13d0896aff87aa6646eef3705586b749da9251eb
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 /*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 rf->cookie = lockdep_pin_lock(&rq->lock);
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195 }
196
197 /*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203 {
204 struct rq *rq;
205
206 for (;;) {
207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 rf->cookie = lockdep_pin_lock(&rq->lock);
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
437 * barrier implied by the wakeup in wake_up_q().
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471 }
472
473 /*
474 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
480 void resched_curr(struct rq *rq)
481 {
482 struct task_struct *curr = rq->curr;
483 int cpu;
484
485 lockdep_assert_held(&rq->lock);
486
487 if (test_tsk_need_resched(curr))
488 return;
489
490 cpu = cpu_of(rq);
491
492 if (cpu == smp_processor_id()) {
493 set_tsk_need_resched(curr);
494 set_preempt_need_resched();
495 return;
496 }
497
498 if (set_nr_and_not_polling(curr))
499 smp_send_reschedule(cpu);
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 return;
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (tick_nohz_full_cpu(cpu)) {
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
586 tick_nohz_full_kick_cpu(cpu);
587 return true;
588 }
589
590 return false;
591 }
592
593 void wake_up_nohz_cpu(int cpu)
594 {
595 if (!wake_up_full_nohz_cpu(cpu))
596 wake_up_idle_cpu(cpu);
597 }
598
599 static inline bool got_nohz_idle_kick(void)
600 {
601 int cpu = smp_processor_id();
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
615 }
616
617 #else /* CONFIG_NO_HZ_COMMON */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ_COMMON */
625
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
635 /*
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
638 */
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
644 }
645
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665
666 void sched_avg_update(struct rq *rq)
667 {
668 s64 period = sched_avg_period();
669
670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
680 }
681
682 #endif /* CONFIG_SMP */
683
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
691 */
692 int walk_tg_tree_from(struct task_group *from,
693 tg_visitor down, tg_visitor up, void *data)
694 {
695 struct task_group *parent, *child;
696 int ret;
697
698 parent = from;
699
700 down:
701 ret = (*down)(parent, data);
702 if (ret)
703 goto out;
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708 up:
709 continue;
710 }
711 ret = (*up)(parent, data);
712 if (ret || parent == from)
713 goto out;
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
719 out:
720 return ret;
721 }
722
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 return 0;
726 }
727 #endif
728
729 static void set_load_weight(struct task_struct *p)
730 {
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
737 if (idle_policy(p->policy)) {
738 load->weight = scale_load(WEIGHT_IDLEPRIO);
739 load->inv_weight = WMULT_IDLEPRIO;
740 return;
741 }
742
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
745 }
746
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 update_rq_clock(rq);
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
752 p->sched_class->enqueue_task(rq, p, flags);
753 }
754
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
760 p->sched_class->dequeue_task(rq, p, flags);
761 }
762
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
768 enqueue_task(rq, p, flags);
769 }
770
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
776 dequeue_task(rq, p, flags);
777 }
778
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 if (static_key_false((&paravirt_steal_rq_enabled))) {
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
820 rq->prev_steal_time_rq += steal;
821 delta -= steal;
822 }
823 #endif
824
825 rq->clock_task += delta;
826
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861 }
862
863 /*
864 * __normal_prio - return the priority that is based on the static prio
865 */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 return p->static_prio;
869 }
870
871 /*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 int prio;
881
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889 }
890
891 /*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
898 static int effective_prio(struct task_struct *p)
899 {
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909 }
910
911 /**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
916 */
917 inline int task_curr(const struct task_struct *p)
918 {
919 return cpu_curr(task_cpu(p)) == p;
920 }
921
922 /*
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
928 */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
931 int oldprio)
932 {
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
935 prev_class->switched_from(rq, p);
936
937 p->sched_class->switched_to(rq, p);
938 } else if (oldprio != p->prio || dl_task(p))
939 p->sched_class->prio_changed(rq, p, oldprio);
940 }
941
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
953 resched_curr(rq);
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 rq_clock_skip_update(rq, true);
965 }
966
967 #ifdef CONFIG_SMP
968 /*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982 /*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 lockdep_assert_held(&rq->lock);
990
991 p->on_rq = TASK_ON_RQ_MIGRATING;
992 dequeue_task(rq, p, 0);
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
1000 enqueue_task(rq, p, 0);
1001 p->on_rq = TASK_ON_RQ_QUEUED;
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005 }
1006
1007 struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010 };
1011
1012 /*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
1020 */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 if (unlikely(!cpu_active(dest_cpu)))
1024 return rq;
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 return rq;
1029
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
1033 }
1034
1035 /*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 struct migration_arg *arg = data;
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
1070 local_irq_enable();
1071 return 0;
1072 }
1073
1074 /*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
1089 lockdep_assert_held(&p->pi_lock);
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1100 dequeue_task(rq, p, DEQUEUE_SAVE);
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
1105 p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112
1113 /*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
1124 {
1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 unsigned int dest_cpu;
1127 struct rq_flags rf;
1128 struct rq *rq;
1129 int ret = 0;
1130
1131 rq = task_rq_lock(p, &rf);
1132
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
1177 task_rq_unlock(rq, p, &rf);
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 rq = move_queued_task(rq, p, dest_cpu);
1188 lockdep_repin_lock(&rq->lock, rf.cookie);
1189 }
1190 out:
1191 task_rq_unlock(rq, p, &rf);
1192
1193 return ret;
1194 }
1195
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 !p->on_rq);
1211
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
1221 #ifdef CONFIG_LOCKDEP
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 * see task_group().
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236
1237 trace_sched_migrate_task(p, new_cpu);
1238
1239 if (task_cpu(p) != new_cpu) {
1240 if (p->sched_class->migrate_task_rq)
1241 p->sched_class->migrate_task_rq(p);
1242 p->se.nr_migrations++;
1243 perf_event_task_migrate(p);
1244 }
1245
1246 __set_task_cpu(p, new_cpu);
1247 }
1248
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 if (task_on_rq_queued(p)) {
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
1257 p->on_rq = TASK_ON_RQ_MIGRATING;
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
1261 p->on_rq = TASK_ON_RQ_QUEUED;
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271 }
1272
1273 struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276 };
1277
1278 static int migrate_swap_stop(void *data)
1279 {
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
1292 double_rq_lock(src_rq, dst_rq);
1293
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311 unlock:
1312 double_rq_unlock(src_rq, dst_rq);
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * Cross migrate two tasks
1321 */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353 out:
1354 return ret;
1355 }
1356
1357 /*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 int running, queued;
1376 struct rq_flags rf;
1377 unsigned long ncsw;
1378 struct rq *rq;
1379
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
1388
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
1403 cpu_relax();
1404 }
1405
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
1411 rq = task_rq_lock(p, &rf);
1412 trace_sched_wait_task(p);
1413 running = task_running(rq, p);
1414 queued = task_on_rq_queued(p);
1415 ncsw = 0;
1416 if (!match_state || p->state == match_state)
1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 task_rq_unlock(rq, p, &rf);
1419
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
1436
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
1442 * So if it was still runnable (but just not actively
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
1446 if (unlikely(queued)) {
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 continue;
1452 }
1453
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
1461
1462 return ncsw;
1463 }
1464
1465 /***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
1472 * NOTE: this function doesn't have to take the runqueue lock,
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
1478 void kick_process(struct task_struct *p)
1479 {
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489
1490 /*
1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
1511 */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
1518
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
1534 }
1535
1536 for (;;) {
1537 /* Any allowed, online CPU? */
1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 if (!cpu_active(dest_cpu))
1540 continue;
1541 goto out;
1542 }
1543
1544 /* No more Mr. Nice Guy. */
1545 switch (state) {
1546 case cpuset:
1547 if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 cpuset_cpus_allowed_fallback(p);
1549 state = possible;
1550 break;
1551 }
1552 /* fall-through */
1553 case possible:
1554 do_set_cpus_allowed(p, cpu_possible_mask);
1555 state = fail;
1556 break;
1557
1558 case fail:
1559 BUG();
1560 break;
1561 }
1562 }
1563
1564 out:
1565 if (state != cpuset) {
1566 /*
1567 * Don't tell them about moving exiting tasks or
1568 * kernel threads (both mm NULL), since they never
1569 * leave kernel.
1570 */
1571 if (p->mm && printk_ratelimit()) {
1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 task_pid_nr(p), p->comm, cpu);
1574 }
1575 }
1576
1577 return dest_cpu;
1578 }
1579
1580 /*
1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582 */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 lockdep_assert_held(&p->pi_lock);
1587
1588 if (tsk_nr_cpus_allowed(p) > 1)
1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 else
1591 cpu = cpumask_any(tsk_cpus_allowed(p));
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 !cpu_online(cpu)))
1605 cpu = select_fallback_rq(task_cpu(p), p);
1606
1607 return cpu;
1608 }
1609
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614 }
1615
1616 #else
1617
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620 {
1621 return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623
1624 #endif /* CONFIG_SMP */
1625
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 struct rq *rq = this_rq();
1631
1632 #ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 rcu_read_lock();
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
1655 #endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
1658 schedstat_inc(p, se.statistics.nr_wakeups);
1659
1660 if (wake_flags & WF_SYNC)
1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 activate_task(rq, p, en_flags);
1669 p->on_rq = TASK_ON_RQ_QUEUED;
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675
1676 /*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 struct pin_cookie cookie)
1681 {
1682 check_preempt_curr(rq, p, wake_flags);
1683 p->state = TASK_RUNNING;
1684 trace_sched_wakeup(p);
1685
1686 #ifdef CONFIG_SMP
1687 if (p->sched_class->task_woken) {
1688 /*
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
1691 */
1692 lockdep_unpin_lock(&rq->lock, cookie);
1693 p->sched_class->task_woken(rq, p);
1694 lockdep_repin_lock(&rq->lock, cookie);
1695 }
1696
1697 if (rq->idle_stamp) {
1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 u64 max = 2*rq->max_idle_balance_cost;
1700
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
1704 rq->avg_idle = max;
1705
1706 rq->idle_stamp = 0;
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 struct pin_cookie cookie)
1714 {
1715 int en_flags = ENQUEUE_WAKEUP;
1716
1717 lockdep_assert_held(&rq->lock);
1718
1719 #ifdef CONFIG_SMP
1720 if (p->sched_contributes_to_load)
1721 rq->nr_uninterruptible--;
1722
1723 if (wake_flags & WF_MIGRATED)
1724 en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726
1727 ttwu_activate(rq, p, en_flags);
1728 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730
1731 /*
1732 * Called in case the task @p isn't fully descheduled from its runqueue,
1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734 * since all we need to do is flip p->state to TASK_RUNNING, since
1735 * the task is still ->on_rq.
1736 */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 struct rq_flags rf;
1740 struct rq *rq;
1741 int ret = 0;
1742
1743 rq = __task_rq_lock(p, &rf);
1744 if (task_on_rq_queued(p)) {
1745 /* check_preempt_curr() may use rq clock */
1746 update_rq_clock(rq);
1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 ret = 1;
1749 }
1750 __task_rq_unlock(rq, &rf);
1751
1752 return ret;
1753 }
1754
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 struct rq *rq = this_rq();
1759 struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 struct pin_cookie cookie;
1761 struct task_struct *p;
1762 unsigned long flags;
1763
1764 if (!llist)
1765 return;
1766
1767 raw_spin_lock_irqsave(&rq->lock, flags);
1768 cookie = lockdep_pin_lock(&rq->lock);
1769
1770 while (llist) {
1771 int wake_flags = 0;
1772
1773 p = llist_entry(llist, struct task_struct, wake_entry);
1774 llist = llist_next(llist);
1775
1776 if (p->sched_remote_wakeup)
1777 wake_flags = WF_MIGRATED;
1778
1779 ttwu_do_activate(rq, p, wake_flags, cookie);
1780 }
1781
1782 lockdep_unpin_lock(&rq->lock, cookie);
1783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1784 }
1785
1786 void scheduler_ipi(void)
1787 {
1788 /*
1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 * this IPI.
1792 */
1793 preempt_fold_need_resched();
1794
1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1796 return;
1797
1798 /*
1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 * traditionally all their work was done from the interrupt return
1801 * path. Now that we actually do some work, we need to make sure
1802 * we do call them.
1803 *
1804 * Some archs already do call them, luckily irq_enter/exit nest
1805 * properly.
1806 *
1807 * Arguably we should visit all archs and update all handlers,
1808 * however a fair share of IPIs are still resched only so this would
1809 * somewhat pessimize the simple resched case.
1810 */
1811 irq_enter();
1812 sched_ttwu_pending();
1813
1814 /*
1815 * Check if someone kicked us for doing the nohz idle load balance.
1816 */
1817 if (unlikely(got_nohz_idle_kick())) {
1818 this_rq()->idle_balance = 1;
1819 raise_softirq_irqoff(SCHED_SOFTIRQ);
1820 }
1821 irq_exit();
1822 }
1823
1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1825 {
1826 struct rq *rq = cpu_rq(cpu);
1827
1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829
1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 if (!set_nr_if_polling(rq->idle))
1832 smp_send_reschedule(cpu);
1833 else
1834 trace_sched_wake_idle_without_ipi(cpu);
1835 }
1836 }
1837
1838 void wake_up_if_idle(int cpu)
1839 {
1840 struct rq *rq = cpu_rq(cpu);
1841 unsigned long flags;
1842
1843 rcu_read_lock();
1844
1845 if (!is_idle_task(rcu_dereference(rq->curr)))
1846 goto out;
1847
1848 if (set_nr_if_polling(rq->idle)) {
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 } else {
1851 raw_spin_lock_irqsave(&rq->lock, flags);
1852 if (is_idle_task(rq->curr))
1853 smp_send_reschedule(cpu);
1854 /* Else cpu is not in idle, do nothing here */
1855 raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 }
1857
1858 out:
1859 rcu_read_unlock();
1860 }
1861
1862 bool cpus_share_cache(int this_cpu, int that_cpu)
1863 {
1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865 }
1866 #endif /* CONFIG_SMP */
1867
1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1869 {
1870 struct rq *rq = cpu_rq(cpu);
1871 struct pin_cookie cookie;
1872
1873 #if defined(CONFIG_SMP)
1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1876 ttwu_queue_remote(p, cpu, wake_flags);
1877 return;
1878 }
1879 #endif
1880
1881 raw_spin_lock(&rq->lock);
1882 cookie = lockdep_pin_lock(&rq->lock);
1883 ttwu_do_activate(rq, p, wake_flags, cookie);
1884 lockdep_unpin_lock(&rq->lock, cookie);
1885 raw_spin_unlock(&rq->lock);
1886 }
1887
1888 /*
1889 * Notes on Program-Order guarantees on SMP systems.
1890 *
1891 * MIGRATION
1892 *
1893 * The basic program-order guarantee on SMP systems is that when a task [t]
1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895 * execution on its new cpu [c1].
1896 *
1897 * For migration (of runnable tasks) this is provided by the following means:
1898 *
1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1901 * rq(c1)->lock (if not at the same time, then in that order).
1902 * C) LOCK of the rq(c1)->lock scheduling in task
1903 *
1904 * Transitivity guarantees that B happens after A and C after B.
1905 * Note: we only require RCpc transitivity.
1906 * Note: the cpu doing B need not be c0 or c1
1907 *
1908 * Example:
1909 *
1910 * CPU0 CPU1 CPU2
1911 *
1912 * LOCK rq(0)->lock
1913 * sched-out X
1914 * sched-in Y
1915 * UNLOCK rq(0)->lock
1916 *
1917 * LOCK rq(0)->lock // orders against CPU0
1918 * dequeue X
1919 * UNLOCK rq(0)->lock
1920 *
1921 * LOCK rq(1)->lock
1922 * enqueue X
1923 * UNLOCK rq(1)->lock
1924 *
1925 * LOCK rq(1)->lock // orders against CPU2
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(1)->lock
1929 *
1930 *
1931 * BLOCKING -- aka. SLEEP + WAKEUP
1932 *
1933 * For blocking we (obviously) need to provide the same guarantee as for
1934 * migration. However the means are completely different as there is no lock
1935 * chain to provide order. Instead we do:
1936 *
1937 * 1) smp_store_release(X->on_cpu, 0)
1938 * 2) smp_cond_acquire(!X->on_cpu)
1939 *
1940 * Example:
1941 *
1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1943 *
1944 * LOCK rq(0)->lock LOCK X->pi_lock
1945 * dequeue X
1946 * sched-out X
1947 * smp_store_release(X->on_cpu, 0);
1948 *
1949 * smp_cond_acquire(!X->on_cpu);
1950 * X->state = WAKING
1951 * set_task_cpu(X,2)
1952 *
1953 * LOCK rq(2)->lock
1954 * enqueue X
1955 * X->state = RUNNING
1956 * UNLOCK rq(2)->lock
1957 *
1958 * LOCK rq(2)->lock // orders against CPU1
1959 * sched-out Z
1960 * sched-in X
1961 * UNLOCK rq(2)->lock
1962 *
1963 * UNLOCK X->pi_lock
1964 * UNLOCK rq(0)->lock
1965 *
1966 *
1967 * However; for wakeups there is a second guarantee we must provide, namely we
1968 * must observe the state that lead to our wakeup. That is, not only must our
1969 * task observe its own prior state, it must also observe the stores prior to
1970 * its wakeup.
1971 *
1972 * This means that any means of doing remote wakeups must order the CPU doing
1973 * the wakeup against the CPU the task is going to end up running on. This,
1974 * however, is already required for the regular Program-Order guarantee above,
1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976 *
1977 */
1978
1979 /**
1980 * try_to_wake_up - wake up a thread
1981 * @p: the thread to be awakened
1982 * @state: the mask of task states that can be woken
1983 * @wake_flags: wake modifier flags (WF_*)
1984 *
1985 * Put it on the run-queue if it's not already there. The "current"
1986 * thread is always on the run-queue (except when the actual
1987 * re-schedule is in progress), and as such you're allowed to do
1988 * the simpler "current->state = TASK_RUNNING" to mark yourself
1989 * runnable without the overhead of this.
1990 *
1991 * Return: %true if @p was woken up, %false if it was already running.
1992 * or @state didn't match @p's state.
1993 */
1994 static int
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1996 {
1997 unsigned long flags;
1998 int cpu, success = 0;
1999
2000 /*
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2005 */
2006 smp_mb__before_spinlock();
2007 raw_spin_lock_irqsave(&p->pi_lock, flags);
2008 if (!(p->state & state))
2009 goto out;
2010
2011 trace_sched_waking(p);
2012
2013 success = 1; /* we're going to change ->state */
2014 cpu = task_cpu(p);
2015
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
2018
2019 #ifdef CONFIG_SMP
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
2039 /*
2040 * If the owning (remote) cpu is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2042 *
2043 * Pairs with the smp_store_release() in finish_lock_switch().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2047 */
2048 smp_cond_acquire(!p->on_cpu);
2049
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2052
2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
2056 set_task_cpu(p, cpu);
2057 }
2058 #endif /* CONFIG_SMP */
2059
2060 ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 if (schedstat_enabled())
2063 ttwu_stat(p, cpu, wake_flags);
2064 out:
2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2066
2067 return success;
2068 }
2069
2070 /**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
2073 *
2074 * Put @p on the run-queue if it's not already there. The caller must
2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076 * the current task.
2077 */
2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2079 {
2080 struct rq *rq = task_rq(p);
2081
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
2086 lockdep_assert_held(&rq->lock);
2087
2088 if (!raw_spin_trylock(&p->pi_lock)) {
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
2095 lockdep_unpin_lock(&rq->lock, cookie);
2096 raw_spin_unlock(&rq->lock);
2097 raw_spin_lock(&p->pi_lock);
2098 raw_spin_lock(&rq->lock);
2099 lockdep_repin_lock(&rq->lock, cookie);
2100 }
2101
2102 if (!(p->state & TASK_NORMAL))
2103 goto out;
2104
2105 trace_sched_waking(p);
2106
2107 if (!task_on_rq_queued(p))
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109
2110 ttwu_do_wakeup(rq, p, 0, cookie);
2111 if (schedstat_enabled())
2112 ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 raw_spin_unlock(&p->pi_lock);
2115 }
2116
2117 /**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 return try_to_wake_up(p, state, 0);
2138 }
2139
2140 /*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
2152
2153 dl_se->dl_throttled = 0;
2154 dl_se->dl_yielded = 0;
2155 }
2156
2157 /*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
2170 p->se.prev_sum_exec_runtime = 0;
2171 p->se.nr_migrations = 0;
2172 p->se.vruntime = 0;
2173 INIT_LIST_HEAD(&p->se.group_node);
2174
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177 #endif
2178
2179 #ifdef CONFIG_SCHEDSTATS
2180 /* Even if schedstat is disabled, there should not be garbage */
2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183
2184 RB_CLEAR_NODE(&p->dl.rb_node);
2185 init_dl_task_timer(&p->dl);
2186 __dl_clear_params(p);
2187
2188 INIT_LIST_HEAD(&p->rt.run_list);
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
2193
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197
2198 #ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 p->numa_work.next = &p->numa_work;
2213 p->numa_faults = NULL;
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
2216
2217 p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 if (enabled)
2228 static_branch_enable(&sched_numa_balancing);
2229 else
2230 static_branch_disable(&sched_numa_balancing);
2231 }
2232
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 struct ctl_table t;
2238 int err;
2239 int state = static_branch_likely(&sched_numa_balancing);
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252 }
2253 #endif
2254 #endif
2255
2256 #ifdef CONFIG_SCHEDSTATS
2257
2258 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2259 static bool __initdata __sched_schedstats = false;
2260
2261 static void set_schedstats(bool enabled)
2262 {
2263 if (enabled)
2264 static_branch_enable(&sched_schedstats);
2265 else
2266 static_branch_disable(&sched_schedstats);
2267 }
2268
2269 void force_schedstat_enabled(void)
2270 {
2271 if (!schedstat_enabled()) {
2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 static_branch_enable(&sched_schedstats);
2274 }
2275 }
2276
2277 static int __init setup_schedstats(char *str)
2278 {
2279 int ret = 0;
2280 if (!str)
2281 goto out;
2282
2283 /*
2284 * This code is called before jump labels have been set up, so we can't
2285 * change the static branch directly just yet. Instead set a temporary
2286 * variable so init_schedstats() can do it later.
2287 */
2288 if (!strcmp(str, "enable")) {
2289 __sched_schedstats = true;
2290 ret = 1;
2291 } else if (!strcmp(str, "disable")) {
2292 __sched_schedstats = false;
2293 ret = 1;
2294 }
2295 out:
2296 if (!ret)
2297 pr_warn("Unable to parse schedstats=\n");
2298
2299 return ret;
2300 }
2301 __setup("schedstats=", setup_schedstats);
2302
2303 static void __init init_schedstats(void)
2304 {
2305 set_schedstats(__sched_schedstats);
2306 }
2307
2308 #ifdef CONFIG_PROC_SYSCTL
2309 int sysctl_schedstats(struct ctl_table *table, int write,
2310 void __user *buffer, size_t *lenp, loff_t *ppos)
2311 {
2312 struct ctl_table t;
2313 int err;
2314 int state = static_branch_likely(&sched_schedstats);
2315
2316 if (write && !capable(CAP_SYS_ADMIN))
2317 return -EPERM;
2318
2319 t = *table;
2320 t.data = &state;
2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 if (err < 0)
2323 return err;
2324 if (write)
2325 set_schedstats(state);
2326 return err;
2327 }
2328 #endif /* CONFIG_PROC_SYSCTL */
2329 #else /* !CONFIG_SCHEDSTATS */
2330 static inline void init_schedstats(void) {}
2331 #endif /* CONFIG_SCHEDSTATS */
2332
2333 /*
2334 * fork()/clone()-time setup:
2335 */
2336 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2337 {
2338 unsigned long flags;
2339 int cpu = get_cpu();
2340
2341 __sched_fork(clone_flags, p);
2342 /*
2343 * We mark the process as running here. This guarantees that
2344 * nobody will actually run it, and a signal or other external
2345 * event cannot wake it up and insert it on the runqueue either.
2346 */
2347 p->state = TASK_RUNNING;
2348
2349 /*
2350 * Make sure we do not leak PI boosting priority to the child.
2351 */
2352 p->prio = current->normal_prio;
2353
2354 /*
2355 * Revert to default priority/policy on fork if requested.
2356 */
2357 if (unlikely(p->sched_reset_on_fork)) {
2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2359 p->policy = SCHED_NORMAL;
2360 p->static_prio = NICE_TO_PRIO(0);
2361 p->rt_priority = 0;
2362 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 p->static_prio = NICE_TO_PRIO(0);
2364
2365 p->prio = p->normal_prio = __normal_prio(p);
2366 set_load_weight(p);
2367
2368 /*
2369 * We don't need the reset flag anymore after the fork. It has
2370 * fulfilled its duty:
2371 */
2372 p->sched_reset_on_fork = 0;
2373 }
2374
2375 if (dl_prio(p->prio)) {
2376 put_cpu();
2377 return -EAGAIN;
2378 } else if (rt_prio(p->prio)) {
2379 p->sched_class = &rt_sched_class;
2380 } else {
2381 p->sched_class = &fair_sched_class;
2382 }
2383
2384 if (p->sched_class->task_fork)
2385 p->sched_class->task_fork(p);
2386
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
2395 set_task_cpu(p, cpu);
2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397
2398 #ifdef CONFIG_SCHED_INFO
2399 if (likely(sched_info_on()))
2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP)
2403 p->on_cpu = 0;
2404 #endif
2405 init_task_preempt_count(p);
2406 #ifdef CONFIG_SMP
2407 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409 #endif
2410
2411 put_cpu();
2412 return 0;
2413 }
2414
2415 unsigned long to_ratio(u64 period, u64 runtime)
2416 {
2417 if (runtime == RUNTIME_INF)
2418 return 1ULL << 20;
2419
2420 /*
2421 * Doing this here saves a lot of checks in all
2422 * the calling paths, and returning zero seems
2423 * safe for them anyway.
2424 */
2425 if (period == 0)
2426 return 0;
2427
2428 return div64_u64(runtime << 20, period);
2429 }
2430
2431 #ifdef CONFIG_SMP
2432 inline struct dl_bw *dl_bw_of(int i)
2433 {
2434 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2435 "sched RCU must be held");
2436 return &cpu_rq(i)->rd->dl_bw;
2437 }
2438
2439 static inline int dl_bw_cpus(int i)
2440 {
2441 struct root_domain *rd = cpu_rq(i)->rd;
2442 int cpus = 0;
2443
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
2446 for_each_cpu_and(i, rd->span, cpu_active_mask)
2447 cpus++;
2448
2449 return cpus;
2450 }
2451 #else
2452 inline struct dl_bw *dl_bw_of(int i)
2453 {
2454 return &cpu_rq(i)->dl.dl_bw;
2455 }
2456
2457 static inline int dl_bw_cpus(int i)
2458 {
2459 return 1;
2460 }
2461 #endif
2462
2463 /*
2464 * We must be sure that accepting a new task (or allowing changing the
2465 * parameters of an existing one) is consistent with the bandwidth
2466 * constraints. If yes, this function also accordingly updates the currently
2467 * allocated bandwidth to reflect the new situation.
2468 *
2469 * This function is called while holding p's rq->lock.
2470 *
2471 * XXX we should delay bw change until the task's 0-lag point, see
2472 * __setparam_dl().
2473 */
2474 static int dl_overflow(struct task_struct *p, int policy,
2475 const struct sched_attr *attr)
2476 {
2477
2478 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2479 u64 period = attr->sched_period ?: attr->sched_deadline;
2480 u64 runtime = attr->sched_runtime;
2481 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2482 int cpus, err = -1;
2483
2484 /* !deadline task may carry old deadline bandwidth */
2485 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2486 return 0;
2487
2488 /*
2489 * Either if a task, enters, leave, or stays -deadline but changes
2490 * its parameters, we may need to update accordingly the total
2491 * allocated bandwidth of the container.
2492 */
2493 raw_spin_lock(&dl_b->lock);
2494 cpus = dl_bw_cpus(task_cpu(p));
2495 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2496 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2497 __dl_add(dl_b, new_bw);
2498 err = 0;
2499 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2500 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2501 __dl_clear(dl_b, p->dl.dl_bw);
2502 __dl_add(dl_b, new_bw);
2503 err = 0;
2504 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2505 __dl_clear(dl_b, p->dl.dl_bw);
2506 err = 0;
2507 }
2508 raw_spin_unlock(&dl_b->lock);
2509
2510 return err;
2511 }
2512
2513 extern void init_dl_bw(struct dl_bw *dl_b);
2514
2515 /*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
2522 void wake_up_new_task(struct task_struct *p)
2523 {
2524 struct rq_flags rf;
2525 struct rq *rq;
2526
2527 /* Initialize new task's runnable average */
2528 init_entity_runnable_average(&p->se);
2529 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2530 #ifdef CONFIG_SMP
2531 /*
2532 * Fork balancing, do it here and not earlier because:
2533 * - cpus_allowed can change in the fork path
2534 * - any previously selected cpu might disappear through hotplug
2535 */
2536 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2537 #endif
2538 rq = __task_rq_lock(p, &rf);
2539 post_init_entity_util_avg(&p->se);
2540
2541 activate_task(rq, p, 0);
2542 p->on_rq = TASK_ON_RQ_QUEUED;
2543 trace_sched_wakeup_new(p);
2544 check_preempt_curr(rq, p, WF_FORK);
2545 #ifdef CONFIG_SMP
2546 if (p->sched_class->task_woken) {
2547 /*
2548 * Nothing relies on rq->lock after this, so its fine to
2549 * drop it.
2550 */
2551 lockdep_unpin_lock(&rq->lock, rf.cookie);
2552 p->sched_class->task_woken(rq, p);
2553 lockdep_repin_lock(&rq->lock, rf.cookie);
2554 }
2555 #endif
2556 task_rq_unlock(rq, p, &rf);
2557 }
2558
2559 #ifdef CONFIG_PREEMPT_NOTIFIERS
2560
2561 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2562
2563 void preempt_notifier_inc(void)
2564 {
2565 static_key_slow_inc(&preempt_notifier_key);
2566 }
2567 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2568
2569 void preempt_notifier_dec(void)
2570 {
2571 static_key_slow_dec(&preempt_notifier_key);
2572 }
2573 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2574
2575 /**
2576 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2577 * @notifier: notifier struct to register
2578 */
2579 void preempt_notifier_register(struct preempt_notifier *notifier)
2580 {
2581 if (!static_key_false(&preempt_notifier_key))
2582 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2583
2584 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2585 }
2586 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2587
2588 /**
2589 * preempt_notifier_unregister - no longer interested in preemption notifications
2590 * @notifier: notifier struct to unregister
2591 *
2592 * This is *not* safe to call from within a preemption notifier.
2593 */
2594 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2595 {
2596 hlist_del(&notifier->link);
2597 }
2598 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2599
2600 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2601 {
2602 struct preempt_notifier *notifier;
2603
2604 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2605 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2606 }
2607
2608 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2609 {
2610 if (static_key_false(&preempt_notifier_key))
2611 __fire_sched_in_preempt_notifiers(curr);
2612 }
2613
2614 static void
2615 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2616 struct task_struct *next)
2617 {
2618 struct preempt_notifier *notifier;
2619
2620 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_out(notifier, next);
2622 }
2623
2624 static __always_inline void
2625 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627 {
2628 if (static_key_false(&preempt_notifier_key))
2629 __fire_sched_out_preempt_notifiers(curr, next);
2630 }
2631
2632 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2633
2634 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2635 {
2636 }
2637
2638 static inline void
2639 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2641 {
2642 }
2643
2644 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2645
2646 /**
2647 * prepare_task_switch - prepare to switch tasks
2648 * @rq: the runqueue preparing to switch
2649 * @prev: the current task that is being switched out
2650 * @next: the task we are going to switch to.
2651 *
2652 * This is called with the rq lock held and interrupts off. It must
2653 * be paired with a subsequent finish_task_switch after the context
2654 * switch.
2655 *
2656 * prepare_task_switch sets up locking and calls architecture specific
2657 * hooks.
2658 */
2659 static inline void
2660 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2661 struct task_struct *next)
2662 {
2663 sched_info_switch(rq, prev, next);
2664 perf_event_task_sched_out(prev, next);
2665 fire_sched_out_preempt_notifiers(prev, next);
2666 prepare_lock_switch(rq, next);
2667 prepare_arch_switch(next);
2668 }
2669
2670 /**
2671 * finish_task_switch - clean up after a task-switch
2672 * @prev: the thread we just switched away from.
2673 *
2674 * finish_task_switch must be called after the context switch, paired
2675 * with a prepare_task_switch call before the context switch.
2676 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2677 * and do any other architecture-specific cleanup actions.
2678 *
2679 * Note that we may have delayed dropping an mm in context_switch(). If
2680 * so, we finish that here outside of the runqueue lock. (Doing it
2681 * with the lock held can cause deadlocks; see schedule() for
2682 * details.)
2683 *
2684 * The context switch have flipped the stack from under us and restored the
2685 * local variables which were saved when this task called schedule() in the
2686 * past. prev == current is still correct but we need to recalculate this_rq
2687 * because prev may have moved to another CPU.
2688 */
2689 static struct rq *finish_task_switch(struct task_struct *prev)
2690 __releases(rq->lock)
2691 {
2692 struct rq *rq = this_rq();
2693 struct mm_struct *mm = rq->prev_mm;
2694 long prev_state;
2695
2696 /*
2697 * The previous task will have left us with a preempt_count of 2
2698 * because it left us after:
2699 *
2700 * schedule()
2701 * preempt_disable(); // 1
2702 * __schedule()
2703 * raw_spin_lock_irq(&rq->lock) // 2
2704 *
2705 * Also, see FORK_PREEMPT_COUNT.
2706 */
2707 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2708 "corrupted preempt_count: %s/%d/0x%x\n",
2709 current->comm, current->pid, preempt_count()))
2710 preempt_count_set(FORK_PREEMPT_COUNT);
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
2719 *
2720 * We must observe prev->state before clearing prev->on_cpu (in
2721 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2722 * running on another CPU and we could rave with its RUNNING -> DEAD
2723 * transition, resulting in a double drop.
2724 */
2725 prev_state = prev->state;
2726 vtime_task_switch(prev);
2727 perf_event_task_sched_in(prev, current);
2728 finish_lock_switch(rq, prev);
2729 finish_arch_post_lock_switch();
2730
2731 fire_sched_in_preempt_notifiers(current);
2732 if (mm)
2733 mmdrop(mm);
2734 if (unlikely(prev_state == TASK_DEAD)) {
2735 if (prev->sched_class->task_dead)
2736 prev->sched_class->task_dead(prev);
2737
2738 /*
2739 * Remove function-return probe instances associated with this
2740 * task and put them back on the free list.
2741 */
2742 kprobe_flush_task(prev);
2743 put_task_struct(prev);
2744 }
2745
2746 tick_nohz_task_switch();
2747 return rq;
2748 }
2749
2750 #ifdef CONFIG_SMP
2751
2752 /* rq->lock is NOT held, but preemption is disabled */
2753 static void __balance_callback(struct rq *rq)
2754 {
2755 struct callback_head *head, *next;
2756 void (*func)(struct rq *rq);
2757 unsigned long flags;
2758
2759 raw_spin_lock_irqsave(&rq->lock, flags);
2760 head = rq->balance_callback;
2761 rq->balance_callback = NULL;
2762 while (head) {
2763 func = (void (*)(struct rq *))head->func;
2764 next = head->next;
2765 head->next = NULL;
2766 head = next;
2767
2768 func(rq);
2769 }
2770 raw_spin_unlock_irqrestore(&rq->lock, flags);
2771 }
2772
2773 static inline void balance_callback(struct rq *rq)
2774 {
2775 if (unlikely(rq->balance_callback))
2776 __balance_callback(rq);
2777 }
2778
2779 #else
2780
2781 static inline void balance_callback(struct rq *rq)
2782 {
2783 }
2784
2785 #endif
2786
2787 /**
2788 * schedule_tail - first thing a freshly forked thread must call.
2789 * @prev: the thread we just switched away from.
2790 */
2791 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2792 __releases(rq->lock)
2793 {
2794 struct rq *rq;
2795
2796 /*
2797 * New tasks start with FORK_PREEMPT_COUNT, see there and
2798 * finish_task_switch() for details.
2799 *
2800 * finish_task_switch() will drop rq->lock() and lower preempt_count
2801 * and the preempt_enable() will end up enabling preemption (on
2802 * PREEMPT_COUNT kernels).
2803 */
2804
2805 rq = finish_task_switch(prev);
2806 balance_callback(rq);
2807 preempt_enable();
2808
2809 if (current->set_child_tid)
2810 put_user(task_pid_vnr(current), current->set_child_tid);
2811 }
2812
2813 /*
2814 * context_switch - switch to the new MM and the new thread's register state.
2815 */
2816 static __always_inline struct rq *
2817 context_switch(struct rq *rq, struct task_struct *prev,
2818 struct task_struct *next, struct pin_cookie cookie)
2819 {
2820 struct mm_struct *mm, *oldmm;
2821
2822 prepare_task_switch(rq, prev, next);
2823
2824 mm = next->mm;
2825 oldmm = prev->active_mm;
2826 /*
2827 * For paravirt, this is coupled with an exit in switch_to to
2828 * combine the page table reload and the switch backend into
2829 * one hypercall.
2830 */
2831 arch_start_context_switch(prev);
2832
2833 if (!mm) {
2834 next->active_mm = oldmm;
2835 atomic_inc(&oldmm->mm_count);
2836 enter_lazy_tlb(oldmm, next);
2837 } else
2838 switch_mm_irqs_off(oldmm, mm, next);
2839
2840 if (!prev->mm) {
2841 prev->active_mm = NULL;
2842 rq->prev_mm = oldmm;
2843 }
2844 /*
2845 * Since the runqueue lock will be released by the next
2846 * task (which is an invalid locking op but in the case
2847 * of the scheduler it's an obvious special-case), so we
2848 * do an early lockdep release here:
2849 */
2850 lockdep_unpin_lock(&rq->lock, cookie);
2851 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2852
2853 /* Here we just switch the register state and the stack. */
2854 switch_to(prev, next, prev);
2855 barrier();
2856
2857 return finish_task_switch(prev);
2858 }
2859
2860 /*
2861 * nr_running and nr_context_switches:
2862 *
2863 * externally visible scheduler statistics: current number of runnable
2864 * threads, total number of context switches performed since bootup.
2865 */
2866 unsigned long nr_running(void)
2867 {
2868 unsigned long i, sum = 0;
2869
2870 for_each_online_cpu(i)
2871 sum += cpu_rq(i)->nr_running;
2872
2873 return sum;
2874 }
2875
2876 /*
2877 * Check if only the current task is running on the cpu.
2878 *
2879 * Caution: this function does not check that the caller has disabled
2880 * preemption, thus the result might have a time-of-check-to-time-of-use
2881 * race. The caller is responsible to use it correctly, for example:
2882 *
2883 * - from a non-preemptable section (of course)
2884 *
2885 * - from a thread that is bound to a single CPU
2886 *
2887 * - in a loop with very short iterations (e.g. a polling loop)
2888 */
2889 bool single_task_running(void)
2890 {
2891 return raw_rq()->nr_running == 1;
2892 }
2893 EXPORT_SYMBOL(single_task_running);
2894
2895 unsigned long long nr_context_switches(void)
2896 {
2897 int i;
2898 unsigned long long sum = 0;
2899
2900 for_each_possible_cpu(i)
2901 sum += cpu_rq(i)->nr_switches;
2902
2903 return sum;
2904 }
2905
2906 unsigned long nr_iowait(void)
2907 {
2908 unsigned long i, sum = 0;
2909
2910 for_each_possible_cpu(i)
2911 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2912
2913 return sum;
2914 }
2915
2916 unsigned long nr_iowait_cpu(int cpu)
2917 {
2918 struct rq *this = cpu_rq(cpu);
2919 return atomic_read(&this->nr_iowait);
2920 }
2921
2922 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2923 {
2924 struct rq *rq = this_rq();
2925 *nr_waiters = atomic_read(&rq->nr_iowait);
2926 *load = rq->load.weight;
2927 }
2928
2929 #ifdef CONFIG_SMP
2930
2931 /*
2932 * sched_exec - execve() is a valuable balancing opportunity, because at
2933 * this point the task has the smallest effective memory and cache footprint.
2934 */
2935 void sched_exec(void)
2936 {
2937 struct task_struct *p = current;
2938 unsigned long flags;
2939 int dest_cpu;
2940
2941 raw_spin_lock_irqsave(&p->pi_lock, flags);
2942 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2943 if (dest_cpu == smp_processor_id())
2944 goto unlock;
2945
2946 if (likely(cpu_active(dest_cpu))) {
2947 struct migration_arg arg = { p, dest_cpu };
2948
2949 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2950 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2951 return;
2952 }
2953 unlock:
2954 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2955 }
2956
2957 #endif
2958
2959 DEFINE_PER_CPU(struct kernel_stat, kstat);
2960 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2961
2962 EXPORT_PER_CPU_SYMBOL(kstat);
2963 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2964
2965 /*
2966 * Return accounted runtime for the task.
2967 * In case the task is currently running, return the runtime plus current's
2968 * pending runtime that have not been accounted yet.
2969 */
2970 unsigned long long task_sched_runtime(struct task_struct *p)
2971 {
2972 struct rq_flags rf;
2973 struct rq *rq;
2974 u64 ns;
2975
2976 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2977 /*
2978 * 64-bit doesn't need locks to atomically read a 64bit value.
2979 * So we have a optimization chance when the task's delta_exec is 0.
2980 * Reading ->on_cpu is racy, but this is ok.
2981 *
2982 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2983 * If we race with it entering cpu, unaccounted time is 0. This is
2984 * indistinguishable from the read occurring a few cycles earlier.
2985 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2986 * been accounted, so we're correct here as well.
2987 */
2988 if (!p->on_cpu || !task_on_rq_queued(p))
2989 return p->se.sum_exec_runtime;
2990 #endif
2991
2992 rq = task_rq_lock(p, &rf);
2993 /*
2994 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2995 * project cycles that may never be accounted to this
2996 * thread, breaking clock_gettime().
2997 */
2998 if (task_current(rq, p) && task_on_rq_queued(p)) {
2999 update_rq_clock(rq);
3000 p->sched_class->update_curr(rq);
3001 }
3002 ns = p->se.sum_exec_runtime;
3003 task_rq_unlock(rq, p, &rf);
3004
3005 return ns;
3006 }
3007
3008 /*
3009 * This function gets called by the timer code, with HZ frequency.
3010 * We call it with interrupts disabled.
3011 */
3012 void scheduler_tick(void)
3013 {
3014 int cpu = smp_processor_id();
3015 struct rq *rq = cpu_rq(cpu);
3016 struct task_struct *curr = rq->curr;
3017
3018 sched_clock_tick();
3019
3020 raw_spin_lock(&rq->lock);
3021 update_rq_clock(rq);
3022 curr->sched_class->task_tick(rq, curr, 0);
3023 cpu_load_update_active(rq);
3024 calc_global_load_tick(rq);
3025 raw_spin_unlock(&rq->lock);
3026
3027 perf_event_task_tick();
3028
3029 #ifdef CONFIG_SMP
3030 rq->idle_balance = idle_cpu(cpu);
3031 trigger_load_balance(rq);
3032 #endif
3033 rq_last_tick_reset(rq);
3034 }
3035
3036 #ifdef CONFIG_NO_HZ_FULL
3037 /**
3038 * scheduler_tick_max_deferment
3039 *
3040 * Keep at least one tick per second when a single
3041 * active task is running because the scheduler doesn't
3042 * yet completely support full dynticks environment.
3043 *
3044 * This makes sure that uptime, CFS vruntime, load
3045 * balancing, etc... continue to move forward, even
3046 * with a very low granularity.
3047 *
3048 * Return: Maximum deferment in nanoseconds.
3049 */
3050 u64 scheduler_tick_max_deferment(void)
3051 {
3052 struct rq *rq = this_rq();
3053 unsigned long next, now = READ_ONCE(jiffies);
3054
3055 next = rq->last_sched_tick + HZ;
3056
3057 if (time_before_eq(next, now))
3058 return 0;
3059
3060 return jiffies_to_nsecs(next - now);
3061 }
3062 #endif
3063
3064 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3065 defined(CONFIG_PREEMPT_TRACER))
3066 /*
3067 * If the value passed in is equal to the current preempt count
3068 * then we just disabled preemption. Start timing the latency.
3069 */
3070 static inline void preempt_latency_start(int val)
3071 {
3072 if (preempt_count() == val) {
3073 unsigned long ip = get_lock_parent_ip();
3074 #ifdef CONFIG_DEBUG_PREEMPT
3075 current->preempt_disable_ip = ip;
3076 #endif
3077 trace_preempt_off(CALLER_ADDR0, ip);
3078 }
3079 }
3080
3081 void preempt_count_add(int val)
3082 {
3083 #ifdef CONFIG_DEBUG_PREEMPT
3084 /*
3085 * Underflow?
3086 */
3087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3088 return;
3089 #endif
3090 __preempt_count_add(val);
3091 #ifdef CONFIG_DEBUG_PREEMPT
3092 /*
3093 * Spinlock count overflowing soon?
3094 */
3095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3096 PREEMPT_MASK - 10);
3097 #endif
3098 preempt_latency_start(val);
3099 }
3100 EXPORT_SYMBOL(preempt_count_add);
3101 NOKPROBE_SYMBOL(preempt_count_add);
3102
3103 /*
3104 * If the value passed in equals to the current preempt count
3105 * then we just enabled preemption. Stop timing the latency.
3106 */
3107 static inline void preempt_latency_stop(int val)
3108 {
3109 if (preempt_count() == val)
3110 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3111 }
3112
3113 void preempt_count_sub(int val)
3114 {
3115 #ifdef CONFIG_DEBUG_PREEMPT
3116 /*
3117 * Underflow?
3118 */
3119 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3120 return;
3121 /*
3122 * Is the spinlock portion underflowing?
3123 */
3124 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3125 !(preempt_count() & PREEMPT_MASK)))
3126 return;
3127 #endif
3128
3129 preempt_latency_stop(val);
3130 __preempt_count_sub(val);
3131 }
3132 EXPORT_SYMBOL(preempt_count_sub);
3133 NOKPROBE_SYMBOL(preempt_count_sub);
3134
3135 #else
3136 static inline void preempt_latency_start(int val) { }
3137 static inline void preempt_latency_stop(int val) { }
3138 #endif
3139
3140 /*
3141 * Print scheduling while atomic bug:
3142 */
3143 static noinline void __schedule_bug(struct task_struct *prev)
3144 {
3145 if (oops_in_progress)
3146 return;
3147
3148 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3149 prev->comm, prev->pid, preempt_count());
3150
3151 debug_show_held_locks(prev);
3152 print_modules();
3153 if (irqs_disabled())
3154 print_irqtrace_events(prev);
3155 #ifdef CONFIG_DEBUG_PREEMPT
3156 if (in_atomic_preempt_off()) {
3157 pr_err("Preemption disabled at:");
3158 print_ip_sym(current->preempt_disable_ip);
3159 pr_cont("\n");
3160 }
3161 #endif
3162 dump_stack();
3163 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3164 }
3165
3166 /*
3167 * Various schedule()-time debugging checks and statistics:
3168 */
3169 static inline void schedule_debug(struct task_struct *prev)
3170 {
3171 #ifdef CONFIG_SCHED_STACK_END_CHECK
3172 if (task_stack_end_corrupted(prev))
3173 panic("corrupted stack end detected inside scheduler\n");
3174 #endif
3175
3176 if (unlikely(in_atomic_preempt_off())) {
3177 __schedule_bug(prev);
3178 preempt_count_set(PREEMPT_DISABLED);
3179 }
3180 rcu_sleep_check();
3181
3182 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3183
3184 schedstat_inc(this_rq(), sched_count);
3185 }
3186
3187 /*
3188 * Pick up the highest-prio task:
3189 */
3190 static inline struct task_struct *
3191 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3192 {
3193 const struct sched_class *class = &fair_sched_class;
3194 struct task_struct *p;
3195
3196 /*
3197 * Optimization: we know that if all tasks are in
3198 * the fair class we can call that function directly:
3199 */
3200 if (likely(prev->sched_class == class &&
3201 rq->nr_running == rq->cfs.h_nr_running)) {
3202 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3203 if (unlikely(p == RETRY_TASK))
3204 goto again;
3205
3206 /* assumes fair_sched_class->next == idle_sched_class */
3207 if (unlikely(!p))
3208 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3209
3210 return p;
3211 }
3212
3213 again:
3214 for_each_class(class) {
3215 p = class->pick_next_task(rq, prev, cookie);
3216 if (p) {
3217 if (unlikely(p == RETRY_TASK))
3218 goto again;
3219 return p;
3220 }
3221 }
3222
3223 BUG(); /* the idle class will always have a runnable task */
3224 }
3225
3226 /*
3227 * __schedule() is the main scheduler function.
3228 *
3229 * The main means of driving the scheduler and thus entering this function are:
3230 *
3231 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3232 *
3233 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3234 * paths. For example, see arch/x86/entry_64.S.
3235 *
3236 * To drive preemption between tasks, the scheduler sets the flag in timer
3237 * interrupt handler scheduler_tick().
3238 *
3239 * 3. Wakeups don't really cause entry into schedule(). They add a
3240 * task to the run-queue and that's it.
3241 *
3242 * Now, if the new task added to the run-queue preempts the current
3243 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3244 * called on the nearest possible occasion:
3245 *
3246 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3247 *
3248 * - in syscall or exception context, at the next outmost
3249 * preempt_enable(). (this might be as soon as the wake_up()'s
3250 * spin_unlock()!)
3251 *
3252 * - in IRQ context, return from interrupt-handler to
3253 * preemptible context
3254 *
3255 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3256 * then at the next:
3257 *
3258 * - cond_resched() call
3259 * - explicit schedule() call
3260 * - return from syscall or exception to user-space
3261 * - return from interrupt-handler to user-space
3262 *
3263 * WARNING: must be called with preemption disabled!
3264 */
3265 static void __sched notrace __schedule(bool preempt)
3266 {
3267 struct task_struct *prev, *next;
3268 unsigned long *switch_count;
3269 struct pin_cookie cookie;
3270 struct rq *rq;
3271 int cpu;
3272
3273 cpu = smp_processor_id();
3274 rq = cpu_rq(cpu);
3275 prev = rq->curr;
3276
3277 /*
3278 * do_exit() calls schedule() with preemption disabled as an exception;
3279 * however we must fix that up, otherwise the next task will see an
3280 * inconsistent (higher) preempt count.
3281 *
3282 * It also avoids the below schedule_debug() test from complaining
3283 * about this.
3284 */
3285 if (unlikely(prev->state == TASK_DEAD))
3286 preempt_enable_no_resched_notrace();
3287
3288 schedule_debug(prev);
3289
3290 if (sched_feat(HRTICK))
3291 hrtick_clear(rq);
3292
3293 local_irq_disable();
3294 rcu_note_context_switch();
3295
3296 /*
3297 * Make sure that signal_pending_state()->signal_pending() below
3298 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3299 * done by the caller to avoid the race with signal_wake_up().
3300 */
3301 smp_mb__before_spinlock();
3302 raw_spin_lock(&rq->lock);
3303 cookie = lockdep_pin_lock(&rq->lock);
3304
3305 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3306
3307 switch_count = &prev->nivcsw;
3308 if (!preempt && prev->state) {
3309 if (unlikely(signal_pending_state(prev->state, prev))) {
3310 prev->state = TASK_RUNNING;
3311 } else {
3312 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3313 prev->on_rq = 0;
3314
3315 /*
3316 * If a worker went to sleep, notify and ask workqueue
3317 * whether it wants to wake up a task to maintain
3318 * concurrency.
3319 */
3320 if (prev->flags & PF_WQ_WORKER) {
3321 struct task_struct *to_wakeup;
3322
3323 to_wakeup = wq_worker_sleeping(prev);
3324 if (to_wakeup)
3325 try_to_wake_up_local(to_wakeup, cookie);
3326 }
3327 }
3328 switch_count = &prev->nvcsw;
3329 }
3330
3331 if (task_on_rq_queued(prev))
3332 update_rq_clock(rq);
3333
3334 next = pick_next_task(rq, prev, cookie);
3335 clear_tsk_need_resched(prev);
3336 clear_preempt_need_resched();
3337 rq->clock_skip_update = 0;
3338
3339 if (likely(prev != next)) {
3340 rq->nr_switches++;
3341 rq->curr = next;
3342 ++*switch_count;
3343
3344 trace_sched_switch(preempt, prev, next);
3345 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3346 } else {
3347 lockdep_unpin_lock(&rq->lock, cookie);
3348 raw_spin_unlock_irq(&rq->lock);
3349 }
3350
3351 balance_callback(rq);
3352 }
3353 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3354
3355 static inline void sched_submit_work(struct task_struct *tsk)
3356 {
3357 if (!tsk->state || tsk_is_pi_blocked(tsk))
3358 return;
3359 /*
3360 * If we are going to sleep and we have plugged IO queued,
3361 * make sure to submit it to avoid deadlocks.
3362 */
3363 if (blk_needs_flush_plug(tsk))
3364 blk_schedule_flush_plug(tsk);
3365 }
3366
3367 asmlinkage __visible void __sched schedule(void)
3368 {
3369 struct task_struct *tsk = current;
3370
3371 sched_submit_work(tsk);
3372 do {
3373 preempt_disable();
3374 __schedule(false);
3375 sched_preempt_enable_no_resched();
3376 } while (need_resched());
3377 }
3378 EXPORT_SYMBOL(schedule);
3379
3380 #ifdef CONFIG_CONTEXT_TRACKING
3381 asmlinkage __visible void __sched schedule_user(void)
3382 {
3383 /*
3384 * If we come here after a random call to set_need_resched(),
3385 * or we have been woken up remotely but the IPI has not yet arrived,
3386 * we haven't yet exited the RCU idle mode. Do it here manually until
3387 * we find a better solution.
3388 *
3389 * NB: There are buggy callers of this function. Ideally we
3390 * should warn if prev_state != CONTEXT_USER, but that will trigger
3391 * too frequently to make sense yet.
3392 */
3393 enum ctx_state prev_state = exception_enter();
3394 schedule();
3395 exception_exit(prev_state);
3396 }
3397 #endif
3398
3399 /**
3400 * schedule_preempt_disabled - called with preemption disabled
3401 *
3402 * Returns with preemption disabled. Note: preempt_count must be 1
3403 */
3404 void __sched schedule_preempt_disabled(void)
3405 {
3406 sched_preempt_enable_no_resched();
3407 schedule();
3408 preempt_disable();
3409 }
3410
3411 static void __sched notrace preempt_schedule_common(void)
3412 {
3413 do {
3414 /*
3415 * Because the function tracer can trace preempt_count_sub()
3416 * and it also uses preempt_enable/disable_notrace(), if
3417 * NEED_RESCHED is set, the preempt_enable_notrace() called
3418 * by the function tracer will call this function again and
3419 * cause infinite recursion.
3420 *
3421 * Preemption must be disabled here before the function
3422 * tracer can trace. Break up preempt_disable() into two
3423 * calls. One to disable preemption without fear of being
3424 * traced. The other to still record the preemption latency,
3425 * which can also be traced by the function tracer.
3426 */
3427 preempt_disable_notrace();
3428 preempt_latency_start(1);
3429 __schedule(true);
3430 preempt_latency_stop(1);
3431 preempt_enable_no_resched_notrace();
3432
3433 /*
3434 * Check again in case we missed a preemption opportunity
3435 * between schedule and now.
3436 */
3437 } while (need_resched());
3438 }
3439
3440 #ifdef CONFIG_PREEMPT
3441 /*
3442 * this is the entry point to schedule() from in-kernel preemption
3443 * off of preempt_enable. Kernel preemptions off return from interrupt
3444 * occur there and call schedule directly.
3445 */
3446 asmlinkage __visible void __sched notrace preempt_schedule(void)
3447 {
3448 /*
3449 * If there is a non-zero preempt_count or interrupts are disabled,
3450 * we do not want to preempt the current task. Just return..
3451 */
3452 if (likely(!preemptible()))
3453 return;
3454
3455 preempt_schedule_common();
3456 }
3457 NOKPROBE_SYMBOL(preempt_schedule);
3458 EXPORT_SYMBOL(preempt_schedule);
3459
3460 /**
3461 * preempt_schedule_notrace - preempt_schedule called by tracing
3462 *
3463 * The tracing infrastructure uses preempt_enable_notrace to prevent
3464 * recursion and tracing preempt enabling caused by the tracing
3465 * infrastructure itself. But as tracing can happen in areas coming
3466 * from userspace or just about to enter userspace, a preempt enable
3467 * can occur before user_exit() is called. This will cause the scheduler
3468 * to be called when the system is still in usermode.
3469 *
3470 * To prevent this, the preempt_enable_notrace will use this function
3471 * instead of preempt_schedule() to exit user context if needed before
3472 * calling the scheduler.
3473 */
3474 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3475 {
3476 enum ctx_state prev_ctx;
3477
3478 if (likely(!preemptible()))
3479 return;
3480
3481 do {
3482 /*
3483 * Because the function tracer can trace preempt_count_sub()
3484 * and it also uses preempt_enable/disable_notrace(), if
3485 * NEED_RESCHED is set, the preempt_enable_notrace() called
3486 * by the function tracer will call this function again and
3487 * cause infinite recursion.
3488 *
3489 * Preemption must be disabled here before the function
3490 * tracer can trace. Break up preempt_disable() into two
3491 * calls. One to disable preemption without fear of being
3492 * traced. The other to still record the preemption latency,
3493 * which can also be traced by the function tracer.
3494 */
3495 preempt_disable_notrace();
3496 preempt_latency_start(1);
3497 /*
3498 * Needs preempt disabled in case user_exit() is traced
3499 * and the tracer calls preempt_enable_notrace() causing
3500 * an infinite recursion.
3501 */
3502 prev_ctx = exception_enter();
3503 __schedule(true);
3504 exception_exit(prev_ctx);
3505
3506 preempt_latency_stop(1);
3507 preempt_enable_no_resched_notrace();
3508 } while (need_resched());
3509 }
3510 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3511
3512 #endif /* CONFIG_PREEMPT */
3513
3514 /*
3515 * this is the entry point to schedule() from kernel preemption
3516 * off of irq context.
3517 * Note, that this is called and return with irqs disabled. This will
3518 * protect us against recursive calling from irq.
3519 */
3520 asmlinkage __visible void __sched preempt_schedule_irq(void)
3521 {
3522 enum ctx_state prev_state;
3523
3524 /* Catch callers which need to be fixed */
3525 BUG_ON(preempt_count() || !irqs_disabled());
3526
3527 prev_state = exception_enter();
3528
3529 do {
3530 preempt_disable();
3531 local_irq_enable();
3532 __schedule(true);
3533 local_irq_disable();
3534 sched_preempt_enable_no_resched();
3535 } while (need_resched());
3536
3537 exception_exit(prev_state);
3538 }
3539
3540 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3541 void *key)
3542 {
3543 return try_to_wake_up(curr->private, mode, wake_flags);
3544 }
3545 EXPORT_SYMBOL(default_wake_function);
3546
3547 #ifdef CONFIG_RT_MUTEXES
3548
3549 /*
3550 * rt_mutex_setprio - set the current priority of a task
3551 * @p: task
3552 * @prio: prio value (kernel-internal form)
3553 *
3554 * This function changes the 'effective' priority of a task. It does
3555 * not touch ->normal_prio like __setscheduler().
3556 *
3557 * Used by the rt_mutex code to implement priority inheritance
3558 * logic. Call site only calls if the priority of the task changed.
3559 */
3560 void rt_mutex_setprio(struct task_struct *p, int prio)
3561 {
3562 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3563 const struct sched_class *prev_class;
3564 struct rq_flags rf;
3565 struct rq *rq;
3566
3567 BUG_ON(prio > MAX_PRIO);
3568
3569 rq = __task_rq_lock(p, &rf);
3570
3571 /*
3572 * Idle task boosting is a nono in general. There is one
3573 * exception, when PREEMPT_RT and NOHZ is active:
3574 *
3575 * The idle task calls get_next_timer_interrupt() and holds
3576 * the timer wheel base->lock on the CPU and another CPU wants
3577 * to access the timer (probably to cancel it). We can safely
3578 * ignore the boosting request, as the idle CPU runs this code
3579 * with interrupts disabled and will complete the lock
3580 * protected section without being interrupted. So there is no
3581 * real need to boost.
3582 */
3583 if (unlikely(p == rq->idle)) {
3584 WARN_ON(p != rq->curr);
3585 WARN_ON(p->pi_blocked_on);
3586 goto out_unlock;
3587 }
3588
3589 trace_sched_pi_setprio(p, prio);
3590 oldprio = p->prio;
3591
3592 if (oldprio == prio)
3593 queue_flag &= ~DEQUEUE_MOVE;
3594
3595 prev_class = p->sched_class;
3596 queued = task_on_rq_queued(p);
3597 running = task_current(rq, p);
3598 if (queued)
3599 dequeue_task(rq, p, queue_flag);
3600 if (running)
3601 put_prev_task(rq, p);
3602
3603 /*
3604 * Boosting condition are:
3605 * 1. -rt task is running and holds mutex A
3606 * --> -dl task blocks on mutex A
3607 *
3608 * 2. -dl task is running and holds mutex A
3609 * --> -dl task blocks on mutex A and could preempt the
3610 * running task
3611 */
3612 if (dl_prio(prio)) {
3613 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3614 if (!dl_prio(p->normal_prio) ||
3615 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3616 p->dl.dl_boosted = 1;
3617 queue_flag |= ENQUEUE_REPLENISH;
3618 } else
3619 p->dl.dl_boosted = 0;
3620 p->sched_class = &dl_sched_class;
3621 } else if (rt_prio(prio)) {
3622 if (dl_prio(oldprio))
3623 p->dl.dl_boosted = 0;
3624 if (oldprio < prio)
3625 queue_flag |= ENQUEUE_HEAD;
3626 p->sched_class = &rt_sched_class;
3627 } else {
3628 if (dl_prio(oldprio))
3629 p->dl.dl_boosted = 0;
3630 if (rt_prio(oldprio))
3631 p->rt.timeout = 0;
3632 p->sched_class = &fair_sched_class;
3633 }
3634
3635 p->prio = prio;
3636
3637 if (running)
3638 p->sched_class->set_curr_task(rq);
3639 if (queued)
3640 enqueue_task(rq, p, queue_flag);
3641
3642 check_class_changed(rq, p, prev_class, oldprio);
3643 out_unlock:
3644 preempt_disable(); /* avoid rq from going away on us */
3645 __task_rq_unlock(rq, &rf);
3646
3647 balance_callback(rq);
3648 preempt_enable();
3649 }
3650 #endif
3651
3652 void set_user_nice(struct task_struct *p, long nice)
3653 {
3654 int old_prio, delta, queued;
3655 struct rq_flags rf;
3656 struct rq *rq;
3657
3658 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3659 return;
3660 /*
3661 * We have to be careful, if called from sys_setpriority(),
3662 * the task might be in the middle of scheduling on another CPU.
3663 */
3664 rq = task_rq_lock(p, &rf);
3665 /*
3666 * The RT priorities are set via sched_setscheduler(), but we still
3667 * allow the 'normal' nice value to be set - but as expected
3668 * it wont have any effect on scheduling until the task is
3669 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3670 */
3671 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3672 p->static_prio = NICE_TO_PRIO(nice);
3673 goto out_unlock;
3674 }
3675 queued = task_on_rq_queued(p);
3676 if (queued)
3677 dequeue_task(rq, p, DEQUEUE_SAVE);
3678
3679 p->static_prio = NICE_TO_PRIO(nice);
3680 set_load_weight(p);
3681 old_prio = p->prio;
3682 p->prio = effective_prio(p);
3683 delta = p->prio - old_prio;
3684
3685 if (queued) {
3686 enqueue_task(rq, p, ENQUEUE_RESTORE);
3687 /*
3688 * If the task increased its priority or is running and
3689 * lowered its priority, then reschedule its CPU:
3690 */
3691 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3692 resched_curr(rq);
3693 }
3694 out_unlock:
3695 task_rq_unlock(rq, p, &rf);
3696 }
3697 EXPORT_SYMBOL(set_user_nice);
3698
3699 /*
3700 * can_nice - check if a task can reduce its nice value
3701 * @p: task
3702 * @nice: nice value
3703 */
3704 int can_nice(const struct task_struct *p, const int nice)
3705 {
3706 /* convert nice value [19,-20] to rlimit style value [1,40] */
3707 int nice_rlim = nice_to_rlimit(nice);
3708
3709 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3710 capable(CAP_SYS_NICE));
3711 }
3712
3713 #ifdef __ARCH_WANT_SYS_NICE
3714
3715 /*
3716 * sys_nice - change the priority of the current process.
3717 * @increment: priority increment
3718 *
3719 * sys_setpriority is a more generic, but much slower function that
3720 * does similar things.
3721 */
3722 SYSCALL_DEFINE1(nice, int, increment)
3723 {
3724 long nice, retval;
3725
3726 /*
3727 * Setpriority might change our priority at the same moment.
3728 * We don't have to worry. Conceptually one call occurs first
3729 * and we have a single winner.
3730 */
3731 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3732 nice = task_nice(current) + increment;
3733
3734 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3735 if (increment < 0 && !can_nice(current, nice))
3736 return -EPERM;
3737
3738 retval = security_task_setnice(current, nice);
3739 if (retval)
3740 return retval;
3741
3742 set_user_nice(current, nice);
3743 return 0;
3744 }
3745
3746 #endif
3747
3748 /**
3749 * task_prio - return the priority value of a given task.
3750 * @p: the task in question.
3751 *
3752 * Return: The priority value as seen by users in /proc.
3753 * RT tasks are offset by -200. Normal tasks are centered
3754 * around 0, value goes from -16 to +15.
3755 */
3756 int task_prio(const struct task_struct *p)
3757 {
3758 return p->prio - MAX_RT_PRIO;
3759 }
3760
3761 /**
3762 * idle_cpu - is a given cpu idle currently?
3763 * @cpu: the processor in question.
3764 *
3765 * Return: 1 if the CPU is currently idle. 0 otherwise.
3766 */
3767 int idle_cpu(int cpu)
3768 {
3769 struct rq *rq = cpu_rq(cpu);
3770
3771 if (rq->curr != rq->idle)
3772 return 0;
3773
3774 if (rq->nr_running)
3775 return 0;
3776
3777 #ifdef CONFIG_SMP
3778 if (!llist_empty(&rq->wake_list))
3779 return 0;
3780 #endif
3781
3782 return 1;
3783 }
3784
3785 /**
3786 * idle_task - return the idle task for a given cpu.
3787 * @cpu: the processor in question.
3788 *
3789 * Return: The idle task for the cpu @cpu.
3790 */
3791 struct task_struct *idle_task(int cpu)
3792 {
3793 return cpu_rq(cpu)->idle;
3794 }
3795
3796 /**
3797 * find_process_by_pid - find a process with a matching PID value.
3798 * @pid: the pid in question.
3799 *
3800 * The task of @pid, if found. %NULL otherwise.
3801 */
3802 static struct task_struct *find_process_by_pid(pid_t pid)
3803 {
3804 return pid ? find_task_by_vpid(pid) : current;
3805 }
3806
3807 /*
3808 * This function initializes the sched_dl_entity of a newly becoming
3809 * SCHED_DEADLINE task.
3810 *
3811 * Only the static values are considered here, the actual runtime and the
3812 * absolute deadline will be properly calculated when the task is enqueued
3813 * for the first time with its new policy.
3814 */
3815 static void
3816 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3817 {
3818 struct sched_dl_entity *dl_se = &p->dl;
3819
3820 dl_se->dl_runtime = attr->sched_runtime;
3821 dl_se->dl_deadline = attr->sched_deadline;
3822 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3823 dl_se->flags = attr->sched_flags;
3824 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3825
3826 /*
3827 * Changing the parameters of a task is 'tricky' and we're not doing
3828 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3829 *
3830 * What we SHOULD do is delay the bandwidth release until the 0-lag
3831 * point. This would include retaining the task_struct until that time
3832 * and change dl_overflow() to not immediately decrement the current
3833 * amount.
3834 *
3835 * Instead we retain the current runtime/deadline and let the new
3836 * parameters take effect after the current reservation period lapses.
3837 * This is safe (albeit pessimistic) because the 0-lag point is always
3838 * before the current scheduling deadline.
3839 *
3840 * We can still have temporary overloads because we do not delay the
3841 * change in bandwidth until that time; so admission control is
3842 * not on the safe side. It does however guarantee tasks will never
3843 * consume more than promised.
3844 */
3845 }
3846
3847 /*
3848 * sched_setparam() passes in -1 for its policy, to let the functions
3849 * it calls know not to change it.
3850 */
3851 #define SETPARAM_POLICY -1
3852
3853 static void __setscheduler_params(struct task_struct *p,
3854 const struct sched_attr *attr)
3855 {
3856 int policy = attr->sched_policy;
3857
3858 if (policy == SETPARAM_POLICY)
3859 policy = p->policy;
3860
3861 p->policy = policy;
3862
3863 if (dl_policy(policy))
3864 __setparam_dl(p, attr);
3865 else if (fair_policy(policy))
3866 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3867
3868 /*
3869 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3870 * !rt_policy. Always setting this ensures that things like
3871 * getparam()/getattr() don't report silly values for !rt tasks.
3872 */
3873 p->rt_priority = attr->sched_priority;
3874 p->normal_prio = normal_prio(p);
3875 set_load_weight(p);
3876 }
3877
3878 /* Actually do priority change: must hold pi & rq lock. */
3879 static void __setscheduler(struct rq *rq, struct task_struct *p,
3880 const struct sched_attr *attr, bool keep_boost)
3881 {
3882 __setscheduler_params(p, attr);
3883
3884 /*
3885 * Keep a potential priority boosting if called from
3886 * sched_setscheduler().
3887 */
3888 if (keep_boost)
3889 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3890 else
3891 p->prio = normal_prio(p);
3892
3893 if (dl_prio(p->prio))
3894 p->sched_class = &dl_sched_class;
3895 else if (rt_prio(p->prio))
3896 p->sched_class = &rt_sched_class;
3897 else
3898 p->sched_class = &fair_sched_class;
3899 }
3900
3901 static void
3902 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3903 {
3904 struct sched_dl_entity *dl_se = &p->dl;
3905
3906 attr->sched_priority = p->rt_priority;
3907 attr->sched_runtime = dl_se->dl_runtime;
3908 attr->sched_deadline = dl_se->dl_deadline;
3909 attr->sched_period = dl_se->dl_period;
3910 attr->sched_flags = dl_se->flags;
3911 }
3912
3913 /*
3914 * This function validates the new parameters of a -deadline task.
3915 * We ask for the deadline not being zero, and greater or equal
3916 * than the runtime, as well as the period of being zero or
3917 * greater than deadline. Furthermore, we have to be sure that
3918 * user parameters are above the internal resolution of 1us (we
3919 * check sched_runtime only since it is always the smaller one) and
3920 * below 2^63 ns (we have to check both sched_deadline and
3921 * sched_period, as the latter can be zero).
3922 */
3923 static bool
3924 __checkparam_dl(const struct sched_attr *attr)
3925 {
3926 /* deadline != 0 */
3927 if (attr->sched_deadline == 0)
3928 return false;
3929
3930 /*
3931 * Since we truncate DL_SCALE bits, make sure we're at least
3932 * that big.
3933 */
3934 if (attr->sched_runtime < (1ULL << DL_SCALE))
3935 return false;
3936
3937 /*
3938 * Since we use the MSB for wrap-around and sign issues, make
3939 * sure it's not set (mind that period can be equal to zero).
3940 */
3941 if (attr->sched_deadline & (1ULL << 63) ||
3942 attr->sched_period & (1ULL << 63))
3943 return false;
3944
3945 /* runtime <= deadline <= period (if period != 0) */
3946 if ((attr->sched_period != 0 &&
3947 attr->sched_period < attr->sched_deadline) ||
3948 attr->sched_deadline < attr->sched_runtime)
3949 return false;
3950
3951 return true;
3952 }
3953
3954 /*
3955 * check the target process has a UID that matches the current process's
3956 */
3957 static bool check_same_owner(struct task_struct *p)
3958 {
3959 const struct cred *cred = current_cred(), *pcred;
3960 bool match;
3961
3962 rcu_read_lock();
3963 pcred = __task_cred(p);
3964 match = (uid_eq(cred->euid, pcred->euid) ||
3965 uid_eq(cred->euid, pcred->uid));
3966 rcu_read_unlock();
3967 return match;
3968 }
3969
3970 static bool dl_param_changed(struct task_struct *p,
3971 const struct sched_attr *attr)
3972 {
3973 struct sched_dl_entity *dl_se = &p->dl;
3974
3975 if (dl_se->dl_runtime != attr->sched_runtime ||
3976 dl_se->dl_deadline != attr->sched_deadline ||
3977 dl_se->dl_period != attr->sched_period ||
3978 dl_se->flags != attr->sched_flags)
3979 return true;
3980
3981 return false;
3982 }
3983
3984 static int __sched_setscheduler(struct task_struct *p,
3985 const struct sched_attr *attr,
3986 bool user, bool pi)
3987 {
3988 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3989 MAX_RT_PRIO - 1 - attr->sched_priority;
3990 int retval, oldprio, oldpolicy = -1, queued, running;
3991 int new_effective_prio, policy = attr->sched_policy;
3992 const struct sched_class *prev_class;
3993 struct rq_flags rf;
3994 int reset_on_fork;
3995 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3996 struct rq *rq;
3997
3998 /* may grab non-irq protected spin_locks */
3999 BUG_ON(in_interrupt());
4000 recheck:
4001 /* double check policy once rq lock held */
4002 if (policy < 0) {
4003 reset_on_fork = p->sched_reset_on_fork;
4004 policy = oldpolicy = p->policy;
4005 } else {
4006 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4007
4008 if (!valid_policy(policy))
4009 return -EINVAL;
4010 }
4011
4012 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4013 return -EINVAL;
4014
4015 /*
4016 * Valid priorities for SCHED_FIFO and SCHED_RR are
4017 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4018 * SCHED_BATCH and SCHED_IDLE is 0.
4019 */
4020 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4021 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4022 return -EINVAL;
4023 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4024 (rt_policy(policy) != (attr->sched_priority != 0)))
4025 return -EINVAL;
4026
4027 /*
4028 * Allow unprivileged RT tasks to decrease priority:
4029 */
4030 if (user && !capable(CAP_SYS_NICE)) {
4031 if (fair_policy(policy)) {
4032 if (attr->sched_nice < task_nice(p) &&
4033 !can_nice(p, attr->sched_nice))
4034 return -EPERM;
4035 }
4036
4037 if (rt_policy(policy)) {
4038 unsigned long rlim_rtprio =
4039 task_rlimit(p, RLIMIT_RTPRIO);
4040
4041 /* can't set/change the rt policy */
4042 if (policy != p->policy && !rlim_rtprio)
4043 return -EPERM;
4044
4045 /* can't increase priority */
4046 if (attr->sched_priority > p->rt_priority &&
4047 attr->sched_priority > rlim_rtprio)
4048 return -EPERM;
4049 }
4050
4051 /*
4052 * Can't set/change SCHED_DEADLINE policy at all for now
4053 * (safest behavior); in the future we would like to allow
4054 * unprivileged DL tasks to increase their relative deadline
4055 * or reduce their runtime (both ways reducing utilization)
4056 */
4057 if (dl_policy(policy))
4058 return -EPERM;
4059
4060 /*
4061 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4062 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4063 */
4064 if (idle_policy(p->policy) && !idle_policy(policy)) {
4065 if (!can_nice(p, task_nice(p)))
4066 return -EPERM;
4067 }
4068
4069 /* can't change other user's priorities */
4070 if (!check_same_owner(p))
4071 return -EPERM;
4072
4073 /* Normal users shall not reset the sched_reset_on_fork flag */
4074 if (p->sched_reset_on_fork && !reset_on_fork)
4075 return -EPERM;
4076 }
4077
4078 if (user) {
4079 retval = security_task_setscheduler(p);
4080 if (retval)
4081 return retval;
4082 }
4083
4084 /*
4085 * make sure no PI-waiters arrive (or leave) while we are
4086 * changing the priority of the task:
4087 *
4088 * To be able to change p->policy safely, the appropriate
4089 * runqueue lock must be held.
4090 */
4091 rq = task_rq_lock(p, &rf);
4092
4093 /*
4094 * Changing the policy of the stop threads its a very bad idea
4095 */
4096 if (p == rq->stop) {
4097 task_rq_unlock(rq, p, &rf);
4098 return -EINVAL;
4099 }
4100
4101 /*
4102 * If not changing anything there's no need to proceed further,
4103 * but store a possible modification of reset_on_fork.
4104 */
4105 if (unlikely(policy == p->policy)) {
4106 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4107 goto change;
4108 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4109 goto change;
4110 if (dl_policy(policy) && dl_param_changed(p, attr))
4111 goto change;
4112
4113 p->sched_reset_on_fork = reset_on_fork;
4114 task_rq_unlock(rq, p, &rf);
4115 return 0;
4116 }
4117 change:
4118
4119 if (user) {
4120 #ifdef CONFIG_RT_GROUP_SCHED
4121 /*
4122 * Do not allow realtime tasks into groups that have no runtime
4123 * assigned.
4124 */
4125 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4126 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4127 !task_group_is_autogroup(task_group(p))) {
4128 task_rq_unlock(rq, p, &rf);
4129 return -EPERM;
4130 }
4131 #endif
4132 #ifdef CONFIG_SMP
4133 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4134 cpumask_t *span = rq->rd->span;
4135
4136 /*
4137 * Don't allow tasks with an affinity mask smaller than
4138 * the entire root_domain to become SCHED_DEADLINE. We
4139 * will also fail if there's no bandwidth available.
4140 */
4141 if (!cpumask_subset(span, &p->cpus_allowed) ||
4142 rq->rd->dl_bw.bw == 0) {
4143 task_rq_unlock(rq, p, &rf);
4144 return -EPERM;
4145 }
4146 }
4147 #endif
4148 }
4149
4150 /* recheck policy now with rq lock held */
4151 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4152 policy = oldpolicy = -1;
4153 task_rq_unlock(rq, p, &rf);
4154 goto recheck;
4155 }
4156
4157 /*
4158 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4159 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4160 * is available.
4161 */
4162 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4163 task_rq_unlock(rq, p, &rf);
4164 return -EBUSY;
4165 }
4166
4167 p->sched_reset_on_fork = reset_on_fork;
4168 oldprio = p->prio;
4169
4170 if (pi) {
4171 /*
4172 * Take priority boosted tasks into account. If the new
4173 * effective priority is unchanged, we just store the new
4174 * normal parameters and do not touch the scheduler class and
4175 * the runqueue. This will be done when the task deboost
4176 * itself.
4177 */
4178 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4179 if (new_effective_prio == oldprio)
4180 queue_flags &= ~DEQUEUE_MOVE;
4181 }
4182
4183 queued = task_on_rq_queued(p);
4184 running = task_current(rq, p);
4185 if (queued)
4186 dequeue_task(rq, p, queue_flags);
4187 if (running)
4188 put_prev_task(rq, p);
4189
4190 prev_class = p->sched_class;
4191 __setscheduler(rq, p, attr, pi);
4192
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
4195 if (queued) {
4196 /*
4197 * We enqueue to tail when the priority of a task is
4198 * increased (user space view).
4199 */
4200 if (oldprio < p->prio)
4201 queue_flags |= ENQUEUE_HEAD;
4202
4203 enqueue_task(rq, p, queue_flags);
4204 }
4205
4206 check_class_changed(rq, p, prev_class, oldprio);
4207 preempt_disable(); /* avoid rq from going away on us */
4208 task_rq_unlock(rq, p, &rf);
4209
4210 if (pi)
4211 rt_mutex_adjust_pi(p);
4212
4213 /*
4214 * Run balance callbacks after we've adjusted the PI chain.
4215 */
4216 balance_callback(rq);
4217 preempt_enable();
4218
4219 return 0;
4220 }
4221
4222 static int _sched_setscheduler(struct task_struct *p, int policy,
4223 const struct sched_param *param, bool check)
4224 {
4225 struct sched_attr attr = {
4226 .sched_policy = policy,
4227 .sched_priority = param->sched_priority,
4228 .sched_nice = PRIO_TO_NICE(p->static_prio),
4229 };
4230
4231 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4232 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4233 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4234 policy &= ~SCHED_RESET_ON_FORK;
4235 attr.sched_policy = policy;
4236 }
4237
4238 return __sched_setscheduler(p, &attr, check, true);
4239 }
4240 /**
4241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4242 * @p: the task in question.
4243 * @policy: new policy.
4244 * @param: structure containing the new RT priority.
4245 *
4246 * Return: 0 on success. An error code otherwise.
4247 *
4248 * NOTE that the task may be already dead.
4249 */
4250 int sched_setscheduler(struct task_struct *p, int policy,
4251 const struct sched_param *param)
4252 {
4253 return _sched_setscheduler(p, policy, param, true);
4254 }
4255 EXPORT_SYMBOL_GPL(sched_setscheduler);
4256
4257 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4258 {
4259 return __sched_setscheduler(p, attr, true, true);
4260 }
4261 EXPORT_SYMBOL_GPL(sched_setattr);
4262
4263 /**
4264 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4265 * @p: the task in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4268 *
4269 * Just like sched_setscheduler, only don't bother checking if the
4270 * current context has permission. For example, this is needed in
4271 * stop_machine(): we create temporary high priority worker threads,
4272 * but our caller might not have that capability.
4273 *
4274 * Return: 0 on success. An error code otherwise.
4275 */
4276 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4277 const struct sched_param *param)
4278 {
4279 return _sched_setscheduler(p, policy, param, false);
4280 }
4281 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4282
4283 static int
4284 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4285 {
4286 struct sched_param lparam;
4287 struct task_struct *p;
4288 int retval;
4289
4290 if (!param || pid < 0)
4291 return -EINVAL;
4292 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4293 return -EFAULT;
4294
4295 rcu_read_lock();
4296 retval = -ESRCH;
4297 p = find_process_by_pid(pid);
4298 if (p != NULL)
4299 retval = sched_setscheduler(p, policy, &lparam);
4300 rcu_read_unlock();
4301
4302 return retval;
4303 }
4304
4305 /*
4306 * Mimics kernel/events/core.c perf_copy_attr().
4307 */
4308 static int sched_copy_attr(struct sched_attr __user *uattr,
4309 struct sched_attr *attr)
4310 {
4311 u32 size;
4312 int ret;
4313
4314 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4315 return -EFAULT;
4316
4317 /*
4318 * zero the full structure, so that a short copy will be nice.
4319 */
4320 memset(attr, 0, sizeof(*attr));
4321
4322 ret = get_user(size, &uattr->size);
4323 if (ret)
4324 return ret;
4325
4326 if (size > PAGE_SIZE) /* silly large */
4327 goto err_size;
4328
4329 if (!size) /* abi compat */
4330 size = SCHED_ATTR_SIZE_VER0;
4331
4332 if (size < SCHED_ATTR_SIZE_VER0)
4333 goto err_size;
4334
4335 /*
4336 * If we're handed a bigger struct than we know of,
4337 * ensure all the unknown bits are 0 - i.e. new
4338 * user-space does not rely on any kernel feature
4339 * extensions we dont know about yet.
4340 */
4341 if (size > sizeof(*attr)) {
4342 unsigned char __user *addr;
4343 unsigned char __user *end;
4344 unsigned char val;
4345
4346 addr = (void __user *)uattr + sizeof(*attr);
4347 end = (void __user *)uattr + size;
4348
4349 for (; addr < end; addr++) {
4350 ret = get_user(val, addr);
4351 if (ret)
4352 return ret;
4353 if (val)
4354 goto err_size;
4355 }
4356 size = sizeof(*attr);
4357 }
4358
4359 ret = copy_from_user(attr, uattr, size);
4360 if (ret)
4361 return -EFAULT;
4362
4363 /*
4364 * XXX: do we want to be lenient like existing syscalls; or do we want
4365 * to be strict and return an error on out-of-bounds values?
4366 */
4367 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4368
4369 return 0;
4370
4371 err_size:
4372 put_user(sizeof(*attr), &uattr->size);
4373 return -E2BIG;
4374 }
4375
4376 /**
4377 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4378 * @pid: the pid in question.
4379 * @policy: new policy.
4380 * @param: structure containing the new RT priority.
4381 *
4382 * Return: 0 on success. An error code otherwise.
4383 */
4384 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4385 struct sched_param __user *, param)
4386 {
4387 /* negative values for policy are not valid */
4388 if (policy < 0)
4389 return -EINVAL;
4390
4391 return do_sched_setscheduler(pid, policy, param);
4392 }
4393
4394 /**
4395 * sys_sched_setparam - set/change the RT priority of a thread
4396 * @pid: the pid in question.
4397 * @param: structure containing the new RT priority.
4398 *
4399 * Return: 0 on success. An error code otherwise.
4400 */
4401 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4402 {
4403 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4404 }
4405
4406 /**
4407 * sys_sched_setattr - same as above, but with extended sched_attr
4408 * @pid: the pid in question.
4409 * @uattr: structure containing the extended parameters.
4410 * @flags: for future extension.
4411 */
4412 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4413 unsigned int, flags)
4414 {
4415 struct sched_attr attr;
4416 struct task_struct *p;
4417 int retval;
4418
4419 if (!uattr || pid < 0 || flags)
4420 return -EINVAL;
4421
4422 retval = sched_copy_attr(uattr, &attr);
4423 if (retval)
4424 return retval;
4425
4426 if ((int)attr.sched_policy < 0)
4427 return -EINVAL;
4428
4429 rcu_read_lock();
4430 retval = -ESRCH;
4431 p = find_process_by_pid(pid);
4432 if (p != NULL)
4433 retval = sched_setattr(p, &attr);
4434 rcu_read_unlock();
4435
4436 return retval;
4437 }
4438
4439 /**
4440 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4441 * @pid: the pid in question.
4442 *
4443 * Return: On success, the policy of the thread. Otherwise, a negative error
4444 * code.
4445 */
4446 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4447 {
4448 struct task_struct *p;
4449 int retval;
4450
4451 if (pid < 0)
4452 return -EINVAL;
4453
4454 retval = -ESRCH;
4455 rcu_read_lock();
4456 p = find_process_by_pid(pid);
4457 if (p) {
4458 retval = security_task_getscheduler(p);
4459 if (!retval)
4460 retval = p->policy
4461 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4462 }
4463 rcu_read_unlock();
4464 return retval;
4465 }
4466
4467 /**
4468 * sys_sched_getparam - get the RT priority of a thread
4469 * @pid: the pid in question.
4470 * @param: structure containing the RT priority.
4471 *
4472 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4473 * code.
4474 */
4475 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4476 {
4477 struct sched_param lp = { .sched_priority = 0 };
4478 struct task_struct *p;
4479 int retval;
4480
4481 if (!param || pid < 0)
4482 return -EINVAL;
4483
4484 rcu_read_lock();
4485 p = find_process_by_pid(pid);
4486 retval = -ESRCH;
4487 if (!p)
4488 goto out_unlock;
4489
4490 retval = security_task_getscheduler(p);
4491 if (retval)
4492 goto out_unlock;
4493
4494 if (task_has_rt_policy(p))
4495 lp.sched_priority = p->rt_priority;
4496 rcu_read_unlock();
4497
4498 /*
4499 * This one might sleep, we cannot do it with a spinlock held ...
4500 */
4501 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4502
4503 return retval;
4504
4505 out_unlock:
4506 rcu_read_unlock();
4507 return retval;
4508 }
4509
4510 static int sched_read_attr(struct sched_attr __user *uattr,
4511 struct sched_attr *attr,
4512 unsigned int usize)
4513 {
4514 int ret;
4515
4516 if (!access_ok(VERIFY_WRITE, uattr, usize))
4517 return -EFAULT;
4518
4519 /*
4520 * If we're handed a smaller struct than we know of,
4521 * ensure all the unknown bits are 0 - i.e. old
4522 * user-space does not get uncomplete information.
4523 */
4524 if (usize < sizeof(*attr)) {
4525 unsigned char *addr;
4526 unsigned char *end;
4527
4528 addr = (void *)attr + usize;
4529 end = (void *)attr + sizeof(*attr);
4530
4531 for (; addr < end; addr++) {
4532 if (*addr)
4533 return -EFBIG;
4534 }
4535
4536 attr->size = usize;
4537 }
4538
4539 ret = copy_to_user(uattr, attr, attr->size);
4540 if (ret)
4541 return -EFAULT;
4542
4543 return 0;
4544 }
4545
4546 /**
4547 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4548 * @pid: the pid in question.
4549 * @uattr: structure containing the extended parameters.
4550 * @size: sizeof(attr) for fwd/bwd comp.
4551 * @flags: for future extension.
4552 */
4553 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4554 unsigned int, size, unsigned int, flags)
4555 {
4556 struct sched_attr attr = {
4557 .size = sizeof(struct sched_attr),
4558 };
4559 struct task_struct *p;
4560 int retval;
4561
4562 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4563 size < SCHED_ATTR_SIZE_VER0 || flags)
4564 return -EINVAL;
4565
4566 rcu_read_lock();
4567 p = find_process_by_pid(pid);
4568 retval = -ESRCH;
4569 if (!p)
4570 goto out_unlock;
4571
4572 retval = security_task_getscheduler(p);
4573 if (retval)
4574 goto out_unlock;
4575
4576 attr.sched_policy = p->policy;
4577 if (p->sched_reset_on_fork)
4578 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4579 if (task_has_dl_policy(p))
4580 __getparam_dl(p, &attr);
4581 else if (task_has_rt_policy(p))
4582 attr.sched_priority = p->rt_priority;
4583 else
4584 attr.sched_nice = task_nice(p);
4585
4586 rcu_read_unlock();
4587
4588 retval = sched_read_attr(uattr, &attr, size);
4589 return retval;
4590
4591 out_unlock:
4592 rcu_read_unlock();
4593 return retval;
4594 }
4595
4596 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4597 {
4598 cpumask_var_t cpus_allowed, new_mask;
4599 struct task_struct *p;
4600 int retval;
4601
4602 rcu_read_lock();
4603
4604 p = find_process_by_pid(pid);
4605 if (!p) {
4606 rcu_read_unlock();
4607 return -ESRCH;
4608 }
4609
4610 /* Prevent p going away */
4611 get_task_struct(p);
4612 rcu_read_unlock();
4613
4614 if (p->flags & PF_NO_SETAFFINITY) {
4615 retval = -EINVAL;
4616 goto out_put_task;
4617 }
4618 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4619 retval = -ENOMEM;
4620 goto out_put_task;
4621 }
4622 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4623 retval = -ENOMEM;
4624 goto out_free_cpus_allowed;
4625 }
4626 retval = -EPERM;
4627 if (!check_same_owner(p)) {
4628 rcu_read_lock();
4629 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4630 rcu_read_unlock();
4631 goto out_free_new_mask;
4632 }
4633 rcu_read_unlock();
4634 }
4635
4636 retval = security_task_setscheduler(p);
4637 if (retval)
4638 goto out_free_new_mask;
4639
4640
4641 cpuset_cpus_allowed(p, cpus_allowed);
4642 cpumask_and(new_mask, in_mask, cpus_allowed);
4643
4644 /*
4645 * Since bandwidth control happens on root_domain basis,
4646 * if admission test is enabled, we only admit -deadline
4647 * tasks allowed to run on all the CPUs in the task's
4648 * root_domain.
4649 */
4650 #ifdef CONFIG_SMP
4651 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4652 rcu_read_lock();
4653 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4654 retval = -EBUSY;
4655 rcu_read_unlock();
4656 goto out_free_new_mask;
4657 }
4658 rcu_read_unlock();
4659 }
4660 #endif
4661 again:
4662 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4663
4664 if (!retval) {
4665 cpuset_cpus_allowed(p, cpus_allowed);
4666 if (!cpumask_subset(new_mask, cpus_allowed)) {
4667 /*
4668 * We must have raced with a concurrent cpuset
4669 * update. Just reset the cpus_allowed to the
4670 * cpuset's cpus_allowed
4671 */
4672 cpumask_copy(new_mask, cpus_allowed);
4673 goto again;
4674 }
4675 }
4676 out_free_new_mask:
4677 free_cpumask_var(new_mask);
4678 out_free_cpus_allowed:
4679 free_cpumask_var(cpus_allowed);
4680 out_put_task:
4681 put_task_struct(p);
4682 return retval;
4683 }
4684
4685 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4686 struct cpumask *new_mask)
4687 {
4688 if (len < cpumask_size())
4689 cpumask_clear(new_mask);
4690 else if (len > cpumask_size())
4691 len = cpumask_size();
4692
4693 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4694 }
4695
4696 /**
4697 * sys_sched_setaffinity - set the cpu affinity of a process
4698 * @pid: pid of the process
4699 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4700 * @user_mask_ptr: user-space pointer to the new cpu mask
4701 *
4702 * Return: 0 on success. An error code otherwise.
4703 */
4704 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4705 unsigned long __user *, user_mask_ptr)
4706 {
4707 cpumask_var_t new_mask;
4708 int retval;
4709
4710 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4711 return -ENOMEM;
4712
4713 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4714 if (retval == 0)
4715 retval = sched_setaffinity(pid, new_mask);
4716 free_cpumask_var(new_mask);
4717 return retval;
4718 }
4719
4720 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4721 {
4722 struct task_struct *p;
4723 unsigned long flags;
4724 int retval;
4725
4726 rcu_read_lock();
4727
4728 retval = -ESRCH;
4729 p = find_process_by_pid(pid);
4730 if (!p)
4731 goto out_unlock;
4732
4733 retval = security_task_getscheduler(p);
4734 if (retval)
4735 goto out_unlock;
4736
4737 raw_spin_lock_irqsave(&p->pi_lock, flags);
4738 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4739 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4740
4741 out_unlock:
4742 rcu_read_unlock();
4743
4744 return retval;
4745 }
4746
4747 /**
4748 * sys_sched_getaffinity - get the cpu affinity of a process
4749 * @pid: pid of the process
4750 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4751 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4752 *
4753 * Return: 0 on success. An error code otherwise.
4754 */
4755 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4756 unsigned long __user *, user_mask_ptr)
4757 {
4758 int ret;
4759 cpumask_var_t mask;
4760
4761 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4762 return -EINVAL;
4763 if (len & (sizeof(unsigned long)-1))
4764 return -EINVAL;
4765
4766 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4767 return -ENOMEM;
4768
4769 ret = sched_getaffinity(pid, mask);
4770 if (ret == 0) {
4771 size_t retlen = min_t(size_t, len, cpumask_size());
4772
4773 if (copy_to_user(user_mask_ptr, mask, retlen))
4774 ret = -EFAULT;
4775 else
4776 ret = retlen;
4777 }
4778 free_cpumask_var(mask);
4779
4780 return ret;
4781 }
4782
4783 /**
4784 * sys_sched_yield - yield the current processor to other threads.
4785 *
4786 * This function yields the current CPU to other tasks. If there are no
4787 * other threads running on this CPU then this function will return.
4788 *
4789 * Return: 0.
4790 */
4791 SYSCALL_DEFINE0(sched_yield)
4792 {
4793 struct rq *rq = this_rq_lock();
4794
4795 schedstat_inc(rq, yld_count);
4796 current->sched_class->yield_task(rq);
4797
4798 /*
4799 * Since we are going to call schedule() anyway, there's
4800 * no need to preempt or enable interrupts:
4801 */
4802 __release(rq->lock);
4803 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4804 do_raw_spin_unlock(&rq->lock);
4805 sched_preempt_enable_no_resched();
4806
4807 schedule();
4808
4809 return 0;
4810 }
4811
4812 int __sched _cond_resched(void)
4813 {
4814 if (should_resched(0)) {
4815 preempt_schedule_common();
4816 return 1;
4817 }
4818 return 0;
4819 }
4820 EXPORT_SYMBOL(_cond_resched);
4821
4822 /*
4823 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4824 * call schedule, and on return reacquire the lock.
4825 *
4826 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4827 * operations here to prevent schedule() from being called twice (once via
4828 * spin_unlock(), once by hand).
4829 */
4830 int __cond_resched_lock(spinlock_t *lock)
4831 {
4832 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4833 int ret = 0;
4834
4835 lockdep_assert_held(lock);
4836
4837 if (spin_needbreak(lock) || resched) {
4838 spin_unlock(lock);
4839 if (resched)
4840 preempt_schedule_common();
4841 else
4842 cpu_relax();
4843 ret = 1;
4844 spin_lock(lock);
4845 }
4846 return ret;
4847 }
4848 EXPORT_SYMBOL(__cond_resched_lock);
4849
4850 int __sched __cond_resched_softirq(void)
4851 {
4852 BUG_ON(!in_softirq());
4853
4854 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4855 local_bh_enable();
4856 preempt_schedule_common();
4857 local_bh_disable();
4858 return 1;
4859 }
4860 return 0;
4861 }
4862 EXPORT_SYMBOL(__cond_resched_softirq);
4863
4864 /**
4865 * yield - yield the current processor to other threads.
4866 *
4867 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4868 *
4869 * The scheduler is at all times free to pick the calling task as the most
4870 * eligible task to run, if removing the yield() call from your code breaks
4871 * it, its already broken.
4872 *
4873 * Typical broken usage is:
4874 *
4875 * while (!event)
4876 * yield();
4877 *
4878 * where one assumes that yield() will let 'the other' process run that will
4879 * make event true. If the current task is a SCHED_FIFO task that will never
4880 * happen. Never use yield() as a progress guarantee!!
4881 *
4882 * If you want to use yield() to wait for something, use wait_event().
4883 * If you want to use yield() to be 'nice' for others, use cond_resched().
4884 * If you still want to use yield(), do not!
4885 */
4886 void __sched yield(void)
4887 {
4888 set_current_state(TASK_RUNNING);
4889 sys_sched_yield();
4890 }
4891 EXPORT_SYMBOL(yield);
4892
4893 /**
4894 * yield_to - yield the current processor to another thread in
4895 * your thread group, or accelerate that thread toward the
4896 * processor it's on.
4897 * @p: target task
4898 * @preempt: whether task preemption is allowed or not
4899 *
4900 * It's the caller's job to ensure that the target task struct
4901 * can't go away on us before we can do any checks.
4902 *
4903 * Return:
4904 * true (>0) if we indeed boosted the target task.
4905 * false (0) if we failed to boost the target.
4906 * -ESRCH if there's no task to yield to.
4907 */
4908 int __sched yield_to(struct task_struct *p, bool preempt)
4909 {
4910 struct task_struct *curr = current;
4911 struct rq *rq, *p_rq;
4912 unsigned long flags;
4913 int yielded = 0;
4914
4915 local_irq_save(flags);
4916 rq = this_rq();
4917
4918 again:
4919 p_rq = task_rq(p);
4920 /*
4921 * If we're the only runnable task on the rq and target rq also
4922 * has only one task, there's absolutely no point in yielding.
4923 */
4924 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4925 yielded = -ESRCH;
4926 goto out_irq;
4927 }
4928
4929 double_rq_lock(rq, p_rq);
4930 if (task_rq(p) != p_rq) {
4931 double_rq_unlock(rq, p_rq);
4932 goto again;
4933 }
4934
4935 if (!curr->sched_class->yield_to_task)
4936 goto out_unlock;
4937
4938 if (curr->sched_class != p->sched_class)
4939 goto out_unlock;
4940
4941 if (task_running(p_rq, p) || p->state)
4942 goto out_unlock;
4943
4944 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4945 if (yielded) {
4946 schedstat_inc(rq, yld_count);
4947 /*
4948 * Make p's CPU reschedule; pick_next_entity takes care of
4949 * fairness.
4950 */
4951 if (preempt && rq != p_rq)
4952 resched_curr(p_rq);
4953 }
4954
4955 out_unlock:
4956 double_rq_unlock(rq, p_rq);
4957 out_irq:
4958 local_irq_restore(flags);
4959
4960 if (yielded > 0)
4961 schedule();
4962
4963 return yielded;
4964 }
4965 EXPORT_SYMBOL_GPL(yield_to);
4966
4967 /*
4968 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4969 * that process accounting knows that this is a task in IO wait state.
4970 */
4971 long __sched io_schedule_timeout(long timeout)
4972 {
4973 int old_iowait = current->in_iowait;
4974 struct rq *rq;
4975 long ret;
4976
4977 current->in_iowait = 1;
4978 blk_schedule_flush_plug(current);
4979
4980 delayacct_blkio_start();
4981 rq = raw_rq();
4982 atomic_inc(&rq->nr_iowait);
4983 ret = schedule_timeout(timeout);
4984 current->in_iowait = old_iowait;
4985 atomic_dec(&rq->nr_iowait);
4986 delayacct_blkio_end();
4987
4988 return ret;
4989 }
4990 EXPORT_SYMBOL(io_schedule_timeout);
4991
4992 /**
4993 * sys_sched_get_priority_max - return maximum RT priority.
4994 * @policy: scheduling class.
4995 *
4996 * Return: On success, this syscall returns the maximum
4997 * rt_priority that can be used by a given scheduling class.
4998 * On failure, a negative error code is returned.
4999 */
5000 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5001 {
5002 int ret = -EINVAL;
5003
5004 switch (policy) {
5005 case SCHED_FIFO:
5006 case SCHED_RR:
5007 ret = MAX_USER_RT_PRIO-1;
5008 break;
5009 case SCHED_DEADLINE:
5010 case SCHED_NORMAL:
5011 case SCHED_BATCH:
5012 case SCHED_IDLE:
5013 ret = 0;
5014 break;
5015 }
5016 return ret;
5017 }
5018
5019 /**
5020 * sys_sched_get_priority_min - return minimum RT priority.
5021 * @policy: scheduling class.
5022 *
5023 * Return: On success, this syscall returns the minimum
5024 * rt_priority that can be used by a given scheduling class.
5025 * On failure, a negative error code is returned.
5026 */
5027 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5028 {
5029 int ret = -EINVAL;
5030
5031 switch (policy) {
5032 case SCHED_FIFO:
5033 case SCHED_RR:
5034 ret = 1;
5035 break;
5036 case SCHED_DEADLINE:
5037 case SCHED_NORMAL:
5038 case SCHED_BATCH:
5039 case SCHED_IDLE:
5040 ret = 0;
5041 }
5042 return ret;
5043 }
5044
5045 /**
5046 * sys_sched_rr_get_interval - return the default timeslice of a process.
5047 * @pid: pid of the process.
5048 * @interval: userspace pointer to the timeslice value.
5049 *
5050 * this syscall writes the default timeslice value of a given process
5051 * into the user-space timespec buffer. A value of '0' means infinity.
5052 *
5053 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5054 * an error code.
5055 */
5056 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5057 struct timespec __user *, interval)
5058 {
5059 struct task_struct *p;
5060 unsigned int time_slice;
5061 struct rq_flags rf;
5062 struct timespec t;
5063 struct rq *rq;
5064 int retval;
5065
5066 if (pid < 0)
5067 return -EINVAL;
5068
5069 retval = -ESRCH;
5070 rcu_read_lock();
5071 p = find_process_by_pid(pid);
5072 if (!p)
5073 goto out_unlock;
5074
5075 retval = security_task_getscheduler(p);
5076 if (retval)
5077 goto out_unlock;
5078
5079 rq = task_rq_lock(p, &rf);
5080 time_slice = 0;
5081 if (p->sched_class->get_rr_interval)
5082 time_slice = p->sched_class->get_rr_interval(rq, p);
5083 task_rq_unlock(rq, p, &rf);
5084
5085 rcu_read_unlock();
5086 jiffies_to_timespec(time_slice, &t);
5087 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5088 return retval;
5089
5090 out_unlock:
5091 rcu_read_unlock();
5092 return retval;
5093 }
5094
5095 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5096
5097 void sched_show_task(struct task_struct *p)
5098 {
5099 unsigned long free = 0;
5100 int ppid;
5101 unsigned long state = p->state;
5102
5103 if (state)
5104 state = __ffs(state) + 1;
5105 printk(KERN_INFO "%-15.15s %c", p->comm,
5106 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5107 #if BITS_PER_LONG == 32
5108 if (state == TASK_RUNNING)
5109 printk(KERN_CONT " running ");
5110 else
5111 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5112 #else
5113 if (state == TASK_RUNNING)
5114 printk(KERN_CONT " running task ");
5115 else
5116 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5117 #endif
5118 #ifdef CONFIG_DEBUG_STACK_USAGE
5119 free = stack_not_used(p);
5120 #endif
5121 ppid = 0;
5122 rcu_read_lock();
5123 if (pid_alive(p))
5124 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5125 rcu_read_unlock();
5126 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5127 task_pid_nr(p), ppid,
5128 (unsigned long)task_thread_info(p)->flags);
5129
5130 print_worker_info(KERN_INFO, p);
5131 show_stack(p, NULL);
5132 }
5133
5134 void show_state_filter(unsigned long state_filter)
5135 {
5136 struct task_struct *g, *p;
5137
5138 #if BITS_PER_LONG == 32
5139 printk(KERN_INFO
5140 " task PC stack pid father\n");
5141 #else
5142 printk(KERN_INFO
5143 " task PC stack pid father\n");
5144 #endif
5145 rcu_read_lock();
5146 for_each_process_thread(g, p) {
5147 /*
5148 * reset the NMI-timeout, listing all files on a slow
5149 * console might take a lot of time:
5150 */
5151 touch_nmi_watchdog();
5152 if (!state_filter || (p->state & state_filter))
5153 sched_show_task(p);
5154 }
5155
5156 touch_all_softlockup_watchdogs();
5157
5158 #ifdef CONFIG_SCHED_DEBUG
5159 if (!state_filter)
5160 sysrq_sched_debug_show();
5161 #endif
5162 rcu_read_unlock();
5163 /*
5164 * Only show locks if all tasks are dumped:
5165 */
5166 if (!state_filter)
5167 debug_show_all_locks();
5168 }
5169
5170 void init_idle_bootup_task(struct task_struct *idle)
5171 {
5172 idle->sched_class = &idle_sched_class;
5173 }
5174
5175 /**
5176 * init_idle - set up an idle thread for a given CPU
5177 * @idle: task in question
5178 * @cpu: cpu the idle task belongs to
5179 *
5180 * NOTE: this function does not set the idle thread's NEED_RESCHED
5181 * flag, to make booting more robust.
5182 */
5183 void init_idle(struct task_struct *idle, int cpu)
5184 {
5185 struct rq *rq = cpu_rq(cpu);
5186 unsigned long flags;
5187
5188 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5189 raw_spin_lock(&rq->lock);
5190
5191 __sched_fork(0, idle);
5192 idle->state = TASK_RUNNING;
5193 idle->se.exec_start = sched_clock();
5194
5195 kasan_unpoison_task_stack(idle);
5196
5197 #ifdef CONFIG_SMP
5198 /*
5199 * Its possible that init_idle() gets called multiple times on a task,
5200 * in that case do_set_cpus_allowed() will not do the right thing.
5201 *
5202 * And since this is boot we can forgo the serialization.
5203 */
5204 set_cpus_allowed_common(idle, cpumask_of(cpu));
5205 #endif
5206 /*
5207 * We're having a chicken and egg problem, even though we are
5208 * holding rq->lock, the cpu isn't yet set to this cpu so the
5209 * lockdep check in task_group() will fail.
5210 *
5211 * Similar case to sched_fork(). / Alternatively we could
5212 * use task_rq_lock() here and obtain the other rq->lock.
5213 *
5214 * Silence PROVE_RCU
5215 */
5216 rcu_read_lock();
5217 __set_task_cpu(idle, cpu);
5218 rcu_read_unlock();
5219
5220 rq->curr = rq->idle = idle;
5221 idle->on_rq = TASK_ON_RQ_QUEUED;
5222 #ifdef CONFIG_SMP
5223 idle->on_cpu = 1;
5224 #endif
5225 raw_spin_unlock(&rq->lock);
5226 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5227
5228 /* Set the preempt count _outside_ the spinlocks! */
5229 init_idle_preempt_count(idle, cpu);
5230
5231 /*
5232 * The idle tasks have their own, simple scheduling class:
5233 */
5234 idle->sched_class = &idle_sched_class;
5235 ftrace_graph_init_idle_task(idle, cpu);
5236 vtime_init_idle(idle, cpu);
5237 #ifdef CONFIG_SMP
5238 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5239 #endif
5240 }
5241
5242 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5243 const struct cpumask *trial)
5244 {
5245 int ret = 1, trial_cpus;
5246 struct dl_bw *cur_dl_b;
5247 unsigned long flags;
5248
5249 if (!cpumask_weight(cur))
5250 return ret;
5251
5252 rcu_read_lock_sched();
5253 cur_dl_b = dl_bw_of(cpumask_any(cur));
5254 trial_cpus = cpumask_weight(trial);
5255
5256 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5257 if (cur_dl_b->bw != -1 &&
5258 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5259 ret = 0;
5260 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5261 rcu_read_unlock_sched();
5262
5263 return ret;
5264 }
5265
5266 int task_can_attach(struct task_struct *p,
5267 const struct cpumask *cs_cpus_allowed)
5268 {
5269 int ret = 0;
5270
5271 /*
5272 * Kthreads which disallow setaffinity shouldn't be moved
5273 * to a new cpuset; we don't want to change their cpu
5274 * affinity and isolating such threads by their set of
5275 * allowed nodes is unnecessary. Thus, cpusets are not
5276 * applicable for such threads. This prevents checking for
5277 * success of set_cpus_allowed_ptr() on all attached tasks
5278 * before cpus_allowed may be changed.
5279 */
5280 if (p->flags & PF_NO_SETAFFINITY) {
5281 ret = -EINVAL;
5282 goto out;
5283 }
5284
5285 #ifdef CONFIG_SMP
5286 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5287 cs_cpus_allowed)) {
5288 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5289 cs_cpus_allowed);
5290 struct dl_bw *dl_b;
5291 bool overflow;
5292 int cpus;
5293 unsigned long flags;
5294
5295 rcu_read_lock_sched();
5296 dl_b = dl_bw_of(dest_cpu);
5297 raw_spin_lock_irqsave(&dl_b->lock, flags);
5298 cpus = dl_bw_cpus(dest_cpu);
5299 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5300 if (overflow)
5301 ret = -EBUSY;
5302 else {
5303 /*
5304 * We reserve space for this task in the destination
5305 * root_domain, as we can't fail after this point.
5306 * We will free resources in the source root_domain
5307 * later on (see set_cpus_allowed_dl()).
5308 */
5309 __dl_add(dl_b, p->dl.dl_bw);
5310 }
5311 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5312 rcu_read_unlock_sched();
5313
5314 }
5315 #endif
5316 out:
5317 return ret;
5318 }
5319
5320 #ifdef CONFIG_SMP
5321
5322 static bool sched_smp_initialized __read_mostly;
5323
5324 #ifdef CONFIG_NUMA_BALANCING
5325 /* Migrate current task p to target_cpu */
5326 int migrate_task_to(struct task_struct *p, int target_cpu)
5327 {
5328 struct migration_arg arg = { p, target_cpu };
5329 int curr_cpu = task_cpu(p);
5330
5331 if (curr_cpu == target_cpu)
5332 return 0;
5333
5334 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5335 return -EINVAL;
5336
5337 /* TODO: This is not properly updating schedstats */
5338
5339 trace_sched_move_numa(p, curr_cpu, target_cpu);
5340 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5341 }
5342
5343 /*
5344 * Requeue a task on a given node and accurately track the number of NUMA
5345 * tasks on the runqueues
5346 */
5347 void sched_setnuma(struct task_struct *p, int nid)
5348 {
5349 bool queued, running;
5350 struct rq_flags rf;
5351 struct rq *rq;
5352
5353 rq = task_rq_lock(p, &rf);
5354 queued = task_on_rq_queued(p);
5355 running = task_current(rq, p);
5356
5357 if (queued)
5358 dequeue_task(rq, p, DEQUEUE_SAVE);
5359 if (running)
5360 put_prev_task(rq, p);
5361
5362 p->numa_preferred_nid = nid;
5363
5364 if (running)
5365 p->sched_class->set_curr_task(rq);
5366 if (queued)
5367 enqueue_task(rq, p, ENQUEUE_RESTORE);
5368 task_rq_unlock(rq, p, &rf);
5369 }
5370 #endif /* CONFIG_NUMA_BALANCING */
5371
5372 #ifdef CONFIG_HOTPLUG_CPU
5373 /*
5374 * Ensures that the idle task is using init_mm right before its cpu goes
5375 * offline.
5376 */
5377 void idle_task_exit(void)
5378 {
5379 struct mm_struct *mm = current->active_mm;
5380
5381 BUG_ON(cpu_online(smp_processor_id()));
5382
5383 if (mm != &init_mm) {
5384 switch_mm_irqs_off(mm, &init_mm, current);
5385 finish_arch_post_lock_switch();
5386 }
5387 mmdrop(mm);
5388 }
5389
5390 /*
5391 * Since this CPU is going 'away' for a while, fold any nr_active delta
5392 * we might have. Assumes we're called after migrate_tasks() so that the
5393 * nr_active count is stable.
5394 *
5395 * Also see the comment "Global load-average calculations".
5396 */
5397 static void calc_load_migrate(struct rq *rq)
5398 {
5399 long delta = calc_load_fold_active(rq);
5400 if (delta)
5401 atomic_long_add(delta, &calc_load_tasks);
5402 }
5403
5404 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5405 {
5406 }
5407
5408 static const struct sched_class fake_sched_class = {
5409 .put_prev_task = put_prev_task_fake,
5410 };
5411
5412 static struct task_struct fake_task = {
5413 /*
5414 * Avoid pull_{rt,dl}_task()
5415 */
5416 .prio = MAX_PRIO + 1,
5417 .sched_class = &fake_sched_class,
5418 };
5419
5420 /*
5421 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5422 * try_to_wake_up()->select_task_rq().
5423 *
5424 * Called with rq->lock held even though we'er in stop_machine() and
5425 * there's no concurrency possible, we hold the required locks anyway
5426 * because of lock validation efforts.
5427 */
5428 static void migrate_tasks(struct rq *dead_rq)
5429 {
5430 struct rq *rq = dead_rq;
5431 struct task_struct *next, *stop = rq->stop;
5432 struct pin_cookie cookie;
5433 int dest_cpu;
5434
5435 /*
5436 * Fudge the rq selection such that the below task selection loop
5437 * doesn't get stuck on the currently eligible stop task.
5438 *
5439 * We're currently inside stop_machine() and the rq is either stuck
5440 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5441 * either way we should never end up calling schedule() until we're
5442 * done here.
5443 */
5444 rq->stop = NULL;
5445
5446 /*
5447 * put_prev_task() and pick_next_task() sched
5448 * class method both need to have an up-to-date
5449 * value of rq->clock[_task]
5450 */
5451 update_rq_clock(rq);
5452
5453 for (;;) {
5454 /*
5455 * There's this thread running, bail when that's the only
5456 * remaining thread.
5457 */
5458 if (rq->nr_running == 1)
5459 break;
5460
5461 /*
5462 * pick_next_task assumes pinned rq->lock.
5463 */
5464 cookie = lockdep_pin_lock(&rq->lock);
5465 next = pick_next_task(rq, &fake_task, cookie);
5466 BUG_ON(!next);
5467 next->sched_class->put_prev_task(rq, next);
5468
5469 /*
5470 * Rules for changing task_struct::cpus_allowed are holding
5471 * both pi_lock and rq->lock, such that holding either
5472 * stabilizes the mask.
5473 *
5474 * Drop rq->lock is not quite as disastrous as it usually is
5475 * because !cpu_active at this point, which means load-balance
5476 * will not interfere. Also, stop-machine.
5477 */
5478 lockdep_unpin_lock(&rq->lock, cookie);
5479 raw_spin_unlock(&rq->lock);
5480 raw_spin_lock(&next->pi_lock);
5481 raw_spin_lock(&rq->lock);
5482
5483 /*
5484 * Since we're inside stop-machine, _nothing_ should have
5485 * changed the task, WARN if weird stuff happened, because in
5486 * that case the above rq->lock drop is a fail too.
5487 */
5488 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5489 raw_spin_unlock(&next->pi_lock);
5490 continue;
5491 }
5492
5493 /* Find suitable destination for @next, with force if needed. */
5494 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5495
5496 rq = __migrate_task(rq, next, dest_cpu);
5497 if (rq != dead_rq) {
5498 raw_spin_unlock(&rq->lock);
5499 rq = dead_rq;
5500 raw_spin_lock(&rq->lock);
5501 }
5502 raw_spin_unlock(&next->pi_lock);
5503 }
5504
5505 rq->stop = stop;
5506 }
5507 #endif /* CONFIG_HOTPLUG_CPU */
5508
5509 static void set_rq_online(struct rq *rq)
5510 {
5511 if (!rq->online) {
5512 const struct sched_class *class;
5513
5514 cpumask_set_cpu(rq->cpu, rq->rd->online);
5515 rq->online = 1;
5516
5517 for_each_class(class) {
5518 if (class->rq_online)
5519 class->rq_online(rq);
5520 }
5521 }
5522 }
5523
5524 static void set_rq_offline(struct rq *rq)
5525 {
5526 if (rq->online) {
5527 const struct sched_class *class;
5528
5529 for_each_class(class) {
5530 if (class->rq_offline)
5531 class->rq_offline(rq);
5532 }
5533
5534 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5535 rq->online = 0;
5536 }
5537 }
5538
5539 static void set_cpu_rq_start_time(unsigned int cpu)
5540 {
5541 struct rq *rq = cpu_rq(cpu);
5542
5543 rq->age_stamp = sched_clock_cpu(cpu);
5544 }
5545
5546 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5547
5548 #ifdef CONFIG_SCHED_DEBUG
5549
5550 static __read_mostly int sched_debug_enabled;
5551
5552 static int __init sched_debug_setup(char *str)
5553 {
5554 sched_debug_enabled = 1;
5555
5556 return 0;
5557 }
5558 early_param("sched_debug", sched_debug_setup);
5559
5560 static inline bool sched_debug(void)
5561 {
5562 return sched_debug_enabled;
5563 }
5564
5565 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5566 struct cpumask *groupmask)
5567 {
5568 struct sched_group *group = sd->groups;
5569
5570 cpumask_clear(groupmask);
5571
5572 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5573
5574 if (!(sd->flags & SD_LOAD_BALANCE)) {
5575 printk("does not load-balance\n");
5576 if (sd->parent)
5577 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5578 " has parent");
5579 return -1;
5580 }
5581
5582 printk(KERN_CONT "span %*pbl level %s\n",
5583 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5584
5585 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5586 printk(KERN_ERR "ERROR: domain->span does not contain "
5587 "CPU%d\n", cpu);
5588 }
5589 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5590 printk(KERN_ERR "ERROR: domain->groups does not contain"
5591 " CPU%d\n", cpu);
5592 }
5593
5594 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5595 do {
5596 if (!group) {
5597 printk("\n");
5598 printk(KERN_ERR "ERROR: group is NULL\n");
5599 break;
5600 }
5601
5602 if (!cpumask_weight(sched_group_cpus(group))) {
5603 printk(KERN_CONT "\n");
5604 printk(KERN_ERR "ERROR: empty group\n");
5605 break;
5606 }
5607
5608 if (!(sd->flags & SD_OVERLAP) &&
5609 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5610 printk(KERN_CONT "\n");
5611 printk(KERN_ERR "ERROR: repeated CPUs\n");
5612 break;
5613 }
5614
5615 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5616
5617 printk(KERN_CONT " %*pbl",
5618 cpumask_pr_args(sched_group_cpus(group)));
5619 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5620 printk(KERN_CONT " (cpu_capacity = %d)",
5621 group->sgc->capacity);
5622 }
5623
5624 group = group->next;
5625 } while (group != sd->groups);
5626 printk(KERN_CONT "\n");
5627
5628 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5629 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5630
5631 if (sd->parent &&
5632 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5633 printk(KERN_ERR "ERROR: parent span is not a superset "
5634 "of domain->span\n");
5635 return 0;
5636 }
5637
5638 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5639 {
5640 int level = 0;
5641
5642 if (!sched_debug_enabled)
5643 return;
5644
5645 if (!sd) {
5646 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5647 return;
5648 }
5649
5650 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5651
5652 for (;;) {
5653 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5654 break;
5655 level++;
5656 sd = sd->parent;
5657 if (!sd)
5658 break;
5659 }
5660 }
5661 #else /* !CONFIG_SCHED_DEBUG */
5662 # define sched_domain_debug(sd, cpu) do { } while (0)
5663 static inline bool sched_debug(void)
5664 {
5665 return false;
5666 }
5667 #endif /* CONFIG_SCHED_DEBUG */
5668
5669 static int sd_degenerate(struct sched_domain *sd)
5670 {
5671 if (cpumask_weight(sched_domain_span(sd)) == 1)
5672 return 1;
5673
5674 /* Following flags need at least 2 groups */
5675 if (sd->flags & (SD_LOAD_BALANCE |
5676 SD_BALANCE_NEWIDLE |
5677 SD_BALANCE_FORK |
5678 SD_BALANCE_EXEC |
5679 SD_SHARE_CPUCAPACITY |
5680 SD_SHARE_PKG_RESOURCES |
5681 SD_SHARE_POWERDOMAIN)) {
5682 if (sd->groups != sd->groups->next)
5683 return 0;
5684 }
5685
5686 /* Following flags don't use groups */
5687 if (sd->flags & (SD_WAKE_AFFINE))
5688 return 0;
5689
5690 return 1;
5691 }
5692
5693 static int
5694 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5695 {
5696 unsigned long cflags = sd->flags, pflags = parent->flags;
5697
5698 if (sd_degenerate(parent))
5699 return 1;
5700
5701 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5702 return 0;
5703
5704 /* Flags needing groups don't count if only 1 group in parent */
5705 if (parent->groups == parent->groups->next) {
5706 pflags &= ~(SD_LOAD_BALANCE |
5707 SD_BALANCE_NEWIDLE |
5708 SD_BALANCE_FORK |
5709 SD_BALANCE_EXEC |
5710 SD_SHARE_CPUCAPACITY |
5711 SD_SHARE_PKG_RESOURCES |
5712 SD_PREFER_SIBLING |
5713 SD_SHARE_POWERDOMAIN);
5714 if (nr_node_ids == 1)
5715 pflags &= ~SD_SERIALIZE;
5716 }
5717 if (~cflags & pflags)
5718 return 0;
5719
5720 return 1;
5721 }
5722
5723 static void free_rootdomain(struct rcu_head *rcu)
5724 {
5725 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5726
5727 cpupri_cleanup(&rd->cpupri);
5728 cpudl_cleanup(&rd->cpudl);
5729 free_cpumask_var(rd->dlo_mask);
5730 free_cpumask_var(rd->rto_mask);
5731 free_cpumask_var(rd->online);
5732 free_cpumask_var(rd->span);
5733 kfree(rd);
5734 }
5735
5736 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5737 {
5738 struct root_domain *old_rd = NULL;
5739 unsigned long flags;
5740
5741 raw_spin_lock_irqsave(&rq->lock, flags);
5742
5743 if (rq->rd) {
5744 old_rd = rq->rd;
5745
5746 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5747 set_rq_offline(rq);
5748
5749 cpumask_clear_cpu(rq->cpu, old_rd->span);
5750
5751 /*
5752 * If we dont want to free the old_rd yet then
5753 * set old_rd to NULL to skip the freeing later
5754 * in this function:
5755 */
5756 if (!atomic_dec_and_test(&old_rd->refcount))
5757 old_rd = NULL;
5758 }
5759
5760 atomic_inc(&rd->refcount);
5761 rq->rd = rd;
5762
5763 cpumask_set_cpu(rq->cpu, rd->span);
5764 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5765 set_rq_online(rq);
5766
5767 raw_spin_unlock_irqrestore(&rq->lock, flags);
5768
5769 if (old_rd)
5770 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5771 }
5772
5773 static int init_rootdomain(struct root_domain *rd)
5774 {
5775 memset(rd, 0, sizeof(*rd));
5776
5777 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5778 goto out;
5779 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5780 goto free_span;
5781 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5782 goto free_online;
5783 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5784 goto free_dlo_mask;
5785
5786 init_dl_bw(&rd->dl_bw);
5787 if (cpudl_init(&rd->cpudl) != 0)
5788 goto free_dlo_mask;
5789
5790 if (cpupri_init(&rd->cpupri) != 0)
5791 goto free_rto_mask;
5792 return 0;
5793
5794 free_rto_mask:
5795 free_cpumask_var(rd->rto_mask);
5796 free_dlo_mask:
5797 free_cpumask_var(rd->dlo_mask);
5798 free_online:
5799 free_cpumask_var(rd->online);
5800 free_span:
5801 free_cpumask_var(rd->span);
5802 out:
5803 return -ENOMEM;
5804 }
5805
5806 /*
5807 * By default the system creates a single root-domain with all cpus as
5808 * members (mimicking the global state we have today).
5809 */
5810 struct root_domain def_root_domain;
5811
5812 static void init_defrootdomain(void)
5813 {
5814 init_rootdomain(&def_root_domain);
5815
5816 atomic_set(&def_root_domain.refcount, 1);
5817 }
5818
5819 static struct root_domain *alloc_rootdomain(void)
5820 {
5821 struct root_domain *rd;
5822
5823 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5824 if (!rd)
5825 return NULL;
5826
5827 if (init_rootdomain(rd) != 0) {
5828 kfree(rd);
5829 return NULL;
5830 }
5831
5832 return rd;
5833 }
5834
5835 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5836 {
5837 struct sched_group *tmp, *first;
5838
5839 if (!sg)
5840 return;
5841
5842 first = sg;
5843 do {
5844 tmp = sg->next;
5845
5846 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5847 kfree(sg->sgc);
5848
5849 kfree(sg);
5850 sg = tmp;
5851 } while (sg != first);
5852 }
5853
5854 static void free_sched_domain(struct rcu_head *rcu)
5855 {
5856 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5857
5858 /*
5859 * If its an overlapping domain it has private groups, iterate and
5860 * nuke them all.
5861 */
5862 if (sd->flags & SD_OVERLAP) {
5863 free_sched_groups(sd->groups, 1);
5864 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5865 kfree(sd->groups->sgc);
5866 kfree(sd->groups);
5867 }
5868 kfree(sd);
5869 }
5870
5871 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5872 {
5873 call_rcu(&sd->rcu, free_sched_domain);
5874 }
5875
5876 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5877 {
5878 for (; sd; sd = sd->parent)
5879 destroy_sched_domain(sd, cpu);
5880 }
5881
5882 /*
5883 * Keep a special pointer to the highest sched_domain that has
5884 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5885 * allows us to avoid some pointer chasing select_idle_sibling().
5886 *
5887 * Also keep a unique ID per domain (we use the first cpu number in
5888 * the cpumask of the domain), this allows us to quickly tell if
5889 * two cpus are in the same cache domain, see cpus_share_cache().
5890 */
5891 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5892 DEFINE_PER_CPU(int, sd_llc_size);
5893 DEFINE_PER_CPU(int, sd_llc_id);
5894 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5895 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5896 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5897
5898 static void update_top_cache_domain(int cpu)
5899 {
5900 struct sched_domain *sd;
5901 struct sched_domain *busy_sd = NULL;
5902 int id = cpu;
5903 int size = 1;
5904
5905 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5906 if (sd) {
5907 id = cpumask_first(sched_domain_span(sd));
5908 size = cpumask_weight(sched_domain_span(sd));
5909 busy_sd = sd->parent; /* sd_busy */
5910 }
5911 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5912
5913 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5914 per_cpu(sd_llc_size, cpu) = size;
5915 per_cpu(sd_llc_id, cpu) = id;
5916
5917 sd = lowest_flag_domain(cpu, SD_NUMA);
5918 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5919
5920 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5921 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5922 }
5923
5924 /*
5925 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5926 * hold the hotplug lock.
5927 */
5928 static void
5929 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5930 {
5931 struct rq *rq = cpu_rq(cpu);
5932 struct sched_domain *tmp;
5933
5934 /* Remove the sched domains which do not contribute to scheduling. */
5935 for (tmp = sd; tmp; ) {
5936 struct sched_domain *parent = tmp->parent;
5937 if (!parent)
5938 break;
5939
5940 if (sd_parent_degenerate(tmp, parent)) {
5941 tmp->parent = parent->parent;
5942 if (parent->parent)
5943 parent->parent->child = tmp;
5944 /*
5945 * Transfer SD_PREFER_SIBLING down in case of a
5946 * degenerate parent; the spans match for this
5947 * so the property transfers.
5948 */
5949 if (parent->flags & SD_PREFER_SIBLING)
5950 tmp->flags |= SD_PREFER_SIBLING;
5951 destroy_sched_domain(parent, cpu);
5952 } else
5953 tmp = tmp->parent;
5954 }
5955
5956 if (sd && sd_degenerate(sd)) {
5957 tmp = sd;
5958 sd = sd->parent;
5959 destroy_sched_domain(tmp, cpu);
5960 if (sd)
5961 sd->child = NULL;
5962 }
5963
5964 sched_domain_debug(sd, cpu);
5965
5966 rq_attach_root(rq, rd);
5967 tmp = rq->sd;
5968 rcu_assign_pointer(rq->sd, sd);
5969 destroy_sched_domains(tmp, cpu);
5970
5971 update_top_cache_domain(cpu);
5972 }
5973
5974 /* Setup the mask of cpus configured for isolated domains */
5975 static int __init isolated_cpu_setup(char *str)
5976 {
5977 int ret;
5978
5979 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5980 ret = cpulist_parse(str, cpu_isolated_map);
5981 if (ret) {
5982 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5983 return 0;
5984 }
5985 return 1;
5986 }
5987 __setup("isolcpus=", isolated_cpu_setup);
5988
5989 struct s_data {
5990 struct sched_domain ** __percpu sd;
5991 struct root_domain *rd;
5992 };
5993
5994 enum s_alloc {
5995 sa_rootdomain,
5996 sa_sd,
5997 sa_sd_storage,
5998 sa_none,
5999 };
6000
6001 /*
6002 * Build an iteration mask that can exclude certain CPUs from the upwards
6003 * domain traversal.
6004 *
6005 * Asymmetric node setups can result in situations where the domain tree is of
6006 * unequal depth, make sure to skip domains that already cover the entire
6007 * range.
6008 *
6009 * In that case build_sched_domains() will have terminated the iteration early
6010 * and our sibling sd spans will be empty. Domains should always include the
6011 * cpu they're built on, so check that.
6012 *
6013 */
6014 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6015 {
6016 const struct cpumask *span = sched_domain_span(sd);
6017 struct sd_data *sdd = sd->private;
6018 struct sched_domain *sibling;
6019 int i;
6020
6021 for_each_cpu(i, span) {
6022 sibling = *per_cpu_ptr(sdd->sd, i);
6023 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6024 continue;
6025
6026 cpumask_set_cpu(i, sched_group_mask(sg));
6027 }
6028 }
6029
6030 /*
6031 * Return the canonical balance cpu for this group, this is the first cpu
6032 * of this group that's also in the iteration mask.
6033 */
6034 int group_balance_cpu(struct sched_group *sg)
6035 {
6036 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6037 }
6038
6039 static int
6040 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6041 {
6042 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6043 const struct cpumask *span = sched_domain_span(sd);
6044 struct cpumask *covered = sched_domains_tmpmask;
6045 struct sd_data *sdd = sd->private;
6046 struct sched_domain *sibling;
6047 int i;
6048
6049 cpumask_clear(covered);
6050
6051 for_each_cpu(i, span) {
6052 struct cpumask *sg_span;
6053
6054 if (cpumask_test_cpu(i, covered))
6055 continue;
6056
6057 sibling = *per_cpu_ptr(sdd->sd, i);
6058
6059 /* See the comment near build_group_mask(). */
6060 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6061 continue;
6062
6063 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6064 GFP_KERNEL, cpu_to_node(cpu));
6065
6066 if (!sg)
6067 goto fail;
6068
6069 sg_span = sched_group_cpus(sg);
6070 if (sibling->child)
6071 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6072 else
6073 cpumask_set_cpu(i, sg_span);
6074
6075 cpumask_or(covered, covered, sg_span);
6076
6077 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6078 if (atomic_inc_return(&sg->sgc->ref) == 1)
6079 build_group_mask(sd, sg);
6080
6081 /*
6082 * Initialize sgc->capacity such that even if we mess up the
6083 * domains and no possible iteration will get us here, we won't
6084 * die on a /0 trap.
6085 */
6086 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6087
6088 /*
6089 * Make sure the first group of this domain contains the
6090 * canonical balance cpu. Otherwise the sched_domain iteration
6091 * breaks. See update_sg_lb_stats().
6092 */
6093 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6094 group_balance_cpu(sg) == cpu)
6095 groups = sg;
6096
6097 if (!first)
6098 first = sg;
6099 if (last)
6100 last->next = sg;
6101 last = sg;
6102 last->next = first;
6103 }
6104 sd->groups = groups;
6105
6106 return 0;
6107
6108 fail:
6109 free_sched_groups(first, 0);
6110
6111 return -ENOMEM;
6112 }
6113
6114 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6115 {
6116 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6117 struct sched_domain *child = sd->child;
6118
6119 if (child)
6120 cpu = cpumask_first(sched_domain_span(child));
6121
6122 if (sg) {
6123 *sg = *per_cpu_ptr(sdd->sg, cpu);
6124 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6125 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6126 }
6127
6128 return cpu;
6129 }
6130
6131 /*
6132 * build_sched_groups will build a circular linked list of the groups
6133 * covered by the given span, and will set each group's ->cpumask correctly,
6134 * and ->cpu_capacity to 0.
6135 *
6136 * Assumes the sched_domain tree is fully constructed
6137 */
6138 static int
6139 build_sched_groups(struct sched_domain *sd, int cpu)
6140 {
6141 struct sched_group *first = NULL, *last = NULL;
6142 struct sd_data *sdd = sd->private;
6143 const struct cpumask *span = sched_domain_span(sd);
6144 struct cpumask *covered;
6145 int i;
6146
6147 get_group(cpu, sdd, &sd->groups);
6148 atomic_inc(&sd->groups->ref);
6149
6150 if (cpu != cpumask_first(span))
6151 return 0;
6152
6153 lockdep_assert_held(&sched_domains_mutex);
6154 covered = sched_domains_tmpmask;
6155
6156 cpumask_clear(covered);
6157
6158 for_each_cpu(i, span) {
6159 struct sched_group *sg;
6160 int group, j;
6161
6162 if (cpumask_test_cpu(i, covered))
6163 continue;
6164
6165 group = get_group(i, sdd, &sg);
6166 cpumask_setall(sched_group_mask(sg));
6167
6168 for_each_cpu(j, span) {
6169 if (get_group(j, sdd, NULL) != group)
6170 continue;
6171
6172 cpumask_set_cpu(j, covered);
6173 cpumask_set_cpu(j, sched_group_cpus(sg));
6174 }
6175
6176 if (!first)
6177 first = sg;
6178 if (last)
6179 last->next = sg;
6180 last = sg;
6181 }
6182 last->next = first;
6183
6184 return 0;
6185 }
6186
6187 /*
6188 * Initialize sched groups cpu_capacity.
6189 *
6190 * cpu_capacity indicates the capacity of sched group, which is used while
6191 * distributing the load between different sched groups in a sched domain.
6192 * Typically cpu_capacity for all the groups in a sched domain will be same
6193 * unless there are asymmetries in the topology. If there are asymmetries,
6194 * group having more cpu_capacity will pickup more load compared to the
6195 * group having less cpu_capacity.
6196 */
6197 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6198 {
6199 struct sched_group *sg = sd->groups;
6200
6201 WARN_ON(!sg);
6202
6203 do {
6204 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6205 sg = sg->next;
6206 } while (sg != sd->groups);
6207
6208 if (cpu != group_balance_cpu(sg))
6209 return;
6210
6211 update_group_capacity(sd, cpu);
6212 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6213 }
6214
6215 /*
6216 * Initializers for schedule domains
6217 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6218 */
6219
6220 static int default_relax_domain_level = -1;
6221 int sched_domain_level_max;
6222
6223 static int __init setup_relax_domain_level(char *str)
6224 {
6225 if (kstrtoint(str, 0, &default_relax_domain_level))
6226 pr_warn("Unable to set relax_domain_level\n");
6227
6228 return 1;
6229 }
6230 __setup("relax_domain_level=", setup_relax_domain_level);
6231
6232 static void set_domain_attribute(struct sched_domain *sd,
6233 struct sched_domain_attr *attr)
6234 {
6235 int request;
6236
6237 if (!attr || attr->relax_domain_level < 0) {
6238 if (default_relax_domain_level < 0)
6239 return;
6240 else
6241 request = default_relax_domain_level;
6242 } else
6243 request = attr->relax_domain_level;
6244 if (request < sd->level) {
6245 /* turn off idle balance on this domain */
6246 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6247 } else {
6248 /* turn on idle balance on this domain */
6249 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6250 }
6251 }
6252
6253 static void __sdt_free(const struct cpumask *cpu_map);
6254 static int __sdt_alloc(const struct cpumask *cpu_map);
6255
6256 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6257 const struct cpumask *cpu_map)
6258 {
6259 switch (what) {
6260 case sa_rootdomain:
6261 if (!atomic_read(&d->rd->refcount))
6262 free_rootdomain(&d->rd->rcu); /* fall through */
6263 case sa_sd:
6264 free_percpu(d->sd); /* fall through */
6265 case sa_sd_storage:
6266 __sdt_free(cpu_map); /* fall through */
6267 case sa_none:
6268 break;
6269 }
6270 }
6271
6272 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6273 const struct cpumask *cpu_map)
6274 {
6275 memset(d, 0, sizeof(*d));
6276
6277 if (__sdt_alloc(cpu_map))
6278 return sa_sd_storage;
6279 d->sd = alloc_percpu(struct sched_domain *);
6280 if (!d->sd)
6281 return sa_sd_storage;
6282 d->rd = alloc_rootdomain();
6283 if (!d->rd)
6284 return sa_sd;
6285 return sa_rootdomain;
6286 }
6287
6288 /*
6289 * NULL the sd_data elements we've used to build the sched_domain and
6290 * sched_group structure so that the subsequent __free_domain_allocs()
6291 * will not free the data we're using.
6292 */
6293 static void claim_allocations(int cpu, struct sched_domain *sd)
6294 {
6295 struct sd_data *sdd = sd->private;
6296
6297 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6298 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6299
6300 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6301 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6302
6303 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6304 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6305 }
6306
6307 #ifdef CONFIG_NUMA
6308 static int sched_domains_numa_levels;
6309 enum numa_topology_type sched_numa_topology_type;
6310 static int *sched_domains_numa_distance;
6311 int sched_max_numa_distance;
6312 static struct cpumask ***sched_domains_numa_masks;
6313 static int sched_domains_curr_level;
6314 #endif
6315
6316 /*
6317 * SD_flags allowed in topology descriptions.
6318 *
6319 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6320 * SD_SHARE_PKG_RESOURCES - describes shared caches
6321 * SD_NUMA - describes NUMA topologies
6322 * SD_SHARE_POWERDOMAIN - describes shared power domain
6323 *
6324 * Odd one out:
6325 * SD_ASYM_PACKING - describes SMT quirks
6326 */
6327 #define TOPOLOGY_SD_FLAGS \
6328 (SD_SHARE_CPUCAPACITY | \
6329 SD_SHARE_PKG_RESOURCES | \
6330 SD_NUMA | \
6331 SD_ASYM_PACKING | \
6332 SD_SHARE_POWERDOMAIN)
6333
6334 static struct sched_domain *
6335 sd_init(struct sched_domain_topology_level *tl, int cpu)
6336 {
6337 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6338 int sd_weight, sd_flags = 0;
6339
6340 #ifdef CONFIG_NUMA
6341 /*
6342 * Ugly hack to pass state to sd_numa_mask()...
6343 */
6344 sched_domains_curr_level = tl->numa_level;
6345 #endif
6346
6347 sd_weight = cpumask_weight(tl->mask(cpu));
6348
6349 if (tl->sd_flags)
6350 sd_flags = (*tl->sd_flags)();
6351 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6352 "wrong sd_flags in topology description\n"))
6353 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6354
6355 *sd = (struct sched_domain){
6356 .min_interval = sd_weight,
6357 .max_interval = 2*sd_weight,
6358 .busy_factor = 32,
6359 .imbalance_pct = 125,
6360
6361 .cache_nice_tries = 0,
6362 .busy_idx = 0,
6363 .idle_idx = 0,
6364 .newidle_idx = 0,
6365 .wake_idx = 0,
6366 .forkexec_idx = 0,
6367
6368 .flags = 1*SD_LOAD_BALANCE
6369 | 1*SD_BALANCE_NEWIDLE
6370 | 1*SD_BALANCE_EXEC
6371 | 1*SD_BALANCE_FORK
6372 | 0*SD_BALANCE_WAKE
6373 | 1*SD_WAKE_AFFINE
6374 | 0*SD_SHARE_CPUCAPACITY
6375 | 0*SD_SHARE_PKG_RESOURCES
6376 | 0*SD_SERIALIZE
6377 | 0*SD_PREFER_SIBLING
6378 | 0*SD_NUMA
6379 | sd_flags
6380 ,
6381
6382 .last_balance = jiffies,
6383 .balance_interval = sd_weight,
6384 .smt_gain = 0,
6385 .max_newidle_lb_cost = 0,
6386 .next_decay_max_lb_cost = jiffies,
6387 #ifdef CONFIG_SCHED_DEBUG
6388 .name = tl->name,
6389 #endif
6390 };
6391
6392 /*
6393 * Convert topological properties into behaviour.
6394 */
6395
6396 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6397 sd->flags |= SD_PREFER_SIBLING;
6398 sd->imbalance_pct = 110;
6399 sd->smt_gain = 1178; /* ~15% */
6400
6401 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6402 sd->imbalance_pct = 117;
6403 sd->cache_nice_tries = 1;
6404 sd->busy_idx = 2;
6405
6406 #ifdef CONFIG_NUMA
6407 } else if (sd->flags & SD_NUMA) {
6408 sd->cache_nice_tries = 2;
6409 sd->busy_idx = 3;
6410 sd->idle_idx = 2;
6411
6412 sd->flags |= SD_SERIALIZE;
6413 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6414 sd->flags &= ~(SD_BALANCE_EXEC |
6415 SD_BALANCE_FORK |
6416 SD_WAKE_AFFINE);
6417 }
6418
6419 #endif
6420 } else {
6421 sd->flags |= SD_PREFER_SIBLING;
6422 sd->cache_nice_tries = 1;
6423 sd->busy_idx = 2;
6424 sd->idle_idx = 1;
6425 }
6426
6427 sd->private = &tl->data;
6428
6429 return sd;
6430 }
6431
6432 /*
6433 * Topology list, bottom-up.
6434 */
6435 static struct sched_domain_topology_level default_topology[] = {
6436 #ifdef CONFIG_SCHED_SMT
6437 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6438 #endif
6439 #ifdef CONFIG_SCHED_MC
6440 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6441 #endif
6442 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6443 { NULL, },
6444 };
6445
6446 static struct sched_domain_topology_level *sched_domain_topology =
6447 default_topology;
6448
6449 #define for_each_sd_topology(tl) \
6450 for (tl = sched_domain_topology; tl->mask; tl++)
6451
6452 void set_sched_topology(struct sched_domain_topology_level *tl)
6453 {
6454 sched_domain_topology = tl;
6455 }
6456
6457 #ifdef CONFIG_NUMA
6458
6459 static const struct cpumask *sd_numa_mask(int cpu)
6460 {
6461 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6462 }
6463
6464 static void sched_numa_warn(const char *str)
6465 {
6466 static int done = false;
6467 int i,j;
6468
6469 if (done)
6470 return;
6471
6472 done = true;
6473
6474 printk(KERN_WARNING "ERROR: %s\n\n", str);
6475
6476 for (i = 0; i < nr_node_ids; i++) {
6477 printk(KERN_WARNING " ");
6478 for (j = 0; j < nr_node_ids; j++)
6479 printk(KERN_CONT "%02d ", node_distance(i,j));
6480 printk(KERN_CONT "\n");
6481 }
6482 printk(KERN_WARNING "\n");
6483 }
6484
6485 bool find_numa_distance(int distance)
6486 {
6487 int i;
6488
6489 if (distance == node_distance(0, 0))
6490 return true;
6491
6492 for (i = 0; i < sched_domains_numa_levels; i++) {
6493 if (sched_domains_numa_distance[i] == distance)
6494 return true;
6495 }
6496
6497 return false;
6498 }
6499
6500 /*
6501 * A system can have three types of NUMA topology:
6502 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6503 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6504 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6505 *
6506 * The difference between a glueless mesh topology and a backplane
6507 * topology lies in whether communication between not directly
6508 * connected nodes goes through intermediary nodes (where programs
6509 * could run), or through backplane controllers. This affects
6510 * placement of programs.
6511 *
6512 * The type of topology can be discerned with the following tests:
6513 * - If the maximum distance between any nodes is 1 hop, the system
6514 * is directly connected.
6515 * - If for two nodes A and B, located N > 1 hops away from each other,
6516 * there is an intermediary node C, which is < N hops away from both
6517 * nodes A and B, the system is a glueless mesh.
6518 */
6519 static void init_numa_topology_type(void)
6520 {
6521 int a, b, c, n;
6522
6523 n = sched_max_numa_distance;
6524
6525 if (sched_domains_numa_levels <= 1) {
6526 sched_numa_topology_type = NUMA_DIRECT;
6527 return;
6528 }
6529
6530 for_each_online_node(a) {
6531 for_each_online_node(b) {
6532 /* Find two nodes furthest removed from each other. */
6533 if (node_distance(a, b) < n)
6534 continue;
6535
6536 /* Is there an intermediary node between a and b? */
6537 for_each_online_node(c) {
6538 if (node_distance(a, c) < n &&
6539 node_distance(b, c) < n) {
6540 sched_numa_topology_type =
6541 NUMA_GLUELESS_MESH;
6542 return;
6543 }
6544 }
6545
6546 sched_numa_topology_type = NUMA_BACKPLANE;
6547 return;
6548 }
6549 }
6550 }
6551
6552 static void sched_init_numa(void)
6553 {
6554 int next_distance, curr_distance = node_distance(0, 0);
6555 struct sched_domain_topology_level *tl;
6556 int level = 0;
6557 int i, j, k;
6558
6559 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6560 if (!sched_domains_numa_distance)
6561 return;
6562
6563 /*
6564 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6565 * unique distances in the node_distance() table.
6566 *
6567 * Assumes node_distance(0,j) includes all distances in
6568 * node_distance(i,j) in order to avoid cubic time.
6569 */
6570 next_distance = curr_distance;
6571 for (i = 0; i < nr_node_ids; i++) {
6572 for (j = 0; j < nr_node_ids; j++) {
6573 for (k = 0; k < nr_node_ids; k++) {
6574 int distance = node_distance(i, k);
6575
6576 if (distance > curr_distance &&
6577 (distance < next_distance ||
6578 next_distance == curr_distance))
6579 next_distance = distance;
6580
6581 /*
6582 * While not a strong assumption it would be nice to know
6583 * about cases where if node A is connected to B, B is not
6584 * equally connected to A.
6585 */
6586 if (sched_debug() && node_distance(k, i) != distance)
6587 sched_numa_warn("Node-distance not symmetric");
6588
6589 if (sched_debug() && i && !find_numa_distance(distance))
6590 sched_numa_warn("Node-0 not representative");
6591 }
6592 if (next_distance != curr_distance) {
6593 sched_domains_numa_distance[level++] = next_distance;
6594 sched_domains_numa_levels = level;
6595 curr_distance = next_distance;
6596 } else break;
6597 }
6598
6599 /*
6600 * In case of sched_debug() we verify the above assumption.
6601 */
6602 if (!sched_debug())
6603 break;
6604 }
6605
6606 if (!level)
6607 return;
6608
6609 /*
6610 * 'level' contains the number of unique distances, excluding the
6611 * identity distance node_distance(i,i).
6612 *
6613 * The sched_domains_numa_distance[] array includes the actual distance
6614 * numbers.
6615 */
6616
6617 /*
6618 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6619 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6620 * the array will contain less then 'level' members. This could be
6621 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6622 * in other functions.
6623 *
6624 * We reset it to 'level' at the end of this function.
6625 */
6626 sched_domains_numa_levels = 0;
6627
6628 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6629 if (!sched_domains_numa_masks)
6630 return;
6631
6632 /*
6633 * Now for each level, construct a mask per node which contains all
6634 * cpus of nodes that are that many hops away from us.
6635 */
6636 for (i = 0; i < level; i++) {
6637 sched_domains_numa_masks[i] =
6638 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6639 if (!sched_domains_numa_masks[i])
6640 return;
6641
6642 for (j = 0; j < nr_node_ids; j++) {
6643 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6644 if (!mask)
6645 return;
6646
6647 sched_domains_numa_masks[i][j] = mask;
6648
6649 for_each_node(k) {
6650 if (node_distance(j, k) > sched_domains_numa_distance[i])
6651 continue;
6652
6653 cpumask_or(mask, mask, cpumask_of_node(k));
6654 }
6655 }
6656 }
6657
6658 /* Compute default topology size */
6659 for (i = 0; sched_domain_topology[i].mask; i++);
6660
6661 tl = kzalloc((i + level + 1) *
6662 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6663 if (!tl)
6664 return;
6665
6666 /*
6667 * Copy the default topology bits..
6668 */
6669 for (i = 0; sched_domain_topology[i].mask; i++)
6670 tl[i] = sched_domain_topology[i];
6671
6672 /*
6673 * .. and append 'j' levels of NUMA goodness.
6674 */
6675 for (j = 0; j < level; i++, j++) {
6676 tl[i] = (struct sched_domain_topology_level){
6677 .mask = sd_numa_mask,
6678 .sd_flags = cpu_numa_flags,
6679 .flags = SDTL_OVERLAP,
6680 .numa_level = j,
6681 SD_INIT_NAME(NUMA)
6682 };
6683 }
6684
6685 sched_domain_topology = tl;
6686
6687 sched_domains_numa_levels = level;
6688 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6689
6690 init_numa_topology_type();
6691 }
6692
6693 static void sched_domains_numa_masks_set(unsigned int cpu)
6694 {
6695 int node = cpu_to_node(cpu);
6696 int i, j;
6697
6698 for (i = 0; i < sched_domains_numa_levels; i++) {
6699 for (j = 0; j < nr_node_ids; j++) {
6700 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6701 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6702 }
6703 }
6704 }
6705
6706 static void sched_domains_numa_masks_clear(unsigned int cpu)
6707 {
6708 int i, j;
6709
6710 for (i = 0; i < sched_domains_numa_levels; i++) {
6711 for (j = 0; j < nr_node_ids; j++)
6712 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6713 }
6714 }
6715
6716 #else
6717 static inline void sched_init_numa(void) { }
6718 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6719 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6720 #endif /* CONFIG_NUMA */
6721
6722 static int __sdt_alloc(const struct cpumask *cpu_map)
6723 {
6724 struct sched_domain_topology_level *tl;
6725 int j;
6726
6727 for_each_sd_topology(tl) {
6728 struct sd_data *sdd = &tl->data;
6729
6730 sdd->sd = alloc_percpu(struct sched_domain *);
6731 if (!sdd->sd)
6732 return -ENOMEM;
6733
6734 sdd->sg = alloc_percpu(struct sched_group *);
6735 if (!sdd->sg)
6736 return -ENOMEM;
6737
6738 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6739 if (!sdd->sgc)
6740 return -ENOMEM;
6741
6742 for_each_cpu(j, cpu_map) {
6743 struct sched_domain *sd;
6744 struct sched_group *sg;
6745 struct sched_group_capacity *sgc;
6746
6747 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6748 GFP_KERNEL, cpu_to_node(j));
6749 if (!sd)
6750 return -ENOMEM;
6751
6752 *per_cpu_ptr(sdd->sd, j) = sd;
6753
6754 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6755 GFP_KERNEL, cpu_to_node(j));
6756 if (!sg)
6757 return -ENOMEM;
6758
6759 sg->next = sg;
6760
6761 *per_cpu_ptr(sdd->sg, j) = sg;
6762
6763 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6764 GFP_KERNEL, cpu_to_node(j));
6765 if (!sgc)
6766 return -ENOMEM;
6767
6768 *per_cpu_ptr(sdd->sgc, j) = sgc;
6769 }
6770 }
6771
6772 return 0;
6773 }
6774
6775 static void __sdt_free(const struct cpumask *cpu_map)
6776 {
6777 struct sched_domain_topology_level *tl;
6778 int j;
6779
6780 for_each_sd_topology(tl) {
6781 struct sd_data *sdd = &tl->data;
6782
6783 for_each_cpu(j, cpu_map) {
6784 struct sched_domain *sd;
6785
6786 if (sdd->sd) {
6787 sd = *per_cpu_ptr(sdd->sd, j);
6788 if (sd && (sd->flags & SD_OVERLAP))
6789 free_sched_groups(sd->groups, 0);
6790 kfree(*per_cpu_ptr(sdd->sd, j));
6791 }
6792
6793 if (sdd->sg)
6794 kfree(*per_cpu_ptr(sdd->sg, j));
6795 if (sdd->sgc)
6796 kfree(*per_cpu_ptr(sdd->sgc, j));
6797 }
6798 free_percpu(sdd->sd);
6799 sdd->sd = NULL;
6800 free_percpu(sdd->sg);
6801 sdd->sg = NULL;
6802 free_percpu(sdd->sgc);
6803 sdd->sgc = NULL;
6804 }
6805 }
6806
6807 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6808 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6809 struct sched_domain *child, int cpu)
6810 {
6811 struct sched_domain *sd = sd_init(tl, cpu);
6812 if (!sd)
6813 return child;
6814
6815 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6816 if (child) {
6817 sd->level = child->level + 1;
6818 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6819 child->parent = sd;
6820 sd->child = child;
6821
6822 if (!cpumask_subset(sched_domain_span(child),
6823 sched_domain_span(sd))) {
6824 pr_err("BUG: arch topology borken\n");
6825 #ifdef CONFIG_SCHED_DEBUG
6826 pr_err(" the %s domain not a subset of the %s domain\n",
6827 child->name, sd->name);
6828 #endif
6829 /* Fixup, ensure @sd has at least @child cpus. */
6830 cpumask_or(sched_domain_span(sd),
6831 sched_domain_span(sd),
6832 sched_domain_span(child));
6833 }
6834
6835 }
6836 set_domain_attribute(sd, attr);
6837
6838 return sd;
6839 }
6840
6841 /*
6842 * Build sched domains for a given set of cpus and attach the sched domains
6843 * to the individual cpus
6844 */
6845 static int build_sched_domains(const struct cpumask *cpu_map,
6846 struct sched_domain_attr *attr)
6847 {
6848 enum s_alloc alloc_state;
6849 struct sched_domain *sd;
6850 struct s_data d;
6851 int i, ret = -ENOMEM;
6852
6853 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6854 if (alloc_state != sa_rootdomain)
6855 goto error;
6856
6857 /* Set up domains for cpus specified by the cpu_map. */
6858 for_each_cpu(i, cpu_map) {
6859 struct sched_domain_topology_level *tl;
6860
6861 sd = NULL;
6862 for_each_sd_topology(tl) {
6863 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6864 if (tl == sched_domain_topology)
6865 *per_cpu_ptr(d.sd, i) = sd;
6866 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6867 sd->flags |= SD_OVERLAP;
6868 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6869 break;
6870 }
6871 }
6872
6873 /* Build the groups for the domains */
6874 for_each_cpu(i, cpu_map) {
6875 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6876 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6877 if (sd->flags & SD_OVERLAP) {
6878 if (build_overlap_sched_groups(sd, i))
6879 goto error;
6880 } else {
6881 if (build_sched_groups(sd, i))
6882 goto error;
6883 }
6884 }
6885 }
6886
6887 /* Calculate CPU capacity for physical packages and nodes */
6888 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6889 if (!cpumask_test_cpu(i, cpu_map))
6890 continue;
6891
6892 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6893 claim_allocations(i, sd);
6894 init_sched_groups_capacity(i, sd);
6895 }
6896 }
6897
6898 /* Attach the domains */
6899 rcu_read_lock();
6900 for_each_cpu(i, cpu_map) {
6901 sd = *per_cpu_ptr(d.sd, i);
6902 cpu_attach_domain(sd, d.rd, i);
6903 }
6904 rcu_read_unlock();
6905
6906 ret = 0;
6907 error:
6908 __free_domain_allocs(&d, alloc_state, cpu_map);
6909 return ret;
6910 }
6911
6912 static cpumask_var_t *doms_cur; /* current sched domains */
6913 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6914 static struct sched_domain_attr *dattr_cur;
6915 /* attribues of custom domains in 'doms_cur' */
6916
6917 /*
6918 * Special case: If a kmalloc of a doms_cur partition (array of
6919 * cpumask) fails, then fallback to a single sched domain,
6920 * as determined by the single cpumask fallback_doms.
6921 */
6922 static cpumask_var_t fallback_doms;
6923
6924 /*
6925 * arch_update_cpu_topology lets virtualized architectures update the
6926 * cpu core maps. It is supposed to return 1 if the topology changed
6927 * or 0 if it stayed the same.
6928 */
6929 int __weak arch_update_cpu_topology(void)
6930 {
6931 return 0;
6932 }
6933
6934 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6935 {
6936 int i;
6937 cpumask_var_t *doms;
6938
6939 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6940 if (!doms)
6941 return NULL;
6942 for (i = 0; i < ndoms; i++) {
6943 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6944 free_sched_domains(doms, i);
6945 return NULL;
6946 }
6947 }
6948 return doms;
6949 }
6950
6951 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6952 {
6953 unsigned int i;
6954 for (i = 0; i < ndoms; i++)
6955 free_cpumask_var(doms[i]);
6956 kfree(doms);
6957 }
6958
6959 /*
6960 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6961 * For now this just excludes isolated cpus, but could be used to
6962 * exclude other special cases in the future.
6963 */
6964 static int init_sched_domains(const struct cpumask *cpu_map)
6965 {
6966 int err;
6967
6968 arch_update_cpu_topology();
6969 ndoms_cur = 1;
6970 doms_cur = alloc_sched_domains(ndoms_cur);
6971 if (!doms_cur)
6972 doms_cur = &fallback_doms;
6973 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6974 err = build_sched_domains(doms_cur[0], NULL);
6975 register_sched_domain_sysctl();
6976
6977 return err;
6978 }
6979
6980 /*
6981 * Detach sched domains from a group of cpus specified in cpu_map
6982 * These cpus will now be attached to the NULL domain
6983 */
6984 static void detach_destroy_domains(const struct cpumask *cpu_map)
6985 {
6986 int i;
6987
6988 rcu_read_lock();
6989 for_each_cpu(i, cpu_map)
6990 cpu_attach_domain(NULL, &def_root_domain, i);
6991 rcu_read_unlock();
6992 }
6993
6994 /* handle null as "default" */
6995 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6996 struct sched_domain_attr *new, int idx_new)
6997 {
6998 struct sched_domain_attr tmp;
6999
7000 /* fast path */
7001 if (!new && !cur)
7002 return 1;
7003
7004 tmp = SD_ATTR_INIT;
7005 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7006 new ? (new + idx_new) : &tmp,
7007 sizeof(struct sched_domain_attr));
7008 }
7009
7010 /*
7011 * Partition sched domains as specified by the 'ndoms_new'
7012 * cpumasks in the array doms_new[] of cpumasks. This compares
7013 * doms_new[] to the current sched domain partitioning, doms_cur[].
7014 * It destroys each deleted domain and builds each new domain.
7015 *
7016 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7017 * The masks don't intersect (don't overlap.) We should setup one
7018 * sched domain for each mask. CPUs not in any of the cpumasks will
7019 * not be load balanced. If the same cpumask appears both in the
7020 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7021 * it as it is.
7022 *
7023 * The passed in 'doms_new' should be allocated using
7024 * alloc_sched_domains. This routine takes ownership of it and will
7025 * free_sched_domains it when done with it. If the caller failed the
7026 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7027 * and partition_sched_domains() will fallback to the single partition
7028 * 'fallback_doms', it also forces the domains to be rebuilt.
7029 *
7030 * If doms_new == NULL it will be replaced with cpu_online_mask.
7031 * ndoms_new == 0 is a special case for destroying existing domains,
7032 * and it will not create the default domain.
7033 *
7034 * Call with hotplug lock held
7035 */
7036 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7037 struct sched_domain_attr *dattr_new)
7038 {
7039 int i, j, n;
7040 int new_topology;
7041
7042 mutex_lock(&sched_domains_mutex);
7043
7044 /* always unregister in case we don't destroy any domains */
7045 unregister_sched_domain_sysctl();
7046
7047 /* Let architecture update cpu core mappings. */
7048 new_topology = arch_update_cpu_topology();
7049
7050 n = doms_new ? ndoms_new : 0;
7051
7052 /* Destroy deleted domains */
7053 for (i = 0; i < ndoms_cur; i++) {
7054 for (j = 0; j < n && !new_topology; j++) {
7055 if (cpumask_equal(doms_cur[i], doms_new[j])
7056 && dattrs_equal(dattr_cur, i, dattr_new, j))
7057 goto match1;
7058 }
7059 /* no match - a current sched domain not in new doms_new[] */
7060 detach_destroy_domains(doms_cur[i]);
7061 match1:
7062 ;
7063 }
7064
7065 n = ndoms_cur;
7066 if (doms_new == NULL) {
7067 n = 0;
7068 doms_new = &fallback_doms;
7069 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7070 WARN_ON_ONCE(dattr_new);
7071 }
7072
7073 /* Build new domains */
7074 for (i = 0; i < ndoms_new; i++) {
7075 for (j = 0; j < n && !new_topology; j++) {
7076 if (cpumask_equal(doms_new[i], doms_cur[j])
7077 && dattrs_equal(dattr_new, i, dattr_cur, j))
7078 goto match2;
7079 }
7080 /* no match - add a new doms_new */
7081 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7082 match2:
7083 ;
7084 }
7085
7086 /* Remember the new sched domains */
7087 if (doms_cur != &fallback_doms)
7088 free_sched_domains(doms_cur, ndoms_cur);
7089 kfree(dattr_cur); /* kfree(NULL) is safe */
7090 doms_cur = doms_new;
7091 dattr_cur = dattr_new;
7092 ndoms_cur = ndoms_new;
7093
7094 register_sched_domain_sysctl();
7095
7096 mutex_unlock(&sched_domains_mutex);
7097 }
7098
7099 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7100
7101 /*
7102 * Update cpusets according to cpu_active mask. If cpusets are
7103 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7104 * around partition_sched_domains().
7105 *
7106 * If we come here as part of a suspend/resume, don't touch cpusets because we
7107 * want to restore it back to its original state upon resume anyway.
7108 */
7109 static void cpuset_cpu_active(void)
7110 {
7111 if (cpuhp_tasks_frozen) {
7112 /*
7113 * num_cpus_frozen tracks how many CPUs are involved in suspend
7114 * resume sequence. As long as this is not the last online
7115 * operation in the resume sequence, just build a single sched
7116 * domain, ignoring cpusets.
7117 */
7118 num_cpus_frozen--;
7119 if (likely(num_cpus_frozen)) {
7120 partition_sched_domains(1, NULL, NULL);
7121 return;
7122 }
7123 /*
7124 * This is the last CPU online operation. So fall through and
7125 * restore the original sched domains by considering the
7126 * cpuset configurations.
7127 */
7128 }
7129 cpuset_update_active_cpus(true);
7130 }
7131
7132 static int cpuset_cpu_inactive(unsigned int cpu)
7133 {
7134 unsigned long flags;
7135 struct dl_bw *dl_b;
7136 bool overflow;
7137 int cpus;
7138
7139 if (!cpuhp_tasks_frozen) {
7140 rcu_read_lock_sched();
7141 dl_b = dl_bw_of(cpu);
7142
7143 raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 cpus = dl_bw_cpus(cpu);
7145 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148 rcu_read_unlock_sched();
7149
7150 if (overflow)
7151 return -EBUSY;
7152 cpuset_update_active_cpus(false);
7153 } else {
7154 num_cpus_frozen++;
7155 partition_sched_domains(1, NULL, NULL);
7156 }
7157 return 0;
7158 }
7159
7160 int sched_cpu_activate(unsigned int cpu)
7161 {
7162 struct rq *rq = cpu_rq(cpu);
7163 unsigned long flags;
7164
7165 set_cpu_active(cpu, true);
7166
7167 if (sched_smp_initialized) {
7168 sched_domains_numa_masks_set(cpu);
7169 cpuset_cpu_active();
7170 }
7171
7172 /*
7173 * Put the rq online, if not already. This happens:
7174 *
7175 * 1) In the early boot process, because we build the real domains
7176 * after all cpus have been brought up.
7177 *
7178 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7179 * domains.
7180 */
7181 raw_spin_lock_irqsave(&rq->lock, flags);
7182 if (rq->rd) {
7183 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7184 set_rq_online(rq);
7185 }
7186 raw_spin_unlock_irqrestore(&rq->lock, flags);
7187
7188 update_max_interval();
7189
7190 return 0;
7191 }
7192
7193 int sched_cpu_deactivate(unsigned int cpu)
7194 {
7195 int ret;
7196
7197 set_cpu_active(cpu, false);
7198 /*
7199 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7200 * users of this state to go away such that all new such users will
7201 * observe it.
7202 *
7203 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7204 * not imply sync_sched(), so wait for both.
7205 *
7206 * Do sync before park smpboot threads to take care the rcu boost case.
7207 */
7208 if (IS_ENABLED(CONFIG_PREEMPT))
7209 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7210 else
7211 synchronize_rcu();
7212
7213 if (!sched_smp_initialized)
7214 return 0;
7215
7216 ret = cpuset_cpu_inactive(cpu);
7217 if (ret) {
7218 set_cpu_active(cpu, true);
7219 return ret;
7220 }
7221 sched_domains_numa_masks_clear(cpu);
7222 return 0;
7223 }
7224
7225 static void sched_rq_cpu_starting(unsigned int cpu)
7226 {
7227 struct rq *rq = cpu_rq(cpu);
7228
7229 rq->calc_load_update = calc_load_update;
7230 account_reset_rq(rq);
7231 update_max_interval();
7232 }
7233
7234 int sched_cpu_starting(unsigned int cpu)
7235 {
7236 set_cpu_rq_start_time(cpu);
7237 sched_rq_cpu_starting(cpu);
7238 return 0;
7239 }
7240
7241 #ifdef CONFIG_HOTPLUG_CPU
7242 int sched_cpu_dying(unsigned int cpu)
7243 {
7244 struct rq *rq = cpu_rq(cpu);
7245 unsigned long flags;
7246
7247 /* Handle pending wakeups and then migrate everything off */
7248 sched_ttwu_pending();
7249 raw_spin_lock_irqsave(&rq->lock, flags);
7250 if (rq->rd) {
7251 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7252 set_rq_offline(rq);
7253 }
7254 migrate_tasks(rq);
7255 BUG_ON(rq->nr_running != 1);
7256 raw_spin_unlock_irqrestore(&rq->lock, flags);
7257 calc_load_migrate(rq);
7258 update_max_interval();
7259 nohz_balance_exit_idle(cpu);
7260 hrtick_clear(rq);
7261 return 0;
7262 }
7263 #endif
7264
7265 void __init sched_init_smp(void)
7266 {
7267 cpumask_var_t non_isolated_cpus;
7268
7269 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7270 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7271
7272 sched_init_numa();
7273
7274 /*
7275 * There's no userspace yet to cause hotplug operations; hence all the
7276 * cpu masks are stable and all blatant races in the below code cannot
7277 * happen.
7278 */
7279 mutex_lock(&sched_domains_mutex);
7280 init_sched_domains(cpu_active_mask);
7281 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7282 if (cpumask_empty(non_isolated_cpus))
7283 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7284 mutex_unlock(&sched_domains_mutex);
7285
7286 /* Move init over to a non-isolated CPU */
7287 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7288 BUG();
7289 sched_init_granularity();
7290 free_cpumask_var(non_isolated_cpus);
7291
7292 init_sched_rt_class();
7293 init_sched_dl_class();
7294 sched_smp_initialized = true;
7295 }
7296
7297 static int __init migration_init(void)
7298 {
7299 sched_rq_cpu_starting(smp_processor_id());
7300 return 0;
7301 }
7302 early_initcall(migration_init);
7303
7304 #else
7305 void __init sched_init_smp(void)
7306 {
7307 sched_init_granularity();
7308 }
7309 #endif /* CONFIG_SMP */
7310
7311 int in_sched_functions(unsigned long addr)
7312 {
7313 return in_lock_functions(addr) ||
7314 (addr >= (unsigned long)__sched_text_start
7315 && addr < (unsigned long)__sched_text_end);
7316 }
7317
7318 #ifdef CONFIG_CGROUP_SCHED
7319 /*
7320 * Default task group.
7321 * Every task in system belongs to this group at bootup.
7322 */
7323 struct task_group root_task_group;
7324 LIST_HEAD(task_groups);
7325
7326 /* Cacheline aligned slab cache for task_group */
7327 static struct kmem_cache *task_group_cache __read_mostly;
7328 #endif
7329
7330 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7331
7332 void __init sched_init(void)
7333 {
7334 int i, j;
7335 unsigned long alloc_size = 0, ptr;
7336
7337 #ifdef CONFIG_FAIR_GROUP_SCHED
7338 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7339 #endif
7340 #ifdef CONFIG_RT_GROUP_SCHED
7341 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7342 #endif
7343 if (alloc_size) {
7344 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7345
7346 #ifdef CONFIG_FAIR_GROUP_SCHED
7347 root_task_group.se = (struct sched_entity **)ptr;
7348 ptr += nr_cpu_ids * sizeof(void **);
7349
7350 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7351 ptr += nr_cpu_ids * sizeof(void **);
7352
7353 #endif /* CONFIG_FAIR_GROUP_SCHED */
7354 #ifdef CONFIG_RT_GROUP_SCHED
7355 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7356 ptr += nr_cpu_ids * sizeof(void **);
7357
7358 root_task_group.rt_rq = (struct rt_rq **)ptr;
7359 ptr += nr_cpu_ids * sizeof(void **);
7360
7361 #endif /* CONFIG_RT_GROUP_SCHED */
7362 }
7363 #ifdef CONFIG_CPUMASK_OFFSTACK
7364 for_each_possible_cpu(i) {
7365 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7366 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7367 }
7368 #endif /* CONFIG_CPUMASK_OFFSTACK */
7369
7370 init_rt_bandwidth(&def_rt_bandwidth,
7371 global_rt_period(), global_rt_runtime());
7372 init_dl_bandwidth(&def_dl_bandwidth,
7373 global_rt_period(), global_rt_runtime());
7374
7375 #ifdef CONFIG_SMP
7376 init_defrootdomain();
7377 #endif
7378
7379 #ifdef CONFIG_RT_GROUP_SCHED
7380 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7381 global_rt_period(), global_rt_runtime());
7382 #endif /* CONFIG_RT_GROUP_SCHED */
7383
7384 #ifdef CONFIG_CGROUP_SCHED
7385 task_group_cache = KMEM_CACHE(task_group, 0);
7386
7387 list_add(&root_task_group.list, &task_groups);
7388 INIT_LIST_HEAD(&root_task_group.children);
7389 INIT_LIST_HEAD(&root_task_group.siblings);
7390 autogroup_init(&init_task);
7391 #endif /* CONFIG_CGROUP_SCHED */
7392
7393 for_each_possible_cpu(i) {
7394 struct rq *rq;
7395
7396 rq = cpu_rq(i);
7397 raw_spin_lock_init(&rq->lock);
7398 rq->nr_running = 0;
7399 rq->calc_load_active = 0;
7400 rq->calc_load_update = jiffies + LOAD_FREQ;
7401 init_cfs_rq(&rq->cfs);
7402 init_rt_rq(&rq->rt);
7403 init_dl_rq(&rq->dl);
7404 #ifdef CONFIG_FAIR_GROUP_SCHED
7405 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7406 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7407 /*
7408 * How much cpu bandwidth does root_task_group get?
7409 *
7410 * In case of task-groups formed thr' the cgroup filesystem, it
7411 * gets 100% of the cpu resources in the system. This overall
7412 * system cpu resource is divided among the tasks of
7413 * root_task_group and its child task-groups in a fair manner,
7414 * based on each entity's (task or task-group's) weight
7415 * (se->load.weight).
7416 *
7417 * In other words, if root_task_group has 10 tasks of weight
7418 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7419 * then A0's share of the cpu resource is:
7420 *
7421 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7422 *
7423 * We achieve this by letting root_task_group's tasks sit
7424 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7425 */
7426 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7427 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7428 #endif /* CONFIG_FAIR_GROUP_SCHED */
7429
7430 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7431 #ifdef CONFIG_RT_GROUP_SCHED
7432 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7433 #endif
7434
7435 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7436 rq->cpu_load[j] = 0;
7437
7438 #ifdef CONFIG_SMP
7439 rq->sd = NULL;
7440 rq->rd = NULL;
7441 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7442 rq->balance_callback = NULL;
7443 rq->active_balance = 0;
7444 rq->next_balance = jiffies;
7445 rq->push_cpu = 0;
7446 rq->cpu = i;
7447 rq->online = 0;
7448 rq->idle_stamp = 0;
7449 rq->avg_idle = 2*sysctl_sched_migration_cost;
7450 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7451
7452 INIT_LIST_HEAD(&rq->cfs_tasks);
7453
7454 rq_attach_root(rq, &def_root_domain);
7455 #ifdef CONFIG_NO_HZ_COMMON
7456 rq->last_load_update_tick = jiffies;
7457 rq->nohz_flags = 0;
7458 #endif
7459 #ifdef CONFIG_NO_HZ_FULL
7460 rq->last_sched_tick = 0;
7461 #endif
7462 #endif /* CONFIG_SMP */
7463 init_rq_hrtick(rq);
7464 atomic_set(&rq->nr_iowait, 0);
7465 }
7466
7467 set_load_weight(&init_task);
7468
7469 #ifdef CONFIG_PREEMPT_NOTIFIERS
7470 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7471 #endif
7472
7473 /*
7474 * The boot idle thread does lazy MMU switching as well:
7475 */
7476 atomic_inc(&init_mm.mm_count);
7477 enter_lazy_tlb(&init_mm, current);
7478
7479 /*
7480 * During early bootup we pretend to be a normal task:
7481 */
7482 current->sched_class = &fair_sched_class;
7483
7484 /*
7485 * Make us the idle thread. Technically, schedule() should not be
7486 * called from this thread, however somewhere below it might be,
7487 * but because we are the idle thread, we just pick up running again
7488 * when this runqueue becomes "idle".
7489 */
7490 init_idle(current, smp_processor_id());
7491
7492 calc_load_update = jiffies + LOAD_FREQ;
7493
7494 #ifdef CONFIG_SMP
7495 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7496 /* May be allocated at isolcpus cmdline parse time */
7497 if (cpu_isolated_map == NULL)
7498 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7499 idle_thread_set_boot_cpu();
7500 set_cpu_rq_start_time(smp_processor_id());
7501 #endif
7502 init_sched_fair_class();
7503
7504 init_schedstats();
7505
7506 scheduler_running = 1;
7507 }
7508
7509 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7510 static inline int preempt_count_equals(int preempt_offset)
7511 {
7512 int nested = preempt_count() + rcu_preempt_depth();
7513
7514 return (nested == preempt_offset);
7515 }
7516
7517 void __might_sleep(const char *file, int line, int preempt_offset)
7518 {
7519 /*
7520 * Blocking primitives will set (and therefore destroy) current->state,
7521 * since we will exit with TASK_RUNNING make sure we enter with it,
7522 * otherwise we will destroy state.
7523 */
7524 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7525 "do not call blocking ops when !TASK_RUNNING; "
7526 "state=%lx set at [<%p>] %pS\n",
7527 current->state,
7528 (void *)current->task_state_change,
7529 (void *)current->task_state_change);
7530
7531 ___might_sleep(file, line, preempt_offset);
7532 }
7533 EXPORT_SYMBOL(__might_sleep);
7534
7535 void ___might_sleep(const char *file, int line, int preempt_offset)
7536 {
7537 static unsigned long prev_jiffy; /* ratelimiting */
7538
7539 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7540 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7541 !is_idle_task(current)) ||
7542 system_state != SYSTEM_RUNNING || oops_in_progress)
7543 return;
7544 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7545 return;
7546 prev_jiffy = jiffies;
7547
7548 printk(KERN_ERR
7549 "BUG: sleeping function called from invalid context at %s:%d\n",
7550 file, line);
7551 printk(KERN_ERR
7552 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7553 in_atomic(), irqs_disabled(),
7554 current->pid, current->comm);
7555
7556 if (task_stack_end_corrupted(current))
7557 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7558
7559 debug_show_held_locks(current);
7560 if (irqs_disabled())
7561 print_irqtrace_events(current);
7562 #ifdef CONFIG_DEBUG_PREEMPT
7563 if (!preempt_count_equals(preempt_offset)) {
7564 pr_err("Preemption disabled at:");
7565 print_ip_sym(current->preempt_disable_ip);
7566 pr_cont("\n");
7567 }
7568 #endif
7569 dump_stack();
7570 }
7571 EXPORT_SYMBOL(___might_sleep);
7572 #endif
7573
7574 #ifdef CONFIG_MAGIC_SYSRQ
7575 void normalize_rt_tasks(void)
7576 {
7577 struct task_struct *g, *p;
7578 struct sched_attr attr = {
7579 .sched_policy = SCHED_NORMAL,
7580 };
7581
7582 read_lock(&tasklist_lock);
7583 for_each_process_thread(g, p) {
7584 /*
7585 * Only normalize user tasks:
7586 */
7587 if (p->flags & PF_KTHREAD)
7588 continue;
7589
7590 p->se.exec_start = 0;
7591 #ifdef CONFIG_SCHEDSTATS
7592 p->se.statistics.wait_start = 0;
7593 p->se.statistics.sleep_start = 0;
7594 p->se.statistics.block_start = 0;
7595 #endif
7596
7597 if (!dl_task(p) && !rt_task(p)) {
7598 /*
7599 * Renice negative nice level userspace
7600 * tasks back to 0:
7601 */
7602 if (task_nice(p) < 0)
7603 set_user_nice(p, 0);
7604 continue;
7605 }
7606
7607 __sched_setscheduler(p, &attr, false, false);
7608 }
7609 read_unlock(&tasklist_lock);
7610 }
7611
7612 #endif /* CONFIG_MAGIC_SYSRQ */
7613
7614 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7615 /*
7616 * These functions are only useful for the IA64 MCA handling, or kdb.
7617 *
7618 * They can only be called when the whole system has been
7619 * stopped - every CPU needs to be quiescent, and no scheduling
7620 * activity can take place. Using them for anything else would
7621 * be a serious bug, and as a result, they aren't even visible
7622 * under any other configuration.
7623 */
7624
7625 /**
7626 * curr_task - return the current task for a given cpu.
7627 * @cpu: the processor in question.
7628 *
7629 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7630 *
7631 * Return: The current task for @cpu.
7632 */
7633 struct task_struct *curr_task(int cpu)
7634 {
7635 return cpu_curr(cpu);
7636 }
7637
7638 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7639
7640 #ifdef CONFIG_IA64
7641 /**
7642 * set_curr_task - set the current task for a given cpu.
7643 * @cpu: the processor in question.
7644 * @p: the task pointer to set.
7645 *
7646 * Description: This function must only be used when non-maskable interrupts
7647 * are serviced on a separate stack. It allows the architecture to switch the
7648 * notion of the current task on a cpu in a non-blocking manner. This function
7649 * must be called with all CPU's synchronized, and interrupts disabled, the
7650 * and caller must save the original value of the current task (see
7651 * curr_task() above) and restore that value before reenabling interrupts and
7652 * re-starting the system.
7653 *
7654 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7655 */
7656 void set_curr_task(int cpu, struct task_struct *p)
7657 {
7658 cpu_curr(cpu) = p;
7659 }
7660
7661 #endif
7662
7663 #ifdef CONFIG_CGROUP_SCHED
7664 /* task_group_lock serializes the addition/removal of task groups */
7665 static DEFINE_SPINLOCK(task_group_lock);
7666
7667 static void sched_free_group(struct task_group *tg)
7668 {
7669 free_fair_sched_group(tg);
7670 free_rt_sched_group(tg);
7671 autogroup_free(tg);
7672 kmem_cache_free(task_group_cache, tg);
7673 }
7674
7675 /* allocate runqueue etc for a new task group */
7676 struct task_group *sched_create_group(struct task_group *parent)
7677 {
7678 struct task_group *tg;
7679
7680 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7681 if (!tg)
7682 return ERR_PTR(-ENOMEM);
7683
7684 if (!alloc_fair_sched_group(tg, parent))
7685 goto err;
7686
7687 if (!alloc_rt_sched_group(tg, parent))
7688 goto err;
7689
7690 return tg;
7691
7692 err:
7693 sched_free_group(tg);
7694 return ERR_PTR(-ENOMEM);
7695 }
7696
7697 void sched_online_group(struct task_group *tg, struct task_group *parent)
7698 {
7699 unsigned long flags;
7700
7701 spin_lock_irqsave(&task_group_lock, flags);
7702 list_add_rcu(&tg->list, &task_groups);
7703
7704 WARN_ON(!parent); /* root should already exist */
7705
7706 tg->parent = parent;
7707 INIT_LIST_HEAD(&tg->children);
7708 list_add_rcu(&tg->siblings, &parent->children);
7709 spin_unlock_irqrestore(&task_group_lock, flags);
7710 }
7711
7712 /* rcu callback to free various structures associated with a task group */
7713 static void sched_free_group_rcu(struct rcu_head *rhp)
7714 {
7715 /* now it should be safe to free those cfs_rqs */
7716 sched_free_group(container_of(rhp, struct task_group, rcu));
7717 }
7718
7719 void sched_destroy_group(struct task_group *tg)
7720 {
7721 /* wait for possible concurrent references to cfs_rqs complete */
7722 call_rcu(&tg->rcu, sched_free_group_rcu);
7723 }
7724
7725 void sched_offline_group(struct task_group *tg)
7726 {
7727 unsigned long flags;
7728
7729 /* end participation in shares distribution */
7730 unregister_fair_sched_group(tg);
7731
7732 spin_lock_irqsave(&task_group_lock, flags);
7733 list_del_rcu(&tg->list);
7734 list_del_rcu(&tg->siblings);
7735 spin_unlock_irqrestore(&task_group_lock, flags);
7736 }
7737
7738 /* change task's runqueue when it moves between groups.
7739 * The caller of this function should have put the task in its new group
7740 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7741 * reflect its new group.
7742 */
7743 void sched_move_task(struct task_struct *tsk)
7744 {
7745 struct task_group *tg;
7746 int queued, running;
7747 struct rq_flags rf;
7748 struct rq *rq;
7749
7750 rq = task_rq_lock(tsk, &rf);
7751
7752 running = task_current(rq, tsk);
7753 queued = task_on_rq_queued(tsk);
7754
7755 if (queued)
7756 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7757 if (unlikely(running))
7758 put_prev_task(rq, tsk);
7759
7760 /*
7761 * All callers are synchronized by task_rq_lock(); we do not use RCU
7762 * which is pointless here. Thus, we pass "true" to task_css_check()
7763 * to prevent lockdep warnings.
7764 */
7765 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7766 struct task_group, css);
7767 tg = autogroup_task_group(tsk, tg);
7768 tsk->sched_task_group = tg;
7769
7770 #ifdef CONFIG_FAIR_GROUP_SCHED
7771 if (tsk->sched_class->task_move_group)
7772 tsk->sched_class->task_move_group(tsk);
7773 else
7774 #endif
7775 set_task_rq(tsk, task_cpu(tsk));
7776
7777 if (unlikely(running))
7778 tsk->sched_class->set_curr_task(rq);
7779 if (queued)
7780 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7781
7782 task_rq_unlock(rq, tsk, &rf);
7783 }
7784 #endif /* CONFIG_CGROUP_SCHED */
7785
7786 #ifdef CONFIG_RT_GROUP_SCHED
7787 /*
7788 * Ensure that the real time constraints are schedulable.
7789 */
7790 static DEFINE_MUTEX(rt_constraints_mutex);
7791
7792 /* Must be called with tasklist_lock held */
7793 static inline int tg_has_rt_tasks(struct task_group *tg)
7794 {
7795 struct task_struct *g, *p;
7796
7797 /*
7798 * Autogroups do not have RT tasks; see autogroup_create().
7799 */
7800 if (task_group_is_autogroup(tg))
7801 return 0;
7802
7803 for_each_process_thread(g, p) {
7804 if (rt_task(p) && task_group(p) == tg)
7805 return 1;
7806 }
7807
7808 return 0;
7809 }
7810
7811 struct rt_schedulable_data {
7812 struct task_group *tg;
7813 u64 rt_period;
7814 u64 rt_runtime;
7815 };
7816
7817 static int tg_rt_schedulable(struct task_group *tg, void *data)
7818 {
7819 struct rt_schedulable_data *d = data;
7820 struct task_group *child;
7821 unsigned long total, sum = 0;
7822 u64 period, runtime;
7823
7824 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7825 runtime = tg->rt_bandwidth.rt_runtime;
7826
7827 if (tg == d->tg) {
7828 period = d->rt_period;
7829 runtime = d->rt_runtime;
7830 }
7831
7832 /*
7833 * Cannot have more runtime than the period.
7834 */
7835 if (runtime > period && runtime != RUNTIME_INF)
7836 return -EINVAL;
7837
7838 /*
7839 * Ensure we don't starve existing RT tasks.
7840 */
7841 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7842 return -EBUSY;
7843
7844 total = to_ratio(period, runtime);
7845
7846 /*
7847 * Nobody can have more than the global setting allows.
7848 */
7849 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7850 return -EINVAL;
7851
7852 /*
7853 * The sum of our children's runtime should not exceed our own.
7854 */
7855 list_for_each_entry_rcu(child, &tg->children, siblings) {
7856 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7857 runtime = child->rt_bandwidth.rt_runtime;
7858
7859 if (child == d->tg) {
7860 period = d->rt_period;
7861 runtime = d->rt_runtime;
7862 }
7863
7864 sum += to_ratio(period, runtime);
7865 }
7866
7867 if (sum > total)
7868 return -EINVAL;
7869
7870 return 0;
7871 }
7872
7873 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7874 {
7875 int ret;
7876
7877 struct rt_schedulable_data data = {
7878 .tg = tg,
7879 .rt_period = period,
7880 .rt_runtime = runtime,
7881 };
7882
7883 rcu_read_lock();
7884 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7885 rcu_read_unlock();
7886
7887 return ret;
7888 }
7889
7890 static int tg_set_rt_bandwidth(struct task_group *tg,
7891 u64 rt_period, u64 rt_runtime)
7892 {
7893 int i, err = 0;
7894
7895 /*
7896 * Disallowing the root group RT runtime is BAD, it would disallow the
7897 * kernel creating (and or operating) RT threads.
7898 */
7899 if (tg == &root_task_group && rt_runtime == 0)
7900 return -EINVAL;
7901
7902 /* No period doesn't make any sense. */
7903 if (rt_period == 0)
7904 return -EINVAL;
7905
7906 mutex_lock(&rt_constraints_mutex);
7907 read_lock(&tasklist_lock);
7908 err = __rt_schedulable(tg, rt_period, rt_runtime);
7909 if (err)
7910 goto unlock;
7911
7912 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7913 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7914 tg->rt_bandwidth.rt_runtime = rt_runtime;
7915
7916 for_each_possible_cpu(i) {
7917 struct rt_rq *rt_rq = tg->rt_rq[i];
7918
7919 raw_spin_lock(&rt_rq->rt_runtime_lock);
7920 rt_rq->rt_runtime = rt_runtime;
7921 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7922 }
7923 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7924 unlock:
7925 read_unlock(&tasklist_lock);
7926 mutex_unlock(&rt_constraints_mutex);
7927
7928 return err;
7929 }
7930
7931 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7932 {
7933 u64 rt_runtime, rt_period;
7934
7935 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7936 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7937 if (rt_runtime_us < 0)
7938 rt_runtime = RUNTIME_INF;
7939
7940 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7941 }
7942
7943 static long sched_group_rt_runtime(struct task_group *tg)
7944 {
7945 u64 rt_runtime_us;
7946
7947 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7948 return -1;
7949
7950 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7951 do_div(rt_runtime_us, NSEC_PER_USEC);
7952 return rt_runtime_us;
7953 }
7954
7955 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7956 {
7957 u64 rt_runtime, rt_period;
7958
7959 rt_period = rt_period_us * NSEC_PER_USEC;
7960 rt_runtime = tg->rt_bandwidth.rt_runtime;
7961
7962 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7963 }
7964
7965 static long sched_group_rt_period(struct task_group *tg)
7966 {
7967 u64 rt_period_us;
7968
7969 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7970 do_div(rt_period_us, NSEC_PER_USEC);
7971 return rt_period_us;
7972 }
7973 #endif /* CONFIG_RT_GROUP_SCHED */
7974
7975 #ifdef CONFIG_RT_GROUP_SCHED
7976 static int sched_rt_global_constraints(void)
7977 {
7978 int ret = 0;
7979
7980 mutex_lock(&rt_constraints_mutex);
7981 read_lock(&tasklist_lock);
7982 ret = __rt_schedulable(NULL, 0, 0);
7983 read_unlock(&tasklist_lock);
7984 mutex_unlock(&rt_constraints_mutex);
7985
7986 return ret;
7987 }
7988
7989 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7990 {
7991 /* Don't accept realtime tasks when there is no way for them to run */
7992 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7993 return 0;
7994
7995 return 1;
7996 }
7997
7998 #else /* !CONFIG_RT_GROUP_SCHED */
7999 static int sched_rt_global_constraints(void)
8000 {
8001 unsigned long flags;
8002 int i;
8003
8004 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8005 for_each_possible_cpu(i) {
8006 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8007
8008 raw_spin_lock(&rt_rq->rt_runtime_lock);
8009 rt_rq->rt_runtime = global_rt_runtime();
8010 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8011 }
8012 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8013
8014 return 0;
8015 }
8016 #endif /* CONFIG_RT_GROUP_SCHED */
8017
8018 static int sched_dl_global_validate(void)
8019 {
8020 u64 runtime = global_rt_runtime();
8021 u64 period = global_rt_period();
8022 u64 new_bw = to_ratio(period, runtime);
8023 struct dl_bw *dl_b;
8024 int cpu, ret = 0;
8025 unsigned long flags;
8026
8027 /*
8028 * Here we want to check the bandwidth not being set to some
8029 * value smaller than the currently allocated bandwidth in
8030 * any of the root_domains.
8031 *
8032 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8033 * cycling on root_domains... Discussion on different/better
8034 * solutions is welcome!
8035 */
8036 for_each_possible_cpu(cpu) {
8037 rcu_read_lock_sched();
8038 dl_b = dl_bw_of(cpu);
8039
8040 raw_spin_lock_irqsave(&dl_b->lock, flags);
8041 if (new_bw < dl_b->total_bw)
8042 ret = -EBUSY;
8043 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8044
8045 rcu_read_unlock_sched();
8046
8047 if (ret)
8048 break;
8049 }
8050
8051 return ret;
8052 }
8053
8054 static void sched_dl_do_global(void)
8055 {
8056 u64 new_bw = -1;
8057 struct dl_bw *dl_b;
8058 int cpu;
8059 unsigned long flags;
8060
8061 def_dl_bandwidth.dl_period = global_rt_period();
8062 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8063
8064 if (global_rt_runtime() != RUNTIME_INF)
8065 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8066
8067 /*
8068 * FIXME: As above...
8069 */
8070 for_each_possible_cpu(cpu) {
8071 rcu_read_lock_sched();
8072 dl_b = dl_bw_of(cpu);
8073
8074 raw_spin_lock_irqsave(&dl_b->lock, flags);
8075 dl_b->bw = new_bw;
8076 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8077
8078 rcu_read_unlock_sched();
8079 }
8080 }
8081
8082 static int sched_rt_global_validate(void)
8083 {
8084 if (sysctl_sched_rt_period <= 0)
8085 return -EINVAL;
8086
8087 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8088 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8089 return -EINVAL;
8090
8091 return 0;
8092 }
8093
8094 static void sched_rt_do_global(void)
8095 {
8096 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8097 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8098 }
8099
8100 int sched_rt_handler(struct ctl_table *table, int write,
8101 void __user *buffer, size_t *lenp,
8102 loff_t *ppos)
8103 {
8104 int old_period, old_runtime;
8105 static DEFINE_MUTEX(mutex);
8106 int ret;
8107
8108 mutex_lock(&mutex);
8109 old_period = sysctl_sched_rt_period;
8110 old_runtime = sysctl_sched_rt_runtime;
8111
8112 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8113
8114 if (!ret && write) {
8115 ret = sched_rt_global_validate();
8116 if (ret)
8117 goto undo;
8118
8119 ret = sched_dl_global_validate();
8120 if (ret)
8121 goto undo;
8122
8123 ret = sched_rt_global_constraints();
8124 if (ret)
8125 goto undo;
8126
8127 sched_rt_do_global();
8128 sched_dl_do_global();
8129 }
8130 if (0) {
8131 undo:
8132 sysctl_sched_rt_period = old_period;
8133 sysctl_sched_rt_runtime = old_runtime;
8134 }
8135 mutex_unlock(&mutex);
8136
8137 return ret;
8138 }
8139
8140 int sched_rr_handler(struct ctl_table *table, int write,
8141 void __user *buffer, size_t *lenp,
8142 loff_t *ppos)
8143 {
8144 int ret;
8145 static DEFINE_MUTEX(mutex);
8146
8147 mutex_lock(&mutex);
8148 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8149 /* make sure that internally we keep jiffies */
8150 /* also, writing zero resets timeslice to default */
8151 if (!ret && write) {
8152 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8153 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8154 }
8155 mutex_unlock(&mutex);
8156 return ret;
8157 }
8158
8159 #ifdef CONFIG_CGROUP_SCHED
8160
8161 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8162 {
8163 return css ? container_of(css, struct task_group, css) : NULL;
8164 }
8165
8166 static struct cgroup_subsys_state *
8167 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8168 {
8169 struct task_group *parent = css_tg(parent_css);
8170 struct task_group *tg;
8171
8172 if (!parent) {
8173 /* This is early initialization for the top cgroup */
8174 return &root_task_group.css;
8175 }
8176
8177 tg = sched_create_group(parent);
8178 if (IS_ERR(tg))
8179 return ERR_PTR(-ENOMEM);
8180
8181 sched_online_group(tg, parent);
8182
8183 return &tg->css;
8184 }
8185
8186 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8187 {
8188 struct task_group *tg = css_tg(css);
8189
8190 sched_offline_group(tg);
8191 }
8192
8193 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8194 {
8195 struct task_group *tg = css_tg(css);
8196
8197 /*
8198 * Relies on the RCU grace period between css_released() and this.
8199 */
8200 sched_free_group(tg);
8201 }
8202
8203 static void cpu_cgroup_fork(struct task_struct *task)
8204 {
8205 sched_move_task(task);
8206 }
8207
8208 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8209 {
8210 struct task_struct *task;
8211 struct cgroup_subsys_state *css;
8212
8213 cgroup_taskset_for_each(task, css, tset) {
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 if (!sched_rt_can_attach(css_tg(css), task))
8216 return -EINVAL;
8217 #else
8218 /* We don't support RT-tasks being in separate groups */
8219 if (task->sched_class != &fair_sched_class)
8220 return -EINVAL;
8221 #endif
8222 }
8223 return 0;
8224 }
8225
8226 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8227 {
8228 struct task_struct *task;
8229 struct cgroup_subsys_state *css;
8230
8231 cgroup_taskset_for_each(task, css, tset)
8232 sched_move_task(task);
8233 }
8234
8235 #ifdef CONFIG_FAIR_GROUP_SCHED
8236 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8237 struct cftype *cftype, u64 shareval)
8238 {
8239 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8240 }
8241
8242 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8243 struct cftype *cft)
8244 {
8245 struct task_group *tg = css_tg(css);
8246
8247 return (u64) scale_load_down(tg->shares);
8248 }
8249
8250 #ifdef CONFIG_CFS_BANDWIDTH
8251 static DEFINE_MUTEX(cfs_constraints_mutex);
8252
8253 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8254 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8255
8256 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8257
8258 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8259 {
8260 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8261 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8262
8263 if (tg == &root_task_group)
8264 return -EINVAL;
8265
8266 /*
8267 * Ensure we have at some amount of bandwidth every period. This is
8268 * to prevent reaching a state of large arrears when throttled via
8269 * entity_tick() resulting in prolonged exit starvation.
8270 */
8271 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8272 return -EINVAL;
8273
8274 /*
8275 * Likewise, bound things on the otherside by preventing insane quota
8276 * periods. This also allows us to normalize in computing quota
8277 * feasibility.
8278 */
8279 if (period > max_cfs_quota_period)
8280 return -EINVAL;
8281
8282 /*
8283 * Prevent race between setting of cfs_rq->runtime_enabled and
8284 * unthrottle_offline_cfs_rqs().
8285 */
8286 get_online_cpus();
8287 mutex_lock(&cfs_constraints_mutex);
8288 ret = __cfs_schedulable(tg, period, quota);
8289 if (ret)
8290 goto out_unlock;
8291
8292 runtime_enabled = quota != RUNTIME_INF;
8293 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8294 /*
8295 * If we need to toggle cfs_bandwidth_used, off->on must occur
8296 * before making related changes, and on->off must occur afterwards
8297 */
8298 if (runtime_enabled && !runtime_was_enabled)
8299 cfs_bandwidth_usage_inc();
8300 raw_spin_lock_irq(&cfs_b->lock);
8301 cfs_b->period = ns_to_ktime(period);
8302 cfs_b->quota = quota;
8303
8304 __refill_cfs_bandwidth_runtime(cfs_b);
8305 /* restart the period timer (if active) to handle new period expiry */
8306 if (runtime_enabled)
8307 start_cfs_bandwidth(cfs_b);
8308 raw_spin_unlock_irq(&cfs_b->lock);
8309
8310 for_each_online_cpu(i) {
8311 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8312 struct rq *rq = cfs_rq->rq;
8313
8314 raw_spin_lock_irq(&rq->lock);
8315 cfs_rq->runtime_enabled = runtime_enabled;
8316 cfs_rq->runtime_remaining = 0;
8317
8318 if (cfs_rq->throttled)
8319 unthrottle_cfs_rq(cfs_rq);
8320 raw_spin_unlock_irq(&rq->lock);
8321 }
8322 if (runtime_was_enabled && !runtime_enabled)
8323 cfs_bandwidth_usage_dec();
8324 out_unlock:
8325 mutex_unlock(&cfs_constraints_mutex);
8326 put_online_cpus();
8327
8328 return ret;
8329 }
8330
8331 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8332 {
8333 u64 quota, period;
8334
8335 period = ktime_to_ns(tg->cfs_bandwidth.period);
8336 if (cfs_quota_us < 0)
8337 quota = RUNTIME_INF;
8338 else
8339 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8340
8341 return tg_set_cfs_bandwidth(tg, period, quota);
8342 }
8343
8344 long tg_get_cfs_quota(struct task_group *tg)
8345 {
8346 u64 quota_us;
8347
8348 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8349 return -1;
8350
8351 quota_us = tg->cfs_bandwidth.quota;
8352 do_div(quota_us, NSEC_PER_USEC);
8353
8354 return quota_us;
8355 }
8356
8357 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8358 {
8359 u64 quota, period;
8360
8361 period = (u64)cfs_period_us * NSEC_PER_USEC;
8362 quota = tg->cfs_bandwidth.quota;
8363
8364 return tg_set_cfs_bandwidth(tg, period, quota);
8365 }
8366
8367 long tg_get_cfs_period(struct task_group *tg)
8368 {
8369 u64 cfs_period_us;
8370
8371 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8372 do_div(cfs_period_us, NSEC_PER_USEC);
8373
8374 return cfs_period_us;
8375 }
8376
8377 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8378 struct cftype *cft)
8379 {
8380 return tg_get_cfs_quota(css_tg(css));
8381 }
8382
8383 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8384 struct cftype *cftype, s64 cfs_quota_us)
8385 {
8386 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8387 }
8388
8389 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8390 struct cftype *cft)
8391 {
8392 return tg_get_cfs_period(css_tg(css));
8393 }
8394
8395 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8396 struct cftype *cftype, u64 cfs_period_us)
8397 {
8398 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8399 }
8400
8401 struct cfs_schedulable_data {
8402 struct task_group *tg;
8403 u64 period, quota;
8404 };
8405
8406 /*
8407 * normalize group quota/period to be quota/max_period
8408 * note: units are usecs
8409 */
8410 static u64 normalize_cfs_quota(struct task_group *tg,
8411 struct cfs_schedulable_data *d)
8412 {
8413 u64 quota, period;
8414
8415 if (tg == d->tg) {
8416 period = d->period;
8417 quota = d->quota;
8418 } else {
8419 period = tg_get_cfs_period(tg);
8420 quota = tg_get_cfs_quota(tg);
8421 }
8422
8423 /* note: these should typically be equivalent */
8424 if (quota == RUNTIME_INF || quota == -1)
8425 return RUNTIME_INF;
8426
8427 return to_ratio(period, quota);
8428 }
8429
8430 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8431 {
8432 struct cfs_schedulable_data *d = data;
8433 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8434 s64 quota = 0, parent_quota = -1;
8435
8436 if (!tg->parent) {
8437 quota = RUNTIME_INF;
8438 } else {
8439 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8440
8441 quota = normalize_cfs_quota(tg, d);
8442 parent_quota = parent_b->hierarchical_quota;
8443
8444 /*
8445 * ensure max(child_quota) <= parent_quota, inherit when no
8446 * limit is set
8447 */
8448 if (quota == RUNTIME_INF)
8449 quota = parent_quota;
8450 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8451 return -EINVAL;
8452 }
8453 cfs_b->hierarchical_quota = quota;
8454
8455 return 0;
8456 }
8457
8458 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8459 {
8460 int ret;
8461 struct cfs_schedulable_data data = {
8462 .tg = tg,
8463 .period = period,
8464 .quota = quota,
8465 };
8466
8467 if (quota != RUNTIME_INF) {
8468 do_div(data.period, NSEC_PER_USEC);
8469 do_div(data.quota, NSEC_PER_USEC);
8470 }
8471
8472 rcu_read_lock();
8473 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8474 rcu_read_unlock();
8475
8476 return ret;
8477 }
8478
8479 static int cpu_stats_show(struct seq_file *sf, void *v)
8480 {
8481 struct task_group *tg = css_tg(seq_css(sf));
8482 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8483
8484 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8485 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8486 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8487
8488 return 0;
8489 }
8490 #endif /* CONFIG_CFS_BANDWIDTH */
8491 #endif /* CONFIG_FAIR_GROUP_SCHED */
8492
8493 #ifdef CONFIG_RT_GROUP_SCHED
8494 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8495 struct cftype *cft, s64 val)
8496 {
8497 return sched_group_set_rt_runtime(css_tg(css), val);
8498 }
8499
8500 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8501 struct cftype *cft)
8502 {
8503 return sched_group_rt_runtime(css_tg(css));
8504 }
8505
8506 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8507 struct cftype *cftype, u64 rt_period_us)
8508 {
8509 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8510 }
8511
8512 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8513 struct cftype *cft)
8514 {
8515 return sched_group_rt_period(css_tg(css));
8516 }
8517 #endif /* CONFIG_RT_GROUP_SCHED */
8518
8519 static struct cftype cpu_files[] = {
8520 #ifdef CONFIG_FAIR_GROUP_SCHED
8521 {
8522 .name = "shares",
8523 .read_u64 = cpu_shares_read_u64,
8524 .write_u64 = cpu_shares_write_u64,
8525 },
8526 #endif
8527 #ifdef CONFIG_CFS_BANDWIDTH
8528 {
8529 .name = "cfs_quota_us",
8530 .read_s64 = cpu_cfs_quota_read_s64,
8531 .write_s64 = cpu_cfs_quota_write_s64,
8532 },
8533 {
8534 .name = "cfs_period_us",
8535 .read_u64 = cpu_cfs_period_read_u64,
8536 .write_u64 = cpu_cfs_period_write_u64,
8537 },
8538 {
8539 .name = "stat",
8540 .seq_show = cpu_stats_show,
8541 },
8542 #endif
8543 #ifdef CONFIG_RT_GROUP_SCHED
8544 {
8545 .name = "rt_runtime_us",
8546 .read_s64 = cpu_rt_runtime_read,
8547 .write_s64 = cpu_rt_runtime_write,
8548 },
8549 {
8550 .name = "rt_period_us",
8551 .read_u64 = cpu_rt_period_read_uint,
8552 .write_u64 = cpu_rt_period_write_uint,
8553 },
8554 #endif
8555 { } /* terminate */
8556 };
8557
8558 struct cgroup_subsys cpu_cgrp_subsys = {
8559 .css_alloc = cpu_cgroup_css_alloc,
8560 .css_released = cpu_cgroup_css_released,
8561 .css_free = cpu_cgroup_css_free,
8562 .fork = cpu_cgroup_fork,
8563 .can_attach = cpu_cgroup_can_attach,
8564 .attach = cpu_cgroup_attach,
8565 .legacy_cftypes = cpu_files,
8566 .early_init = true,
8567 };
8568
8569 #endif /* CONFIG_CGROUP_SCHED */
8570
8571 void dump_cpu_task(int cpu)
8572 {
8573 pr_info("Task dump for CPU %d:\n", cpu);
8574 sched_show_task(cpu_curr(cpu));
8575 }
8576
8577 /*
8578 * Nice levels are multiplicative, with a gentle 10% change for every
8579 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8580 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8581 * that remained on nice 0.
8582 *
8583 * The "10% effect" is relative and cumulative: from _any_ nice level,
8584 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8585 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8586 * If a task goes up by ~10% and another task goes down by ~10% then
8587 * the relative distance between them is ~25%.)
8588 */
8589 const int sched_prio_to_weight[40] = {
8590 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8591 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8592 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8593 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8594 /* 0 */ 1024, 820, 655, 526, 423,
8595 /* 5 */ 335, 272, 215, 172, 137,
8596 /* 10 */ 110, 87, 70, 56, 45,
8597 /* 15 */ 36, 29, 23, 18, 15,
8598 };
8599
8600 /*
8601 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8602 *
8603 * In cases where the weight does not change often, we can use the
8604 * precalculated inverse to speed up arithmetics by turning divisions
8605 * into multiplications:
8606 */
8607 const u32 sched_prio_to_wmult[40] = {
8608 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8609 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8610 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8611 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8612 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8613 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8614 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8615 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8616 };
This page took 0.2044 seconds and 4 git commands to generate.