ff1fa65a80134b2d0103a6b05ff74e69bbaebffe
[deliverable/linux.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
175
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
179
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
183
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
188 }
189
190 /**
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
193 *
194 * Should only be called from kref_put().
195 */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 kfree(chan);
200 }
201
202 /**
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
205 */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 struct rchan *chan = buf->chan;
209 unsigned int i;
210
211 if (likely(buf->start)) {
212 vunmap(buf->start);
213 for (i = 0; i < buf->page_count; i++)
214 __free_page(buf->page_array[i]);
215 relay_free_page_array(buf->page_array);
216 }
217 chan->buf[buf->cpu] = NULL;
218 kfree(buf->padding);
219 kfree(buf);
220 kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
226 *
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
229 * kref_put().
230 */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 relay_destroy_buf(buf);
235 }
236
237 /**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262 * High-level relay kernel API and associated functions.
263 */
264
265 /*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270 /*
271 * subbuf_start() default callback. Does nothing.
272 */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 void *subbuf,
275 void *prev_subbuf,
276 size_t prev_padding)
277 {
278 if (relay_buf_full(buf))
279 return 0;
280
281 return 1;
282 }
283
284 /*
285 * buf_mapped() default callback. Does nothing.
286 */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 struct file *filp)
289 {
290 }
291
292 /*
293 * buf_unmapped() default callback. Does nothing.
294 */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 struct file *filp)
297 {
298 }
299
300 /*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 struct dentry *parent,
305 umode_t mode,
306 struct rchan_buf *buf,
307 int *is_global)
308 {
309 return NULL;
310 }
311
312 /*
313 * remove_buf_file() default callback. Does nothing.
314 */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 .subbuf_start = subbuf_start_default_callback,
323 .buf_mapped = buf_mapped_default_callback,
324 .buf_unmapped = buf_unmapped_default_callback,
325 .create_buf_file = create_buf_file_default_callback,
326 .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @work: contains the channel buffer
332 *
333 * This is the function used to defer reader waking
334 */
335 static void wakeup_readers(struct irq_work *work)
336 {
337 struct rchan_buf *buf = container_of(work, struct rchan_buf, wakeup_work);
338 wake_up_interruptible(&buf->read_wait);
339 }
340
341 /**
342 * __relay_reset - reset a channel buffer
343 * @buf: the channel buffer
344 * @init: 1 if this is a first-time initialization
345 *
346 * See relay_reset() for description of effect.
347 */
348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 size_t i;
351
352 if (init) {
353 init_waitqueue_head(&buf->read_wait);
354 kref_init(&buf->kref);
355 init_irq_work(&buf->wakeup_work, wakeup_readers);
356 } else {
357 irq_work_sync(&buf->wakeup_work);
358 }
359
360 buf->subbufs_produced = 0;
361 buf->subbufs_consumed = 0;
362 buf->bytes_consumed = 0;
363 buf->finalized = 0;
364 buf->data = buf->start;
365 buf->offset = 0;
366
367 for (i = 0; i < buf->chan->n_subbufs; i++)
368 buf->padding[i] = 0;
369
370 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
371 }
372
373 /**
374 * relay_reset - reset the channel
375 * @chan: the channel
376 *
377 * This has the effect of erasing all data from all channel buffers
378 * and restarting the channel in its initial state. The buffers
379 * are not freed, so any mappings are still in effect.
380 *
381 * NOTE. Care should be taken that the channel isn't actually
382 * being used by anything when this call is made.
383 */
384 void relay_reset(struct rchan *chan)
385 {
386 unsigned int i;
387
388 if (!chan)
389 return;
390
391 if (chan->is_global && chan->buf[0]) {
392 __relay_reset(chan->buf[0], 0);
393 return;
394 }
395
396 mutex_lock(&relay_channels_mutex);
397 for_each_possible_cpu(i)
398 if (chan->buf[i])
399 __relay_reset(chan->buf[i], 0);
400 mutex_unlock(&relay_channels_mutex);
401 }
402 EXPORT_SYMBOL_GPL(relay_reset);
403
404 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
405 struct dentry *dentry)
406 {
407 buf->dentry = dentry;
408 d_inode(buf->dentry)->i_size = buf->early_bytes;
409 }
410
411 static struct dentry *relay_create_buf_file(struct rchan *chan,
412 struct rchan_buf *buf,
413 unsigned int cpu)
414 {
415 struct dentry *dentry;
416 char *tmpname;
417
418 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
419 if (!tmpname)
420 return NULL;
421 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
422
423 /* Create file in fs */
424 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
425 S_IRUSR, buf,
426 &chan->is_global);
427
428 kfree(tmpname);
429
430 return dentry;
431 }
432
433 /*
434 * relay_open_buf - create a new relay channel buffer
435 *
436 * used by relay_open() and CPU hotplug.
437 */
438 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
439 {
440 struct rchan_buf *buf = NULL;
441 struct dentry *dentry;
442
443 if (chan->is_global)
444 return chan->buf[0];
445
446 buf = relay_create_buf(chan);
447 if (!buf)
448 return NULL;
449
450 if (chan->has_base_filename) {
451 dentry = relay_create_buf_file(chan, buf, cpu);
452 if (!dentry)
453 goto free_buf;
454 relay_set_buf_dentry(buf, dentry);
455 } else {
456 /* Only retrieve global info, nothing more, nothing less */
457 dentry = chan->cb->create_buf_file(NULL, NULL,
458 S_IRUSR, buf,
459 &chan->is_global);
460 if (WARN_ON(dentry))
461 goto free_buf;
462 }
463
464 buf->cpu = cpu;
465 __relay_reset(buf, 1);
466
467 if(chan->is_global) {
468 chan->buf[0] = buf;
469 buf->cpu = 0;
470 }
471
472 return buf;
473
474 free_buf:
475 relay_destroy_buf(buf);
476 return NULL;
477 }
478
479 /**
480 * relay_close_buf - close a channel buffer
481 * @buf: channel buffer
482 *
483 * Marks the buffer finalized and restores the default callbacks.
484 * The channel buffer and channel buffer data structure are then freed
485 * automatically when the last reference is given up.
486 */
487 static void relay_close_buf(struct rchan_buf *buf)
488 {
489 buf->finalized = 1;
490 irq_work_sync(&buf->wakeup_work);
491 buf->chan->cb->remove_buf_file(buf->dentry);
492 kref_put(&buf->kref, relay_remove_buf);
493 }
494
495 static void setup_callbacks(struct rchan *chan,
496 struct rchan_callbacks *cb)
497 {
498 if (!cb) {
499 chan->cb = &default_channel_callbacks;
500 return;
501 }
502
503 if (!cb->subbuf_start)
504 cb->subbuf_start = subbuf_start_default_callback;
505 if (!cb->buf_mapped)
506 cb->buf_mapped = buf_mapped_default_callback;
507 if (!cb->buf_unmapped)
508 cb->buf_unmapped = buf_unmapped_default_callback;
509 if (!cb->create_buf_file)
510 cb->create_buf_file = create_buf_file_default_callback;
511 if (!cb->remove_buf_file)
512 cb->remove_buf_file = remove_buf_file_default_callback;
513 chan->cb = cb;
514 }
515
516 /**
517 * relay_hotcpu_callback - CPU hotplug callback
518 * @nb: notifier block
519 * @action: hotplug action to take
520 * @hcpu: CPU number
521 *
522 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
523 */
524 static int relay_hotcpu_callback(struct notifier_block *nb,
525 unsigned long action,
526 void *hcpu)
527 {
528 unsigned int hotcpu = (unsigned long)hcpu;
529 struct rchan *chan;
530
531 switch(action) {
532 case CPU_UP_PREPARE:
533 case CPU_UP_PREPARE_FROZEN:
534 mutex_lock(&relay_channels_mutex);
535 list_for_each_entry(chan, &relay_channels, list) {
536 if (chan->buf[hotcpu])
537 continue;
538 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
539 if(!chan->buf[hotcpu]) {
540 printk(KERN_ERR
541 "relay_hotcpu_callback: cpu %d buffer "
542 "creation failed\n", hotcpu);
543 mutex_unlock(&relay_channels_mutex);
544 return notifier_from_errno(-ENOMEM);
545 }
546 }
547 mutex_unlock(&relay_channels_mutex);
548 break;
549 case CPU_DEAD:
550 case CPU_DEAD_FROZEN:
551 /* No need to flush the cpu : will be flushed upon
552 * final relay_flush() call. */
553 break;
554 }
555 return NOTIFY_OK;
556 }
557
558 /**
559 * relay_open - create a new relay channel
560 * @base_filename: base name of files to create, %NULL for buffering only
561 * @parent: dentry of parent directory, %NULL for root directory or buffer
562 * @subbuf_size: size of sub-buffers
563 * @n_subbufs: number of sub-buffers
564 * @cb: client callback functions
565 * @private_data: user-defined data
566 *
567 * Returns channel pointer if successful, %NULL otherwise.
568 *
569 * Creates a channel buffer for each cpu using the sizes and
570 * attributes specified. The created channel buffer files
571 * will be named base_filename0...base_filenameN-1. File
572 * permissions will be %S_IRUSR.
573 *
574 * If opening a buffer (@parent = NULL) that you later wish to register
575 * in a filesystem, call relay_late_setup_files() once the @parent dentry
576 * is available.
577 */
578 struct rchan *relay_open(const char *base_filename,
579 struct dentry *parent,
580 size_t subbuf_size,
581 size_t n_subbufs,
582 struct rchan_callbacks *cb,
583 void *private_data)
584 {
585 unsigned int i;
586 struct rchan *chan;
587
588 if (!(subbuf_size && n_subbufs))
589 return NULL;
590 if (subbuf_size > UINT_MAX / n_subbufs)
591 return NULL;
592
593 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
594 if (!chan)
595 return NULL;
596
597 chan->version = RELAYFS_CHANNEL_VERSION;
598 chan->n_subbufs = n_subbufs;
599 chan->subbuf_size = subbuf_size;
600 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
601 chan->parent = parent;
602 chan->private_data = private_data;
603 if (base_filename) {
604 chan->has_base_filename = 1;
605 strlcpy(chan->base_filename, base_filename, NAME_MAX);
606 }
607 setup_callbacks(chan, cb);
608 kref_init(&chan->kref);
609
610 mutex_lock(&relay_channels_mutex);
611 for_each_online_cpu(i) {
612 chan->buf[i] = relay_open_buf(chan, i);
613 if (!chan->buf[i])
614 goto free_bufs;
615 }
616 list_add(&chan->list, &relay_channels);
617 mutex_unlock(&relay_channels_mutex);
618
619 return chan;
620
621 free_bufs:
622 for_each_possible_cpu(i) {
623 if (chan->buf[i])
624 relay_close_buf(chan->buf[i]);
625 }
626
627 kref_put(&chan->kref, relay_destroy_channel);
628 mutex_unlock(&relay_channels_mutex);
629 kfree(chan);
630 return NULL;
631 }
632 EXPORT_SYMBOL_GPL(relay_open);
633
634 struct rchan_percpu_buf_dispatcher {
635 struct rchan_buf *buf;
636 struct dentry *dentry;
637 };
638
639 /* Called in atomic context. */
640 static void __relay_set_buf_dentry(void *info)
641 {
642 struct rchan_percpu_buf_dispatcher *p = info;
643
644 relay_set_buf_dentry(p->buf, p->dentry);
645 }
646
647 /**
648 * relay_late_setup_files - triggers file creation
649 * @chan: channel to operate on
650 * @base_filename: base name of files to create
651 * @parent: dentry of parent directory, %NULL for root directory
652 *
653 * Returns 0 if successful, non-zero otherwise.
654 *
655 * Use to setup files for a previously buffer-only channel created
656 * by relay_open() with a NULL parent dentry.
657 *
658 * For example, this is useful for perfomring early tracing in kernel,
659 * before VFS is up and then exposing the early results once the dentry
660 * is available.
661 */
662 int relay_late_setup_files(struct rchan *chan,
663 const char *base_filename,
664 struct dentry *parent)
665 {
666 int err = 0;
667 unsigned int i, curr_cpu;
668 unsigned long flags;
669 struct dentry *dentry;
670 struct rchan_percpu_buf_dispatcher disp;
671
672 if (!chan || !base_filename)
673 return -EINVAL;
674
675 strlcpy(chan->base_filename, base_filename, NAME_MAX);
676
677 mutex_lock(&relay_channels_mutex);
678 /* Is chan already set up? */
679 if (unlikely(chan->has_base_filename)) {
680 mutex_unlock(&relay_channels_mutex);
681 return -EEXIST;
682 }
683 chan->has_base_filename = 1;
684 chan->parent = parent;
685
686 if (chan->is_global) {
687 err = -EINVAL;
688 if (!WARN_ON_ONCE(!chan->buf[0])) {
689 dentry = relay_create_buf_file(chan, chan->buf[0], 0);
690 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
691 relay_set_buf_dentry(chan->buf[0], dentry);
692 err = 0;
693 }
694 }
695 mutex_unlock(&relay_channels_mutex);
696 return err;
697 }
698
699 curr_cpu = get_cpu();
700 /*
701 * The CPU hotplug notifier ran before us and created buffers with
702 * no files associated. So it's safe to call relay_setup_buf_file()
703 * on all currently online CPUs.
704 */
705 for_each_online_cpu(i) {
706 if (unlikely(!chan->buf[i])) {
707 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
708 err = -EINVAL;
709 break;
710 }
711
712 dentry = relay_create_buf_file(chan, chan->buf[i], i);
713 if (unlikely(!dentry)) {
714 err = -EINVAL;
715 break;
716 }
717
718 if (curr_cpu == i) {
719 local_irq_save(flags);
720 relay_set_buf_dentry(chan->buf[i], dentry);
721 local_irq_restore(flags);
722 } else {
723 disp.buf = chan->buf[i];
724 disp.dentry = dentry;
725 smp_mb();
726 /* relay_channels_mutex must be held, so wait. */
727 err = smp_call_function_single(i,
728 __relay_set_buf_dentry,
729 &disp, 1);
730 }
731 if (unlikely(err))
732 break;
733 }
734 put_cpu();
735 mutex_unlock(&relay_channels_mutex);
736
737 return err;
738 }
739 EXPORT_SYMBOL_GPL(relay_late_setup_files);
740
741 /**
742 * relay_switch_subbuf - switch to a new sub-buffer
743 * @buf: channel buffer
744 * @length: size of current event
745 *
746 * Returns either the length passed in or 0 if full.
747 *
748 * Performs sub-buffer-switch tasks such as invoking callbacks,
749 * updating padding counts, waking up readers, etc.
750 */
751 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
752 {
753 void *old, *new;
754 size_t old_subbuf, new_subbuf;
755
756 if (unlikely(length > buf->chan->subbuf_size))
757 goto toobig;
758
759 if (buf->offset != buf->chan->subbuf_size + 1) {
760 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
761 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
762 buf->padding[old_subbuf] = buf->prev_padding;
763 buf->subbufs_produced++;
764 if (buf->dentry)
765 d_inode(buf->dentry)->i_size +=
766 buf->chan->subbuf_size -
767 buf->padding[old_subbuf];
768 else
769 buf->early_bytes += buf->chan->subbuf_size -
770 buf->padding[old_subbuf];
771 smp_mb();
772 if (waitqueue_active(&buf->read_wait)) {
773 /*
774 * Calling wake_up_interruptible() from here
775 * will deadlock if we happen to be logging
776 * from the scheduler (trying to re-grab
777 * rq->lock), so defer it.
778 */
779 irq_work_queue(&buf->wakeup_work);
780 }
781 }
782
783 old = buf->data;
784 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
785 new = buf->start + new_subbuf * buf->chan->subbuf_size;
786 buf->offset = 0;
787 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
788 buf->offset = buf->chan->subbuf_size + 1;
789 return 0;
790 }
791 buf->data = new;
792 buf->padding[new_subbuf] = 0;
793
794 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
795 goto toobig;
796
797 return length;
798
799 toobig:
800 buf->chan->last_toobig = length;
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
804
805 /**
806 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
807 * @chan: the channel
808 * @cpu: the cpu associated with the channel buffer to update
809 * @subbufs_consumed: number of sub-buffers to add to current buf's count
810 *
811 * Adds to the channel buffer's consumed sub-buffer count.
812 * subbufs_consumed should be the number of sub-buffers newly consumed,
813 * not the total consumed.
814 *
815 * NOTE. Kernel clients don't need to call this function if the channel
816 * mode is 'overwrite'.
817 */
818 void relay_subbufs_consumed(struct rchan *chan,
819 unsigned int cpu,
820 size_t subbufs_consumed)
821 {
822 struct rchan_buf *buf;
823
824 if (!chan)
825 return;
826
827 if (cpu >= NR_CPUS || !chan->buf[cpu] ||
828 subbufs_consumed > chan->n_subbufs)
829 return;
830
831 buf = chan->buf[cpu];
832 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
833 buf->subbufs_consumed = buf->subbufs_produced;
834 else
835 buf->subbufs_consumed += subbufs_consumed;
836 }
837 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
838
839 /**
840 * relay_close - close the channel
841 * @chan: the channel
842 *
843 * Closes all channel buffers and frees the channel.
844 */
845 void relay_close(struct rchan *chan)
846 {
847 unsigned int i;
848
849 if (!chan)
850 return;
851
852 mutex_lock(&relay_channels_mutex);
853 if (chan->is_global && chan->buf[0])
854 relay_close_buf(chan->buf[0]);
855 else
856 for_each_possible_cpu(i)
857 if (chan->buf[i])
858 relay_close_buf(chan->buf[i]);
859
860 if (chan->last_toobig)
861 printk(KERN_WARNING "relay: one or more items not logged "
862 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
863 chan->last_toobig, chan->subbuf_size);
864
865 list_del(&chan->list);
866 kref_put(&chan->kref, relay_destroy_channel);
867 mutex_unlock(&relay_channels_mutex);
868 }
869 EXPORT_SYMBOL_GPL(relay_close);
870
871 /**
872 * relay_flush - close the channel
873 * @chan: the channel
874 *
875 * Flushes all channel buffers, i.e. forces buffer switch.
876 */
877 void relay_flush(struct rchan *chan)
878 {
879 unsigned int i;
880
881 if (!chan)
882 return;
883
884 if (chan->is_global && chan->buf[0]) {
885 relay_switch_subbuf(chan->buf[0], 0);
886 return;
887 }
888
889 mutex_lock(&relay_channels_mutex);
890 for_each_possible_cpu(i)
891 if (chan->buf[i])
892 relay_switch_subbuf(chan->buf[i], 0);
893 mutex_unlock(&relay_channels_mutex);
894 }
895 EXPORT_SYMBOL_GPL(relay_flush);
896
897 /**
898 * relay_file_open - open file op for relay files
899 * @inode: the inode
900 * @filp: the file
901 *
902 * Increments the channel buffer refcount.
903 */
904 static int relay_file_open(struct inode *inode, struct file *filp)
905 {
906 struct rchan_buf *buf = inode->i_private;
907 kref_get(&buf->kref);
908 filp->private_data = buf;
909
910 return nonseekable_open(inode, filp);
911 }
912
913 /**
914 * relay_file_mmap - mmap file op for relay files
915 * @filp: the file
916 * @vma: the vma describing what to map
917 *
918 * Calls upon relay_mmap_buf() to map the file into user space.
919 */
920 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
921 {
922 struct rchan_buf *buf = filp->private_data;
923 return relay_mmap_buf(buf, vma);
924 }
925
926 /**
927 * relay_file_poll - poll file op for relay files
928 * @filp: the file
929 * @wait: poll table
930 *
931 * Poll implemention.
932 */
933 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
934 {
935 unsigned int mask = 0;
936 struct rchan_buf *buf = filp->private_data;
937
938 if (buf->finalized)
939 return POLLERR;
940
941 if (filp->f_mode & FMODE_READ) {
942 poll_wait(filp, &buf->read_wait, wait);
943 if (!relay_buf_empty(buf))
944 mask |= POLLIN | POLLRDNORM;
945 }
946
947 return mask;
948 }
949
950 /**
951 * relay_file_release - release file op for relay files
952 * @inode: the inode
953 * @filp: the file
954 *
955 * Decrements the channel refcount, as the filesystem is
956 * no longer using it.
957 */
958 static int relay_file_release(struct inode *inode, struct file *filp)
959 {
960 struct rchan_buf *buf = filp->private_data;
961 kref_put(&buf->kref, relay_remove_buf);
962
963 return 0;
964 }
965
966 /*
967 * relay_file_read_consume - update the consumed count for the buffer
968 */
969 static void relay_file_read_consume(struct rchan_buf *buf,
970 size_t read_pos,
971 size_t bytes_consumed)
972 {
973 size_t subbuf_size = buf->chan->subbuf_size;
974 size_t n_subbufs = buf->chan->n_subbufs;
975 size_t read_subbuf;
976
977 if (buf->subbufs_produced == buf->subbufs_consumed &&
978 buf->offset == buf->bytes_consumed)
979 return;
980
981 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
982 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
983 buf->bytes_consumed = 0;
984 }
985
986 buf->bytes_consumed += bytes_consumed;
987 if (!read_pos)
988 read_subbuf = buf->subbufs_consumed % n_subbufs;
989 else
990 read_subbuf = read_pos / buf->chan->subbuf_size;
991 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
992 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
993 (buf->offset == subbuf_size))
994 return;
995 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
996 buf->bytes_consumed = 0;
997 }
998 }
999
1000 /*
1001 * relay_file_read_avail - boolean, are there unconsumed bytes available?
1002 */
1003 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
1004 {
1005 size_t subbuf_size = buf->chan->subbuf_size;
1006 size_t n_subbufs = buf->chan->n_subbufs;
1007 size_t produced = buf->subbufs_produced;
1008 size_t consumed = buf->subbufs_consumed;
1009
1010 relay_file_read_consume(buf, read_pos, 0);
1011
1012 consumed = buf->subbufs_consumed;
1013
1014 if (unlikely(buf->offset > subbuf_size)) {
1015 if (produced == consumed)
1016 return 0;
1017 return 1;
1018 }
1019
1020 if (unlikely(produced - consumed >= n_subbufs)) {
1021 consumed = produced - n_subbufs + 1;
1022 buf->subbufs_consumed = consumed;
1023 buf->bytes_consumed = 0;
1024 }
1025
1026 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1027 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1028
1029 if (consumed > produced)
1030 produced += n_subbufs * subbuf_size;
1031
1032 if (consumed == produced) {
1033 if (buf->offset == subbuf_size &&
1034 buf->subbufs_produced > buf->subbufs_consumed)
1035 return 1;
1036 return 0;
1037 }
1038
1039 return 1;
1040 }
1041
1042 /**
1043 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1044 * @read_pos: file read position
1045 * @buf: relay channel buffer
1046 */
1047 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1048 struct rchan_buf *buf)
1049 {
1050 size_t padding, avail = 0;
1051 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1052 size_t subbuf_size = buf->chan->subbuf_size;
1053
1054 write_subbuf = (buf->data - buf->start) / subbuf_size;
1055 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1056 read_subbuf = read_pos / subbuf_size;
1057 read_offset = read_pos % subbuf_size;
1058 padding = buf->padding[read_subbuf];
1059
1060 if (read_subbuf == write_subbuf) {
1061 if (read_offset + padding < write_offset)
1062 avail = write_offset - (read_offset + padding);
1063 } else
1064 avail = (subbuf_size - padding) - read_offset;
1065
1066 return avail;
1067 }
1068
1069 /**
1070 * relay_file_read_start_pos - find the first available byte to read
1071 * @read_pos: file read position
1072 * @buf: relay channel buffer
1073 *
1074 * If the @read_pos is in the middle of padding, return the
1075 * position of the first actually available byte, otherwise
1076 * return the original value.
1077 */
1078 static size_t relay_file_read_start_pos(size_t read_pos,
1079 struct rchan_buf *buf)
1080 {
1081 size_t read_subbuf, padding, padding_start, padding_end;
1082 size_t subbuf_size = buf->chan->subbuf_size;
1083 size_t n_subbufs = buf->chan->n_subbufs;
1084 size_t consumed = buf->subbufs_consumed % n_subbufs;
1085
1086 if (!read_pos)
1087 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1088 read_subbuf = read_pos / subbuf_size;
1089 padding = buf->padding[read_subbuf];
1090 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1091 padding_end = (read_subbuf + 1) * subbuf_size;
1092 if (read_pos >= padding_start && read_pos < padding_end) {
1093 read_subbuf = (read_subbuf + 1) % n_subbufs;
1094 read_pos = read_subbuf * subbuf_size;
1095 }
1096
1097 return read_pos;
1098 }
1099
1100 /**
1101 * relay_file_read_end_pos - return the new read position
1102 * @read_pos: file read position
1103 * @buf: relay channel buffer
1104 * @count: number of bytes to be read
1105 */
1106 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1107 size_t read_pos,
1108 size_t count)
1109 {
1110 size_t read_subbuf, padding, end_pos;
1111 size_t subbuf_size = buf->chan->subbuf_size;
1112 size_t n_subbufs = buf->chan->n_subbufs;
1113
1114 read_subbuf = read_pos / subbuf_size;
1115 padding = buf->padding[read_subbuf];
1116 if (read_pos % subbuf_size + count + padding == subbuf_size)
1117 end_pos = (read_subbuf + 1) * subbuf_size;
1118 else
1119 end_pos = read_pos + count;
1120 if (end_pos >= subbuf_size * n_subbufs)
1121 end_pos = 0;
1122
1123 return end_pos;
1124 }
1125
1126 /*
1127 * subbuf_read_actor - read up to one subbuf's worth of data
1128 */
1129 static int subbuf_read_actor(size_t read_start,
1130 struct rchan_buf *buf,
1131 size_t avail,
1132 read_descriptor_t *desc)
1133 {
1134 void *from;
1135 int ret = 0;
1136
1137 from = buf->start + read_start;
1138 ret = avail;
1139 if (copy_to_user(desc->arg.buf, from, avail)) {
1140 desc->error = -EFAULT;
1141 ret = 0;
1142 }
1143 desc->arg.data += ret;
1144 desc->written += ret;
1145 desc->count -= ret;
1146
1147 return ret;
1148 }
1149
1150 typedef int (*subbuf_actor_t) (size_t read_start,
1151 struct rchan_buf *buf,
1152 size_t avail,
1153 read_descriptor_t *desc);
1154
1155 /*
1156 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1157 */
1158 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1159 subbuf_actor_t subbuf_actor,
1160 read_descriptor_t *desc)
1161 {
1162 struct rchan_buf *buf = filp->private_data;
1163 size_t read_start, avail;
1164 int ret;
1165
1166 if (!desc->count)
1167 return 0;
1168
1169 inode_lock(file_inode(filp));
1170 do {
1171 if (!relay_file_read_avail(buf, *ppos))
1172 break;
1173
1174 read_start = relay_file_read_start_pos(*ppos, buf);
1175 avail = relay_file_read_subbuf_avail(read_start, buf);
1176 if (!avail)
1177 break;
1178
1179 avail = min(desc->count, avail);
1180 ret = subbuf_actor(read_start, buf, avail, desc);
1181 if (desc->error < 0)
1182 break;
1183
1184 if (ret) {
1185 relay_file_read_consume(buf, read_start, ret);
1186 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1187 }
1188 } while (desc->count && ret);
1189 inode_unlock(file_inode(filp));
1190
1191 return desc->written;
1192 }
1193
1194 static ssize_t relay_file_read(struct file *filp,
1195 char __user *buffer,
1196 size_t count,
1197 loff_t *ppos)
1198 {
1199 read_descriptor_t desc;
1200 desc.written = 0;
1201 desc.count = count;
1202 desc.arg.buf = buffer;
1203 desc.error = 0;
1204 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1205 }
1206
1207 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1208 {
1209 rbuf->bytes_consumed += bytes_consumed;
1210
1211 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1212 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1213 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1214 }
1215 }
1216
1217 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1218 struct pipe_buffer *buf)
1219 {
1220 struct rchan_buf *rbuf;
1221
1222 rbuf = (struct rchan_buf *)page_private(buf->page);
1223 relay_consume_bytes(rbuf, buf->private);
1224 }
1225
1226 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1227 .can_merge = 0,
1228 .confirm = generic_pipe_buf_confirm,
1229 .release = relay_pipe_buf_release,
1230 .steal = generic_pipe_buf_steal,
1231 .get = generic_pipe_buf_get,
1232 };
1233
1234 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1235 {
1236 }
1237
1238 /*
1239 * subbuf_splice_actor - splice up to one subbuf's worth of data
1240 */
1241 static ssize_t subbuf_splice_actor(struct file *in,
1242 loff_t *ppos,
1243 struct pipe_inode_info *pipe,
1244 size_t len,
1245 unsigned int flags,
1246 int *nonpad_ret)
1247 {
1248 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1249 struct rchan_buf *rbuf = in->private_data;
1250 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1251 uint64_t pos = (uint64_t) *ppos;
1252 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1253 size_t read_start = (size_t) do_div(pos, alloc_size);
1254 size_t read_subbuf = read_start / subbuf_size;
1255 size_t padding = rbuf->padding[read_subbuf];
1256 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1257 struct page *pages[PIPE_DEF_BUFFERS];
1258 struct partial_page partial[PIPE_DEF_BUFFERS];
1259 struct splice_pipe_desc spd = {
1260 .pages = pages,
1261 .nr_pages = 0,
1262 .nr_pages_max = PIPE_DEF_BUFFERS,
1263 .partial = partial,
1264 .flags = flags,
1265 .ops = &relay_pipe_buf_ops,
1266 .spd_release = relay_page_release,
1267 };
1268 ssize_t ret;
1269
1270 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1271 return 0;
1272 if (splice_grow_spd(pipe, &spd))
1273 return -ENOMEM;
1274
1275 /*
1276 * Adjust read len, if longer than what is available
1277 */
1278 if (len > (subbuf_size - read_start % subbuf_size))
1279 len = subbuf_size - read_start % subbuf_size;
1280
1281 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1282 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1283 poff = read_start & ~PAGE_MASK;
1284 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1285
1286 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1287 unsigned int this_len, this_end, private;
1288 unsigned int cur_pos = read_start + total_len;
1289
1290 if (!len)
1291 break;
1292
1293 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1294 private = this_len;
1295
1296 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1297 spd.partial[spd.nr_pages].offset = poff;
1298
1299 this_end = cur_pos + this_len;
1300 if (this_end >= nonpad_end) {
1301 this_len = nonpad_end - cur_pos;
1302 private = this_len + padding;
1303 }
1304 spd.partial[spd.nr_pages].len = this_len;
1305 spd.partial[spd.nr_pages].private = private;
1306
1307 len -= this_len;
1308 total_len += this_len;
1309 poff = 0;
1310 pidx = (pidx + 1) % subbuf_pages;
1311
1312 if (this_end >= nonpad_end) {
1313 spd.nr_pages++;
1314 break;
1315 }
1316 }
1317
1318 ret = 0;
1319 if (!spd.nr_pages)
1320 goto out;
1321
1322 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1323 if (ret < 0 || ret < total_len)
1324 goto out;
1325
1326 if (read_start + ret == nonpad_end)
1327 ret += padding;
1328
1329 out:
1330 splice_shrink_spd(&spd);
1331 return ret;
1332 }
1333
1334 static ssize_t relay_file_splice_read(struct file *in,
1335 loff_t *ppos,
1336 struct pipe_inode_info *pipe,
1337 size_t len,
1338 unsigned int flags)
1339 {
1340 ssize_t spliced;
1341 int ret;
1342 int nonpad_ret = 0;
1343
1344 ret = 0;
1345 spliced = 0;
1346
1347 while (len && !spliced) {
1348 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1349 if (ret < 0)
1350 break;
1351 else if (!ret) {
1352 if (flags & SPLICE_F_NONBLOCK)
1353 ret = -EAGAIN;
1354 break;
1355 }
1356
1357 *ppos += ret;
1358 if (ret > len)
1359 len = 0;
1360 else
1361 len -= ret;
1362 spliced += nonpad_ret;
1363 nonpad_ret = 0;
1364 }
1365
1366 if (spliced)
1367 return spliced;
1368
1369 return ret;
1370 }
1371
1372 const struct file_operations relay_file_operations = {
1373 .open = relay_file_open,
1374 .poll = relay_file_poll,
1375 .mmap = relay_file_mmap,
1376 .read = relay_file_read,
1377 .llseek = no_llseek,
1378 .release = relay_file_release,
1379 .splice_read = relay_file_splice_read,
1380 };
1381 EXPORT_SYMBOL_GPL(relay_file_operations);
1382
1383 static __init int relay_init(void)
1384 {
1385
1386 hotcpu_notifier(relay_hotcpu_callback, 0);
1387 return 0;
1388 }
1389
1390 early_initcall(relay_init);
This page took 0.087713 seconds and 4 git commands to generate.