1142 */
1143 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1144 bool *isidle, unsigned long *maxj)
1145 {
1146 unsigned int curr;
1147 int *rcrmp;
1148 unsigned int snap;
1149
1150 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1151 snap = (unsigned int)rdp->dynticks_snap;
1152
1153 /*
1154 * If the CPU passed through or entered a dynticks idle phase with
1155 * no active irq/NMI handlers, then we can safely pretend that the CPU
1156 * already acknowledged the request to pass through a quiescent
1157 * state. Either way, that CPU cannot possibly be in an RCU
1158 * read-side critical section that started before the beginning
1159 * of the current RCU grace period.
1160 */
1161 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1162 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1163 rdp->dynticks_fqs++;
1164 return 1;
1165 }
1166
1167 /*
1168 * Check for the CPU being offline, but only if the grace period
1169 * is old enough. We don't need to worry about the CPU changing
1170 * state: If we see it offline even once, it has been through a
1171 * quiescent state.
1172 *
1173 * The reason for insisting that the grace period be at least
1174 * one jiffy old is that CPUs that are not quite online and that
1175 * have just gone offline can still execute RCU read-side critical
1176 * sections.
1177 */
1178 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1179 return 0; /* Grace period is not old enough. */
1180 barrier();
1181 if (cpu_is_offline(rdp->cpu)) {
1182 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1183 rdp->offline_fqs++;
1184 return 1;
1185 }
1186
1187 /*
1188 * A CPU running for an extended time within the kernel can
1189 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1190 * even context-switching back and forth between a pair of
1191 * in-kernel CPU-bound tasks cannot advance grace periods.
1192 * So if the grace period is old enough, make the CPU pay attention.
1193 * Note that the unsynchronized assignments to the per-CPU
1194 * rcu_sched_qs_mask variable are safe. Yes, setting of
1195 * bits can be lost, but they will be set again on the next
1196 * force-quiescent-state pass. So lost bit sets do not result
1197 * in incorrect behavior, merely in a grace period lasting
1198 * a few jiffies longer than it might otherwise. Because
1199 * there are at most four threads involved, and because the
1200 * updates are only once every few jiffies, the probability of
1201 * lossage (and thus of slight grace-period extension) is
1202 * quite low.
1203 *
1204 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1205 * is set too high, we override with half of the RCU CPU stall
1206 * warning delay.
1207 */
1208 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1209 if (ULONG_CMP_GE(jiffies,
1210 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1211 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1212 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1213 WRITE_ONCE(rdp->cond_resched_completed,
1214 READ_ONCE(rdp->mynode->completed));
1215 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1216 WRITE_ONCE(*rcrmp,
1217 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1218 }
1219 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1220 }
1221
1222 /* And if it has been a really long time, kick the CPU as well. */
1223 if (ULONG_CMP_GE(jiffies,
1224 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1225 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1226 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1227
1228 return 0;
1229 }
1230
1231 static void record_gp_stall_check_time(struct rcu_state *rsp)
1232 {
1233 unsigned long j = jiffies;
1234 unsigned long j1;
1235
1236 rsp->gp_start = j;
1237 smp_wmb(); /* Record start time before stall time. */
1238 j1 = rcu_jiffies_till_stall_check();
1239 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1240 rsp->jiffies_resched = j + j1 / 2;
1241 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1242 }
1243
1244 /*
1245 * Convert a ->gp_state value to a character string.
1246 */
1247 static const char *gp_state_getname(short gs)
1248 {
1249 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1250 return "???";
1251 return gp_state_names[gs];
1252 }
1253
1254 /*
1255 * Complain about starvation of grace-period kthread.
1256 */
1257 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1258 {
1259 unsigned long gpa;
1260 unsigned long j;
1261
1262 j = jiffies;
1263 gpa = READ_ONCE(rsp->gp_activity);
1264 if (j - gpa > 2 * HZ) {
1265 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1266 rsp->name, j - gpa,
1267 rsp->gpnum, rsp->completed,
1268 rsp->gp_flags,
1269 gp_state_getname(rsp->gp_state), rsp->gp_state,
1270 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1271 if (rsp->gp_kthread) {
1272 sched_show_task(rsp->gp_kthread);
1273 wake_up_process(rsp->gp_kthread);
1274 }
1275 }
1276 }
1277
1278 /*
1279 * Dump stacks of all tasks running on stalled CPUs.
1280 */
1281 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1282 {
1283 int cpu;
1284 unsigned long flags;
1285 struct rcu_node *rnp;
1286
1287 rcu_for_each_leaf_node(rsp, rnp) {
1288 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1289 if (rnp->qsmask != 0) {
1290 for_each_leaf_node_possible_cpu(rnp, cpu)
1291 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1292 dump_cpu_task(cpu);
1293 }
1294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295 }
1296 }
1297
1298 /*
1299 * If too much time has passed in the current grace period, and if
1300 * so configured, go kick the relevant kthreads.
1301 */
1302 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1303 {
1304 unsigned long j;
1305
1306 if (!rcu_kick_kthreads)
1307 return;
1308 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1309 if (time_after(jiffies, j) && rsp->gp_kthread) {
1310 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1311 rcu_ftrace_dump(DUMP_ALL);
1312 wake_up_process(rsp->gp_kthread);
1313 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1314 }
1315 }
1316
1317 static inline void panic_on_rcu_stall(void)
1318 {
1319 if (sysctl_panic_on_rcu_stall)
1320 panic("RCU Stall\n");
1321 }
1322
1323 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1324 {
1325 int cpu;
1326 long delta;
1327 unsigned long flags;
1328 unsigned long gpa;
1329 unsigned long j;
1330 int ndetected = 0;
1331 struct rcu_node *rnp = rcu_get_root(rsp);
1332 long totqlen = 0;
1333
1334 /* Kick and suppress, if so configured. */
1335 rcu_stall_kick_kthreads(rsp);
1336 if (rcu_cpu_stall_suppress)
1337 return;
1338
1339 /* Only let one CPU complain about others per time interval. */
1340
1341 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1342 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1343 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1345 return;
1346 }
1347 WRITE_ONCE(rsp->jiffies_stall,
1348 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1349 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1350
1351 /*
1352 * OK, time to rat on our buddy...
1353 * See Documentation/RCU/stallwarn.txt for info on how to debug
1354 * RCU CPU stall warnings.
1355 */
1356 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1357 rsp->name);
1358 print_cpu_stall_info_begin();
1359 rcu_for_each_leaf_node(rsp, rnp) {
1360 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1361 ndetected += rcu_print_task_stall(rnp);
1362 if (rnp->qsmask != 0) {
1363 for_each_leaf_node_possible_cpu(rnp, cpu)
1364 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1365 print_cpu_stall_info(rsp, cpu);
1366 ndetected++;
1367 }
1368 }
1369 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1370 }
1371
1372 print_cpu_stall_info_end();
1373 for_each_possible_cpu(cpu)
1374 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1375 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1376 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1377 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1378 if (ndetected) {
1379 rcu_dump_cpu_stacks(rsp);
1380 } else {
1381 if (READ_ONCE(rsp->gpnum) != gpnum ||
1382 READ_ONCE(rsp->completed) == gpnum) {
1383 pr_err("INFO: Stall ended before state dump start\n");
1384 } else {
1385 j = jiffies;
1386 gpa = READ_ONCE(rsp->gp_activity);
1387 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1388 rsp->name, j - gpa, j, gpa,
1389 jiffies_till_next_fqs,
1390 rcu_get_root(rsp)->qsmask);
1391 /* In this case, the current CPU might be at fault. */
1392 sched_show_task(current);
1393 }
1394 }
1395
1396 /* Complain about tasks blocking the grace period. */
1397 rcu_print_detail_task_stall(rsp);
1398
1399 rcu_check_gp_kthread_starvation(rsp);
1400
1401 panic_on_rcu_stall();
1402
1403 force_quiescent_state(rsp); /* Kick them all. */
1404 }
1405
1406 static void print_cpu_stall(struct rcu_state *rsp)
1407 {
1408 int cpu;
1409 unsigned long flags;
1410 struct rcu_node *rnp = rcu_get_root(rsp);
1411 long totqlen = 0;
1412
1413 /* Kick and suppress, if so configured. */
1414 rcu_stall_kick_kthreads(rsp);
1415 if (rcu_cpu_stall_suppress)
1416 return;
1417
1418 /*
1419 * OK, time to rat on ourselves...
1420 * See Documentation/RCU/stallwarn.txt for info on how to debug
1421 * RCU CPU stall warnings.
1422 */
1423 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1424 print_cpu_stall_info_begin();
1425 print_cpu_stall_info(rsp, smp_processor_id());
1426 print_cpu_stall_info_end();
1427 for_each_possible_cpu(cpu)
1428 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1429 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1430 jiffies - rsp->gp_start,
1431 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1432
1433 rcu_check_gp_kthread_starvation(rsp);
1434
1435 rcu_dump_cpu_stacks(rsp);
1436
1437 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1438 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1439 WRITE_ONCE(rsp->jiffies_stall,
1440 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1441 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1442
1443 panic_on_rcu_stall();
1444
1445 /*
1446 * Attempt to revive the RCU machinery by forcing a context switch.
1447 *
1448 * A context switch would normally allow the RCU state machine to make
1449 * progress and it could be we're stuck in kernel space without context
1450 * switches for an entirely unreasonable amount of time.
1451 */
1452 resched_cpu(smp_processor_id());
1453 }
1454
1455 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1456 {
1457 unsigned long completed;
1458 unsigned long gpnum;
1459 unsigned long gps;
1460 unsigned long j;
1461 unsigned long js;
1462 struct rcu_node *rnp;
1463
1464 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1465 !rcu_gp_in_progress(rsp))
1466 return;
1467 rcu_stall_kick_kthreads(rsp);
1468 j = jiffies;
1469
1470 /*
1471 * Lots of memory barriers to reject false positives.
1472 *
1473 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1474 * then rsp->gp_start, and finally rsp->completed. These values
1475 * are updated in the opposite order with memory barriers (or
1476 * equivalent) during grace-period initialization and cleanup.
1477 * Now, a false positive can occur if we get an new value of
1478 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1479 * the memory barriers, the only way that this can happen is if one
1480 * grace period ends and another starts between these two fetches.
1481 * Detect this by comparing rsp->completed with the previous fetch
1482 * from rsp->gpnum.
1483 *
1484 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1485 * and rsp->gp_start suffice to forestall false positives.
1486 */
1487 gpnum = READ_ONCE(rsp->gpnum);
1488 smp_rmb(); /* Pick up ->gpnum first... */
1489 js = READ_ONCE(rsp->jiffies_stall);
1490 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1491 gps = READ_ONCE(rsp->gp_start);
1492 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1493 completed = READ_ONCE(rsp->completed);
1494 if (ULONG_CMP_GE(completed, gpnum) ||
1495 ULONG_CMP_LT(j, js) ||
1496 ULONG_CMP_GE(gps, js))
1497 return; /* No stall or GP completed since entering function. */
1498 rnp = rdp->mynode;
1499 if (rcu_gp_in_progress(rsp) &&
1500 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1501
1502 /* We haven't checked in, so go dump stack. */
1503 print_cpu_stall(rsp);
1504
1505 } else if (rcu_gp_in_progress(rsp) &&
1506 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1507
1508 /* They had a few time units to dump stack, so complain. */
1509 print_other_cpu_stall(rsp, gpnum);
1510 }
1511 }
1512
1513 /**
1514 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1515 *
1516 * Set the stall-warning timeout way off into the future, thus preventing
1517 * any RCU CPU stall-warning messages from appearing in the current set of
1518 * RCU grace periods.
1519 *
1520 * The caller must disable hard irqs.
1521 */
1522 void rcu_cpu_stall_reset(void)
1523 {
1524 struct rcu_state *rsp;
1525
1526 for_each_rcu_flavor(rsp)
1527 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1528 }
1529
1530 /*
1531 * Initialize the specified rcu_data structure's default callback list
1532 * to empty. The default callback list is the one that is not used by
1533 * no-callbacks CPUs.
1534 */
1535 static void init_default_callback_list(struct rcu_data *rdp)
1536 {
1537 int i;
1538
1539 rdp->nxtlist = NULL;
1540 for (i = 0; i < RCU_NEXT_SIZE; i++)
1541 rdp->nxttail[i] = &rdp->nxtlist;
1542 }
1543
1544 /*
1545 * Initialize the specified rcu_data structure's callback list to empty.
1546 */
1547 static void init_callback_list(struct rcu_data *rdp)
1548 {
1549 if (init_nocb_callback_list(rdp))
1550 return;
1551 init_default_callback_list(rdp);
1552 }
1553
1554 /*
1555 * Determine the value that ->completed will have at the end of the
1556 * next subsequent grace period. This is used to tag callbacks so that
1557 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1558 * been dyntick-idle for an extended period with callbacks under the
1559 * influence of RCU_FAST_NO_HZ.
1560 *
1561 * The caller must hold rnp->lock with interrupts disabled.
1562 */
1563 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1564 struct rcu_node *rnp)
1565 {
1566 /*
1567 * If RCU is idle, we just wait for the next grace period.
1568 * But we can only be sure that RCU is idle if we are looking
1569 * at the root rcu_node structure -- otherwise, a new grace
1570 * period might have started, but just not yet gotten around
1571 * to initializing the current non-root rcu_node structure.
1572 */
1573 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1574 return rnp->completed + 1;
1575
1576 /*
1577 * Otherwise, wait for a possible partial grace period and
1578 * then the subsequent full grace period.
1579 */
1580 return rnp->completed + 2;
1581 }
1582
1583 /*
1584 * Trace-event helper function for rcu_start_future_gp() and
1585 * rcu_nocb_wait_gp().
1586 */
1587 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1588 unsigned long c, const char *s)
1589 {
1590 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1591 rnp->completed, c, rnp->level,
1592 rnp->grplo, rnp->grphi, s);
1593 }
1594
1595 /*
1596 * Start some future grace period, as needed to handle newly arrived
1597 * callbacks. The required future grace periods are recorded in each
1598 * rcu_node structure's ->need_future_gp field. Returns true if there
1599 * is reason to awaken the grace-period kthread.
1600 *
1601 * The caller must hold the specified rcu_node structure's ->lock.
1602 */
1603 static bool __maybe_unused
1604 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1605 unsigned long *c_out)
1606 {
1607 unsigned long c;
1608 int i;
1609 bool ret = false;
1610 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1611
1612 /*
1613 * Pick up grace-period number for new callbacks. If this
1614 * grace period is already marked as needed, return to the caller.
1615 */
1616 c = rcu_cbs_completed(rdp->rsp, rnp);
1617 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1618 if (rnp->need_future_gp[c & 0x1]) {
1619 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1620 goto out;
1621 }
1622
1623 /*
1624 * If either this rcu_node structure or the root rcu_node structure
1625 * believe that a grace period is in progress, then we must wait
1626 * for the one following, which is in "c". Because our request
1627 * will be noticed at the end of the current grace period, we don't
1628 * need to explicitly start one. We only do the lockless check
1629 * of rnp_root's fields if the current rcu_node structure thinks
1630 * there is no grace period in flight, and because we hold rnp->lock,
1631 * the only possible change is when rnp_root's two fields are
1632 * equal, in which case rnp_root->gpnum might be concurrently
1633 * incremented. But that is OK, as it will just result in our
1634 * doing some extra useless work.
1635 */
1636 if (rnp->gpnum != rnp->completed ||
1637 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1638 rnp->need_future_gp[c & 0x1]++;
1639 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1640 goto out;
1641 }
1642
1643 /*
1644 * There might be no grace period in progress. If we don't already
1645 * hold it, acquire the root rcu_node structure's lock in order to
1646 * start one (if needed).
1647 */
1648 if (rnp != rnp_root)
1649 raw_spin_lock_rcu_node(rnp_root);
1650
1651 /*
1652 * Get a new grace-period number. If there really is no grace
1653 * period in progress, it will be smaller than the one we obtained
1654 * earlier. Adjust callbacks as needed. Note that even no-CBs
1655 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1656 */
1657 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1658 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1659 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1660 rdp->nxtcompleted[i] = c;
1661
1662 /*
1663 * If the needed for the required grace period is already
1664 * recorded, trace and leave.
1665 */
1666 if (rnp_root->need_future_gp[c & 0x1]) {
1667 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1668 goto unlock_out;
1669 }
1670
1671 /* Record the need for the future grace period. */
1672 rnp_root->need_future_gp[c & 0x1]++;
1673
1674 /* If a grace period is not already in progress, start one. */
1675 if (rnp_root->gpnum != rnp_root->completed) {
1676 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1677 } else {
1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1679 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1680 }
1681 unlock_out:
1682 if (rnp != rnp_root)
1683 raw_spin_unlock_rcu_node(rnp_root);
1684 out:
1685 if (c_out != NULL)
1686 *c_out = c;
1687 return ret;
1688 }
1689
1690 /*
1691 * Clean up any old requests for the just-ended grace period. Also return
1692 * whether any additional grace periods have been requested. Also invoke
1693 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1694 * waiting for this grace period to complete.
1695 */
1696 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1697 {
1698 int c = rnp->completed;
1699 int needmore;
1700 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1701
1702 rnp->need_future_gp[c & 0x1] = 0;
1703 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1704 trace_rcu_future_gp(rnp, rdp, c,
1705 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1706 return needmore;
1707 }
1708
1709 /*
1710 * Awaken the grace-period kthread for the specified flavor of RCU.
1711 * Don't do a self-awaken, and don't bother awakening when there is
1712 * nothing for the grace-period kthread to do (as in several CPUs
1713 * raced to awaken, and we lost), and finally don't try to awaken
1714 * a kthread that has not yet been created.
1715 */
1716 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1717 {
1718 if (current == rsp->gp_kthread ||
1719 !READ_ONCE(rsp->gp_flags) ||
1720 !rsp->gp_kthread)
1721 return;
1722 swake_up(&rsp->gp_wq);
1723 }
1724
1725 /*
1726 * If there is room, assign a ->completed number to any callbacks on
1727 * this CPU that have not already been assigned. Also accelerate any
1728 * callbacks that were previously assigned a ->completed number that has
1729 * since proven to be too conservative, which can happen if callbacks get
1730 * assigned a ->completed number while RCU is idle, but with reference to
1731 * a non-root rcu_node structure. This function is idempotent, so it does
1732 * not hurt to call it repeatedly. Returns an flag saying that we should
1733 * awaken the RCU grace-period kthread.
1734 *
1735 * The caller must hold rnp->lock with interrupts disabled.
1736 */
1737 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1738 struct rcu_data *rdp)
1739 {
1740 unsigned long c;
1741 int i;
1742 bool ret;
1743
1744 /* If the CPU has no callbacks, nothing to do. */
1745 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1746 return false;
1747
1748 /*
1749 * Starting from the sublist containing the callbacks most
1750 * recently assigned a ->completed number and working down, find the
1751 * first sublist that is not assignable to an upcoming grace period.
1752 * Such a sublist has something in it (first two tests) and has
1753 * a ->completed number assigned that will complete sooner than
1754 * the ->completed number for newly arrived callbacks (last test).
1755 *
1756 * The key point is that any later sublist can be assigned the
1757 * same ->completed number as the newly arrived callbacks, which
1758 * means that the callbacks in any of these later sublist can be
1759 * grouped into a single sublist, whether or not they have already
1760 * been assigned a ->completed number.
1761 */
1762 c = rcu_cbs_completed(rsp, rnp);
1763 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1764 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1765 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1766 break;
1767
1768 /*
1769 * If there are no sublist for unassigned callbacks, leave.
1770 * At the same time, advance "i" one sublist, so that "i" will
1771 * index into the sublist where all the remaining callbacks should
1772 * be grouped into.
1773 */
1774 if (++i >= RCU_NEXT_TAIL)
1775 return false;
1776
1777 /*
1778 * Assign all subsequent callbacks' ->completed number to the next
1779 * full grace period and group them all in the sublist initially
1780 * indexed by "i".
1781 */
1782 for (; i <= RCU_NEXT_TAIL; i++) {
1783 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1784 rdp->nxtcompleted[i] = c;
1785 }
1786 /* Record any needed additional grace periods. */
1787 ret = rcu_start_future_gp(rnp, rdp, NULL);
1788
1789 /* Trace depending on how much we were able to accelerate. */
1790 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1791 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1792 else
1793 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1794 return ret;
1795 }
1796
1797 /*
1798 * Move any callbacks whose grace period has completed to the
1799 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1800 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1801 * sublist. This function is idempotent, so it does not hurt to
1802 * invoke it repeatedly. As long as it is not invoked -too- often...
1803 * Returns true if the RCU grace-period kthread needs to be awakened.
1804 *
1805 * The caller must hold rnp->lock with interrupts disabled.
1806 */
1807 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1808 struct rcu_data *rdp)
1809 {
1810 int i, j;
1811
1812 /* If the CPU has no callbacks, nothing to do. */
1813 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1814 return false;
1815
1816 /*
1817 * Find all callbacks whose ->completed numbers indicate that they
1818 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1819 */
1820 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1821 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1822 break;
1823 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1824 }
1825 /* Clean up any sublist tail pointers that were misordered above. */
1826 for (j = RCU_WAIT_TAIL; j < i; j++)
1827 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1828
1829 /* Copy down callbacks to fill in empty sublists. */
1830 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1831 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1832 break;
1833 rdp->nxttail[j] = rdp->nxttail[i];
1834 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1835 }
1836
1837 /* Classify any remaining callbacks. */
1838 return rcu_accelerate_cbs(rsp, rnp, rdp);
1839 }
1840
1841 /*
1842 * Update CPU-local rcu_data state to record the beginnings and ends of
1843 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1844 * structure corresponding to the current CPU, and must have irqs disabled.
1845 * Returns true if the grace-period kthread needs to be awakened.
1846 */
1847 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1848 struct rcu_data *rdp)
1849 {
1850 bool ret;
1851
1852 /* Handle the ends of any preceding grace periods first. */
1853 if (rdp->completed == rnp->completed &&
1854 !unlikely(READ_ONCE(rdp->gpwrap))) {
1855
1856 /* No grace period end, so just accelerate recent callbacks. */
1857 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1858
1859 } else {
1860
1861 /* Advance callbacks. */
1862 ret = rcu_advance_cbs(rsp, rnp, rdp);
1863
1864 /* Remember that we saw this grace-period completion. */
1865 rdp->completed = rnp->completed;
1866 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1867 }
1868
1869 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1870 /*
1871 * If the current grace period is waiting for this CPU,
1872 * set up to detect a quiescent state, otherwise don't
1873 * go looking for one.
1874 */
1875 rdp->gpnum = rnp->gpnum;
1876 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1877 rdp->cpu_no_qs.b.norm = true;
1878 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1879 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1880 zero_cpu_stall_ticks(rdp);
1881 WRITE_ONCE(rdp->gpwrap, false);
1882 }
1883 return ret;
1884 }
1885
1886 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1887 {
1888 unsigned long flags;
1889 bool needwake;
1890 struct rcu_node *rnp;
1891
1892 local_irq_save(flags);
1893 rnp = rdp->mynode;
1894 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1895 rdp->completed == READ_ONCE(rnp->completed) &&
1896 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1897 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1898 local_irq_restore(flags);
1899 return;
1900 }
1901 needwake = __note_gp_changes(rsp, rnp, rdp);
1902 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1903 if (needwake)
1904 rcu_gp_kthread_wake(rsp);
1905 }
1906
1907 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1908 {
1909 if (delay > 0 &&
1910 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1911 schedule_timeout_uninterruptible(delay);
1912 }
1913
1914 /*
1915 * Initialize a new grace period. Return false if no grace period required.
1916 */
1917 static bool rcu_gp_init(struct rcu_state *rsp)
1918 {
1919 unsigned long oldmask;
1920 struct rcu_data *rdp;
1921 struct rcu_node *rnp = rcu_get_root(rsp);
1922
1923 WRITE_ONCE(rsp->gp_activity, jiffies);
1924 raw_spin_lock_irq_rcu_node(rnp);
1925 if (!READ_ONCE(rsp->gp_flags)) {
1926 /* Spurious wakeup, tell caller to go back to sleep. */
1927 raw_spin_unlock_irq_rcu_node(rnp);
1928 return false;
1929 }
1930 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1931
1932 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1933 /*
1934 * Grace period already in progress, don't start another.
1935 * Not supposed to be able to happen.
1936 */
1937 raw_spin_unlock_irq_rcu_node(rnp);
1938 return false;
1939 }
1940
1941 /* Advance to a new grace period and initialize state. */
1942 record_gp_stall_check_time(rsp);
1943 /* Record GP times before starting GP, hence smp_store_release(). */
1944 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1945 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1946 raw_spin_unlock_irq_rcu_node(rnp);
1947
1948 /*
1949 * Apply per-leaf buffered online and offline operations to the
1950 * rcu_node tree. Note that this new grace period need not wait
1951 * for subsequent online CPUs, and that quiescent-state forcing
1952 * will handle subsequent offline CPUs.
1953 */
1954 rcu_for_each_leaf_node(rsp, rnp) {
1955 rcu_gp_slow(rsp, gp_preinit_delay);
1956 raw_spin_lock_irq_rcu_node(rnp);
1957 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1958 !rnp->wait_blkd_tasks) {
1959 /* Nothing to do on this leaf rcu_node structure. */
1960 raw_spin_unlock_irq_rcu_node(rnp);
1961 continue;
1962 }
1963
1964 /* Record old state, apply changes to ->qsmaskinit field. */
1965 oldmask = rnp->qsmaskinit;
1966 rnp->qsmaskinit = rnp->qsmaskinitnext;
1967
1968 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1969 if (!oldmask != !rnp->qsmaskinit) {
1970 if (!oldmask) /* First online CPU for this rcu_node. */
1971 rcu_init_new_rnp(rnp);
1972 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1973 rnp->wait_blkd_tasks = true;
1974 else /* Last offline CPU and can propagate. */
1975 rcu_cleanup_dead_rnp(rnp);
1976 }
1977
1978 /*
1979 * If all waited-on tasks from prior grace period are
1980 * done, and if all this rcu_node structure's CPUs are
1981 * still offline, propagate up the rcu_node tree and
1982 * clear ->wait_blkd_tasks. Otherwise, if one of this
1983 * rcu_node structure's CPUs has since come back online,
1984 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1985 * checks for this, so just call it unconditionally).
1986 */
1987 if (rnp->wait_blkd_tasks &&
1988 (!rcu_preempt_has_tasks(rnp) ||
1989 rnp->qsmaskinit)) {
1990 rnp->wait_blkd_tasks = false;
1991 rcu_cleanup_dead_rnp(rnp);
1992 }
1993
1994 raw_spin_unlock_irq_rcu_node(rnp);
1995 }
1996
1997 /*
1998 * Set the quiescent-state-needed bits in all the rcu_node
1999 * structures for all currently online CPUs in breadth-first order,
2000 * starting from the root rcu_node structure, relying on the layout
2001 * of the tree within the rsp->node[] array. Note that other CPUs
2002 * will access only the leaves of the hierarchy, thus seeing that no
2003 * grace period is in progress, at least until the corresponding
2004 * leaf node has been initialized.
2005 *
2006 * The grace period cannot complete until the initialization
2007 * process finishes, because this kthread handles both.
2008 */
2009 rcu_for_each_node_breadth_first(rsp, rnp) {
2010 rcu_gp_slow(rsp, gp_init_delay);
2011 raw_spin_lock_irq_rcu_node(rnp);
2012 rdp = this_cpu_ptr(rsp->rda);
2013 rcu_preempt_check_blocked_tasks(rnp);
2014 rnp->qsmask = rnp->qsmaskinit;
2015 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2016 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2017 WRITE_ONCE(rnp->completed, rsp->completed);
2018 if (rnp == rdp->mynode)
2019 (void)__note_gp_changes(rsp, rnp, rdp);
2020 rcu_preempt_boost_start_gp(rnp);
2021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2022 rnp->level, rnp->grplo,
2023 rnp->grphi, rnp->qsmask);
2024 raw_spin_unlock_irq_rcu_node(rnp);
2025 cond_resched_rcu_qs();
2026 WRITE_ONCE(rsp->gp_activity, jiffies);
2027 }
2028
2029 return true;
2030 }
2031
2032 /*
2033 * Helper function for wait_event_interruptible_timeout() wakeup
2034 * at force-quiescent-state time.
2035 */
2036 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2037 {
2038 struct rcu_node *rnp = rcu_get_root(rsp);
2039
2040 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2041 *gfp = READ_ONCE(rsp->gp_flags);
2042 if (*gfp & RCU_GP_FLAG_FQS)
2043 return true;
2044
2045 /* The current grace period has completed. */
2046 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2047 return true;
2048
2049 return false;
2050 }
2051
2052 /*
2053 * Do one round of quiescent-state forcing.
2054 */
2055 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2056 {
2057 bool isidle = false;
2058 unsigned long maxj;
2059 struct rcu_node *rnp = rcu_get_root(rsp);
2060
2061 WRITE_ONCE(rsp->gp_activity, jiffies);
2062 rsp->n_force_qs++;
2063 if (first_time) {
2064 /* Collect dyntick-idle snapshots. */
2065 if (is_sysidle_rcu_state(rsp)) {
2066 isidle = true;
2067 maxj = jiffies - ULONG_MAX / 4;
2068 }
2069 force_qs_rnp(rsp, dyntick_save_progress_counter,
2070 &isidle, &maxj);
2071 rcu_sysidle_report_gp(rsp, isidle, maxj);
2072 } else {
2073 /* Handle dyntick-idle and offline CPUs. */
2074 isidle = true;
2075 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2076 }
2077 /* Clear flag to prevent immediate re-entry. */
2078 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2079 raw_spin_lock_irq_rcu_node(rnp);
2080 WRITE_ONCE(rsp->gp_flags,
2081 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2082 raw_spin_unlock_irq_rcu_node(rnp);
2083 }
2084 }
2085
2086 /*
2087 * Clean up after the old grace period.
2088 */
2089 static void rcu_gp_cleanup(struct rcu_state *rsp)
2090 {
2091 unsigned long gp_duration;
2092 bool needgp = false;
2093 int nocb = 0;
2094 struct rcu_data *rdp;
2095 struct rcu_node *rnp = rcu_get_root(rsp);
2096 struct swait_queue_head *sq;
2097
2098 WRITE_ONCE(rsp->gp_activity, jiffies);
2099 raw_spin_lock_irq_rcu_node(rnp);
2100 gp_duration = jiffies - rsp->gp_start;
2101 if (gp_duration > rsp->gp_max)
2102 rsp->gp_max = gp_duration;
2103
2104 /*
2105 * We know the grace period is complete, but to everyone else
2106 * it appears to still be ongoing. But it is also the case
2107 * that to everyone else it looks like there is nothing that
2108 * they can do to advance the grace period. It is therefore
2109 * safe for us to drop the lock in order to mark the grace
2110 * period as completed in all of the rcu_node structures.
2111 */
2112 raw_spin_unlock_irq_rcu_node(rnp);
2113
2114 /*
2115 * Propagate new ->completed value to rcu_node structures so
2116 * that other CPUs don't have to wait until the start of the next
2117 * grace period to process their callbacks. This also avoids
2118 * some nasty RCU grace-period initialization races by forcing
2119 * the end of the current grace period to be completely recorded in
2120 * all of the rcu_node structures before the beginning of the next
2121 * grace period is recorded in any of the rcu_node structures.
2122 */
2123 rcu_for_each_node_breadth_first(rsp, rnp) {
2124 raw_spin_lock_irq_rcu_node(rnp);
2125 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2126 WARN_ON_ONCE(rnp->qsmask);
2127 WRITE_ONCE(rnp->completed, rsp->gpnum);
2128 rdp = this_cpu_ptr(rsp->rda);
2129 if (rnp == rdp->mynode)
2130 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2131 /* smp_mb() provided by prior unlock-lock pair. */
2132 nocb += rcu_future_gp_cleanup(rsp, rnp);
2133 sq = rcu_nocb_gp_get(rnp);
2134 raw_spin_unlock_irq_rcu_node(rnp);
2135 rcu_nocb_gp_cleanup(sq);
2136 cond_resched_rcu_qs();
2137 WRITE_ONCE(rsp->gp_activity, jiffies);
2138 rcu_gp_slow(rsp, gp_cleanup_delay);
2139 }
2140 rnp = rcu_get_root(rsp);
2141 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2142 rcu_nocb_gp_set(rnp, nocb);
2143
2144 /* Declare grace period done. */
2145 WRITE_ONCE(rsp->completed, rsp->gpnum);
2146 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2147 rsp->gp_state = RCU_GP_IDLE;
2148 rdp = this_cpu_ptr(rsp->rda);
2149 /* Advance CBs to reduce false positives below. */
2150 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2151 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2152 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2153 trace_rcu_grace_period(rsp->name,
2154 READ_ONCE(rsp->gpnum),
2155 TPS("newreq"));
2156 }
2157 raw_spin_unlock_irq_rcu_node(rnp);
2158 }
2159
2160 /*
2161 * Body of kthread that handles grace periods.
2162 */
2163 static int __noreturn rcu_gp_kthread(void *arg)
2164 {
2165 bool first_gp_fqs;
2166 int gf;
2167 unsigned long j;
2168 int ret;
2169 struct rcu_state *rsp = arg;
2170 struct rcu_node *rnp = rcu_get_root(rsp);
2171
2172 rcu_bind_gp_kthread();
2173 for (;;) {
2174
2175 /* Handle grace-period start. */
2176 for (;;) {
2177 trace_rcu_grace_period(rsp->name,
2178 READ_ONCE(rsp->gpnum),
2179 TPS("reqwait"));
2180 rsp->gp_state = RCU_GP_WAIT_GPS;
2181 swait_event_interruptible(rsp->gp_wq,
2182 READ_ONCE(rsp->gp_flags) &
2183 RCU_GP_FLAG_INIT);
2184 rsp->gp_state = RCU_GP_DONE_GPS;
2185 /* Locking provides needed memory barrier. */
2186 if (rcu_gp_init(rsp))
2187 break;
2188 cond_resched_rcu_qs();
2189 WRITE_ONCE(rsp->gp_activity, jiffies);
2190 WARN_ON(signal_pending(current));
2191 trace_rcu_grace_period(rsp->name,
2192 READ_ONCE(rsp->gpnum),
2193 TPS("reqwaitsig"));
2194 }
2195
2196 /* Handle quiescent-state forcing. */
2197 first_gp_fqs = true;
2198 j = jiffies_till_first_fqs;
2199 if (j > HZ) {
2200 j = HZ;
2201 jiffies_till_first_fqs = HZ;
2202 }
2203 ret = 0;
2204 for (;;) {
2205 if (!ret) {
2206 rsp->jiffies_force_qs = jiffies + j;
2207 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2208 jiffies + 3 * j);
2209 }
2210 trace_rcu_grace_period(rsp->name,
2211 READ_ONCE(rsp->gpnum),
2212 TPS("fqswait"));
2213 rsp->gp_state = RCU_GP_WAIT_FQS;
2214 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2215 rcu_gp_fqs_check_wake(rsp, &gf), j);
2216 rsp->gp_state = RCU_GP_DOING_FQS;
2217 /* Locking provides needed memory barriers. */
2218 /* If grace period done, leave loop. */
2219 if (!READ_ONCE(rnp->qsmask) &&
2220 !rcu_preempt_blocked_readers_cgp(rnp))
2221 break;
2222 /* If time for quiescent-state forcing, do it. */
2223 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2224 (gf & RCU_GP_FLAG_FQS)) {
2225 trace_rcu_grace_period(rsp->name,
2226 READ_ONCE(rsp->gpnum),
2227 TPS("fqsstart"));
2228 rcu_gp_fqs(rsp, first_gp_fqs);
2229 first_gp_fqs = false;
2230 trace_rcu_grace_period(rsp->name,
2231 READ_ONCE(rsp->gpnum),
2232 TPS("fqsend"));
2233 cond_resched_rcu_qs();
2234 WRITE_ONCE(rsp->gp_activity, jiffies);
2235 ret = 0; /* Force full wait till next FQS. */
2236 j = jiffies_till_next_fqs;
2237 if (j > HZ) {
2238 j = HZ;
2239 jiffies_till_next_fqs = HZ;
2240 } else if (j < 1) {
2241 j = 1;
2242 jiffies_till_next_fqs = 1;
2243 }
2244 } else {
2245 /* Deal with stray signal. */
2246 cond_resched_rcu_qs();
2247 WRITE_ONCE(rsp->gp_activity, jiffies);
2248 WARN_ON(signal_pending(current));
2249 trace_rcu_grace_period(rsp->name,
2250 READ_ONCE(rsp->gpnum),
2251 TPS("fqswaitsig"));
2252 ret = 1; /* Keep old FQS timing. */
2253 j = jiffies;
2254 if (time_after(jiffies, rsp->jiffies_force_qs))
2255 j = 1;
2256 else
2257 j = rsp->jiffies_force_qs - j;
2258 }
2259 }
2260
2261 /* Handle grace-period end. */
2262 rsp->gp_state = RCU_GP_CLEANUP;
2263 rcu_gp_cleanup(rsp);
2264 rsp->gp_state = RCU_GP_CLEANED;
2265 }
2266 }
2267
2268 /*
2269 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2270 * in preparation for detecting the next grace period. The caller must hold
2271 * the root node's ->lock and hard irqs must be disabled.
2272 *
2273 * Note that it is legal for a dying CPU (which is marked as offline) to
2274 * invoke this function. This can happen when the dying CPU reports its
2275 * quiescent state.
2276 *
2277 * Returns true if the grace-period kthread must be awakened.
2278 */
2279 static bool
2280 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2281 struct rcu_data *rdp)
2282 {
2283 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2284 /*
2285 * Either we have not yet spawned the grace-period
2286 * task, this CPU does not need another grace period,
2287 * or a grace period is already in progress.
2288 * Either way, don't start a new grace period.
2289 */
2290 return false;
2291 }
2292 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2293 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2294 TPS("newreq"));
2295
2296 /*
2297 * We can't do wakeups while holding the rnp->lock, as that
2298 * could cause possible deadlocks with the rq->lock. Defer
2299 * the wakeup to our caller.
2300 */
2301 return true;
2302 }
2303
2304 /*
2305 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2306 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2307 * is invoked indirectly from rcu_advance_cbs(), which would result in
2308 * endless recursion -- or would do so if it wasn't for the self-deadlock
2309 * that is encountered beforehand.
2310 *
2311 * Returns true if the grace-period kthread needs to be awakened.
2312 */
2313 static bool rcu_start_gp(struct rcu_state *rsp)
2314 {
2315 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2316 struct rcu_node *rnp = rcu_get_root(rsp);
2317 bool ret = false;
2318
2319 /*
2320 * If there is no grace period in progress right now, any
2321 * callbacks we have up to this point will be satisfied by the
2322 * next grace period. Also, advancing the callbacks reduces the
2323 * probability of false positives from cpu_needs_another_gp()
2324 * resulting in pointless grace periods. So, advance callbacks
2325 * then start the grace period!
2326 */
2327 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2328 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2329 return ret;
2330 }
2331
2332 /*
2333 * Report a full set of quiescent states to the specified rcu_state data
2334 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2335 * kthread if another grace period is required. Whether we wake
2336 * the grace-period kthread or it awakens itself for the next round
2337 * of quiescent-state forcing, that kthread will clean up after the
2338 * just-completed grace period. Note that the caller must hold rnp->lock,
2339 * which is released before return.
2340 */
2341 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2342 __releases(rcu_get_root(rsp)->lock)
2343 {
2344 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2345 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2346 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2347 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2348 }
2349
2350 /*
2351 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2352 * Allows quiescent states for a group of CPUs to be reported at one go
2353 * to the specified rcu_node structure, though all the CPUs in the group
2354 * must be represented by the same rcu_node structure (which need not be a
2355 * leaf rcu_node structure, though it often will be). The gps parameter
2356 * is the grace-period snapshot, which means that the quiescent states
2357 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2358 * must be held upon entry, and it is released before return.
2359 */
2360 static void
2361 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2362 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2363 __releases(rnp->lock)
2364 {
2365 unsigned long oldmask = 0;
2366 struct rcu_node *rnp_c;
2367
2368 /* Walk up the rcu_node hierarchy. */
2369 for (;;) {
2370 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2371
2372 /*
2373 * Our bit has already been cleared, or the
2374 * relevant grace period is already over, so done.
2375 */
2376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2377 return;
2378 }
2379 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2380 rnp->qsmask &= ~mask;
2381 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2382 mask, rnp->qsmask, rnp->level,
2383 rnp->grplo, rnp->grphi,
2384 !!rnp->gp_tasks);
2385 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2386
2387 /* Other bits still set at this level, so done. */
2388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2389 return;
2390 }
2391 mask = rnp->grpmask;
2392 if (rnp->parent == NULL) {
2393
2394 /* No more levels. Exit loop holding root lock. */
2395
2396 break;
2397 }
2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2399 rnp_c = rnp;
2400 rnp = rnp->parent;
2401 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402 oldmask = rnp_c->qsmask;
2403 }
2404
2405 /*
2406 * Get here if we are the last CPU to pass through a quiescent
2407 * state for this grace period. Invoke rcu_report_qs_rsp()
2408 * to clean up and start the next grace period if one is needed.
2409 */
2410 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2411 }
2412
2413 /*
2414 * Record a quiescent state for all tasks that were previously queued
2415 * on the specified rcu_node structure and that were blocking the current
2416 * RCU grace period. The caller must hold the specified rnp->lock with
2417 * irqs disabled, and this lock is released upon return, but irqs remain
2418 * disabled.
2419 */
2420 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2421 struct rcu_node *rnp, unsigned long flags)
2422 __releases(rnp->lock)
2423 {
2424 unsigned long gps;
2425 unsigned long mask;
2426 struct rcu_node *rnp_p;
2427
2428 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2429 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 return; /* Still need more quiescent states! */
2432 }
2433
2434 rnp_p = rnp->parent;
2435 if (rnp_p == NULL) {
2436 /*
2437 * Only one rcu_node structure in the tree, so don't
2438 * try to report up to its nonexistent parent!
2439 */
2440 rcu_report_qs_rsp(rsp, flags);
2441 return;
2442 }
2443
2444 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2445 gps = rnp->gpnum;
2446 mask = rnp->grpmask;
2447 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2448 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2449 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2450 }
2451
2452 /*
2453 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2454 * structure. This must be called from the specified CPU.
2455 */
2456 static void
2457 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2458 {
2459 unsigned long flags;
2460 unsigned long mask;
2461 bool needwake;
2462 struct rcu_node *rnp;
2463
2464 rnp = rdp->mynode;
2465 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2466 if ((rdp->cpu_no_qs.b.norm &&
2467 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2468 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2469 rdp->gpwrap) {
2470
2471 /*
2472 * The grace period in which this quiescent state was
2473 * recorded has ended, so don't report it upwards.
2474 * We will instead need a new quiescent state that lies
2475 * within the current grace period.
2476 */
2477 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2478 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2479 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2480 return;
2481 }
2482 mask = rdp->grpmask;
2483 if ((rnp->qsmask & mask) == 0) {
2484 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2485 } else {
2486 rdp->core_needs_qs = false;
2487
2488 /*
2489 * This GP can't end until cpu checks in, so all of our
2490 * callbacks can be processed during the next GP.
2491 */
2492 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2493
2494 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2495 /* ^^^ Released rnp->lock */
2496 if (needwake)
2497 rcu_gp_kthread_wake(rsp);
2498 }
2499 }
2500
2501 /*
2502 * Check to see if there is a new grace period of which this CPU
2503 * is not yet aware, and if so, set up local rcu_data state for it.
2504 * Otherwise, see if this CPU has just passed through its first
2505 * quiescent state for this grace period, and record that fact if so.
2506 */
2507 static void
2508 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2509 {
2510 /* Check for grace-period ends and beginnings. */
2511 note_gp_changes(rsp, rdp);
2512
2513 /*
2514 * Does this CPU still need to do its part for current grace period?
2515 * If no, return and let the other CPUs do their part as well.
2516 */
2517 if (!rdp->core_needs_qs)
2518 return;
2519
2520 /*
2521 * Was there a quiescent state since the beginning of the grace
2522 * period? If no, then exit and wait for the next call.
2523 */
2524 if (rdp->cpu_no_qs.b.norm &&
2525 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2526 return;
2527
2528 /*
2529 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2530 * judge of that).
2531 */
2532 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2533 }
2534
2535 /*
2536 * Send the specified CPU's RCU callbacks to the orphanage. The
2537 * specified CPU must be offline, and the caller must hold the
2538 * ->orphan_lock.
2539 */
2540 static void
2541 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2542 struct rcu_node *rnp, struct rcu_data *rdp)
2543 {
2544 /* No-CBs CPUs do not have orphanable callbacks. */
2545 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2546 return;
2547
2548 /*
2549 * Orphan the callbacks. First adjust the counts. This is safe
2550 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2551 * cannot be running now. Thus no memory barrier is required.
2552 */
2553 if (rdp->nxtlist != NULL) {
2554 rsp->qlen_lazy += rdp->qlen_lazy;
2555 rsp->qlen += rdp->qlen;
2556 rdp->n_cbs_orphaned += rdp->qlen;
2557 rdp->qlen_lazy = 0;
2558 WRITE_ONCE(rdp->qlen, 0);
2559 }
2560
2561 /*
2562 * Next, move those callbacks still needing a grace period to
2563 * the orphanage, where some other CPU will pick them up.
2564 * Some of the callbacks might have gone partway through a grace
2565 * period, but that is too bad. They get to start over because we
2566 * cannot assume that grace periods are synchronized across CPUs.
2567 * We don't bother updating the ->nxttail[] array yet, instead
2568 * we just reset the whole thing later on.
2569 */
2570 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2571 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2572 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2573 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2574 }
2575
2576 /*
2577 * Then move the ready-to-invoke callbacks to the orphanage,
2578 * where some other CPU will pick them up. These will not be
2579 * required to pass though another grace period: They are done.
2580 */
2581 if (rdp->nxtlist != NULL) {
2582 *rsp->orphan_donetail = rdp->nxtlist;
2583 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2584 }
2585
2586 /*
2587 * Finally, initialize the rcu_data structure's list to empty and
2588 * disallow further callbacks on this CPU.
2589 */
2590 init_callback_list(rdp);
2591 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2592 }
2593
2594 /*
2595 * Adopt the RCU callbacks from the specified rcu_state structure's
2596 * orphanage. The caller must hold the ->orphan_lock.
2597 */
2598 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2599 {
2600 int i;
2601 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2602
2603 /* No-CBs CPUs are handled specially. */
2604 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2605 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2606 return;
2607
2608 /* Do the accounting first. */
2609 rdp->qlen_lazy += rsp->qlen_lazy;
2610 rdp->qlen += rsp->qlen;
2611 rdp->n_cbs_adopted += rsp->qlen;
2612 if (rsp->qlen_lazy != rsp->qlen)
2613 rcu_idle_count_callbacks_posted();
2614 rsp->qlen_lazy = 0;
2615 rsp->qlen = 0;
2616
2617 /*
2618 * We do not need a memory barrier here because the only way we
2619 * can get here if there is an rcu_barrier() in flight is if
2620 * we are the task doing the rcu_barrier().
2621 */
2622
2623 /* First adopt the ready-to-invoke callbacks. */
2624 if (rsp->orphan_donelist != NULL) {
2625 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2626 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2627 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2628 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2629 rdp->nxttail[i] = rsp->orphan_donetail;
2630 rsp->orphan_donelist = NULL;
2631 rsp->orphan_donetail = &rsp->orphan_donelist;
2632 }
2633
2634 /* And then adopt the callbacks that still need a grace period. */
2635 if (rsp->orphan_nxtlist != NULL) {
2636 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2637 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2638 rsp->orphan_nxtlist = NULL;
2639 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2640 }
2641 }
2642
2643 /*
2644 * Trace the fact that this CPU is going offline.
2645 */
2646 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2647 {
2648 RCU_TRACE(unsigned long mask);
2649 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2650 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2651
2652 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2653 return;
2654
2655 RCU_TRACE(mask = rdp->grpmask);
2656 trace_rcu_grace_period(rsp->name,
2657 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2658 TPS("cpuofl"));
2659 }
2660
2661 /*
2662 * All CPUs for the specified rcu_node structure have gone offline,
2663 * and all tasks that were preempted within an RCU read-side critical
2664 * section while running on one of those CPUs have since exited their RCU
2665 * read-side critical section. Some other CPU is reporting this fact with
2666 * the specified rcu_node structure's ->lock held and interrupts disabled.
2667 * This function therefore goes up the tree of rcu_node structures,
2668 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2669 * the leaf rcu_node structure's ->qsmaskinit field has already been
2670 * updated
2671 *
2672 * This function does check that the specified rcu_node structure has
2673 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2674 * prematurely. That said, invoking it after the fact will cost you
2675 * a needless lock acquisition. So once it has done its work, don't
2676 * invoke it again.
2677 */
2678 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2679 {
2680 long mask;
2681 struct rcu_node *rnp = rnp_leaf;
2682
2683 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2684 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2685 return;
2686 for (;;) {
2687 mask = rnp->grpmask;
2688 rnp = rnp->parent;
2689 if (!rnp)
2690 break;
2691 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2692 rnp->qsmaskinit &= ~mask;
2693 rnp->qsmask &= ~mask;
2694 if (rnp->qsmaskinit) {
2695 raw_spin_unlock_rcu_node(rnp);
2696 /* irqs remain disabled. */
2697 return;
2698 }
2699 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2700 }
2701 }
2702
2703 /*
2704 * The CPU has been completely removed, and some other CPU is reporting
2705 * this fact from process context. Do the remainder of the cleanup,
2706 * including orphaning the outgoing CPU's RCU callbacks, and also
2707 * adopting them. There can only be one CPU hotplug operation at a time,
2708 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2709 */
2710 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2711 {
2712 unsigned long flags;
2713 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2714 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2715
2716 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2717 return;
2718
2719 /* Adjust any no-longer-needed kthreads. */
2720 rcu_boost_kthread_setaffinity(rnp, -1);
2721
2722 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2723 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2724 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2725 rcu_adopt_orphan_cbs(rsp, flags);
2726 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2727
2728 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2729 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2730 cpu, rdp->qlen, rdp->nxtlist);
2731 }
2732
2733 /*
2734 * Invoke any RCU callbacks that have made it to the end of their grace
2735 * period. Thottle as specified by rdp->blimit.
2736 */
2737 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2738 {
2739 unsigned long flags;
2740 struct rcu_head *next, *list, **tail;
2741 long bl, count, count_lazy;
2742 int i;
2743
2744 /* If no callbacks are ready, just return. */
2745 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2746 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2747 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2748 need_resched(), is_idle_task(current),
2749 rcu_is_callbacks_kthread());
2750 return;
2751 }
2752
2753 /*
2754 * Extract the list of ready callbacks, disabling to prevent
2755 * races with call_rcu() from interrupt handlers.
2756 */
2757 local_irq_save(flags);
2758 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2759 bl = rdp->blimit;
2760 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2761 list = rdp->nxtlist;
2762 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2763 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2764 tail = rdp->nxttail[RCU_DONE_TAIL];
2765 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2766 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2767 rdp->nxttail[i] = &rdp->nxtlist;
2768 local_irq_restore(flags);
2769
2770 /* Invoke callbacks. */
2771 count = count_lazy = 0;
2772 while (list) {
2773 next = list->next;
2774 prefetch(next);
2775 debug_rcu_head_unqueue(list);
2776 if (__rcu_reclaim(rsp->name, list))
2777 count_lazy++;
2778 list = next;
2779 /* Stop only if limit reached and CPU has something to do. */
2780 if (++count >= bl &&
2781 (need_resched() ||
2782 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2783 break;
2784 }
2785
2786 local_irq_save(flags);
2787 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2788 is_idle_task(current),
2789 rcu_is_callbacks_kthread());
2790
2791 /* Update count, and requeue any remaining callbacks. */
2792 if (list != NULL) {
2793 *tail = rdp->nxtlist;
2794 rdp->nxtlist = list;
2795 for (i = 0; i < RCU_NEXT_SIZE; i++)
2796 if (&rdp->nxtlist == rdp->nxttail[i])
2797 rdp->nxttail[i] = tail;
2798 else
2799 break;
2800 }
2801 smp_mb(); /* List handling before counting for rcu_barrier(). */
2802 rdp->qlen_lazy -= count_lazy;
2803 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2804 rdp->n_cbs_invoked += count;
2805
2806 /* Reinstate batch limit if we have worked down the excess. */
2807 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2808 rdp->blimit = blimit;
2809
2810 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2811 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2812 rdp->qlen_last_fqs_check = 0;
2813 rdp->n_force_qs_snap = rsp->n_force_qs;
2814 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2815 rdp->qlen_last_fqs_check = rdp->qlen;
2816 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2817
2818 local_irq_restore(flags);
2819
2820 /* Re-invoke RCU core processing if there are callbacks remaining. */
2821 if (cpu_has_callbacks_ready_to_invoke(rdp))
2822 invoke_rcu_core();
2823 }
2824
2825 /*
2826 * Check to see if this CPU is in a non-context-switch quiescent state
2827 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2828 * Also schedule RCU core processing.
2829 *
2830 * This function must be called from hardirq context. It is normally
2831 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2832 * false, there is no point in invoking rcu_check_callbacks().
2833 */
2834 void rcu_check_callbacks(int user)
2835 {
2836 trace_rcu_utilization(TPS("Start scheduler-tick"));
2837 increment_cpu_stall_ticks();
2838 if (user || rcu_is_cpu_rrupt_from_idle()) {
2839
2840 /*
2841 * Get here if this CPU took its interrupt from user
2842 * mode or from the idle loop, and if this is not a
2843 * nested interrupt. In this case, the CPU is in
2844 * a quiescent state, so note it.
2845 *
2846 * No memory barrier is required here because both
2847 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2848 * variables that other CPUs neither access nor modify,
2849 * at least not while the corresponding CPU is online.
2850 */
2851
2852 rcu_sched_qs();
2853 rcu_bh_qs();
2854
2855 } else if (!in_softirq()) {
2856
2857 /*
2858 * Get here if this CPU did not take its interrupt from
2859 * softirq, in other words, if it is not interrupting
2860 * a rcu_bh read-side critical section. This is an _bh
2861 * critical section, so note it.
2862 */
2863
2864 rcu_bh_qs();
2865 }
2866 rcu_preempt_check_callbacks();
2867 if (rcu_pending())
2868 invoke_rcu_core();
2869 if (user)
2870 rcu_note_voluntary_context_switch(current);
2871 trace_rcu_utilization(TPS("End scheduler-tick"));
2872 }
2873
2874 /*
2875 * Scan the leaf rcu_node structures, processing dyntick state for any that
2876 * have not yet encountered a quiescent state, using the function specified.
2877 * Also initiate boosting for any threads blocked on the root rcu_node.
2878 *
2879 * The caller must have suppressed start of new grace periods.
2880 */
2881 static void force_qs_rnp(struct rcu_state *rsp,
2882 int (*f)(struct rcu_data *rsp, bool *isidle,
2883 unsigned long *maxj),
2884 bool *isidle, unsigned long *maxj)
2885 {
2886 int cpu;
2887 unsigned long flags;
2888 unsigned long mask;
2889 struct rcu_node *rnp;
2890
2891 rcu_for_each_leaf_node(rsp, rnp) {
2892 cond_resched_rcu_qs();
2893 mask = 0;
2894 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2895 if (rnp->qsmask == 0) {
2896 if (rcu_state_p == &rcu_sched_state ||
2897 rsp != rcu_state_p ||
2898 rcu_preempt_blocked_readers_cgp(rnp)) {
2899 /*
2900 * No point in scanning bits because they
2901 * are all zero. But we might need to
2902 * priority-boost blocked readers.
2903 */
2904 rcu_initiate_boost(rnp, flags);
2905 /* rcu_initiate_boost() releases rnp->lock */
2906 continue;
2907 }
2908 if (rnp->parent &&
2909 (rnp->parent->qsmask & rnp->grpmask)) {
2910 /*
2911 * Race between grace-period
2912 * initialization and task exiting RCU
2913 * read-side critical section: Report.
2914 */
2915 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2916 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2917 continue;
2918 }
2919 }
2920 for_each_leaf_node_possible_cpu(rnp, cpu) {
2921 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2922 if ((rnp->qsmask & bit) != 0) {
2923 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2924 mask |= bit;
2925 }
2926 }
2927 if (mask != 0) {
2928 /* Idle/offline CPUs, report (releases rnp->lock. */
2929 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2930 } else {
2931 /* Nothing to do here, so just drop the lock. */
2932 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2933 }
2934 }
2935 }
2936
2937 /*
2938 * Force quiescent states on reluctant CPUs, and also detect which
2939 * CPUs are in dyntick-idle mode.
2940 */
2941 static void force_quiescent_state(struct rcu_state *rsp)
2942 {
2943 unsigned long flags;
2944 bool ret;
2945 struct rcu_node *rnp;
2946 struct rcu_node *rnp_old = NULL;
2947
2948 /* Funnel through hierarchy to reduce memory contention. */
2949 rnp = __this_cpu_read(rsp->rda->mynode);
2950 for (; rnp != NULL; rnp = rnp->parent) {
2951 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2952 !raw_spin_trylock(&rnp->fqslock);
2953 if (rnp_old != NULL)
2954 raw_spin_unlock(&rnp_old->fqslock);
2955 if (ret) {
2956 rsp->n_force_qs_lh++;
2957 return;
2958 }
2959 rnp_old = rnp;
2960 }
2961 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2962
2963 /* Reached the root of the rcu_node tree, acquire lock. */
2964 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2965 raw_spin_unlock(&rnp_old->fqslock);
2966 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2967 rsp->n_force_qs_lh++;
2968 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2969 return; /* Someone beat us to it. */
2970 }
2971 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2972 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2973 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2974 }
2975
2976 /*
2977 * This does the RCU core processing work for the specified rcu_state
2978 * and rcu_data structures. This may be called only from the CPU to
2979 * whom the rdp belongs.
2980 */
2981 static void
2982 __rcu_process_callbacks(struct rcu_state *rsp)
2983 {
2984 unsigned long flags;
2985 bool needwake;
2986 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2987
2988 WARN_ON_ONCE(rdp->beenonline == 0);
2989
2990 /* Update RCU state based on any recent quiescent states. */
2991 rcu_check_quiescent_state(rsp, rdp);
2992
2993 /* Does this CPU require a not-yet-started grace period? */
2994 local_irq_save(flags);
2995 if (cpu_needs_another_gp(rsp, rdp)) {
2996 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2997 needwake = rcu_start_gp(rsp);
2998 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
3001 } else {
3002 local_irq_restore(flags);
3003 }
3004
3005 /* If there are callbacks ready, invoke them. */
3006 if (cpu_has_callbacks_ready_to_invoke(rdp))
3007 invoke_rcu_callbacks(rsp, rdp);
3008
3009 /* Do any needed deferred wakeups of rcuo kthreads. */
3010 do_nocb_deferred_wakeup(rdp);
3011 }
3012
3013 /*
3014 * Do RCU core processing for the current CPU.
3015 */
3016 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3017 {
3018 struct rcu_state *rsp;
3019
3020 if (cpu_is_offline(smp_processor_id()))
3021 return;
3022 trace_rcu_utilization(TPS("Start RCU core"));
3023 for_each_rcu_flavor(rsp)
3024 __rcu_process_callbacks(rsp);
3025 trace_rcu_utilization(TPS("End RCU core"));
3026 }
3027
3028 /*
3029 * Schedule RCU callback invocation. If the specified type of RCU
3030 * does not support RCU priority boosting, just do a direct call,
3031 * otherwise wake up the per-CPU kernel kthread. Note that because we
3032 * are running on the current CPU with softirqs disabled, the
3033 * rcu_cpu_kthread_task cannot disappear out from under us.
3034 */
3035 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3036 {
3037 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3038 return;
3039 if (likely(!rsp->boost)) {
3040 rcu_do_batch(rsp, rdp);
3041 return;
3042 }
3043 invoke_rcu_callbacks_kthread();
3044 }
3045
3046 static void invoke_rcu_core(void)
3047 {
3048 if (cpu_online(smp_processor_id()))
3049 raise_softirq(RCU_SOFTIRQ);
3050 }
3051
3052 /*
3053 * Handle any core-RCU processing required by a call_rcu() invocation.
3054 */
3055 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3056 struct rcu_head *head, unsigned long flags)
3057 {
3058 bool needwake;
3059
3060 /*
3061 * If called from an extended quiescent state, invoke the RCU
3062 * core in order to force a re-evaluation of RCU's idleness.
3063 */
3064 if (!rcu_is_watching())
3065 invoke_rcu_core();
3066
3067 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3068 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3069 return;
3070
3071 /*
3072 * Force the grace period if too many callbacks or too long waiting.
3073 * Enforce hysteresis, and don't invoke force_quiescent_state()
3074 * if some other CPU has recently done so. Also, don't bother
3075 * invoking force_quiescent_state() if the newly enqueued callback
3076 * is the only one waiting for a grace period to complete.
3077 */
3078 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3079
3080 /* Are we ignoring a completed grace period? */
3081 note_gp_changes(rsp, rdp);
3082
3083 /* Start a new grace period if one not already started. */
3084 if (!rcu_gp_in_progress(rsp)) {
3085 struct rcu_node *rnp_root = rcu_get_root(rsp);
3086
3087 raw_spin_lock_rcu_node(rnp_root);
3088 needwake = rcu_start_gp(rsp);
3089 raw_spin_unlock_rcu_node(rnp_root);
3090 if (needwake)
3091 rcu_gp_kthread_wake(rsp);
3092 } else {
3093 /* Give the grace period a kick. */
3094 rdp->blimit = LONG_MAX;
3095 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3096 *rdp->nxttail[RCU_DONE_TAIL] != head)
3097 force_quiescent_state(rsp);
3098 rdp->n_force_qs_snap = rsp->n_force_qs;
3099 rdp->qlen_last_fqs_check = rdp->qlen;
3100 }
3101 }
3102 }
3103
3104 /*
3105 * RCU callback function to leak a callback.
3106 */
3107 static void rcu_leak_callback(struct rcu_head *rhp)
3108 {
3109 }
3110
3111 /*
3112 * Helper function for call_rcu() and friends. The cpu argument will
3113 * normally be -1, indicating "currently running CPU". It may specify
3114 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3115 * is expected to specify a CPU.
3116 */
3117 static void
3118 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3119 struct rcu_state *rsp, int cpu, bool lazy)
3120 {
3121 unsigned long flags;
3122 struct rcu_data *rdp;
3123
3124 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3125 if (debug_rcu_head_queue(head)) {
3126 /* Probable double call_rcu(), so leak the callback. */
3127 WRITE_ONCE(head->func, rcu_leak_callback);
3128 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3129 return;
3130 }
3131 head->func = func;
3132 head->next = NULL;
3133
3134 /*
3135 * Opportunistically note grace-period endings and beginnings.
3136 * Note that we might see a beginning right after we see an
3137 * end, but never vice versa, since this CPU has to pass through
3138 * a quiescent state betweentimes.
3139 */
3140 local_irq_save(flags);
3141 rdp = this_cpu_ptr(rsp->rda);
3142
3143 /* Add the callback to our list. */
3144 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3145 int offline;
3146
3147 if (cpu != -1)
3148 rdp = per_cpu_ptr(rsp->rda, cpu);
3149 if (likely(rdp->mynode)) {
3150 /* Post-boot, so this should be for a no-CBs CPU. */
3151 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3152 WARN_ON_ONCE(offline);
3153 /* Offline CPU, _call_rcu() illegal, leak callback. */
3154 local_irq_restore(flags);
3155 return;
3156 }
3157 /*
3158 * Very early boot, before rcu_init(). Initialize if needed
3159 * and then drop through to queue the callback.
3160 */
3161 BUG_ON(cpu != -1);
3162 WARN_ON_ONCE(!rcu_is_watching());
3163 if (!likely(rdp->nxtlist))
3164 init_default_callback_list(rdp);
3165 }
3166 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3167 if (lazy)
3168 rdp->qlen_lazy++;
3169 else
3170 rcu_idle_count_callbacks_posted();
3171 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3172 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3173 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3174
3175 if (__is_kfree_rcu_offset((unsigned long)func))
3176 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3177 rdp->qlen_lazy, rdp->qlen);
3178 else
3179 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3180
3181 /* Go handle any RCU core processing required. */
3182 __call_rcu_core(rsp, rdp, head, flags);
3183 local_irq_restore(flags);
3184 }
3185
3186 /*
3187 * Queue an RCU-sched callback for invocation after a grace period.
3188 */
3189 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3190 {
3191 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3192 }
3193 EXPORT_SYMBOL_GPL(call_rcu_sched);
3194
3195 /*
3196 * Queue an RCU callback for invocation after a quicker grace period.
3197 */
3198 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3199 {
3200 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3201 }
3202 EXPORT_SYMBOL_GPL(call_rcu_bh);
3203
3204 /*
3205 * Queue an RCU callback for lazy invocation after a grace period.
3206 * This will likely be later named something like "call_rcu_lazy()",
3207 * but this change will require some way of tagging the lazy RCU
3208 * callbacks in the list of pending callbacks. Until then, this
3209 * function may only be called from __kfree_rcu().
3210 */
3211 void kfree_call_rcu(struct rcu_head *head,
3212 rcu_callback_t func)
3213 {
3214 __call_rcu(head, func, rcu_state_p, -1, 1);
3215 }
3216 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3217
3218 /*
3219 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3220 * any blocking grace-period wait automatically implies a grace period
3221 * if there is only one CPU online at any point time during execution
3222 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3223 * occasionally incorrectly indicate that there are multiple CPUs online
3224 * when there was in fact only one the whole time, as this just adds
3225 * some overhead: RCU still operates correctly.
3226 */
3227 static inline int rcu_blocking_is_gp(void)
3228 {
3229 int ret;
3230
3231 might_sleep(); /* Check for RCU read-side critical section. */
3232 preempt_disable();
3233 ret = num_online_cpus() <= 1;
3234 preempt_enable();
3235 return ret;
3236 }
3237
3238 /**
3239 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3240 *
3241 * Control will return to the caller some time after a full rcu-sched
3242 * grace period has elapsed, in other words after all currently executing
3243 * rcu-sched read-side critical sections have completed. These read-side
3244 * critical sections are delimited by rcu_read_lock_sched() and
3245 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3246 * local_irq_disable(), and so on may be used in place of
3247 * rcu_read_lock_sched().
3248 *
3249 * This means that all preempt_disable code sequences, including NMI and
3250 * non-threaded hardware-interrupt handlers, in progress on entry will
3251 * have completed before this primitive returns. However, this does not
3252 * guarantee that softirq handlers will have completed, since in some
3253 * kernels, these handlers can run in process context, and can block.
3254 *
3255 * Note that this guarantee implies further memory-ordering guarantees.
3256 * On systems with more than one CPU, when synchronize_sched() returns,
3257 * each CPU is guaranteed to have executed a full memory barrier since the
3258 * end of its last RCU-sched read-side critical section whose beginning
3259 * preceded the call to synchronize_sched(). In addition, each CPU having
3260 * an RCU read-side critical section that extends beyond the return from
3261 * synchronize_sched() is guaranteed to have executed a full memory barrier
3262 * after the beginning of synchronize_sched() and before the beginning of
3263 * that RCU read-side critical section. Note that these guarantees include
3264 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3265 * that are executing in the kernel.
3266 *
3267 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3268 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3269 * to have executed a full memory barrier during the execution of
3270 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3271 * again only if the system has more than one CPU).
3272 *
3273 * This primitive provides the guarantees made by the (now removed)
3274 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3275 * guarantees that rcu_read_lock() sections will have completed.
3276 * In "classic RCU", these two guarantees happen to be one and
3277 * the same, but can differ in realtime RCU implementations.
3278 */
3279 void synchronize_sched(void)
3280 {
3281 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3282 lock_is_held(&rcu_lock_map) ||
3283 lock_is_held(&rcu_sched_lock_map),
3284 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3285 if (rcu_blocking_is_gp())
3286 return;
3287 if (rcu_gp_is_expedited())
3288 synchronize_sched_expedited();
3289 else
3290 wait_rcu_gp(call_rcu_sched);
3291 }
3292 EXPORT_SYMBOL_GPL(synchronize_sched);
3293
3294 /**
3295 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3296 *
3297 * Control will return to the caller some time after a full rcu_bh grace
3298 * period has elapsed, in other words after all currently executing rcu_bh
3299 * read-side critical sections have completed. RCU read-side critical
3300 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3301 * and may be nested.
3302 *
3303 * See the description of synchronize_sched() for more detailed information
3304 * on memory ordering guarantees.
3305 */
3306 void synchronize_rcu_bh(void)
3307 {
3308 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3309 lock_is_held(&rcu_lock_map) ||
3310 lock_is_held(&rcu_sched_lock_map),
3311 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3312 if (rcu_blocking_is_gp())
3313 return;
3314 if (rcu_gp_is_expedited())
3315 synchronize_rcu_bh_expedited();
3316 else
3317 wait_rcu_gp(call_rcu_bh);
3318 }
3319 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3320
3321 /**
3322 * get_state_synchronize_rcu - Snapshot current RCU state
3323 *
3324 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3325 * to determine whether or not a full grace period has elapsed in the
3326 * meantime.
3327 */
3328 unsigned long get_state_synchronize_rcu(void)
3329 {
3330 /*
3331 * Any prior manipulation of RCU-protected data must happen
3332 * before the load from ->gpnum.
3333 */
3334 smp_mb(); /* ^^^ */
3335
3336 /*
3337 * Make sure this load happens before the purportedly
3338 * time-consuming work between get_state_synchronize_rcu()
3339 * and cond_synchronize_rcu().
3340 */
3341 return smp_load_acquire(&rcu_state_p->gpnum);
3342 }
3343 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3344
3345 /**
3346 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3347 *
3348 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3349 *
3350 * If a full RCU grace period has elapsed since the earlier call to
3351 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3352 * synchronize_rcu() to wait for a full grace period.
3353 *
3354 * Yes, this function does not take counter wrap into account. But
3355 * counter wrap is harmless. If the counter wraps, we have waited for
3356 * more than 2 billion grace periods (and way more on a 64-bit system!),
3357 * so waiting for one additional grace period should be just fine.
3358 */
3359 void cond_synchronize_rcu(unsigned long oldstate)
3360 {
3361 unsigned long newstate;
3362
3363 /*
3364 * Ensure that this load happens before any RCU-destructive
3365 * actions the caller might carry out after we return.
3366 */
3367 newstate = smp_load_acquire(&rcu_state_p->completed);
3368 if (ULONG_CMP_GE(oldstate, newstate))
3369 synchronize_rcu();
3370 }
3371 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3372
3373 /**
3374 * get_state_synchronize_sched - Snapshot current RCU-sched state
3375 *
3376 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3377 * to determine whether or not a full grace period has elapsed in the
3378 * meantime.
3379 */
3380 unsigned long get_state_synchronize_sched(void)
3381 {
3382 /*
3383 * Any prior manipulation of RCU-protected data must happen
3384 * before the load from ->gpnum.
3385 */
3386 smp_mb(); /* ^^^ */
3387
3388 /*
3389 * Make sure this load happens before the purportedly
3390 * time-consuming work between get_state_synchronize_sched()
3391 * and cond_synchronize_sched().
3392 */
3393 return smp_load_acquire(&rcu_sched_state.gpnum);
3394 }
3395 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3396
3397 /**
3398 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3399 *
3400 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3401 *
3402 * If a full RCU-sched grace period has elapsed since the earlier call to
3403 * get_state_synchronize_sched(), just return. Otherwise, invoke
3404 * synchronize_sched() to wait for a full grace period.
3405 *
3406 * Yes, this function does not take counter wrap into account. But
3407 * counter wrap is harmless. If the counter wraps, we have waited for
3408 * more than 2 billion grace periods (and way more on a 64-bit system!),
3409 * so waiting for one additional grace period should be just fine.
3410 */
3411 void cond_synchronize_sched(unsigned long oldstate)
3412 {
3413 unsigned long newstate;
3414
3415 /*
3416 * Ensure that this load happens before any RCU-destructive
3417 * actions the caller might carry out after we return.
3418 */
3419 newstate = smp_load_acquire(&rcu_sched_state.completed);
3420 if (ULONG_CMP_GE(oldstate, newstate))
3421 synchronize_sched();
3422 }
3423 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3424
3425 /* Adjust sequence number for start of update-side operation. */
3426 static void rcu_seq_start(unsigned long *sp)
3427 {
3428 WRITE_ONCE(*sp, *sp + 1);
3429 smp_mb(); /* Ensure update-side operation after counter increment. */
3430 WARN_ON_ONCE(!(*sp & 0x1));
3431 }
3432
3433 /* Adjust sequence number for end of update-side operation. */
3434 static void rcu_seq_end(unsigned long *sp)
3435 {
3436 smp_mb(); /* Ensure update-side operation before counter increment. */
3437 WRITE_ONCE(*sp, *sp + 1);
3438 WARN_ON_ONCE(*sp & 0x1);
3439 }
3440
3441 /* Take a snapshot of the update side's sequence number. */
3442 static unsigned long rcu_seq_snap(unsigned long *sp)
3443 {
3444 unsigned long s;
3445
3446 s = (READ_ONCE(*sp) + 3) & ~0x1;
3447 smp_mb(); /* Above access must not bleed into critical section. */
3448 return s;
3449 }
3450
3451 /*
3452 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3453 * full update-side operation has occurred.
3454 */
3455 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3456 {
3457 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3458 }
3459
3460 /*
3461 * Check to see if there is any immediate RCU-related work to be done
3462 * by the current CPU, for the specified type of RCU, returning 1 if so.
3463 * The checks are in order of increasing expense: checks that can be
3464 * carried out against CPU-local state are performed first. However,
3465 * we must check for CPU stalls first, else we might not get a chance.
3466 */
3467 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3468 {
3469 struct rcu_node *rnp = rdp->mynode;
3470
3471 rdp->n_rcu_pending++;
3472
3473 /* Check for CPU stalls, if enabled. */
3474 check_cpu_stall(rsp, rdp);
3475
3476 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3477 if (rcu_nohz_full_cpu(rsp))
3478 return 0;
3479
3480 /* Is the RCU core waiting for a quiescent state from this CPU? */
3481 if (rcu_scheduler_fully_active &&
3482 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3483 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3484 rdp->n_rp_core_needs_qs++;
3485 } else if (rdp->core_needs_qs &&
3486 (!rdp->cpu_no_qs.b.norm ||
3487 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3488 rdp->n_rp_report_qs++;
3489 return 1;
3490 }
3491
3492 /* Does this CPU have callbacks ready to invoke? */
3493 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3494 rdp->n_rp_cb_ready++;
3495 return 1;
3496 }
3497
3498 /* Has RCU gone idle with this CPU needing another grace period? */
3499 if (cpu_needs_another_gp(rsp, rdp)) {
3500 rdp->n_rp_cpu_needs_gp++;
3501 return 1;
3502 }
3503
3504 /* Has another RCU grace period completed? */
3505 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3506 rdp->n_rp_gp_completed++;
3507 return 1;
3508 }
3509
3510 /* Has a new RCU grace period started? */
3511 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3512 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3513 rdp->n_rp_gp_started++;
3514 return 1;
3515 }
3516
3517 /* Does this CPU need a deferred NOCB wakeup? */
3518 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3519 rdp->n_rp_nocb_defer_wakeup++;
3520 return 1;
3521 }
3522
3523 /* nothing to do */
3524 rdp->n_rp_need_nothing++;
3525 return 0;
3526 }
3527
3528 /*
3529 * Check to see if there is any immediate RCU-related work to be done
3530 * by the current CPU, returning 1 if so. This function is part of the
3531 * RCU implementation; it is -not- an exported member of the RCU API.
3532 */
3533 static int rcu_pending(void)
3534 {
3535 struct rcu_state *rsp;
3536
3537 for_each_rcu_flavor(rsp)
3538 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3539 return 1;
3540 return 0;
3541 }
3542
3543 /*
3544 * Return true if the specified CPU has any callback. If all_lazy is
3545 * non-NULL, store an indication of whether all callbacks are lazy.
3546 * (If there are no callbacks, all of them are deemed to be lazy.)
3547 */
3548 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3549 {
3550 bool al = true;
3551 bool hc = false;
3552 struct rcu_data *rdp;
3553 struct rcu_state *rsp;
3554
3555 for_each_rcu_flavor(rsp) {
3556 rdp = this_cpu_ptr(rsp->rda);
3557 if (!rdp->nxtlist)
3558 continue;
3559 hc = true;
3560 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3561 al = false;
3562 break;
3563 }
3564 }
3565 if (all_lazy)
3566 *all_lazy = al;
3567 return hc;
3568 }
3569
3570 /*
3571 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3572 * the compiler is expected to optimize this away.
3573 */
3574 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3575 int cpu, unsigned long done)
3576 {
3577 trace_rcu_barrier(rsp->name, s, cpu,
3578 atomic_read(&rsp->barrier_cpu_count), done);
3579 }
3580
3581 /*
3582 * RCU callback function for _rcu_barrier(). If we are last, wake
3583 * up the task executing _rcu_barrier().
3584 */
3585 static void rcu_barrier_callback(struct rcu_head *rhp)
3586 {
3587 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3588 struct rcu_state *rsp = rdp->rsp;
3589
3590 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3591 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3592 complete(&rsp->barrier_completion);
3593 } else {
3594 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3595 }
3596 }
3597
3598 /*
3599 * Called with preemption disabled, and from cross-cpu IRQ context.
3600 */
3601 static void rcu_barrier_func(void *type)
3602 {
3603 struct rcu_state *rsp = type;
3604 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3605
3606 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3607 atomic_inc(&rsp->barrier_cpu_count);
3608 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3609 }
3610
3611 /*
3612 * Orchestrate the specified type of RCU barrier, waiting for all
3613 * RCU callbacks of the specified type to complete.
3614 */
3615 static void _rcu_barrier(struct rcu_state *rsp)
3616 {
3617 int cpu;
3618 struct rcu_data *rdp;
3619 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3620
3621 _rcu_barrier_trace(rsp, "Begin", -1, s);
3622
3623 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3624 mutex_lock(&rsp->barrier_mutex);
3625
3626 /* Did someone else do our work for us? */
3627 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3628 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3629 smp_mb(); /* caller's subsequent code after above check. */
3630 mutex_unlock(&rsp->barrier_mutex);
3631 return;
3632 }
3633
3634 /* Mark the start of the barrier operation. */
3635 rcu_seq_start(&rsp->barrier_sequence);
3636 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3637
3638 /*
3639 * Initialize the count to one rather than to zero in order to
3640 * avoid a too-soon return to zero in case of a short grace period
3641 * (or preemption of this task). Exclude CPU-hotplug operations
3642 * to ensure that no offline CPU has callbacks queued.
3643 */
3644 init_completion(&rsp->barrier_completion);
3645 atomic_set(&rsp->barrier_cpu_count, 1);
3646 get_online_cpus();
3647
3648 /*
3649 * Force each CPU with callbacks to register a new callback.
3650 * When that callback is invoked, we will know that all of the
3651 * corresponding CPU's preceding callbacks have been invoked.
3652 */
3653 for_each_possible_cpu(cpu) {
3654 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3655 continue;
3656 rdp = per_cpu_ptr(rsp->rda, cpu);
3657 if (rcu_is_nocb_cpu(cpu)) {
3658 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3659 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3660 rsp->barrier_sequence);
3661 } else {
3662 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3663 rsp->barrier_sequence);
3664 smp_mb__before_atomic();
3665 atomic_inc(&rsp->barrier_cpu_count);
3666 __call_rcu(&rdp->barrier_head,
3667 rcu_barrier_callback, rsp, cpu, 0);
3668 }
3669 } else if (READ_ONCE(rdp->qlen)) {
3670 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3671 rsp->barrier_sequence);
3672 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3673 } else {
3674 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3675 rsp->barrier_sequence);
3676 }
3677 }
3678 put_online_cpus();
3679
3680 /*
3681 * Now that we have an rcu_barrier_callback() callback on each
3682 * CPU, and thus each counted, remove the initial count.
3683 */
3684 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3685 complete(&rsp->barrier_completion);
3686
3687 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3688 wait_for_completion(&rsp->barrier_completion);
3689
3690 /* Mark the end of the barrier operation. */
3691 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3692 rcu_seq_end(&rsp->barrier_sequence);
3693
3694 /* Other rcu_barrier() invocations can now safely proceed. */
3695 mutex_unlock(&rsp->barrier_mutex);
3696 }
3697
3698 /**
3699 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3700 */
3701 void rcu_barrier_bh(void)
3702 {
3703 _rcu_barrier(&rcu_bh_state);
3704 }
3705 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3706
3707 /**
3708 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3709 */
3710 void rcu_barrier_sched(void)
3711 {
3712 _rcu_barrier(&rcu_sched_state);
3713 }
3714 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3715
3716 /*
3717 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3718 * first CPU in a given leaf rcu_node structure coming online. The caller
3719 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3720 * disabled.
3721 */
3722 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3723 {
3724 long mask;
3725 struct rcu_node *rnp = rnp_leaf;
3726
3727 for (;;) {
3728 mask = rnp->grpmask;
3729 rnp = rnp->parent;
3730 if (rnp == NULL)
3731 return;
3732 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3733 rnp->qsmaskinit |= mask;
3734 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3735 }
3736 }
3737
3738 /*
3739 * Do boot-time initialization of a CPU's per-CPU RCU data.
3740 */
3741 static void __init
3742 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3743 {
3744 unsigned long flags;
3745 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3746 struct rcu_node *rnp = rcu_get_root(rsp);
3747
3748 /* Set up local state, ensuring consistent view of global state. */
3749 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3750 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3751 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3752 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3753 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3754 rdp->cpu = cpu;
3755 rdp->rsp = rsp;
3756 rcu_boot_init_nocb_percpu_data(rdp);
3757 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3758 }
3759
3760 /*
3761 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3762 * offline event can be happening at a given time. Note also that we
3763 * can accept some slop in the rsp->completed access due to the fact
3764 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3765 */
3766 static void
3767 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3768 {
3769 unsigned long flags;
3770 unsigned long mask;
3771 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3772 struct rcu_node *rnp = rcu_get_root(rsp);
3773
3774 /* Set up local state, ensuring consistent view of global state. */
3775 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3776 rdp->qlen_last_fqs_check = 0;
3777 rdp->n_force_qs_snap = rsp->n_force_qs;
3778 rdp->blimit = blimit;
3779 if (!rdp->nxtlist)
3780 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3781 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3782 rcu_sysidle_init_percpu_data(rdp->dynticks);
3783 atomic_set(&rdp->dynticks->dynticks,
3784 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3785 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3786
3787 /*
3788 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3789 * propagation up the rcu_node tree will happen at the beginning
3790 * of the next grace period.
3791 */
3792 rnp = rdp->mynode;
3793 mask = rdp->grpmask;
3794 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3795 rnp->qsmaskinitnext |= mask;
3796 rnp->expmaskinitnext |= mask;
3797 if (!rdp->beenonline)
3798 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3799 rdp->beenonline = true; /* We have now been online. */
3800 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3801 rdp->completed = rnp->completed;
3802 rdp->cpu_no_qs.b.norm = true;
3803 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3804 rdp->core_needs_qs = false;
3805 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3806 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3807 }
3808
3809 int rcutree_prepare_cpu(unsigned int cpu)
3810 {
3811 struct rcu_state *rsp;
3812
3813 for_each_rcu_flavor(rsp)
3814 rcu_init_percpu_data(cpu, rsp);
3815
3816 rcu_prepare_kthreads(cpu);
3817 rcu_spawn_all_nocb_kthreads(cpu);
3818
3819 return 0;
3820 }
3821
3822 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3823 {
3824 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3825
3826 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3827 }
3828
3829 int rcutree_online_cpu(unsigned int cpu)
3830 {
3831 sync_sched_exp_online_cleanup(cpu);
3832 rcutree_affinity_setting(cpu, -1);
3833 return 0;
3834 }
3835
3836 int rcutree_offline_cpu(unsigned int cpu)
3837 {
3838 rcutree_affinity_setting(cpu, cpu);
3839 return 0;
3840 }
3841
3842
3843 int rcutree_dying_cpu(unsigned int cpu)
3844 {
3845 struct rcu_state *rsp;
3846
3847 for_each_rcu_flavor(rsp)
3848 rcu_cleanup_dying_cpu(rsp);
3849 return 0;
3850 }
3851
3852 int rcutree_dead_cpu(unsigned int cpu)
3853 {
3854 struct rcu_state *rsp;
3855
3856 for_each_rcu_flavor(rsp) {
3857 rcu_cleanup_dead_cpu(cpu, rsp);
3858 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3859 }
3860 return 0;
3861 }
3862
3863 #ifdef CONFIG_HOTPLUG_CPU
3864 /*
3865 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3866 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3867 * bit masks.
3868 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3869 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3870 * bit masks.
3871 */
3872 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3873 {
3874 unsigned long flags;
3875 unsigned long mask;
3876 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3877 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3878
3879 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3880 mask = rdp->grpmask;
3881 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3882 rnp->qsmaskinitnext &= ~mask;
3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884 }
3885
3886 void rcu_report_dead(unsigned int cpu)
3887 {
3888 struct rcu_state *rsp;
3889
3890 /* QS for any half-done expedited RCU-sched GP. */
3891 preempt_disable();
3892 rcu_report_exp_rdp(&rcu_sched_state,
3893 this_cpu_ptr(rcu_sched_state.rda), true);
3894 preempt_enable();
3895 for_each_rcu_flavor(rsp)
3896 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3897 }
3898 #endif
3899
3900 static int rcu_pm_notify(struct notifier_block *self,
3901 unsigned long action, void *hcpu)
3902 {
3903 switch (action) {
3904 case PM_HIBERNATION_PREPARE:
3905 case PM_SUSPEND_PREPARE:
3906 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3907 rcu_expedite_gp();
3908 break;
3909 case PM_POST_HIBERNATION:
3910 case PM_POST_SUSPEND:
3911 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3912 rcu_unexpedite_gp();
3913 break;
3914 default:
3915 break;
3916 }
3917 return NOTIFY_OK;
3918 }
3919
3920 /*
3921 * Spawn the kthreads that handle each RCU flavor's grace periods.
3922 */
3923 static int __init rcu_spawn_gp_kthread(void)
3924 {
3925 unsigned long flags;
3926 int kthread_prio_in = kthread_prio;
3927 struct rcu_node *rnp;
3928 struct rcu_state *rsp;
3929 struct sched_param sp;
3930 struct task_struct *t;
3931
3932 /* Force priority into range. */
3933 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3934 kthread_prio = 1;
3935 else if (kthread_prio < 0)
3936 kthread_prio = 0;
3937 else if (kthread_prio > 99)
3938 kthread_prio = 99;
3939 if (kthread_prio != kthread_prio_in)
3940 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3941 kthread_prio, kthread_prio_in);
3942
3943 rcu_scheduler_fully_active = 1;
3944 for_each_rcu_flavor(rsp) {
3945 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3946 BUG_ON(IS_ERR(t));
3947 rnp = rcu_get_root(rsp);
3948 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3949 rsp->gp_kthread = t;
3950 if (kthread_prio) {
3951 sp.sched_priority = kthread_prio;
3952 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3953 }
3954 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3955 wake_up_process(t);
3956 }
3957 rcu_spawn_nocb_kthreads();
3958 rcu_spawn_boost_kthreads();
3959 return 0;
3960 }
3961 early_initcall(rcu_spawn_gp_kthread);
3962
3963 /*
3964 * This function is invoked towards the end of the scheduler's initialization
3965 * process. Before this is called, the idle task might contain
3966 * RCU read-side critical sections (during which time, this idle
3967 * task is booting the system). After this function is called, the
3968 * idle tasks are prohibited from containing RCU read-side critical
3969 * sections. This function also enables RCU lockdep checking.
3970 */
3971 void rcu_scheduler_starting(void)
3972 {
3973 WARN_ON(num_online_cpus() != 1);
3974 WARN_ON(nr_context_switches() > 0);
3975 rcu_scheduler_active = 1;
3976 }
3977
3978 /*
3979 * Compute the per-level fanout, either using the exact fanout specified
3980 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3981 */
3982 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
3983 {
3984 int i;
3985
3986 if (rcu_fanout_exact) {
3987 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3988 for (i = rcu_num_lvls - 2; i >= 0; i--)
3989 levelspread[i] = RCU_FANOUT;
3990 } else {
3991 int ccur;
3992 int cprv;
3993
3994 cprv = nr_cpu_ids;
3995 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3996 ccur = levelcnt[i];
3997 levelspread[i] = (cprv + ccur - 1) / ccur;
3998 cprv = ccur;
3999 }
4000 }
4001 }
4002
4003 /*
4004 * Helper function for rcu_init() that initializes one rcu_state structure.
4005 */
4006 static void __init rcu_init_one(struct rcu_state *rsp)
4007 {
4008 static const char * const buf[] = RCU_NODE_NAME_INIT;
4009 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4010 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4011 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4012 static u8 fl_mask = 0x1;
4013
4014 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4015 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4016 int cpustride = 1;
4017 int i;
4018 int j;
4019 struct rcu_node *rnp;
4020
4021 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4022
4023 /* Silence gcc 4.8 false positive about array index out of range. */
4024 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4025 panic("rcu_init_one: rcu_num_lvls out of range");
4026
4027 /* Initialize the level-tracking arrays. */
4028
4029 for (i = 0; i < rcu_num_lvls; i++)
4030 levelcnt[i] = num_rcu_lvl[i];
4031 for (i = 1; i < rcu_num_lvls; i++)
4032 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4033 rcu_init_levelspread(levelspread, levelcnt);
4034 rsp->flavor_mask = fl_mask;
4035 fl_mask <<= 1;
4036
4037 /* Initialize the elements themselves, starting from the leaves. */
4038
4039 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4040 cpustride *= levelspread[i];
4041 rnp = rsp->level[i];
4042 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4043 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4044 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4045 &rcu_node_class[i], buf[i]);
4046 raw_spin_lock_init(&rnp->fqslock);
4047 lockdep_set_class_and_name(&rnp->fqslock,
4048 &rcu_fqs_class[i], fqs[i]);
4049 rnp->gpnum = rsp->gpnum;
4050 rnp->completed = rsp->completed;
4051 rnp->qsmask = 0;
4052 rnp->qsmaskinit = 0;
4053 rnp->grplo = j * cpustride;
4054 rnp->grphi = (j + 1) * cpustride - 1;
4055 if (rnp->grphi >= nr_cpu_ids)
4056 rnp->grphi = nr_cpu_ids - 1;
4057 if (i == 0) {
4058 rnp->grpnum = 0;
4059 rnp->grpmask = 0;
4060 rnp->parent = NULL;
4061 } else {
4062 rnp->grpnum = j % levelspread[i - 1];
4063 rnp->grpmask = 1UL << rnp->grpnum;
4064 rnp->parent = rsp->level[i - 1] +
4065 j / levelspread[i - 1];
4066 }
4067 rnp->level = i;
4068 INIT_LIST_HEAD(&rnp->blkd_tasks);
4069 rcu_init_one_nocb(rnp);
4070 init_waitqueue_head(&rnp->exp_wq[0]);
4071 init_waitqueue_head(&rnp->exp_wq[1]);
4072 init_waitqueue_head(&rnp->exp_wq[2]);
4073 init_waitqueue_head(&rnp->exp_wq[3]);
4074 spin_lock_init(&rnp->exp_lock);
4075 }
4076 }
4077
4078 init_swait_queue_head(&rsp->gp_wq);
4079 init_swait_queue_head(&rsp->expedited_wq);
4080 rnp = rsp->level[rcu_num_lvls - 1];
4081 for_each_possible_cpu(i) {
4082 while (i > rnp->grphi)
4083 rnp++;
4084 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4085 rcu_boot_init_percpu_data(i, rsp);
4086 }
4087 list_add(&rsp->flavors, &rcu_struct_flavors);
4088 }
4089
4090 /*
4091 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4092 * replace the definitions in tree.h because those are needed to size
4093 * the ->node array in the rcu_state structure.
4094 */
4095 static void __init rcu_init_geometry(void)
4096 {
4097 ulong d;
4098 int i;
4099 int rcu_capacity[RCU_NUM_LVLS];
4100
4101 /*
4102 * Initialize any unspecified boot parameters.
4103 * The default values of jiffies_till_first_fqs and
4104 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4105 * value, which is a function of HZ, then adding one for each
4106 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4107 */
4108 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4109 if (jiffies_till_first_fqs == ULONG_MAX)
4110 jiffies_till_first_fqs = d;
4111 if (jiffies_till_next_fqs == ULONG_MAX)
4112 jiffies_till_next_fqs = d;
4113
4114 /* If the compile-time values are accurate, just leave. */
4115 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4116 nr_cpu_ids == NR_CPUS)
4117 return;
4118 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4119 rcu_fanout_leaf, nr_cpu_ids);
4120
4121 /*
4122 * The boot-time rcu_fanout_leaf parameter must be at least two
4123 * and cannot exceed the number of bits in the rcu_node masks.
4124 * Complain and fall back to the compile-time values if this
4125 * limit is exceeded.
4126 */
4127 if (rcu_fanout_leaf < 2 ||
4128 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4129 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4130 WARN_ON(1);
4131 return;
4132 }
4133
4134 /*
4135 * Compute number of nodes that can be handled an rcu_node tree
4136 * with the given number of levels.
4137 */
4138 rcu_capacity[0] = rcu_fanout_leaf;
4139 for (i = 1; i < RCU_NUM_LVLS; i++)
4140 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4141
4142 /*
4143 * The tree must be able to accommodate the configured number of CPUs.
4144 * If this limit is exceeded, fall back to the compile-time values.
4145 */
4146 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4147 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4148 WARN_ON(1);
4149 return;
4150 }
4151
4152 /* Calculate the number of levels in the tree. */
4153 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4154 }
4155 rcu_num_lvls = i + 1;
4156
4157 /* Calculate the number of rcu_nodes at each level of the tree. */
4158 for (i = 0; i < rcu_num_lvls; i++) {
4159 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4160 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4161 }
4162
4163 /* Calculate the total number of rcu_node structures. */
4164 rcu_num_nodes = 0;
4165 for (i = 0; i < rcu_num_lvls; i++)
4166 rcu_num_nodes += num_rcu_lvl[i];
4167 }
4168
4169 /*
4170 * Dump out the structure of the rcu_node combining tree associated
4171 * with the rcu_state structure referenced by rsp.
4172 */
4173 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4174 {
4175 int level = 0;
4176 struct rcu_node *rnp;
4177
4178 pr_info("rcu_node tree layout dump\n");
4179 pr_info(" ");
4180 rcu_for_each_node_breadth_first(rsp, rnp) {
4181 if (rnp->level != level) {
4182 pr_cont("\n");
4183 pr_info(" ");
4184 level = rnp->level;
4185 }
4186 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4187 }
4188 pr_cont("\n");
4189 }
4190
4191 void __init rcu_init(void)
4192 {
4193 int cpu;
4194
4195 rcu_early_boot_tests();
4196
4197 rcu_bootup_announce();
4198 rcu_init_geometry();
4199 rcu_init_one(&rcu_bh_state);
4200 rcu_init_one(&rcu_sched_state);
4201 if (dump_tree)
4202 rcu_dump_rcu_node_tree(&rcu_sched_state);
4203 __rcu_init_preempt();
4204 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4205
4206 /*
4207 * We don't need protection against CPU-hotplug here because
4208 * this is called early in boot, before either interrupts
4209 * or the scheduler are operational.
4210 */
4211 pm_notifier(rcu_pm_notify, 0);
4212 for_each_online_cpu(cpu)
4213 rcutree_prepare_cpu(cpu);
4214 }
4215
4216 #include "tree_exp.h"
4217 #include "tree_plugin.h"
This page took 0.126875 seconds and 5 git commands to generate.