Merge tag 'topic/drm-misc-2016-03-22' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
75 #include <linux/binfmts.h>
76 #include <linux/context_tracking.h>
77 #include <linux/compiler.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 #ifdef CONFIG_SCHED_DEBUG
129 #define SCHED_FEAT(name, enabled) \
130 #name ,
131
132 static const char * const sched_feat_names[] = {
133 #include "features.h"
134 };
135
136 #undef SCHED_FEAT
137
138 static int sched_feat_show(struct seq_file *m, void *v)
139 {
140 int i;
141
142 for (i = 0; i < __SCHED_FEAT_NR; i++) {
143 if (!(sysctl_sched_features & (1UL << i)))
144 seq_puts(m, "NO_");
145 seq_printf(m, "%s ", sched_feat_names[i]);
146 }
147 seq_puts(m, "\n");
148
149 return 0;
150 }
151
152 #ifdef HAVE_JUMP_LABEL
153
154 #define jump_label_key__true STATIC_KEY_INIT_TRUE
155 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156
157 #define SCHED_FEAT(name, enabled) \
158 jump_label_key__##enabled ,
159
160 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
161 #include "features.h"
162 };
163
164 #undef SCHED_FEAT
165
166 static void sched_feat_disable(int i)
167 {
168 static_key_disable(&sched_feat_keys[i]);
169 }
170
171 static void sched_feat_enable(int i)
172 {
173 static_key_enable(&sched_feat_keys[i]);
174 }
175 #else
176 static void sched_feat_disable(int i) { };
177 static void sched_feat_enable(int i) { };
178 #endif /* HAVE_JUMP_LABEL */
179
180 static int sched_feat_set(char *cmp)
181 {
182 int i;
183 int neg = 0;
184
185 if (strncmp(cmp, "NO_", 3) == 0) {
186 neg = 1;
187 cmp += 3;
188 }
189
190 for (i = 0; i < __SCHED_FEAT_NR; i++) {
191 if (strcmp(cmp, sched_feat_names[i]) == 0) {
192 if (neg) {
193 sysctl_sched_features &= ~(1UL << i);
194 sched_feat_disable(i);
195 } else {
196 sysctl_sched_features |= (1UL << i);
197 sched_feat_enable(i);
198 }
199 break;
200 }
201 }
202
203 return i;
204 }
205
206 static ssize_t
207 sched_feat_write(struct file *filp, const char __user *ubuf,
208 size_t cnt, loff_t *ppos)
209 {
210 char buf[64];
211 char *cmp;
212 int i;
213 struct inode *inode;
214
215 if (cnt > 63)
216 cnt = 63;
217
218 if (copy_from_user(&buf, ubuf, cnt))
219 return -EFAULT;
220
221 buf[cnt] = 0;
222 cmp = strstrip(buf);
223
224 /* Ensure the static_key remains in a consistent state */
225 inode = file_inode(filp);
226 inode_lock(inode);
227 i = sched_feat_set(cmp);
228 inode_unlock(inode);
229 if (i == __SCHED_FEAT_NR)
230 return -EINVAL;
231
232 *ppos += cnt;
233
234 return cnt;
235 }
236
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 return single_open(filp, sched_feat_show, NULL);
240 }
241
242 static const struct file_operations sched_feat_fops = {
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
248 };
249
250 static __init int sched_init_debug(void)
251 {
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259
260 /*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
266 /*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
274 /*
275 * period over which we measure -rt task cpu usage in us.
276 * default: 1s
277 */
278 unsigned int sysctl_sched_rt_period = 1000000;
279
280 __read_mostly int scheduler_running;
281
282 /*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286 int sysctl_sched_rt_runtime = 950000;
287
288 /* cpus with isolated domains */
289 cpumask_var_t cpu_isolated_map;
290
291 /*
292 * this_rq_lock - lock this runqueue and disable interrupts.
293 */
294 static struct rq *this_rq_lock(void)
295 __acquires(rq->lock)
296 {
297 struct rq *rq;
298
299 local_irq_disable();
300 rq = this_rq();
301 raw_spin_lock(&rq->lock);
302
303 return rq;
304 }
305
306 #ifdef CONFIG_SCHED_HRTICK
307 /*
308 * Use HR-timers to deliver accurate preemption points.
309 */
310
311 static void hrtick_clear(struct rq *rq)
312 {
313 if (hrtimer_active(&rq->hrtick_timer))
314 hrtimer_cancel(&rq->hrtick_timer);
315 }
316
317 /*
318 * High-resolution timer tick.
319 * Runs from hardirq context with interrupts disabled.
320 */
321 static enum hrtimer_restart hrtick(struct hrtimer *timer)
322 {
323 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
324
325 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
326
327 raw_spin_lock(&rq->lock);
328 update_rq_clock(rq);
329 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
330 raw_spin_unlock(&rq->lock);
331
332 return HRTIMER_NORESTART;
333 }
334
335 #ifdef CONFIG_SMP
336
337 static void __hrtick_restart(struct rq *rq)
338 {
339 struct hrtimer *timer = &rq->hrtick_timer;
340
341 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
342 }
343
344 /*
345 * called from hardirq (IPI) context
346 */
347 static void __hrtick_start(void *arg)
348 {
349 struct rq *rq = arg;
350
351 raw_spin_lock(&rq->lock);
352 __hrtick_restart(rq);
353 rq->hrtick_csd_pending = 0;
354 raw_spin_unlock(&rq->lock);
355 }
356
357 /*
358 * Called to set the hrtick timer state.
359 *
360 * called with rq->lock held and irqs disabled
361 */
362 void hrtick_start(struct rq *rq, u64 delay)
363 {
364 struct hrtimer *timer = &rq->hrtick_timer;
365 ktime_t time;
366 s64 delta;
367
368 /*
369 * Don't schedule slices shorter than 10000ns, that just
370 * doesn't make sense and can cause timer DoS.
371 */
372 delta = max_t(s64, delay, 10000LL);
373 time = ktime_add_ns(timer->base->get_time(), delta);
374
375 hrtimer_set_expires(timer, time);
376
377 if (rq == this_rq()) {
378 __hrtick_restart(rq);
379 } else if (!rq->hrtick_csd_pending) {
380 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
381 rq->hrtick_csd_pending = 1;
382 }
383 }
384
385 static int
386 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
387 {
388 int cpu = (int)(long)hcpu;
389
390 switch (action) {
391 case CPU_UP_CANCELED:
392 case CPU_UP_CANCELED_FROZEN:
393 case CPU_DOWN_PREPARE:
394 case CPU_DOWN_PREPARE_FROZEN:
395 case CPU_DEAD:
396 case CPU_DEAD_FROZEN:
397 hrtick_clear(cpu_rq(cpu));
398 return NOTIFY_OK;
399 }
400
401 return NOTIFY_DONE;
402 }
403
404 static __init void init_hrtick(void)
405 {
406 hotcpu_notifier(hotplug_hrtick, 0);
407 }
408 #else
409 /*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 /*
417 * Don't schedule slices shorter than 10000ns, that just
418 * doesn't make sense. Rely on vruntime for fairness.
419 */
420 delay = max_t(u64, delay, 10000LL);
421 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 HRTIMER_MODE_REL_PINNED);
423 }
424
425 static inline void init_hrtick(void)
426 {
427 }
428 #endif /* CONFIG_SMP */
429
430 static void init_rq_hrtick(struct rq *rq)
431 {
432 #ifdef CONFIG_SMP
433 rq->hrtick_csd_pending = 0;
434
435 rq->hrtick_csd.flags = 0;
436 rq->hrtick_csd.func = __hrtick_start;
437 rq->hrtick_csd.info = rq;
438 #endif
439
440 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
441 rq->hrtick_timer.function = hrtick;
442 }
443 #else /* CONFIG_SCHED_HRTICK */
444 static inline void hrtick_clear(struct rq *rq)
445 {
446 }
447
448 static inline void init_rq_hrtick(struct rq *rq)
449 {
450 }
451
452 static inline void init_hrtick(void)
453 {
454 }
455 #endif /* CONFIG_SCHED_HRTICK */
456
457 /*
458 * cmpxchg based fetch_or, macro so it works for different integer types
459 */
460 #define fetch_or(ptr, val) \
461 ({ typeof(*(ptr)) __old, __val = *(ptr); \
462 for (;;) { \
463 __old = cmpxchg((ptr), __val, __val | (val)); \
464 if (__old == __val) \
465 break; \
466 __val = __old; \
467 } \
468 __old; \
469 })
470
471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 /*
473 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
474 * this avoids any races wrt polling state changes and thereby avoids
475 * spurious IPIs.
476 */
477 static bool set_nr_and_not_polling(struct task_struct *p)
478 {
479 struct thread_info *ti = task_thread_info(p);
480 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
481 }
482
483 /*
484 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 *
486 * If this returns true, then the idle task promises to call
487 * sched_ttwu_pending() and reschedule soon.
488 */
489 static bool set_nr_if_polling(struct task_struct *p)
490 {
491 struct thread_info *ti = task_thread_info(p);
492 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493
494 for (;;) {
495 if (!(val & _TIF_POLLING_NRFLAG))
496 return false;
497 if (val & _TIF_NEED_RESCHED)
498 return true;
499 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
500 if (old == val)
501 break;
502 val = old;
503 }
504 return true;
505 }
506
507 #else
508 static bool set_nr_and_not_polling(struct task_struct *p)
509 {
510 set_tsk_need_resched(p);
511 return true;
512 }
513
514 #ifdef CONFIG_SMP
515 static bool set_nr_if_polling(struct task_struct *p)
516 {
517 return false;
518 }
519 #endif
520 #endif
521
522 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 {
524 struct wake_q_node *node = &task->wake_q;
525
526 /*
527 * Atomically grab the task, if ->wake_q is !nil already it means
528 * its already queued (either by us or someone else) and will get the
529 * wakeup due to that.
530 *
531 * This cmpxchg() implies a full barrier, which pairs with the write
532 * barrier implied by the wakeup in wake_up_list().
533 */
534 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
535 return;
536
537 get_task_struct(task);
538
539 /*
540 * The head is context local, there can be no concurrency.
541 */
542 *head->lastp = node;
543 head->lastp = &node->next;
544 }
545
546 void wake_up_q(struct wake_q_head *head)
547 {
548 struct wake_q_node *node = head->first;
549
550 while (node != WAKE_Q_TAIL) {
551 struct task_struct *task;
552
553 task = container_of(node, struct task_struct, wake_q);
554 BUG_ON(!task);
555 /* task can safely be re-inserted now */
556 node = node->next;
557 task->wake_q.next = NULL;
558
559 /*
560 * wake_up_process() implies a wmb() to pair with the queueing
561 * in wake_q_add() so as not to miss wakeups.
562 */
563 wake_up_process(task);
564 put_task_struct(task);
565 }
566 }
567
568 /*
569 * resched_curr - mark rq's current task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575 void resched_curr(struct rq *rq)
576 {
577 struct task_struct *curr = rq->curr;
578 int cpu;
579
580 lockdep_assert_held(&rq->lock);
581
582 if (test_tsk_need_resched(curr))
583 return;
584
585 cpu = cpu_of(rq);
586
587 if (cpu == smp_processor_id()) {
588 set_tsk_need_resched(curr);
589 set_preempt_need_resched();
590 return;
591 }
592
593 if (set_nr_and_not_polling(curr))
594 smp_send_reschedule(cpu);
595 else
596 trace_sched_wake_idle_without_ipi(cpu);
597 }
598
599 void resched_cpu(int cpu)
600 {
601 struct rq *rq = cpu_rq(cpu);
602 unsigned long flags;
603
604 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
605 return;
606 resched_curr(rq);
607 raw_spin_unlock_irqrestore(&rq->lock, flags);
608 }
609
610 #ifdef CONFIG_SMP
611 #ifdef CONFIG_NO_HZ_COMMON
612 /*
613 * In the semi idle case, use the nearest busy cpu for migrating timers
614 * from an idle cpu. This is good for power-savings.
615 *
616 * We don't do similar optimization for completely idle system, as
617 * selecting an idle cpu will add more delays to the timers than intended
618 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619 */
620 int get_nohz_timer_target(void)
621 {
622 int i, cpu = smp_processor_id();
623 struct sched_domain *sd;
624
625 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
626 return cpu;
627
628 rcu_read_lock();
629 for_each_domain(cpu, sd) {
630 for_each_cpu(i, sched_domain_span(sd)) {
631 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
632 cpu = i;
633 goto unlock;
634 }
635 }
636 }
637
638 if (!is_housekeeping_cpu(cpu))
639 cpu = housekeeping_any_cpu();
640 unlock:
641 rcu_read_unlock();
642 return cpu;
643 }
644 /*
645 * When add_timer_on() enqueues a timer into the timer wheel of an
646 * idle CPU then this timer might expire before the next timer event
647 * which is scheduled to wake up that CPU. In case of a completely
648 * idle system the next event might even be infinite time into the
649 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
650 * leaves the inner idle loop so the newly added timer is taken into
651 * account when the CPU goes back to idle and evaluates the timer
652 * wheel for the next timer event.
653 */
654 static void wake_up_idle_cpu(int cpu)
655 {
656 struct rq *rq = cpu_rq(cpu);
657
658 if (cpu == smp_processor_id())
659 return;
660
661 if (set_nr_and_not_polling(rq->idle))
662 smp_send_reschedule(cpu);
663 else
664 trace_sched_wake_idle_without_ipi(cpu);
665 }
666
667 static bool wake_up_full_nohz_cpu(int cpu)
668 {
669 /*
670 * We just need the target to call irq_exit() and re-evaluate
671 * the next tick. The nohz full kick at least implies that.
672 * If needed we can still optimize that later with an
673 * empty IRQ.
674 */
675 if (tick_nohz_full_cpu(cpu)) {
676 if (cpu != smp_processor_id() ||
677 tick_nohz_tick_stopped())
678 tick_nohz_full_kick_cpu(cpu);
679 return true;
680 }
681
682 return false;
683 }
684
685 void wake_up_nohz_cpu(int cpu)
686 {
687 if (!wake_up_full_nohz_cpu(cpu))
688 wake_up_idle_cpu(cpu);
689 }
690
691 static inline bool got_nohz_idle_kick(void)
692 {
693 int cpu = smp_processor_id();
694
695 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
696 return false;
697
698 if (idle_cpu(cpu) && !need_resched())
699 return true;
700
701 /*
702 * We can't run Idle Load Balance on this CPU for this time so we
703 * cancel it and clear NOHZ_BALANCE_KICK
704 */
705 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
706 return false;
707 }
708
709 #else /* CONFIG_NO_HZ_COMMON */
710
711 static inline bool got_nohz_idle_kick(void)
712 {
713 return false;
714 }
715
716 #endif /* CONFIG_NO_HZ_COMMON */
717
718 #ifdef CONFIG_NO_HZ_FULL
719 bool sched_can_stop_tick(void)
720 {
721 /*
722 * FIFO realtime policy runs the highest priority task. Other runnable
723 * tasks are of a lower priority. The scheduler tick does nothing.
724 */
725 if (current->policy == SCHED_FIFO)
726 return true;
727
728 /*
729 * Round-robin realtime tasks time slice with other tasks at the same
730 * realtime priority. Is this task the only one at this priority?
731 */
732 if (current->policy == SCHED_RR) {
733 struct sched_rt_entity *rt_se = &current->rt;
734
735 return list_is_singular(&rt_se->run_list);
736 }
737
738 /*
739 * More than one running task need preemption.
740 * nr_running update is assumed to be visible
741 * after IPI is sent from wakers.
742 */
743 if (this_rq()->nr_running > 1)
744 return false;
745
746 return true;
747 }
748 #endif /* CONFIG_NO_HZ_FULL */
749
750 void sched_avg_update(struct rq *rq)
751 {
752 s64 period = sched_avg_period();
753
754 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
755 /*
756 * Inline assembly required to prevent the compiler
757 * optimising this loop into a divmod call.
758 * See __iter_div_u64_rem() for another example of this.
759 */
760 asm("" : "+rm" (rq->age_stamp));
761 rq->age_stamp += period;
762 rq->rt_avg /= 2;
763 }
764 }
765
766 #endif /* CONFIG_SMP */
767
768 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
769 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
770 /*
771 * Iterate task_group tree rooted at *from, calling @down when first entering a
772 * node and @up when leaving it for the final time.
773 *
774 * Caller must hold rcu_lock or sufficient equivalent.
775 */
776 int walk_tg_tree_from(struct task_group *from,
777 tg_visitor down, tg_visitor up, void *data)
778 {
779 struct task_group *parent, *child;
780 int ret;
781
782 parent = from;
783
784 down:
785 ret = (*down)(parent, data);
786 if (ret)
787 goto out;
788 list_for_each_entry_rcu(child, &parent->children, siblings) {
789 parent = child;
790 goto down;
791
792 up:
793 continue;
794 }
795 ret = (*up)(parent, data);
796 if (ret || parent == from)
797 goto out;
798
799 child = parent;
800 parent = parent->parent;
801 if (parent)
802 goto up;
803 out:
804 return ret;
805 }
806
807 int tg_nop(struct task_group *tg, void *data)
808 {
809 return 0;
810 }
811 #endif
812
813 static void set_load_weight(struct task_struct *p)
814 {
815 int prio = p->static_prio - MAX_RT_PRIO;
816 struct load_weight *load = &p->se.load;
817
818 /*
819 * SCHED_IDLE tasks get minimal weight:
820 */
821 if (idle_policy(p->policy)) {
822 load->weight = scale_load(WEIGHT_IDLEPRIO);
823 load->inv_weight = WMULT_IDLEPRIO;
824 return;
825 }
826
827 load->weight = scale_load(sched_prio_to_weight[prio]);
828 load->inv_weight = sched_prio_to_wmult[prio];
829 }
830
831 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
832 {
833 update_rq_clock(rq);
834 if (!(flags & ENQUEUE_RESTORE))
835 sched_info_queued(rq, p);
836 p->sched_class->enqueue_task(rq, p, flags);
837 }
838
839 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
840 {
841 update_rq_clock(rq);
842 if (!(flags & DEQUEUE_SAVE))
843 sched_info_dequeued(rq, p);
844 p->sched_class->dequeue_task(rq, p, flags);
845 }
846
847 void activate_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 if (task_contributes_to_load(p))
850 rq->nr_uninterruptible--;
851
852 enqueue_task(rq, p, flags);
853 }
854
855 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
856 {
857 if (task_contributes_to_load(p))
858 rq->nr_uninterruptible++;
859
860 dequeue_task(rq, p, flags);
861 }
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 steal = paravirt_steal_clock(cpu_of(rq));
899 steal -= rq->prev_steal_time_rq;
900
901 if (unlikely(steal > delta))
902 steal = delta;
903
904 rq->prev_steal_time_rq += steal;
905 delta -= steal;
906 }
907 #endif
908
909 rq->clock_task += delta;
910
911 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
912 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
913 sched_rt_avg_update(rq, irq_delta + steal);
914 #endif
915 }
916
917 void sched_set_stop_task(int cpu, struct task_struct *stop)
918 {
919 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
920 struct task_struct *old_stop = cpu_rq(cpu)->stop;
921
922 if (stop) {
923 /*
924 * Make it appear like a SCHED_FIFO task, its something
925 * userspace knows about and won't get confused about.
926 *
927 * Also, it will make PI more or less work without too
928 * much confusion -- but then, stop work should not
929 * rely on PI working anyway.
930 */
931 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
932
933 stop->sched_class = &stop_sched_class;
934 }
935
936 cpu_rq(cpu)->stop = stop;
937
938 if (old_stop) {
939 /*
940 * Reset it back to a normal scheduling class so that
941 * it can die in pieces.
942 */
943 old_stop->sched_class = &rt_sched_class;
944 }
945 }
946
947 /*
948 * __normal_prio - return the priority that is based on the static prio
949 */
950 static inline int __normal_prio(struct task_struct *p)
951 {
952 return p->static_prio;
953 }
954
955 /*
956 * Calculate the expected normal priority: i.e. priority
957 * without taking RT-inheritance into account. Might be
958 * boosted by interactivity modifiers. Changes upon fork,
959 * setprio syscalls, and whenever the interactivity
960 * estimator recalculates.
961 */
962 static inline int normal_prio(struct task_struct *p)
963 {
964 int prio;
965
966 if (task_has_dl_policy(p))
967 prio = MAX_DL_PRIO-1;
968 else if (task_has_rt_policy(p))
969 prio = MAX_RT_PRIO-1 - p->rt_priority;
970 else
971 prio = __normal_prio(p);
972 return prio;
973 }
974
975 /*
976 * Calculate the current priority, i.e. the priority
977 * taken into account by the scheduler. This value might
978 * be boosted by RT tasks, or might be boosted by
979 * interactivity modifiers. Will be RT if the task got
980 * RT-boosted. If not then it returns p->normal_prio.
981 */
982 static int effective_prio(struct task_struct *p)
983 {
984 p->normal_prio = normal_prio(p);
985 /*
986 * If we are RT tasks or we were boosted to RT priority,
987 * keep the priority unchanged. Otherwise, update priority
988 * to the normal priority:
989 */
990 if (!rt_prio(p->prio))
991 return p->normal_prio;
992 return p->prio;
993 }
994
995 /**
996 * task_curr - is this task currently executing on a CPU?
997 * @p: the task in question.
998 *
999 * Return: 1 if the task is currently executing. 0 otherwise.
1000 */
1001 inline int task_curr(const struct task_struct *p)
1002 {
1003 return cpu_curr(task_cpu(p)) == p;
1004 }
1005
1006 /*
1007 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1008 * use the balance_callback list if you want balancing.
1009 *
1010 * this means any call to check_class_changed() must be followed by a call to
1011 * balance_callback().
1012 */
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
1015 int oldprio)
1016 {
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
1019 prev_class->switched_from(rq, p);
1020
1021 p->sched_class->switched_to(rq, p);
1022 } else if (oldprio != p->prio || dl_task(p))
1023 p->sched_class->prio_changed(rq, p, oldprio);
1024 }
1025
1026 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1027 {
1028 const struct sched_class *class;
1029
1030 if (p->sched_class == rq->curr->sched_class) {
1031 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1032 } else {
1033 for_each_class(class) {
1034 if (class == rq->curr->sched_class)
1035 break;
1036 if (class == p->sched_class) {
1037 resched_curr(rq);
1038 break;
1039 }
1040 }
1041 }
1042
1043 /*
1044 * A queue event has occurred, and we're going to schedule. In
1045 * this case, we can save a useless back to back clock update.
1046 */
1047 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1048 rq_clock_skip_update(rq, true);
1049 }
1050
1051 #ifdef CONFIG_SMP
1052 /*
1053 * This is how migration works:
1054 *
1055 * 1) we invoke migration_cpu_stop() on the target CPU using
1056 * stop_one_cpu().
1057 * 2) stopper starts to run (implicitly forcing the migrated thread
1058 * off the CPU)
1059 * 3) it checks whether the migrated task is still in the wrong runqueue.
1060 * 4) if it's in the wrong runqueue then the migration thread removes
1061 * it and puts it into the right queue.
1062 * 5) stopper completes and stop_one_cpu() returns and the migration
1063 * is done.
1064 */
1065
1066 /*
1067 * move_queued_task - move a queued task to new rq.
1068 *
1069 * Returns (locked) new rq. Old rq's lock is released.
1070 */
1071 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1072 {
1073 lockdep_assert_held(&rq->lock);
1074
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 dequeue_task(rq, p, 0);
1077 set_task_cpu(p, new_cpu);
1078 raw_spin_unlock(&rq->lock);
1079
1080 rq = cpu_rq(new_cpu);
1081
1082 raw_spin_lock(&rq->lock);
1083 BUG_ON(task_cpu(p) != new_cpu);
1084 enqueue_task(rq, p, 0);
1085 p->on_rq = TASK_ON_RQ_QUEUED;
1086 check_preempt_curr(rq, p, 0);
1087
1088 return rq;
1089 }
1090
1091 struct migration_arg {
1092 struct task_struct *task;
1093 int dest_cpu;
1094 };
1095
1096 /*
1097 * Move (not current) task off this cpu, onto dest cpu. We're doing
1098 * this because either it can't run here any more (set_cpus_allowed()
1099 * away from this CPU, or CPU going down), or because we're
1100 * attempting to rebalance this task on exec (sched_exec).
1101 *
1102 * So we race with normal scheduler movements, but that's OK, as long
1103 * as the task is no longer on this CPU.
1104 */
1105 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1106 {
1107 if (unlikely(!cpu_active(dest_cpu)))
1108 return rq;
1109
1110 /* Affinity changed (again). */
1111 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1112 return rq;
1113
1114 rq = move_queued_task(rq, p, dest_cpu);
1115
1116 return rq;
1117 }
1118
1119 /*
1120 * migration_cpu_stop - this will be executed by a highprio stopper thread
1121 * and performs thread migration by bumping thread off CPU then
1122 * 'pushing' onto another runqueue.
1123 */
1124 static int migration_cpu_stop(void *data)
1125 {
1126 struct migration_arg *arg = data;
1127 struct task_struct *p = arg->task;
1128 struct rq *rq = this_rq();
1129
1130 /*
1131 * The original target cpu might have gone down and we might
1132 * be on another cpu but it doesn't matter.
1133 */
1134 local_irq_disable();
1135 /*
1136 * We need to explicitly wake pending tasks before running
1137 * __migrate_task() such that we will not miss enforcing cpus_allowed
1138 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1139 */
1140 sched_ttwu_pending();
1141
1142 raw_spin_lock(&p->pi_lock);
1143 raw_spin_lock(&rq->lock);
1144 /*
1145 * If task_rq(p) != rq, it cannot be migrated here, because we're
1146 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1147 * we're holding p->pi_lock.
1148 */
1149 if (task_rq(p) == rq && task_on_rq_queued(p))
1150 rq = __migrate_task(rq, p, arg->dest_cpu);
1151 raw_spin_unlock(&rq->lock);
1152 raw_spin_unlock(&p->pi_lock);
1153
1154 local_irq_enable();
1155 return 0;
1156 }
1157
1158 /*
1159 * sched_class::set_cpus_allowed must do the below, but is not required to
1160 * actually call this function.
1161 */
1162 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1163 {
1164 cpumask_copy(&p->cpus_allowed, new_mask);
1165 p->nr_cpus_allowed = cpumask_weight(new_mask);
1166 }
1167
1168 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1169 {
1170 struct rq *rq = task_rq(p);
1171 bool queued, running;
1172
1173 lockdep_assert_held(&p->pi_lock);
1174
1175 queued = task_on_rq_queued(p);
1176 running = task_current(rq, p);
1177
1178 if (queued) {
1179 /*
1180 * Because __kthread_bind() calls this on blocked tasks without
1181 * holding rq->lock.
1182 */
1183 lockdep_assert_held(&rq->lock);
1184 dequeue_task(rq, p, DEQUEUE_SAVE);
1185 }
1186 if (running)
1187 put_prev_task(rq, p);
1188
1189 p->sched_class->set_cpus_allowed(p, new_mask);
1190
1191 if (running)
1192 p->sched_class->set_curr_task(rq);
1193 if (queued)
1194 enqueue_task(rq, p, ENQUEUE_RESTORE);
1195 }
1196
1197 /*
1198 * Change a given task's CPU affinity. Migrate the thread to a
1199 * proper CPU and schedule it away if the CPU it's executing on
1200 * is removed from the allowed bitmask.
1201 *
1202 * NOTE: the caller must have a valid reference to the task, the
1203 * task must not exit() & deallocate itself prematurely. The
1204 * call is not atomic; no spinlocks may be held.
1205 */
1206 static int __set_cpus_allowed_ptr(struct task_struct *p,
1207 const struct cpumask *new_mask, bool check)
1208 {
1209 unsigned long flags;
1210 struct rq *rq;
1211 unsigned int dest_cpu;
1212 int ret = 0;
1213
1214 rq = task_rq_lock(p, &flags);
1215
1216 /*
1217 * Must re-check here, to close a race against __kthread_bind(),
1218 * sched_setaffinity() is not guaranteed to observe the flag.
1219 */
1220 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1221 ret = -EINVAL;
1222 goto out;
1223 }
1224
1225 if (cpumask_equal(&p->cpus_allowed, new_mask))
1226 goto out;
1227
1228 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1229 ret = -EINVAL;
1230 goto out;
1231 }
1232
1233 do_set_cpus_allowed(p, new_mask);
1234
1235 /* Can the task run on the task's current CPU? If so, we're done */
1236 if (cpumask_test_cpu(task_cpu(p), new_mask))
1237 goto out;
1238
1239 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1240 if (task_running(rq, p) || p->state == TASK_WAKING) {
1241 struct migration_arg arg = { p, dest_cpu };
1242 /* Need help from migration thread: drop lock and wait. */
1243 task_rq_unlock(rq, p, &flags);
1244 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1245 tlb_migrate_finish(p->mm);
1246 return 0;
1247 } else if (task_on_rq_queued(p)) {
1248 /*
1249 * OK, since we're going to drop the lock immediately
1250 * afterwards anyway.
1251 */
1252 lockdep_unpin_lock(&rq->lock);
1253 rq = move_queued_task(rq, p, dest_cpu);
1254 lockdep_pin_lock(&rq->lock);
1255 }
1256 out:
1257 task_rq_unlock(rq, p, &flags);
1258
1259 return ret;
1260 }
1261
1262 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1263 {
1264 return __set_cpus_allowed_ptr(p, new_mask, false);
1265 }
1266 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1267
1268 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1269 {
1270 #ifdef CONFIG_SCHED_DEBUG
1271 /*
1272 * We should never call set_task_cpu() on a blocked task,
1273 * ttwu() will sort out the placement.
1274 */
1275 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1276 !p->on_rq);
1277
1278 /*
1279 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1280 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1281 * time relying on p->on_rq.
1282 */
1283 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1284 p->sched_class == &fair_sched_class &&
1285 (p->on_rq && !task_on_rq_migrating(p)));
1286
1287 #ifdef CONFIG_LOCKDEP
1288 /*
1289 * The caller should hold either p->pi_lock or rq->lock, when changing
1290 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1291 *
1292 * sched_move_task() holds both and thus holding either pins the cgroup,
1293 * see task_group().
1294 *
1295 * Furthermore, all task_rq users should acquire both locks, see
1296 * task_rq_lock().
1297 */
1298 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1299 lockdep_is_held(&task_rq(p)->lock)));
1300 #endif
1301 #endif
1302
1303 trace_sched_migrate_task(p, new_cpu);
1304
1305 if (task_cpu(p) != new_cpu) {
1306 if (p->sched_class->migrate_task_rq)
1307 p->sched_class->migrate_task_rq(p);
1308 p->se.nr_migrations++;
1309 perf_event_task_migrate(p);
1310 }
1311
1312 __set_task_cpu(p, new_cpu);
1313 }
1314
1315 static void __migrate_swap_task(struct task_struct *p, int cpu)
1316 {
1317 if (task_on_rq_queued(p)) {
1318 struct rq *src_rq, *dst_rq;
1319
1320 src_rq = task_rq(p);
1321 dst_rq = cpu_rq(cpu);
1322
1323 p->on_rq = TASK_ON_RQ_MIGRATING;
1324 deactivate_task(src_rq, p, 0);
1325 set_task_cpu(p, cpu);
1326 activate_task(dst_rq, p, 0);
1327 p->on_rq = TASK_ON_RQ_QUEUED;
1328 check_preempt_curr(dst_rq, p, 0);
1329 } else {
1330 /*
1331 * Task isn't running anymore; make it appear like we migrated
1332 * it before it went to sleep. This means on wakeup we make the
1333 * previous cpu our targer instead of where it really is.
1334 */
1335 p->wake_cpu = cpu;
1336 }
1337 }
1338
1339 struct migration_swap_arg {
1340 struct task_struct *src_task, *dst_task;
1341 int src_cpu, dst_cpu;
1342 };
1343
1344 static int migrate_swap_stop(void *data)
1345 {
1346 struct migration_swap_arg *arg = data;
1347 struct rq *src_rq, *dst_rq;
1348 int ret = -EAGAIN;
1349
1350 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1351 return -EAGAIN;
1352
1353 src_rq = cpu_rq(arg->src_cpu);
1354 dst_rq = cpu_rq(arg->dst_cpu);
1355
1356 double_raw_lock(&arg->src_task->pi_lock,
1357 &arg->dst_task->pi_lock);
1358 double_rq_lock(src_rq, dst_rq);
1359
1360 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1361 goto unlock;
1362
1363 if (task_cpu(arg->src_task) != arg->src_cpu)
1364 goto unlock;
1365
1366 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1367 goto unlock;
1368
1369 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1370 goto unlock;
1371
1372 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1373 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1374
1375 ret = 0;
1376
1377 unlock:
1378 double_rq_unlock(src_rq, dst_rq);
1379 raw_spin_unlock(&arg->dst_task->pi_lock);
1380 raw_spin_unlock(&arg->src_task->pi_lock);
1381
1382 return ret;
1383 }
1384
1385 /*
1386 * Cross migrate two tasks
1387 */
1388 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1389 {
1390 struct migration_swap_arg arg;
1391 int ret = -EINVAL;
1392
1393 arg = (struct migration_swap_arg){
1394 .src_task = cur,
1395 .src_cpu = task_cpu(cur),
1396 .dst_task = p,
1397 .dst_cpu = task_cpu(p),
1398 };
1399
1400 if (arg.src_cpu == arg.dst_cpu)
1401 goto out;
1402
1403 /*
1404 * These three tests are all lockless; this is OK since all of them
1405 * will be re-checked with proper locks held further down the line.
1406 */
1407 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1408 goto out;
1409
1410 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1411 goto out;
1412
1413 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1414 goto out;
1415
1416 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1417 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1418
1419 out:
1420 return ret;
1421 }
1422
1423 /*
1424 * wait_task_inactive - wait for a thread to unschedule.
1425 *
1426 * If @match_state is nonzero, it's the @p->state value just checked and
1427 * not expected to change. If it changes, i.e. @p might have woken up,
1428 * then return zero. When we succeed in waiting for @p to be off its CPU,
1429 * we return a positive number (its total switch count). If a second call
1430 * a short while later returns the same number, the caller can be sure that
1431 * @p has remained unscheduled the whole time.
1432 *
1433 * The caller must ensure that the task *will* unschedule sometime soon,
1434 * else this function might spin for a *long* time. This function can't
1435 * be called with interrupts off, or it may introduce deadlock with
1436 * smp_call_function() if an IPI is sent by the same process we are
1437 * waiting to become inactive.
1438 */
1439 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1440 {
1441 unsigned long flags;
1442 int running, queued;
1443 unsigned long ncsw;
1444 struct rq *rq;
1445
1446 for (;;) {
1447 /*
1448 * We do the initial early heuristics without holding
1449 * any task-queue locks at all. We'll only try to get
1450 * the runqueue lock when things look like they will
1451 * work out!
1452 */
1453 rq = task_rq(p);
1454
1455 /*
1456 * If the task is actively running on another CPU
1457 * still, just relax and busy-wait without holding
1458 * any locks.
1459 *
1460 * NOTE! Since we don't hold any locks, it's not
1461 * even sure that "rq" stays as the right runqueue!
1462 * But we don't care, since "task_running()" will
1463 * return false if the runqueue has changed and p
1464 * is actually now running somewhere else!
1465 */
1466 while (task_running(rq, p)) {
1467 if (match_state && unlikely(p->state != match_state))
1468 return 0;
1469 cpu_relax();
1470 }
1471
1472 /*
1473 * Ok, time to look more closely! We need the rq
1474 * lock now, to be *sure*. If we're wrong, we'll
1475 * just go back and repeat.
1476 */
1477 rq = task_rq_lock(p, &flags);
1478 trace_sched_wait_task(p);
1479 running = task_running(rq, p);
1480 queued = task_on_rq_queued(p);
1481 ncsw = 0;
1482 if (!match_state || p->state == match_state)
1483 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1484 task_rq_unlock(rq, p, &flags);
1485
1486 /*
1487 * If it changed from the expected state, bail out now.
1488 */
1489 if (unlikely(!ncsw))
1490 break;
1491
1492 /*
1493 * Was it really running after all now that we
1494 * checked with the proper locks actually held?
1495 *
1496 * Oops. Go back and try again..
1497 */
1498 if (unlikely(running)) {
1499 cpu_relax();
1500 continue;
1501 }
1502
1503 /*
1504 * It's not enough that it's not actively running,
1505 * it must be off the runqueue _entirely_, and not
1506 * preempted!
1507 *
1508 * So if it was still runnable (but just not actively
1509 * running right now), it's preempted, and we should
1510 * yield - it could be a while.
1511 */
1512 if (unlikely(queued)) {
1513 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1514
1515 set_current_state(TASK_UNINTERRUPTIBLE);
1516 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1517 continue;
1518 }
1519
1520 /*
1521 * Ahh, all good. It wasn't running, and it wasn't
1522 * runnable, which means that it will never become
1523 * running in the future either. We're all done!
1524 */
1525 break;
1526 }
1527
1528 return ncsw;
1529 }
1530
1531 /***
1532 * kick_process - kick a running thread to enter/exit the kernel
1533 * @p: the to-be-kicked thread
1534 *
1535 * Cause a process which is running on another CPU to enter
1536 * kernel-mode, without any delay. (to get signals handled.)
1537 *
1538 * NOTE: this function doesn't have to take the runqueue lock,
1539 * because all it wants to ensure is that the remote task enters
1540 * the kernel. If the IPI races and the task has been migrated
1541 * to another CPU then no harm is done and the purpose has been
1542 * achieved as well.
1543 */
1544 void kick_process(struct task_struct *p)
1545 {
1546 int cpu;
1547
1548 preempt_disable();
1549 cpu = task_cpu(p);
1550 if ((cpu != smp_processor_id()) && task_curr(p))
1551 smp_send_reschedule(cpu);
1552 preempt_enable();
1553 }
1554 EXPORT_SYMBOL_GPL(kick_process);
1555
1556 /*
1557 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1558 */
1559 static int select_fallback_rq(int cpu, struct task_struct *p)
1560 {
1561 int nid = cpu_to_node(cpu);
1562 const struct cpumask *nodemask = NULL;
1563 enum { cpuset, possible, fail } state = cpuset;
1564 int dest_cpu;
1565
1566 /*
1567 * If the node that the cpu is on has been offlined, cpu_to_node()
1568 * will return -1. There is no cpu on the node, and we should
1569 * select the cpu on the other node.
1570 */
1571 if (nid != -1) {
1572 nodemask = cpumask_of_node(nid);
1573
1574 /* Look for allowed, online CPU in same node. */
1575 for_each_cpu(dest_cpu, nodemask) {
1576 if (!cpu_online(dest_cpu))
1577 continue;
1578 if (!cpu_active(dest_cpu))
1579 continue;
1580 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1581 return dest_cpu;
1582 }
1583 }
1584
1585 for (;;) {
1586 /* Any allowed, online CPU? */
1587 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1588 if (!cpu_online(dest_cpu))
1589 continue;
1590 if (!cpu_active(dest_cpu))
1591 continue;
1592 goto out;
1593 }
1594
1595 /* No more Mr. Nice Guy. */
1596 switch (state) {
1597 case cpuset:
1598 if (IS_ENABLED(CONFIG_CPUSETS)) {
1599 cpuset_cpus_allowed_fallback(p);
1600 state = possible;
1601 break;
1602 }
1603 /* fall-through */
1604 case possible:
1605 do_set_cpus_allowed(p, cpu_possible_mask);
1606 state = fail;
1607 break;
1608
1609 case fail:
1610 BUG();
1611 break;
1612 }
1613 }
1614
1615 out:
1616 if (state != cpuset) {
1617 /*
1618 * Don't tell them about moving exiting tasks or
1619 * kernel threads (both mm NULL), since they never
1620 * leave kernel.
1621 */
1622 if (p->mm && printk_ratelimit()) {
1623 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1624 task_pid_nr(p), p->comm, cpu);
1625 }
1626 }
1627
1628 return dest_cpu;
1629 }
1630
1631 /*
1632 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1633 */
1634 static inline
1635 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1636 {
1637 lockdep_assert_held(&p->pi_lock);
1638
1639 if (p->nr_cpus_allowed > 1)
1640 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1641
1642 /*
1643 * In order not to call set_task_cpu() on a blocking task we need
1644 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1645 * cpu.
1646 *
1647 * Since this is common to all placement strategies, this lives here.
1648 *
1649 * [ this allows ->select_task() to simply return task_cpu(p) and
1650 * not worry about this generic constraint ]
1651 */
1652 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1653 !cpu_online(cpu)))
1654 cpu = select_fallback_rq(task_cpu(p), p);
1655
1656 return cpu;
1657 }
1658
1659 static void update_avg(u64 *avg, u64 sample)
1660 {
1661 s64 diff = sample - *avg;
1662 *avg += diff >> 3;
1663 }
1664
1665 #else
1666
1667 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1668 const struct cpumask *new_mask, bool check)
1669 {
1670 return set_cpus_allowed_ptr(p, new_mask);
1671 }
1672
1673 #endif /* CONFIG_SMP */
1674
1675 static void
1676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1677 {
1678 #ifdef CONFIG_SCHEDSTATS
1679 struct rq *rq = this_rq();
1680
1681 #ifdef CONFIG_SMP
1682 int this_cpu = smp_processor_id();
1683
1684 if (cpu == this_cpu) {
1685 schedstat_inc(rq, ttwu_local);
1686 schedstat_inc(p, se.statistics.nr_wakeups_local);
1687 } else {
1688 struct sched_domain *sd;
1689
1690 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1691 rcu_read_lock();
1692 for_each_domain(this_cpu, sd) {
1693 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1694 schedstat_inc(sd, ttwu_wake_remote);
1695 break;
1696 }
1697 }
1698 rcu_read_unlock();
1699 }
1700
1701 if (wake_flags & WF_MIGRATED)
1702 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1703
1704 #endif /* CONFIG_SMP */
1705
1706 schedstat_inc(rq, ttwu_count);
1707 schedstat_inc(p, se.statistics.nr_wakeups);
1708
1709 if (wake_flags & WF_SYNC)
1710 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1711
1712 #endif /* CONFIG_SCHEDSTATS */
1713 }
1714
1715 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1716 {
1717 activate_task(rq, p, en_flags);
1718 p->on_rq = TASK_ON_RQ_QUEUED;
1719
1720 /* if a worker is waking up, notify workqueue */
1721 if (p->flags & PF_WQ_WORKER)
1722 wq_worker_waking_up(p, cpu_of(rq));
1723 }
1724
1725 /*
1726 * Mark the task runnable and perform wakeup-preemption.
1727 */
1728 static void
1729 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1730 {
1731 check_preempt_curr(rq, p, wake_flags);
1732 p->state = TASK_RUNNING;
1733 trace_sched_wakeup(p);
1734
1735 #ifdef CONFIG_SMP
1736 if (p->sched_class->task_woken) {
1737 /*
1738 * Our task @p is fully woken up and running; so its safe to
1739 * drop the rq->lock, hereafter rq is only used for statistics.
1740 */
1741 lockdep_unpin_lock(&rq->lock);
1742 p->sched_class->task_woken(rq, p);
1743 lockdep_pin_lock(&rq->lock);
1744 }
1745
1746 if (rq->idle_stamp) {
1747 u64 delta = rq_clock(rq) - rq->idle_stamp;
1748 u64 max = 2*rq->max_idle_balance_cost;
1749
1750 update_avg(&rq->avg_idle, delta);
1751
1752 if (rq->avg_idle > max)
1753 rq->avg_idle = max;
1754
1755 rq->idle_stamp = 0;
1756 }
1757 #endif
1758 }
1759
1760 static void
1761 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1762 {
1763 lockdep_assert_held(&rq->lock);
1764
1765 #ifdef CONFIG_SMP
1766 if (p->sched_contributes_to_load)
1767 rq->nr_uninterruptible--;
1768 #endif
1769
1770 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1771 ttwu_do_wakeup(rq, p, wake_flags);
1772 }
1773
1774 /*
1775 * Called in case the task @p isn't fully descheduled from its runqueue,
1776 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1777 * since all we need to do is flip p->state to TASK_RUNNING, since
1778 * the task is still ->on_rq.
1779 */
1780 static int ttwu_remote(struct task_struct *p, int wake_flags)
1781 {
1782 struct rq *rq;
1783 int ret = 0;
1784
1785 rq = __task_rq_lock(p);
1786 if (task_on_rq_queued(p)) {
1787 /* check_preempt_curr() may use rq clock */
1788 update_rq_clock(rq);
1789 ttwu_do_wakeup(rq, p, wake_flags);
1790 ret = 1;
1791 }
1792 __task_rq_unlock(rq);
1793
1794 return ret;
1795 }
1796
1797 #ifdef CONFIG_SMP
1798 void sched_ttwu_pending(void)
1799 {
1800 struct rq *rq = this_rq();
1801 struct llist_node *llist = llist_del_all(&rq->wake_list);
1802 struct task_struct *p;
1803 unsigned long flags;
1804
1805 if (!llist)
1806 return;
1807
1808 raw_spin_lock_irqsave(&rq->lock, flags);
1809 lockdep_pin_lock(&rq->lock);
1810
1811 while (llist) {
1812 p = llist_entry(llist, struct task_struct, wake_entry);
1813 llist = llist_next(llist);
1814 ttwu_do_activate(rq, p, 0);
1815 }
1816
1817 lockdep_unpin_lock(&rq->lock);
1818 raw_spin_unlock_irqrestore(&rq->lock, flags);
1819 }
1820
1821 void scheduler_ipi(void)
1822 {
1823 /*
1824 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1825 * TIF_NEED_RESCHED remotely (for the first time) will also send
1826 * this IPI.
1827 */
1828 preempt_fold_need_resched();
1829
1830 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1831 return;
1832
1833 /*
1834 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1835 * traditionally all their work was done from the interrupt return
1836 * path. Now that we actually do some work, we need to make sure
1837 * we do call them.
1838 *
1839 * Some archs already do call them, luckily irq_enter/exit nest
1840 * properly.
1841 *
1842 * Arguably we should visit all archs and update all handlers,
1843 * however a fair share of IPIs are still resched only so this would
1844 * somewhat pessimize the simple resched case.
1845 */
1846 irq_enter();
1847 sched_ttwu_pending();
1848
1849 /*
1850 * Check if someone kicked us for doing the nohz idle load balance.
1851 */
1852 if (unlikely(got_nohz_idle_kick())) {
1853 this_rq()->idle_balance = 1;
1854 raise_softirq_irqoff(SCHED_SOFTIRQ);
1855 }
1856 irq_exit();
1857 }
1858
1859 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1860 {
1861 struct rq *rq = cpu_rq(cpu);
1862
1863 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1864 if (!set_nr_if_polling(rq->idle))
1865 smp_send_reschedule(cpu);
1866 else
1867 trace_sched_wake_idle_without_ipi(cpu);
1868 }
1869 }
1870
1871 void wake_up_if_idle(int cpu)
1872 {
1873 struct rq *rq = cpu_rq(cpu);
1874 unsigned long flags;
1875
1876 rcu_read_lock();
1877
1878 if (!is_idle_task(rcu_dereference(rq->curr)))
1879 goto out;
1880
1881 if (set_nr_if_polling(rq->idle)) {
1882 trace_sched_wake_idle_without_ipi(cpu);
1883 } else {
1884 raw_spin_lock_irqsave(&rq->lock, flags);
1885 if (is_idle_task(rq->curr))
1886 smp_send_reschedule(cpu);
1887 /* Else cpu is not in idle, do nothing here */
1888 raw_spin_unlock_irqrestore(&rq->lock, flags);
1889 }
1890
1891 out:
1892 rcu_read_unlock();
1893 }
1894
1895 bool cpus_share_cache(int this_cpu, int that_cpu)
1896 {
1897 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1898 }
1899 #endif /* CONFIG_SMP */
1900
1901 static void ttwu_queue(struct task_struct *p, int cpu)
1902 {
1903 struct rq *rq = cpu_rq(cpu);
1904
1905 #if defined(CONFIG_SMP)
1906 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1907 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1908 ttwu_queue_remote(p, cpu);
1909 return;
1910 }
1911 #endif
1912
1913 raw_spin_lock(&rq->lock);
1914 lockdep_pin_lock(&rq->lock);
1915 ttwu_do_activate(rq, p, 0);
1916 lockdep_unpin_lock(&rq->lock);
1917 raw_spin_unlock(&rq->lock);
1918 }
1919
1920 /*
1921 * Notes on Program-Order guarantees on SMP systems.
1922 *
1923 * MIGRATION
1924 *
1925 * The basic program-order guarantee on SMP systems is that when a task [t]
1926 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1927 * execution on its new cpu [c1].
1928 *
1929 * For migration (of runnable tasks) this is provided by the following means:
1930 *
1931 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1932 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1933 * rq(c1)->lock (if not at the same time, then in that order).
1934 * C) LOCK of the rq(c1)->lock scheduling in task
1935 *
1936 * Transitivity guarantees that B happens after A and C after B.
1937 * Note: we only require RCpc transitivity.
1938 * Note: the cpu doing B need not be c0 or c1
1939 *
1940 * Example:
1941 *
1942 * CPU0 CPU1 CPU2
1943 *
1944 * LOCK rq(0)->lock
1945 * sched-out X
1946 * sched-in Y
1947 * UNLOCK rq(0)->lock
1948 *
1949 * LOCK rq(0)->lock // orders against CPU0
1950 * dequeue X
1951 * UNLOCK rq(0)->lock
1952 *
1953 * LOCK rq(1)->lock
1954 * enqueue X
1955 * UNLOCK rq(1)->lock
1956 *
1957 * LOCK rq(1)->lock // orders against CPU2
1958 * sched-out Z
1959 * sched-in X
1960 * UNLOCK rq(1)->lock
1961 *
1962 *
1963 * BLOCKING -- aka. SLEEP + WAKEUP
1964 *
1965 * For blocking we (obviously) need to provide the same guarantee as for
1966 * migration. However the means are completely different as there is no lock
1967 * chain to provide order. Instead we do:
1968 *
1969 * 1) smp_store_release(X->on_cpu, 0)
1970 * 2) smp_cond_acquire(!X->on_cpu)
1971 *
1972 * Example:
1973 *
1974 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1975 *
1976 * LOCK rq(0)->lock LOCK X->pi_lock
1977 * dequeue X
1978 * sched-out X
1979 * smp_store_release(X->on_cpu, 0);
1980 *
1981 * smp_cond_acquire(!X->on_cpu);
1982 * X->state = WAKING
1983 * set_task_cpu(X,2)
1984 *
1985 * LOCK rq(2)->lock
1986 * enqueue X
1987 * X->state = RUNNING
1988 * UNLOCK rq(2)->lock
1989 *
1990 * LOCK rq(2)->lock // orders against CPU1
1991 * sched-out Z
1992 * sched-in X
1993 * UNLOCK rq(2)->lock
1994 *
1995 * UNLOCK X->pi_lock
1996 * UNLOCK rq(0)->lock
1997 *
1998 *
1999 * However; for wakeups there is a second guarantee we must provide, namely we
2000 * must observe the state that lead to our wakeup. That is, not only must our
2001 * task observe its own prior state, it must also observe the stores prior to
2002 * its wakeup.
2003 *
2004 * This means that any means of doing remote wakeups must order the CPU doing
2005 * the wakeup against the CPU the task is going to end up running on. This,
2006 * however, is already required for the regular Program-Order guarantee above,
2007 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2008 *
2009 */
2010
2011 /**
2012 * try_to_wake_up - wake up a thread
2013 * @p: the thread to be awakened
2014 * @state: the mask of task states that can be woken
2015 * @wake_flags: wake modifier flags (WF_*)
2016 *
2017 * Put it on the run-queue if it's not already there. The "current"
2018 * thread is always on the run-queue (except when the actual
2019 * re-schedule is in progress), and as such you're allowed to do
2020 * the simpler "current->state = TASK_RUNNING" to mark yourself
2021 * runnable without the overhead of this.
2022 *
2023 * Return: %true if @p was woken up, %false if it was already running.
2024 * or @state didn't match @p's state.
2025 */
2026 static int
2027 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2028 {
2029 unsigned long flags;
2030 int cpu, success = 0;
2031
2032 /*
2033 * If we are going to wake up a thread waiting for CONDITION we
2034 * need to ensure that CONDITION=1 done by the caller can not be
2035 * reordered with p->state check below. This pairs with mb() in
2036 * set_current_state() the waiting thread does.
2037 */
2038 smp_mb__before_spinlock();
2039 raw_spin_lock_irqsave(&p->pi_lock, flags);
2040 if (!(p->state & state))
2041 goto out;
2042
2043 trace_sched_waking(p);
2044
2045 success = 1; /* we're going to change ->state */
2046 cpu = task_cpu(p);
2047
2048 if (p->on_rq && ttwu_remote(p, wake_flags))
2049 goto stat;
2050
2051 #ifdef CONFIG_SMP
2052 /*
2053 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2054 * possible to, falsely, observe p->on_cpu == 0.
2055 *
2056 * One must be running (->on_cpu == 1) in order to remove oneself
2057 * from the runqueue.
2058 *
2059 * [S] ->on_cpu = 1; [L] ->on_rq
2060 * UNLOCK rq->lock
2061 * RMB
2062 * LOCK rq->lock
2063 * [S] ->on_rq = 0; [L] ->on_cpu
2064 *
2065 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2066 * from the consecutive calls to schedule(); the first switching to our
2067 * task, the second putting it to sleep.
2068 */
2069 smp_rmb();
2070
2071 /*
2072 * If the owning (remote) cpu is still in the middle of schedule() with
2073 * this task as prev, wait until its done referencing the task.
2074 *
2075 * Pairs with the smp_store_release() in finish_lock_switch().
2076 *
2077 * This ensures that tasks getting woken will be fully ordered against
2078 * their previous state and preserve Program Order.
2079 */
2080 smp_cond_acquire(!p->on_cpu);
2081
2082 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2083 p->state = TASK_WAKING;
2084
2085 if (p->sched_class->task_waking)
2086 p->sched_class->task_waking(p);
2087
2088 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2089 if (task_cpu(p) != cpu) {
2090 wake_flags |= WF_MIGRATED;
2091 set_task_cpu(p, cpu);
2092 }
2093 #endif /* CONFIG_SMP */
2094
2095 ttwu_queue(p, cpu);
2096 stat:
2097 ttwu_stat(p, cpu, wake_flags);
2098 out:
2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100
2101 return success;
2102 }
2103
2104 /**
2105 * try_to_wake_up_local - try to wake up a local task with rq lock held
2106 * @p: the thread to be awakened
2107 *
2108 * Put @p on the run-queue if it's not already there. The caller must
2109 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2110 * the current task.
2111 */
2112 static void try_to_wake_up_local(struct task_struct *p)
2113 {
2114 struct rq *rq = task_rq(p);
2115
2116 if (WARN_ON_ONCE(rq != this_rq()) ||
2117 WARN_ON_ONCE(p == current))
2118 return;
2119
2120 lockdep_assert_held(&rq->lock);
2121
2122 if (!raw_spin_trylock(&p->pi_lock)) {
2123 /*
2124 * This is OK, because current is on_cpu, which avoids it being
2125 * picked for load-balance and preemption/IRQs are still
2126 * disabled avoiding further scheduler activity on it and we've
2127 * not yet picked a replacement task.
2128 */
2129 lockdep_unpin_lock(&rq->lock);
2130 raw_spin_unlock(&rq->lock);
2131 raw_spin_lock(&p->pi_lock);
2132 raw_spin_lock(&rq->lock);
2133 lockdep_pin_lock(&rq->lock);
2134 }
2135
2136 if (!(p->state & TASK_NORMAL))
2137 goto out;
2138
2139 trace_sched_waking(p);
2140
2141 if (!task_on_rq_queued(p))
2142 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2143
2144 ttwu_do_wakeup(rq, p, 0);
2145 ttwu_stat(p, smp_processor_id(), 0);
2146 out:
2147 raw_spin_unlock(&p->pi_lock);
2148 }
2149
2150 /**
2151 * wake_up_process - Wake up a specific process
2152 * @p: The process to be woken up.
2153 *
2154 * Attempt to wake up the nominated process and move it to the set of runnable
2155 * processes.
2156 *
2157 * Return: 1 if the process was woken up, 0 if it was already running.
2158 *
2159 * It may be assumed that this function implies a write memory barrier before
2160 * changing the task state if and only if any tasks are woken up.
2161 */
2162 int wake_up_process(struct task_struct *p)
2163 {
2164 return try_to_wake_up(p, TASK_NORMAL, 0);
2165 }
2166 EXPORT_SYMBOL(wake_up_process);
2167
2168 int wake_up_state(struct task_struct *p, unsigned int state)
2169 {
2170 return try_to_wake_up(p, state, 0);
2171 }
2172
2173 /*
2174 * This function clears the sched_dl_entity static params.
2175 */
2176 void __dl_clear_params(struct task_struct *p)
2177 {
2178 struct sched_dl_entity *dl_se = &p->dl;
2179
2180 dl_se->dl_runtime = 0;
2181 dl_se->dl_deadline = 0;
2182 dl_se->dl_period = 0;
2183 dl_se->flags = 0;
2184 dl_se->dl_bw = 0;
2185
2186 dl_se->dl_throttled = 0;
2187 dl_se->dl_new = 1;
2188 dl_se->dl_yielded = 0;
2189 }
2190
2191 /*
2192 * Perform scheduler related setup for a newly forked process p.
2193 * p is forked by current.
2194 *
2195 * __sched_fork() is basic setup used by init_idle() too:
2196 */
2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2198 {
2199 p->on_rq = 0;
2200
2201 p->se.on_rq = 0;
2202 p->se.exec_start = 0;
2203 p->se.sum_exec_runtime = 0;
2204 p->se.prev_sum_exec_runtime = 0;
2205 p->se.nr_migrations = 0;
2206 p->se.vruntime = 0;
2207 INIT_LIST_HEAD(&p->se.group_node);
2208
2209 #ifdef CONFIG_FAIR_GROUP_SCHED
2210 p->se.cfs_rq = NULL;
2211 #endif
2212
2213 #ifdef CONFIG_SCHEDSTATS
2214 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2215 #endif
2216
2217 RB_CLEAR_NODE(&p->dl.rb_node);
2218 init_dl_task_timer(&p->dl);
2219 __dl_clear_params(p);
2220
2221 INIT_LIST_HEAD(&p->rt.run_list);
2222
2223 #ifdef CONFIG_PREEMPT_NOTIFIERS
2224 INIT_HLIST_HEAD(&p->preempt_notifiers);
2225 #endif
2226
2227 #ifdef CONFIG_NUMA_BALANCING
2228 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2229 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2230 p->mm->numa_scan_seq = 0;
2231 }
2232
2233 if (clone_flags & CLONE_VM)
2234 p->numa_preferred_nid = current->numa_preferred_nid;
2235 else
2236 p->numa_preferred_nid = -1;
2237
2238 p->node_stamp = 0ULL;
2239 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2240 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2241 p->numa_work.next = &p->numa_work;
2242 p->numa_faults = NULL;
2243 p->last_task_numa_placement = 0;
2244 p->last_sum_exec_runtime = 0;
2245
2246 p->numa_group = NULL;
2247 #endif /* CONFIG_NUMA_BALANCING */
2248 }
2249
2250 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2251
2252 #ifdef CONFIG_NUMA_BALANCING
2253
2254 void set_numabalancing_state(bool enabled)
2255 {
2256 if (enabled)
2257 static_branch_enable(&sched_numa_balancing);
2258 else
2259 static_branch_disable(&sched_numa_balancing);
2260 }
2261
2262 #ifdef CONFIG_PROC_SYSCTL
2263 int sysctl_numa_balancing(struct ctl_table *table, int write,
2264 void __user *buffer, size_t *lenp, loff_t *ppos)
2265 {
2266 struct ctl_table t;
2267 int err;
2268 int state = static_branch_likely(&sched_numa_balancing);
2269
2270 if (write && !capable(CAP_SYS_ADMIN))
2271 return -EPERM;
2272
2273 t = *table;
2274 t.data = &state;
2275 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2276 if (err < 0)
2277 return err;
2278 if (write)
2279 set_numabalancing_state(state);
2280 return err;
2281 }
2282 #endif
2283 #endif
2284
2285 /*
2286 * fork()/clone()-time setup:
2287 */
2288 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2289 {
2290 unsigned long flags;
2291 int cpu = get_cpu();
2292
2293 __sched_fork(clone_flags, p);
2294 /*
2295 * We mark the process as running here. This guarantees that
2296 * nobody will actually run it, and a signal or other external
2297 * event cannot wake it up and insert it on the runqueue either.
2298 */
2299 p->state = TASK_RUNNING;
2300
2301 /*
2302 * Make sure we do not leak PI boosting priority to the child.
2303 */
2304 p->prio = current->normal_prio;
2305
2306 /*
2307 * Revert to default priority/policy on fork if requested.
2308 */
2309 if (unlikely(p->sched_reset_on_fork)) {
2310 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2311 p->policy = SCHED_NORMAL;
2312 p->static_prio = NICE_TO_PRIO(0);
2313 p->rt_priority = 0;
2314 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2315 p->static_prio = NICE_TO_PRIO(0);
2316
2317 p->prio = p->normal_prio = __normal_prio(p);
2318 set_load_weight(p);
2319
2320 /*
2321 * We don't need the reset flag anymore after the fork. It has
2322 * fulfilled its duty:
2323 */
2324 p->sched_reset_on_fork = 0;
2325 }
2326
2327 if (dl_prio(p->prio)) {
2328 put_cpu();
2329 return -EAGAIN;
2330 } else if (rt_prio(p->prio)) {
2331 p->sched_class = &rt_sched_class;
2332 } else {
2333 p->sched_class = &fair_sched_class;
2334 }
2335
2336 if (p->sched_class->task_fork)
2337 p->sched_class->task_fork(p);
2338
2339 /*
2340 * The child is not yet in the pid-hash so no cgroup attach races,
2341 * and the cgroup is pinned to this child due to cgroup_fork()
2342 * is ran before sched_fork().
2343 *
2344 * Silence PROVE_RCU.
2345 */
2346 raw_spin_lock_irqsave(&p->pi_lock, flags);
2347 set_task_cpu(p, cpu);
2348 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2349
2350 #ifdef CONFIG_SCHED_INFO
2351 if (likely(sched_info_on()))
2352 memset(&p->sched_info, 0, sizeof(p->sched_info));
2353 #endif
2354 #if defined(CONFIG_SMP)
2355 p->on_cpu = 0;
2356 #endif
2357 init_task_preempt_count(p);
2358 #ifdef CONFIG_SMP
2359 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2360 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2361 #endif
2362
2363 put_cpu();
2364 return 0;
2365 }
2366
2367 unsigned long to_ratio(u64 period, u64 runtime)
2368 {
2369 if (runtime == RUNTIME_INF)
2370 return 1ULL << 20;
2371
2372 /*
2373 * Doing this here saves a lot of checks in all
2374 * the calling paths, and returning zero seems
2375 * safe for them anyway.
2376 */
2377 if (period == 0)
2378 return 0;
2379
2380 return div64_u64(runtime << 20, period);
2381 }
2382
2383 #ifdef CONFIG_SMP
2384 inline struct dl_bw *dl_bw_of(int i)
2385 {
2386 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2387 "sched RCU must be held");
2388 return &cpu_rq(i)->rd->dl_bw;
2389 }
2390
2391 static inline int dl_bw_cpus(int i)
2392 {
2393 struct root_domain *rd = cpu_rq(i)->rd;
2394 int cpus = 0;
2395
2396 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2397 "sched RCU must be held");
2398 for_each_cpu_and(i, rd->span, cpu_active_mask)
2399 cpus++;
2400
2401 return cpus;
2402 }
2403 #else
2404 inline struct dl_bw *dl_bw_of(int i)
2405 {
2406 return &cpu_rq(i)->dl.dl_bw;
2407 }
2408
2409 static inline int dl_bw_cpus(int i)
2410 {
2411 return 1;
2412 }
2413 #endif
2414
2415 /*
2416 * We must be sure that accepting a new task (or allowing changing the
2417 * parameters of an existing one) is consistent with the bandwidth
2418 * constraints. If yes, this function also accordingly updates the currently
2419 * allocated bandwidth to reflect the new situation.
2420 *
2421 * This function is called while holding p's rq->lock.
2422 *
2423 * XXX we should delay bw change until the task's 0-lag point, see
2424 * __setparam_dl().
2425 */
2426 static int dl_overflow(struct task_struct *p, int policy,
2427 const struct sched_attr *attr)
2428 {
2429
2430 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2431 u64 period = attr->sched_period ?: attr->sched_deadline;
2432 u64 runtime = attr->sched_runtime;
2433 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2434 int cpus, err = -1;
2435
2436 if (new_bw == p->dl.dl_bw)
2437 return 0;
2438
2439 /*
2440 * Either if a task, enters, leave, or stays -deadline but changes
2441 * its parameters, we may need to update accordingly the total
2442 * allocated bandwidth of the container.
2443 */
2444 raw_spin_lock(&dl_b->lock);
2445 cpus = dl_bw_cpus(task_cpu(p));
2446 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2447 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2448 __dl_add(dl_b, new_bw);
2449 err = 0;
2450 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2451 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2452 __dl_clear(dl_b, p->dl.dl_bw);
2453 __dl_add(dl_b, new_bw);
2454 err = 0;
2455 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2456 __dl_clear(dl_b, p->dl.dl_bw);
2457 err = 0;
2458 }
2459 raw_spin_unlock(&dl_b->lock);
2460
2461 return err;
2462 }
2463
2464 extern void init_dl_bw(struct dl_bw *dl_b);
2465
2466 /*
2467 * wake_up_new_task - wake up a newly created task for the first time.
2468 *
2469 * This function will do some initial scheduler statistics housekeeping
2470 * that must be done for every newly created context, then puts the task
2471 * on the runqueue and wakes it.
2472 */
2473 void wake_up_new_task(struct task_struct *p)
2474 {
2475 unsigned long flags;
2476 struct rq *rq;
2477
2478 raw_spin_lock_irqsave(&p->pi_lock, flags);
2479 /* Initialize new task's runnable average */
2480 init_entity_runnable_average(&p->se);
2481 #ifdef CONFIG_SMP
2482 /*
2483 * Fork balancing, do it here and not earlier because:
2484 * - cpus_allowed can change in the fork path
2485 * - any previously selected cpu might disappear through hotplug
2486 */
2487 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2488 #endif
2489
2490 rq = __task_rq_lock(p);
2491 activate_task(rq, p, 0);
2492 p->on_rq = TASK_ON_RQ_QUEUED;
2493 trace_sched_wakeup_new(p);
2494 check_preempt_curr(rq, p, WF_FORK);
2495 #ifdef CONFIG_SMP
2496 if (p->sched_class->task_woken) {
2497 /*
2498 * Nothing relies on rq->lock after this, so its fine to
2499 * drop it.
2500 */
2501 lockdep_unpin_lock(&rq->lock);
2502 p->sched_class->task_woken(rq, p);
2503 lockdep_pin_lock(&rq->lock);
2504 }
2505 #endif
2506 task_rq_unlock(rq, p, &flags);
2507 }
2508
2509 #ifdef CONFIG_PREEMPT_NOTIFIERS
2510
2511 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2512
2513 void preempt_notifier_inc(void)
2514 {
2515 static_key_slow_inc(&preempt_notifier_key);
2516 }
2517 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2518
2519 void preempt_notifier_dec(void)
2520 {
2521 static_key_slow_dec(&preempt_notifier_key);
2522 }
2523 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2524
2525 /**
2526 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2527 * @notifier: notifier struct to register
2528 */
2529 void preempt_notifier_register(struct preempt_notifier *notifier)
2530 {
2531 if (!static_key_false(&preempt_notifier_key))
2532 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2533
2534 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2535 }
2536 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2537
2538 /**
2539 * preempt_notifier_unregister - no longer interested in preemption notifications
2540 * @notifier: notifier struct to unregister
2541 *
2542 * This is *not* safe to call from within a preemption notifier.
2543 */
2544 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2545 {
2546 hlist_del(&notifier->link);
2547 }
2548 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2549
2550 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2551 {
2552 struct preempt_notifier *notifier;
2553
2554 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2555 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2556 }
2557
2558 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559 {
2560 if (static_key_false(&preempt_notifier_key))
2561 __fire_sched_in_preempt_notifiers(curr);
2562 }
2563
2564 static void
2565 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2566 struct task_struct *next)
2567 {
2568 struct preempt_notifier *notifier;
2569
2570 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2571 notifier->ops->sched_out(notifier, next);
2572 }
2573
2574 static __always_inline void
2575 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2576 struct task_struct *next)
2577 {
2578 if (static_key_false(&preempt_notifier_key))
2579 __fire_sched_out_preempt_notifiers(curr, next);
2580 }
2581
2582 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2583
2584 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2585 {
2586 }
2587
2588 static inline void
2589 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2590 struct task_struct *next)
2591 {
2592 }
2593
2594 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2595
2596 /**
2597 * prepare_task_switch - prepare to switch tasks
2598 * @rq: the runqueue preparing to switch
2599 * @prev: the current task that is being switched out
2600 * @next: the task we are going to switch to.
2601 *
2602 * This is called with the rq lock held and interrupts off. It must
2603 * be paired with a subsequent finish_task_switch after the context
2604 * switch.
2605 *
2606 * prepare_task_switch sets up locking and calls architecture specific
2607 * hooks.
2608 */
2609 static inline void
2610 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 struct task_struct *next)
2612 {
2613 sched_info_switch(rq, prev, next);
2614 perf_event_task_sched_out(prev, next);
2615 fire_sched_out_preempt_notifiers(prev, next);
2616 prepare_lock_switch(rq, next);
2617 prepare_arch_switch(next);
2618 }
2619
2620 /**
2621 * finish_task_switch - clean up after a task-switch
2622 * @prev: the thread we just switched away from.
2623 *
2624 * finish_task_switch must be called after the context switch, paired
2625 * with a prepare_task_switch call before the context switch.
2626 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2627 * and do any other architecture-specific cleanup actions.
2628 *
2629 * Note that we may have delayed dropping an mm in context_switch(). If
2630 * so, we finish that here outside of the runqueue lock. (Doing it
2631 * with the lock held can cause deadlocks; see schedule() for
2632 * details.)
2633 *
2634 * The context switch have flipped the stack from under us and restored the
2635 * local variables which were saved when this task called schedule() in the
2636 * past. prev == current is still correct but we need to recalculate this_rq
2637 * because prev may have moved to another CPU.
2638 */
2639 static struct rq *finish_task_switch(struct task_struct *prev)
2640 __releases(rq->lock)
2641 {
2642 struct rq *rq = this_rq();
2643 struct mm_struct *mm = rq->prev_mm;
2644 long prev_state;
2645
2646 /*
2647 * The previous task will have left us with a preempt_count of 2
2648 * because it left us after:
2649 *
2650 * schedule()
2651 * preempt_disable(); // 1
2652 * __schedule()
2653 * raw_spin_lock_irq(&rq->lock) // 2
2654 *
2655 * Also, see FORK_PREEMPT_COUNT.
2656 */
2657 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2658 "corrupted preempt_count: %s/%d/0x%x\n",
2659 current->comm, current->pid, preempt_count()))
2660 preempt_count_set(FORK_PREEMPT_COUNT);
2661
2662 rq->prev_mm = NULL;
2663
2664 /*
2665 * A task struct has one reference for the use as "current".
2666 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2667 * schedule one last time. The schedule call will never return, and
2668 * the scheduled task must drop that reference.
2669 *
2670 * We must observe prev->state before clearing prev->on_cpu (in
2671 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2672 * running on another CPU and we could rave with its RUNNING -> DEAD
2673 * transition, resulting in a double drop.
2674 */
2675 prev_state = prev->state;
2676 vtime_task_switch(prev);
2677 perf_event_task_sched_in(prev, current);
2678 finish_lock_switch(rq, prev);
2679 finish_arch_post_lock_switch();
2680
2681 fire_sched_in_preempt_notifiers(current);
2682 if (mm)
2683 mmdrop(mm);
2684 if (unlikely(prev_state == TASK_DEAD)) {
2685 if (prev->sched_class->task_dead)
2686 prev->sched_class->task_dead(prev);
2687
2688 /*
2689 * Remove function-return probe instances associated with this
2690 * task and put them back on the free list.
2691 */
2692 kprobe_flush_task(prev);
2693 put_task_struct(prev);
2694 }
2695
2696 tick_nohz_task_switch();
2697 return rq;
2698 }
2699
2700 #ifdef CONFIG_SMP
2701
2702 /* rq->lock is NOT held, but preemption is disabled */
2703 static void __balance_callback(struct rq *rq)
2704 {
2705 struct callback_head *head, *next;
2706 void (*func)(struct rq *rq);
2707 unsigned long flags;
2708
2709 raw_spin_lock_irqsave(&rq->lock, flags);
2710 head = rq->balance_callback;
2711 rq->balance_callback = NULL;
2712 while (head) {
2713 func = (void (*)(struct rq *))head->func;
2714 next = head->next;
2715 head->next = NULL;
2716 head = next;
2717
2718 func(rq);
2719 }
2720 raw_spin_unlock_irqrestore(&rq->lock, flags);
2721 }
2722
2723 static inline void balance_callback(struct rq *rq)
2724 {
2725 if (unlikely(rq->balance_callback))
2726 __balance_callback(rq);
2727 }
2728
2729 #else
2730
2731 static inline void balance_callback(struct rq *rq)
2732 {
2733 }
2734
2735 #endif
2736
2737 /**
2738 * schedule_tail - first thing a freshly forked thread must call.
2739 * @prev: the thread we just switched away from.
2740 */
2741 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2742 __releases(rq->lock)
2743 {
2744 struct rq *rq;
2745
2746 /*
2747 * New tasks start with FORK_PREEMPT_COUNT, see there and
2748 * finish_task_switch() for details.
2749 *
2750 * finish_task_switch() will drop rq->lock() and lower preempt_count
2751 * and the preempt_enable() will end up enabling preemption (on
2752 * PREEMPT_COUNT kernels).
2753 */
2754
2755 rq = finish_task_switch(prev);
2756 balance_callback(rq);
2757 preempt_enable();
2758
2759 if (current->set_child_tid)
2760 put_user(task_pid_vnr(current), current->set_child_tid);
2761 }
2762
2763 /*
2764 * context_switch - switch to the new MM and the new thread's register state.
2765 */
2766 static inline struct rq *
2767 context_switch(struct rq *rq, struct task_struct *prev,
2768 struct task_struct *next)
2769 {
2770 struct mm_struct *mm, *oldmm;
2771
2772 prepare_task_switch(rq, prev, next);
2773
2774 mm = next->mm;
2775 oldmm = prev->active_mm;
2776 /*
2777 * For paravirt, this is coupled with an exit in switch_to to
2778 * combine the page table reload and the switch backend into
2779 * one hypercall.
2780 */
2781 arch_start_context_switch(prev);
2782
2783 if (!mm) {
2784 next->active_mm = oldmm;
2785 atomic_inc(&oldmm->mm_count);
2786 enter_lazy_tlb(oldmm, next);
2787 } else
2788 switch_mm(oldmm, mm, next);
2789
2790 if (!prev->mm) {
2791 prev->active_mm = NULL;
2792 rq->prev_mm = oldmm;
2793 }
2794 /*
2795 * Since the runqueue lock will be released by the next
2796 * task (which is an invalid locking op but in the case
2797 * of the scheduler it's an obvious special-case), so we
2798 * do an early lockdep release here:
2799 */
2800 lockdep_unpin_lock(&rq->lock);
2801 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2802
2803 /* Here we just switch the register state and the stack. */
2804 switch_to(prev, next, prev);
2805 barrier();
2806
2807 return finish_task_switch(prev);
2808 }
2809
2810 /*
2811 * nr_running and nr_context_switches:
2812 *
2813 * externally visible scheduler statistics: current number of runnable
2814 * threads, total number of context switches performed since bootup.
2815 */
2816 unsigned long nr_running(void)
2817 {
2818 unsigned long i, sum = 0;
2819
2820 for_each_online_cpu(i)
2821 sum += cpu_rq(i)->nr_running;
2822
2823 return sum;
2824 }
2825
2826 /*
2827 * Check if only the current task is running on the cpu.
2828 *
2829 * Caution: this function does not check that the caller has disabled
2830 * preemption, thus the result might have a time-of-check-to-time-of-use
2831 * race. The caller is responsible to use it correctly, for example:
2832 *
2833 * - from a non-preemptable section (of course)
2834 *
2835 * - from a thread that is bound to a single CPU
2836 *
2837 * - in a loop with very short iterations (e.g. a polling loop)
2838 */
2839 bool single_task_running(void)
2840 {
2841 return raw_rq()->nr_running == 1;
2842 }
2843 EXPORT_SYMBOL(single_task_running);
2844
2845 unsigned long long nr_context_switches(void)
2846 {
2847 int i;
2848 unsigned long long sum = 0;
2849
2850 for_each_possible_cpu(i)
2851 sum += cpu_rq(i)->nr_switches;
2852
2853 return sum;
2854 }
2855
2856 unsigned long nr_iowait(void)
2857 {
2858 unsigned long i, sum = 0;
2859
2860 for_each_possible_cpu(i)
2861 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2862
2863 return sum;
2864 }
2865
2866 unsigned long nr_iowait_cpu(int cpu)
2867 {
2868 struct rq *this = cpu_rq(cpu);
2869 return atomic_read(&this->nr_iowait);
2870 }
2871
2872 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2873 {
2874 struct rq *rq = this_rq();
2875 *nr_waiters = atomic_read(&rq->nr_iowait);
2876 *load = rq->load.weight;
2877 }
2878
2879 #ifdef CONFIG_SMP
2880
2881 /*
2882 * sched_exec - execve() is a valuable balancing opportunity, because at
2883 * this point the task has the smallest effective memory and cache footprint.
2884 */
2885 void sched_exec(void)
2886 {
2887 struct task_struct *p = current;
2888 unsigned long flags;
2889 int dest_cpu;
2890
2891 raw_spin_lock_irqsave(&p->pi_lock, flags);
2892 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2893 if (dest_cpu == smp_processor_id())
2894 goto unlock;
2895
2896 if (likely(cpu_active(dest_cpu))) {
2897 struct migration_arg arg = { p, dest_cpu };
2898
2899 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2900 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2901 return;
2902 }
2903 unlock:
2904 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2905 }
2906
2907 #endif
2908
2909 DEFINE_PER_CPU(struct kernel_stat, kstat);
2910 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2911
2912 EXPORT_PER_CPU_SYMBOL(kstat);
2913 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2914
2915 /*
2916 * Return accounted runtime for the task.
2917 * In case the task is currently running, return the runtime plus current's
2918 * pending runtime that have not been accounted yet.
2919 */
2920 unsigned long long task_sched_runtime(struct task_struct *p)
2921 {
2922 unsigned long flags;
2923 struct rq *rq;
2924 u64 ns;
2925
2926 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2927 /*
2928 * 64-bit doesn't need locks to atomically read a 64bit value.
2929 * So we have a optimization chance when the task's delta_exec is 0.
2930 * Reading ->on_cpu is racy, but this is ok.
2931 *
2932 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2933 * If we race with it entering cpu, unaccounted time is 0. This is
2934 * indistinguishable from the read occurring a few cycles earlier.
2935 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2936 * been accounted, so we're correct here as well.
2937 */
2938 if (!p->on_cpu || !task_on_rq_queued(p))
2939 return p->se.sum_exec_runtime;
2940 #endif
2941
2942 rq = task_rq_lock(p, &flags);
2943 /*
2944 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2945 * project cycles that may never be accounted to this
2946 * thread, breaking clock_gettime().
2947 */
2948 if (task_current(rq, p) && task_on_rq_queued(p)) {
2949 update_rq_clock(rq);
2950 p->sched_class->update_curr(rq);
2951 }
2952 ns = p->se.sum_exec_runtime;
2953 task_rq_unlock(rq, p, &flags);
2954
2955 return ns;
2956 }
2957
2958 /*
2959 * This function gets called by the timer code, with HZ frequency.
2960 * We call it with interrupts disabled.
2961 */
2962 void scheduler_tick(void)
2963 {
2964 int cpu = smp_processor_id();
2965 struct rq *rq = cpu_rq(cpu);
2966 struct task_struct *curr = rq->curr;
2967
2968 sched_clock_tick();
2969
2970 raw_spin_lock(&rq->lock);
2971 update_rq_clock(rq);
2972 curr->sched_class->task_tick(rq, curr, 0);
2973 update_cpu_load_active(rq);
2974 calc_global_load_tick(rq);
2975 raw_spin_unlock(&rq->lock);
2976
2977 perf_event_task_tick();
2978
2979 #ifdef CONFIG_SMP
2980 rq->idle_balance = idle_cpu(cpu);
2981 trigger_load_balance(rq);
2982 #endif
2983 rq_last_tick_reset(rq);
2984 }
2985
2986 #ifdef CONFIG_NO_HZ_FULL
2987 /**
2988 * scheduler_tick_max_deferment
2989 *
2990 * Keep at least one tick per second when a single
2991 * active task is running because the scheduler doesn't
2992 * yet completely support full dynticks environment.
2993 *
2994 * This makes sure that uptime, CFS vruntime, load
2995 * balancing, etc... continue to move forward, even
2996 * with a very low granularity.
2997 *
2998 * Return: Maximum deferment in nanoseconds.
2999 */
3000 u64 scheduler_tick_max_deferment(void)
3001 {
3002 struct rq *rq = this_rq();
3003 unsigned long next, now = READ_ONCE(jiffies);
3004
3005 next = rq->last_sched_tick + HZ;
3006
3007 if (time_before_eq(next, now))
3008 return 0;
3009
3010 return jiffies_to_nsecs(next - now);
3011 }
3012 #endif
3013
3014 notrace unsigned long get_parent_ip(unsigned long addr)
3015 {
3016 if (in_lock_functions(addr)) {
3017 addr = CALLER_ADDR2;
3018 if (in_lock_functions(addr))
3019 addr = CALLER_ADDR3;
3020 }
3021 return addr;
3022 }
3023
3024 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3025 defined(CONFIG_PREEMPT_TRACER))
3026
3027 void preempt_count_add(int val)
3028 {
3029 #ifdef CONFIG_DEBUG_PREEMPT
3030 /*
3031 * Underflow?
3032 */
3033 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3034 return;
3035 #endif
3036 __preempt_count_add(val);
3037 #ifdef CONFIG_DEBUG_PREEMPT
3038 /*
3039 * Spinlock count overflowing soon?
3040 */
3041 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3042 PREEMPT_MASK - 10);
3043 #endif
3044 if (preempt_count() == val) {
3045 unsigned long ip = get_parent_ip(CALLER_ADDR1);
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 current->preempt_disable_ip = ip;
3048 #endif
3049 trace_preempt_off(CALLER_ADDR0, ip);
3050 }
3051 }
3052 EXPORT_SYMBOL(preempt_count_add);
3053 NOKPROBE_SYMBOL(preempt_count_add);
3054
3055 void preempt_count_sub(int val)
3056 {
3057 #ifdef CONFIG_DEBUG_PREEMPT
3058 /*
3059 * Underflow?
3060 */
3061 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3062 return;
3063 /*
3064 * Is the spinlock portion underflowing?
3065 */
3066 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3067 !(preempt_count() & PREEMPT_MASK)))
3068 return;
3069 #endif
3070
3071 if (preempt_count() == val)
3072 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073 __preempt_count_sub(val);
3074 }
3075 EXPORT_SYMBOL(preempt_count_sub);
3076 NOKPROBE_SYMBOL(preempt_count_sub);
3077
3078 #endif
3079
3080 /*
3081 * Print scheduling while atomic bug:
3082 */
3083 static noinline void __schedule_bug(struct task_struct *prev)
3084 {
3085 if (oops_in_progress)
3086 return;
3087
3088 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3089 prev->comm, prev->pid, preempt_count());
3090
3091 debug_show_held_locks(prev);
3092 print_modules();
3093 if (irqs_disabled())
3094 print_irqtrace_events(prev);
3095 #ifdef CONFIG_DEBUG_PREEMPT
3096 if (in_atomic_preempt_off()) {
3097 pr_err("Preemption disabled at:");
3098 print_ip_sym(current->preempt_disable_ip);
3099 pr_cont("\n");
3100 }
3101 #endif
3102 dump_stack();
3103 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3104 }
3105
3106 /*
3107 * Various schedule()-time debugging checks and statistics:
3108 */
3109 static inline void schedule_debug(struct task_struct *prev)
3110 {
3111 #ifdef CONFIG_SCHED_STACK_END_CHECK
3112 BUG_ON(task_stack_end_corrupted(prev));
3113 #endif
3114
3115 if (unlikely(in_atomic_preempt_off())) {
3116 __schedule_bug(prev);
3117 preempt_count_set(PREEMPT_DISABLED);
3118 }
3119 rcu_sleep_check();
3120
3121 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3122
3123 schedstat_inc(this_rq(), sched_count);
3124 }
3125
3126 /*
3127 * Pick up the highest-prio task:
3128 */
3129 static inline struct task_struct *
3130 pick_next_task(struct rq *rq, struct task_struct *prev)
3131 {
3132 const struct sched_class *class = &fair_sched_class;
3133 struct task_struct *p;
3134
3135 /*
3136 * Optimization: we know that if all tasks are in
3137 * the fair class we can call that function directly:
3138 */
3139 if (likely(prev->sched_class == class &&
3140 rq->nr_running == rq->cfs.h_nr_running)) {
3141 p = fair_sched_class.pick_next_task(rq, prev);
3142 if (unlikely(p == RETRY_TASK))
3143 goto again;
3144
3145 /* assumes fair_sched_class->next == idle_sched_class */
3146 if (unlikely(!p))
3147 p = idle_sched_class.pick_next_task(rq, prev);
3148
3149 return p;
3150 }
3151
3152 again:
3153 for_each_class(class) {
3154 p = class->pick_next_task(rq, prev);
3155 if (p) {
3156 if (unlikely(p == RETRY_TASK))
3157 goto again;
3158 return p;
3159 }
3160 }
3161
3162 BUG(); /* the idle class will always have a runnable task */
3163 }
3164
3165 /*
3166 * __schedule() is the main scheduler function.
3167 *
3168 * The main means of driving the scheduler and thus entering this function are:
3169 *
3170 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3171 *
3172 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3173 * paths. For example, see arch/x86/entry_64.S.
3174 *
3175 * To drive preemption between tasks, the scheduler sets the flag in timer
3176 * interrupt handler scheduler_tick().
3177 *
3178 * 3. Wakeups don't really cause entry into schedule(). They add a
3179 * task to the run-queue and that's it.
3180 *
3181 * Now, if the new task added to the run-queue preempts the current
3182 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3183 * called on the nearest possible occasion:
3184 *
3185 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3186 *
3187 * - in syscall or exception context, at the next outmost
3188 * preempt_enable(). (this might be as soon as the wake_up()'s
3189 * spin_unlock()!)
3190 *
3191 * - in IRQ context, return from interrupt-handler to
3192 * preemptible context
3193 *
3194 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3195 * then at the next:
3196 *
3197 * - cond_resched() call
3198 * - explicit schedule() call
3199 * - return from syscall or exception to user-space
3200 * - return from interrupt-handler to user-space
3201 *
3202 * WARNING: must be called with preemption disabled!
3203 */
3204 static void __sched notrace __schedule(bool preempt)
3205 {
3206 struct task_struct *prev, *next;
3207 unsigned long *switch_count;
3208 struct rq *rq;
3209 int cpu;
3210
3211 cpu = smp_processor_id();
3212 rq = cpu_rq(cpu);
3213 prev = rq->curr;
3214
3215 /*
3216 * do_exit() calls schedule() with preemption disabled as an exception;
3217 * however we must fix that up, otherwise the next task will see an
3218 * inconsistent (higher) preempt count.
3219 *
3220 * It also avoids the below schedule_debug() test from complaining
3221 * about this.
3222 */
3223 if (unlikely(prev->state == TASK_DEAD))
3224 preempt_enable_no_resched_notrace();
3225
3226 schedule_debug(prev);
3227
3228 if (sched_feat(HRTICK))
3229 hrtick_clear(rq);
3230
3231 local_irq_disable();
3232 rcu_note_context_switch();
3233
3234 /*
3235 * Make sure that signal_pending_state()->signal_pending() below
3236 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3237 * done by the caller to avoid the race with signal_wake_up().
3238 */
3239 smp_mb__before_spinlock();
3240 raw_spin_lock(&rq->lock);
3241 lockdep_pin_lock(&rq->lock);
3242
3243 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3244
3245 switch_count = &prev->nivcsw;
3246 if (!preempt && prev->state) {
3247 if (unlikely(signal_pending_state(prev->state, prev))) {
3248 prev->state = TASK_RUNNING;
3249 } else {
3250 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3251 prev->on_rq = 0;
3252
3253 /*
3254 * If a worker went to sleep, notify and ask workqueue
3255 * whether it wants to wake up a task to maintain
3256 * concurrency.
3257 */
3258 if (prev->flags & PF_WQ_WORKER) {
3259 struct task_struct *to_wakeup;
3260
3261 to_wakeup = wq_worker_sleeping(prev, cpu);
3262 if (to_wakeup)
3263 try_to_wake_up_local(to_wakeup);
3264 }
3265 }
3266 switch_count = &prev->nvcsw;
3267 }
3268
3269 if (task_on_rq_queued(prev))
3270 update_rq_clock(rq);
3271
3272 next = pick_next_task(rq, prev);
3273 clear_tsk_need_resched(prev);
3274 clear_preempt_need_resched();
3275 rq->clock_skip_update = 0;
3276
3277 if (likely(prev != next)) {
3278 rq->nr_switches++;
3279 rq->curr = next;
3280 ++*switch_count;
3281
3282 trace_sched_switch(preempt, prev, next);
3283 rq = context_switch(rq, prev, next); /* unlocks the rq */
3284 cpu = cpu_of(rq);
3285 } else {
3286 lockdep_unpin_lock(&rq->lock);
3287 raw_spin_unlock_irq(&rq->lock);
3288 }
3289
3290 balance_callback(rq);
3291 }
3292
3293 static inline void sched_submit_work(struct task_struct *tsk)
3294 {
3295 if (!tsk->state || tsk_is_pi_blocked(tsk))
3296 return;
3297 /*
3298 * If we are going to sleep and we have plugged IO queued,
3299 * make sure to submit it to avoid deadlocks.
3300 */
3301 if (blk_needs_flush_plug(tsk))
3302 blk_schedule_flush_plug(tsk);
3303 }
3304
3305 asmlinkage __visible void __sched schedule(void)
3306 {
3307 struct task_struct *tsk = current;
3308
3309 sched_submit_work(tsk);
3310 do {
3311 preempt_disable();
3312 __schedule(false);
3313 sched_preempt_enable_no_resched();
3314 } while (need_resched());
3315 }
3316 EXPORT_SYMBOL(schedule);
3317
3318 #ifdef CONFIG_CONTEXT_TRACKING
3319 asmlinkage __visible void __sched schedule_user(void)
3320 {
3321 /*
3322 * If we come here after a random call to set_need_resched(),
3323 * or we have been woken up remotely but the IPI has not yet arrived,
3324 * we haven't yet exited the RCU idle mode. Do it here manually until
3325 * we find a better solution.
3326 *
3327 * NB: There are buggy callers of this function. Ideally we
3328 * should warn if prev_state != CONTEXT_USER, but that will trigger
3329 * too frequently to make sense yet.
3330 */
3331 enum ctx_state prev_state = exception_enter();
3332 schedule();
3333 exception_exit(prev_state);
3334 }
3335 #endif
3336
3337 /**
3338 * schedule_preempt_disabled - called with preemption disabled
3339 *
3340 * Returns with preemption disabled. Note: preempt_count must be 1
3341 */
3342 void __sched schedule_preempt_disabled(void)
3343 {
3344 sched_preempt_enable_no_resched();
3345 schedule();
3346 preempt_disable();
3347 }
3348
3349 static void __sched notrace preempt_schedule_common(void)
3350 {
3351 do {
3352 preempt_disable_notrace();
3353 __schedule(true);
3354 preempt_enable_no_resched_notrace();
3355
3356 /*
3357 * Check again in case we missed a preemption opportunity
3358 * between schedule and now.
3359 */
3360 } while (need_resched());
3361 }
3362
3363 #ifdef CONFIG_PREEMPT
3364 /*
3365 * this is the entry point to schedule() from in-kernel preemption
3366 * off of preempt_enable. Kernel preemptions off return from interrupt
3367 * occur there and call schedule directly.
3368 */
3369 asmlinkage __visible void __sched notrace preempt_schedule(void)
3370 {
3371 /*
3372 * If there is a non-zero preempt_count or interrupts are disabled,
3373 * we do not want to preempt the current task. Just return..
3374 */
3375 if (likely(!preemptible()))
3376 return;
3377
3378 preempt_schedule_common();
3379 }
3380 NOKPROBE_SYMBOL(preempt_schedule);
3381 EXPORT_SYMBOL(preempt_schedule);
3382
3383 /**
3384 * preempt_schedule_notrace - preempt_schedule called by tracing
3385 *
3386 * The tracing infrastructure uses preempt_enable_notrace to prevent
3387 * recursion and tracing preempt enabling caused by the tracing
3388 * infrastructure itself. But as tracing can happen in areas coming
3389 * from userspace or just about to enter userspace, a preempt enable
3390 * can occur before user_exit() is called. This will cause the scheduler
3391 * to be called when the system is still in usermode.
3392 *
3393 * To prevent this, the preempt_enable_notrace will use this function
3394 * instead of preempt_schedule() to exit user context if needed before
3395 * calling the scheduler.
3396 */
3397 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3398 {
3399 enum ctx_state prev_ctx;
3400
3401 if (likely(!preemptible()))
3402 return;
3403
3404 do {
3405 preempt_disable_notrace();
3406 /*
3407 * Needs preempt disabled in case user_exit() is traced
3408 * and the tracer calls preempt_enable_notrace() causing
3409 * an infinite recursion.
3410 */
3411 prev_ctx = exception_enter();
3412 __schedule(true);
3413 exception_exit(prev_ctx);
3414
3415 preempt_enable_no_resched_notrace();
3416 } while (need_resched());
3417 }
3418 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3419
3420 #endif /* CONFIG_PREEMPT */
3421
3422 /*
3423 * this is the entry point to schedule() from kernel preemption
3424 * off of irq context.
3425 * Note, that this is called and return with irqs disabled. This will
3426 * protect us against recursive calling from irq.
3427 */
3428 asmlinkage __visible void __sched preempt_schedule_irq(void)
3429 {
3430 enum ctx_state prev_state;
3431
3432 /* Catch callers which need to be fixed */
3433 BUG_ON(preempt_count() || !irqs_disabled());
3434
3435 prev_state = exception_enter();
3436
3437 do {
3438 preempt_disable();
3439 local_irq_enable();
3440 __schedule(true);
3441 local_irq_disable();
3442 sched_preempt_enable_no_resched();
3443 } while (need_resched());
3444
3445 exception_exit(prev_state);
3446 }
3447
3448 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3449 void *key)
3450 {
3451 return try_to_wake_up(curr->private, mode, wake_flags);
3452 }
3453 EXPORT_SYMBOL(default_wake_function);
3454
3455 #ifdef CONFIG_RT_MUTEXES
3456
3457 /*
3458 * rt_mutex_setprio - set the current priority of a task
3459 * @p: task
3460 * @prio: prio value (kernel-internal form)
3461 *
3462 * This function changes the 'effective' priority of a task. It does
3463 * not touch ->normal_prio like __setscheduler().
3464 *
3465 * Used by the rt_mutex code to implement priority inheritance
3466 * logic. Call site only calls if the priority of the task changed.
3467 */
3468 void rt_mutex_setprio(struct task_struct *p, int prio)
3469 {
3470 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3471 struct rq *rq;
3472 const struct sched_class *prev_class;
3473
3474 BUG_ON(prio > MAX_PRIO);
3475
3476 rq = __task_rq_lock(p);
3477
3478 /*
3479 * Idle task boosting is a nono in general. There is one
3480 * exception, when PREEMPT_RT and NOHZ is active:
3481 *
3482 * The idle task calls get_next_timer_interrupt() and holds
3483 * the timer wheel base->lock on the CPU and another CPU wants
3484 * to access the timer (probably to cancel it). We can safely
3485 * ignore the boosting request, as the idle CPU runs this code
3486 * with interrupts disabled and will complete the lock
3487 * protected section without being interrupted. So there is no
3488 * real need to boost.
3489 */
3490 if (unlikely(p == rq->idle)) {
3491 WARN_ON(p != rq->curr);
3492 WARN_ON(p->pi_blocked_on);
3493 goto out_unlock;
3494 }
3495
3496 trace_sched_pi_setprio(p, prio);
3497 oldprio = p->prio;
3498 prev_class = p->sched_class;
3499 queued = task_on_rq_queued(p);
3500 running = task_current(rq, p);
3501 if (queued)
3502 dequeue_task(rq, p, DEQUEUE_SAVE);
3503 if (running)
3504 put_prev_task(rq, p);
3505
3506 /*
3507 * Boosting condition are:
3508 * 1. -rt task is running and holds mutex A
3509 * --> -dl task blocks on mutex A
3510 *
3511 * 2. -dl task is running and holds mutex A
3512 * --> -dl task blocks on mutex A and could preempt the
3513 * running task
3514 */
3515 if (dl_prio(prio)) {
3516 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3517 if (!dl_prio(p->normal_prio) ||
3518 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3519 p->dl.dl_boosted = 1;
3520 enqueue_flag |= ENQUEUE_REPLENISH;
3521 } else
3522 p->dl.dl_boosted = 0;
3523 p->sched_class = &dl_sched_class;
3524 } else if (rt_prio(prio)) {
3525 if (dl_prio(oldprio))
3526 p->dl.dl_boosted = 0;
3527 if (oldprio < prio)
3528 enqueue_flag |= ENQUEUE_HEAD;
3529 p->sched_class = &rt_sched_class;
3530 } else {
3531 if (dl_prio(oldprio))
3532 p->dl.dl_boosted = 0;
3533 if (rt_prio(oldprio))
3534 p->rt.timeout = 0;
3535 p->sched_class = &fair_sched_class;
3536 }
3537
3538 p->prio = prio;
3539
3540 if (running)
3541 p->sched_class->set_curr_task(rq);
3542 if (queued)
3543 enqueue_task(rq, p, enqueue_flag);
3544
3545 check_class_changed(rq, p, prev_class, oldprio);
3546 out_unlock:
3547 preempt_disable(); /* avoid rq from going away on us */
3548 __task_rq_unlock(rq);
3549
3550 balance_callback(rq);
3551 preempt_enable();
3552 }
3553 #endif
3554
3555 void set_user_nice(struct task_struct *p, long nice)
3556 {
3557 int old_prio, delta, queued;
3558 unsigned long flags;
3559 struct rq *rq;
3560
3561 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3562 return;
3563 /*
3564 * We have to be careful, if called from sys_setpriority(),
3565 * the task might be in the middle of scheduling on another CPU.
3566 */
3567 rq = task_rq_lock(p, &flags);
3568 /*
3569 * The RT priorities are set via sched_setscheduler(), but we still
3570 * allow the 'normal' nice value to be set - but as expected
3571 * it wont have any effect on scheduling until the task is
3572 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3573 */
3574 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3575 p->static_prio = NICE_TO_PRIO(nice);
3576 goto out_unlock;
3577 }
3578 queued = task_on_rq_queued(p);
3579 if (queued)
3580 dequeue_task(rq, p, DEQUEUE_SAVE);
3581
3582 p->static_prio = NICE_TO_PRIO(nice);
3583 set_load_weight(p);
3584 old_prio = p->prio;
3585 p->prio = effective_prio(p);
3586 delta = p->prio - old_prio;
3587
3588 if (queued) {
3589 enqueue_task(rq, p, ENQUEUE_RESTORE);
3590 /*
3591 * If the task increased its priority or is running and
3592 * lowered its priority, then reschedule its CPU:
3593 */
3594 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3595 resched_curr(rq);
3596 }
3597 out_unlock:
3598 task_rq_unlock(rq, p, &flags);
3599 }
3600 EXPORT_SYMBOL(set_user_nice);
3601
3602 /*
3603 * can_nice - check if a task can reduce its nice value
3604 * @p: task
3605 * @nice: nice value
3606 */
3607 int can_nice(const struct task_struct *p, const int nice)
3608 {
3609 /* convert nice value [19,-20] to rlimit style value [1,40] */
3610 int nice_rlim = nice_to_rlimit(nice);
3611
3612 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3613 capable(CAP_SYS_NICE));
3614 }
3615
3616 #ifdef __ARCH_WANT_SYS_NICE
3617
3618 /*
3619 * sys_nice - change the priority of the current process.
3620 * @increment: priority increment
3621 *
3622 * sys_setpriority is a more generic, but much slower function that
3623 * does similar things.
3624 */
3625 SYSCALL_DEFINE1(nice, int, increment)
3626 {
3627 long nice, retval;
3628
3629 /*
3630 * Setpriority might change our priority at the same moment.
3631 * We don't have to worry. Conceptually one call occurs first
3632 * and we have a single winner.
3633 */
3634 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3635 nice = task_nice(current) + increment;
3636
3637 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3638 if (increment < 0 && !can_nice(current, nice))
3639 return -EPERM;
3640
3641 retval = security_task_setnice(current, nice);
3642 if (retval)
3643 return retval;
3644
3645 set_user_nice(current, nice);
3646 return 0;
3647 }
3648
3649 #endif
3650
3651 /**
3652 * task_prio - return the priority value of a given task.
3653 * @p: the task in question.
3654 *
3655 * Return: The priority value as seen by users in /proc.
3656 * RT tasks are offset by -200. Normal tasks are centered
3657 * around 0, value goes from -16 to +15.
3658 */
3659 int task_prio(const struct task_struct *p)
3660 {
3661 return p->prio - MAX_RT_PRIO;
3662 }
3663
3664 /**
3665 * idle_cpu - is a given cpu idle currently?
3666 * @cpu: the processor in question.
3667 *
3668 * Return: 1 if the CPU is currently idle. 0 otherwise.
3669 */
3670 int idle_cpu(int cpu)
3671 {
3672 struct rq *rq = cpu_rq(cpu);
3673
3674 if (rq->curr != rq->idle)
3675 return 0;
3676
3677 if (rq->nr_running)
3678 return 0;
3679
3680 #ifdef CONFIG_SMP
3681 if (!llist_empty(&rq->wake_list))
3682 return 0;
3683 #endif
3684
3685 return 1;
3686 }
3687
3688 /**
3689 * idle_task - return the idle task for a given cpu.
3690 * @cpu: the processor in question.
3691 *
3692 * Return: The idle task for the cpu @cpu.
3693 */
3694 struct task_struct *idle_task(int cpu)
3695 {
3696 return cpu_rq(cpu)->idle;
3697 }
3698
3699 /**
3700 * find_process_by_pid - find a process with a matching PID value.
3701 * @pid: the pid in question.
3702 *
3703 * The task of @pid, if found. %NULL otherwise.
3704 */
3705 static struct task_struct *find_process_by_pid(pid_t pid)
3706 {
3707 return pid ? find_task_by_vpid(pid) : current;
3708 }
3709
3710 /*
3711 * This function initializes the sched_dl_entity of a newly becoming
3712 * SCHED_DEADLINE task.
3713 *
3714 * Only the static values are considered here, the actual runtime and the
3715 * absolute deadline will be properly calculated when the task is enqueued
3716 * for the first time with its new policy.
3717 */
3718 static void
3719 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3720 {
3721 struct sched_dl_entity *dl_se = &p->dl;
3722
3723 dl_se->dl_runtime = attr->sched_runtime;
3724 dl_se->dl_deadline = attr->sched_deadline;
3725 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3726 dl_se->flags = attr->sched_flags;
3727 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3728
3729 /*
3730 * Changing the parameters of a task is 'tricky' and we're not doing
3731 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3732 *
3733 * What we SHOULD do is delay the bandwidth release until the 0-lag
3734 * point. This would include retaining the task_struct until that time
3735 * and change dl_overflow() to not immediately decrement the current
3736 * amount.
3737 *
3738 * Instead we retain the current runtime/deadline and let the new
3739 * parameters take effect after the current reservation period lapses.
3740 * This is safe (albeit pessimistic) because the 0-lag point is always
3741 * before the current scheduling deadline.
3742 *
3743 * We can still have temporary overloads because we do not delay the
3744 * change in bandwidth until that time; so admission control is
3745 * not on the safe side. It does however guarantee tasks will never
3746 * consume more than promised.
3747 */
3748 }
3749
3750 /*
3751 * sched_setparam() passes in -1 for its policy, to let the functions
3752 * it calls know not to change it.
3753 */
3754 #define SETPARAM_POLICY -1
3755
3756 static void __setscheduler_params(struct task_struct *p,
3757 const struct sched_attr *attr)
3758 {
3759 int policy = attr->sched_policy;
3760
3761 if (policy == SETPARAM_POLICY)
3762 policy = p->policy;
3763
3764 p->policy = policy;
3765
3766 if (dl_policy(policy))
3767 __setparam_dl(p, attr);
3768 else if (fair_policy(policy))
3769 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3770
3771 /*
3772 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3773 * !rt_policy. Always setting this ensures that things like
3774 * getparam()/getattr() don't report silly values for !rt tasks.
3775 */
3776 p->rt_priority = attr->sched_priority;
3777 p->normal_prio = normal_prio(p);
3778 set_load_weight(p);
3779 }
3780
3781 /* Actually do priority change: must hold pi & rq lock. */
3782 static void __setscheduler(struct rq *rq, struct task_struct *p,
3783 const struct sched_attr *attr, bool keep_boost)
3784 {
3785 __setscheduler_params(p, attr);
3786
3787 /*
3788 * Keep a potential priority boosting if called from
3789 * sched_setscheduler().
3790 */
3791 if (keep_boost)
3792 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3793 else
3794 p->prio = normal_prio(p);
3795
3796 if (dl_prio(p->prio))
3797 p->sched_class = &dl_sched_class;
3798 else if (rt_prio(p->prio))
3799 p->sched_class = &rt_sched_class;
3800 else
3801 p->sched_class = &fair_sched_class;
3802 }
3803
3804 static void
3805 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3806 {
3807 struct sched_dl_entity *dl_se = &p->dl;
3808
3809 attr->sched_priority = p->rt_priority;
3810 attr->sched_runtime = dl_se->dl_runtime;
3811 attr->sched_deadline = dl_se->dl_deadline;
3812 attr->sched_period = dl_se->dl_period;
3813 attr->sched_flags = dl_se->flags;
3814 }
3815
3816 /*
3817 * This function validates the new parameters of a -deadline task.
3818 * We ask for the deadline not being zero, and greater or equal
3819 * than the runtime, as well as the period of being zero or
3820 * greater than deadline. Furthermore, we have to be sure that
3821 * user parameters are above the internal resolution of 1us (we
3822 * check sched_runtime only since it is always the smaller one) and
3823 * below 2^63 ns (we have to check both sched_deadline and
3824 * sched_period, as the latter can be zero).
3825 */
3826 static bool
3827 __checkparam_dl(const struct sched_attr *attr)
3828 {
3829 /* deadline != 0 */
3830 if (attr->sched_deadline == 0)
3831 return false;
3832
3833 /*
3834 * Since we truncate DL_SCALE bits, make sure we're at least
3835 * that big.
3836 */
3837 if (attr->sched_runtime < (1ULL << DL_SCALE))
3838 return false;
3839
3840 /*
3841 * Since we use the MSB for wrap-around and sign issues, make
3842 * sure it's not set (mind that period can be equal to zero).
3843 */
3844 if (attr->sched_deadline & (1ULL << 63) ||
3845 attr->sched_period & (1ULL << 63))
3846 return false;
3847
3848 /* runtime <= deadline <= period (if period != 0) */
3849 if ((attr->sched_period != 0 &&
3850 attr->sched_period < attr->sched_deadline) ||
3851 attr->sched_deadline < attr->sched_runtime)
3852 return false;
3853
3854 return true;
3855 }
3856
3857 /*
3858 * check the target process has a UID that matches the current process's
3859 */
3860 static bool check_same_owner(struct task_struct *p)
3861 {
3862 const struct cred *cred = current_cred(), *pcred;
3863 bool match;
3864
3865 rcu_read_lock();
3866 pcred = __task_cred(p);
3867 match = (uid_eq(cred->euid, pcred->euid) ||
3868 uid_eq(cred->euid, pcred->uid));
3869 rcu_read_unlock();
3870 return match;
3871 }
3872
3873 static bool dl_param_changed(struct task_struct *p,
3874 const struct sched_attr *attr)
3875 {
3876 struct sched_dl_entity *dl_se = &p->dl;
3877
3878 if (dl_se->dl_runtime != attr->sched_runtime ||
3879 dl_se->dl_deadline != attr->sched_deadline ||
3880 dl_se->dl_period != attr->sched_period ||
3881 dl_se->flags != attr->sched_flags)
3882 return true;
3883
3884 return false;
3885 }
3886
3887 static int __sched_setscheduler(struct task_struct *p,
3888 const struct sched_attr *attr,
3889 bool user, bool pi)
3890 {
3891 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3892 MAX_RT_PRIO - 1 - attr->sched_priority;
3893 int retval, oldprio, oldpolicy = -1, queued, running;
3894 int new_effective_prio, policy = attr->sched_policy;
3895 unsigned long flags;
3896 const struct sched_class *prev_class;
3897 struct rq *rq;
3898 int reset_on_fork;
3899
3900 /* may grab non-irq protected spin_locks */
3901 BUG_ON(in_interrupt());
3902 recheck:
3903 /* double check policy once rq lock held */
3904 if (policy < 0) {
3905 reset_on_fork = p->sched_reset_on_fork;
3906 policy = oldpolicy = p->policy;
3907 } else {
3908 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3909
3910 if (!valid_policy(policy))
3911 return -EINVAL;
3912 }
3913
3914 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3915 return -EINVAL;
3916
3917 /*
3918 * Valid priorities for SCHED_FIFO and SCHED_RR are
3919 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3920 * SCHED_BATCH and SCHED_IDLE is 0.
3921 */
3922 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3923 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3924 return -EINVAL;
3925 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3926 (rt_policy(policy) != (attr->sched_priority != 0)))
3927 return -EINVAL;
3928
3929 /*
3930 * Allow unprivileged RT tasks to decrease priority:
3931 */
3932 if (user && !capable(CAP_SYS_NICE)) {
3933 if (fair_policy(policy)) {
3934 if (attr->sched_nice < task_nice(p) &&
3935 !can_nice(p, attr->sched_nice))
3936 return -EPERM;
3937 }
3938
3939 if (rt_policy(policy)) {
3940 unsigned long rlim_rtprio =
3941 task_rlimit(p, RLIMIT_RTPRIO);
3942
3943 /* can't set/change the rt policy */
3944 if (policy != p->policy && !rlim_rtprio)
3945 return -EPERM;
3946
3947 /* can't increase priority */
3948 if (attr->sched_priority > p->rt_priority &&
3949 attr->sched_priority > rlim_rtprio)
3950 return -EPERM;
3951 }
3952
3953 /*
3954 * Can't set/change SCHED_DEADLINE policy at all for now
3955 * (safest behavior); in the future we would like to allow
3956 * unprivileged DL tasks to increase their relative deadline
3957 * or reduce their runtime (both ways reducing utilization)
3958 */
3959 if (dl_policy(policy))
3960 return -EPERM;
3961
3962 /*
3963 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3964 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3965 */
3966 if (idle_policy(p->policy) && !idle_policy(policy)) {
3967 if (!can_nice(p, task_nice(p)))
3968 return -EPERM;
3969 }
3970
3971 /* can't change other user's priorities */
3972 if (!check_same_owner(p))
3973 return -EPERM;
3974
3975 /* Normal users shall not reset the sched_reset_on_fork flag */
3976 if (p->sched_reset_on_fork && !reset_on_fork)
3977 return -EPERM;
3978 }
3979
3980 if (user) {
3981 retval = security_task_setscheduler(p);
3982 if (retval)
3983 return retval;
3984 }
3985
3986 /*
3987 * make sure no PI-waiters arrive (or leave) while we are
3988 * changing the priority of the task:
3989 *
3990 * To be able to change p->policy safely, the appropriate
3991 * runqueue lock must be held.
3992 */
3993 rq = task_rq_lock(p, &flags);
3994
3995 /*
3996 * Changing the policy of the stop threads its a very bad idea
3997 */
3998 if (p == rq->stop) {
3999 task_rq_unlock(rq, p, &flags);
4000 return -EINVAL;
4001 }
4002
4003 /*
4004 * If not changing anything there's no need to proceed further,
4005 * but store a possible modification of reset_on_fork.
4006 */
4007 if (unlikely(policy == p->policy)) {
4008 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4009 goto change;
4010 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4011 goto change;
4012 if (dl_policy(policy) && dl_param_changed(p, attr))
4013 goto change;
4014
4015 p->sched_reset_on_fork = reset_on_fork;
4016 task_rq_unlock(rq, p, &flags);
4017 return 0;
4018 }
4019 change:
4020
4021 if (user) {
4022 #ifdef CONFIG_RT_GROUP_SCHED
4023 /*
4024 * Do not allow realtime tasks into groups that have no runtime
4025 * assigned.
4026 */
4027 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4028 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4029 !task_group_is_autogroup(task_group(p))) {
4030 task_rq_unlock(rq, p, &flags);
4031 return -EPERM;
4032 }
4033 #endif
4034 #ifdef CONFIG_SMP
4035 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4036 cpumask_t *span = rq->rd->span;
4037
4038 /*
4039 * Don't allow tasks with an affinity mask smaller than
4040 * the entire root_domain to become SCHED_DEADLINE. We
4041 * will also fail if there's no bandwidth available.
4042 */
4043 if (!cpumask_subset(span, &p->cpus_allowed) ||
4044 rq->rd->dl_bw.bw == 0) {
4045 task_rq_unlock(rq, p, &flags);
4046 return -EPERM;
4047 }
4048 }
4049 #endif
4050 }
4051
4052 /* recheck policy now with rq lock held */
4053 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4054 policy = oldpolicy = -1;
4055 task_rq_unlock(rq, p, &flags);
4056 goto recheck;
4057 }
4058
4059 /*
4060 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4061 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4062 * is available.
4063 */
4064 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4065 task_rq_unlock(rq, p, &flags);
4066 return -EBUSY;
4067 }
4068
4069 p->sched_reset_on_fork = reset_on_fork;
4070 oldprio = p->prio;
4071
4072 if (pi) {
4073 /*
4074 * Take priority boosted tasks into account. If the new
4075 * effective priority is unchanged, we just store the new
4076 * normal parameters and do not touch the scheduler class and
4077 * the runqueue. This will be done when the task deboost
4078 * itself.
4079 */
4080 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4081 if (new_effective_prio == oldprio) {
4082 __setscheduler_params(p, attr);
4083 task_rq_unlock(rq, p, &flags);
4084 return 0;
4085 }
4086 }
4087
4088 queued = task_on_rq_queued(p);
4089 running = task_current(rq, p);
4090 if (queued)
4091 dequeue_task(rq, p, DEQUEUE_SAVE);
4092 if (running)
4093 put_prev_task(rq, p);
4094
4095 prev_class = p->sched_class;
4096 __setscheduler(rq, p, attr, pi);
4097
4098 if (running)
4099 p->sched_class->set_curr_task(rq);
4100 if (queued) {
4101 int enqueue_flags = ENQUEUE_RESTORE;
4102 /*
4103 * We enqueue to tail when the priority of a task is
4104 * increased (user space view).
4105 */
4106 if (oldprio <= p->prio)
4107 enqueue_flags |= ENQUEUE_HEAD;
4108
4109 enqueue_task(rq, p, enqueue_flags);
4110 }
4111
4112 check_class_changed(rq, p, prev_class, oldprio);
4113 preempt_disable(); /* avoid rq from going away on us */
4114 task_rq_unlock(rq, p, &flags);
4115
4116 if (pi)
4117 rt_mutex_adjust_pi(p);
4118
4119 /*
4120 * Run balance callbacks after we've adjusted the PI chain.
4121 */
4122 balance_callback(rq);
4123 preempt_enable();
4124
4125 return 0;
4126 }
4127
4128 static int _sched_setscheduler(struct task_struct *p, int policy,
4129 const struct sched_param *param, bool check)
4130 {
4131 struct sched_attr attr = {
4132 .sched_policy = policy,
4133 .sched_priority = param->sched_priority,
4134 .sched_nice = PRIO_TO_NICE(p->static_prio),
4135 };
4136
4137 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4138 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4139 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4140 policy &= ~SCHED_RESET_ON_FORK;
4141 attr.sched_policy = policy;
4142 }
4143
4144 return __sched_setscheduler(p, &attr, check, true);
4145 }
4146 /**
4147 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4148 * @p: the task in question.
4149 * @policy: new policy.
4150 * @param: structure containing the new RT priority.
4151 *
4152 * Return: 0 on success. An error code otherwise.
4153 *
4154 * NOTE that the task may be already dead.
4155 */
4156 int sched_setscheduler(struct task_struct *p, int policy,
4157 const struct sched_param *param)
4158 {
4159 return _sched_setscheduler(p, policy, param, true);
4160 }
4161 EXPORT_SYMBOL_GPL(sched_setscheduler);
4162
4163 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4164 {
4165 return __sched_setscheduler(p, attr, true, true);
4166 }
4167 EXPORT_SYMBOL_GPL(sched_setattr);
4168
4169 /**
4170 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4171 * @p: the task in question.
4172 * @policy: new policy.
4173 * @param: structure containing the new RT priority.
4174 *
4175 * Just like sched_setscheduler, only don't bother checking if the
4176 * current context has permission. For example, this is needed in
4177 * stop_machine(): we create temporary high priority worker threads,
4178 * but our caller might not have that capability.
4179 *
4180 * Return: 0 on success. An error code otherwise.
4181 */
4182 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4183 const struct sched_param *param)
4184 {
4185 return _sched_setscheduler(p, policy, param, false);
4186 }
4187 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4188
4189 static int
4190 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4191 {
4192 struct sched_param lparam;
4193 struct task_struct *p;
4194 int retval;
4195
4196 if (!param || pid < 0)
4197 return -EINVAL;
4198 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4199 return -EFAULT;
4200
4201 rcu_read_lock();
4202 retval = -ESRCH;
4203 p = find_process_by_pid(pid);
4204 if (p != NULL)
4205 retval = sched_setscheduler(p, policy, &lparam);
4206 rcu_read_unlock();
4207
4208 return retval;
4209 }
4210
4211 /*
4212 * Mimics kernel/events/core.c perf_copy_attr().
4213 */
4214 static int sched_copy_attr(struct sched_attr __user *uattr,
4215 struct sched_attr *attr)
4216 {
4217 u32 size;
4218 int ret;
4219
4220 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4221 return -EFAULT;
4222
4223 /*
4224 * zero the full structure, so that a short copy will be nice.
4225 */
4226 memset(attr, 0, sizeof(*attr));
4227
4228 ret = get_user(size, &uattr->size);
4229 if (ret)
4230 return ret;
4231
4232 if (size > PAGE_SIZE) /* silly large */
4233 goto err_size;
4234
4235 if (!size) /* abi compat */
4236 size = SCHED_ATTR_SIZE_VER0;
4237
4238 if (size < SCHED_ATTR_SIZE_VER0)
4239 goto err_size;
4240
4241 /*
4242 * If we're handed a bigger struct than we know of,
4243 * ensure all the unknown bits are 0 - i.e. new
4244 * user-space does not rely on any kernel feature
4245 * extensions we dont know about yet.
4246 */
4247 if (size > sizeof(*attr)) {
4248 unsigned char __user *addr;
4249 unsigned char __user *end;
4250 unsigned char val;
4251
4252 addr = (void __user *)uattr + sizeof(*attr);
4253 end = (void __user *)uattr + size;
4254
4255 for (; addr < end; addr++) {
4256 ret = get_user(val, addr);
4257 if (ret)
4258 return ret;
4259 if (val)
4260 goto err_size;
4261 }
4262 size = sizeof(*attr);
4263 }
4264
4265 ret = copy_from_user(attr, uattr, size);
4266 if (ret)
4267 return -EFAULT;
4268
4269 /*
4270 * XXX: do we want to be lenient like existing syscalls; or do we want
4271 * to be strict and return an error on out-of-bounds values?
4272 */
4273 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4274
4275 return 0;
4276
4277 err_size:
4278 put_user(sizeof(*attr), &uattr->size);
4279 return -E2BIG;
4280 }
4281
4282 /**
4283 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4284 * @pid: the pid in question.
4285 * @policy: new policy.
4286 * @param: structure containing the new RT priority.
4287 *
4288 * Return: 0 on success. An error code otherwise.
4289 */
4290 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4291 struct sched_param __user *, param)
4292 {
4293 /* negative values for policy are not valid */
4294 if (policy < 0)
4295 return -EINVAL;
4296
4297 return do_sched_setscheduler(pid, policy, param);
4298 }
4299
4300 /**
4301 * sys_sched_setparam - set/change the RT priority of a thread
4302 * @pid: the pid in question.
4303 * @param: structure containing the new RT priority.
4304 *
4305 * Return: 0 on success. An error code otherwise.
4306 */
4307 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4308 {
4309 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4310 }
4311
4312 /**
4313 * sys_sched_setattr - same as above, but with extended sched_attr
4314 * @pid: the pid in question.
4315 * @uattr: structure containing the extended parameters.
4316 * @flags: for future extension.
4317 */
4318 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4319 unsigned int, flags)
4320 {
4321 struct sched_attr attr;
4322 struct task_struct *p;
4323 int retval;
4324
4325 if (!uattr || pid < 0 || flags)
4326 return -EINVAL;
4327
4328 retval = sched_copy_attr(uattr, &attr);
4329 if (retval)
4330 return retval;
4331
4332 if ((int)attr.sched_policy < 0)
4333 return -EINVAL;
4334
4335 rcu_read_lock();
4336 retval = -ESRCH;
4337 p = find_process_by_pid(pid);
4338 if (p != NULL)
4339 retval = sched_setattr(p, &attr);
4340 rcu_read_unlock();
4341
4342 return retval;
4343 }
4344
4345 /**
4346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4347 * @pid: the pid in question.
4348 *
4349 * Return: On success, the policy of the thread. Otherwise, a negative error
4350 * code.
4351 */
4352 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4353 {
4354 struct task_struct *p;
4355 int retval;
4356
4357 if (pid < 0)
4358 return -EINVAL;
4359
4360 retval = -ESRCH;
4361 rcu_read_lock();
4362 p = find_process_by_pid(pid);
4363 if (p) {
4364 retval = security_task_getscheduler(p);
4365 if (!retval)
4366 retval = p->policy
4367 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4368 }
4369 rcu_read_unlock();
4370 return retval;
4371 }
4372
4373 /**
4374 * sys_sched_getparam - get the RT priority of a thread
4375 * @pid: the pid in question.
4376 * @param: structure containing the RT priority.
4377 *
4378 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4379 * code.
4380 */
4381 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4382 {
4383 struct sched_param lp = { .sched_priority = 0 };
4384 struct task_struct *p;
4385 int retval;
4386
4387 if (!param || pid < 0)
4388 return -EINVAL;
4389
4390 rcu_read_lock();
4391 p = find_process_by_pid(pid);
4392 retval = -ESRCH;
4393 if (!p)
4394 goto out_unlock;
4395
4396 retval = security_task_getscheduler(p);
4397 if (retval)
4398 goto out_unlock;
4399
4400 if (task_has_rt_policy(p))
4401 lp.sched_priority = p->rt_priority;
4402 rcu_read_unlock();
4403
4404 /*
4405 * This one might sleep, we cannot do it with a spinlock held ...
4406 */
4407 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4408
4409 return retval;
4410
4411 out_unlock:
4412 rcu_read_unlock();
4413 return retval;
4414 }
4415
4416 static int sched_read_attr(struct sched_attr __user *uattr,
4417 struct sched_attr *attr,
4418 unsigned int usize)
4419 {
4420 int ret;
4421
4422 if (!access_ok(VERIFY_WRITE, uattr, usize))
4423 return -EFAULT;
4424
4425 /*
4426 * If we're handed a smaller struct than we know of,
4427 * ensure all the unknown bits are 0 - i.e. old
4428 * user-space does not get uncomplete information.
4429 */
4430 if (usize < sizeof(*attr)) {
4431 unsigned char *addr;
4432 unsigned char *end;
4433
4434 addr = (void *)attr + usize;
4435 end = (void *)attr + sizeof(*attr);
4436
4437 for (; addr < end; addr++) {
4438 if (*addr)
4439 return -EFBIG;
4440 }
4441
4442 attr->size = usize;
4443 }
4444
4445 ret = copy_to_user(uattr, attr, attr->size);
4446 if (ret)
4447 return -EFAULT;
4448
4449 return 0;
4450 }
4451
4452 /**
4453 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4454 * @pid: the pid in question.
4455 * @uattr: structure containing the extended parameters.
4456 * @size: sizeof(attr) for fwd/bwd comp.
4457 * @flags: for future extension.
4458 */
4459 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4460 unsigned int, size, unsigned int, flags)
4461 {
4462 struct sched_attr attr = {
4463 .size = sizeof(struct sched_attr),
4464 };
4465 struct task_struct *p;
4466 int retval;
4467
4468 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4469 size < SCHED_ATTR_SIZE_VER0 || flags)
4470 return -EINVAL;
4471
4472 rcu_read_lock();
4473 p = find_process_by_pid(pid);
4474 retval = -ESRCH;
4475 if (!p)
4476 goto out_unlock;
4477
4478 retval = security_task_getscheduler(p);
4479 if (retval)
4480 goto out_unlock;
4481
4482 attr.sched_policy = p->policy;
4483 if (p->sched_reset_on_fork)
4484 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4485 if (task_has_dl_policy(p))
4486 __getparam_dl(p, &attr);
4487 else if (task_has_rt_policy(p))
4488 attr.sched_priority = p->rt_priority;
4489 else
4490 attr.sched_nice = task_nice(p);
4491
4492 rcu_read_unlock();
4493
4494 retval = sched_read_attr(uattr, &attr, size);
4495 return retval;
4496
4497 out_unlock:
4498 rcu_read_unlock();
4499 return retval;
4500 }
4501
4502 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4503 {
4504 cpumask_var_t cpus_allowed, new_mask;
4505 struct task_struct *p;
4506 int retval;
4507
4508 rcu_read_lock();
4509
4510 p = find_process_by_pid(pid);
4511 if (!p) {
4512 rcu_read_unlock();
4513 return -ESRCH;
4514 }
4515
4516 /* Prevent p going away */
4517 get_task_struct(p);
4518 rcu_read_unlock();
4519
4520 if (p->flags & PF_NO_SETAFFINITY) {
4521 retval = -EINVAL;
4522 goto out_put_task;
4523 }
4524 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4525 retval = -ENOMEM;
4526 goto out_put_task;
4527 }
4528 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4529 retval = -ENOMEM;
4530 goto out_free_cpus_allowed;
4531 }
4532 retval = -EPERM;
4533 if (!check_same_owner(p)) {
4534 rcu_read_lock();
4535 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4536 rcu_read_unlock();
4537 goto out_free_new_mask;
4538 }
4539 rcu_read_unlock();
4540 }
4541
4542 retval = security_task_setscheduler(p);
4543 if (retval)
4544 goto out_free_new_mask;
4545
4546
4547 cpuset_cpus_allowed(p, cpus_allowed);
4548 cpumask_and(new_mask, in_mask, cpus_allowed);
4549
4550 /*
4551 * Since bandwidth control happens on root_domain basis,
4552 * if admission test is enabled, we only admit -deadline
4553 * tasks allowed to run on all the CPUs in the task's
4554 * root_domain.
4555 */
4556 #ifdef CONFIG_SMP
4557 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4558 rcu_read_lock();
4559 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4560 retval = -EBUSY;
4561 rcu_read_unlock();
4562 goto out_free_new_mask;
4563 }
4564 rcu_read_unlock();
4565 }
4566 #endif
4567 again:
4568 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4569
4570 if (!retval) {
4571 cpuset_cpus_allowed(p, cpus_allowed);
4572 if (!cpumask_subset(new_mask, cpus_allowed)) {
4573 /*
4574 * We must have raced with a concurrent cpuset
4575 * update. Just reset the cpus_allowed to the
4576 * cpuset's cpus_allowed
4577 */
4578 cpumask_copy(new_mask, cpus_allowed);
4579 goto again;
4580 }
4581 }
4582 out_free_new_mask:
4583 free_cpumask_var(new_mask);
4584 out_free_cpus_allowed:
4585 free_cpumask_var(cpus_allowed);
4586 out_put_task:
4587 put_task_struct(p);
4588 return retval;
4589 }
4590
4591 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4592 struct cpumask *new_mask)
4593 {
4594 if (len < cpumask_size())
4595 cpumask_clear(new_mask);
4596 else if (len > cpumask_size())
4597 len = cpumask_size();
4598
4599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4600 }
4601
4602 /**
4603 * sys_sched_setaffinity - set the cpu affinity of a process
4604 * @pid: pid of the process
4605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4606 * @user_mask_ptr: user-space pointer to the new cpu mask
4607 *
4608 * Return: 0 on success. An error code otherwise.
4609 */
4610 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4611 unsigned long __user *, user_mask_ptr)
4612 {
4613 cpumask_var_t new_mask;
4614 int retval;
4615
4616 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4617 return -ENOMEM;
4618
4619 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4620 if (retval == 0)
4621 retval = sched_setaffinity(pid, new_mask);
4622 free_cpumask_var(new_mask);
4623 return retval;
4624 }
4625
4626 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4627 {
4628 struct task_struct *p;
4629 unsigned long flags;
4630 int retval;
4631
4632 rcu_read_lock();
4633
4634 retval = -ESRCH;
4635 p = find_process_by_pid(pid);
4636 if (!p)
4637 goto out_unlock;
4638
4639 retval = security_task_getscheduler(p);
4640 if (retval)
4641 goto out_unlock;
4642
4643 raw_spin_lock_irqsave(&p->pi_lock, flags);
4644 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4646
4647 out_unlock:
4648 rcu_read_unlock();
4649
4650 return retval;
4651 }
4652
4653 /**
4654 * sys_sched_getaffinity - get the cpu affinity of a process
4655 * @pid: pid of the process
4656 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4657 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4658 *
4659 * Return: 0 on success. An error code otherwise.
4660 */
4661 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4662 unsigned long __user *, user_mask_ptr)
4663 {
4664 int ret;
4665 cpumask_var_t mask;
4666
4667 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4668 return -EINVAL;
4669 if (len & (sizeof(unsigned long)-1))
4670 return -EINVAL;
4671
4672 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4673 return -ENOMEM;
4674
4675 ret = sched_getaffinity(pid, mask);
4676 if (ret == 0) {
4677 size_t retlen = min_t(size_t, len, cpumask_size());
4678
4679 if (copy_to_user(user_mask_ptr, mask, retlen))
4680 ret = -EFAULT;
4681 else
4682 ret = retlen;
4683 }
4684 free_cpumask_var(mask);
4685
4686 return ret;
4687 }
4688
4689 /**
4690 * sys_sched_yield - yield the current processor to other threads.
4691 *
4692 * This function yields the current CPU to other tasks. If there are no
4693 * other threads running on this CPU then this function will return.
4694 *
4695 * Return: 0.
4696 */
4697 SYSCALL_DEFINE0(sched_yield)
4698 {
4699 struct rq *rq = this_rq_lock();
4700
4701 schedstat_inc(rq, yld_count);
4702 current->sched_class->yield_task(rq);
4703
4704 /*
4705 * Since we are going to call schedule() anyway, there's
4706 * no need to preempt or enable interrupts:
4707 */
4708 __release(rq->lock);
4709 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4710 do_raw_spin_unlock(&rq->lock);
4711 sched_preempt_enable_no_resched();
4712
4713 schedule();
4714
4715 return 0;
4716 }
4717
4718 int __sched _cond_resched(void)
4719 {
4720 if (should_resched(0)) {
4721 preempt_schedule_common();
4722 return 1;
4723 }
4724 return 0;
4725 }
4726 EXPORT_SYMBOL(_cond_resched);
4727
4728 /*
4729 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4730 * call schedule, and on return reacquire the lock.
4731 *
4732 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4733 * operations here to prevent schedule() from being called twice (once via
4734 * spin_unlock(), once by hand).
4735 */
4736 int __cond_resched_lock(spinlock_t *lock)
4737 {
4738 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4739 int ret = 0;
4740
4741 lockdep_assert_held(lock);
4742
4743 if (spin_needbreak(lock) || resched) {
4744 spin_unlock(lock);
4745 if (resched)
4746 preempt_schedule_common();
4747 else
4748 cpu_relax();
4749 ret = 1;
4750 spin_lock(lock);
4751 }
4752 return ret;
4753 }
4754 EXPORT_SYMBOL(__cond_resched_lock);
4755
4756 int __sched __cond_resched_softirq(void)
4757 {
4758 BUG_ON(!in_softirq());
4759
4760 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4761 local_bh_enable();
4762 preempt_schedule_common();
4763 local_bh_disable();
4764 return 1;
4765 }
4766 return 0;
4767 }
4768 EXPORT_SYMBOL(__cond_resched_softirq);
4769
4770 /**
4771 * yield - yield the current processor to other threads.
4772 *
4773 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4774 *
4775 * The scheduler is at all times free to pick the calling task as the most
4776 * eligible task to run, if removing the yield() call from your code breaks
4777 * it, its already broken.
4778 *
4779 * Typical broken usage is:
4780 *
4781 * while (!event)
4782 * yield();
4783 *
4784 * where one assumes that yield() will let 'the other' process run that will
4785 * make event true. If the current task is a SCHED_FIFO task that will never
4786 * happen. Never use yield() as a progress guarantee!!
4787 *
4788 * If you want to use yield() to wait for something, use wait_event().
4789 * If you want to use yield() to be 'nice' for others, use cond_resched().
4790 * If you still want to use yield(), do not!
4791 */
4792 void __sched yield(void)
4793 {
4794 set_current_state(TASK_RUNNING);
4795 sys_sched_yield();
4796 }
4797 EXPORT_SYMBOL(yield);
4798
4799 /**
4800 * yield_to - yield the current processor to another thread in
4801 * your thread group, or accelerate that thread toward the
4802 * processor it's on.
4803 * @p: target task
4804 * @preempt: whether task preemption is allowed or not
4805 *
4806 * It's the caller's job to ensure that the target task struct
4807 * can't go away on us before we can do any checks.
4808 *
4809 * Return:
4810 * true (>0) if we indeed boosted the target task.
4811 * false (0) if we failed to boost the target.
4812 * -ESRCH if there's no task to yield to.
4813 */
4814 int __sched yield_to(struct task_struct *p, bool preempt)
4815 {
4816 struct task_struct *curr = current;
4817 struct rq *rq, *p_rq;
4818 unsigned long flags;
4819 int yielded = 0;
4820
4821 local_irq_save(flags);
4822 rq = this_rq();
4823
4824 again:
4825 p_rq = task_rq(p);
4826 /*
4827 * If we're the only runnable task on the rq and target rq also
4828 * has only one task, there's absolutely no point in yielding.
4829 */
4830 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4831 yielded = -ESRCH;
4832 goto out_irq;
4833 }
4834
4835 double_rq_lock(rq, p_rq);
4836 if (task_rq(p) != p_rq) {
4837 double_rq_unlock(rq, p_rq);
4838 goto again;
4839 }
4840
4841 if (!curr->sched_class->yield_to_task)
4842 goto out_unlock;
4843
4844 if (curr->sched_class != p->sched_class)
4845 goto out_unlock;
4846
4847 if (task_running(p_rq, p) || p->state)
4848 goto out_unlock;
4849
4850 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4851 if (yielded) {
4852 schedstat_inc(rq, yld_count);
4853 /*
4854 * Make p's CPU reschedule; pick_next_entity takes care of
4855 * fairness.
4856 */
4857 if (preempt && rq != p_rq)
4858 resched_curr(p_rq);
4859 }
4860
4861 out_unlock:
4862 double_rq_unlock(rq, p_rq);
4863 out_irq:
4864 local_irq_restore(flags);
4865
4866 if (yielded > 0)
4867 schedule();
4868
4869 return yielded;
4870 }
4871 EXPORT_SYMBOL_GPL(yield_to);
4872
4873 /*
4874 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4875 * that process accounting knows that this is a task in IO wait state.
4876 */
4877 long __sched io_schedule_timeout(long timeout)
4878 {
4879 int old_iowait = current->in_iowait;
4880 struct rq *rq;
4881 long ret;
4882
4883 current->in_iowait = 1;
4884 blk_schedule_flush_plug(current);
4885
4886 delayacct_blkio_start();
4887 rq = raw_rq();
4888 atomic_inc(&rq->nr_iowait);
4889 ret = schedule_timeout(timeout);
4890 current->in_iowait = old_iowait;
4891 atomic_dec(&rq->nr_iowait);
4892 delayacct_blkio_end();
4893
4894 return ret;
4895 }
4896 EXPORT_SYMBOL(io_schedule_timeout);
4897
4898 /**
4899 * sys_sched_get_priority_max - return maximum RT priority.
4900 * @policy: scheduling class.
4901 *
4902 * Return: On success, this syscall returns the maximum
4903 * rt_priority that can be used by a given scheduling class.
4904 * On failure, a negative error code is returned.
4905 */
4906 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4907 {
4908 int ret = -EINVAL;
4909
4910 switch (policy) {
4911 case SCHED_FIFO:
4912 case SCHED_RR:
4913 ret = MAX_USER_RT_PRIO-1;
4914 break;
4915 case SCHED_DEADLINE:
4916 case SCHED_NORMAL:
4917 case SCHED_BATCH:
4918 case SCHED_IDLE:
4919 ret = 0;
4920 break;
4921 }
4922 return ret;
4923 }
4924
4925 /**
4926 * sys_sched_get_priority_min - return minimum RT priority.
4927 * @policy: scheduling class.
4928 *
4929 * Return: On success, this syscall returns the minimum
4930 * rt_priority that can be used by a given scheduling class.
4931 * On failure, a negative error code is returned.
4932 */
4933 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4934 {
4935 int ret = -EINVAL;
4936
4937 switch (policy) {
4938 case SCHED_FIFO:
4939 case SCHED_RR:
4940 ret = 1;
4941 break;
4942 case SCHED_DEADLINE:
4943 case SCHED_NORMAL:
4944 case SCHED_BATCH:
4945 case SCHED_IDLE:
4946 ret = 0;
4947 }
4948 return ret;
4949 }
4950
4951 /**
4952 * sys_sched_rr_get_interval - return the default timeslice of a process.
4953 * @pid: pid of the process.
4954 * @interval: userspace pointer to the timeslice value.
4955 *
4956 * this syscall writes the default timeslice value of a given process
4957 * into the user-space timespec buffer. A value of '0' means infinity.
4958 *
4959 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4960 * an error code.
4961 */
4962 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4963 struct timespec __user *, interval)
4964 {
4965 struct task_struct *p;
4966 unsigned int time_slice;
4967 unsigned long flags;
4968 struct rq *rq;
4969 int retval;
4970 struct timespec t;
4971
4972 if (pid < 0)
4973 return -EINVAL;
4974
4975 retval = -ESRCH;
4976 rcu_read_lock();
4977 p = find_process_by_pid(pid);
4978 if (!p)
4979 goto out_unlock;
4980
4981 retval = security_task_getscheduler(p);
4982 if (retval)
4983 goto out_unlock;
4984
4985 rq = task_rq_lock(p, &flags);
4986 time_slice = 0;
4987 if (p->sched_class->get_rr_interval)
4988 time_slice = p->sched_class->get_rr_interval(rq, p);
4989 task_rq_unlock(rq, p, &flags);
4990
4991 rcu_read_unlock();
4992 jiffies_to_timespec(time_slice, &t);
4993 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4994 return retval;
4995
4996 out_unlock:
4997 rcu_read_unlock();
4998 return retval;
4999 }
5000
5001 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5002
5003 void sched_show_task(struct task_struct *p)
5004 {
5005 unsigned long free = 0;
5006 int ppid;
5007 unsigned long state = p->state;
5008
5009 if (state)
5010 state = __ffs(state) + 1;
5011 printk(KERN_INFO "%-15.15s %c", p->comm,
5012 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5013 #if BITS_PER_LONG == 32
5014 if (state == TASK_RUNNING)
5015 printk(KERN_CONT " running ");
5016 else
5017 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5018 #else
5019 if (state == TASK_RUNNING)
5020 printk(KERN_CONT " running task ");
5021 else
5022 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5023 #endif
5024 #ifdef CONFIG_DEBUG_STACK_USAGE
5025 free = stack_not_used(p);
5026 #endif
5027 ppid = 0;
5028 rcu_read_lock();
5029 if (pid_alive(p))
5030 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5031 rcu_read_unlock();
5032 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5033 task_pid_nr(p), ppid,
5034 (unsigned long)task_thread_info(p)->flags);
5035
5036 print_worker_info(KERN_INFO, p);
5037 show_stack(p, NULL);
5038 }
5039
5040 void show_state_filter(unsigned long state_filter)
5041 {
5042 struct task_struct *g, *p;
5043
5044 #if BITS_PER_LONG == 32
5045 printk(KERN_INFO
5046 " task PC stack pid father\n");
5047 #else
5048 printk(KERN_INFO
5049 " task PC stack pid father\n");
5050 #endif
5051 rcu_read_lock();
5052 for_each_process_thread(g, p) {
5053 /*
5054 * reset the NMI-timeout, listing all files on a slow
5055 * console might take a lot of time:
5056 */
5057 touch_nmi_watchdog();
5058 if (!state_filter || (p->state & state_filter))
5059 sched_show_task(p);
5060 }
5061
5062 touch_all_softlockup_watchdogs();
5063
5064 #ifdef CONFIG_SCHED_DEBUG
5065 sysrq_sched_debug_show();
5066 #endif
5067 rcu_read_unlock();
5068 /*
5069 * Only show locks if all tasks are dumped:
5070 */
5071 if (!state_filter)
5072 debug_show_all_locks();
5073 }
5074
5075 void init_idle_bootup_task(struct task_struct *idle)
5076 {
5077 idle->sched_class = &idle_sched_class;
5078 }
5079
5080 /**
5081 * init_idle - set up an idle thread for a given CPU
5082 * @idle: task in question
5083 * @cpu: cpu the idle task belongs to
5084 *
5085 * NOTE: this function does not set the idle thread's NEED_RESCHED
5086 * flag, to make booting more robust.
5087 */
5088 void init_idle(struct task_struct *idle, int cpu)
5089 {
5090 struct rq *rq = cpu_rq(cpu);
5091 unsigned long flags;
5092
5093 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5094 raw_spin_lock(&rq->lock);
5095
5096 __sched_fork(0, idle);
5097 idle->state = TASK_RUNNING;
5098 idle->se.exec_start = sched_clock();
5099
5100 kasan_unpoison_task_stack(idle);
5101
5102 #ifdef CONFIG_SMP
5103 /*
5104 * Its possible that init_idle() gets called multiple times on a task,
5105 * in that case do_set_cpus_allowed() will not do the right thing.
5106 *
5107 * And since this is boot we can forgo the serialization.
5108 */
5109 set_cpus_allowed_common(idle, cpumask_of(cpu));
5110 #endif
5111 /*
5112 * We're having a chicken and egg problem, even though we are
5113 * holding rq->lock, the cpu isn't yet set to this cpu so the
5114 * lockdep check in task_group() will fail.
5115 *
5116 * Similar case to sched_fork(). / Alternatively we could
5117 * use task_rq_lock() here and obtain the other rq->lock.
5118 *
5119 * Silence PROVE_RCU
5120 */
5121 rcu_read_lock();
5122 __set_task_cpu(idle, cpu);
5123 rcu_read_unlock();
5124
5125 rq->curr = rq->idle = idle;
5126 idle->on_rq = TASK_ON_RQ_QUEUED;
5127 #ifdef CONFIG_SMP
5128 idle->on_cpu = 1;
5129 #endif
5130 raw_spin_unlock(&rq->lock);
5131 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5132
5133 /* Set the preempt count _outside_ the spinlocks! */
5134 init_idle_preempt_count(idle, cpu);
5135
5136 /*
5137 * The idle tasks have their own, simple scheduling class:
5138 */
5139 idle->sched_class = &idle_sched_class;
5140 ftrace_graph_init_idle_task(idle, cpu);
5141 vtime_init_idle(idle, cpu);
5142 #ifdef CONFIG_SMP
5143 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5144 #endif
5145 }
5146
5147 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5148 const struct cpumask *trial)
5149 {
5150 int ret = 1, trial_cpus;
5151 struct dl_bw *cur_dl_b;
5152 unsigned long flags;
5153
5154 if (!cpumask_weight(cur))
5155 return ret;
5156
5157 rcu_read_lock_sched();
5158 cur_dl_b = dl_bw_of(cpumask_any(cur));
5159 trial_cpus = cpumask_weight(trial);
5160
5161 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5162 if (cur_dl_b->bw != -1 &&
5163 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5164 ret = 0;
5165 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5166 rcu_read_unlock_sched();
5167
5168 return ret;
5169 }
5170
5171 int task_can_attach(struct task_struct *p,
5172 const struct cpumask *cs_cpus_allowed)
5173 {
5174 int ret = 0;
5175
5176 /*
5177 * Kthreads which disallow setaffinity shouldn't be moved
5178 * to a new cpuset; we don't want to change their cpu
5179 * affinity and isolating such threads by their set of
5180 * allowed nodes is unnecessary. Thus, cpusets are not
5181 * applicable for such threads. This prevents checking for
5182 * success of set_cpus_allowed_ptr() on all attached tasks
5183 * before cpus_allowed may be changed.
5184 */
5185 if (p->flags & PF_NO_SETAFFINITY) {
5186 ret = -EINVAL;
5187 goto out;
5188 }
5189
5190 #ifdef CONFIG_SMP
5191 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5192 cs_cpus_allowed)) {
5193 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5194 cs_cpus_allowed);
5195 struct dl_bw *dl_b;
5196 bool overflow;
5197 int cpus;
5198 unsigned long flags;
5199
5200 rcu_read_lock_sched();
5201 dl_b = dl_bw_of(dest_cpu);
5202 raw_spin_lock_irqsave(&dl_b->lock, flags);
5203 cpus = dl_bw_cpus(dest_cpu);
5204 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5205 if (overflow)
5206 ret = -EBUSY;
5207 else {
5208 /*
5209 * We reserve space for this task in the destination
5210 * root_domain, as we can't fail after this point.
5211 * We will free resources in the source root_domain
5212 * later on (see set_cpus_allowed_dl()).
5213 */
5214 __dl_add(dl_b, p->dl.dl_bw);
5215 }
5216 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5217 rcu_read_unlock_sched();
5218
5219 }
5220 #endif
5221 out:
5222 return ret;
5223 }
5224
5225 #ifdef CONFIG_SMP
5226
5227 #ifdef CONFIG_NUMA_BALANCING
5228 /* Migrate current task p to target_cpu */
5229 int migrate_task_to(struct task_struct *p, int target_cpu)
5230 {
5231 struct migration_arg arg = { p, target_cpu };
5232 int curr_cpu = task_cpu(p);
5233
5234 if (curr_cpu == target_cpu)
5235 return 0;
5236
5237 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5238 return -EINVAL;
5239
5240 /* TODO: This is not properly updating schedstats */
5241
5242 trace_sched_move_numa(p, curr_cpu, target_cpu);
5243 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5244 }
5245
5246 /*
5247 * Requeue a task on a given node and accurately track the number of NUMA
5248 * tasks on the runqueues
5249 */
5250 void sched_setnuma(struct task_struct *p, int nid)
5251 {
5252 struct rq *rq;
5253 unsigned long flags;
5254 bool queued, running;
5255
5256 rq = task_rq_lock(p, &flags);
5257 queued = task_on_rq_queued(p);
5258 running = task_current(rq, p);
5259
5260 if (queued)
5261 dequeue_task(rq, p, DEQUEUE_SAVE);
5262 if (running)
5263 put_prev_task(rq, p);
5264
5265 p->numa_preferred_nid = nid;
5266
5267 if (running)
5268 p->sched_class->set_curr_task(rq);
5269 if (queued)
5270 enqueue_task(rq, p, ENQUEUE_RESTORE);
5271 task_rq_unlock(rq, p, &flags);
5272 }
5273 #endif /* CONFIG_NUMA_BALANCING */
5274
5275 #ifdef CONFIG_HOTPLUG_CPU
5276 /*
5277 * Ensures that the idle task is using init_mm right before its cpu goes
5278 * offline.
5279 */
5280 void idle_task_exit(void)
5281 {
5282 struct mm_struct *mm = current->active_mm;
5283
5284 BUG_ON(cpu_online(smp_processor_id()));
5285
5286 if (mm != &init_mm) {
5287 switch_mm(mm, &init_mm, current);
5288 finish_arch_post_lock_switch();
5289 }
5290 mmdrop(mm);
5291 }
5292
5293 /*
5294 * Since this CPU is going 'away' for a while, fold any nr_active delta
5295 * we might have. Assumes we're called after migrate_tasks() so that the
5296 * nr_active count is stable.
5297 *
5298 * Also see the comment "Global load-average calculations".
5299 */
5300 static void calc_load_migrate(struct rq *rq)
5301 {
5302 long delta = calc_load_fold_active(rq);
5303 if (delta)
5304 atomic_long_add(delta, &calc_load_tasks);
5305 }
5306
5307 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5308 {
5309 }
5310
5311 static const struct sched_class fake_sched_class = {
5312 .put_prev_task = put_prev_task_fake,
5313 };
5314
5315 static struct task_struct fake_task = {
5316 /*
5317 * Avoid pull_{rt,dl}_task()
5318 */
5319 .prio = MAX_PRIO + 1,
5320 .sched_class = &fake_sched_class,
5321 };
5322
5323 /*
5324 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5325 * try_to_wake_up()->select_task_rq().
5326 *
5327 * Called with rq->lock held even though we'er in stop_machine() and
5328 * there's no concurrency possible, we hold the required locks anyway
5329 * because of lock validation efforts.
5330 */
5331 static void migrate_tasks(struct rq *dead_rq)
5332 {
5333 struct rq *rq = dead_rq;
5334 struct task_struct *next, *stop = rq->stop;
5335 int dest_cpu;
5336
5337 /*
5338 * Fudge the rq selection such that the below task selection loop
5339 * doesn't get stuck on the currently eligible stop task.
5340 *
5341 * We're currently inside stop_machine() and the rq is either stuck
5342 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5343 * either way we should never end up calling schedule() until we're
5344 * done here.
5345 */
5346 rq->stop = NULL;
5347
5348 /*
5349 * put_prev_task() and pick_next_task() sched
5350 * class method both need to have an up-to-date
5351 * value of rq->clock[_task]
5352 */
5353 update_rq_clock(rq);
5354
5355 for (;;) {
5356 /*
5357 * There's this thread running, bail when that's the only
5358 * remaining thread.
5359 */
5360 if (rq->nr_running == 1)
5361 break;
5362
5363 /*
5364 * pick_next_task assumes pinned rq->lock.
5365 */
5366 lockdep_pin_lock(&rq->lock);
5367 next = pick_next_task(rq, &fake_task);
5368 BUG_ON(!next);
5369 next->sched_class->put_prev_task(rq, next);
5370
5371 /*
5372 * Rules for changing task_struct::cpus_allowed are holding
5373 * both pi_lock and rq->lock, such that holding either
5374 * stabilizes the mask.
5375 *
5376 * Drop rq->lock is not quite as disastrous as it usually is
5377 * because !cpu_active at this point, which means load-balance
5378 * will not interfere. Also, stop-machine.
5379 */
5380 lockdep_unpin_lock(&rq->lock);
5381 raw_spin_unlock(&rq->lock);
5382 raw_spin_lock(&next->pi_lock);
5383 raw_spin_lock(&rq->lock);
5384
5385 /*
5386 * Since we're inside stop-machine, _nothing_ should have
5387 * changed the task, WARN if weird stuff happened, because in
5388 * that case the above rq->lock drop is a fail too.
5389 */
5390 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5391 raw_spin_unlock(&next->pi_lock);
5392 continue;
5393 }
5394
5395 /* Find suitable destination for @next, with force if needed. */
5396 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5397
5398 rq = __migrate_task(rq, next, dest_cpu);
5399 if (rq != dead_rq) {
5400 raw_spin_unlock(&rq->lock);
5401 rq = dead_rq;
5402 raw_spin_lock(&rq->lock);
5403 }
5404 raw_spin_unlock(&next->pi_lock);
5405 }
5406
5407 rq->stop = stop;
5408 }
5409 #endif /* CONFIG_HOTPLUG_CPU */
5410
5411 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5412
5413 static struct ctl_table sd_ctl_dir[] = {
5414 {
5415 .procname = "sched_domain",
5416 .mode = 0555,
5417 },
5418 {}
5419 };
5420
5421 static struct ctl_table sd_ctl_root[] = {
5422 {
5423 .procname = "kernel",
5424 .mode = 0555,
5425 .child = sd_ctl_dir,
5426 },
5427 {}
5428 };
5429
5430 static struct ctl_table *sd_alloc_ctl_entry(int n)
5431 {
5432 struct ctl_table *entry =
5433 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5434
5435 return entry;
5436 }
5437
5438 static void sd_free_ctl_entry(struct ctl_table **tablep)
5439 {
5440 struct ctl_table *entry;
5441
5442 /*
5443 * In the intermediate directories, both the child directory and
5444 * procname are dynamically allocated and could fail but the mode
5445 * will always be set. In the lowest directory the names are
5446 * static strings and all have proc handlers.
5447 */
5448 for (entry = *tablep; entry->mode; entry++) {
5449 if (entry->child)
5450 sd_free_ctl_entry(&entry->child);
5451 if (entry->proc_handler == NULL)
5452 kfree(entry->procname);
5453 }
5454
5455 kfree(*tablep);
5456 *tablep = NULL;
5457 }
5458
5459 static int min_load_idx = 0;
5460 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5461
5462 static void
5463 set_table_entry(struct ctl_table *entry,
5464 const char *procname, void *data, int maxlen,
5465 umode_t mode, proc_handler *proc_handler,
5466 bool load_idx)
5467 {
5468 entry->procname = procname;
5469 entry->data = data;
5470 entry->maxlen = maxlen;
5471 entry->mode = mode;
5472 entry->proc_handler = proc_handler;
5473
5474 if (load_idx) {
5475 entry->extra1 = &min_load_idx;
5476 entry->extra2 = &max_load_idx;
5477 }
5478 }
5479
5480 static struct ctl_table *
5481 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5482 {
5483 struct ctl_table *table = sd_alloc_ctl_entry(14);
5484
5485 if (table == NULL)
5486 return NULL;
5487
5488 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5489 sizeof(long), 0644, proc_doulongvec_minmax, false);
5490 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5491 sizeof(long), 0644, proc_doulongvec_minmax, false);
5492 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5493 sizeof(int), 0644, proc_dointvec_minmax, true);
5494 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5495 sizeof(int), 0644, proc_dointvec_minmax, true);
5496 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5497 sizeof(int), 0644, proc_dointvec_minmax, true);
5498 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5499 sizeof(int), 0644, proc_dointvec_minmax, true);
5500 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5501 sizeof(int), 0644, proc_dointvec_minmax, true);
5502 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5503 sizeof(int), 0644, proc_dointvec_minmax, false);
5504 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5505 sizeof(int), 0644, proc_dointvec_minmax, false);
5506 set_table_entry(&table[9], "cache_nice_tries",
5507 &sd->cache_nice_tries,
5508 sizeof(int), 0644, proc_dointvec_minmax, false);
5509 set_table_entry(&table[10], "flags", &sd->flags,
5510 sizeof(int), 0644, proc_dointvec_minmax, false);
5511 set_table_entry(&table[11], "max_newidle_lb_cost",
5512 &sd->max_newidle_lb_cost,
5513 sizeof(long), 0644, proc_doulongvec_minmax, false);
5514 set_table_entry(&table[12], "name", sd->name,
5515 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5516 /* &table[13] is terminator */
5517
5518 return table;
5519 }
5520
5521 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5522 {
5523 struct ctl_table *entry, *table;
5524 struct sched_domain *sd;
5525 int domain_num = 0, i;
5526 char buf[32];
5527
5528 for_each_domain(cpu, sd)
5529 domain_num++;
5530 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5531 if (table == NULL)
5532 return NULL;
5533
5534 i = 0;
5535 for_each_domain(cpu, sd) {
5536 snprintf(buf, 32, "domain%d", i);
5537 entry->procname = kstrdup(buf, GFP_KERNEL);
5538 entry->mode = 0555;
5539 entry->child = sd_alloc_ctl_domain_table(sd);
5540 entry++;
5541 i++;
5542 }
5543 return table;
5544 }
5545
5546 static struct ctl_table_header *sd_sysctl_header;
5547 static void register_sched_domain_sysctl(void)
5548 {
5549 int i, cpu_num = num_possible_cpus();
5550 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5551 char buf[32];
5552
5553 WARN_ON(sd_ctl_dir[0].child);
5554 sd_ctl_dir[0].child = entry;
5555
5556 if (entry == NULL)
5557 return;
5558
5559 for_each_possible_cpu(i) {
5560 snprintf(buf, 32, "cpu%d", i);
5561 entry->procname = kstrdup(buf, GFP_KERNEL);
5562 entry->mode = 0555;
5563 entry->child = sd_alloc_ctl_cpu_table(i);
5564 entry++;
5565 }
5566
5567 WARN_ON(sd_sysctl_header);
5568 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5569 }
5570
5571 /* may be called multiple times per register */
5572 static void unregister_sched_domain_sysctl(void)
5573 {
5574 unregister_sysctl_table(sd_sysctl_header);
5575 sd_sysctl_header = NULL;
5576 if (sd_ctl_dir[0].child)
5577 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5578 }
5579 #else
5580 static void register_sched_domain_sysctl(void)
5581 {
5582 }
5583 static void unregister_sched_domain_sysctl(void)
5584 {
5585 }
5586 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5587
5588 static void set_rq_online(struct rq *rq)
5589 {
5590 if (!rq->online) {
5591 const struct sched_class *class;
5592
5593 cpumask_set_cpu(rq->cpu, rq->rd->online);
5594 rq->online = 1;
5595
5596 for_each_class(class) {
5597 if (class->rq_online)
5598 class->rq_online(rq);
5599 }
5600 }
5601 }
5602
5603 static void set_rq_offline(struct rq *rq)
5604 {
5605 if (rq->online) {
5606 const struct sched_class *class;
5607
5608 for_each_class(class) {
5609 if (class->rq_offline)
5610 class->rq_offline(rq);
5611 }
5612
5613 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5614 rq->online = 0;
5615 }
5616 }
5617
5618 /*
5619 * migration_call - callback that gets triggered when a CPU is added.
5620 * Here we can start up the necessary migration thread for the new CPU.
5621 */
5622 static int
5623 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5624 {
5625 int cpu = (long)hcpu;
5626 unsigned long flags;
5627 struct rq *rq = cpu_rq(cpu);
5628
5629 switch (action & ~CPU_TASKS_FROZEN) {
5630
5631 case CPU_UP_PREPARE:
5632 rq->calc_load_update = calc_load_update;
5633 break;
5634
5635 case CPU_ONLINE:
5636 /* Update our root-domain */
5637 raw_spin_lock_irqsave(&rq->lock, flags);
5638 if (rq->rd) {
5639 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5640
5641 set_rq_online(rq);
5642 }
5643 raw_spin_unlock_irqrestore(&rq->lock, flags);
5644 break;
5645
5646 #ifdef CONFIG_HOTPLUG_CPU
5647 case CPU_DYING:
5648 sched_ttwu_pending();
5649 /* Update our root-domain */
5650 raw_spin_lock_irqsave(&rq->lock, flags);
5651 if (rq->rd) {
5652 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5653 set_rq_offline(rq);
5654 }
5655 migrate_tasks(rq);
5656 BUG_ON(rq->nr_running != 1); /* the migration thread */
5657 raw_spin_unlock_irqrestore(&rq->lock, flags);
5658 break;
5659
5660 case CPU_DEAD:
5661 calc_load_migrate(rq);
5662 break;
5663 #endif
5664 }
5665
5666 update_max_interval();
5667
5668 return NOTIFY_OK;
5669 }
5670
5671 /*
5672 * Register at high priority so that task migration (migrate_all_tasks)
5673 * happens before everything else. This has to be lower priority than
5674 * the notifier in the perf_event subsystem, though.
5675 */
5676 static struct notifier_block migration_notifier = {
5677 .notifier_call = migration_call,
5678 .priority = CPU_PRI_MIGRATION,
5679 };
5680
5681 static void set_cpu_rq_start_time(void)
5682 {
5683 int cpu = smp_processor_id();
5684 struct rq *rq = cpu_rq(cpu);
5685 rq->age_stamp = sched_clock_cpu(cpu);
5686 }
5687
5688 static int sched_cpu_active(struct notifier_block *nfb,
5689 unsigned long action, void *hcpu)
5690 {
5691 int cpu = (long)hcpu;
5692
5693 switch (action & ~CPU_TASKS_FROZEN) {
5694 case CPU_STARTING:
5695 set_cpu_rq_start_time();
5696 return NOTIFY_OK;
5697
5698 case CPU_ONLINE:
5699 /*
5700 * At this point a starting CPU has marked itself as online via
5701 * set_cpu_online(). But it might not yet have marked itself
5702 * as active, which is essential from here on.
5703 */
5704 set_cpu_active(cpu, true);
5705 stop_machine_unpark(cpu);
5706 return NOTIFY_OK;
5707
5708 case CPU_DOWN_FAILED:
5709 set_cpu_active(cpu, true);
5710 return NOTIFY_OK;
5711
5712 default:
5713 return NOTIFY_DONE;
5714 }
5715 }
5716
5717 static int sched_cpu_inactive(struct notifier_block *nfb,
5718 unsigned long action, void *hcpu)
5719 {
5720 switch (action & ~CPU_TASKS_FROZEN) {
5721 case CPU_DOWN_PREPARE:
5722 set_cpu_active((long)hcpu, false);
5723 return NOTIFY_OK;
5724 default:
5725 return NOTIFY_DONE;
5726 }
5727 }
5728
5729 static int __init migration_init(void)
5730 {
5731 void *cpu = (void *)(long)smp_processor_id();
5732 int err;
5733
5734 /* Initialize migration for the boot CPU */
5735 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5736 BUG_ON(err == NOTIFY_BAD);
5737 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5738 register_cpu_notifier(&migration_notifier);
5739
5740 /* Register cpu active notifiers */
5741 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5742 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5743
5744 return 0;
5745 }
5746 early_initcall(migration_init);
5747
5748 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5749
5750 #ifdef CONFIG_SCHED_DEBUG
5751
5752 static __read_mostly int sched_debug_enabled;
5753
5754 static int __init sched_debug_setup(char *str)
5755 {
5756 sched_debug_enabled = 1;
5757
5758 return 0;
5759 }
5760 early_param("sched_debug", sched_debug_setup);
5761
5762 static inline bool sched_debug(void)
5763 {
5764 return sched_debug_enabled;
5765 }
5766
5767 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5768 struct cpumask *groupmask)
5769 {
5770 struct sched_group *group = sd->groups;
5771
5772 cpumask_clear(groupmask);
5773
5774 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5775
5776 if (!(sd->flags & SD_LOAD_BALANCE)) {
5777 printk("does not load-balance\n");
5778 if (sd->parent)
5779 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5780 " has parent");
5781 return -1;
5782 }
5783
5784 printk(KERN_CONT "span %*pbl level %s\n",
5785 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5786
5787 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5788 printk(KERN_ERR "ERROR: domain->span does not contain "
5789 "CPU%d\n", cpu);
5790 }
5791 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5792 printk(KERN_ERR "ERROR: domain->groups does not contain"
5793 " CPU%d\n", cpu);
5794 }
5795
5796 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5797 do {
5798 if (!group) {
5799 printk("\n");
5800 printk(KERN_ERR "ERROR: group is NULL\n");
5801 break;
5802 }
5803
5804 if (!cpumask_weight(sched_group_cpus(group))) {
5805 printk(KERN_CONT "\n");
5806 printk(KERN_ERR "ERROR: empty group\n");
5807 break;
5808 }
5809
5810 if (!(sd->flags & SD_OVERLAP) &&
5811 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5812 printk(KERN_CONT "\n");
5813 printk(KERN_ERR "ERROR: repeated CPUs\n");
5814 break;
5815 }
5816
5817 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5818
5819 printk(KERN_CONT " %*pbl",
5820 cpumask_pr_args(sched_group_cpus(group)));
5821 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5822 printk(KERN_CONT " (cpu_capacity = %d)",
5823 group->sgc->capacity);
5824 }
5825
5826 group = group->next;
5827 } while (group != sd->groups);
5828 printk(KERN_CONT "\n");
5829
5830 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5831 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5832
5833 if (sd->parent &&
5834 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5835 printk(KERN_ERR "ERROR: parent span is not a superset "
5836 "of domain->span\n");
5837 return 0;
5838 }
5839
5840 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5841 {
5842 int level = 0;
5843
5844 if (!sched_debug_enabled)
5845 return;
5846
5847 if (!sd) {
5848 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5849 return;
5850 }
5851
5852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5853
5854 for (;;) {
5855 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5856 break;
5857 level++;
5858 sd = sd->parent;
5859 if (!sd)
5860 break;
5861 }
5862 }
5863 #else /* !CONFIG_SCHED_DEBUG */
5864 # define sched_domain_debug(sd, cpu) do { } while (0)
5865 static inline bool sched_debug(void)
5866 {
5867 return false;
5868 }
5869 #endif /* CONFIG_SCHED_DEBUG */
5870
5871 static int sd_degenerate(struct sched_domain *sd)
5872 {
5873 if (cpumask_weight(sched_domain_span(sd)) == 1)
5874 return 1;
5875
5876 /* Following flags need at least 2 groups */
5877 if (sd->flags & (SD_LOAD_BALANCE |
5878 SD_BALANCE_NEWIDLE |
5879 SD_BALANCE_FORK |
5880 SD_BALANCE_EXEC |
5881 SD_SHARE_CPUCAPACITY |
5882 SD_SHARE_PKG_RESOURCES |
5883 SD_SHARE_POWERDOMAIN)) {
5884 if (sd->groups != sd->groups->next)
5885 return 0;
5886 }
5887
5888 /* Following flags don't use groups */
5889 if (sd->flags & (SD_WAKE_AFFINE))
5890 return 0;
5891
5892 return 1;
5893 }
5894
5895 static int
5896 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5897 {
5898 unsigned long cflags = sd->flags, pflags = parent->flags;
5899
5900 if (sd_degenerate(parent))
5901 return 1;
5902
5903 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5904 return 0;
5905
5906 /* Flags needing groups don't count if only 1 group in parent */
5907 if (parent->groups == parent->groups->next) {
5908 pflags &= ~(SD_LOAD_BALANCE |
5909 SD_BALANCE_NEWIDLE |
5910 SD_BALANCE_FORK |
5911 SD_BALANCE_EXEC |
5912 SD_SHARE_CPUCAPACITY |
5913 SD_SHARE_PKG_RESOURCES |
5914 SD_PREFER_SIBLING |
5915 SD_SHARE_POWERDOMAIN);
5916 if (nr_node_ids == 1)
5917 pflags &= ~SD_SERIALIZE;
5918 }
5919 if (~cflags & pflags)
5920 return 0;
5921
5922 return 1;
5923 }
5924
5925 static void free_rootdomain(struct rcu_head *rcu)
5926 {
5927 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5928
5929 cpupri_cleanup(&rd->cpupri);
5930 cpudl_cleanup(&rd->cpudl);
5931 free_cpumask_var(rd->dlo_mask);
5932 free_cpumask_var(rd->rto_mask);
5933 free_cpumask_var(rd->online);
5934 free_cpumask_var(rd->span);
5935 kfree(rd);
5936 }
5937
5938 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5939 {
5940 struct root_domain *old_rd = NULL;
5941 unsigned long flags;
5942
5943 raw_spin_lock_irqsave(&rq->lock, flags);
5944
5945 if (rq->rd) {
5946 old_rd = rq->rd;
5947
5948 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5949 set_rq_offline(rq);
5950
5951 cpumask_clear_cpu(rq->cpu, old_rd->span);
5952
5953 /*
5954 * If we dont want to free the old_rd yet then
5955 * set old_rd to NULL to skip the freeing later
5956 * in this function:
5957 */
5958 if (!atomic_dec_and_test(&old_rd->refcount))
5959 old_rd = NULL;
5960 }
5961
5962 atomic_inc(&rd->refcount);
5963 rq->rd = rd;
5964
5965 cpumask_set_cpu(rq->cpu, rd->span);
5966 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5967 set_rq_online(rq);
5968
5969 raw_spin_unlock_irqrestore(&rq->lock, flags);
5970
5971 if (old_rd)
5972 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5973 }
5974
5975 static int init_rootdomain(struct root_domain *rd)
5976 {
5977 memset(rd, 0, sizeof(*rd));
5978
5979 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5980 goto out;
5981 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5982 goto free_span;
5983 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5984 goto free_online;
5985 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5986 goto free_dlo_mask;
5987
5988 init_dl_bw(&rd->dl_bw);
5989 if (cpudl_init(&rd->cpudl) != 0)
5990 goto free_dlo_mask;
5991
5992 if (cpupri_init(&rd->cpupri) != 0)
5993 goto free_rto_mask;
5994 return 0;
5995
5996 free_rto_mask:
5997 free_cpumask_var(rd->rto_mask);
5998 free_dlo_mask:
5999 free_cpumask_var(rd->dlo_mask);
6000 free_online:
6001 free_cpumask_var(rd->online);
6002 free_span:
6003 free_cpumask_var(rd->span);
6004 out:
6005 return -ENOMEM;
6006 }
6007
6008 /*
6009 * By default the system creates a single root-domain with all cpus as
6010 * members (mimicking the global state we have today).
6011 */
6012 struct root_domain def_root_domain;
6013
6014 static void init_defrootdomain(void)
6015 {
6016 init_rootdomain(&def_root_domain);
6017
6018 atomic_set(&def_root_domain.refcount, 1);
6019 }
6020
6021 static struct root_domain *alloc_rootdomain(void)
6022 {
6023 struct root_domain *rd;
6024
6025 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6026 if (!rd)
6027 return NULL;
6028
6029 if (init_rootdomain(rd) != 0) {
6030 kfree(rd);
6031 return NULL;
6032 }
6033
6034 return rd;
6035 }
6036
6037 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6038 {
6039 struct sched_group *tmp, *first;
6040
6041 if (!sg)
6042 return;
6043
6044 first = sg;
6045 do {
6046 tmp = sg->next;
6047
6048 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6049 kfree(sg->sgc);
6050
6051 kfree(sg);
6052 sg = tmp;
6053 } while (sg != first);
6054 }
6055
6056 static void free_sched_domain(struct rcu_head *rcu)
6057 {
6058 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6059
6060 /*
6061 * If its an overlapping domain it has private groups, iterate and
6062 * nuke them all.
6063 */
6064 if (sd->flags & SD_OVERLAP) {
6065 free_sched_groups(sd->groups, 1);
6066 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6067 kfree(sd->groups->sgc);
6068 kfree(sd->groups);
6069 }
6070 kfree(sd);
6071 }
6072
6073 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6074 {
6075 call_rcu(&sd->rcu, free_sched_domain);
6076 }
6077
6078 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6079 {
6080 for (; sd; sd = sd->parent)
6081 destroy_sched_domain(sd, cpu);
6082 }
6083
6084 /*
6085 * Keep a special pointer to the highest sched_domain that has
6086 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6087 * allows us to avoid some pointer chasing select_idle_sibling().
6088 *
6089 * Also keep a unique ID per domain (we use the first cpu number in
6090 * the cpumask of the domain), this allows us to quickly tell if
6091 * two cpus are in the same cache domain, see cpus_share_cache().
6092 */
6093 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6094 DEFINE_PER_CPU(int, sd_llc_size);
6095 DEFINE_PER_CPU(int, sd_llc_id);
6096 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6097 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6098 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6099
6100 static void update_top_cache_domain(int cpu)
6101 {
6102 struct sched_domain *sd;
6103 struct sched_domain *busy_sd = NULL;
6104 int id = cpu;
6105 int size = 1;
6106
6107 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6108 if (sd) {
6109 id = cpumask_first(sched_domain_span(sd));
6110 size = cpumask_weight(sched_domain_span(sd));
6111 busy_sd = sd->parent; /* sd_busy */
6112 }
6113 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6114
6115 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6116 per_cpu(sd_llc_size, cpu) = size;
6117 per_cpu(sd_llc_id, cpu) = id;
6118
6119 sd = lowest_flag_domain(cpu, SD_NUMA);
6120 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6121
6122 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6123 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6124 }
6125
6126 /*
6127 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6128 * hold the hotplug lock.
6129 */
6130 static void
6131 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6132 {
6133 struct rq *rq = cpu_rq(cpu);
6134 struct sched_domain *tmp;
6135
6136 /* Remove the sched domains which do not contribute to scheduling. */
6137 for (tmp = sd; tmp; ) {
6138 struct sched_domain *parent = tmp->parent;
6139 if (!parent)
6140 break;
6141
6142 if (sd_parent_degenerate(tmp, parent)) {
6143 tmp->parent = parent->parent;
6144 if (parent->parent)
6145 parent->parent->child = tmp;
6146 /*
6147 * Transfer SD_PREFER_SIBLING down in case of a
6148 * degenerate parent; the spans match for this
6149 * so the property transfers.
6150 */
6151 if (parent->flags & SD_PREFER_SIBLING)
6152 tmp->flags |= SD_PREFER_SIBLING;
6153 destroy_sched_domain(parent, cpu);
6154 } else
6155 tmp = tmp->parent;
6156 }
6157
6158 if (sd && sd_degenerate(sd)) {
6159 tmp = sd;
6160 sd = sd->parent;
6161 destroy_sched_domain(tmp, cpu);
6162 if (sd)
6163 sd->child = NULL;
6164 }
6165
6166 sched_domain_debug(sd, cpu);
6167
6168 rq_attach_root(rq, rd);
6169 tmp = rq->sd;
6170 rcu_assign_pointer(rq->sd, sd);
6171 destroy_sched_domains(tmp, cpu);
6172
6173 update_top_cache_domain(cpu);
6174 }
6175
6176 /* Setup the mask of cpus configured for isolated domains */
6177 static int __init isolated_cpu_setup(char *str)
6178 {
6179 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6180 cpulist_parse(str, cpu_isolated_map);
6181 return 1;
6182 }
6183
6184 __setup("isolcpus=", isolated_cpu_setup);
6185
6186 struct s_data {
6187 struct sched_domain ** __percpu sd;
6188 struct root_domain *rd;
6189 };
6190
6191 enum s_alloc {
6192 sa_rootdomain,
6193 sa_sd,
6194 sa_sd_storage,
6195 sa_none,
6196 };
6197
6198 /*
6199 * Build an iteration mask that can exclude certain CPUs from the upwards
6200 * domain traversal.
6201 *
6202 * Asymmetric node setups can result in situations where the domain tree is of
6203 * unequal depth, make sure to skip domains that already cover the entire
6204 * range.
6205 *
6206 * In that case build_sched_domains() will have terminated the iteration early
6207 * and our sibling sd spans will be empty. Domains should always include the
6208 * cpu they're built on, so check that.
6209 *
6210 */
6211 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6212 {
6213 const struct cpumask *span = sched_domain_span(sd);
6214 struct sd_data *sdd = sd->private;
6215 struct sched_domain *sibling;
6216 int i;
6217
6218 for_each_cpu(i, span) {
6219 sibling = *per_cpu_ptr(sdd->sd, i);
6220 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6221 continue;
6222
6223 cpumask_set_cpu(i, sched_group_mask(sg));
6224 }
6225 }
6226
6227 /*
6228 * Return the canonical balance cpu for this group, this is the first cpu
6229 * of this group that's also in the iteration mask.
6230 */
6231 int group_balance_cpu(struct sched_group *sg)
6232 {
6233 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6234 }
6235
6236 static int
6237 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6238 {
6239 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6240 const struct cpumask *span = sched_domain_span(sd);
6241 struct cpumask *covered = sched_domains_tmpmask;
6242 struct sd_data *sdd = sd->private;
6243 struct sched_domain *sibling;
6244 int i;
6245
6246 cpumask_clear(covered);
6247
6248 for_each_cpu(i, span) {
6249 struct cpumask *sg_span;
6250
6251 if (cpumask_test_cpu(i, covered))
6252 continue;
6253
6254 sibling = *per_cpu_ptr(sdd->sd, i);
6255
6256 /* See the comment near build_group_mask(). */
6257 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6258 continue;
6259
6260 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6261 GFP_KERNEL, cpu_to_node(cpu));
6262
6263 if (!sg)
6264 goto fail;
6265
6266 sg_span = sched_group_cpus(sg);
6267 if (sibling->child)
6268 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6269 else
6270 cpumask_set_cpu(i, sg_span);
6271
6272 cpumask_or(covered, covered, sg_span);
6273
6274 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6275 if (atomic_inc_return(&sg->sgc->ref) == 1)
6276 build_group_mask(sd, sg);
6277
6278 /*
6279 * Initialize sgc->capacity such that even if we mess up the
6280 * domains and no possible iteration will get us here, we won't
6281 * die on a /0 trap.
6282 */
6283 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6284
6285 /*
6286 * Make sure the first group of this domain contains the
6287 * canonical balance cpu. Otherwise the sched_domain iteration
6288 * breaks. See update_sg_lb_stats().
6289 */
6290 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6291 group_balance_cpu(sg) == cpu)
6292 groups = sg;
6293
6294 if (!first)
6295 first = sg;
6296 if (last)
6297 last->next = sg;
6298 last = sg;
6299 last->next = first;
6300 }
6301 sd->groups = groups;
6302
6303 return 0;
6304
6305 fail:
6306 free_sched_groups(first, 0);
6307
6308 return -ENOMEM;
6309 }
6310
6311 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6312 {
6313 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6314 struct sched_domain *child = sd->child;
6315
6316 if (child)
6317 cpu = cpumask_first(sched_domain_span(child));
6318
6319 if (sg) {
6320 *sg = *per_cpu_ptr(sdd->sg, cpu);
6321 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6322 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6323 }
6324
6325 return cpu;
6326 }
6327
6328 /*
6329 * build_sched_groups will build a circular linked list of the groups
6330 * covered by the given span, and will set each group's ->cpumask correctly,
6331 * and ->cpu_capacity to 0.
6332 *
6333 * Assumes the sched_domain tree is fully constructed
6334 */
6335 static int
6336 build_sched_groups(struct sched_domain *sd, int cpu)
6337 {
6338 struct sched_group *first = NULL, *last = NULL;
6339 struct sd_data *sdd = sd->private;
6340 const struct cpumask *span = sched_domain_span(sd);
6341 struct cpumask *covered;
6342 int i;
6343
6344 get_group(cpu, sdd, &sd->groups);
6345 atomic_inc(&sd->groups->ref);
6346
6347 if (cpu != cpumask_first(span))
6348 return 0;
6349
6350 lockdep_assert_held(&sched_domains_mutex);
6351 covered = sched_domains_tmpmask;
6352
6353 cpumask_clear(covered);
6354
6355 for_each_cpu(i, span) {
6356 struct sched_group *sg;
6357 int group, j;
6358
6359 if (cpumask_test_cpu(i, covered))
6360 continue;
6361
6362 group = get_group(i, sdd, &sg);
6363 cpumask_setall(sched_group_mask(sg));
6364
6365 for_each_cpu(j, span) {
6366 if (get_group(j, sdd, NULL) != group)
6367 continue;
6368
6369 cpumask_set_cpu(j, covered);
6370 cpumask_set_cpu(j, sched_group_cpus(sg));
6371 }
6372
6373 if (!first)
6374 first = sg;
6375 if (last)
6376 last->next = sg;
6377 last = sg;
6378 }
6379 last->next = first;
6380
6381 return 0;
6382 }
6383
6384 /*
6385 * Initialize sched groups cpu_capacity.
6386 *
6387 * cpu_capacity indicates the capacity of sched group, which is used while
6388 * distributing the load between different sched groups in a sched domain.
6389 * Typically cpu_capacity for all the groups in a sched domain will be same
6390 * unless there are asymmetries in the topology. If there are asymmetries,
6391 * group having more cpu_capacity will pickup more load compared to the
6392 * group having less cpu_capacity.
6393 */
6394 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6395 {
6396 struct sched_group *sg = sd->groups;
6397
6398 WARN_ON(!sg);
6399
6400 do {
6401 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6402 sg = sg->next;
6403 } while (sg != sd->groups);
6404
6405 if (cpu != group_balance_cpu(sg))
6406 return;
6407
6408 update_group_capacity(sd, cpu);
6409 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6410 }
6411
6412 /*
6413 * Initializers for schedule domains
6414 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6415 */
6416
6417 static int default_relax_domain_level = -1;
6418 int sched_domain_level_max;
6419
6420 static int __init setup_relax_domain_level(char *str)
6421 {
6422 if (kstrtoint(str, 0, &default_relax_domain_level))
6423 pr_warn("Unable to set relax_domain_level\n");
6424
6425 return 1;
6426 }
6427 __setup("relax_domain_level=", setup_relax_domain_level);
6428
6429 static void set_domain_attribute(struct sched_domain *sd,
6430 struct sched_domain_attr *attr)
6431 {
6432 int request;
6433
6434 if (!attr || attr->relax_domain_level < 0) {
6435 if (default_relax_domain_level < 0)
6436 return;
6437 else
6438 request = default_relax_domain_level;
6439 } else
6440 request = attr->relax_domain_level;
6441 if (request < sd->level) {
6442 /* turn off idle balance on this domain */
6443 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6444 } else {
6445 /* turn on idle balance on this domain */
6446 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6447 }
6448 }
6449
6450 static void __sdt_free(const struct cpumask *cpu_map);
6451 static int __sdt_alloc(const struct cpumask *cpu_map);
6452
6453 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6454 const struct cpumask *cpu_map)
6455 {
6456 switch (what) {
6457 case sa_rootdomain:
6458 if (!atomic_read(&d->rd->refcount))
6459 free_rootdomain(&d->rd->rcu); /* fall through */
6460 case sa_sd:
6461 free_percpu(d->sd); /* fall through */
6462 case sa_sd_storage:
6463 __sdt_free(cpu_map); /* fall through */
6464 case sa_none:
6465 break;
6466 }
6467 }
6468
6469 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6470 const struct cpumask *cpu_map)
6471 {
6472 memset(d, 0, sizeof(*d));
6473
6474 if (__sdt_alloc(cpu_map))
6475 return sa_sd_storage;
6476 d->sd = alloc_percpu(struct sched_domain *);
6477 if (!d->sd)
6478 return sa_sd_storage;
6479 d->rd = alloc_rootdomain();
6480 if (!d->rd)
6481 return sa_sd;
6482 return sa_rootdomain;
6483 }
6484
6485 /*
6486 * NULL the sd_data elements we've used to build the sched_domain and
6487 * sched_group structure so that the subsequent __free_domain_allocs()
6488 * will not free the data we're using.
6489 */
6490 static void claim_allocations(int cpu, struct sched_domain *sd)
6491 {
6492 struct sd_data *sdd = sd->private;
6493
6494 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6495 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6496
6497 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6498 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6499
6500 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6501 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6502 }
6503
6504 #ifdef CONFIG_NUMA
6505 static int sched_domains_numa_levels;
6506 enum numa_topology_type sched_numa_topology_type;
6507 static int *sched_domains_numa_distance;
6508 int sched_max_numa_distance;
6509 static struct cpumask ***sched_domains_numa_masks;
6510 static int sched_domains_curr_level;
6511 #endif
6512
6513 /*
6514 * SD_flags allowed in topology descriptions.
6515 *
6516 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6517 * SD_SHARE_PKG_RESOURCES - describes shared caches
6518 * SD_NUMA - describes NUMA topologies
6519 * SD_SHARE_POWERDOMAIN - describes shared power domain
6520 *
6521 * Odd one out:
6522 * SD_ASYM_PACKING - describes SMT quirks
6523 */
6524 #define TOPOLOGY_SD_FLAGS \
6525 (SD_SHARE_CPUCAPACITY | \
6526 SD_SHARE_PKG_RESOURCES | \
6527 SD_NUMA | \
6528 SD_ASYM_PACKING | \
6529 SD_SHARE_POWERDOMAIN)
6530
6531 static struct sched_domain *
6532 sd_init(struct sched_domain_topology_level *tl, int cpu)
6533 {
6534 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6535 int sd_weight, sd_flags = 0;
6536
6537 #ifdef CONFIG_NUMA
6538 /*
6539 * Ugly hack to pass state to sd_numa_mask()...
6540 */
6541 sched_domains_curr_level = tl->numa_level;
6542 #endif
6543
6544 sd_weight = cpumask_weight(tl->mask(cpu));
6545
6546 if (tl->sd_flags)
6547 sd_flags = (*tl->sd_flags)();
6548 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6549 "wrong sd_flags in topology description\n"))
6550 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6551
6552 *sd = (struct sched_domain){
6553 .min_interval = sd_weight,
6554 .max_interval = 2*sd_weight,
6555 .busy_factor = 32,
6556 .imbalance_pct = 125,
6557
6558 .cache_nice_tries = 0,
6559 .busy_idx = 0,
6560 .idle_idx = 0,
6561 .newidle_idx = 0,
6562 .wake_idx = 0,
6563 .forkexec_idx = 0,
6564
6565 .flags = 1*SD_LOAD_BALANCE
6566 | 1*SD_BALANCE_NEWIDLE
6567 | 1*SD_BALANCE_EXEC
6568 | 1*SD_BALANCE_FORK
6569 | 0*SD_BALANCE_WAKE
6570 | 1*SD_WAKE_AFFINE
6571 | 0*SD_SHARE_CPUCAPACITY
6572 | 0*SD_SHARE_PKG_RESOURCES
6573 | 0*SD_SERIALIZE
6574 | 0*SD_PREFER_SIBLING
6575 | 0*SD_NUMA
6576 | sd_flags
6577 ,
6578
6579 .last_balance = jiffies,
6580 .balance_interval = sd_weight,
6581 .smt_gain = 0,
6582 .max_newidle_lb_cost = 0,
6583 .next_decay_max_lb_cost = jiffies,
6584 #ifdef CONFIG_SCHED_DEBUG
6585 .name = tl->name,
6586 #endif
6587 };
6588
6589 /*
6590 * Convert topological properties into behaviour.
6591 */
6592
6593 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6594 sd->flags |= SD_PREFER_SIBLING;
6595 sd->imbalance_pct = 110;
6596 sd->smt_gain = 1178; /* ~15% */
6597
6598 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6599 sd->imbalance_pct = 117;
6600 sd->cache_nice_tries = 1;
6601 sd->busy_idx = 2;
6602
6603 #ifdef CONFIG_NUMA
6604 } else if (sd->flags & SD_NUMA) {
6605 sd->cache_nice_tries = 2;
6606 sd->busy_idx = 3;
6607 sd->idle_idx = 2;
6608
6609 sd->flags |= SD_SERIALIZE;
6610 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6611 sd->flags &= ~(SD_BALANCE_EXEC |
6612 SD_BALANCE_FORK |
6613 SD_WAKE_AFFINE);
6614 }
6615
6616 #endif
6617 } else {
6618 sd->flags |= SD_PREFER_SIBLING;
6619 sd->cache_nice_tries = 1;
6620 sd->busy_idx = 2;
6621 sd->idle_idx = 1;
6622 }
6623
6624 sd->private = &tl->data;
6625
6626 return sd;
6627 }
6628
6629 /*
6630 * Topology list, bottom-up.
6631 */
6632 static struct sched_domain_topology_level default_topology[] = {
6633 #ifdef CONFIG_SCHED_SMT
6634 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6635 #endif
6636 #ifdef CONFIG_SCHED_MC
6637 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6638 #endif
6639 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6640 { NULL, },
6641 };
6642
6643 static struct sched_domain_topology_level *sched_domain_topology =
6644 default_topology;
6645
6646 #define for_each_sd_topology(tl) \
6647 for (tl = sched_domain_topology; tl->mask; tl++)
6648
6649 void set_sched_topology(struct sched_domain_topology_level *tl)
6650 {
6651 sched_domain_topology = tl;
6652 }
6653
6654 #ifdef CONFIG_NUMA
6655
6656 static const struct cpumask *sd_numa_mask(int cpu)
6657 {
6658 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6659 }
6660
6661 static void sched_numa_warn(const char *str)
6662 {
6663 static int done = false;
6664 int i,j;
6665
6666 if (done)
6667 return;
6668
6669 done = true;
6670
6671 printk(KERN_WARNING "ERROR: %s\n\n", str);
6672
6673 for (i = 0; i < nr_node_ids; i++) {
6674 printk(KERN_WARNING " ");
6675 for (j = 0; j < nr_node_ids; j++)
6676 printk(KERN_CONT "%02d ", node_distance(i,j));
6677 printk(KERN_CONT "\n");
6678 }
6679 printk(KERN_WARNING "\n");
6680 }
6681
6682 bool find_numa_distance(int distance)
6683 {
6684 int i;
6685
6686 if (distance == node_distance(0, 0))
6687 return true;
6688
6689 for (i = 0; i < sched_domains_numa_levels; i++) {
6690 if (sched_domains_numa_distance[i] == distance)
6691 return true;
6692 }
6693
6694 return false;
6695 }
6696
6697 /*
6698 * A system can have three types of NUMA topology:
6699 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6700 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6701 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6702 *
6703 * The difference between a glueless mesh topology and a backplane
6704 * topology lies in whether communication between not directly
6705 * connected nodes goes through intermediary nodes (where programs
6706 * could run), or through backplane controllers. This affects
6707 * placement of programs.
6708 *
6709 * The type of topology can be discerned with the following tests:
6710 * - If the maximum distance between any nodes is 1 hop, the system
6711 * is directly connected.
6712 * - If for two nodes A and B, located N > 1 hops away from each other,
6713 * there is an intermediary node C, which is < N hops away from both
6714 * nodes A and B, the system is a glueless mesh.
6715 */
6716 static void init_numa_topology_type(void)
6717 {
6718 int a, b, c, n;
6719
6720 n = sched_max_numa_distance;
6721
6722 if (sched_domains_numa_levels <= 1) {
6723 sched_numa_topology_type = NUMA_DIRECT;
6724 return;
6725 }
6726
6727 for_each_online_node(a) {
6728 for_each_online_node(b) {
6729 /* Find two nodes furthest removed from each other. */
6730 if (node_distance(a, b) < n)
6731 continue;
6732
6733 /* Is there an intermediary node between a and b? */
6734 for_each_online_node(c) {
6735 if (node_distance(a, c) < n &&
6736 node_distance(b, c) < n) {
6737 sched_numa_topology_type =
6738 NUMA_GLUELESS_MESH;
6739 return;
6740 }
6741 }
6742
6743 sched_numa_topology_type = NUMA_BACKPLANE;
6744 return;
6745 }
6746 }
6747 }
6748
6749 static void sched_init_numa(void)
6750 {
6751 int next_distance, curr_distance = node_distance(0, 0);
6752 struct sched_domain_topology_level *tl;
6753 int level = 0;
6754 int i, j, k;
6755
6756 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6757 if (!sched_domains_numa_distance)
6758 return;
6759
6760 /*
6761 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6762 * unique distances in the node_distance() table.
6763 *
6764 * Assumes node_distance(0,j) includes all distances in
6765 * node_distance(i,j) in order to avoid cubic time.
6766 */
6767 next_distance = curr_distance;
6768 for (i = 0; i < nr_node_ids; i++) {
6769 for (j = 0; j < nr_node_ids; j++) {
6770 for (k = 0; k < nr_node_ids; k++) {
6771 int distance = node_distance(i, k);
6772
6773 if (distance > curr_distance &&
6774 (distance < next_distance ||
6775 next_distance == curr_distance))
6776 next_distance = distance;
6777
6778 /*
6779 * While not a strong assumption it would be nice to know
6780 * about cases where if node A is connected to B, B is not
6781 * equally connected to A.
6782 */
6783 if (sched_debug() && node_distance(k, i) != distance)
6784 sched_numa_warn("Node-distance not symmetric");
6785
6786 if (sched_debug() && i && !find_numa_distance(distance))
6787 sched_numa_warn("Node-0 not representative");
6788 }
6789 if (next_distance != curr_distance) {
6790 sched_domains_numa_distance[level++] = next_distance;
6791 sched_domains_numa_levels = level;
6792 curr_distance = next_distance;
6793 } else break;
6794 }
6795
6796 /*
6797 * In case of sched_debug() we verify the above assumption.
6798 */
6799 if (!sched_debug())
6800 break;
6801 }
6802
6803 if (!level)
6804 return;
6805
6806 /*
6807 * 'level' contains the number of unique distances, excluding the
6808 * identity distance node_distance(i,i).
6809 *
6810 * The sched_domains_numa_distance[] array includes the actual distance
6811 * numbers.
6812 */
6813
6814 /*
6815 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6816 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6817 * the array will contain less then 'level' members. This could be
6818 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6819 * in other functions.
6820 *
6821 * We reset it to 'level' at the end of this function.
6822 */
6823 sched_domains_numa_levels = 0;
6824
6825 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6826 if (!sched_domains_numa_masks)
6827 return;
6828
6829 /*
6830 * Now for each level, construct a mask per node which contains all
6831 * cpus of nodes that are that many hops away from us.
6832 */
6833 for (i = 0; i < level; i++) {
6834 sched_domains_numa_masks[i] =
6835 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6836 if (!sched_domains_numa_masks[i])
6837 return;
6838
6839 for (j = 0; j < nr_node_ids; j++) {
6840 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6841 if (!mask)
6842 return;
6843
6844 sched_domains_numa_masks[i][j] = mask;
6845
6846 for_each_node(k) {
6847 if (node_distance(j, k) > sched_domains_numa_distance[i])
6848 continue;
6849
6850 cpumask_or(mask, mask, cpumask_of_node(k));
6851 }
6852 }
6853 }
6854
6855 /* Compute default topology size */
6856 for (i = 0; sched_domain_topology[i].mask; i++);
6857
6858 tl = kzalloc((i + level + 1) *
6859 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6860 if (!tl)
6861 return;
6862
6863 /*
6864 * Copy the default topology bits..
6865 */
6866 for (i = 0; sched_domain_topology[i].mask; i++)
6867 tl[i] = sched_domain_topology[i];
6868
6869 /*
6870 * .. and append 'j' levels of NUMA goodness.
6871 */
6872 for (j = 0; j < level; i++, j++) {
6873 tl[i] = (struct sched_domain_topology_level){
6874 .mask = sd_numa_mask,
6875 .sd_flags = cpu_numa_flags,
6876 .flags = SDTL_OVERLAP,
6877 .numa_level = j,
6878 SD_INIT_NAME(NUMA)
6879 };
6880 }
6881
6882 sched_domain_topology = tl;
6883
6884 sched_domains_numa_levels = level;
6885 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6886
6887 init_numa_topology_type();
6888 }
6889
6890 static void sched_domains_numa_masks_set(int cpu)
6891 {
6892 int i, j;
6893 int node = cpu_to_node(cpu);
6894
6895 for (i = 0; i < sched_domains_numa_levels; i++) {
6896 for (j = 0; j < nr_node_ids; j++) {
6897 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6898 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6899 }
6900 }
6901 }
6902
6903 static void sched_domains_numa_masks_clear(int cpu)
6904 {
6905 int i, j;
6906 for (i = 0; i < sched_domains_numa_levels; i++) {
6907 for (j = 0; j < nr_node_ids; j++)
6908 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6909 }
6910 }
6911
6912 /*
6913 * Update sched_domains_numa_masks[level][node] array when new cpus
6914 * are onlined.
6915 */
6916 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6917 unsigned long action,
6918 void *hcpu)
6919 {
6920 int cpu = (long)hcpu;
6921
6922 switch (action & ~CPU_TASKS_FROZEN) {
6923 case CPU_ONLINE:
6924 sched_domains_numa_masks_set(cpu);
6925 break;
6926
6927 case CPU_DEAD:
6928 sched_domains_numa_masks_clear(cpu);
6929 break;
6930
6931 default:
6932 return NOTIFY_DONE;
6933 }
6934
6935 return NOTIFY_OK;
6936 }
6937 #else
6938 static inline void sched_init_numa(void)
6939 {
6940 }
6941
6942 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6943 unsigned long action,
6944 void *hcpu)
6945 {
6946 return 0;
6947 }
6948 #endif /* CONFIG_NUMA */
6949
6950 static int __sdt_alloc(const struct cpumask *cpu_map)
6951 {
6952 struct sched_domain_topology_level *tl;
6953 int j;
6954
6955 for_each_sd_topology(tl) {
6956 struct sd_data *sdd = &tl->data;
6957
6958 sdd->sd = alloc_percpu(struct sched_domain *);
6959 if (!sdd->sd)
6960 return -ENOMEM;
6961
6962 sdd->sg = alloc_percpu(struct sched_group *);
6963 if (!sdd->sg)
6964 return -ENOMEM;
6965
6966 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6967 if (!sdd->sgc)
6968 return -ENOMEM;
6969
6970 for_each_cpu(j, cpu_map) {
6971 struct sched_domain *sd;
6972 struct sched_group *sg;
6973 struct sched_group_capacity *sgc;
6974
6975 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6976 GFP_KERNEL, cpu_to_node(j));
6977 if (!sd)
6978 return -ENOMEM;
6979
6980 *per_cpu_ptr(sdd->sd, j) = sd;
6981
6982 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6983 GFP_KERNEL, cpu_to_node(j));
6984 if (!sg)
6985 return -ENOMEM;
6986
6987 sg->next = sg;
6988
6989 *per_cpu_ptr(sdd->sg, j) = sg;
6990
6991 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6992 GFP_KERNEL, cpu_to_node(j));
6993 if (!sgc)
6994 return -ENOMEM;
6995
6996 *per_cpu_ptr(sdd->sgc, j) = sgc;
6997 }
6998 }
6999
7000 return 0;
7001 }
7002
7003 static void __sdt_free(const struct cpumask *cpu_map)
7004 {
7005 struct sched_domain_topology_level *tl;
7006 int j;
7007
7008 for_each_sd_topology(tl) {
7009 struct sd_data *sdd = &tl->data;
7010
7011 for_each_cpu(j, cpu_map) {
7012 struct sched_domain *sd;
7013
7014 if (sdd->sd) {
7015 sd = *per_cpu_ptr(sdd->sd, j);
7016 if (sd && (sd->flags & SD_OVERLAP))
7017 free_sched_groups(sd->groups, 0);
7018 kfree(*per_cpu_ptr(sdd->sd, j));
7019 }
7020
7021 if (sdd->sg)
7022 kfree(*per_cpu_ptr(sdd->sg, j));
7023 if (sdd->sgc)
7024 kfree(*per_cpu_ptr(sdd->sgc, j));
7025 }
7026 free_percpu(sdd->sd);
7027 sdd->sd = NULL;
7028 free_percpu(sdd->sg);
7029 sdd->sg = NULL;
7030 free_percpu(sdd->sgc);
7031 sdd->sgc = NULL;
7032 }
7033 }
7034
7035 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7036 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7037 struct sched_domain *child, int cpu)
7038 {
7039 struct sched_domain *sd = sd_init(tl, cpu);
7040 if (!sd)
7041 return child;
7042
7043 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7044 if (child) {
7045 sd->level = child->level + 1;
7046 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7047 child->parent = sd;
7048 sd->child = child;
7049
7050 if (!cpumask_subset(sched_domain_span(child),
7051 sched_domain_span(sd))) {
7052 pr_err("BUG: arch topology borken\n");
7053 #ifdef CONFIG_SCHED_DEBUG
7054 pr_err(" the %s domain not a subset of the %s domain\n",
7055 child->name, sd->name);
7056 #endif
7057 /* Fixup, ensure @sd has at least @child cpus. */
7058 cpumask_or(sched_domain_span(sd),
7059 sched_domain_span(sd),
7060 sched_domain_span(child));
7061 }
7062
7063 }
7064 set_domain_attribute(sd, attr);
7065
7066 return sd;
7067 }
7068
7069 /*
7070 * Build sched domains for a given set of cpus and attach the sched domains
7071 * to the individual cpus
7072 */
7073 static int build_sched_domains(const struct cpumask *cpu_map,
7074 struct sched_domain_attr *attr)
7075 {
7076 enum s_alloc alloc_state;
7077 struct sched_domain *sd;
7078 struct s_data d;
7079 int i, ret = -ENOMEM;
7080
7081 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7082 if (alloc_state != sa_rootdomain)
7083 goto error;
7084
7085 /* Set up domains for cpus specified by the cpu_map. */
7086 for_each_cpu(i, cpu_map) {
7087 struct sched_domain_topology_level *tl;
7088
7089 sd = NULL;
7090 for_each_sd_topology(tl) {
7091 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7092 if (tl == sched_domain_topology)
7093 *per_cpu_ptr(d.sd, i) = sd;
7094 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7095 sd->flags |= SD_OVERLAP;
7096 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7097 break;
7098 }
7099 }
7100
7101 /* Build the groups for the domains */
7102 for_each_cpu(i, cpu_map) {
7103 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7104 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7105 if (sd->flags & SD_OVERLAP) {
7106 if (build_overlap_sched_groups(sd, i))
7107 goto error;
7108 } else {
7109 if (build_sched_groups(sd, i))
7110 goto error;
7111 }
7112 }
7113 }
7114
7115 /* Calculate CPU capacity for physical packages and nodes */
7116 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7117 if (!cpumask_test_cpu(i, cpu_map))
7118 continue;
7119
7120 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7121 claim_allocations(i, sd);
7122 init_sched_groups_capacity(i, sd);
7123 }
7124 }
7125
7126 /* Attach the domains */
7127 rcu_read_lock();
7128 for_each_cpu(i, cpu_map) {
7129 sd = *per_cpu_ptr(d.sd, i);
7130 cpu_attach_domain(sd, d.rd, i);
7131 }
7132 rcu_read_unlock();
7133
7134 ret = 0;
7135 error:
7136 __free_domain_allocs(&d, alloc_state, cpu_map);
7137 return ret;
7138 }
7139
7140 static cpumask_var_t *doms_cur; /* current sched domains */
7141 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7142 static struct sched_domain_attr *dattr_cur;
7143 /* attribues of custom domains in 'doms_cur' */
7144
7145 /*
7146 * Special case: If a kmalloc of a doms_cur partition (array of
7147 * cpumask) fails, then fallback to a single sched domain,
7148 * as determined by the single cpumask fallback_doms.
7149 */
7150 static cpumask_var_t fallback_doms;
7151
7152 /*
7153 * arch_update_cpu_topology lets virtualized architectures update the
7154 * cpu core maps. It is supposed to return 1 if the topology changed
7155 * or 0 if it stayed the same.
7156 */
7157 int __weak arch_update_cpu_topology(void)
7158 {
7159 return 0;
7160 }
7161
7162 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7163 {
7164 int i;
7165 cpumask_var_t *doms;
7166
7167 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7168 if (!doms)
7169 return NULL;
7170 for (i = 0; i < ndoms; i++) {
7171 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7172 free_sched_domains(doms, i);
7173 return NULL;
7174 }
7175 }
7176 return doms;
7177 }
7178
7179 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7180 {
7181 unsigned int i;
7182 for (i = 0; i < ndoms; i++)
7183 free_cpumask_var(doms[i]);
7184 kfree(doms);
7185 }
7186
7187 /*
7188 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7189 * For now this just excludes isolated cpus, but could be used to
7190 * exclude other special cases in the future.
7191 */
7192 static int init_sched_domains(const struct cpumask *cpu_map)
7193 {
7194 int err;
7195
7196 arch_update_cpu_topology();
7197 ndoms_cur = 1;
7198 doms_cur = alloc_sched_domains(ndoms_cur);
7199 if (!doms_cur)
7200 doms_cur = &fallback_doms;
7201 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7202 err = build_sched_domains(doms_cur[0], NULL);
7203 register_sched_domain_sysctl();
7204
7205 return err;
7206 }
7207
7208 /*
7209 * Detach sched domains from a group of cpus specified in cpu_map
7210 * These cpus will now be attached to the NULL domain
7211 */
7212 static void detach_destroy_domains(const struct cpumask *cpu_map)
7213 {
7214 int i;
7215
7216 rcu_read_lock();
7217 for_each_cpu(i, cpu_map)
7218 cpu_attach_domain(NULL, &def_root_domain, i);
7219 rcu_read_unlock();
7220 }
7221
7222 /* handle null as "default" */
7223 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7224 struct sched_domain_attr *new, int idx_new)
7225 {
7226 struct sched_domain_attr tmp;
7227
7228 /* fast path */
7229 if (!new && !cur)
7230 return 1;
7231
7232 tmp = SD_ATTR_INIT;
7233 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7234 new ? (new + idx_new) : &tmp,
7235 sizeof(struct sched_domain_attr));
7236 }
7237
7238 /*
7239 * Partition sched domains as specified by the 'ndoms_new'
7240 * cpumasks in the array doms_new[] of cpumasks. This compares
7241 * doms_new[] to the current sched domain partitioning, doms_cur[].
7242 * It destroys each deleted domain and builds each new domain.
7243 *
7244 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7245 * The masks don't intersect (don't overlap.) We should setup one
7246 * sched domain for each mask. CPUs not in any of the cpumasks will
7247 * not be load balanced. If the same cpumask appears both in the
7248 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7249 * it as it is.
7250 *
7251 * The passed in 'doms_new' should be allocated using
7252 * alloc_sched_domains. This routine takes ownership of it and will
7253 * free_sched_domains it when done with it. If the caller failed the
7254 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7255 * and partition_sched_domains() will fallback to the single partition
7256 * 'fallback_doms', it also forces the domains to be rebuilt.
7257 *
7258 * If doms_new == NULL it will be replaced with cpu_online_mask.
7259 * ndoms_new == 0 is a special case for destroying existing domains,
7260 * and it will not create the default domain.
7261 *
7262 * Call with hotplug lock held
7263 */
7264 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7265 struct sched_domain_attr *dattr_new)
7266 {
7267 int i, j, n;
7268 int new_topology;
7269
7270 mutex_lock(&sched_domains_mutex);
7271
7272 /* always unregister in case we don't destroy any domains */
7273 unregister_sched_domain_sysctl();
7274
7275 /* Let architecture update cpu core mappings. */
7276 new_topology = arch_update_cpu_topology();
7277
7278 n = doms_new ? ndoms_new : 0;
7279
7280 /* Destroy deleted domains */
7281 for (i = 0; i < ndoms_cur; i++) {
7282 for (j = 0; j < n && !new_topology; j++) {
7283 if (cpumask_equal(doms_cur[i], doms_new[j])
7284 && dattrs_equal(dattr_cur, i, dattr_new, j))
7285 goto match1;
7286 }
7287 /* no match - a current sched domain not in new doms_new[] */
7288 detach_destroy_domains(doms_cur[i]);
7289 match1:
7290 ;
7291 }
7292
7293 n = ndoms_cur;
7294 if (doms_new == NULL) {
7295 n = 0;
7296 doms_new = &fallback_doms;
7297 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7298 WARN_ON_ONCE(dattr_new);
7299 }
7300
7301 /* Build new domains */
7302 for (i = 0; i < ndoms_new; i++) {
7303 for (j = 0; j < n && !new_topology; j++) {
7304 if (cpumask_equal(doms_new[i], doms_cur[j])
7305 && dattrs_equal(dattr_new, i, dattr_cur, j))
7306 goto match2;
7307 }
7308 /* no match - add a new doms_new */
7309 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7310 match2:
7311 ;
7312 }
7313
7314 /* Remember the new sched domains */
7315 if (doms_cur != &fallback_doms)
7316 free_sched_domains(doms_cur, ndoms_cur);
7317 kfree(dattr_cur); /* kfree(NULL) is safe */
7318 doms_cur = doms_new;
7319 dattr_cur = dattr_new;
7320 ndoms_cur = ndoms_new;
7321
7322 register_sched_domain_sysctl();
7323
7324 mutex_unlock(&sched_domains_mutex);
7325 }
7326
7327 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7328
7329 /*
7330 * Update cpusets according to cpu_active mask. If cpusets are
7331 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7332 * around partition_sched_domains().
7333 *
7334 * If we come here as part of a suspend/resume, don't touch cpusets because we
7335 * want to restore it back to its original state upon resume anyway.
7336 */
7337 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7338 void *hcpu)
7339 {
7340 switch (action) {
7341 case CPU_ONLINE_FROZEN:
7342 case CPU_DOWN_FAILED_FROZEN:
7343
7344 /*
7345 * num_cpus_frozen tracks how many CPUs are involved in suspend
7346 * resume sequence. As long as this is not the last online
7347 * operation in the resume sequence, just build a single sched
7348 * domain, ignoring cpusets.
7349 */
7350 num_cpus_frozen--;
7351 if (likely(num_cpus_frozen)) {
7352 partition_sched_domains(1, NULL, NULL);
7353 break;
7354 }
7355
7356 /*
7357 * This is the last CPU online operation. So fall through and
7358 * restore the original sched domains by considering the
7359 * cpuset configurations.
7360 */
7361
7362 case CPU_ONLINE:
7363 cpuset_update_active_cpus(true);
7364 break;
7365 default:
7366 return NOTIFY_DONE;
7367 }
7368 return NOTIFY_OK;
7369 }
7370
7371 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7372 void *hcpu)
7373 {
7374 unsigned long flags;
7375 long cpu = (long)hcpu;
7376 struct dl_bw *dl_b;
7377 bool overflow;
7378 int cpus;
7379
7380 switch (action) {
7381 case CPU_DOWN_PREPARE:
7382 rcu_read_lock_sched();
7383 dl_b = dl_bw_of(cpu);
7384
7385 raw_spin_lock_irqsave(&dl_b->lock, flags);
7386 cpus = dl_bw_cpus(cpu);
7387 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7388 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7389
7390 rcu_read_unlock_sched();
7391
7392 if (overflow)
7393 return notifier_from_errno(-EBUSY);
7394 cpuset_update_active_cpus(false);
7395 break;
7396 case CPU_DOWN_PREPARE_FROZEN:
7397 num_cpus_frozen++;
7398 partition_sched_domains(1, NULL, NULL);
7399 break;
7400 default:
7401 return NOTIFY_DONE;
7402 }
7403 return NOTIFY_OK;
7404 }
7405
7406 void __init sched_init_smp(void)
7407 {
7408 cpumask_var_t non_isolated_cpus;
7409
7410 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7411 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7412
7413 sched_init_numa();
7414
7415 /*
7416 * There's no userspace yet to cause hotplug operations; hence all the
7417 * cpu masks are stable and all blatant races in the below code cannot
7418 * happen.
7419 */
7420 mutex_lock(&sched_domains_mutex);
7421 init_sched_domains(cpu_active_mask);
7422 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7423 if (cpumask_empty(non_isolated_cpus))
7424 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7425 mutex_unlock(&sched_domains_mutex);
7426
7427 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7428 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7429 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7430
7431 init_hrtick();
7432
7433 /* Move init over to a non-isolated CPU */
7434 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7435 BUG();
7436 sched_init_granularity();
7437 free_cpumask_var(non_isolated_cpus);
7438
7439 init_sched_rt_class();
7440 init_sched_dl_class();
7441 }
7442 #else
7443 void __init sched_init_smp(void)
7444 {
7445 sched_init_granularity();
7446 }
7447 #endif /* CONFIG_SMP */
7448
7449 int in_sched_functions(unsigned long addr)
7450 {
7451 return in_lock_functions(addr) ||
7452 (addr >= (unsigned long)__sched_text_start
7453 && addr < (unsigned long)__sched_text_end);
7454 }
7455
7456 #ifdef CONFIG_CGROUP_SCHED
7457 /*
7458 * Default task group.
7459 * Every task in system belongs to this group at bootup.
7460 */
7461 struct task_group root_task_group;
7462 LIST_HEAD(task_groups);
7463
7464 /* Cacheline aligned slab cache for task_group */
7465 static struct kmem_cache *task_group_cache __read_mostly;
7466 #endif
7467
7468 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7469
7470 void __init sched_init(void)
7471 {
7472 int i, j;
7473 unsigned long alloc_size = 0, ptr;
7474
7475 #ifdef CONFIG_FAIR_GROUP_SCHED
7476 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7477 #endif
7478 #ifdef CONFIG_RT_GROUP_SCHED
7479 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7480 #endif
7481 if (alloc_size) {
7482 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7483
7484 #ifdef CONFIG_FAIR_GROUP_SCHED
7485 root_task_group.se = (struct sched_entity **)ptr;
7486 ptr += nr_cpu_ids * sizeof(void **);
7487
7488 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7489 ptr += nr_cpu_ids * sizeof(void **);
7490
7491 #endif /* CONFIG_FAIR_GROUP_SCHED */
7492 #ifdef CONFIG_RT_GROUP_SCHED
7493 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7494 ptr += nr_cpu_ids * sizeof(void **);
7495
7496 root_task_group.rt_rq = (struct rt_rq **)ptr;
7497 ptr += nr_cpu_ids * sizeof(void **);
7498
7499 #endif /* CONFIG_RT_GROUP_SCHED */
7500 }
7501 #ifdef CONFIG_CPUMASK_OFFSTACK
7502 for_each_possible_cpu(i) {
7503 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7504 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7505 }
7506 #endif /* CONFIG_CPUMASK_OFFSTACK */
7507
7508 init_rt_bandwidth(&def_rt_bandwidth,
7509 global_rt_period(), global_rt_runtime());
7510 init_dl_bandwidth(&def_dl_bandwidth,
7511 global_rt_period(), global_rt_runtime());
7512
7513 #ifdef CONFIG_SMP
7514 init_defrootdomain();
7515 #endif
7516
7517 #ifdef CONFIG_RT_GROUP_SCHED
7518 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7519 global_rt_period(), global_rt_runtime());
7520 #endif /* CONFIG_RT_GROUP_SCHED */
7521
7522 #ifdef CONFIG_CGROUP_SCHED
7523 task_group_cache = KMEM_CACHE(task_group, 0);
7524
7525 list_add(&root_task_group.list, &task_groups);
7526 INIT_LIST_HEAD(&root_task_group.children);
7527 INIT_LIST_HEAD(&root_task_group.siblings);
7528 autogroup_init(&init_task);
7529 #endif /* CONFIG_CGROUP_SCHED */
7530
7531 for_each_possible_cpu(i) {
7532 struct rq *rq;
7533
7534 rq = cpu_rq(i);
7535 raw_spin_lock_init(&rq->lock);
7536 rq->nr_running = 0;
7537 rq->calc_load_active = 0;
7538 rq->calc_load_update = jiffies + LOAD_FREQ;
7539 init_cfs_rq(&rq->cfs);
7540 init_rt_rq(&rq->rt);
7541 init_dl_rq(&rq->dl);
7542 #ifdef CONFIG_FAIR_GROUP_SCHED
7543 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7544 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7545 /*
7546 * How much cpu bandwidth does root_task_group get?
7547 *
7548 * In case of task-groups formed thr' the cgroup filesystem, it
7549 * gets 100% of the cpu resources in the system. This overall
7550 * system cpu resource is divided among the tasks of
7551 * root_task_group and its child task-groups in a fair manner,
7552 * based on each entity's (task or task-group's) weight
7553 * (se->load.weight).
7554 *
7555 * In other words, if root_task_group has 10 tasks of weight
7556 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7557 * then A0's share of the cpu resource is:
7558 *
7559 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7560 *
7561 * We achieve this by letting root_task_group's tasks sit
7562 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7563 */
7564 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7565 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7566 #endif /* CONFIG_FAIR_GROUP_SCHED */
7567
7568 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7569 #ifdef CONFIG_RT_GROUP_SCHED
7570 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7571 #endif
7572
7573 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7574 rq->cpu_load[j] = 0;
7575
7576 rq->last_load_update_tick = jiffies;
7577
7578 #ifdef CONFIG_SMP
7579 rq->sd = NULL;
7580 rq->rd = NULL;
7581 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7582 rq->balance_callback = NULL;
7583 rq->active_balance = 0;
7584 rq->next_balance = jiffies;
7585 rq->push_cpu = 0;
7586 rq->cpu = i;
7587 rq->online = 0;
7588 rq->idle_stamp = 0;
7589 rq->avg_idle = 2*sysctl_sched_migration_cost;
7590 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7591
7592 INIT_LIST_HEAD(&rq->cfs_tasks);
7593
7594 rq_attach_root(rq, &def_root_domain);
7595 #ifdef CONFIG_NO_HZ_COMMON
7596 rq->nohz_flags = 0;
7597 #endif
7598 #ifdef CONFIG_NO_HZ_FULL
7599 rq->last_sched_tick = 0;
7600 #endif
7601 #endif
7602 init_rq_hrtick(rq);
7603 atomic_set(&rq->nr_iowait, 0);
7604 }
7605
7606 set_load_weight(&init_task);
7607
7608 #ifdef CONFIG_PREEMPT_NOTIFIERS
7609 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7610 #endif
7611
7612 /*
7613 * The boot idle thread does lazy MMU switching as well:
7614 */
7615 atomic_inc(&init_mm.mm_count);
7616 enter_lazy_tlb(&init_mm, current);
7617
7618 /*
7619 * During early bootup we pretend to be a normal task:
7620 */
7621 current->sched_class = &fair_sched_class;
7622
7623 /*
7624 * Make us the idle thread. Technically, schedule() should not be
7625 * called from this thread, however somewhere below it might be,
7626 * but because we are the idle thread, we just pick up running again
7627 * when this runqueue becomes "idle".
7628 */
7629 init_idle(current, smp_processor_id());
7630
7631 calc_load_update = jiffies + LOAD_FREQ;
7632
7633 #ifdef CONFIG_SMP
7634 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7635 /* May be allocated at isolcpus cmdline parse time */
7636 if (cpu_isolated_map == NULL)
7637 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7638 idle_thread_set_boot_cpu();
7639 set_cpu_rq_start_time();
7640 #endif
7641 init_sched_fair_class();
7642
7643 scheduler_running = 1;
7644 }
7645
7646 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7647 static inline int preempt_count_equals(int preempt_offset)
7648 {
7649 int nested = preempt_count() + rcu_preempt_depth();
7650
7651 return (nested == preempt_offset);
7652 }
7653
7654 void __might_sleep(const char *file, int line, int preempt_offset)
7655 {
7656 /*
7657 * Blocking primitives will set (and therefore destroy) current->state,
7658 * since we will exit with TASK_RUNNING make sure we enter with it,
7659 * otherwise we will destroy state.
7660 */
7661 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7662 "do not call blocking ops when !TASK_RUNNING; "
7663 "state=%lx set at [<%p>] %pS\n",
7664 current->state,
7665 (void *)current->task_state_change,
7666 (void *)current->task_state_change);
7667
7668 ___might_sleep(file, line, preempt_offset);
7669 }
7670 EXPORT_SYMBOL(__might_sleep);
7671
7672 void ___might_sleep(const char *file, int line, int preempt_offset)
7673 {
7674 static unsigned long prev_jiffy; /* ratelimiting */
7675
7676 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7677 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7678 !is_idle_task(current)) ||
7679 system_state != SYSTEM_RUNNING || oops_in_progress)
7680 return;
7681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7682 return;
7683 prev_jiffy = jiffies;
7684
7685 printk(KERN_ERR
7686 "BUG: sleeping function called from invalid context at %s:%d\n",
7687 file, line);
7688 printk(KERN_ERR
7689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7690 in_atomic(), irqs_disabled(),
7691 current->pid, current->comm);
7692
7693 if (task_stack_end_corrupted(current))
7694 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7695
7696 debug_show_held_locks(current);
7697 if (irqs_disabled())
7698 print_irqtrace_events(current);
7699 #ifdef CONFIG_DEBUG_PREEMPT
7700 if (!preempt_count_equals(preempt_offset)) {
7701 pr_err("Preemption disabled at:");
7702 print_ip_sym(current->preempt_disable_ip);
7703 pr_cont("\n");
7704 }
7705 #endif
7706 dump_stack();
7707 }
7708 EXPORT_SYMBOL(___might_sleep);
7709 #endif
7710
7711 #ifdef CONFIG_MAGIC_SYSRQ
7712 void normalize_rt_tasks(void)
7713 {
7714 struct task_struct *g, *p;
7715 struct sched_attr attr = {
7716 .sched_policy = SCHED_NORMAL,
7717 };
7718
7719 read_lock(&tasklist_lock);
7720 for_each_process_thread(g, p) {
7721 /*
7722 * Only normalize user tasks:
7723 */
7724 if (p->flags & PF_KTHREAD)
7725 continue;
7726
7727 p->se.exec_start = 0;
7728 #ifdef CONFIG_SCHEDSTATS
7729 p->se.statistics.wait_start = 0;
7730 p->se.statistics.sleep_start = 0;
7731 p->se.statistics.block_start = 0;
7732 #endif
7733
7734 if (!dl_task(p) && !rt_task(p)) {
7735 /*
7736 * Renice negative nice level userspace
7737 * tasks back to 0:
7738 */
7739 if (task_nice(p) < 0)
7740 set_user_nice(p, 0);
7741 continue;
7742 }
7743
7744 __sched_setscheduler(p, &attr, false, false);
7745 }
7746 read_unlock(&tasklist_lock);
7747 }
7748
7749 #endif /* CONFIG_MAGIC_SYSRQ */
7750
7751 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7752 /*
7753 * These functions are only useful for the IA64 MCA handling, or kdb.
7754 *
7755 * They can only be called when the whole system has been
7756 * stopped - every CPU needs to be quiescent, and no scheduling
7757 * activity can take place. Using them for anything else would
7758 * be a serious bug, and as a result, they aren't even visible
7759 * under any other configuration.
7760 */
7761
7762 /**
7763 * curr_task - return the current task for a given cpu.
7764 * @cpu: the processor in question.
7765 *
7766 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7767 *
7768 * Return: The current task for @cpu.
7769 */
7770 struct task_struct *curr_task(int cpu)
7771 {
7772 return cpu_curr(cpu);
7773 }
7774
7775 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7776
7777 #ifdef CONFIG_IA64
7778 /**
7779 * set_curr_task - set the current task for a given cpu.
7780 * @cpu: the processor in question.
7781 * @p: the task pointer to set.
7782 *
7783 * Description: This function must only be used when non-maskable interrupts
7784 * are serviced on a separate stack. It allows the architecture to switch the
7785 * notion of the current task on a cpu in a non-blocking manner. This function
7786 * must be called with all CPU's synchronized, and interrupts disabled, the
7787 * and caller must save the original value of the current task (see
7788 * curr_task() above) and restore that value before reenabling interrupts and
7789 * re-starting the system.
7790 *
7791 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7792 */
7793 void set_curr_task(int cpu, struct task_struct *p)
7794 {
7795 cpu_curr(cpu) = p;
7796 }
7797
7798 #endif
7799
7800 #ifdef CONFIG_CGROUP_SCHED
7801 /* task_group_lock serializes the addition/removal of task groups */
7802 static DEFINE_SPINLOCK(task_group_lock);
7803
7804 static void free_sched_group(struct task_group *tg)
7805 {
7806 free_fair_sched_group(tg);
7807 free_rt_sched_group(tg);
7808 autogroup_free(tg);
7809 kmem_cache_free(task_group_cache, tg);
7810 }
7811
7812 /* allocate runqueue etc for a new task group */
7813 struct task_group *sched_create_group(struct task_group *parent)
7814 {
7815 struct task_group *tg;
7816
7817 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7818 if (!tg)
7819 return ERR_PTR(-ENOMEM);
7820
7821 if (!alloc_fair_sched_group(tg, parent))
7822 goto err;
7823
7824 if (!alloc_rt_sched_group(tg, parent))
7825 goto err;
7826
7827 return tg;
7828
7829 err:
7830 free_sched_group(tg);
7831 return ERR_PTR(-ENOMEM);
7832 }
7833
7834 void sched_online_group(struct task_group *tg, struct task_group *parent)
7835 {
7836 unsigned long flags;
7837
7838 spin_lock_irqsave(&task_group_lock, flags);
7839 list_add_rcu(&tg->list, &task_groups);
7840
7841 WARN_ON(!parent); /* root should already exist */
7842
7843 tg->parent = parent;
7844 INIT_LIST_HEAD(&tg->children);
7845 list_add_rcu(&tg->siblings, &parent->children);
7846 spin_unlock_irqrestore(&task_group_lock, flags);
7847 }
7848
7849 /* rcu callback to free various structures associated with a task group */
7850 static void free_sched_group_rcu(struct rcu_head *rhp)
7851 {
7852 /* now it should be safe to free those cfs_rqs */
7853 free_sched_group(container_of(rhp, struct task_group, rcu));
7854 }
7855
7856 /* Destroy runqueue etc associated with a task group */
7857 void sched_destroy_group(struct task_group *tg)
7858 {
7859 /* wait for possible concurrent references to cfs_rqs complete */
7860 call_rcu(&tg->rcu, free_sched_group_rcu);
7861 }
7862
7863 void sched_offline_group(struct task_group *tg)
7864 {
7865 unsigned long flags;
7866 int i;
7867
7868 /* end participation in shares distribution */
7869 for_each_possible_cpu(i)
7870 unregister_fair_sched_group(tg, i);
7871
7872 spin_lock_irqsave(&task_group_lock, flags);
7873 list_del_rcu(&tg->list);
7874 list_del_rcu(&tg->siblings);
7875 spin_unlock_irqrestore(&task_group_lock, flags);
7876 }
7877
7878 /* change task's runqueue when it moves between groups.
7879 * The caller of this function should have put the task in its new group
7880 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7881 * reflect its new group.
7882 */
7883 void sched_move_task(struct task_struct *tsk)
7884 {
7885 struct task_group *tg;
7886 int queued, running;
7887 unsigned long flags;
7888 struct rq *rq;
7889
7890 rq = task_rq_lock(tsk, &flags);
7891
7892 running = task_current(rq, tsk);
7893 queued = task_on_rq_queued(tsk);
7894
7895 if (queued)
7896 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7897 if (unlikely(running))
7898 put_prev_task(rq, tsk);
7899
7900 /*
7901 * All callers are synchronized by task_rq_lock(); we do not use RCU
7902 * which is pointless here. Thus, we pass "true" to task_css_check()
7903 * to prevent lockdep warnings.
7904 */
7905 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7906 struct task_group, css);
7907 tg = autogroup_task_group(tsk, tg);
7908 tsk->sched_task_group = tg;
7909
7910 #ifdef CONFIG_FAIR_GROUP_SCHED
7911 if (tsk->sched_class->task_move_group)
7912 tsk->sched_class->task_move_group(tsk);
7913 else
7914 #endif
7915 set_task_rq(tsk, task_cpu(tsk));
7916
7917 if (unlikely(running))
7918 tsk->sched_class->set_curr_task(rq);
7919 if (queued)
7920 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7921
7922 task_rq_unlock(rq, tsk, &flags);
7923 }
7924 #endif /* CONFIG_CGROUP_SCHED */
7925
7926 #ifdef CONFIG_RT_GROUP_SCHED
7927 /*
7928 * Ensure that the real time constraints are schedulable.
7929 */
7930 static DEFINE_MUTEX(rt_constraints_mutex);
7931
7932 /* Must be called with tasklist_lock held */
7933 static inline int tg_has_rt_tasks(struct task_group *tg)
7934 {
7935 struct task_struct *g, *p;
7936
7937 /*
7938 * Autogroups do not have RT tasks; see autogroup_create().
7939 */
7940 if (task_group_is_autogroup(tg))
7941 return 0;
7942
7943 for_each_process_thread(g, p) {
7944 if (rt_task(p) && task_group(p) == tg)
7945 return 1;
7946 }
7947
7948 return 0;
7949 }
7950
7951 struct rt_schedulable_data {
7952 struct task_group *tg;
7953 u64 rt_period;
7954 u64 rt_runtime;
7955 };
7956
7957 static int tg_rt_schedulable(struct task_group *tg, void *data)
7958 {
7959 struct rt_schedulable_data *d = data;
7960 struct task_group *child;
7961 unsigned long total, sum = 0;
7962 u64 period, runtime;
7963
7964 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7965 runtime = tg->rt_bandwidth.rt_runtime;
7966
7967 if (tg == d->tg) {
7968 period = d->rt_period;
7969 runtime = d->rt_runtime;
7970 }
7971
7972 /*
7973 * Cannot have more runtime than the period.
7974 */
7975 if (runtime > period && runtime != RUNTIME_INF)
7976 return -EINVAL;
7977
7978 /*
7979 * Ensure we don't starve existing RT tasks.
7980 */
7981 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7982 return -EBUSY;
7983
7984 total = to_ratio(period, runtime);
7985
7986 /*
7987 * Nobody can have more than the global setting allows.
7988 */
7989 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7990 return -EINVAL;
7991
7992 /*
7993 * The sum of our children's runtime should not exceed our own.
7994 */
7995 list_for_each_entry_rcu(child, &tg->children, siblings) {
7996 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7997 runtime = child->rt_bandwidth.rt_runtime;
7998
7999 if (child == d->tg) {
8000 period = d->rt_period;
8001 runtime = d->rt_runtime;
8002 }
8003
8004 sum += to_ratio(period, runtime);
8005 }
8006
8007 if (sum > total)
8008 return -EINVAL;
8009
8010 return 0;
8011 }
8012
8013 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8014 {
8015 int ret;
8016
8017 struct rt_schedulable_data data = {
8018 .tg = tg,
8019 .rt_period = period,
8020 .rt_runtime = runtime,
8021 };
8022
8023 rcu_read_lock();
8024 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8025 rcu_read_unlock();
8026
8027 return ret;
8028 }
8029
8030 static int tg_set_rt_bandwidth(struct task_group *tg,
8031 u64 rt_period, u64 rt_runtime)
8032 {
8033 int i, err = 0;
8034
8035 /*
8036 * Disallowing the root group RT runtime is BAD, it would disallow the
8037 * kernel creating (and or operating) RT threads.
8038 */
8039 if (tg == &root_task_group && rt_runtime == 0)
8040 return -EINVAL;
8041
8042 /* No period doesn't make any sense. */
8043 if (rt_period == 0)
8044 return -EINVAL;
8045
8046 mutex_lock(&rt_constraints_mutex);
8047 read_lock(&tasklist_lock);
8048 err = __rt_schedulable(tg, rt_period, rt_runtime);
8049 if (err)
8050 goto unlock;
8051
8052 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8053 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8054 tg->rt_bandwidth.rt_runtime = rt_runtime;
8055
8056 for_each_possible_cpu(i) {
8057 struct rt_rq *rt_rq = tg->rt_rq[i];
8058
8059 raw_spin_lock(&rt_rq->rt_runtime_lock);
8060 rt_rq->rt_runtime = rt_runtime;
8061 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8062 }
8063 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8064 unlock:
8065 read_unlock(&tasklist_lock);
8066 mutex_unlock(&rt_constraints_mutex);
8067
8068 return err;
8069 }
8070
8071 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8072 {
8073 u64 rt_runtime, rt_period;
8074
8075 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8076 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8077 if (rt_runtime_us < 0)
8078 rt_runtime = RUNTIME_INF;
8079
8080 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8081 }
8082
8083 static long sched_group_rt_runtime(struct task_group *tg)
8084 {
8085 u64 rt_runtime_us;
8086
8087 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8088 return -1;
8089
8090 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8091 do_div(rt_runtime_us, NSEC_PER_USEC);
8092 return rt_runtime_us;
8093 }
8094
8095 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8096 {
8097 u64 rt_runtime, rt_period;
8098
8099 rt_period = rt_period_us * NSEC_PER_USEC;
8100 rt_runtime = tg->rt_bandwidth.rt_runtime;
8101
8102 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8103 }
8104
8105 static long sched_group_rt_period(struct task_group *tg)
8106 {
8107 u64 rt_period_us;
8108
8109 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8110 do_div(rt_period_us, NSEC_PER_USEC);
8111 return rt_period_us;
8112 }
8113 #endif /* CONFIG_RT_GROUP_SCHED */
8114
8115 #ifdef CONFIG_RT_GROUP_SCHED
8116 static int sched_rt_global_constraints(void)
8117 {
8118 int ret = 0;
8119
8120 mutex_lock(&rt_constraints_mutex);
8121 read_lock(&tasklist_lock);
8122 ret = __rt_schedulable(NULL, 0, 0);
8123 read_unlock(&tasklist_lock);
8124 mutex_unlock(&rt_constraints_mutex);
8125
8126 return ret;
8127 }
8128
8129 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8130 {
8131 /* Don't accept realtime tasks when there is no way for them to run */
8132 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8133 return 0;
8134
8135 return 1;
8136 }
8137
8138 #else /* !CONFIG_RT_GROUP_SCHED */
8139 static int sched_rt_global_constraints(void)
8140 {
8141 unsigned long flags;
8142 int i, ret = 0;
8143
8144 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8145 for_each_possible_cpu(i) {
8146 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8147
8148 raw_spin_lock(&rt_rq->rt_runtime_lock);
8149 rt_rq->rt_runtime = global_rt_runtime();
8150 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8151 }
8152 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8153
8154 return ret;
8155 }
8156 #endif /* CONFIG_RT_GROUP_SCHED */
8157
8158 static int sched_dl_global_validate(void)
8159 {
8160 u64 runtime = global_rt_runtime();
8161 u64 period = global_rt_period();
8162 u64 new_bw = to_ratio(period, runtime);
8163 struct dl_bw *dl_b;
8164 int cpu, ret = 0;
8165 unsigned long flags;
8166
8167 /*
8168 * Here we want to check the bandwidth not being set to some
8169 * value smaller than the currently allocated bandwidth in
8170 * any of the root_domains.
8171 *
8172 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8173 * cycling on root_domains... Discussion on different/better
8174 * solutions is welcome!
8175 */
8176 for_each_possible_cpu(cpu) {
8177 rcu_read_lock_sched();
8178 dl_b = dl_bw_of(cpu);
8179
8180 raw_spin_lock_irqsave(&dl_b->lock, flags);
8181 if (new_bw < dl_b->total_bw)
8182 ret = -EBUSY;
8183 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8184
8185 rcu_read_unlock_sched();
8186
8187 if (ret)
8188 break;
8189 }
8190
8191 return ret;
8192 }
8193
8194 static void sched_dl_do_global(void)
8195 {
8196 u64 new_bw = -1;
8197 struct dl_bw *dl_b;
8198 int cpu;
8199 unsigned long flags;
8200
8201 def_dl_bandwidth.dl_period = global_rt_period();
8202 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8203
8204 if (global_rt_runtime() != RUNTIME_INF)
8205 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8206
8207 /*
8208 * FIXME: As above...
8209 */
8210 for_each_possible_cpu(cpu) {
8211 rcu_read_lock_sched();
8212 dl_b = dl_bw_of(cpu);
8213
8214 raw_spin_lock_irqsave(&dl_b->lock, flags);
8215 dl_b->bw = new_bw;
8216 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8217
8218 rcu_read_unlock_sched();
8219 }
8220 }
8221
8222 static int sched_rt_global_validate(void)
8223 {
8224 if (sysctl_sched_rt_period <= 0)
8225 return -EINVAL;
8226
8227 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8228 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8229 return -EINVAL;
8230
8231 return 0;
8232 }
8233
8234 static void sched_rt_do_global(void)
8235 {
8236 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8237 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8238 }
8239
8240 int sched_rt_handler(struct ctl_table *table, int write,
8241 void __user *buffer, size_t *lenp,
8242 loff_t *ppos)
8243 {
8244 int old_period, old_runtime;
8245 static DEFINE_MUTEX(mutex);
8246 int ret;
8247
8248 mutex_lock(&mutex);
8249 old_period = sysctl_sched_rt_period;
8250 old_runtime = sysctl_sched_rt_runtime;
8251
8252 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8253
8254 if (!ret && write) {
8255 ret = sched_rt_global_validate();
8256 if (ret)
8257 goto undo;
8258
8259 ret = sched_dl_global_validate();
8260 if (ret)
8261 goto undo;
8262
8263 ret = sched_rt_global_constraints();
8264 if (ret)
8265 goto undo;
8266
8267 sched_rt_do_global();
8268 sched_dl_do_global();
8269 }
8270 if (0) {
8271 undo:
8272 sysctl_sched_rt_period = old_period;
8273 sysctl_sched_rt_runtime = old_runtime;
8274 }
8275 mutex_unlock(&mutex);
8276
8277 return ret;
8278 }
8279
8280 int sched_rr_handler(struct ctl_table *table, int write,
8281 void __user *buffer, size_t *lenp,
8282 loff_t *ppos)
8283 {
8284 int ret;
8285 static DEFINE_MUTEX(mutex);
8286
8287 mutex_lock(&mutex);
8288 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8289 /* make sure that internally we keep jiffies */
8290 /* also, writing zero resets timeslice to default */
8291 if (!ret && write) {
8292 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8293 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8294 }
8295 mutex_unlock(&mutex);
8296 return ret;
8297 }
8298
8299 #ifdef CONFIG_CGROUP_SCHED
8300
8301 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8302 {
8303 return css ? container_of(css, struct task_group, css) : NULL;
8304 }
8305
8306 static struct cgroup_subsys_state *
8307 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8308 {
8309 struct task_group *parent = css_tg(parent_css);
8310 struct task_group *tg;
8311
8312 if (!parent) {
8313 /* This is early initialization for the top cgroup */
8314 return &root_task_group.css;
8315 }
8316
8317 tg = sched_create_group(parent);
8318 if (IS_ERR(tg))
8319 return ERR_PTR(-ENOMEM);
8320
8321 return &tg->css;
8322 }
8323
8324 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8325 {
8326 struct task_group *tg = css_tg(css);
8327 struct task_group *parent = css_tg(css->parent);
8328
8329 if (parent)
8330 sched_online_group(tg, parent);
8331 return 0;
8332 }
8333
8334 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8335 {
8336 struct task_group *tg = css_tg(css);
8337
8338 sched_destroy_group(tg);
8339 }
8340
8341 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8342 {
8343 struct task_group *tg = css_tg(css);
8344
8345 sched_offline_group(tg);
8346 }
8347
8348 static void cpu_cgroup_fork(struct task_struct *task)
8349 {
8350 sched_move_task(task);
8351 }
8352
8353 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8354 {
8355 struct task_struct *task;
8356 struct cgroup_subsys_state *css;
8357
8358 cgroup_taskset_for_each(task, css, tset) {
8359 #ifdef CONFIG_RT_GROUP_SCHED
8360 if (!sched_rt_can_attach(css_tg(css), task))
8361 return -EINVAL;
8362 #else
8363 /* We don't support RT-tasks being in separate groups */
8364 if (task->sched_class != &fair_sched_class)
8365 return -EINVAL;
8366 #endif
8367 }
8368 return 0;
8369 }
8370
8371 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8372 {
8373 struct task_struct *task;
8374 struct cgroup_subsys_state *css;
8375
8376 cgroup_taskset_for_each(task, css, tset)
8377 sched_move_task(task);
8378 }
8379
8380 #ifdef CONFIG_FAIR_GROUP_SCHED
8381 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8382 struct cftype *cftype, u64 shareval)
8383 {
8384 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8385 }
8386
8387 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8388 struct cftype *cft)
8389 {
8390 struct task_group *tg = css_tg(css);
8391
8392 return (u64) scale_load_down(tg->shares);
8393 }
8394
8395 #ifdef CONFIG_CFS_BANDWIDTH
8396 static DEFINE_MUTEX(cfs_constraints_mutex);
8397
8398 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8399 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8400
8401 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8402
8403 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8404 {
8405 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8406 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8407
8408 if (tg == &root_task_group)
8409 return -EINVAL;
8410
8411 /*
8412 * Ensure we have at some amount of bandwidth every period. This is
8413 * to prevent reaching a state of large arrears when throttled via
8414 * entity_tick() resulting in prolonged exit starvation.
8415 */
8416 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8417 return -EINVAL;
8418
8419 /*
8420 * Likewise, bound things on the otherside by preventing insane quota
8421 * periods. This also allows us to normalize in computing quota
8422 * feasibility.
8423 */
8424 if (period > max_cfs_quota_period)
8425 return -EINVAL;
8426
8427 /*
8428 * Prevent race between setting of cfs_rq->runtime_enabled and
8429 * unthrottle_offline_cfs_rqs().
8430 */
8431 get_online_cpus();
8432 mutex_lock(&cfs_constraints_mutex);
8433 ret = __cfs_schedulable(tg, period, quota);
8434 if (ret)
8435 goto out_unlock;
8436
8437 runtime_enabled = quota != RUNTIME_INF;
8438 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8439 /*
8440 * If we need to toggle cfs_bandwidth_used, off->on must occur
8441 * before making related changes, and on->off must occur afterwards
8442 */
8443 if (runtime_enabled && !runtime_was_enabled)
8444 cfs_bandwidth_usage_inc();
8445 raw_spin_lock_irq(&cfs_b->lock);
8446 cfs_b->period = ns_to_ktime(period);
8447 cfs_b->quota = quota;
8448
8449 __refill_cfs_bandwidth_runtime(cfs_b);
8450 /* restart the period timer (if active) to handle new period expiry */
8451 if (runtime_enabled)
8452 start_cfs_bandwidth(cfs_b);
8453 raw_spin_unlock_irq(&cfs_b->lock);
8454
8455 for_each_online_cpu(i) {
8456 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8457 struct rq *rq = cfs_rq->rq;
8458
8459 raw_spin_lock_irq(&rq->lock);
8460 cfs_rq->runtime_enabled = runtime_enabled;
8461 cfs_rq->runtime_remaining = 0;
8462
8463 if (cfs_rq->throttled)
8464 unthrottle_cfs_rq(cfs_rq);
8465 raw_spin_unlock_irq(&rq->lock);
8466 }
8467 if (runtime_was_enabled && !runtime_enabled)
8468 cfs_bandwidth_usage_dec();
8469 out_unlock:
8470 mutex_unlock(&cfs_constraints_mutex);
8471 put_online_cpus();
8472
8473 return ret;
8474 }
8475
8476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8477 {
8478 u64 quota, period;
8479
8480 period = ktime_to_ns(tg->cfs_bandwidth.period);
8481 if (cfs_quota_us < 0)
8482 quota = RUNTIME_INF;
8483 else
8484 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8485
8486 return tg_set_cfs_bandwidth(tg, period, quota);
8487 }
8488
8489 long tg_get_cfs_quota(struct task_group *tg)
8490 {
8491 u64 quota_us;
8492
8493 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8494 return -1;
8495
8496 quota_us = tg->cfs_bandwidth.quota;
8497 do_div(quota_us, NSEC_PER_USEC);
8498
8499 return quota_us;
8500 }
8501
8502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8503 {
8504 u64 quota, period;
8505
8506 period = (u64)cfs_period_us * NSEC_PER_USEC;
8507 quota = tg->cfs_bandwidth.quota;
8508
8509 return tg_set_cfs_bandwidth(tg, period, quota);
8510 }
8511
8512 long tg_get_cfs_period(struct task_group *tg)
8513 {
8514 u64 cfs_period_us;
8515
8516 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8517 do_div(cfs_period_us, NSEC_PER_USEC);
8518
8519 return cfs_period_us;
8520 }
8521
8522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8523 struct cftype *cft)
8524 {
8525 return tg_get_cfs_quota(css_tg(css));
8526 }
8527
8528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8529 struct cftype *cftype, s64 cfs_quota_us)
8530 {
8531 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8532 }
8533
8534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8535 struct cftype *cft)
8536 {
8537 return tg_get_cfs_period(css_tg(css));
8538 }
8539
8540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8541 struct cftype *cftype, u64 cfs_period_us)
8542 {
8543 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8544 }
8545
8546 struct cfs_schedulable_data {
8547 struct task_group *tg;
8548 u64 period, quota;
8549 };
8550
8551 /*
8552 * normalize group quota/period to be quota/max_period
8553 * note: units are usecs
8554 */
8555 static u64 normalize_cfs_quota(struct task_group *tg,
8556 struct cfs_schedulable_data *d)
8557 {
8558 u64 quota, period;
8559
8560 if (tg == d->tg) {
8561 period = d->period;
8562 quota = d->quota;
8563 } else {
8564 period = tg_get_cfs_period(tg);
8565 quota = tg_get_cfs_quota(tg);
8566 }
8567
8568 /* note: these should typically be equivalent */
8569 if (quota == RUNTIME_INF || quota == -1)
8570 return RUNTIME_INF;
8571
8572 return to_ratio(period, quota);
8573 }
8574
8575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8576 {
8577 struct cfs_schedulable_data *d = data;
8578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8579 s64 quota = 0, parent_quota = -1;
8580
8581 if (!tg->parent) {
8582 quota = RUNTIME_INF;
8583 } else {
8584 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8585
8586 quota = normalize_cfs_quota(tg, d);
8587 parent_quota = parent_b->hierarchical_quota;
8588
8589 /*
8590 * ensure max(child_quota) <= parent_quota, inherit when no
8591 * limit is set
8592 */
8593 if (quota == RUNTIME_INF)
8594 quota = parent_quota;
8595 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8596 return -EINVAL;
8597 }
8598 cfs_b->hierarchical_quota = quota;
8599
8600 return 0;
8601 }
8602
8603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8604 {
8605 int ret;
8606 struct cfs_schedulable_data data = {
8607 .tg = tg,
8608 .period = period,
8609 .quota = quota,
8610 };
8611
8612 if (quota != RUNTIME_INF) {
8613 do_div(data.period, NSEC_PER_USEC);
8614 do_div(data.quota, NSEC_PER_USEC);
8615 }
8616
8617 rcu_read_lock();
8618 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8619 rcu_read_unlock();
8620
8621 return ret;
8622 }
8623
8624 static int cpu_stats_show(struct seq_file *sf, void *v)
8625 {
8626 struct task_group *tg = css_tg(seq_css(sf));
8627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8628
8629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8632
8633 return 0;
8634 }
8635 #endif /* CONFIG_CFS_BANDWIDTH */
8636 #endif /* CONFIG_FAIR_GROUP_SCHED */
8637
8638 #ifdef CONFIG_RT_GROUP_SCHED
8639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8640 struct cftype *cft, s64 val)
8641 {
8642 return sched_group_set_rt_runtime(css_tg(css), val);
8643 }
8644
8645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8646 struct cftype *cft)
8647 {
8648 return sched_group_rt_runtime(css_tg(css));
8649 }
8650
8651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8652 struct cftype *cftype, u64 rt_period_us)
8653 {
8654 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8655 }
8656
8657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8658 struct cftype *cft)
8659 {
8660 return sched_group_rt_period(css_tg(css));
8661 }
8662 #endif /* CONFIG_RT_GROUP_SCHED */
8663
8664 static struct cftype cpu_files[] = {
8665 #ifdef CONFIG_FAIR_GROUP_SCHED
8666 {
8667 .name = "shares",
8668 .read_u64 = cpu_shares_read_u64,
8669 .write_u64 = cpu_shares_write_u64,
8670 },
8671 #endif
8672 #ifdef CONFIG_CFS_BANDWIDTH
8673 {
8674 .name = "cfs_quota_us",
8675 .read_s64 = cpu_cfs_quota_read_s64,
8676 .write_s64 = cpu_cfs_quota_write_s64,
8677 },
8678 {
8679 .name = "cfs_period_us",
8680 .read_u64 = cpu_cfs_period_read_u64,
8681 .write_u64 = cpu_cfs_period_write_u64,
8682 },
8683 {
8684 .name = "stat",
8685 .seq_show = cpu_stats_show,
8686 },
8687 #endif
8688 #ifdef CONFIG_RT_GROUP_SCHED
8689 {
8690 .name = "rt_runtime_us",
8691 .read_s64 = cpu_rt_runtime_read,
8692 .write_s64 = cpu_rt_runtime_write,
8693 },
8694 {
8695 .name = "rt_period_us",
8696 .read_u64 = cpu_rt_period_read_uint,
8697 .write_u64 = cpu_rt_period_write_uint,
8698 },
8699 #endif
8700 { } /* terminate */
8701 };
8702
8703 struct cgroup_subsys cpu_cgrp_subsys = {
8704 .css_alloc = cpu_cgroup_css_alloc,
8705 .css_free = cpu_cgroup_css_free,
8706 .css_online = cpu_cgroup_css_online,
8707 .css_offline = cpu_cgroup_css_offline,
8708 .fork = cpu_cgroup_fork,
8709 .can_attach = cpu_cgroup_can_attach,
8710 .attach = cpu_cgroup_attach,
8711 .legacy_cftypes = cpu_files,
8712 .early_init = 1,
8713 };
8714
8715 #endif /* CONFIG_CGROUP_SCHED */
8716
8717 void dump_cpu_task(int cpu)
8718 {
8719 pr_info("Task dump for CPU %d:\n", cpu);
8720 sched_show_task(cpu_curr(cpu));
8721 }
8722
8723 /*
8724 * Nice levels are multiplicative, with a gentle 10% change for every
8725 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8726 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8727 * that remained on nice 0.
8728 *
8729 * The "10% effect" is relative and cumulative: from _any_ nice level,
8730 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8731 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8732 * If a task goes up by ~10% and another task goes down by ~10% then
8733 * the relative distance between them is ~25%.)
8734 */
8735 const int sched_prio_to_weight[40] = {
8736 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8737 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8738 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8739 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8740 /* 0 */ 1024, 820, 655, 526, 423,
8741 /* 5 */ 335, 272, 215, 172, 137,
8742 /* 10 */ 110, 87, 70, 56, 45,
8743 /* 15 */ 36, 29, 23, 18, 15,
8744 };
8745
8746 /*
8747 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8748 *
8749 * In cases where the weight does not change often, we can use the
8750 * precalculated inverse to speed up arithmetics by turning divisions
8751 * into multiplications:
8752 */
8753 const u32 sched_prio_to_wmult[40] = {
8754 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8755 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8756 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8757 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8758 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8759 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8760 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8761 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8762 };
This page took 0.209045 seconds and 6 git commands to generate.