Merge remote-tracking branch 'rcu/rcu/next'
[deliverable/linux.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
175
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
179
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
183
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
188 }
189
190 /**
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
193 *
194 * Should only be called from kref_put().
195 */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 kfree(chan);
200 }
201
202 /**
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
205 */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 struct rchan *chan = buf->chan;
209 unsigned int i;
210
211 if (likely(buf->start)) {
212 vunmap(buf->start);
213 for (i = 0; i < buf->page_count; i++)
214 __free_page(buf->page_array[i]);
215 relay_free_page_array(buf->page_array);
216 }
217 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
218 kfree(buf->padding);
219 kfree(buf);
220 kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
226 *
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
229 * kref_put().
230 */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 relay_destroy_buf(buf);
235 }
236
237 /**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262 * High-level relay kernel API and associated functions.
263 */
264
265 /*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270 /*
271 * subbuf_start() default callback. Does nothing.
272 */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 void *subbuf,
275 void *prev_subbuf,
276 size_t prev_padding)
277 {
278 if (relay_buf_full(buf))
279 return 0;
280
281 return 1;
282 }
283
284 /*
285 * buf_mapped() default callback. Does nothing.
286 */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 struct file *filp)
289 {
290 }
291
292 /*
293 * buf_unmapped() default callback. Does nothing.
294 */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 struct file *filp)
297 {
298 }
299
300 /*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 struct dentry *parent,
305 umode_t mode,
306 struct rchan_buf *buf,
307 int *is_global)
308 {
309 return NULL;
310 }
311
312 /*
313 * remove_buf_file() default callback. Does nothing.
314 */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 .subbuf_start = subbuf_start_default_callback,
323 .buf_mapped = buf_mapped_default_callback,
324 .buf_unmapped = buf_unmapped_default_callback,
325 .create_buf_file = create_buf_file_default_callback,
326 .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @data: contains the channel buffer
332 *
333 * This is the timer function used to defer reader waking.
334 */
335 static void wakeup_readers(unsigned long data)
336 {
337 struct rchan_buf *buf = (struct rchan_buf *)data;
338 wake_up_interruptible(&buf->read_wait);
339 }
340
341 /**
342 * __relay_reset - reset a channel buffer
343 * @buf: the channel buffer
344 * @init: 1 if this is a first-time initialization
345 *
346 * See relay_reset() for description of effect.
347 */
348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 size_t i;
351
352 if (init) {
353 init_waitqueue_head(&buf->read_wait);
354 kref_init(&buf->kref);
355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356 } else
357 del_timer_sync(&buf->timer);
358
359 buf->subbufs_produced = 0;
360 buf->subbufs_consumed = 0;
361 buf->bytes_consumed = 0;
362 buf->finalized = 0;
363 buf->data = buf->start;
364 buf->offset = 0;
365
366 for (i = 0; i < buf->chan->n_subbufs; i++)
367 buf->padding[i] = 0;
368
369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370 }
371
372 /**
373 * relay_reset - reset the channel
374 * @chan: the channel
375 *
376 * This has the effect of erasing all data from all channel buffers
377 * and restarting the channel in its initial state. The buffers
378 * are not freed, so any mappings are still in effect.
379 *
380 * NOTE. Care should be taken that the channel isn't actually
381 * being used by anything when this call is made.
382 */
383 void relay_reset(struct rchan *chan)
384 {
385 struct rchan_buf *buf;
386 unsigned int i;
387
388 if (!chan)
389 return;
390
391 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
392 __relay_reset(buf, 0);
393 return;
394 }
395
396 mutex_lock(&relay_channels_mutex);
397 for_each_possible_cpu(i)
398 if ((buf = *per_cpu_ptr(chan->buf, i)))
399 __relay_reset(buf, 0);
400 mutex_unlock(&relay_channels_mutex);
401 }
402 EXPORT_SYMBOL_GPL(relay_reset);
403
404 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
405 struct dentry *dentry)
406 {
407 buf->dentry = dentry;
408 d_inode(buf->dentry)->i_size = buf->early_bytes;
409 }
410
411 static struct dentry *relay_create_buf_file(struct rchan *chan,
412 struct rchan_buf *buf,
413 unsigned int cpu)
414 {
415 struct dentry *dentry;
416 char *tmpname;
417
418 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
419 if (!tmpname)
420 return NULL;
421 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
422
423 /* Create file in fs */
424 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
425 S_IRUSR, buf,
426 &chan->is_global);
427
428 kfree(tmpname);
429
430 return dentry;
431 }
432
433 /*
434 * relay_open_buf - create a new relay channel buffer
435 *
436 * used by relay_open() and CPU hotplug.
437 */
438 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
439 {
440 struct rchan_buf *buf = NULL;
441 struct dentry *dentry;
442
443 if (chan->is_global)
444 return *per_cpu_ptr(chan->buf, 0);
445
446 buf = relay_create_buf(chan);
447 if (!buf)
448 return NULL;
449
450 if (chan->has_base_filename) {
451 dentry = relay_create_buf_file(chan, buf, cpu);
452 if (!dentry)
453 goto free_buf;
454 relay_set_buf_dentry(buf, dentry);
455 } else {
456 /* Only retrieve global info, nothing more, nothing less */
457 dentry = chan->cb->create_buf_file(NULL, NULL,
458 S_IRUSR, buf,
459 &chan->is_global);
460 if (WARN_ON(dentry))
461 goto free_buf;
462 }
463
464 buf->cpu = cpu;
465 __relay_reset(buf, 1);
466
467 if(chan->is_global) {
468 *per_cpu_ptr(chan->buf, 0) = buf;
469 buf->cpu = 0;
470 }
471
472 return buf;
473
474 free_buf:
475 relay_destroy_buf(buf);
476 return NULL;
477 }
478
479 /**
480 * relay_close_buf - close a channel buffer
481 * @buf: channel buffer
482 *
483 * Marks the buffer finalized and restores the default callbacks.
484 * The channel buffer and channel buffer data structure are then freed
485 * automatically when the last reference is given up.
486 */
487 static void relay_close_buf(struct rchan_buf *buf)
488 {
489 buf->finalized = 1;
490 del_timer_sync(&buf->timer);
491 buf->chan->cb->remove_buf_file(buf->dentry);
492 kref_put(&buf->kref, relay_remove_buf);
493 }
494
495 static void setup_callbacks(struct rchan *chan,
496 struct rchan_callbacks *cb)
497 {
498 if (!cb) {
499 chan->cb = &default_channel_callbacks;
500 return;
501 }
502
503 if (!cb->subbuf_start)
504 cb->subbuf_start = subbuf_start_default_callback;
505 if (!cb->buf_mapped)
506 cb->buf_mapped = buf_mapped_default_callback;
507 if (!cb->buf_unmapped)
508 cb->buf_unmapped = buf_unmapped_default_callback;
509 if (!cb->create_buf_file)
510 cb->create_buf_file = create_buf_file_default_callback;
511 if (!cb->remove_buf_file)
512 cb->remove_buf_file = remove_buf_file_default_callback;
513 chan->cb = cb;
514 }
515
516 int relay_prepare_cpu(unsigned int cpu)
517 {
518 struct rchan *chan;
519 struct rchan_buf *buf;
520
521 mutex_lock(&relay_channels_mutex);
522 list_for_each_entry(chan, &relay_channels, list) {
523 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
524 continue;
525 buf = relay_open_buf(chan, cpu);
526 if (!buf) {
527 pr_err("relay: cpu %d buffer creation failed\n", cpu);
528 mutex_unlock(&relay_channels_mutex);
529 return -ENOMEM;
530 }
531 *per_cpu_ptr(chan->buf, cpu) = buf;
532 }
533 mutex_unlock(&relay_channels_mutex);
534 return 0;
535 }
536
537 /**
538 * relay_open - create a new relay channel
539 * @base_filename: base name of files to create, %NULL for buffering only
540 * @parent: dentry of parent directory, %NULL for root directory or buffer
541 * @subbuf_size: size of sub-buffers
542 * @n_subbufs: number of sub-buffers
543 * @cb: client callback functions
544 * @private_data: user-defined data
545 *
546 * Returns channel pointer if successful, %NULL otherwise.
547 *
548 * Creates a channel buffer for each cpu using the sizes and
549 * attributes specified. The created channel buffer files
550 * will be named base_filename0...base_filenameN-1. File
551 * permissions will be %S_IRUSR.
552 *
553 * If opening a buffer (@parent = NULL) that you later wish to register
554 * in a filesystem, call relay_late_setup_files() once the @parent dentry
555 * is available.
556 */
557 struct rchan *relay_open(const char *base_filename,
558 struct dentry *parent,
559 size_t subbuf_size,
560 size_t n_subbufs,
561 struct rchan_callbacks *cb,
562 void *private_data)
563 {
564 unsigned int i;
565 struct rchan *chan;
566 struct rchan_buf *buf;
567
568 if (!(subbuf_size && n_subbufs))
569 return NULL;
570 if (subbuf_size > UINT_MAX / n_subbufs)
571 return NULL;
572
573 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
574 if (!chan)
575 return NULL;
576
577 chan->buf = alloc_percpu(struct rchan_buf *);
578 chan->version = RELAYFS_CHANNEL_VERSION;
579 chan->n_subbufs = n_subbufs;
580 chan->subbuf_size = subbuf_size;
581 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
582 chan->parent = parent;
583 chan->private_data = private_data;
584 if (base_filename) {
585 chan->has_base_filename = 1;
586 strlcpy(chan->base_filename, base_filename, NAME_MAX);
587 }
588 setup_callbacks(chan, cb);
589 kref_init(&chan->kref);
590
591 mutex_lock(&relay_channels_mutex);
592 for_each_online_cpu(i) {
593 buf = relay_open_buf(chan, i);
594 if (!buf)
595 goto free_bufs;
596 *per_cpu_ptr(chan->buf, i) = buf;
597 }
598 list_add(&chan->list, &relay_channels);
599 mutex_unlock(&relay_channels_mutex);
600
601 return chan;
602
603 free_bufs:
604 for_each_possible_cpu(i) {
605 if ((buf = *per_cpu_ptr(chan->buf, i)))
606 relay_close_buf(buf);
607 }
608
609 kref_put(&chan->kref, relay_destroy_channel);
610 mutex_unlock(&relay_channels_mutex);
611 kfree(chan);
612 return NULL;
613 }
614 EXPORT_SYMBOL_GPL(relay_open);
615
616 struct rchan_percpu_buf_dispatcher {
617 struct rchan_buf *buf;
618 struct dentry *dentry;
619 };
620
621 /* Called in atomic context. */
622 static void __relay_set_buf_dentry(void *info)
623 {
624 struct rchan_percpu_buf_dispatcher *p = info;
625
626 relay_set_buf_dentry(p->buf, p->dentry);
627 }
628
629 /**
630 * relay_late_setup_files - triggers file creation
631 * @chan: channel to operate on
632 * @base_filename: base name of files to create
633 * @parent: dentry of parent directory, %NULL for root directory
634 *
635 * Returns 0 if successful, non-zero otherwise.
636 *
637 * Use to setup files for a previously buffer-only channel created
638 * by relay_open() with a NULL parent dentry.
639 *
640 * For example, this is useful for perfomring early tracing in kernel,
641 * before VFS is up and then exposing the early results once the dentry
642 * is available.
643 */
644 int relay_late_setup_files(struct rchan *chan,
645 const char *base_filename,
646 struct dentry *parent)
647 {
648 int err = 0;
649 unsigned int i, curr_cpu;
650 unsigned long flags;
651 struct dentry *dentry;
652 struct rchan_buf *buf;
653 struct rchan_percpu_buf_dispatcher disp;
654
655 if (!chan || !base_filename)
656 return -EINVAL;
657
658 strlcpy(chan->base_filename, base_filename, NAME_MAX);
659
660 mutex_lock(&relay_channels_mutex);
661 /* Is chan already set up? */
662 if (unlikely(chan->has_base_filename)) {
663 mutex_unlock(&relay_channels_mutex);
664 return -EEXIST;
665 }
666 chan->has_base_filename = 1;
667 chan->parent = parent;
668
669 if (chan->is_global) {
670 err = -EINVAL;
671 buf = *per_cpu_ptr(chan->buf, 0);
672 if (!WARN_ON_ONCE(!buf)) {
673 dentry = relay_create_buf_file(chan, buf, 0);
674 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
675 relay_set_buf_dentry(buf, dentry);
676 err = 0;
677 }
678 }
679 mutex_unlock(&relay_channels_mutex);
680 return err;
681 }
682
683 curr_cpu = get_cpu();
684 /*
685 * The CPU hotplug notifier ran before us and created buffers with
686 * no files associated. So it's safe to call relay_setup_buf_file()
687 * on all currently online CPUs.
688 */
689 for_each_online_cpu(i) {
690 buf = *per_cpu_ptr(chan->buf, i);
691 if (unlikely(!buf)) {
692 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
693 err = -EINVAL;
694 break;
695 }
696
697 dentry = relay_create_buf_file(chan, buf, i);
698 if (unlikely(!dentry)) {
699 err = -EINVAL;
700 break;
701 }
702
703 if (curr_cpu == i) {
704 local_irq_save(flags);
705 relay_set_buf_dentry(buf, dentry);
706 local_irq_restore(flags);
707 } else {
708 disp.buf = buf;
709 disp.dentry = dentry;
710 smp_mb();
711 /* relay_channels_mutex must be held, so wait. */
712 err = smp_call_function_single(i,
713 __relay_set_buf_dentry,
714 &disp, 1);
715 }
716 if (unlikely(err))
717 break;
718 }
719 put_cpu();
720 mutex_unlock(&relay_channels_mutex);
721
722 return err;
723 }
724 EXPORT_SYMBOL_GPL(relay_late_setup_files);
725
726 /**
727 * relay_switch_subbuf - switch to a new sub-buffer
728 * @buf: channel buffer
729 * @length: size of current event
730 *
731 * Returns either the length passed in or 0 if full.
732 *
733 * Performs sub-buffer-switch tasks such as invoking callbacks,
734 * updating padding counts, waking up readers, etc.
735 */
736 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
737 {
738 void *old, *new;
739 size_t old_subbuf, new_subbuf;
740
741 if (unlikely(length > buf->chan->subbuf_size))
742 goto toobig;
743
744 if (buf->offset != buf->chan->subbuf_size + 1) {
745 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
746 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
747 buf->padding[old_subbuf] = buf->prev_padding;
748 buf->subbufs_produced++;
749 if (buf->dentry)
750 d_inode(buf->dentry)->i_size +=
751 buf->chan->subbuf_size -
752 buf->padding[old_subbuf];
753 else
754 buf->early_bytes += buf->chan->subbuf_size -
755 buf->padding[old_subbuf];
756 smp_mb();
757 if (waitqueue_active(&buf->read_wait))
758 /*
759 * Calling wake_up_interruptible() from here
760 * will deadlock if we happen to be logging
761 * from the scheduler (trying to re-grab
762 * rq->lock), so defer it.
763 */
764 mod_timer(&buf->timer, jiffies + 1);
765 }
766
767 old = buf->data;
768 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
769 new = buf->start + new_subbuf * buf->chan->subbuf_size;
770 buf->offset = 0;
771 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
772 buf->offset = buf->chan->subbuf_size + 1;
773 return 0;
774 }
775 buf->data = new;
776 buf->padding[new_subbuf] = 0;
777
778 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
779 goto toobig;
780
781 return length;
782
783 toobig:
784 buf->chan->last_toobig = length;
785 return 0;
786 }
787 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
788
789 /**
790 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
791 * @chan: the channel
792 * @cpu: the cpu associated with the channel buffer to update
793 * @subbufs_consumed: number of sub-buffers to add to current buf's count
794 *
795 * Adds to the channel buffer's consumed sub-buffer count.
796 * subbufs_consumed should be the number of sub-buffers newly consumed,
797 * not the total consumed.
798 *
799 * NOTE. Kernel clients don't need to call this function if the channel
800 * mode is 'overwrite'.
801 */
802 void relay_subbufs_consumed(struct rchan *chan,
803 unsigned int cpu,
804 size_t subbufs_consumed)
805 {
806 struct rchan_buf *buf;
807
808 if (!chan)
809 return;
810
811 buf = *per_cpu_ptr(chan->buf, cpu);
812 if (cpu >= NR_CPUS || !buf || subbufs_consumed > chan->n_subbufs)
813 return;
814
815 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
816 buf->subbufs_consumed = buf->subbufs_produced;
817 else
818 buf->subbufs_consumed += subbufs_consumed;
819 }
820 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
821
822 /**
823 * relay_close - close the channel
824 * @chan: the channel
825 *
826 * Closes all channel buffers and frees the channel.
827 */
828 void relay_close(struct rchan *chan)
829 {
830 struct rchan_buf *buf;
831 unsigned int i;
832
833 if (!chan)
834 return;
835
836 mutex_lock(&relay_channels_mutex);
837 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
838 relay_close_buf(buf);
839 else
840 for_each_possible_cpu(i)
841 if ((buf = *per_cpu_ptr(chan->buf, i)))
842 relay_close_buf(buf);
843
844 if (chan->last_toobig)
845 printk(KERN_WARNING "relay: one or more items not logged "
846 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
847 chan->last_toobig, chan->subbuf_size);
848
849 list_del(&chan->list);
850 kref_put(&chan->kref, relay_destroy_channel);
851 mutex_unlock(&relay_channels_mutex);
852 }
853 EXPORT_SYMBOL_GPL(relay_close);
854
855 /**
856 * relay_flush - close the channel
857 * @chan: the channel
858 *
859 * Flushes all channel buffers, i.e. forces buffer switch.
860 */
861 void relay_flush(struct rchan *chan)
862 {
863 struct rchan_buf *buf;
864 unsigned int i;
865
866 if (!chan)
867 return;
868
869 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
870 relay_switch_subbuf(buf, 0);
871 return;
872 }
873
874 mutex_lock(&relay_channels_mutex);
875 for_each_possible_cpu(i)
876 if ((buf = *per_cpu_ptr(chan->buf, i)))
877 relay_switch_subbuf(buf, 0);
878 mutex_unlock(&relay_channels_mutex);
879 }
880 EXPORT_SYMBOL_GPL(relay_flush);
881
882 /**
883 * relay_file_open - open file op for relay files
884 * @inode: the inode
885 * @filp: the file
886 *
887 * Increments the channel buffer refcount.
888 */
889 static int relay_file_open(struct inode *inode, struct file *filp)
890 {
891 struct rchan_buf *buf = inode->i_private;
892 kref_get(&buf->kref);
893 filp->private_data = buf;
894
895 return nonseekable_open(inode, filp);
896 }
897
898 /**
899 * relay_file_mmap - mmap file op for relay files
900 * @filp: the file
901 * @vma: the vma describing what to map
902 *
903 * Calls upon relay_mmap_buf() to map the file into user space.
904 */
905 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
906 {
907 struct rchan_buf *buf = filp->private_data;
908 return relay_mmap_buf(buf, vma);
909 }
910
911 /**
912 * relay_file_poll - poll file op for relay files
913 * @filp: the file
914 * @wait: poll table
915 *
916 * Poll implemention.
917 */
918 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
919 {
920 unsigned int mask = 0;
921 struct rchan_buf *buf = filp->private_data;
922
923 if (buf->finalized)
924 return POLLERR;
925
926 if (filp->f_mode & FMODE_READ) {
927 poll_wait(filp, &buf->read_wait, wait);
928 if (!relay_buf_empty(buf))
929 mask |= POLLIN | POLLRDNORM;
930 }
931
932 return mask;
933 }
934
935 /**
936 * relay_file_release - release file op for relay files
937 * @inode: the inode
938 * @filp: the file
939 *
940 * Decrements the channel refcount, as the filesystem is
941 * no longer using it.
942 */
943 static int relay_file_release(struct inode *inode, struct file *filp)
944 {
945 struct rchan_buf *buf = filp->private_data;
946 kref_put(&buf->kref, relay_remove_buf);
947
948 return 0;
949 }
950
951 /*
952 * relay_file_read_consume - update the consumed count for the buffer
953 */
954 static void relay_file_read_consume(struct rchan_buf *buf,
955 size_t read_pos,
956 size_t bytes_consumed)
957 {
958 size_t subbuf_size = buf->chan->subbuf_size;
959 size_t n_subbufs = buf->chan->n_subbufs;
960 size_t read_subbuf;
961
962 if (buf->subbufs_produced == buf->subbufs_consumed &&
963 buf->offset == buf->bytes_consumed)
964 return;
965
966 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
967 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
968 buf->bytes_consumed = 0;
969 }
970
971 buf->bytes_consumed += bytes_consumed;
972 if (!read_pos)
973 read_subbuf = buf->subbufs_consumed % n_subbufs;
974 else
975 read_subbuf = read_pos / buf->chan->subbuf_size;
976 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
977 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
978 (buf->offset == subbuf_size))
979 return;
980 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
981 buf->bytes_consumed = 0;
982 }
983 }
984
985 /*
986 * relay_file_read_avail - boolean, are there unconsumed bytes available?
987 */
988 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
989 {
990 size_t subbuf_size = buf->chan->subbuf_size;
991 size_t n_subbufs = buf->chan->n_subbufs;
992 size_t produced = buf->subbufs_produced;
993 size_t consumed = buf->subbufs_consumed;
994
995 relay_file_read_consume(buf, read_pos, 0);
996
997 consumed = buf->subbufs_consumed;
998
999 if (unlikely(buf->offset > subbuf_size)) {
1000 if (produced == consumed)
1001 return 0;
1002 return 1;
1003 }
1004
1005 if (unlikely(produced - consumed >= n_subbufs)) {
1006 consumed = produced - n_subbufs + 1;
1007 buf->subbufs_consumed = consumed;
1008 buf->bytes_consumed = 0;
1009 }
1010
1011 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1012 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1013
1014 if (consumed > produced)
1015 produced += n_subbufs * subbuf_size;
1016
1017 if (consumed == produced) {
1018 if (buf->offset == subbuf_size &&
1019 buf->subbufs_produced > buf->subbufs_consumed)
1020 return 1;
1021 return 0;
1022 }
1023
1024 return 1;
1025 }
1026
1027 /**
1028 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1029 * @read_pos: file read position
1030 * @buf: relay channel buffer
1031 */
1032 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1033 struct rchan_buf *buf)
1034 {
1035 size_t padding, avail = 0;
1036 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1037 size_t subbuf_size = buf->chan->subbuf_size;
1038
1039 write_subbuf = (buf->data - buf->start) / subbuf_size;
1040 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1041 read_subbuf = read_pos / subbuf_size;
1042 read_offset = read_pos % subbuf_size;
1043 padding = buf->padding[read_subbuf];
1044
1045 if (read_subbuf == write_subbuf) {
1046 if (read_offset + padding < write_offset)
1047 avail = write_offset - (read_offset + padding);
1048 } else
1049 avail = (subbuf_size - padding) - read_offset;
1050
1051 return avail;
1052 }
1053
1054 /**
1055 * relay_file_read_start_pos - find the first available byte to read
1056 * @read_pos: file read position
1057 * @buf: relay channel buffer
1058 *
1059 * If the @read_pos is in the middle of padding, return the
1060 * position of the first actually available byte, otherwise
1061 * return the original value.
1062 */
1063 static size_t relay_file_read_start_pos(size_t read_pos,
1064 struct rchan_buf *buf)
1065 {
1066 size_t read_subbuf, padding, padding_start, padding_end;
1067 size_t subbuf_size = buf->chan->subbuf_size;
1068 size_t n_subbufs = buf->chan->n_subbufs;
1069 size_t consumed = buf->subbufs_consumed % n_subbufs;
1070
1071 if (!read_pos)
1072 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1073 read_subbuf = read_pos / subbuf_size;
1074 padding = buf->padding[read_subbuf];
1075 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1076 padding_end = (read_subbuf + 1) * subbuf_size;
1077 if (read_pos >= padding_start && read_pos < padding_end) {
1078 read_subbuf = (read_subbuf + 1) % n_subbufs;
1079 read_pos = read_subbuf * subbuf_size;
1080 }
1081
1082 return read_pos;
1083 }
1084
1085 /**
1086 * relay_file_read_end_pos - return the new read position
1087 * @read_pos: file read position
1088 * @buf: relay channel buffer
1089 * @count: number of bytes to be read
1090 */
1091 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1092 size_t read_pos,
1093 size_t count)
1094 {
1095 size_t read_subbuf, padding, end_pos;
1096 size_t subbuf_size = buf->chan->subbuf_size;
1097 size_t n_subbufs = buf->chan->n_subbufs;
1098
1099 read_subbuf = read_pos / subbuf_size;
1100 padding = buf->padding[read_subbuf];
1101 if (read_pos % subbuf_size + count + padding == subbuf_size)
1102 end_pos = (read_subbuf + 1) * subbuf_size;
1103 else
1104 end_pos = read_pos + count;
1105 if (end_pos >= subbuf_size * n_subbufs)
1106 end_pos = 0;
1107
1108 return end_pos;
1109 }
1110
1111 /*
1112 * subbuf_read_actor - read up to one subbuf's worth of data
1113 */
1114 static int subbuf_read_actor(size_t read_start,
1115 struct rchan_buf *buf,
1116 size_t avail,
1117 read_descriptor_t *desc)
1118 {
1119 void *from;
1120 int ret = 0;
1121
1122 from = buf->start + read_start;
1123 ret = avail;
1124 if (copy_to_user(desc->arg.buf, from, avail)) {
1125 desc->error = -EFAULT;
1126 ret = 0;
1127 }
1128 desc->arg.data += ret;
1129 desc->written += ret;
1130 desc->count -= ret;
1131
1132 return ret;
1133 }
1134
1135 typedef int (*subbuf_actor_t) (size_t read_start,
1136 struct rchan_buf *buf,
1137 size_t avail,
1138 read_descriptor_t *desc);
1139
1140 /*
1141 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1142 */
1143 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1144 subbuf_actor_t subbuf_actor,
1145 read_descriptor_t *desc)
1146 {
1147 struct rchan_buf *buf = filp->private_data;
1148 size_t read_start, avail;
1149 int ret;
1150
1151 if (!desc->count)
1152 return 0;
1153
1154 inode_lock(file_inode(filp));
1155 do {
1156 if (!relay_file_read_avail(buf, *ppos))
1157 break;
1158
1159 read_start = relay_file_read_start_pos(*ppos, buf);
1160 avail = relay_file_read_subbuf_avail(read_start, buf);
1161 if (!avail)
1162 break;
1163
1164 avail = min(desc->count, avail);
1165 ret = subbuf_actor(read_start, buf, avail, desc);
1166 if (desc->error < 0)
1167 break;
1168
1169 if (ret) {
1170 relay_file_read_consume(buf, read_start, ret);
1171 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1172 }
1173 } while (desc->count && ret);
1174 inode_unlock(file_inode(filp));
1175
1176 return desc->written;
1177 }
1178
1179 static ssize_t relay_file_read(struct file *filp,
1180 char __user *buffer,
1181 size_t count,
1182 loff_t *ppos)
1183 {
1184 read_descriptor_t desc;
1185 desc.written = 0;
1186 desc.count = count;
1187 desc.arg.buf = buffer;
1188 desc.error = 0;
1189 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1190 }
1191
1192 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1193 {
1194 rbuf->bytes_consumed += bytes_consumed;
1195
1196 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1197 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1198 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1199 }
1200 }
1201
1202 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1203 struct pipe_buffer *buf)
1204 {
1205 struct rchan_buf *rbuf;
1206
1207 rbuf = (struct rchan_buf *)page_private(buf->page);
1208 relay_consume_bytes(rbuf, buf->private);
1209 }
1210
1211 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1212 .can_merge = 0,
1213 .confirm = generic_pipe_buf_confirm,
1214 .release = relay_pipe_buf_release,
1215 .steal = generic_pipe_buf_steal,
1216 .get = generic_pipe_buf_get,
1217 };
1218
1219 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1220 {
1221 }
1222
1223 /*
1224 * subbuf_splice_actor - splice up to one subbuf's worth of data
1225 */
1226 static ssize_t subbuf_splice_actor(struct file *in,
1227 loff_t *ppos,
1228 struct pipe_inode_info *pipe,
1229 size_t len,
1230 unsigned int flags,
1231 int *nonpad_ret)
1232 {
1233 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1234 struct rchan_buf *rbuf = in->private_data;
1235 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1236 uint64_t pos = (uint64_t) *ppos;
1237 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1238 size_t read_start = (size_t) do_div(pos, alloc_size);
1239 size_t read_subbuf = read_start / subbuf_size;
1240 size_t padding = rbuf->padding[read_subbuf];
1241 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1242 struct page *pages[PIPE_DEF_BUFFERS];
1243 struct partial_page partial[PIPE_DEF_BUFFERS];
1244 struct splice_pipe_desc spd = {
1245 .pages = pages,
1246 .nr_pages = 0,
1247 .nr_pages_max = PIPE_DEF_BUFFERS,
1248 .partial = partial,
1249 .flags = flags,
1250 .ops = &relay_pipe_buf_ops,
1251 .spd_release = relay_page_release,
1252 };
1253 ssize_t ret;
1254
1255 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1256 return 0;
1257 if (splice_grow_spd(pipe, &spd))
1258 return -ENOMEM;
1259
1260 /*
1261 * Adjust read len, if longer than what is available
1262 */
1263 if (len > (subbuf_size - read_start % subbuf_size))
1264 len = subbuf_size - read_start % subbuf_size;
1265
1266 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1267 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1268 poff = read_start & ~PAGE_MASK;
1269 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1270
1271 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1272 unsigned int this_len, this_end, private;
1273 unsigned int cur_pos = read_start + total_len;
1274
1275 if (!len)
1276 break;
1277
1278 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1279 private = this_len;
1280
1281 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1282 spd.partial[spd.nr_pages].offset = poff;
1283
1284 this_end = cur_pos + this_len;
1285 if (this_end >= nonpad_end) {
1286 this_len = nonpad_end - cur_pos;
1287 private = this_len + padding;
1288 }
1289 spd.partial[spd.nr_pages].len = this_len;
1290 spd.partial[spd.nr_pages].private = private;
1291
1292 len -= this_len;
1293 total_len += this_len;
1294 poff = 0;
1295 pidx = (pidx + 1) % subbuf_pages;
1296
1297 if (this_end >= nonpad_end) {
1298 spd.nr_pages++;
1299 break;
1300 }
1301 }
1302
1303 ret = 0;
1304 if (!spd.nr_pages)
1305 goto out;
1306
1307 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1308 if (ret < 0 || ret < total_len)
1309 goto out;
1310
1311 if (read_start + ret == nonpad_end)
1312 ret += padding;
1313
1314 out:
1315 splice_shrink_spd(&spd);
1316 return ret;
1317 }
1318
1319 static ssize_t relay_file_splice_read(struct file *in,
1320 loff_t *ppos,
1321 struct pipe_inode_info *pipe,
1322 size_t len,
1323 unsigned int flags)
1324 {
1325 ssize_t spliced;
1326 int ret;
1327 int nonpad_ret = 0;
1328
1329 ret = 0;
1330 spliced = 0;
1331
1332 while (len && !spliced) {
1333 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1334 if (ret < 0)
1335 break;
1336 else if (!ret) {
1337 if (flags & SPLICE_F_NONBLOCK)
1338 ret = -EAGAIN;
1339 break;
1340 }
1341
1342 *ppos += ret;
1343 if (ret > len)
1344 len = 0;
1345 else
1346 len -= ret;
1347 spliced += nonpad_ret;
1348 nonpad_ret = 0;
1349 }
1350
1351 if (spliced)
1352 return spliced;
1353
1354 return ret;
1355 }
1356
1357 const struct file_operations relay_file_operations = {
1358 .open = relay_file_open,
1359 .poll = relay_file_poll,
1360 .mmap = relay_file_mmap,
1361 .read = relay_file_read,
1362 .llseek = no_llseek,
1363 .release = relay_file_release,
1364 .splice_read = relay_file_splice_read,
1365 };
1366 EXPORT_SYMBOL_GPL(relay_file_operations);
This page took 0.060679 seconds and 5 git commands to generate.