relay-use-irq_work-instead-of-plain-timer-for-deferred-wakeup-checkpatch-fixes
[deliverable/linux.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
175
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
179
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
183
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
188 }
189
190 /**
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
193 *
194 * Should only be called from kref_put().
195 */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 kfree(chan);
200 }
201
202 /**
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
205 */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 struct rchan *chan = buf->chan;
209 unsigned int i;
210
211 if (likely(buf->start)) {
212 vunmap(buf->start);
213 for (i = 0; i < buf->page_count; i++)
214 __free_page(buf->page_array[i]);
215 relay_free_page_array(buf->page_array);
216 }
217 chan->buf[buf->cpu] = NULL;
218 kfree(buf->padding);
219 kfree(buf);
220 kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
226 *
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
229 * kref_put().
230 */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 relay_destroy_buf(buf);
235 }
236
237 /**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262 * High-level relay kernel API and associated functions.
263 */
264
265 /*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270 /*
271 * subbuf_start() default callback. Does nothing.
272 */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 void *subbuf,
275 void *prev_subbuf,
276 size_t prev_padding)
277 {
278 if (relay_buf_full(buf))
279 return 0;
280
281 return 1;
282 }
283
284 /*
285 * buf_mapped() default callback. Does nothing.
286 */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 struct file *filp)
289 {
290 }
291
292 /*
293 * buf_unmapped() default callback. Does nothing.
294 */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 struct file *filp)
297 {
298 }
299
300 /*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 struct dentry *parent,
305 umode_t mode,
306 struct rchan_buf *buf,
307 int *is_global)
308 {
309 return NULL;
310 }
311
312 /*
313 * remove_buf_file() default callback. Does nothing.
314 */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 .subbuf_start = subbuf_start_default_callback,
323 .buf_mapped = buf_mapped_default_callback,
324 .buf_unmapped = buf_unmapped_default_callback,
325 .create_buf_file = create_buf_file_default_callback,
326 .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @work: contains the channel buffer
332 *
333 * This is the function used to defer reader waking
334 */
335 static void wakeup_readers(struct irq_work *work)
336 {
337 struct rchan_buf *buf;
338
339 buf = container_of(work, struct rchan_buf, wakeup_work);
340 wake_up_interruptible(&buf->read_wait);
341 }
342
343 /**
344 * __relay_reset - reset a channel buffer
345 * @buf: the channel buffer
346 * @init: 1 if this is a first-time initialization
347 *
348 * See relay_reset() for description of effect.
349 */
350 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
351 {
352 size_t i;
353
354 if (init) {
355 init_waitqueue_head(&buf->read_wait);
356 kref_init(&buf->kref);
357 init_irq_work(&buf->wakeup_work, wakeup_readers);
358 } else {
359 irq_work_sync(&buf->wakeup_work);
360 }
361
362 buf->subbufs_produced = 0;
363 buf->subbufs_consumed = 0;
364 buf->bytes_consumed = 0;
365 buf->finalized = 0;
366 buf->data = buf->start;
367 buf->offset = 0;
368
369 for (i = 0; i < buf->chan->n_subbufs; i++)
370 buf->padding[i] = 0;
371
372 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373 }
374
375 /**
376 * relay_reset - reset the channel
377 * @chan: the channel
378 *
379 * This has the effect of erasing all data from all channel buffers
380 * and restarting the channel in its initial state. The buffers
381 * are not freed, so any mappings are still in effect.
382 *
383 * NOTE. Care should be taken that the channel isn't actually
384 * being used by anything when this call is made.
385 */
386 void relay_reset(struct rchan *chan)
387 {
388 unsigned int i;
389
390 if (!chan)
391 return;
392
393 if (chan->is_global && chan->buf[0]) {
394 __relay_reset(chan->buf[0], 0);
395 return;
396 }
397
398 mutex_lock(&relay_channels_mutex);
399 for_each_possible_cpu(i)
400 if (chan->buf[i])
401 __relay_reset(chan->buf[i], 0);
402 mutex_unlock(&relay_channels_mutex);
403 }
404 EXPORT_SYMBOL_GPL(relay_reset);
405
406 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
407 struct dentry *dentry)
408 {
409 buf->dentry = dentry;
410 d_inode(buf->dentry)->i_size = buf->early_bytes;
411 }
412
413 static struct dentry *relay_create_buf_file(struct rchan *chan,
414 struct rchan_buf *buf,
415 unsigned int cpu)
416 {
417 struct dentry *dentry;
418 char *tmpname;
419
420 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
421 if (!tmpname)
422 return NULL;
423 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
424
425 /* Create file in fs */
426 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
427 S_IRUSR, buf,
428 &chan->is_global);
429
430 kfree(tmpname);
431
432 return dentry;
433 }
434
435 /*
436 * relay_open_buf - create a new relay channel buffer
437 *
438 * used by relay_open() and CPU hotplug.
439 */
440 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
441 {
442 struct rchan_buf *buf = NULL;
443 struct dentry *dentry;
444
445 if (chan->is_global)
446 return chan->buf[0];
447
448 buf = relay_create_buf(chan);
449 if (!buf)
450 return NULL;
451
452 if (chan->has_base_filename) {
453 dentry = relay_create_buf_file(chan, buf, cpu);
454 if (!dentry)
455 goto free_buf;
456 relay_set_buf_dentry(buf, dentry);
457 } else {
458 /* Only retrieve global info, nothing more, nothing less */
459 dentry = chan->cb->create_buf_file(NULL, NULL,
460 S_IRUSR, buf,
461 &chan->is_global);
462 if (WARN_ON(dentry))
463 goto free_buf;
464 }
465
466 buf->cpu = cpu;
467 __relay_reset(buf, 1);
468
469 if(chan->is_global) {
470 chan->buf[0] = buf;
471 buf->cpu = 0;
472 }
473
474 return buf;
475
476 free_buf:
477 relay_destroy_buf(buf);
478 return NULL;
479 }
480
481 /**
482 * relay_close_buf - close a channel buffer
483 * @buf: channel buffer
484 *
485 * Marks the buffer finalized and restores the default callbacks.
486 * The channel buffer and channel buffer data structure are then freed
487 * automatically when the last reference is given up.
488 */
489 static void relay_close_buf(struct rchan_buf *buf)
490 {
491 buf->finalized = 1;
492 irq_work_sync(&buf->wakeup_work);
493 buf->chan->cb->remove_buf_file(buf->dentry);
494 kref_put(&buf->kref, relay_remove_buf);
495 }
496
497 static void setup_callbacks(struct rchan *chan,
498 struct rchan_callbacks *cb)
499 {
500 if (!cb) {
501 chan->cb = &default_channel_callbacks;
502 return;
503 }
504
505 if (!cb->subbuf_start)
506 cb->subbuf_start = subbuf_start_default_callback;
507 if (!cb->buf_mapped)
508 cb->buf_mapped = buf_mapped_default_callback;
509 if (!cb->buf_unmapped)
510 cb->buf_unmapped = buf_unmapped_default_callback;
511 if (!cb->create_buf_file)
512 cb->create_buf_file = create_buf_file_default_callback;
513 if (!cb->remove_buf_file)
514 cb->remove_buf_file = remove_buf_file_default_callback;
515 chan->cb = cb;
516 }
517
518 /**
519 * relay_hotcpu_callback - CPU hotplug callback
520 * @nb: notifier block
521 * @action: hotplug action to take
522 * @hcpu: CPU number
523 *
524 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
525 */
526 static int relay_hotcpu_callback(struct notifier_block *nb,
527 unsigned long action,
528 void *hcpu)
529 {
530 unsigned int hotcpu = (unsigned long)hcpu;
531 struct rchan *chan;
532
533 switch(action) {
534 case CPU_UP_PREPARE:
535 case CPU_UP_PREPARE_FROZEN:
536 mutex_lock(&relay_channels_mutex);
537 list_for_each_entry(chan, &relay_channels, list) {
538 if (chan->buf[hotcpu])
539 continue;
540 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
541 if(!chan->buf[hotcpu]) {
542 printk(KERN_ERR
543 "relay_hotcpu_callback: cpu %d buffer "
544 "creation failed\n", hotcpu);
545 mutex_unlock(&relay_channels_mutex);
546 return notifier_from_errno(-ENOMEM);
547 }
548 }
549 mutex_unlock(&relay_channels_mutex);
550 break;
551 case CPU_DEAD:
552 case CPU_DEAD_FROZEN:
553 /* No need to flush the cpu : will be flushed upon
554 * final relay_flush() call. */
555 break;
556 }
557 return NOTIFY_OK;
558 }
559
560 /**
561 * relay_open - create a new relay channel
562 * @base_filename: base name of files to create, %NULL for buffering only
563 * @parent: dentry of parent directory, %NULL for root directory or buffer
564 * @subbuf_size: size of sub-buffers
565 * @n_subbufs: number of sub-buffers
566 * @cb: client callback functions
567 * @private_data: user-defined data
568 *
569 * Returns channel pointer if successful, %NULL otherwise.
570 *
571 * Creates a channel buffer for each cpu using the sizes and
572 * attributes specified. The created channel buffer files
573 * will be named base_filename0...base_filenameN-1. File
574 * permissions will be %S_IRUSR.
575 *
576 * If opening a buffer (@parent = NULL) that you later wish to register
577 * in a filesystem, call relay_late_setup_files() once the @parent dentry
578 * is available.
579 */
580 struct rchan *relay_open(const char *base_filename,
581 struct dentry *parent,
582 size_t subbuf_size,
583 size_t n_subbufs,
584 struct rchan_callbacks *cb,
585 void *private_data)
586 {
587 unsigned int i;
588 struct rchan *chan;
589
590 if (!(subbuf_size && n_subbufs))
591 return NULL;
592 if (subbuf_size > UINT_MAX / n_subbufs)
593 return NULL;
594
595 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
596 if (!chan)
597 return NULL;
598
599 chan->version = RELAYFS_CHANNEL_VERSION;
600 chan->n_subbufs = n_subbufs;
601 chan->subbuf_size = subbuf_size;
602 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
603 chan->parent = parent;
604 chan->private_data = private_data;
605 if (base_filename) {
606 chan->has_base_filename = 1;
607 strlcpy(chan->base_filename, base_filename, NAME_MAX);
608 }
609 setup_callbacks(chan, cb);
610 kref_init(&chan->kref);
611
612 mutex_lock(&relay_channels_mutex);
613 for_each_online_cpu(i) {
614 chan->buf[i] = relay_open_buf(chan, i);
615 if (!chan->buf[i])
616 goto free_bufs;
617 }
618 list_add(&chan->list, &relay_channels);
619 mutex_unlock(&relay_channels_mutex);
620
621 return chan;
622
623 free_bufs:
624 for_each_possible_cpu(i) {
625 if (chan->buf[i])
626 relay_close_buf(chan->buf[i]);
627 }
628
629 kref_put(&chan->kref, relay_destroy_channel);
630 mutex_unlock(&relay_channels_mutex);
631 kfree(chan);
632 return NULL;
633 }
634 EXPORT_SYMBOL_GPL(relay_open);
635
636 struct rchan_percpu_buf_dispatcher {
637 struct rchan_buf *buf;
638 struct dentry *dentry;
639 };
640
641 /* Called in atomic context. */
642 static void __relay_set_buf_dentry(void *info)
643 {
644 struct rchan_percpu_buf_dispatcher *p = info;
645
646 relay_set_buf_dentry(p->buf, p->dentry);
647 }
648
649 /**
650 * relay_late_setup_files - triggers file creation
651 * @chan: channel to operate on
652 * @base_filename: base name of files to create
653 * @parent: dentry of parent directory, %NULL for root directory
654 *
655 * Returns 0 if successful, non-zero otherwise.
656 *
657 * Use to setup files for a previously buffer-only channel created
658 * by relay_open() with a NULL parent dentry.
659 *
660 * For example, this is useful for perfomring early tracing in kernel,
661 * before VFS is up and then exposing the early results once the dentry
662 * is available.
663 */
664 int relay_late_setup_files(struct rchan *chan,
665 const char *base_filename,
666 struct dentry *parent)
667 {
668 int err = 0;
669 unsigned int i, curr_cpu;
670 unsigned long flags;
671 struct dentry *dentry;
672 struct rchan_percpu_buf_dispatcher disp;
673
674 if (!chan || !base_filename)
675 return -EINVAL;
676
677 strlcpy(chan->base_filename, base_filename, NAME_MAX);
678
679 mutex_lock(&relay_channels_mutex);
680 /* Is chan already set up? */
681 if (unlikely(chan->has_base_filename)) {
682 mutex_unlock(&relay_channels_mutex);
683 return -EEXIST;
684 }
685 chan->has_base_filename = 1;
686 chan->parent = parent;
687
688 if (chan->is_global) {
689 err = -EINVAL;
690 if (!WARN_ON_ONCE(!chan->buf[0])) {
691 dentry = relay_create_buf_file(chan, chan->buf[0], 0);
692 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
693 relay_set_buf_dentry(chan->buf[0], dentry);
694 err = 0;
695 }
696 }
697 mutex_unlock(&relay_channels_mutex);
698 return err;
699 }
700
701 curr_cpu = get_cpu();
702 /*
703 * The CPU hotplug notifier ran before us and created buffers with
704 * no files associated. So it's safe to call relay_setup_buf_file()
705 * on all currently online CPUs.
706 */
707 for_each_online_cpu(i) {
708 if (unlikely(!chan->buf[i])) {
709 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
710 err = -EINVAL;
711 break;
712 }
713
714 dentry = relay_create_buf_file(chan, chan->buf[i], i);
715 if (unlikely(!dentry)) {
716 err = -EINVAL;
717 break;
718 }
719
720 if (curr_cpu == i) {
721 local_irq_save(flags);
722 relay_set_buf_dentry(chan->buf[i], dentry);
723 local_irq_restore(flags);
724 } else {
725 disp.buf = chan->buf[i];
726 disp.dentry = dentry;
727 smp_mb();
728 /* relay_channels_mutex must be held, so wait. */
729 err = smp_call_function_single(i,
730 __relay_set_buf_dentry,
731 &disp, 1);
732 }
733 if (unlikely(err))
734 break;
735 }
736 put_cpu();
737 mutex_unlock(&relay_channels_mutex);
738
739 return err;
740 }
741 EXPORT_SYMBOL_GPL(relay_late_setup_files);
742
743 /**
744 * relay_switch_subbuf - switch to a new sub-buffer
745 * @buf: channel buffer
746 * @length: size of current event
747 *
748 * Returns either the length passed in or 0 if full.
749 *
750 * Performs sub-buffer-switch tasks such as invoking callbacks,
751 * updating padding counts, waking up readers, etc.
752 */
753 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
754 {
755 void *old, *new;
756 size_t old_subbuf, new_subbuf;
757
758 if (unlikely(length > buf->chan->subbuf_size))
759 goto toobig;
760
761 if (buf->offset != buf->chan->subbuf_size + 1) {
762 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
763 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
764 buf->padding[old_subbuf] = buf->prev_padding;
765 buf->subbufs_produced++;
766 if (buf->dentry)
767 d_inode(buf->dentry)->i_size +=
768 buf->chan->subbuf_size -
769 buf->padding[old_subbuf];
770 else
771 buf->early_bytes += buf->chan->subbuf_size -
772 buf->padding[old_subbuf];
773 smp_mb();
774 if (waitqueue_active(&buf->read_wait)) {
775 /*
776 * Calling wake_up_interruptible() from here
777 * will deadlock if we happen to be logging
778 * from the scheduler (trying to re-grab
779 * rq->lock), so defer it.
780 */
781 irq_work_queue(&buf->wakeup_work);
782 }
783 }
784
785 old = buf->data;
786 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
787 new = buf->start + new_subbuf * buf->chan->subbuf_size;
788 buf->offset = 0;
789 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
790 buf->offset = buf->chan->subbuf_size + 1;
791 return 0;
792 }
793 buf->data = new;
794 buf->padding[new_subbuf] = 0;
795
796 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
797 goto toobig;
798
799 return length;
800
801 toobig:
802 buf->chan->last_toobig = length;
803 return 0;
804 }
805 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
806
807 /**
808 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
809 * @chan: the channel
810 * @cpu: the cpu associated with the channel buffer to update
811 * @subbufs_consumed: number of sub-buffers to add to current buf's count
812 *
813 * Adds to the channel buffer's consumed sub-buffer count.
814 * subbufs_consumed should be the number of sub-buffers newly consumed,
815 * not the total consumed.
816 *
817 * NOTE. Kernel clients don't need to call this function if the channel
818 * mode is 'overwrite'.
819 */
820 void relay_subbufs_consumed(struct rchan *chan,
821 unsigned int cpu,
822 size_t subbufs_consumed)
823 {
824 struct rchan_buf *buf;
825
826 if (!chan)
827 return;
828
829 if (cpu >= NR_CPUS || !chan->buf[cpu] ||
830 subbufs_consumed > chan->n_subbufs)
831 return;
832
833 buf = chan->buf[cpu];
834 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
835 buf->subbufs_consumed = buf->subbufs_produced;
836 else
837 buf->subbufs_consumed += subbufs_consumed;
838 }
839 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
840
841 /**
842 * relay_close - close the channel
843 * @chan: the channel
844 *
845 * Closes all channel buffers and frees the channel.
846 */
847 void relay_close(struct rchan *chan)
848 {
849 unsigned int i;
850
851 if (!chan)
852 return;
853
854 mutex_lock(&relay_channels_mutex);
855 if (chan->is_global && chan->buf[0])
856 relay_close_buf(chan->buf[0]);
857 else
858 for_each_possible_cpu(i)
859 if (chan->buf[i])
860 relay_close_buf(chan->buf[i]);
861
862 if (chan->last_toobig)
863 printk(KERN_WARNING "relay: one or more items not logged "
864 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
865 chan->last_toobig, chan->subbuf_size);
866
867 list_del(&chan->list);
868 kref_put(&chan->kref, relay_destroy_channel);
869 mutex_unlock(&relay_channels_mutex);
870 }
871 EXPORT_SYMBOL_GPL(relay_close);
872
873 /**
874 * relay_flush - close the channel
875 * @chan: the channel
876 *
877 * Flushes all channel buffers, i.e. forces buffer switch.
878 */
879 void relay_flush(struct rchan *chan)
880 {
881 unsigned int i;
882
883 if (!chan)
884 return;
885
886 if (chan->is_global && chan->buf[0]) {
887 relay_switch_subbuf(chan->buf[0], 0);
888 return;
889 }
890
891 mutex_lock(&relay_channels_mutex);
892 for_each_possible_cpu(i)
893 if (chan->buf[i])
894 relay_switch_subbuf(chan->buf[i], 0);
895 mutex_unlock(&relay_channels_mutex);
896 }
897 EXPORT_SYMBOL_GPL(relay_flush);
898
899 /**
900 * relay_file_open - open file op for relay files
901 * @inode: the inode
902 * @filp: the file
903 *
904 * Increments the channel buffer refcount.
905 */
906 static int relay_file_open(struct inode *inode, struct file *filp)
907 {
908 struct rchan_buf *buf = inode->i_private;
909 kref_get(&buf->kref);
910 filp->private_data = buf;
911
912 return nonseekable_open(inode, filp);
913 }
914
915 /**
916 * relay_file_mmap - mmap file op for relay files
917 * @filp: the file
918 * @vma: the vma describing what to map
919 *
920 * Calls upon relay_mmap_buf() to map the file into user space.
921 */
922 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
923 {
924 struct rchan_buf *buf = filp->private_data;
925 return relay_mmap_buf(buf, vma);
926 }
927
928 /**
929 * relay_file_poll - poll file op for relay files
930 * @filp: the file
931 * @wait: poll table
932 *
933 * Poll implemention.
934 */
935 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
936 {
937 unsigned int mask = 0;
938 struct rchan_buf *buf = filp->private_data;
939
940 if (buf->finalized)
941 return POLLERR;
942
943 if (filp->f_mode & FMODE_READ) {
944 poll_wait(filp, &buf->read_wait, wait);
945 if (!relay_buf_empty(buf))
946 mask |= POLLIN | POLLRDNORM;
947 }
948
949 return mask;
950 }
951
952 /**
953 * relay_file_release - release file op for relay files
954 * @inode: the inode
955 * @filp: the file
956 *
957 * Decrements the channel refcount, as the filesystem is
958 * no longer using it.
959 */
960 static int relay_file_release(struct inode *inode, struct file *filp)
961 {
962 struct rchan_buf *buf = filp->private_data;
963 kref_put(&buf->kref, relay_remove_buf);
964
965 return 0;
966 }
967
968 /*
969 * relay_file_read_consume - update the consumed count for the buffer
970 */
971 static void relay_file_read_consume(struct rchan_buf *buf,
972 size_t read_pos,
973 size_t bytes_consumed)
974 {
975 size_t subbuf_size = buf->chan->subbuf_size;
976 size_t n_subbufs = buf->chan->n_subbufs;
977 size_t read_subbuf;
978
979 if (buf->subbufs_produced == buf->subbufs_consumed &&
980 buf->offset == buf->bytes_consumed)
981 return;
982
983 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
984 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
985 buf->bytes_consumed = 0;
986 }
987
988 buf->bytes_consumed += bytes_consumed;
989 if (!read_pos)
990 read_subbuf = buf->subbufs_consumed % n_subbufs;
991 else
992 read_subbuf = read_pos / buf->chan->subbuf_size;
993 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
994 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
995 (buf->offset == subbuf_size))
996 return;
997 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
998 buf->bytes_consumed = 0;
999 }
1000 }
1001
1002 /*
1003 * relay_file_read_avail - boolean, are there unconsumed bytes available?
1004 */
1005 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
1006 {
1007 size_t subbuf_size = buf->chan->subbuf_size;
1008 size_t n_subbufs = buf->chan->n_subbufs;
1009 size_t produced = buf->subbufs_produced;
1010 size_t consumed = buf->subbufs_consumed;
1011
1012 relay_file_read_consume(buf, read_pos, 0);
1013
1014 consumed = buf->subbufs_consumed;
1015
1016 if (unlikely(buf->offset > subbuf_size)) {
1017 if (produced == consumed)
1018 return 0;
1019 return 1;
1020 }
1021
1022 if (unlikely(produced - consumed >= n_subbufs)) {
1023 consumed = produced - n_subbufs + 1;
1024 buf->subbufs_consumed = consumed;
1025 buf->bytes_consumed = 0;
1026 }
1027
1028 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1029 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1030
1031 if (consumed > produced)
1032 produced += n_subbufs * subbuf_size;
1033
1034 if (consumed == produced) {
1035 if (buf->offset == subbuf_size &&
1036 buf->subbufs_produced > buf->subbufs_consumed)
1037 return 1;
1038 return 0;
1039 }
1040
1041 return 1;
1042 }
1043
1044 /**
1045 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1046 * @read_pos: file read position
1047 * @buf: relay channel buffer
1048 */
1049 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1050 struct rchan_buf *buf)
1051 {
1052 size_t padding, avail = 0;
1053 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1054 size_t subbuf_size = buf->chan->subbuf_size;
1055
1056 write_subbuf = (buf->data - buf->start) / subbuf_size;
1057 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1058 read_subbuf = read_pos / subbuf_size;
1059 read_offset = read_pos % subbuf_size;
1060 padding = buf->padding[read_subbuf];
1061
1062 if (read_subbuf == write_subbuf) {
1063 if (read_offset + padding < write_offset)
1064 avail = write_offset - (read_offset + padding);
1065 } else
1066 avail = (subbuf_size - padding) - read_offset;
1067
1068 return avail;
1069 }
1070
1071 /**
1072 * relay_file_read_start_pos - find the first available byte to read
1073 * @read_pos: file read position
1074 * @buf: relay channel buffer
1075 *
1076 * If the @read_pos is in the middle of padding, return the
1077 * position of the first actually available byte, otherwise
1078 * return the original value.
1079 */
1080 static size_t relay_file_read_start_pos(size_t read_pos,
1081 struct rchan_buf *buf)
1082 {
1083 size_t read_subbuf, padding, padding_start, padding_end;
1084 size_t subbuf_size = buf->chan->subbuf_size;
1085 size_t n_subbufs = buf->chan->n_subbufs;
1086 size_t consumed = buf->subbufs_consumed % n_subbufs;
1087
1088 if (!read_pos)
1089 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1090 read_subbuf = read_pos / subbuf_size;
1091 padding = buf->padding[read_subbuf];
1092 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1093 padding_end = (read_subbuf + 1) * subbuf_size;
1094 if (read_pos >= padding_start && read_pos < padding_end) {
1095 read_subbuf = (read_subbuf + 1) % n_subbufs;
1096 read_pos = read_subbuf * subbuf_size;
1097 }
1098
1099 return read_pos;
1100 }
1101
1102 /**
1103 * relay_file_read_end_pos - return the new read position
1104 * @read_pos: file read position
1105 * @buf: relay channel buffer
1106 * @count: number of bytes to be read
1107 */
1108 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1109 size_t read_pos,
1110 size_t count)
1111 {
1112 size_t read_subbuf, padding, end_pos;
1113 size_t subbuf_size = buf->chan->subbuf_size;
1114 size_t n_subbufs = buf->chan->n_subbufs;
1115
1116 read_subbuf = read_pos / subbuf_size;
1117 padding = buf->padding[read_subbuf];
1118 if (read_pos % subbuf_size + count + padding == subbuf_size)
1119 end_pos = (read_subbuf + 1) * subbuf_size;
1120 else
1121 end_pos = read_pos + count;
1122 if (end_pos >= subbuf_size * n_subbufs)
1123 end_pos = 0;
1124
1125 return end_pos;
1126 }
1127
1128 /*
1129 * subbuf_read_actor - read up to one subbuf's worth of data
1130 */
1131 static int subbuf_read_actor(size_t read_start,
1132 struct rchan_buf *buf,
1133 size_t avail,
1134 read_descriptor_t *desc)
1135 {
1136 void *from;
1137 int ret = 0;
1138
1139 from = buf->start + read_start;
1140 ret = avail;
1141 if (copy_to_user(desc->arg.buf, from, avail)) {
1142 desc->error = -EFAULT;
1143 ret = 0;
1144 }
1145 desc->arg.data += ret;
1146 desc->written += ret;
1147 desc->count -= ret;
1148
1149 return ret;
1150 }
1151
1152 typedef int (*subbuf_actor_t) (size_t read_start,
1153 struct rchan_buf *buf,
1154 size_t avail,
1155 read_descriptor_t *desc);
1156
1157 /*
1158 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1159 */
1160 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1161 subbuf_actor_t subbuf_actor,
1162 read_descriptor_t *desc)
1163 {
1164 struct rchan_buf *buf = filp->private_data;
1165 size_t read_start, avail;
1166 int ret;
1167
1168 if (!desc->count)
1169 return 0;
1170
1171 inode_lock(file_inode(filp));
1172 do {
1173 if (!relay_file_read_avail(buf, *ppos))
1174 break;
1175
1176 read_start = relay_file_read_start_pos(*ppos, buf);
1177 avail = relay_file_read_subbuf_avail(read_start, buf);
1178 if (!avail)
1179 break;
1180
1181 avail = min(desc->count, avail);
1182 ret = subbuf_actor(read_start, buf, avail, desc);
1183 if (desc->error < 0)
1184 break;
1185
1186 if (ret) {
1187 relay_file_read_consume(buf, read_start, ret);
1188 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1189 }
1190 } while (desc->count && ret);
1191 inode_unlock(file_inode(filp));
1192
1193 return desc->written;
1194 }
1195
1196 static ssize_t relay_file_read(struct file *filp,
1197 char __user *buffer,
1198 size_t count,
1199 loff_t *ppos)
1200 {
1201 read_descriptor_t desc;
1202 desc.written = 0;
1203 desc.count = count;
1204 desc.arg.buf = buffer;
1205 desc.error = 0;
1206 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1207 }
1208
1209 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1210 {
1211 rbuf->bytes_consumed += bytes_consumed;
1212
1213 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1214 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1215 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1216 }
1217 }
1218
1219 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1220 struct pipe_buffer *buf)
1221 {
1222 struct rchan_buf *rbuf;
1223
1224 rbuf = (struct rchan_buf *)page_private(buf->page);
1225 relay_consume_bytes(rbuf, buf->private);
1226 }
1227
1228 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1229 .can_merge = 0,
1230 .confirm = generic_pipe_buf_confirm,
1231 .release = relay_pipe_buf_release,
1232 .steal = generic_pipe_buf_steal,
1233 .get = generic_pipe_buf_get,
1234 };
1235
1236 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1237 {
1238 }
1239
1240 /*
1241 * subbuf_splice_actor - splice up to one subbuf's worth of data
1242 */
1243 static ssize_t subbuf_splice_actor(struct file *in,
1244 loff_t *ppos,
1245 struct pipe_inode_info *pipe,
1246 size_t len,
1247 unsigned int flags,
1248 int *nonpad_ret)
1249 {
1250 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1251 struct rchan_buf *rbuf = in->private_data;
1252 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1253 uint64_t pos = (uint64_t) *ppos;
1254 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1255 size_t read_start = (size_t) do_div(pos, alloc_size);
1256 size_t read_subbuf = read_start / subbuf_size;
1257 size_t padding = rbuf->padding[read_subbuf];
1258 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1259 struct page *pages[PIPE_DEF_BUFFERS];
1260 struct partial_page partial[PIPE_DEF_BUFFERS];
1261 struct splice_pipe_desc spd = {
1262 .pages = pages,
1263 .nr_pages = 0,
1264 .nr_pages_max = PIPE_DEF_BUFFERS,
1265 .partial = partial,
1266 .flags = flags,
1267 .ops = &relay_pipe_buf_ops,
1268 .spd_release = relay_page_release,
1269 };
1270 ssize_t ret;
1271
1272 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1273 return 0;
1274 if (splice_grow_spd(pipe, &spd))
1275 return -ENOMEM;
1276
1277 /*
1278 * Adjust read len, if longer than what is available
1279 */
1280 if (len > (subbuf_size - read_start % subbuf_size))
1281 len = subbuf_size - read_start % subbuf_size;
1282
1283 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1284 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1285 poff = read_start & ~PAGE_MASK;
1286 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1287
1288 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1289 unsigned int this_len, this_end, private;
1290 unsigned int cur_pos = read_start + total_len;
1291
1292 if (!len)
1293 break;
1294
1295 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1296 private = this_len;
1297
1298 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1299 spd.partial[spd.nr_pages].offset = poff;
1300
1301 this_end = cur_pos + this_len;
1302 if (this_end >= nonpad_end) {
1303 this_len = nonpad_end - cur_pos;
1304 private = this_len + padding;
1305 }
1306 spd.partial[spd.nr_pages].len = this_len;
1307 spd.partial[spd.nr_pages].private = private;
1308
1309 len -= this_len;
1310 total_len += this_len;
1311 poff = 0;
1312 pidx = (pidx + 1) % subbuf_pages;
1313
1314 if (this_end >= nonpad_end) {
1315 spd.nr_pages++;
1316 break;
1317 }
1318 }
1319
1320 ret = 0;
1321 if (!spd.nr_pages)
1322 goto out;
1323
1324 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1325 if (ret < 0 || ret < total_len)
1326 goto out;
1327
1328 if (read_start + ret == nonpad_end)
1329 ret += padding;
1330
1331 out:
1332 splice_shrink_spd(&spd);
1333 return ret;
1334 }
1335
1336 static ssize_t relay_file_splice_read(struct file *in,
1337 loff_t *ppos,
1338 struct pipe_inode_info *pipe,
1339 size_t len,
1340 unsigned int flags)
1341 {
1342 ssize_t spliced;
1343 int ret;
1344 int nonpad_ret = 0;
1345
1346 ret = 0;
1347 spliced = 0;
1348
1349 while (len && !spliced) {
1350 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1351 if (ret < 0)
1352 break;
1353 else if (!ret) {
1354 if (flags & SPLICE_F_NONBLOCK)
1355 ret = -EAGAIN;
1356 break;
1357 }
1358
1359 *ppos += ret;
1360 if (ret > len)
1361 len = 0;
1362 else
1363 len -= ret;
1364 spliced += nonpad_ret;
1365 nonpad_ret = 0;
1366 }
1367
1368 if (spliced)
1369 return spliced;
1370
1371 return ret;
1372 }
1373
1374 const struct file_operations relay_file_operations = {
1375 .open = relay_file_open,
1376 .poll = relay_file_poll,
1377 .mmap = relay_file_mmap,
1378 .read = relay_file_read,
1379 .llseek = no_llseek,
1380 .release = relay_file_release,
1381 .splice_read = relay_file_splice_read,
1382 };
1383 EXPORT_SYMBOL_GPL(relay_file_operations);
1384
1385 static __init int relay_init(void)
1386 {
1387
1388 hotcpu_notifier(relay_hotcpu_callback, 0);
1389 return 0;
1390 }
1391
1392 early_initcall(relay_init);
This page took 0.060022 seconds and 5 git commands to generate.