Merge tag 'trace-v4.8-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (tick_nohz_full_cpu(cpu)) {
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
587 tick_nohz_full_kick_cpu(cpu);
588 return true;
589 }
590
591 return false;
592 }
593
594 void wake_up_nohz_cpu(int cpu)
595 {
596 if (!wake_up_full_nohz_cpu(cpu))
597 wake_up_idle_cpu(cpu);
598 }
599
600 static inline bool got_nohz_idle_kick(void)
601 {
602 int cpu = smp_processor_id();
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
616 }
617
618 #else /* CONFIG_NO_HZ_COMMON */
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 return false;
623 }
624
625 #endif /* CONFIG_NO_HZ_COMMON */
626
627 #ifdef CONFIG_NO_HZ_FULL
628 bool sched_can_stop_tick(struct rq *rq)
629 {
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
636 /*
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
639 */
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
645 }
646
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
661 return false;
662
663 return true;
664 }
665 #endif /* CONFIG_NO_HZ_FULL */
666
667 void sched_avg_update(struct rq *rq)
668 {
669 s64 period = sched_avg_period();
670
671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
681 }
682
683 #endif /* CONFIG_SMP */
684
685 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687 /*
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
692 */
693 int walk_tg_tree_from(struct task_group *from,
694 tg_visitor down, tg_visitor up, void *data)
695 {
696 struct task_group *parent, *child;
697 int ret;
698
699 parent = from;
700
701 down:
702 ret = (*down)(parent, data);
703 if (ret)
704 goto out;
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709 up:
710 continue;
711 }
712 ret = (*up)(parent, data);
713 if (ret || parent == from)
714 goto out;
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
720 out:
721 return ret;
722 }
723
724 int tg_nop(struct task_group *tg, void *data)
725 {
726 return 0;
727 }
728 #endif
729
730 static void set_load_weight(struct task_struct *p)
731 {
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
738 if (idle_policy(p->policy)) {
739 load->weight = scale_load(WEIGHT_IDLEPRIO);
740 load->inv_weight = WMULT_IDLEPRIO;
741 return;
742 }
743
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
746 }
747
748 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749 {
750 update_rq_clock(rq);
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
753 p->sched_class->enqueue_task(rq, p, flags);
754 }
755
756 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757 {
758 update_rq_clock(rq);
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
761 p->sched_class->dequeue_task(rq, p, flags);
762 }
763
764 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
769 enqueue_task(rq, p, flags);
770 }
771
772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
777 dequeue_task(rq, p, flags);
778 }
779
780 static void update_rq_clock_task(struct rq *rq, s64 delta)
781 {
782 /*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788 #endif
789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 if (static_key_false((&paravirt_steal_rq_enabled))) {
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
821 rq->prev_steal_time_rq += steal;
822 delta -= steal;
823 }
824 #endif
825
826 rq->clock_task += delta;
827
828 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 sched_rt_avg_update(rq, irq_delta + steal);
831 #endif
832 }
833
834 void sched_set_stop_task(int cpu, struct task_struct *stop)
835 {
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862 }
863
864 /*
865 * __normal_prio - return the priority that is based on the static prio
866 */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 return p->static_prio;
870 }
871
872 /*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 int prio;
882
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890 }
891
892 /*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
899 static int effective_prio(struct task_struct *p)
900 {
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910 }
911
912 /**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
917 */
918 inline int task_curr(const struct task_struct *p)
919 {
920 return cpu_curr(task_cpu(p)) == p;
921 }
922
923 /*
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
929 */
930 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
932 int oldprio)
933 {
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
936 prev_class->switched_from(rq, p);
937
938 p->sched_class->switched_to(rq, p);
939 } else if (oldprio != p->prio || dl_task(p))
940 p->sched_class->prio_changed(rq, p, oldprio);
941 }
942
943 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 {
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
954 resched_curr(rq);
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965 rq_clock_skip_update(rq, true);
966 }
967
968 #ifdef CONFIG_SMP
969 /*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983 /*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
988 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
989 {
990 lockdep_assert_held(&rq->lock);
991
992 p->on_rq = TASK_ON_RQ_MIGRATING;
993 dequeue_task(rq, p, 0);
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
1001 enqueue_task(rq, p, 0);
1002 p->on_rq = TASK_ON_RQ_QUEUED;
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006 }
1007
1008 struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011 };
1012
1013 /*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
1021 */
1022 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1023 {
1024 if (unlikely(!cpu_active(dest_cpu)))
1025 return rq;
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029 return rq;
1030
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
1034 }
1035
1036 /*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041 static int migration_cpu_stop(void *data)
1042 {
1043 struct migration_arg *arg = data;
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
1071 local_irq_enable();
1072 return 0;
1073 }
1074
1075 /*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1080 {
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083 }
1084
1085 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086 {
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
1090 lockdep_assert_held(&p->pi_lock);
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1101 dequeue_task(rq, p, DEQUEUE_SAVE);
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
1106 p->sched_class->set_cpus_allowed(p, new_mask);
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 }
1113
1114 /*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
1123 static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
1125 {
1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1127 unsigned int dest_cpu;
1128 struct rq_flags rf;
1129 struct rq *rq;
1130 int ret = 0;
1131
1132 rq = task_rq_lock(p, &rf);
1133
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
1178 task_rq_unlock(rq, p, &rf);
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
1188 rq = move_queued_task(rq, p, dest_cpu);
1189 lockdep_repin_lock(&rq->lock, rf.cookie);
1190 }
1191 out:
1192 task_rq_unlock(rq, p, &rf);
1193
1194 return ret;
1195 }
1196
1197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198 {
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200 }
1201 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
1203 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1204 {
1205 #ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1211 !p->on_rq);
1212
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
1222 #ifdef CONFIG_LOCKDEP
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
1228 * see task_group().
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235 #endif
1236 #endif
1237
1238 trace_sched_migrate_task(p, new_cpu);
1239
1240 if (task_cpu(p) != new_cpu) {
1241 if (p->sched_class->migrate_task_rq)
1242 p->sched_class->migrate_task_rq(p);
1243 p->se.nr_migrations++;
1244 perf_event_task_migrate(p);
1245 }
1246
1247 __set_task_cpu(p, new_cpu);
1248 }
1249
1250 static void __migrate_swap_task(struct task_struct *p, int cpu)
1251 {
1252 if (task_on_rq_queued(p)) {
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
1258 p->on_rq = TASK_ON_RQ_MIGRATING;
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
1262 p->on_rq = TASK_ON_RQ_QUEUED;
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
1268 * previous cpu our targer instead of where it really is.
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272 }
1273
1274 struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277 };
1278
1279 static int migrate_swap_stop(void *data)
1280 {
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
1293 double_rq_lock(src_rq, dst_rq);
1294
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312 unlock:
1313 double_rq_unlock(src_rq, dst_rq);
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
1316
1317 return ret;
1318 }
1319
1320 /*
1321 * Cross migrate two tasks
1322 */
1323 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324 {
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354 out:
1355 return ret;
1356 }
1357
1358 /*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
1374 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1375 {
1376 int running, queued;
1377 struct rq_flags rf;
1378 unsigned long ncsw;
1379 struct rq *rq;
1380
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
1389
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
1404 cpu_relax();
1405 }
1406
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
1412 rq = task_rq_lock(p, &rf);
1413 trace_sched_wait_task(p);
1414 running = task_running(rq, p);
1415 queued = task_on_rq_queued(p);
1416 ncsw = 0;
1417 if (!match_state || p->state == match_state)
1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419 task_rq_unlock(rq, p, &rf);
1420
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
1437
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
1443 * So if it was still runnable (but just not actively
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
1447 if (unlikely(queued)) {
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 continue;
1453 }
1454
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
1462
1463 return ncsw;
1464 }
1465
1466 /***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
1473 * NOTE: this function doesn't have to take the runqueue lock,
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
1479 void kick_process(struct task_struct *p)
1480 {
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488 }
1489 EXPORT_SYMBOL_GPL(kick_process);
1490
1491 /*
1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
1512 */
1513 static int select_fallback_rq(int cpu, struct task_struct *p)
1514 {
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
1519
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
1535 }
1536
1537 for (;;) {
1538 /* Any allowed, online CPU? */
1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
1543 continue;
1544 goto out;
1545 }
1546
1547 /* No more Mr. Nice Guy. */
1548 switch (state) {
1549 case cpuset:
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567 out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 task_pid_nr(p), p->comm, cpu);
1577 }
1578 }
1579
1580 return dest_cpu;
1581 }
1582
1583 /*
1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585 */
1586 static inline
1587 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588 {
1589 lockdep_assert_held(&p->pi_lock);
1590
1591 if (tsk_nr_cpus_allowed(p) > 1)
1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1607 !cpu_online(cpu)))
1608 cpu = select_fallback_rq(task_cpu(p), p);
1609
1610 return cpu;
1611 }
1612
1613 static void update_avg(u64 *avg, u64 sample)
1614 {
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617 }
1618
1619 #else
1620
1621 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623 {
1624 return set_cpus_allowed_ptr(p, new_mask);
1625 }
1626
1627 #endif /* CONFIG_SMP */
1628
1629 static void
1630 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1631 {
1632 #ifdef CONFIG_SCHEDSTATS
1633 struct rq *rq = this_rq();
1634
1635 #ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645 rcu_read_lock();
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
1652 rcu_read_unlock();
1653 }
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
1658 #endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
1661 schedstat_inc(p, se.statistics.nr_wakeups);
1662
1663 if (wake_flags & WF_SYNC)
1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1665
1666 #endif /* CONFIG_SCHEDSTATS */
1667 }
1668
1669 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1670 {
1671 activate_task(rq, p, en_flags);
1672 p->on_rq = TASK_ON_RQ_QUEUED;
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
1677 }
1678
1679 /*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
1682 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
1684 {
1685 check_preempt_curr(rq, p, wake_flags);
1686 p->state = TASK_RUNNING;
1687 trace_sched_wakeup(p);
1688
1689 #ifdef CONFIG_SMP
1690 if (p->sched_class->task_woken) {
1691 /*
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
1694 */
1695 lockdep_unpin_lock(&rq->lock, cookie);
1696 p->sched_class->task_woken(rq, p);
1697 lockdep_repin_lock(&rq->lock, cookie);
1698 }
1699
1700 if (rq->idle_stamp) {
1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
1702 u64 max = 2*rq->max_idle_balance_cost;
1703
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
1707 rq->avg_idle = max;
1708
1709 rq->idle_stamp = 0;
1710 }
1711 #endif
1712 }
1713
1714 static void
1715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
1717 {
1718 int en_flags = ENQUEUE_WAKEUP;
1719
1720 lockdep_assert_held(&rq->lock);
1721
1722 #ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
1725
1726 if (wake_flags & WF_MIGRATED)
1727 en_flags |= ENQUEUE_MIGRATED;
1728 #endif
1729
1730 ttwu_activate(rq, p, en_flags);
1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 }
1733
1734 /*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740 static int ttwu_remote(struct task_struct *p, int wake_flags)
1741 {
1742 struct rq_flags rf;
1743 struct rq *rq;
1744 int ret = 0;
1745
1746 rq = __task_rq_lock(p, &rf);
1747 if (task_on_rq_queued(p)) {
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 ret = 1;
1752 }
1753 __task_rq_unlock(rq, &rf);
1754
1755 return ret;
1756 }
1757
1758 #ifdef CONFIG_SMP
1759 void sched_ttwu_pending(void)
1760 {
1761 struct rq *rq = this_rq();
1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
1763 struct pin_cookie cookie;
1764 struct task_struct *p;
1765 unsigned long flags;
1766
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
1771 cookie = lockdep_pin_lock(&rq->lock);
1772
1773 while (llist) {
1774 int wake_flags = 0;
1775
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
1783 }
1784
1785 lockdep_unpin_lock(&rq->lock, cookie);
1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 }
1788
1789 void scheduler_ipi(void)
1790 {
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
1796 preempt_fold_need_resched();
1797
1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
1815 sched_ttwu_pending();
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
1820 if (unlikely(got_nohz_idle_kick())) {
1821 this_rq()->idle_balance = 1;
1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
1823 }
1824 irq_exit();
1825 }
1826
1827 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 struct rq *rq = cpu_rq(cpu);
1830
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
1839 }
1840
1841 void wake_up_if_idle(int cpu)
1842 {
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
1860
1861 out:
1862 rcu_read_unlock();
1863 }
1864
1865 bool cpus_share_cache(int this_cpu, int that_cpu)
1866 {
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868 }
1869 #endif /* CONFIG_SMP */
1870
1871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 {
1873 struct rq *rq = cpu_rq(cpu);
1874 struct pin_cookie cookie;
1875
1876 #if defined(CONFIG_SMP)
1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1879 ttwu_queue_remote(p, cpu, wake_flags);
1880 return;
1881 }
1882 #endif
1883
1884 raw_spin_lock(&rq->lock);
1885 cookie = lockdep_pin_lock(&rq->lock);
1886 ttwu_do_activate(rq, p, wake_flags, cookie);
1887 lockdep_unpin_lock(&rq->lock, cookie);
1888 raw_spin_unlock(&rq->lock);
1889 }
1890
1891 /*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1941 * 2) smp_cond_load_acquire(!X->on_cpu)
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 *
1980 */
1981
1982 /**
1983 * try_to_wake_up - wake up a thread
1984 * @p: the thread to be awakened
1985 * @state: the mask of task states that can be woken
1986 * @wake_flags: wake modifier flags (WF_*)
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
1994 * Return: %true if @p was woken up, %false if it was already running.
1995 * or @state didn't match @p's state.
1996 */
1997 static int
1998 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 {
2000 unsigned long flags;
2001 int cpu, success = 0;
2002
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
2011 if (!(p->state & state))
2012 goto out;
2013
2014 trace_sched_waking(p);
2015
2016 success = 1; /* we're going to change ->state */
2017 cpu = task_cpu(p);
2018
2019 /*
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2023 *
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * [S] p->on_rq = 1; [L] P->state
2026 * UNLOCK rq->lock -----.
2027 * \
2028 * +--- RMB
2029 * schedule() /
2030 * LOCK rq->lock -----'
2031 * UNLOCK rq->lock
2032 *
2033 * [task p]
2034 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2035 *
2036 * Pairs with the UNLOCK+LOCK on rq->lock from the
2037 * last wakeup of our task and the schedule that got our task
2038 * current.
2039 */
2040 smp_rmb();
2041 if (p->on_rq && ttwu_remote(p, wake_flags))
2042 goto stat;
2043
2044 #ifdef CONFIG_SMP
2045 /*
2046 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2047 * possible to, falsely, observe p->on_cpu == 0.
2048 *
2049 * One must be running (->on_cpu == 1) in order to remove oneself
2050 * from the runqueue.
2051 *
2052 * [S] ->on_cpu = 1; [L] ->on_rq
2053 * UNLOCK rq->lock
2054 * RMB
2055 * LOCK rq->lock
2056 * [S] ->on_rq = 0; [L] ->on_cpu
2057 *
2058 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2059 * from the consecutive calls to schedule(); the first switching to our
2060 * task, the second putting it to sleep.
2061 */
2062 smp_rmb();
2063
2064 /*
2065 * If the owning (remote) cpu is still in the middle of schedule() with
2066 * this task as prev, wait until its done referencing the task.
2067 *
2068 * Pairs with the smp_store_release() in finish_lock_switch().
2069 *
2070 * This ensures that tasks getting woken will be fully ordered against
2071 * their previous state and preserve Program Order.
2072 */
2073 smp_cond_load_acquire(&p->on_cpu, !VAL);
2074
2075 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2076 p->state = TASK_WAKING;
2077
2078 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2079 if (task_cpu(p) != cpu) {
2080 wake_flags |= WF_MIGRATED;
2081 set_task_cpu(p, cpu);
2082 }
2083 #endif /* CONFIG_SMP */
2084
2085 ttwu_queue(p, cpu, wake_flags);
2086 stat:
2087 if (schedstat_enabled())
2088 ttwu_stat(p, cpu, wake_flags);
2089 out:
2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2091
2092 return success;
2093 }
2094
2095 /**
2096 * try_to_wake_up_local - try to wake up a local task with rq lock held
2097 * @p: the thread to be awakened
2098 *
2099 * Put @p on the run-queue if it's not already there. The caller must
2100 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2101 * the current task.
2102 */
2103 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2104 {
2105 struct rq *rq = task_rq(p);
2106
2107 if (WARN_ON_ONCE(rq != this_rq()) ||
2108 WARN_ON_ONCE(p == current))
2109 return;
2110
2111 lockdep_assert_held(&rq->lock);
2112
2113 if (!raw_spin_trylock(&p->pi_lock)) {
2114 /*
2115 * This is OK, because current is on_cpu, which avoids it being
2116 * picked for load-balance and preemption/IRQs are still
2117 * disabled avoiding further scheduler activity on it and we've
2118 * not yet picked a replacement task.
2119 */
2120 lockdep_unpin_lock(&rq->lock, cookie);
2121 raw_spin_unlock(&rq->lock);
2122 raw_spin_lock(&p->pi_lock);
2123 raw_spin_lock(&rq->lock);
2124 lockdep_repin_lock(&rq->lock, cookie);
2125 }
2126
2127 if (!(p->state & TASK_NORMAL))
2128 goto out;
2129
2130 trace_sched_waking(p);
2131
2132 if (!task_on_rq_queued(p))
2133 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2134
2135 ttwu_do_wakeup(rq, p, 0, cookie);
2136 if (schedstat_enabled())
2137 ttwu_stat(p, smp_processor_id(), 0);
2138 out:
2139 raw_spin_unlock(&p->pi_lock);
2140 }
2141
2142 /**
2143 * wake_up_process - Wake up a specific process
2144 * @p: The process to be woken up.
2145 *
2146 * Attempt to wake up the nominated process and move it to the set of runnable
2147 * processes.
2148 *
2149 * Return: 1 if the process was woken up, 0 if it was already running.
2150 *
2151 * It may be assumed that this function implies a write memory barrier before
2152 * changing the task state if and only if any tasks are woken up.
2153 */
2154 int wake_up_process(struct task_struct *p)
2155 {
2156 return try_to_wake_up(p, TASK_NORMAL, 0);
2157 }
2158 EXPORT_SYMBOL(wake_up_process);
2159
2160 int wake_up_state(struct task_struct *p, unsigned int state)
2161 {
2162 return try_to_wake_up(p, state, 0);
2163 }
2164
2165 /*
2166 * This function clears the sched_dl_entity static params.
2167 */
2168 void __dl_clear_params(struct task_struct *p)
2169 {
2170 struct sched_dl_entity *dl_se = &p->dl;
2171
2172 dl_se->dl_runtime = 0;
2173 dl_se->dl_deadline = 0;
2174 dl_se->dl_period = 0;
2175 dl_se->flags = 0;
2176 dl_se->dl_bw = 0;
2177
2178 dl_se->dl_throttled = 0;
2179 dl_se->dl_yielded = 0;
2180 }
2181
2182 /*
2183 * Perform scheduler related setup for a newly forked process p.
2184 * p is forked by current.
2185 *
2186 * __sched_fork() is basic setup used by init_idle() too:
2187 */
2188 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2189 {
2190 p->on_rq = 0;
2191
2192 p->se.on_rq = 0;
2193 p->se.exec_start = 0;
2194 p->se.sum_exec_runtime = 0;
2195 p->se.prev_sum_exec_runtime = 0;
2196 p->se.nr_migrations = 0;
2197 p->se.vruntime = 0;
2198 INIT_LIST_HEAD(&p->se.group_node);
2199
2200 #ifdef CONFIG_FAIR_GROUP_SCHED
2201 p->se.cfs_rq = NULL;
2202 #endif
2203
2204 #ifdef CONFIG_SCHEDSTATS
2205 /* Even if schedstat is disabled, there should not be garbage */
2206 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2207 #endif
2208
2209 RB_CLEAR_NODE(&p->dl.rb_node);
2210 init_dl_task_timer(&p->dl);
2211 __dl_clear_params(p);
2212
2213 INIT_LIST_HEAD(&p->rt.run_list);
2214 p->rt.timeout = 0;
2215 p->rt.time_slice = sched_rr_timeslice;
2216 p->rt.on_rq = 0;
2217 p->rt.on_list = 0;
2218
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 INIT_HLIST_HEAD(&p->preempt_notifiers);
2221 #endif
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2225 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2226 p->mm->numa_scan_seq = 0;
2227 }
2228
2229 if (clone_flags & CLONE_VM)
2230 p->numa_preferred_nid = current->numa_preferred_nid;
2231 else
2232 p->numa_preferred_nid = -1;
2233
2234 p->node_stamp = 0ULL;
2235 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2236 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2237 p->numa_work.next = &p->numa_work;
2238 p->numa_faults = NULL;
2239 p->last_task_numa_placement = 0;
2240 p->last_sum_exec_runtime = 0;
2241
2242 p->numa_group = NULL;
2243 #endif /* CONFIG_NUMA_BALANCING */
2244 }
2245
2246 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2247
2248 #ifdef CONFIG_NUMA_BALANCING
2249
2250 void set_numabalancing_state(bool enabled)
2251 {
2252 if (enabled)
2253 static_branch_enable(&sched_numa_balancing);
2254 else
2255 static_branch_disable(&sched_numa_balancing);
2256 }
2257
2258 #ifdef CONFIG_PROC_SYSCTL
2259 int sysctl_numa_balancing(struct ctl_table *table, int write,
2260 void __user *buffer, size_t *lenp, loff_t *ppos)
2261 {
2262 struct ctl_table t;
2263 int err;
2264 int state = static_branch_likely(&sched_numa_balancing);
2265
2266 if (write && !capable(CAP_SYS_ADMIN))
2267 return -EPERM;
2268
2269 t = *table;
2270 t.data = &state;
2271 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2272 if (err < 0)
2273 return err;
2274 if (write)
2275 set_numabalancing_state(state);
2276 return err;
2277 }
2278 #endif
2279 #endif
2280
2281 #ifdef CONFIG_SCHEDSTATS
2282
2283 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2284 static bool __initdata __sched_schedstats = false;
2285
2286 static void set_schedstats(bool enabled)
2287 {
2288 if (enabled)
2289 static_branch_enable(&sched_schedstats);
2290 else
2291 static_branch_disable(&sched_schedstats);
2292 }
2293
2294 void force_schedstat_enabled(void)
2295 {
2296 if (!schedstat_enabled()) {
2297 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2298 static_branch_enable(&sched_schedstats);
2299 }
2300 }
2301
2302 static int __init setup_schedstats(char *str)
2303 {
2304 int ret = 0;
2305 if (!str)
2306 goto out;
2307
2308 /*
2309 * This code is called before jump labels have been set up, so we can't
2310 * change the static branch directly just yet. Instead set a temporary
2311 * variable so init_schedstats() can do it later.
2312 */
2313 if (!strcmp(str, "enable")) {
2314 __sched_schedstats = true;
2315 ret = 1;
2316 } else if (!strcmp(str, "disable")) {
2317 __sched_schedstats = false;
2318 ret = 1;
2319 }
2320 out:
2321 if (!ret)
2322 pr_warn("Unable to parse schedstats=\n");
2323
2324 return ret;
2325 }
2326 __setup("schedstats=", setup_schedstats);
2327
2328 static void __init init_schedstats(void)
2329 {
2330 set_schedstats(__sched_schedstats);
2331 }
2332
2333 #ifdef CONFIG_PROC_SYSCTL
2334 int sysctl_schedstats(struct ctl_table *table, int write,
2335 void __user *buffer, size_t *lenp, loff_t *ppos)
2336 {
2337 struct ctl_table t;
2338 int err;
2339 int state = static_branch_likely(&sched_schedstats);
2340
2341 if (write && !capable(CAP_SYS_ADMIN))
2342 return -EPERM;
2343
2344 t = *table;
2345 t.data = &state;
2346 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2347 if (err < 0)
2348 return err;
2349 if (write)
2350 set_schedstats(state);
2351 return err;
2352 }
2353 #endif /* CONFIG_PROC_SYSCTL */
2354 #else /* !CONFIG_SCHEDSTATS */
2355 static inline void init_schedstats(void) {}
2356 #endif /* CONFIG_SCHEDSTATS */
2357
2358 /*
2359 * fork()/clone()-time setup:
2360 */
2361 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2362 {
2363 unsigned long flags;
2364 int cpu = get_cpu();
2365
2366 __sched_fork(clone_flags, p);
2367 /*
2368 * We mark the process as NEW here. This guarantees that
2369 * nobody will actually run it, and a signal or other external
2370 * event cannot wake it up and insert it on the runqueue either.
2371 */
2372 p->state = TASK_NEW;
2373
2374 /*
2375 * Make sure we do not leak PI boosting priority to the child.
2376 */
2377 p->prio = current->normal_prio;
2378
2379 /*
2380 * Revert to default priority/policy on fork if requested.
2381 */
2382 if (unlikely(p->sched_reset_on_fork)) {
2383 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2384 p->policy = SCHED_NORMAL;
2385 p->static_prio = NICE_TO_PRIO(0);
2386 p->rt_priority = 0;
2387 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2388 p->static_prio = NICE_TO_PRIO(0);
2389
2390 p->prio = p->normal_prio = __normal_prio(p);
2391 set_load_weight(p);
2392
2393 /*
2394 * We don't need the reset flag anymore after the fork. It has
2395 * fulfilled its duty:
2396 */
2397 p->sched_reset_on_fork = 0;
2398 }
2399
2400 if (dl_prio(p->prio)) {
2401 put_cpu();
2402 return -EAGAIN;
2403 } else if (rt_prio(p->prio)) {
2404 p->sched_class = &rt_sched_class;
2405 } else {
2406 p->sched_class = &fair_sched_class;
2407 }
2408
2409 init_entity_runnable_average(&p->se);
2410
2411 /*
2412 * The child is not yet in the pid-hash so no cgroup attach races,
2413 * and the cgroup is pinned to this child due to cgroup_fork()
2414 * is ran before sched_fork().
2415 *
2416 * Silence PROVE_RCU.
2417 */
2418 raw_spin_lock_irqsave(&p->pi_lock, flags);
2419 /*
2420 * We're setting the cpu for the first time, we don't migrate,
2421 * so use __set_task_cpu().
2422 */
2423 __set_task_cpu(p, cpu);
2424 if (p->sched_class->task_fork)
2425 p->sched_class->task_fork(p);
2426 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2427
2428 #ifdef CONFIG_SCHED_INFO
2429 if (likely(sched_info_on()))
2430 memset(&p->sched_info, 0, sizeof(p->sched_info));
2431 #endif
2432 #if defined(CONFIG_SMP)
2433 p->on_cpu = 0;
2434 #endif
2435 init_task_preempt_count(p);
2436 #ifdef CONFIG_SMP
2437 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2438 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2439 #endif
2440
2441 put_cpu();
2442 return 0;
2443 }
2444
2445 unsigned long to_ratio(u64 period, u64 runtime)
2446 {
2447 if (runtime == RUNTIME_INF)
2448 return 1ULL << 20;
2449
2450 /*
2451 * Doing this here saves a lot of checks in all
2452 * the calling paths, and returning zero seems
2453 * safe for them anyway.
2454 */
2455 if (period == 0)
2456 return 0;
2457
2458 return div64_u64(runtime << 20, period);
2459 }
2460
2461 #ifdef CONFIG_SMP
2462 inline struct dl_bw *dl_bw_of(int i)
2463 {
2464 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2465 "sched RCU must be held");
2466 return &cpu_rq(i)->rd->dl_bw;
2467 }
2468
2469 static inline int dl_bw_cpus(int i)
2470 {
2471 struct root_domain *rd = cpu_rq(i)->rd;
2472 int cpus = 0;
2473
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 for_each_cpu_and(i, rd->span, cpu_active_mask)
2477 cpus++;
2478
2479 return cpus;
2480 }
2481 #else
2482 inline struct dl_bw *dl_bw_of(int i)
2483 {
2484 return &cpu_rq(i)->dl.dl_bw;
2485 }
2486
2487 static inline int dl_bw_cpus(int i)
2488 {
2489 return 1;
2490 }
2491 #endif
2492
2493 /*
2494 * We must be sure that accepting a new task (or allowing changing the
2495 * parameters of an existing one) is consistent with the bandwidth
2496 * constraints. If yes, this function also accordingly updates the currently
2497 * allocated bandwidth to reflect the new situation.
2498 *
2499 * This function is called while holding p's rq->lock.
2500 *
2501 * XXX we should delay bw change until the task's 0-lag point, see
2502 * __setparam_dl().
2503 */
2504 static int dl_overflow(struct task_struct *p, int policy,
2505 const struct sched_attr *attr)
2506 {
2507
2508 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2509 u64 period = attr->sched_period ?: attr->sched_deadline;
2510 u64 runtime = attr->sched_runtime;
2511 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2512 int cpus, err = -1;
2513
2514 /* !deadline task may carry old deadline bandwidth */
2515 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2516 return 0;
2517
2518 /*
2519 * Either if a task, enters, leave, or stays -deadline but changes
2520 * its parameters, we may need to update accordingly the total
2521 * allocated bandwidth of the container.
2522 */
2523 raw_spin_lock(&dl_b->lock);
2524 cpus = dl_bw_cpus(task_cpu(p));
2525 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2526 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2527 __dl_add(dl_b, new_bw);
2528 err = 0;
2529 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2530 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2531 __dl_clear(dl_b, p->dl.dl_bw);
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2535 __dl_clear(dl_b, p->dl.dl_bw);
2536 err = 0;
2537 }
2538 raw_spin_unlock(&dl_b->lock);
2539
2540 return err;
2541 }
2542
2543 extern void init_dl_bw(struct dl_bw *dl_b);
2544
2545 /*
2546 * wake_up_new_task - wake up a newly created task for the first time.
2547 *
2548 * This function will do some initial scheduler statistics housekeeping
2549 * that must be done for every newly created context, then puts the task
2550 * on the runqueue and wakes it.
2551 */
2552 void wake_up_new_task(struct task_struct *p)
2553 {
2554 struct rq_flags rf;
2555 struct rq *rq;
2556
2557 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2558 p->state = TASK_RUNNING;
2559 #ifdef CONFIG_SMP
2560 /*
2561 * Fork balancing, do it here and not earlier because:
2562 * - cpus_allowed can change in the fork path
2563 * - any previously selected cpu might disappear through hotplug
2564 *
2565 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2566 * as we're not fully set-up yet.
2567 */
2568 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2569 #endif
2570 rq = __task_rq_lock(p, &rf);
2571 post_init_entity_util_avg(&p->se);
2572
2573 activate_task(rq, p, 0);
2574 p->on_rq = TASK_ON_RQ_QUEUED;
2575 trace_sched_wakeup_new(p);
2576 check_preempt_curr(rq, p, WF_FORK);
2577 #ifdef CONFIG_SMP
2578 if (p->sched_class->task_woken) {
2579 /*
2580 * Nothing relies on rq->lock after this, so its fine to
2581 * drop it.
2582 */
2583 lockdep_unpin_lock(&rq->lock, rf.cookie);
2584 p->sched_class->task_woken(rq, p);
2585 lockdep_repin_lock(&rq->lock, rf.cookie);
2586 }
2587 #endif
2588 task_rq_unlock(rq, p, &rf);
2589 }
2590
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2594
2595 void preempt_notifier_inc(void)
2596 {
2597 static_key_slow_inc(&preempt_notifier_key);
2598 }
2599 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2600
2601 void preempt_notifier_dec(void)
2602 {
2603 static_key_slow_dec(&preempt_notifier_key);
2604 }
2605 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2606
2607 /**
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2610 */
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2612 {
2613 if (!static_key_false(&preempt_notifier_key))
2614 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2615
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617 }
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620 /**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
2622 * @notifier: notifier struct to unregister
2623 *
2624 * This is *not* safe to call from within a preemption notifier.
2625 */
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627 {
2628 hlist_del(&notifier->link);
2629 }
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
2632 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 {
2634 struct preempt_notifier *notifier;
2635
2636 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2637 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638 }
2639
2640 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641 {
2642 if (static_key_false(&preempt_notifier_key))
2643 __fire_sched_in_preempt_notifiers(curr);
2644 }
2645
2646 static void
2647 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649 {
2650 struct preempt_notifier *notifier;
2651
2652 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2653 notifier->ops->sched_out(notifier, next);
2654 }
2655
2656 static __always_inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659 {
2660 if (static_key_false(&preempt_notifier_key))
2661 __fire_sched_out_preempt_notifiers(curr, next);
2662 }
2663
2664 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2665
2666 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667 {
2668 }
2669
2670 static inline void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673 {
2674 }
2675
2676 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2677
2678 /**
2679 * prepare_task_switch - prepare to switch tasks
2680 * @rq: the runqueue preparing to switch
2681 * @prev: the current task that is being switched out
2682 * @next: the task we are going to switch to.
2683 *
2684 * This is called with the rq lock held and interrupts off. It must
2685 * be paired with a subsequent finish_task_switch after the context
2686 * switch.
2687 *
2688 * prepare_task_switch sets up locking and calls architecture specific
2689 * hooks.
2690 */
2691 static inline void
2692 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2693 struct task_struct *next)
2694 {
2695 sched_info_switch(rq, prev, next);
2696 perf_event_task_sched_out(prev, next);
2697 fire_sched_out_preempt_notifiers(prev, next);
2698 prepare_lock_switch(rq, next);
2699 prepare_arch_switch(next);
2700 }
2701
2702 /**
2703 * finish_task_switch - clean up after a task-switch
2704 * @prev: the thread we just switched away from.
2705 *
2706 * finish_task_switch must be called after the context switch, paired
2707 * with a prepare_task_switch call before the context switch.
2708 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2709 * and do any other architecture-specific cleanup actions.
2710 *
2711 * Note that we may have delayed dropping an mm in context_switch(). If
2712 * so, we finish that here outside of the runqueue lock. (Doing it
2713 * with the lock held can cause deadlocks; see schedule() for
2714 * details.)
2715 *
2716 * The context switch have flipped the stack from under us and restored the
2717 * local variables which were saved when this task called schedule() in the
2718 * past. prev == current is still correct but we need to recalculate this_rq
2719 * because prev may have moved to another CPU.
2720 */
2721 static struct rq *finish_task_switch(struct task_struct *prev)
2722 __releases(rq->lock)
2723 {
2724 struct rq *rq = this_rq();
2725 struct mm_struct *mm = rq->prev_mm;
2726 long prev_state;
2727
2728 /*
2729 * The previous task will have left us with a preempt_count of 2
2730 * because it left us after:
2731 *
2732 * schedule()
2733 * preempt_disable(); // 1
2734 * __schedule()
2735 * raw_spin_lock_irq(&rq->lock) // 2
2736 *
2737 * Also, see FORK_PREEMPT_COUNT.
2738 */
2739 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2740 "corrupted preempt_count: %s/%d/0x%x\n",
2741 current->comm, current->pid, preempt_count()))
2742 preempt_count_set(FORK_PREEMPT_COUNT);
2743
2744 rq->prev_mm = NULL;
2745
2746 /*
2747 * A task struct has one reference for the use as "current".
2748 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2749 * schedule one last time. The schedule call will never return, and
2750 * the scheduled task must drop that reference.
2751 *
2752 * We must observe prev->state before clearing prev->on_cpu (in
2753 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2754 * running on another CPU and we could rave with its RUNNING -> DEAD
2755 * transition, resulting in a double drop.
2756 */
2757 prev_state = prev->state;
2758 vtime_task_switch(prev);
2759 perf_event_task_sched_in(prev, current);
2760 finish_lock_switch(rq, prev);
2761 finish_arch_post_lock_switch();
2762
2763 fire_sched_in_preempt_notifiers(current);
2764 if (mm)
2765 mmdrop(mm);
2766 if (unlikely(prev_state == TASK_DEAD)) {
2767 if (prev->sched_class->task_dead)
2768 prev->sched_class->task_dead(prev);
2769
2770 /*
2771 * Remove function-return probe instances associated with this
2772 * task and put them back on the free list.
2773 */
2774 kprobe_flush_task(prev);
2775 put_task_struct(prev);
2776 }
2777
2778 tick_nohz_task_switch();
2779 return rq;
2780 }
2781
2782 #ifdef CONFIG_SMP
2783
2784 /* rq->lock is NOT held, but preemption is disabled */
2785 static void __balance_callback(struct rq *rq)
2786 {
2787 struct callback_head *head, *next;
2788 void (*func)(struct rq *rq);
2789 unsigned long flags;
2790
2791 raw_spin_lock_irqsave(&rq->lock, flags);
2792 head = rq->balance_callback;
2793 rq->balance_callback = NULL;
2794 while (head) {
2795 func = (void (*)(struct rq *))head->func;
2796 next = head->next;
2797 head->next = NULL;
2798 head = next;
2799
2800 func(rq);
2801 }
2802 raw_spin_unlock_irqrestore(&rq->lock, flags);
2803 }
2804
2805 static inline void balance_callback(struct rq *rq)
2806 {
2807 if (unlikely(rq->balance_callback))
2808 __balance_callback(rq);
2809 }
2810
2811 #else
2812
2813 static inline void balance_callback(struct rq *rq)
2814 {
2815 }
2816
2817 #endif
2818
2819 /**
2820 * schedule_tail - first thing a freshly forked thread must call.
2821 * @prev: the thread we just switched away from.
2822 */
2823 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2824 __releases(rq->lock)
2825 {
2826 struct rq *rq;
2827
2828 /*
2829 * New tasks start with FORK_PREEMPT_COUNT, see there and
2830 * finish_task_switch() for details.
2831 *
2832 * finish_task_switch() will drop rq->lock() and lower preempt_count
2833 * and the preempt_enable() will end up enabling preemption (on
2834 * PREEMPT_COUNT kernels).
2835 */
2836
2837 rq = finish_task_switch(prev);
2838 balance_callback(rq);
2839 preempt_enable();
2840
2841 if (current->set_child_tid)
2842 put_user(task_pid_vnr(current), current->set_child_tid);
2843 }
2844
2845 /*
2846 * context_switch - switch to the new MM and the new thread's register state.
2847 */
2848 static __always_inline struct rq *
2849 context_switch(struct rq *rq, struct task_struct *prev,
2850 struct task_struct *next, struct pin_cookie cookie)
2851 {
2852 struct mm_struct *mm, *oldmm;
2853
2854 prepare_task_switch(rq, prev, next);
2855
2856 mm = next->mm;
2857 oldmm = prev->active_mm;
2858 /*
2859 * For paravirt, this is coupled with an exit in switch_to to
2860 * combine the page table reload and the switch backend into
2861 * one hypercall.
2862 */
2863 arch_start_context_switch(prev);
2864
2865 if (!mm) {
2866 next->active_mm = oldmm;
2867 atomic_inc(&oldmm->mm_count);
2868 enter_lazy_tlb(oldmm, next);
2869 } else
2870 switch_mm_irqs_off(oldmm, mm, next);
2871
2872 if (!prev->mm) {
2873 prev->active_mm = NULL;
2874 rq->prev_mm = oldmm;
2875 }
2876 /*
2877 * Since the runqueue lock will be released by the next
2878 * task (which is an invalid locking op but in the case
2879 * of the scheduler it's an obvious special-case), so we
2880 * do an early lockdep release here:
2881 */
2882 lockdep_unpin_lock(&rq->lock, cookie);
2883 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2884
2885 /* Here we just switch the register state and the stack. */
2886 switch_to(prev, next, prev);
2887 barrier();
2888
2889 return finish_task_switch(prev);
2890 }
2891
2892 /*
2893 * nr_running and nr_context_switches:
2894 *
2895 * externally visible scheduler statistics: current number of runnable
2896 * threads, total number of context switches performed since bootup.
2897 */
2898 unsigned long nr_running(void)
2899 {
2900 unsigned long i, sum = 0;
2901
2902 for_each_online_cpu(i)
2903 sum += cpu_rq(i)->nr_running;
2904
2905 return sum;
2906 }
2907
2908 /*
2909 * Check if only the current task is running on the cpu.
2910 *
2911 * Caution: this function does not check that the caller has disabled
2912 * preemption, thus the result might have a time-of-check-to-time-of-use
2913 * race. The caller is responsible to use it correctly, for example:
2914 *
2915 * - from a non-preemptable section (of course)
2916 *
2917 * - from a thread that is bound to a single CPU
2918 *
2919 * - in a loop with very short iterations (e.g. a polling loop)
2920 */
2921 bool single_task_running(void)
2922 {
2923 return raw_rq()->nr_running == 1;
2924 }
2925 EXPORT_SYMBOL(single_task_running);
2926
2927 unsigned long long nr_context_switches(void)
2928 {
2929 int i;
2930 unsigned long long sum = 0;
2931
2932 for_each_possible_cpu(i)
2933 sum += cpu_rq(i)->nr_switches;
2934
2935 return sum;
2936 }
2937
2938 unsigned long nr_iowait(void)
2939 {
2940 unsigned long i, sum = 0;
2941
2942 for_each_possible_cpu(i)
2943 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2944
2945 return sum;
2946 }
2947
2948 unsigned long nr_iowait_cpu(int cpu)
2949 {
2950 struct rq *this = cpu_rq(cpu);
2951 return atomic_read(&this->nr_iowait);
2952 }
2953
2954 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2955 {
2956 struct rq *rq = this_rq();
2957 *nr_waiters = atomic_read(&rq->nr_iowait);
2958 *load = rq->load.weight;
2959 }
2960
2961 #ifdef CONFIG_SMP
2962
2963 /*
2964 * sched_exec - execve() is a valuable balancing opportunity, because at
2965 * this point the task has the smallest effective memory and cache footprint.
2966 */
2967 void sched_exec(void)
2968 {
2969 struct task_struct *p = current;
2970 unsigned long flags;
2971 int dest_cpu;
2972
2973 raw_spin_lock_irqsave(&p->pi_lock, flags);
2974 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2975 if (dest_cpu == smp_processor_id())
2976 goto unlock;
2977
2978 if (likely(cpu_active(dest_cpu))) {
2979 struct migration_arg arg = { p, dest_cpu };
2980
2981 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2982 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2983 return;
2984 }
2985 unlock:
2986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2987 }
2988
2989 #endif
2990
2991 DEFINE_PER_CPU(struct kernel_stat, kstat);
2992 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2993
2994 EXPORT_PER_CPU_SYMBOL(kstat);
2995 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2996
2997 /*
2998 * The function fair_sched_class.update_curr accesses the struct curr
2999 * and its field curr->exec_start; when called from task_sched_runtime(),
3000 * we observe a high rate of cache misses in practice.
3001 * Prefetching this data results in improved performance.
3002 */
3003 static inline void prefetch_curr_exec_start(struct task_struct *p)
3004 {
3005 #ifdef CONFIG_FAIR_GROUP_SCHED
3006 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3007 #else
3008 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3009 #endif
3010 prefetch(curr);
3011 prefetch(&curr->exec_start);
3012 }
3013
3014 /*
3015 * Return accounted runtime for the task.
3016 * In case the task is currently running, return the runtime plus current's
3017 * pending runtime that have not been accounted yet.
3018 */
3019 unsigned long long task_sched_runtime(struct task_struct *p)
3020 {
3021 struct rq_flags rf;
3022 struct rq *rq;
3023 u64 ns;
3024
3025 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3026 /*
3027 * 64-bit doesn't need locks to atomically read a 64bit value.
3028 * So we have a optimization chance when the task's delta_exec is 0.
3029 * Reading ->on_cpu is racy, but this is ok.
3030 *
3031 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3032 * If we race with it entering cpu, unaccounted time is 0. This is
3033 * indistinguishable from the read occurring a few cycles earlier.
3034 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3035 * been accounted, so we're correct here as well.
3036 */
3037 if (!p->on_cpu || !task_on_rq_queued(p))
3038 return p->se.sum_exec_runtime;
3039 #endif
3040
3041 rq = task_rq_lock(p, &rf);
3042 /*
3043 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3044 * project cycles that may never be accounted to this
3045 * thread, breaking clock_gettime().
3046 */
3047 if (task_current(rq, p) && task_on_rq_queued(p)) {
3048 prefetch_curr_exec_start(p);
3049 update_rq_clock(rq);
3050 p->sched_class->update_curr(rq);
3051 }
3052 ns = p->se.sum_exec_runtime;
3053 task_rq_unlock(rq, p, &rf);
3054
3055 return ns;
3056 }
3057
3058 /*
3059 * This function gets called by the timer code, with HZ frequency.
3060 * We call it with interrupts disabled.
3061 */
3062 void scheduler_tick(void)
3063 {
3064 int cpu = smp_processor_id();
3065 struct rq *rq = cpu_rq(cpu);
3066 struct task_struct *curr = rq->curr;
3067
3068 sched_clock_tick();
3069
3070 raw_spin_lock(&rq->lock);
3071 update_rq_clock(rq);
3072 curr->sched_class->task_tick(rq, curr, 0);
3073 cpu_load_update_active(rq);
3074 calc_global_load_tick(rq);
3075 raw_spin_unlock(&rq->lock);
3076
3077 perf_event_task_tick();
3078
3079 #ifdef CONFIG_SMP
3080 rq->idle_balance = idle_cpu(cpu);
3081 trigger_load_balance(rq);
3082 #endif
3083 rq_last_tick_reset(rq);
3084 }
3085
3086 #ifdef CONFIG_NO_HZ_FULL
3087 /**
3088 * scheduler_tick_max_deferment
3089 *
3090 * Keep at least one tick per second when a single
3091 * active task is running because the scheduler doesn't
3092 * yet completely support full dynticks environment.
3093 *
3094 * This makes sure that uptime, CFS vruntime, load
3095 * balancing, etc... continue to move forward, even
3096 * with a very low granularity.
3097 *
3098 * Return: Maximum deferment in nanoseconds.
3099 */
3100 u64 scheduler_tick_max_deferment(void)
3101 {
3102 struct rq *rq = this_rq();
3103 unsigned long next, now = READ_ONCE(jiffies);
3104
3105 next = rq->last_sched_tick + HZ;
3106
3107 if (time_before_eq(next, now))
3108 return 0;
3109
3110 return jiffies_to_nsecs(next - now);
3111 }
3112 #endif
3113
3114 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3115 defined(CONFIG_PREEMPT_TRACER))
3116 /*
3117 * If the value passed in is equal to the current preempt count
3118 * then we just disabled preemption. Start timing the latency.
3119 */
3120 static inline void preempt_latency_start(int val)
3121 {
3122 if (preempt_count() == val) {
3123 unsigned long ip = get_lock_parent_ip();
3124 #ifdef CONFIG_DEBUG_PREEMPT
3125 current->preempt_disable_ip = ip;
3126 #endif
3127 trace_preempt_off(CALLER_ADDR0, ip);
3128 }
3129 }
3130
3131 void preempt_count_add(int val)
3132 {
3133 #ifdef CONFIG_DEBUG_PREEMPT
3134 /*
3135 * Underflow?
3136 */
3137 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3138 return;
3139 #endif
3140 __preempt_count_add(val);
3141 #ifdef CONFIG_DEBUG_PREEMPT
3142 /*
3143 * Spinlock count overflowing soon?
3144 */
3145 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3146 PREEMPT_MASK - 10);
3147 #endif
3148 preempt_latency_start(val);
3149 }
3150 EXPORT_SYMBOL(preempt_count_add);
3151 NOKPROBE_SYMBOL(preempt_count_add);
3152
3153 /*
3154 * If the value passed in equals to the current preempt count
3155 * then we just enabled preemption. Stop timing the latency.
3156 */
3157 static inline void preempt_latency_stop(int val)
3158 {
3159 if (preempt_count() == val)
3160 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3161 }
3162
3163 void preempt_count_sub(int val)
3164 {
3165 #ifdef CONFIG_DEBUG_PREEMPT
3166 /*
3167 * Underflow?
3168 */
3169 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3170 return;
3171 /*
3172 * Is the spinlock portion underflowing?
3173 */
3174 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3175 !(preempt_count() & PREEMPT_MASK)))
3176 return;
3177 #endif
3178
3179 preempt_latency_stop(val);
3180 __preempt_count_sub(val);
3181 }
3182 EXPORT_SYMBOL(preempt_count_sub);
3183 NOKPROBE_SYMBOL(preempt_count_sub);
3184
3185 #else
3186 static inline void preempt_latency_start(int val) { }
3187 static inline void preempt_latency_stop(int val) { }
3188 #endif
3189
3190 /*
3191 * Print scheduling while atomic bug:
3192 */
3193 static noinline void __schedule_bug(struct task_struct *prev)
3194 {
3195 if (oops_in_progress)
3196 return;
3197
3198 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3199 prev->comm, prev->pid, preempt_count());
3200
3201 debug_show_held_locks(prev);
3202 print_modules();
3203 if (irqs_disabled())
3204 print_irqtrace_events(prev);
3205 #ifdef CONFIG_DEBUG_PREEMPT
3206 if (in_atomic_preempt_off()) {
3207 pr_err("Preemption disabled at:");
3208 print_ip_sym(current->preempt_disable_ip);
3209 pr_cont("\n");
3210 }
3211 #endif
3212 if (panic_on_warn)
3213 panic("scheduling while atomic\n");
3214
3215 dump_stack();
3216 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3217 }
3218
3219 /*
3220 * Various schedule()-time debugging checks and statistics:
3221 */
3222 static inline void schedule_debug(struct task_struct *prev)
3223 {
3224 #ifdef CONFIG_SCHED_STACK_END_CHECK
3225 if (task_stack_end_corrupted(prev))
3226 panic("corrupted stack end detected inside scheduler\n");
3227 #endif
3228
3229 if (unlikely(in_atomic_preempt_off())) {
3230 __schedule_bug(prev);
3231 preempt_count_set(PREEMPT_DISABLED);
3232 }
3233 rcu_sleep_check();
3234
3235 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3236
3237 schedstat_inc(this_rq(), sched_count);
3238 }
3239
3240 /*
3241 * Pick up the highest-prio task:
3242 */
3243 static inline struct task_struct *
3244 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3245 {
3246 const struct sched_class *class = &fair_sched_class;
3247 struct task_struct *p;
3248
3249 /*
3250 * Optimization: we know that if all tasks are in
3251 * the fair class we can call that function directly:
3252 */
3253 if (likely(prev->sched_class == class &&
3254 rq->nr_running == rq->cfs.h_nr_running)) {
3255 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3256 if (unlikely(p == RETRY_TASK))
3257 goto again;
3258
3259 /* assumes fair_sched_class->next == idle_sched_class */
3260 if (unlikely(!p))
3261 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3262
3263 return p;
3264 }
3265
3266 again:
3267 for_each_class(class) {
3268 p = class->pick_next_task(rq, prev, cookie);
3269 if (p) {
3270 if (unlikely(p == RETRY_TASK))
3271 goto again;
3272 return p;
3273 }
3274 }
3275
3276 BUG(); /* the idle class will always have a runnable task */
3277 }
3278
3279 /*
3280 * __schedule() is the main scheduler function.
3281 *
3282 * The main means of driving the scheduler and thus entering this function are:
3283 *
3284 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3285 *
3286 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3287 * paths. For example, see arch/x86/entry_64.S.
3288 *
3289 * To drive preemption between tasks, the scheduler sets the flag in timer
3290 * interrupt handler scheduler_tick().
3291 *
3292 * 3. Wakeups don't really cause entry into schedule(). They add a
3293 * task to the run-queue and that's it.
3294 *
3295 * Now, if the new task added to the run-queue preempts the current
3296 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3297 * called on the nearest possible occasion:
3298 *
3299 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3300 *
3301 * - in syscall or exception context, at the next outmost
3302 * preempt_enable(). (this might be as soon as the wake_up()'s
3303 * spin_unlock()!)
3304 *
3305 * - in IRQ context, return from interrupt-handler to
3306 * preemptible context
3307 *
3308 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3309 * then at the next:
3310 *
3311 * - cond_resched() call
3312 * - explicit schedule() call
3313 * - return from syscall or exception to user-space
3314 * - return from interrupt-handler to user-space
3315 *
3316 * WARNING: must be called with preemption disabled!
3317 */
3318 static void __sched notrace __schedule(bool preempt)
3319 {
3320 struct task_struct *prev, *next;
3321 unsigned long *switch_count;
3322 struct pin_cookie cookie;
3323 struct rq *rq;
3324 int cpu;
3325
3326 cpu = smp_processor_id();
3327 rq = cpu_rq(cpu);
3328 prev = rq->curr;
3329
3330 /*
3331 * do_exit() calls schedule() with preemption disabled as an exception;
3332 * however we must fix that up, otherwise the next task will see an
3333 * inconsistent (higher) preempt count.
3334 *
3335 * It also avoids the below schedule_debug() test from complaining
3336 * about this.
3337 */
3338 if (unlikely(prev->state == TASK_DEAD))
3339 preempt_enable_no_resched_notrace();
3340
3341 schedule_debug(prev);
3342
3343 if (sched_feat(HRTICK))
3344 hrtick_clear(rq);
3345
3346 local_irq_disable();
3347 rcu_note_context_switch();
3348
3349 /*
3350 * Make sure that signal_pending_state()->signal_pending() below
3351 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3352 * done by the caller to avoid the race with signal_wake_up().
3353 */
3354 smp_mb__before_spinlock();
3355 raw_spin_lock(&rq->lock);
3356 cookie = lockdep_pin_lock(&rq->lock);
3357
3358 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3359
3360 switch_count = &prev->nivcsw;
3361 if (!preempt && prev->state) {
3362 if (unlikely(signal_pending_state(prev->state, prev))) {
3363 prev->state = TASK_RUNNING;
3364 } else {
3365 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3366 prev->on_rq = 0;
3367
3368 /*
3369 * If a worker went to sleep, notify and ask workqueue
3370 * whether it wants to wake up a task to maintain
3371 * concurrency.
3372 */
3373 if (prev->flags & PF_WQ_WORKER) {
3374 struct task_struct *to_wakeup;
3375
3376 to_wakeup = wq_worker_sleeping(prev);
3377 if (to_wakeup)
3378 try_to_wake_up_local(to_wakeup, cookie);
3379 }
3380 }
3381 switch_count = &prev->nvcsw;
3382 }
3383
3384 if (task_on_rq_queued(prev))
3385 update_rq_clock(rq);
3386
3387 next = pick_next_task(rq, prev, cookie);
3388 clear_tsk_need_resched(prev);
3389 clear_preempt_need_resched();
3390 rq->clock_skip_update = 0;
3391
3392 if (likely(prev != next)) {
3393 rq->nr_switches++;
3394 rq->curr = next;
3395 ++*switch_count;
3396
3397 trace_sched_switch(preempt, prev, next);
3398 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3399 } else {
3400 lockdep_unpin_lock(&rq->lock, cookie);
3401 raw_spin_unlock_irq(&rq->lock);
3402 }
3403
3404 balance_callback(rq);
3405 }
3406 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3407
3408 static inline void sched_submit_work(struct task_struct *tsk)
3409 {
3410 if (!tsk->state || tsk_is_pi_blocked(tsk))
3411 return;
3412 /*
3413 * If we are going to sleep and we have plugged IO queued,
3414 * make sure to submit it to avoid deadlocks.
3415 */
3416 if (blk_needs_flush_plug(tsk))
3417 blk_schedule_flush_plug(tsk);
3418 }
3419
3420 asmlinkage __visible void __sched schedule(void)
3421 {
3422 struct task_struct *tsk = current;
3423
3424 sched_submit_work(tsk);
3425 do {
3426 preempt_disable();
3427 __schedule(false);
3428 sched_preempt_enable_no_resched();
3429 } while (need_resched());
3430 }
3431 EXPORT_SYMBOL(schedule);
3432
3433 #ifdef CONFIG_CONTEXT_TRACKING
3434 asmlinkage __visible void __sched schedule_user(void)
3435 {
3436 /*
3437 * If we come here after a random call to set_need_resched(),
3438 * or we have been woken up remotely but the IPI has not yet arrived,
3439 * we haven't yet exited the RCU idle mode. Do it here manually until
3440 * we find a better solution.
3441 *
3442 * NB: There are buggy callers of this function. Ideally we
3443 * should warn if prev_state != CONTEXT_USER, but that will trigger
3444 * too frequently to make sense yet.
3445 */
3446 enum ctx_state prev_state = exception_enter();
3447 schedule();
3448 exception_exit(prev_state);
3449 }
3450 #endif
3451
3452 /**
3453 * schedule_preempt_disabled - called with preemption disabled
3454 *
3455 * Returns with preemption disabled. Note: preempt_count must be 1
3456 */
3457 void __sched schedule_preempt_disabled(void)
3458 {
3459 sched_preempt_enable_no_resched();
3460 schedule();
3461 preempt_disable();
3462 }
3463
3464 static void __sched notrace preempt_schedule_common(void)
3465 {
3466 do {
3467 /*
3468 * Because the function tracer can trace preempt_count_sub()
3469 * and it also uses preempt_enable/disable_notrace(), if
3470 * NEED_RESCHED is set, the preempt_enable_notrace() called
3471 * by the function tracer will call this function again and
3472 * cause infinite recursion.
3473 *
3474 * Preemption must be disabled here before the function
3475 * tracer can trace. Break up preempt_disable() into two
3476 * calls. One to disable preemption without fear of being
3477 * traced. The other to still record the preemption latency,
3478 * which can also be traced by the function tracer.
3479 */
3480 preempt_disable_notrace();
3481 preempt_latency_start(1);
3482 __schedule(true);
3483 preempt_latency_stop(1);
3484 preempt_enable_no_resched_notrace();
3485
3486 /*
3487 * Check again in case we missed a preemption opportunity
3488 * between schedule and now.
3489 */
3490 } while (need_resched());
3491 }
3492
3493 #ifdef CONFIG_PREEMPT
3494 /*
3495 * this is the entry point to schedule() from in-kernel preemption
3496 * off of preempt_enable. Kernel preemptions off return from interrupt
3497 * occur there and call schedule directly.
3498 */
3499 asmlinkage __visible void __sched notrace preempt_schedule(void)
3500 {
3501 /*
3502 * If there is a non-zero preempt_count or interrupts are disabled,
3503 * we do not want to preempt the current task. Just return..
3504 */
3505 if (likely(!preemptible()))
3506 return;
3507
3508 preempt_schedule_common();
3509 }
3510 NOKPROBE_SYMBOL(preempt_schedule);
3511 EXPORT_SYMBOL(preempt_schedule);
3512
3513 /**
3514 * preempt_schedule_notrace - preempt_schedule called by tracing
3515 *
3516 * The tracing infrastructure uses preempt_enable_notrace to prevent
3517 * recursion and tracing preempt enabling caused by the tracing
3518 * infrastructure itself. But as tracing can happen in areas coming
3519 * from userspace or just about to enter userspace, a preempt enable
3520 * can occur before user_exit() is called. This will cause the scheduler
3521 * to be called when the system is still in usermode.
3522 *
3523 * To prevent this, the preempt_enable_notrace will use this function
3524 * instead of preempt_schedule() to exit user context if needed before
3525 * calling the scheduler.
3526 */
3527 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3528 {
3529 enum ctx_state prev_ctx;
3530
3531 if (likely(!preemptible()))
3532 return;
3533
3534 do {
3535 /*
3536 * Because the function tracer can trace preempt_count_sub()
3537 * and it also uses preempt_enable/disable_notrace(), if
3538 * NEED_RESCHED is set, the preempt_enable_notrace() called
3539 * by the function tracer will call this function again and
3540 * cause infinite recursion.
3541 *
3542 * Preemption must be disabled here before the function
3543 * tracer can trace. Break up preempt_disable() into two
3544 * calls. One to disable preemption without fear of being
3545 * traced. The other to still record the preemption latency,
3546 * which can also be traced by the function tracer.
3547 */
3548 preempt_disable_notrace();
3549 preempt_latency_start(1);
3550 /*
3551 * Needs preempt disabled in case user_exit() is traced
3552 * and the tracer calls preempt_enable_notrace() causing
3553 * an infinite recursion.
3554 */
3555 prev_ctx = exception_enter();
3556 __schedule(true);
3557 exception_exit(prev_ctx);
3558
3559 preempt_latency_stop(1);
3560 preempt_enable_no_resched_notrace();
3561 } while (need_resched());
3562 }
3563 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3564
3565 #endif /* CONFIG_PREEMPT */
3566
3567 /*
3568 * this is the entry point to schedule() from kernel preemption
3569 * off of irq context.
3570 * Note, that this is called and return with irqs disabled. This will
3571 * protect us against recursive calling from irq.
3572 */
3573 asmlinkage __visible void __sched preempt_schedule_irq(void)
3574 {
3575 enum ctx_state prev_state;
3576
3577 /* Catch callers which need to be fixed */
3578 BUG_ON(preempt_count() || !irqs_disabled());
3579
3580 prev_state = exception_enter();
3581
3582 do {
3583 preempt_disable();
3584 local_irq_enable();
3585 __schedule(true);
3586 local_irq_disable();
3587 sched_preempt_enable_no_resched();
3588 } while (need_resched());
3589
3590 exception_exit(prev_state);
3591 }
3592
3593 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3594 void *key)
3595 {
3596 return try_to_wake_up(curr->private, mode, wake_flags);
3597 }
3598 EXPORT_SYMBOL(default_wake_function);
3599
3600 #ifdef CONFIG_RT_MUTEXES
3601
3602 /*
3603 * rt_mutex_setprio - set the current priority of a task
3604 * @p: task
3605 * @prio: prio value (kernel-internal form)
3606 *
3607 * This function changes the 'effective' priority of a task. It does
3608 * not touch ->normal_prio like __setscheduler().
3609 *
3610 * Used by the rt_mutex code to implement priority inheritance
3611 * logic. Call site only calls if the priority of the task changed.
3612 */
3613 void rt_mutex_setprio(struct task_struct *p, int prio)
3614 {
3615 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3616 const struct sched_class *prev_class;
3617 struct rq_flags rf;
3618 struct rq *rq;
3619
3620 BUG_ON(prio > MAX_PRIO);
3621
3622 rq = __task_rq_lock(p, &rf);
3623
3624 /*
3625 * Idle task boosting is a nono in general. There is one
3626 * exception, when PREEMPT_RT and NOHZ is active:
3627 *
3628 * The idle task calls get_next_timer_interrupt() and holds
3629 * the timer wheel base->lock on the CPU and another CPU wants
3630 * to access the timer (probably to cancel it). We can safely
3631 * ignore the boosting request, as the idle CPU runs this code
3632 * with interrupts disabled and will complete the lock
3633 * protected section without being interrupted. So there is no
3634 * real need to boost.
3635 */
3636 if (unlikely(p == rq->idle)) {
3637 WARN_ON(p != rq->curr);
3638 WARN_ON(p->pi_blocked_on);
3639 goto out_unlock;
3640 }
3641
3642 trace_sched_pi_setprio(p, prio);
3643 oldprio = p->prio;
3644
3645 if (oldprio == prio)
3646 queue_flag &= ~DEQUEUE_MOVE;
3647
3648 prev_class = p->sched_class;
3649 queued = task_on_rq_queued(p);
3650 running = task_current(rq, p);
3651 if (queued)
3652 dequeue_task(rq, p, queue_flag);
3653 if (running)
3654 put_prev_task(rq, p);
3655
3656 /*
3657 * Boosting condition are:
3658 * 1. -rt task is running and holds mutex A
3659 * --> -dl task blocks on mutex A
3660 *
3661 * 2. -dl task is running and holds mutex A
3662 * --> -dl task blocks on mutex A and could preempt the
3663 * running task
3664 */
3665 if (dl_prio(prio)) {
3666 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3667 if (!dl_prio(p->normal_prio) ||
3668 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3669 p->dl.dl_boosted = 1;
3670 queue_flag |= ENQUEUE_REPLENISH;
3671 } else
3672 p->dl.dl_boosted = 0;
3673 p->sched_class = &dl_sched_class;
3674 } else if (rt_prio(prio)) {
3675 if (dl_prio(oldprio))
3676 p->dl.dl_boosted = 0;
3677 if (oldprio < prio)
3678 queue_flag |= ENQUEUE_HEAD;
3679 p->sched_class = &rt_sched_class;
3680 } else {
3681 if (dl_prio(oldprio))
3682 p->dl.dl_boosted = 0;
3683 if (rt_prio(oldprio))
3684 p->rt.timeout = 0;
3685 p->sched_class = &fair_sched_class;
3686 }
3687
3688 p->prio = prio;
3689
3690 if (running)
3691 p->sched_class->set_curr_task(rq);
3692 if (queued)
3693 enqueue_task(rq, p, queue_flag);
3694
3695 check_class_changed(rq, p, prev_class, oldprio);
3696 out_unlock:
3697 preempt_disable(); /* avoid rq from going away on us */
3698 __task_rq_unlock(rq, &rf);
3699
3700 balance_callback(rq);
3701 preempt_enable();
3702 }
3703 #endif
3704
3705 void set_user_nice(struct task_struct *p, long nice)
3706 {
3707 int old_prio, delta, queued;
3708 struct rq_flags rf;
3709 struct rq *rq;
3710
3711 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3712 return;
3713 /*
3714 * We have to be careful, if called from sys_setpriority(),
3715 * the task might be in the middle of scheduling on another CPU.
3716 */
3717 rq = task_rq_lock(p, &rf);
3718 /*
3719 * The RT priorities are set via sched_setscheduler(), but we still
3720 * allow the 'normal' nice value to be set - but as expected
3721 * it wont have any effect on scheduling until the task is
3722 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3723 */
3724 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3725 p->static_prio = NICE_TO_PRIO(nice);
3726 goto out_unlock;
3727 }
3728 queued = task_on_rq_queued(p);
3729 if (queued)
3730 dequeue_task(rq, p, DEQUEUE_SAVE);
3731
3732 p->static_prio = NICE_TO_PRIO(nice);
3733 set_load_weight(p);
3734 old_prio = p->prio;
3735 p->prio = effective_prio(p);
3736 delta = p->prio - old_prio;
3737
3738 if (queued) {
3739 enqueue_task(rq, p, ENQUEUE_RESTORE);
3740 /*
3741 * If the task increased its priority or is running and
3742 * lowered its priority, then reschedule its CPU:
3743 */
3744 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3745 resched_curr(rq);
3746 }
3747 out_unlock:
3748 task_rq_unlock(rq, p, &rf);
3749 }
3750 EXPORT_SYMBOL(set_user_nice);
3751
3752 /*
3753 * can_nice - check if a task can reduce its nice value
3754 * @p: task
3755 * @nice: nice value
3756 */
3757 int can_nice(const struct task_struct *p, const int nice)
3758 {
3759 /* convert nice value [19,-20] to rlimit style value [1,40] */
3760 int nice_rlim = nice_to_rlimit(nice);
3761
3762 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3763 capable(CAP_SYS_NICE));
3764 }
3765
3766 #ifdef __ARCH_WANT_SYS_NICE
3767
3768 /*
3769 * sys_nice - change the priority of the current process.
3770 * @increment: priority increment
3771 *
3772 * sys_setpriority is a more generic, but much slower function that
3773 * does similar things.
3774 */
3775 SYSCALL_DEFINE1(nice, int, increment)
3776 {
3777 long nice, retval;
3778
3779 /*
3780 * Setpriority might change our priority at the same moment.
3781 * We don't have to worry. Conceptually one call occurs first
3782 * and we have a single winner.
3783 */
3784 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3785 nice = task_nice(current) + increment;
3786
3787 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3788 if (increment < 0 && !can_nice(current, nice))
3789 return -EPERM;
3790
3791 retval = security_task_setnice(current, nice);
3792 if (retval)
3793 return retval;
3794
3795 set_user_nice(current, nice);
3796 return 0;
3797 }
3798
3799 #endif
3800
3801 /**
3802 * task_prio - return the priority value of a given task.
3803 * @p: the task in question.
3804 *
3805 * Return: The priority value as seen by users in /proc.
3806 * RT tasks are offset by -200. Normal tasks are centered
3807 * around 0, value goes from -16 to +15.
3808 */
3809 int task_prio(const struct task_struct *p)
3810 {
3811 return p->prio - MAX_RT_PRIO;
3812 }
3813
3814 /**
3815 * idle_cpu - is a given cpu idle currently?
3816 * @cpu: the processor in question.
3817 *
3818 * Return: 1 if the CPU is currently idle. 0 otherwise.
3819 */
3820 int idle_cpu(int cpu)
3821 {
3822 struct rq *rq = cpu_rq(cpu);
3823
3824 if (rq->curr != rq->idle)
3825 return 0;
3826
3827 if (rq->nr_running)
3828 return 0;
3829
3830 #ifdef CONFIG_SMP
3831 if (!llist_empty(&rq->wake_list))
3832 return 0;
3833 #endif
3834
3835 return 1;
3836 }
3837
3838 /**
3839 * idle_task - return the idle task for a given cpu.
3840 * @cpu: the processor in question.
3841 *
3842 * Return: The idle task for the cpu @cpu.
3843 */
3844 struct task_struct *idle_task(int cpu)
3845 {
3846 return cpu_rq(cpu)->idle;
3847 }
3848
3849 /**
3850 * find_process_by_pid - find a process with a matching PID value.
3851 * @pid: the pid in question.
3852 *
3853 * The task of @pid, if found. %NULL otherwise.
3854 */
3855 static struct task_struct *find_process_by_pid(pid_t pid)
3856 {
3857 return pid ? find_task_by_vpid(pid) : current;
3858 }
3859
3860 /*
3861 * This function initializes the sched_dl_entity of a newly becoming
3862 * SCHED_DEADLINE task.
3863 *
3864 * Only the static values are considered here, the actual runtime and the
3865 * absolute deadline will be properly calculated when the task is enqueued
3866 * for the first time with its new policy.
3867 */
3868 static void
3869 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3870 {
3871 struct sched_dl_entity *dl_se = &p->dl;
3872
3873 dl_se->dl_runtime = attr->sched_runtime;
3874 dl_se->dl_deadline = attr->sched_deadline;
3875 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3876 dl_se->flags = attr->sched_flags;
3877 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3878
3879 /*
3880 * Changing the parameters of a task is 'tricky' and we're not doing
3881 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3882 *
3883 * What we SHOULD do is delay the bandwidth release until the 0-lag
3884 * point. This would include retaining the task_struct until that time
3885 * and change dl_overflow() to not immediately decrement the current
3886 * amount.
3887 *
3888 * Instead we retain the current runtime/deadline and let the new
3889 * parameters take effect after the current reservation period lapses.
3890 * This is safe (albeit pessimistic) because the 0-lag point is always
3891 * before the current scheduling deadline.
3892 *
3893 * We can still have temporary overloads because we do not delay the
3894 * change in bandwidth until that time; so admission control is
3895 * not on the safe side. It does however guarantee tasks will never
3896 * consume more than promised.
3897 */
3898 }
3899
3900 /*
3901 * sched_setparam() passes in -1 for its policy, to let the functions
3902 * it calls know not to change it.
3903 */
3904 #define SETPARAM_POLICY -1
3905
3906 static void __setscheduler_params(struct task_struct *p,
3907 const struct sched_attr *attr)
3908 {
3909 int policy = attr->sched_policy;
3910
3911 if (policy == SETPARAM_POLICY)
3912 policy = p->policy;
3913
3914 p->policy = policy;
3915
3916 if (dl_policy(policy))
3917 __setparam_dl(p, attr);
3918 else if (fair_policy(policy))
3919 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3920
3921 /*
3922 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3923 * !rt_policy. Always setting this ensures that things like
3924 * getparam()/getattr() don't report silly values for !rt tasks.
3925 */
3926 p->rt_priority = attr->sched_priority;
3927 p->normal_prio = normal_prio(p);
3928 set_load_weight(p);
3929 }
3930
3931 /* Actually do priority change: must hold pi & rq lock. */
3932 static void __setscheduler(struct rq *rq, struct task_struct *p,
3933 const struct sched_attr *attr, bool keep_boost)
3934 {
3935 __setscheduler_params(p, attr);
3936
3937 /*
3938 * Keep a potential priority boosting if called from
3939 * sched_setscheduler().
3940 */
3941 if (keep_boost)
3942 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3943 else
3944 p->prio = normal_prio(p);
3945
3946 if (dl_prio(p->prio))
3947 p->sched_class = &dl_sched_class;
3948 else if (rt_prio(p->prio))
3949 p->sched_class = &rt_sched_class;
3950 else
3951 p->sched_class = &fair_sched_class;
3952 }
3953
3954 static void
3955 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3956 {
3957 struct sched_dl_entity *dl_se = &p->dl;
3958
3959 attr->sched_priority = p->rt_priority;
3960 attr->sched_runtime = dl_se->dl_runtime;
3961 attr->sched_deadline = dl_se->dl_deadline;
3962 attr->sched_period = dl_se->dl_period;
3963 attr->sched_flags = dl_se->flags;
3964 }
3965
3966 /*
3967 * This function validates the new parameters of a -deadline task.
3968 * We ask for the deadline not being zero, and greater or equal
3969 * than the runtime, as well as the period of being zero or
3970 * greater than deadline. Furthermore, we have to be sure that
3971 * user parameters are above the internal resolution of 1us (we
3972 * check sched_runtime only since it is always the smaller one) and
3973 * below 2^63 ns (we have to check both sched_deadline and
3974 * sched_period, as the latter can be zero).
3975 */
3976 static bool
3977 __checkparam_dl(const struct sched_attr *attr)
3978 {
3979 /* deadline != 0 */
3980 if (attr->sched_deadline == 0)
3981 return false;
3982
3983 /*
3984 * Since we truncate DL_SCALE bits, make sure we're at least
3985 * that big.
3986 */
3987 if (attr->sched_runtime < (1ULL << DL_SCALE))
3988 return false;
3989
3990 /*
3991 * Since we use the MSB for wrap-around and sign issues, make
3992 * sure it's not set (mind that period can be equal to zero).
3993 */
3994 if (attr->sched_deadline & (1ULL << 63) ||
3995 attr->sched_period & (1ULL << 63))
3996 return false;
3997
3998 /* runtime <= deadline <= period (if period != 0) */
3999 if ((attr->sched_period != 0 &&
4000 attr->sched_period < attr->sched_deadline) ||
4001 attr->sched_deadline < attr->sched_runtime)
4002 return false;
4003
4004 return true;
4005 }
4006
4007 /*
4008 * check the target process has a UID that matches the current process's
4009 */
4010 static bool check_same_owner(struct task_struct *p)
4011 {
4012 const struct cred *cred = current_cred(), *pcred;
4013 bool match;
4014
4015 rcu_read_lock();
4016 pcred = __task_cred(p);
4017 match = (uid_eq(cred->euid, pcred->euid) ||
4018 uid_eq(cred->euid, pcred->uid));
4019 rcu_read_unlock();
4020 return match;
4021 }
4022
4023 static bool dl_param_changed(struct task_struct *p,
4024 const struct sched_attr *attr)
4025 {
4026 struct sched_dl_entity *dl_se = &p->dl;
4027
4028 if (dl_se->dl_runtime != attr->sched_runtime ||
4029 dl_se->dl_deadline != attr->sched_deadline ||
4030 dl_se->dl_period != attr->sched_period ||
4031 dl_se->flags != attr->sched_flags)
4032 return true;
4033
4034 return false;
4035 }
4036
4037 static int __sched_setscheduler(struct task_struct *p,
4038 const struct sched_attr *attr,
4039 bool user, bool pi)
4040 {
4041 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4042 MAX_RT_PRIO - 1 - attr->sched_priority;
4043 int retval, oldprio, oldpolicy = -1, queued, running;
4044 int new_effective_prio, policy = attr->sched_policy;
4045 const struct sched_class *prev_class;
4046 struct rq_flags rf;
4047 int reset_on_fork;
4048 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4049 struct rq *rq;
4050
4051 /* may grab non-irq protected spin_locks */
4052 BUG_ON(in_interrupt());
4053 recheck:
4054 /* double check policy once rq lock held */
4055 if (policy < 0) {
4056 reset_on_fork = p->sched_reset_on_fork;
4057 policy = oldpolicy = p->policy;
4058 } else {
4059 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4060
4061 if (!valid_policy(policy))
4062 return -EINVAL;
4063 }
4064
4065 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4066 return -EINVAL;
4067
4068 /*
4069 * Valid priorities for SCHED_FIFO and SCHED_RR are
4070 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4071 * SCHED_BATCH and SCHED_IDLE is 0.
4072 */
4073 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4074 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4075 return -EINVAL;
4076 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4077 (rt_policy(policy) != (attr->sched_priority != 0)))
4078 return -EINVAL;
4079
4080 /*
4081 * Allow unprivileged RT tasks to decrease priority:
4082 */
4083 if (user && !capable(CAP_SYS_NICE)) {
4084 if (fair_policy(policy)) {
4085 if (attr->sched_nice < task_nice(p) &&
4086 !can_nice(p, attr->sched_nice))
4087 return -EPERM;
4088 }
4089
4090 if (rt_policy(policy)) {
4091 unsigned long rlim_rtprio =
4092 task_rlimit(p, RLIMIT_RTPRIO);
4093
4094 /* can't set/change the rt policy */
4095 if (policy != p->policy && !rlim_rtprio)
4096 return -EPERM;
4097
4098 /* can't increase priority */
4099 if (attr->sched_priority > p->rt_priority &&
4100 attr->sched_priority > rlim_rtprio)
4101 return -EPERM;
4102 }
4103
4104 /*
4105 * Can't set/change SCHED_DEADLINE policy at all for now
4106 * (safest behavior); in the future we would like to allow
4107 * unprivileged DL tasks to increase their relative deadline
4108 * or reduce their runtime (both ways reducing utilization)
4109 */
4110 if (dl_policy(policy))
4111 return -EPERM;
4112
4113 /*
4114 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4115 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4116 */
4117 if (idle_policy(p->policy) && !idle_policy(policy)) {
4118 if (!can_nice(p, task_nice(p)))
4119 return -EPERM;
4120 }
4121
4122 /* can't change other user's priorities */
4123 if (!check_same_owner(p))
4124 return -EPERM;
4125
4126 /* Normal users shall not reset the sched_reset_on_fork flag */
4127 if (p->sched_reset_on_fork && !reset_on_fork)
4128 return -EPERM;
4129 }
4130
4131 if (user) {
4132 retval = security_task_setscheduler(p);
4133 if (retval)
4134 return retval;
4135 }
4136
4137 /*
4138 * make sure no PI-waiters arrive (or leave) while we are
4139 * changing the priority of the task:
4140 *
4141 * To be able to change p->policy safely, the appropriate
4142 * runqueue lock must be held.
4143 */
4144 rq = task_rq_lock(p, &rf);
4145
4146 /*
4147 * Changing the policy of the stop threads its a very bad idea
4148 */
4149 if (p == rq->stop) {
4150 task_rq_unlock(rq, p, &rf);
4151 return -EINVAL;
4152 }
4153
4154 /*
4155 * If not changing anything there's no need to proceed further,
4156 * but store a possible modification of reset_on_fork.
4157 */
4158 if (unlikely(policy == p->policy)) {
4159 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4160 goto change;
4161 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4162 goto change;
4163 if (dl_policy(policy) && dl_param_changed(p, attr))
4164 goto change;
4165
4166 p->sched_reset_on_fork = reset_on_fork;
4167 task_rq_unlock(rq, p, &rf);
4168 return 0;
4169 }
4170 change:
4171
4172 if (user) {
4173 #ifdef CONFIG_RT_GROUP_SCHED
4174 /*
4175 * Do not allow realtime tasks into groups that have no runtime
4176 * assigned.
4177 */
4178 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4179 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4180 !task_group_is_autogroup(task_group(p))) {
4181 task_rq_unlock(rq, p, &rf);
4182 return -EPERM;
4183 }
4184 #endif
4185 #ifdef CONFIG_SMP
4186 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4187 cpumask_t *span = rq->rd->span;
4188
4189 /*
4190 * Don't allow tasks with an affinity mask smaller than
4191 * the entire root_domain to become SCHED_DEADLINE. We
4192 * will also fail if there's no bandwidth available.
4193 */
4194 if (!cpumask_subset(span, &p->cpus_allowed) ||
4195 rq->rd->dl_bw.bw == 0) {
4196 task_rq_unlock(rq, p, &rf);
4197 return -EPERM;
4198 }
4199 }
4200 #endif
4201 }
4202
4203 /* recheck policy now with rq lock held */
4204 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4205 policy = oldpolicy = -1;
4206 task_rq_unlock(rq, p, &rf);
4207 goto recheck;
4208 }
4209
4210 /*
4211 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4212 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4213 * is available.
4214 */
4215 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4216 task_rq_unlock(rq, p, &rf);
4217 return -EBUSY;
4218 }
4219
4220 p->sched_reset_on_fork = reset_on_fork;
4221 oldprio = p->prio;
4222
4223 if (pi) {
4224 /*
4225 * Take priority boosted tasks into account. If the new
4226 * effective priority is unchanged, we just store the new
4227 * normal parameters and do not touch the scheduler class and
4228 * the runqueue. This will be done when the task deboost
4229 * itself.
4230 */
4231 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4232 if (new_effective_prio == oldprio)
4233 queue_flags &= ~DEQUEUE_MOVE;
4234 }
4235
4236 queued = task_on_rq_queued(p);
4237 running = task_current(rq, p);
4238 if (queued)
4239 dequeue_task(rq, p, queue_flags);
4240 if (running)
4241 put_prev_task(rq, p);
4242
4243 prev_class = p->sched_class;
4244 __setscheduler(rq, p, attr, pi);
4245
4246 if (running)
4247 p->sched_class->set_curr_task(rq);
4248 if (queued) {
4249 /*
4250 * We enqueue to tail when the priority of a task is
4251 * increased (user space view).
4252 */
4253 if (oldprio < p->prio)
4254 queue_flags |= ENQUEUE_HEAD;
4255
4256 enqueue_task(rq, p, queue_flags);
4257 }
4258
4259 check_class_changed(rq, p, prev_class, oldprio);
4260 preempt_disable(); /* avoid rq from going away on us */
4261 task_rq_unlock(rq, p, &rf);
4262
4263 if (pi)
4264 rt_mutex_adjust_pi(p);
4265
4266 /*
4267 * Run balance callbacks after we've adjusted the PI chain.
4268 */
4269 balance_callback(rq);
4270 preempt_enable();
4271
4272 return 0;
4273 }
4274
4275 static int _sched_setscheduler(struct task_struct *p, int policy,
4276 const struct sched_param *param, bool check)
4277 {
4278 struct sched_attr attr = {
4279 .sched_policy = policy,
4280 .sched_priority = param->sched_priority,
4281 .sched_nice = PRIO_TO_NICE(p->static_prio),
4282 };
4283
4284 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4285 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4286 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4287 policy &= ~SCHED_RESET_ON_FORK;
4288 attr.sched_policy = policy;
4289 }
4290
4291 return __sched_setscheduler(p, &attr, check, true);
4292 }
4293 /**
4294 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4295 * @p: the task in question.
4296 * @policy: new policy.
4297 * @param: structure containing the new RT priority.
4298 *
4299 * Return: 0 on success. An error code otherwise.
4300 *
4301 * NOTE that the task may be already dead.
4302 */
4303 int sched_setscheduler(struct task_struct *p, int policy,
4304 const struct sched_param *param)
4305 {
4306 return _sched_setscheduler(p, policy, param, true);
4307 }
4308 EXPORT_SYMBOL_GPL(sched_setscheduler);
4309
4310 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4311 {
4312 return __sched_setscheduler(p, attr, true, true);
4313 }
4314 EXPORT_SYMBOL_GPL(sched_setattr);
4315
4316 /**
4317 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4318 * @p: the task in question.
4319 * @policy: new policy.
4320 * @param: structure containing the new RT priority.
4321 *
4322 * Just like sched_setscheduler, only don't bother checking if the
4323 * current context has permission. For example, this is needed in
4324 * stop_machine(): we create temporary high priority worker threads,
4325 * but our caller might not have that capability.
4326 *
4327 * Return: 0 on success. An error code otherwise.
4328 */
4329 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4330 const struct sched_param *param)
4331 {
4332 return _sched_setscheduler(p, policy, param, false);
4333 }
4334 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4335
4336 static int
4337 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4338 {
4339 struct sched_param lparam;
4340 struct task_struct *p;
4341 int retval;
4342
4343 if (!param || pid < 0)
4344 return -EINVAL;
4345 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4346 return -EFAULT;
4347
4348 rcu_read_lock();
4349 retval = -ESRCH;
4350 p = find_process_by_pid(pid);
4351 if (p != NULL)
4352 retval = sched_setscheduler(p, policy, &lparam);
4353 rcu_read_unlock();
4354
4355 return retval;
4356 }
4357
4358 /*
4359 * Mimics kernel/events/core.c perf_copy_attr().
4360 */
4361 static int sched_copy_attr(struct sched_attr __user *uattr,
4362 struct sched_attr *attr)
4363 {
4364 u32 size;
4365 int ret;
4366
4367 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4368 return -EFAULT;
4369
4370 /*
4371 * zero the full structure, so that a short copy will be nice.
4372 */
4373 memset(attr, 0, sizeof(*attr));
4374
4375 ret = get_user(size, &uattr->size);
4376 if (ret)
4377 return ret;
4378
4379 if (size > PAGE_SIZE) /* silly large */
4380 goto err_size;
4381
4382 if (!size) /* abi compat */
4383 size = SCHED_ATTR_SIZE_VER0;
4384
4385 if (size < SCHED_ATTR_SIZE_VER0)
4386 goto err_size;
4387
4388 /*
4389 * If we're handed a bigger struct than we know of,
4390 * ensure all the unknown bits are 0 - i.e. new
4391 * user-space does not rely on any kernel feature
4392 * extensions we dont know about yet.
4393 */
4394 if (size > sizeof(*attr)) {
4395 unsigned char __user *addr;
4396 unsigned char __user *end;
4397 unsigned char val;
4398
4399 addr = (void __user *)uattr + sizeof(*attr);
4400 end = (void __user *)uattr + size;
4401
4402 for (; addr < end; addr++) {
4403 ret = get_user(val, addr);
4404 if (ret)
4405 return ret;
4406 if (val)
4407 goto err_size;
4408 }
4409 size = sizeof(*attr);
4410 }
4411
4412 ret = copy_from_user(attr, uattr, size);
4413 if (ret)
4414 return -EFAULT;
4415
4416 /*
4417 * XXX: do we want to be lenient like existing syscalls; or do we want
4418 * to be strict and return an error on out-of-bounds values?
4419 */
4420 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4421
4422 return 0;
4423
4424 err_size:
4425 put_user(sizeof(*attr), &uattr->size);
4426 return -E2BIG;
4427 }
4428
4429 /**
4430 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4431 * @pid: the pid in question.
4432 * @policy: new policy.
4433 * @param: structure containing the new RT priority.
4434 *
4435 * Return: 0 on success. An error code otherwise.
4436 */
4437 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4438 struct sched_param __user *, param)
4439 {
4440 /* negative values for policy are not valid */
4441 if (policy < 0)
4442 return -EINVAL;
4443
4444 return do_sched_setscheduler(pid, policy, param);
4445 }
4446
4447 /**
4448 * sys_sched_setparam - set/change the RT priority of a thread
4449 * @pid: the pid in question.
4450 * @param: structure containing the new RT priority.
4451 *
4452 * Return: 0 on success. An error code otherwise.
4453 */
4454 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4455 {
4456 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4457 }
4458
4459 /**
4460 * sys_sched_setattr - same as above, but with extended sched_attr
4461 * @pid: the pid in question.
4462 * @uattr: structure containing the extended parameters.
4463 * @flags: for future extension.
4464 */
4465 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4466 unsigned int, flags)
4467 {
4468 struct sched_attr attr;
4469 struct task_struct *p;
4470 int retval;
4471
4472 if (!uattr || pid < 0 || flags)
4473 return -EINVAL;
4474
4475 retval = sched_copy_attr(uattr, &attr);
4476 if (retval)
4477 return retval;
4478
4479 if ((int)attr.sched_policy < 0)
4480 return -EINVAL;
4481
4482 rcu_read_lock();
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (p != NULL)
4486 retval = sched_setattr(p, &attr);
4487 rcu_read_unlock();
4488
4489 return retval;
4490 }
4491
4492 /**
4493 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4494 * @pid: the pid in question.
4495 *
4496 * Return: On success, the policy of the thread. Otherwise, a negative error
4497 * code.
4498 */
4499 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4500 {
4501 struct task_struct *p;
4502 int retval;
4503
4504 if (pid < 0)
4505 return -EINVAL;
4506
4507 retval = -ESRCH;
4508 rcu_read_lock();
4509 p = find_process_by_pid(pid);
4510 if (p) {
4511 retval = security_task_getscheduler(p);
4512 if (!retval)
4513 retval = p->policy
4514 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4515 }
4516 rcu_read_unlock();
4517 return retval;
4518 }
4519
4520 /**
4521 * sys_sched_getparam - get the RT priority of a thread
4522 * @pid: the pid in question.
4523 * @param: structure containing the RT priority.
4524 *
4525 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4526 * code.
4527 */
4528 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4529 {
4530 struct sched_param lp = { .sched_priority = 0 };
4531 struct task_struct *p;
4532 int retval;
4533
4534 if (!param || pid < 0)
4535 return -EINVAL;
4536
4537 rcu_read_lock();
4538 p = find_process_by_pid(pid);
4539 retval = -ESRCH;
4540 if (!p)
4541 goto out_unlock;
4542
4543 retval = security_task_getscheduler(p);
4544 if (retval)
4545 goto out_unlock;
4546
4547 if (task_has_rt_policy(p))
4548 lp.sched_priority = p->rt_priority;
4549 rcu_read_unlock();
4550
4551 /*
4552 * This one might sleep, we cannot do it with a spinlock held ...
4553 */
4554 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4555
4556 return retval;
4557
4558 out_unlock:
4559 rcu_read_unlock();
4560 return retval;
4561 }
4562
4563 static int sched_read_attr(struct sched_attr __user *uattr,
4564 struct sched_attr *attr,
4565 unsigned int usize)
4566 {
4567 int ret;
4568
4569 if (!access_ok(VERIFY_WRITE, uattr, usize))
4570 return -EFAULT;
4571
4572 /*
4573 * If we're handed a smaller struct than we know of,
4574 * ensure all the unknown bits are 0 - i.e. old
4575 * user-space does not get uncomplete information.
4576 */
4577 if (usize < sizeof(*attr)) {
4578 unsigned char *addr;
4579 unsigned char *end;
4580
4581 addr = (void *)attr + usize;
4582 end = (void *)attr + sizeof(*attr);
4583
4584 for (; addr < end; addr++) {
4585 if (*addr)
4586 return -EFBIG;
4587 }
4588
4589 attr->size = usize;
4590 }
4591
4592 ret = copy_to_user(uattr, attr, attr->size);
4593 if (ret)
4594 return -EFAULT;
4595
4596 return 0;
4597 }
4598
4599 /**
4600 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4601 * @pid: the pid in question.
4602 * @uattr: structure containing the extended parameters.
4603 * @size: sizeof(attr) for fwd/bwd comp.
4604 * @flags: for future extension.
4605 */
4606 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4607 unsigned int, size, unsigned int, flags)
4608 {
4609 struct sched_attr attr = {
4610 .size = sizeof(struct sched_attr),
4611 };
4612 struct task_struct *p;
4613 int retval;
4614
4615 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4616 size < SCHED_ATTR_SIZE_VER0 || flags)
4617 return -EINVAL;
4618
4619 rcu_read_lock();
4620 p = find_process_by_pid(pid);
4621 retval = -ESRCH;
4622 if (!p)
4623 goto out_unlock;
4624
4625 retval = security_task_getscheduler(p);
4626 if (retval)
4627 goto out_unlock;
4628
4629 attr.sched_policy = p->policy;
4630 if (p->sched_reset_on_fork)
4631 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4632 if (task_has_dl_policy(p))
4633 __getparam_dl(p, &attr);
4634 else if (task_has_rt_policy(p))
4635 attr.sched_priority = p->rt_priority;
4636 else
4637 attr.sched_nice = task_nice(p);
4638
4639 rcu_read_unlock();
4640
4641 retval = sched_read_attr(uattr, &attr, size);
4642 return retval;
4643
4644 out_unlock:
4645 rcu_read_unlock();
4646 return retval;
4647 }
4648
4649 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4650 {
4651 cpumask_var_t cpus_allowed, new_mask;
4652 struct task_struct *p;
4653 int retval;
4654
4655 rcu_read_lock();
4656
4657 p = find_process_by_pid(pid);
4658 if (!p) {
4659 rcu_read_unlock();
4660 return -ESRCH;
4661 }
4662
4663 /* Prevent p going away */
4664 get_task_struct(p);
4665 rcu_read_unlock();
4666
4667 if (p->flags & PF_NO_SETAFFINITY) {
4668 retval = -EINVAL;
4669 goto out_put_task;
4670 }
4671 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4672 retval = -ENOMEM;
4673 goto out_put_task;
4674 }
4675 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4676 retval = -ENOMEM;
4677 goto out_free_cpus_allowed;
4678 }
4679 retval = -EPERM;
4680 if (!check_same_owner(p)) {
4681 rcu_read_lock();
4682 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4683 rcu_read_unlock();
4684 goto out_free_new_mask;
4685 }
4686 rcu_read_unlock();
4687 }
4688
4689 retval = security_task_setscheduler(p);
4690 if (retval)
4691 goto out_free_new_mask;
4692
4693
4694 cpuset_cpus_allowed(p, cpus_allowed);
4695 cpumask_and(new_mask, in_mask, cpus_allowed);
4696
4697 /*
4698 * Since bandwidth control happens on root_domain basis,
4699 * if admission test is enabled, we only admit -deadline
4700 * tasks allowed to run on all the CPUs in the task's
4701 * root_domain.
4702 */
4703 #ifdef CONFIG_SMP
4704 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4705 rcu_read_lock();
4706 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4707 retval = -EBUSY;
4708 rcu_read_unlock();
4709 goto out_free_new_mask;
4710 }
4711 rcu_read_unlock();
4712 }
4713 #endif
4714 again:
4715 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4716
4717 if (!retval) {
4718 cpuset_cpus_allowed(p, cpus_allowed);
4719 if (!cpumask_subset(new_mask, cpus_allowed)) {
4720 /*
4721 * We must have raced with a concurrent cpuset
4722 * update. Just reset the cpus_allowed to the
4723 * cpuset's cpus_allowed
4724 */
4725 cpumask_copy(new_mask, cpus_allowed);
4726 goto again;
4727 }
4728 }
4729 out_free_new_mask:
4730 free_cpumask_var(new_mask);
4731 out_free_cpus_allowed:
4732 free_cpumask_var(cpus_allowed);
4733 out_put_task:
4734 put_task_struct(p);
4735 return retval;
4736 }
4737
4738 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4739 struct cpumask *new_mask)
4740 {
4741 if (len < cpumask_size())
4742 cpumask_clear(new_mask);
4743 else if (len > cpumask_size())
4744 len = cpumask_size();
4745
4746 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747 }
4748
4749 /**
4750 * sys_sched_setaffinity - set the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to the new cpu mask
4754 *
4755 * Return: 0 on success. An error code otherwise.
4756 */
4757 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4758 unsigned long __user *, user_mask_ptr)
4759 {
4760 cpumask_var_t new_mask;
4761 int retval;
4762
4763 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4764 return -ENOMEM;
4765
4766 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4767 if (retval == 0)
4768 retval = sched_setaffinity(pid, new_mask);
4769 free_cpumask_var(new_mask);
4770 return retval;
4771 }
4772
4773 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4774 {
4775 struct task_struct *p;
4776 unsigned long flags;
4777 int retval;
4778
4779 rcu_read_lock();
4780
4781 retval = -ESRCH;
4782 p = find_process_by_pid(pid);
4783 if (!p)
4784 goto out_unlock;
4785
4786 retval = security_task_getscheduler(p);
4787 if (retval)
4788 goto out_unlock;
4789
4790 raw_spin_lock_irqsave(&p->pi_lock, flags);
4791 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4792 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4793
4794 out_unlock:
4795 rcu_read_unlock();
4796
4797 return retval;
4798 }
4799
4800 /**
4801 * sys_sched_getaffinity - get the cpu affinity of a process
4802 * @pid: pid of the process
4803 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4804 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4805 *
4806 * Return: size of CPU mask copied to user_mask_ptr on success. An
4807 * error code otherwise.
4808 */
4809 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4810 unsigned long __user *, user_mask_ptr)
4811 {
4812 int ret;
4813 cpumask_var_t mask;
4814
4815 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4816 return -EINVAL;
4817 if (len & (sizeof(unsigned long)-1))
4818 return -EINVAL;
4819
4820 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4821 return -ENOMEM;
4822
4823 ret = sched_getaffinity(pid, mask);
4824 if (ret == 0) {
4825 size_t retlen = min_t(size_t, len, cpumask_size());
4826
4827 if (copy_to_user(user_mask_ptr, mask, retlen))
4828 ret = -EFAULT;
4829 else
4830 ret = retlen;
4831 }
4832 free_cpumask_var(mask);
4833
4834 return ret;
4835 }
4836
4837 /**
4838 * sys_sched_yield - yield the current processor to other threads.
4839 *
4840 * This function yields the current CPU to other tasks. If there are no
4841 * other threads running on this CPU then this function will return.
4842 *
4843 * Return: 0.
4844 */
4845 SYSCALL_DEFINE0(sched_yield)
4846 {
4847 struct rq *rq = this_rq_lock();
4848
4849 schedstat_inc(rq, yld_count);
4850 current->sched_class->yield_task(rq);
4851
4852 /*
4853 * Since we are going to call schedule() anyway, there's
4854 * no need to preempt or enable interrupts:
4855 */
4856 __release(rq->lock);
4857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4858 do_raw_spin_unlock(&rq->lock);
4859 sched_preempt_enable_no_resched();
4860
4861 schedule();
4862
4863 return 0;
4864 }
4865
4866 int __sched _cond_resched(void)
4867 {
4868 if (should_resched(0)) {
4869 preempt_schedule_common();
4870 return 1;
4871 }
4872 return 0;
4873 }
4874 EXPORT_SYMBOL(_cond_resched);
4875
4876 /*
4877 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4878 * call schedule, and on return reacquire the lock.
4879 *
4880 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4881 * operations here to prevent schedule() from being called twice (once via
4882 * spin_unlock(), once by hand).
4883 */
4884 int __cond_resched_lock(spinlock_t *lock)
4885 {
4886 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4887 int ret = 0;
4888
4889 lockdep_assert_held(lock);
4890
4891 if (spin_needbreak(lock) || resched) {
4892 spin_unlock(lock);
4893 if (resched)
4894 preempt_schedule_common();
4895 else
4896 cpu_relax();
4897 ret = 1;
4898 spin_lock(lock);
4899 }
4900 return ret;
4901 }
4902 EXPORT_SYMBOL(__cond_resched_lock);
4903
4904 int __sched __cond_resched_softirq(void)
4905 {
4906 BUG_ON(!in_softirq());
4907
4908 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4909 local_bh_enable();
4910 preempt_schedule_common();
4911 local_bh_disable();
4912 return 1;
4913 }
4914 return 0;
4915 }
4916 EXPORT_SYMBOL(__cond_resched_softirq);
4917
4918 /**
4919 * yield - yield the current processor to other threads.
4920 *
4921 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4922 *
4923 * The scheduler is at all times free to pick the calling task as the most
4924 * eligible task to run, if removing the yield() call from your code breaks
4925 * it, its already broken.
4926 *
4927 * Typical broken usage is:
4928 *
4929 * while (!event)
4930 * yield();
4931 *
4932 * where one assumes that yield() will let 'the other' process run that will
4933 * make event true. If the current task is a SCHED_FIFO task that will never
4934 * happen. Never use yield() as a progress guarantee!!
4935 *
4936 * If you want to use yield() to wait for something, use wait_event().
4937 * If you want to use yield() to be 'nice' for others, use cond_resched().
4938 * If you still want to use yield(), do not!
4939 */
4940 void __sched yield(void)
4941 {
4942 set_current_state(TASK_RUNNING);
4943 sys_sched_yield();
4944 }
4945 EXPORT_SYMBOL(yield);
4946
4947 /**
4948 * yield_to - yield the current processor to another thread in
4949 * your thread group, or accelerate that thread toward the
4950 * processor it's on.
4951 * @p: target task
4952 * @preempt: whether task preemption is allowed or not
4953 *
4954 * It's the caller's job to ensure that the target task struct
4955 * can't go away on us before we can do any checks.
4956 *
4957 * Return:
4958 * true (>0) if we indeed boosted the target task.
4959 * false (0) if we failed to boost the target.
4960 * -ESRCH if there's no task to yield to.
4961 */
4962 int __sched yield_to(struct task_struct *p, bool preempt)
4963 {
4964 struct task_struct *curr = current;
4965 struct rq *rq, *p_rq;
4966 unsigned long flags;
4967 int yielded = 0;
4968
4969 local_irq_save(flags);
4970 rq = this_rq();
4971
4972 again:
4973 p_rq = task_rq(p);
4974 /*
4975 * If we're the only runnable task on the rq and target rq also
4976 * has only one task, there's absolutely no point in yielding.
4977 */
4978 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4979 yielded = -ESRCH;
4980 goto out_irq;
4981 }
4982
4983 double_rq_lock(rq, p_rq);
4984 if (task_rq(p) != p_rq) {
4985 double_rq_unlock(rq, p_rq);
4986 goto again;
4987 }
4988
4989 if (!curr->sched_class->yield_to_task)
4990 goto out_unlock;
4991
4992 if (curr->sched_class != p->sched_class)
4993 goto out_unlock;
4994
4995 if (task_running(p_rq, p) || p->state)
4996 goto out_unlock;
4997
4998 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4999 if (yielded) {
5000 schedstat_inc(rq, yld_count);
5001 /*
5002 * Make p's CPU reschedule; pick_next_entity takes care of
5003 * fairness.
5004 */
5005 if (preempt && rq != p_rq)
5006 resched_curr(p_rq);
5007 }
5008
5009 out_unlock:
5010 double_rq_unlock(rq, p_rq);
5011 out_irq:
5012 local_irq_restore(flags);
5013
5014 if (yielded > 0)
5015 schedule();
5016
5017 return yielded;
5018 }
5019 EXPORT_SYMBOL_GPL(yield_to);
5020
5021 /*
5022 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5023 * that process accounting knows that this is a task in IO wait state.
5024 */
5025 long __sched io_schedule_timeout(long timeout)
5026 {
5027 int old_iowait = current->in_iowait;
5028 struct rq *rq;
5029 long ret;
5030
5031 current->in_iowait = 1;
5032 blk_schedule_flush_plug(current);
5033
5034 delayacct_blkio_start();
5035 rq = raw_rq();
5036 atomic_inc(&rq->nr_iowait);
5037 ret = schedule_timeout(timeout);
5038 current->in_iowait = old_iowait;
5039 atomic_dec(&rq->nr_iowait);
5040 delayacct_blkio_end();
5041
5042 return ret;
5043 }
5044 EXPORT_SYMBOL(io_schedule_timeout);
5045
5046 /**
5047 * sys_sched_get_priority_max - return maximum RT priority.
5048 * @policy: scheduling class.
5049 *
5050 * Return: On success, this syscall returns the maximum
5051 * rt_priority that can be used by a given scheduling class.
5052 * On failure, a negative error code is returned.
5053 */
5054 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5055 {
5056 int ret = -EINVAL;
5057
5058 switch (policy) {
5059 case SCHED_FIFO:
5060 case SCHED_RR:
5061 ret = MAX_USER_RT_PRIO-1;
5062 break;
5063 case SCHED_DEADLINE:
5064 case SCHED_NORMAL:
5065 case SCHED_BATCH:
5066 case SCHED_IDLE:
5067 ret = 0;
5068 break;
5069 }
5070 return ret;
5071 }
5072
5073 /**
5074 * sys_sched_get_priority_min - return minimum RT priority.
5075 * @policy: scheduling class.
5076 *
5077 * Return: On success, this syscall returns the minimum
5078 * rt_priority that can be used by a given scheduling class.
5079 * On failure, a negative error code is returned.
5080 */
5081 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5082 {
5083 int ret = -EINVAL;
5084
5085 switch (policy) {
5086 case SCHED_FIFO:
5087 case SCHED_RR:
5088 ret = 1;
5089 break;
5090 case SCHED_DEADLINE:
5091 case SCHED_NORMAL:
5092 case SCHED_BATCH:
5093 case SCHED_IDLE:
5094 ret = 0;
5095 }
5096 return ret;
5097 }
5098
5099 /**
5100 * sys_sched_rr_get_interval - return the default timeslice of a process.
5101 * @pid: pid of the process.
5102 * @interval: userspace pointer to the timeslice value.
5103 *
5104 * this syscall writes the default timeslice value of a given process
5105 * into the user-space timespec buffer. A value of '0' means infinity.
5106 *
5107 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5108 * an error code.
5109 */
5110 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5111 struct timespec __user *, interval)
5112 {
5113 struct task_struct *p;
5114 unsigned int time_slice;
5115 struct rq_flags rf;
5116 struct timespec t;
5117 struct rq *rq;
5118 int retval;
5119
5120 if (pid < 0)
5121 return -EINVAL;
5122
5123 retval = -ESRCH;
5124 rcu_read_lock();
5125 p = find_process_by_pid(pid);
5126 if (!p)
5127 goto out_unlock;
5128
5129 retval = security_task_getscheduler(p);
5130 if (retval)
5131 goto out_unlock;
5132
5133 rq = task_rq_lock(p, &rf);
5134 time_slice = 0;
5135 if (p->sched_class->get_rr_interval)
5136 time_slice = p->sched_class->get_rr_interval(rq, p);
5137 task_rq_unlock(rq, p, &rf);
5138
5139 rcu_read_unlock();
5140 jiffies_to_timespec(time_slice, &t);
5141 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5142 return retval;
5143
5144 out_unlock:
5145 rcu_read_unlock();
5146 return retval;
5147 }
5148
5149 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5150
5151 void sched_show_task(struct task_struct *p)
5152 {
5153 unsigned long free = 0;
5154 int ppid;
5155 unsigned long state = p->state;
5156
5157 if (state)
5158 state = __ffs(state) + 1;
5159 printk(KERN_INFO "%-15.15s %c", p->comm,
5160 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5161 #if BITS_PER_LONG == 32
5162 if (state == TASK_RUNNING)
5163 printk(KERN_CONT " running ");
5164 else
5165 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5166 #else
5167 if (state == TASK_RUNNING)
5168 printk(KERN_CONT " running task ");
5169 else
5170 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5171 #endif
5172 #ifdef CONFIG_DEBUG_STACK_USAGE
5173 free = stack_not_used(p);
5174 #endif
5175 ppid = 0;
5176 rcu_read_lock();
5177 if (pid_alive(p))
5178 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5179 rcu_read_unlock();
5180 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5181 task_pid_nr(p), ppid,
5182 (unsigned long)task_thread_info(p)->flags);
5183
5184 print_worker_info(KERN_INFO, p);
5185 show_stack(p, NULL);
5186 }
5187
5188 void show_state_filter(unsigned long state_filter)
5189 {
5190 struct task_struct *g, *p;
5191
5192 #if BITS_PER_LONG == 32
5193 printk(KERN_INFO
5194 " task PC stack pid father\n");
5195 #else
5196 printk(KERN_INFO
5197 " task PC stack pid father\n");
5198 #endif
5199 rcu_read_lock();
5200 for_each_process_thread(g, p) {
5201 /*
5202 * reset the NMI-timeout, listing all files on a slow
5203 * console might take a lot of time:
5204 * Also, reset softlockup watchdogs on all CPUs, because
5205 * another CPU might be blocked waiting for us to process
5206 * an IPI.
5207 */
5208 touch_nmi_watchdog();
5209 touch_all_softlockup_watchdogs();
5210 if (!state_filter || (p->state & state_filter))
5211 sched_show_task(p);
5212 }
5213
5214 #ifdef CONFIG_SCHED_DEBUG
5215 if (!state_filter)
5216 sysrq_sched_debug_show();
5217 #endif
5218 rcu_read_unlock();
5219 /*
5220 * Only show locks if all tasks are dumped:
5221 */
5222 if (!state_filter)
5223 debug_show_all_locks();
5224 }
5225
5226 void init_idle_bootup_task(struct task_struct *idle)
5227 {
5228 idle->sched_class = &idle_sched_class;
5229 }
5230
5231 /**
5232 * init_idle - set up an idle thread for a given CPU
5233 * @idle: task in question
5234 * @cpu: cpu the idle task belongs to
5235 *
5236 * NOTE: this function does not set the idle thread's NEED_RESCHED
5237 * flag, to make booting more robust.
5238 */
5239 void init_idle(struct task_struct *idle, int cpu)
5240 {
5241 struct rq *rq = cpu_rq(cpu);
5242 unsigned long flags;
5243
5244 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5245 raw_spin_lock(&rq->lock);
5246
5247 __sched_fork(0, idle);
5248 idle->state = TASK_RUNNING;
5249 idle->se.exec_start = sched_clock();
5250
5251 kasan_unpoison_task_stack(idle);
5252
5253 #ifdef CONFIG_SMP
5254 /*
5255 * Its possible that init_idle() gets called multiple times on a task,
5256 * in that case do_set_cpus_allowed() will not do the right thing.
5257 *
5258 * And since this is boot we can forgo the serialization.
5259 */
5260 set_cpus_allowed_common(idle, cpumask_of(cpu));
5261 #endif
5262 /*
5263 * We're having a chicken and egg problem, even though we are
5264 * holding rq->lock, the cpu isn't yet set to this cpu so the
5265 * lockdep check in task_group() will fail.
5266 *
5267 * Similar case to sched_fork(). / Alternatively we could
5268 * use task_rq_lock() here and obtain the other rq->lock.
5269 *
5270 * Silence PROVE_RCU
5271 */
5272 rcu_read_lock();
5273 __set_task_cpu(idle, cpu);
5274 rcu_read_unlock();
5275
5276 rq->curr = rq->idle = idle;
5277 idle->on_rq = TASK_ON_RQ_QUEUED;
5278 #ifdef CONFIG_SMP
5279 idle->on_cpu = 1;
5280 #endif
5281 raw_spin_unlock(&rq->lock);
5282 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5283
5284 /* Set the preempt count _outside_ the spinlocks! */
5285 init_idle_preempt_count(idle, cpu);
5286
5287 /*
5288 * The idle tasks have their own, simple scheduling class:
5289 */
5290 idle->sched_class = &idle_sched_class;
5291 ftrace_graph_init_idle_task(idle, cpu);
5292 vtime_init_idle(idle, cpu);
5293 #ifdef CONFIG_SMP
5294 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5295 #endif
5296 }
5297
5298 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5299 const struct cpumask *trial)
5300 {
5301 int ret = 1, trial_cpus;
5302 struct dl_bw *cur_dl_b;
5303 unsigned long flags;
5304
5305 if (!cpumask_weight(cur))
5306 return ret;
5307
5308 rcu_read_lock_sched();
5309 cur_dl_b = dl_bw_of(cpumask_any(cur));
5310 trial_cpus = cpumask_weight(trial);
5311
5312 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5313 if (cur_dl_b->bw != -1 &&
5314 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5315 ret = 0;
5316 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5317 rcu_read_unlock_sched();
5318
5319 return ret;
5320 }
5321
5322 int task_can_attach(struct task_struct *p,
5323 const struct cpumask *cs_cpus_allowed)
5324 {
5325 int ret = 0;
5326
5327 /*
5328 * Kthreads which disallow setaffinity shouldn't be moved
5329 * to a new cpuset; we don't want to change their cpu
5330 * affinity and isolating such threads by their set of
5331 * allowed nodes is unnecessary. Thus, cpusets are not
5332 * applicable for such threads. This prevents checking for
5333 * success of set_cpus_allowed_ptr() on all attached tasks
5334 * before cpus_allowed may be changed.
5335 */
5336 if (p->flags & PF_NO_SETAFFINITY) {
5337 ret = -EINVAL;
5338 goto out;
5339 }
5340
5341 #ifdef CONFIG_SMP
5342 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5343 cs_cpus_allowed)) {
5344 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5345 cs_cpus_allowed);
5346 struct dl_bw *dl_b;
5347 bool overflow;
5348 int cpus;
5349 unsigned long flags;
5350
5351 rcu_read_lock_sched();
5352 dl_b = dl_bw_of(dest_cpu);
5353 raw_spin_lock_irqsave(&dl_b->lock, flags);
5354 cpus = dl_bw_cpus(dest_cpu);
5355 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5356 if (overflow)
5357 ret = -EBUSY;
5358 else {
5359 /*
5360 * We reserve space for this task in the destination
5361 * root_domain, as we can't fail after this point.
5362 * We will free resources in the source root_domain
5363 * later on (see set_cpus_allowed_dl()).
5364 */
5365 __dl_add(dl_b, p->dl.dl_bw);
5366 }
5367 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5368 rcu_read_unlock_sched();
5369
5370 }
5371 #endif
5372 out:
5373 return ret;
5374 }
5375
5376 #ifdef CONFIG_SMP
5377
5378 static bool sched_smp_initialized __read_mostly;
5379
5380 #ifdef CONFIG_NUMA_BALANCING
5381 /* Migrate current task p to target_cpu */
5382 int migrate_task_to(struct task_struct *p, int target_cpu)
5383 {
5384 struct migration_arg arg = { p, target_cpu };
5385 int curr_cpu = task_cpu(p);
5386
5387 if (curr_cpu == target_cpu)
5388 return 0;
5389
5390 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5391 return -EINVAL;
5392
5393 /* TODO: This is not properly updating schedstats */
5394
5395 trace_sched_move_numa(p, curr_cpu, target_cpu);
5396 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5397 }
5398
5399 /*
5400 * Requeue a task on a given node and accurately track the number of NUMA
5401 * tasks on the runqueues
5402 */
5403 void sched_setnuma(struct task_struct *p, int nid)
5404 {
5405 bool queued, running;
5406 struct rq_flags rf;
5407 struct rq *rq;
5408
5409 rq = task_rq_lock(p, &rf);
5410 queued = task_on_rq_queued(p);
5411 running = task_current(rq, p);
5412
5413 if (queued)
5414 dequeue_task(rq, p, DEQUEUE_SAVE);
5415 if (running)
5416 put_prev_task(rq, p);
5417
5418 p->numa_preferred_nid = nid;
5419
5420 if (running)
5421 p->sched_class->set_curr_task(rq);
5422 if (queued)
5423 enqueue_task(rq, p, ENQUEUE_RESTORE);
5424 task_rq_unlock(rq, p, &rf);
5425 }
5426 #endif /* CONFIG_NUMA_BALANCING */
5427
5428 #ifdef CONFIG_HOTPLUG_CPU
5429 /*
5430 * Ensures that the idle task is using init_mm right before its cpu goes
5431 * offline.
5432 */
5433 void idle_task_exit(void)
5434 {
5435 struct mm_struct *mm = current->active_mm;
5436
5437 BUG_ON(cpu_online(smp_processor_id()));
5438
5439 if (mm != &init_mm) {
5440 switch_mm_irqs_off(mm, &init_mm, current);
5441 finish_arch_post_lock_switch();
5442 }
5443 mmdrop(mm);
5444 }
5445
5446 /*
5447 * Since this CPU is going 'away' for a while, fold any nr_active delta
5448 * we might have. Assumes we're called after migrate_tasks() so that the
5449 * nr_active count is stable. We need to take the teardown thread which
5450 * is calling this into account, so we hand in adjust = 1 to the load
5451 * calculation.
5452 *
5453 * Also see the comment "Global load-average calculations".
5454 */
5455 static void calc_load_migrate(struct rq *rq)
5456 {
5457 long delta = calc_load_fold_active(rq, 1);
5458 if (delta)
5459 atomic_long_add(delta, &calc_load_tasks);
5460 }
5461
5462 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5463 {
5464 }
5465
5466 static const struct sched_class fake_sched_class = {
5467 .put_prev_task = put_prev_task_fake,
5468 };
5469
5470 static struct task_struct fake_task = {
5471 /*
5472 * Avoid pull_{rt,dl}_task()
5473 */
5474 .prio = MAX_PRIO + 1,
5475 .sched_class = &fake_sched_class,
5476 };
5477
5478 /*
5479 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5480 * try_to_wake_up()->select_task_rq().
5481 *
5482 * Called with rq->lock held even though we'er in stop_machine() and
5483 * there's no concurrency possible, we hold the required locks anyway
5484 * because of lock validation efforts.
5485 */
5486 static void migrate_tasks(struct rq *dead_rq)
5487 {
5488 struct rq *rq = dead_rq;
5489 struct task_struct *next, *stop = rq->stop;
5490 struct pin_cookie cookie;
5491 int dest_cpu;
5492
5493 /*
5494 * Fudge the rq selection such that the below task selection loop
5495 * doesn't get stuck on the currently eligible stop task.
5496 *
5497 * We're currently inside stop_machine() and the rq is either stuck
5498 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5499 * either way we should never end up calling schedule() until we're
5500 * done here.
5501 */
5502 rq->stop = NULL;
5503
5504 /*
5505 * put_prev_task() and pick_next_task() sched
5506 * class method both need to have an up-to-date
5507 * value of rq->clock[_task]
5508 */
5509 update_rq_clock(rq);
5510
5511 for (;;) {
5512 /*
5513 * There's this thread running, bail when that's the only
5514 * remaining thread.
5515 */
5516 if (rq->nr_running == 1)
5517 break;
5518
5519 /*
5520 * pick_next_task assumes pinned rq->lock.
5521 */
5522 cookie = lockdep_pin_lock(&rq->lock);
5523 next = pick_next_task(rq, &fake_task, cookie);
5524 BUG_ON(!next);
5525 next->sched_class->put_prev_task(rq, next);
5526
5527 /*
5528 * Rules for changing task_struct::cpus_allowed are holding
5529 * both pi_lock and rq->lock, such that holding either
5530 * stabilizes the mask.
5531 *
5532 * Drop rq->lock is not quite as disastrous as it usually is
5533 * because !cpu_active at this point, which means load-balance
5534 * will not interfere. Also, stop-machine.
5535 */
5536 lockdep_unpin_lock(&rq->lock, cookie);
5537 raw_spin_unlock(&rq->lock);
5538 raw_spin_lock(&next->pi_lock);
5539 raw_spin_lock(&rq->lock);
5540
5541 /*
5542 * Since we're inside stop-machine, _nothing_ should have
5543 * changed the task, WARN if weird stuff happened, because in
5544 * that case the above rq->lock drop is a fail too.
5545 */
5546 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5547 raw_spin_unlock(&next->pi_lock);
5548 continue;
5549 }
5550
5551 /* Find suitable destination for @next, with force if needed. */
5552 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5553
5554 rq = __migrate_task(rq, next, dest_cpu);
5555 if (rq != dead_rq) {
5556 raw_spin_unlock(&rq->lock);
5557 rq = dead_rq;
5558 raw_spin_lock(&rq->lock);
5559 }
5560 raw_spin_unlock(&next->pi_lock);
5561 }
5562
5563 rq->stop = stop;
5564 }
5565 #endif /* CONFIG_HOTPLUG_CPU */
5566
5567 static void set_rq_online(struct rq *rq)
5568 {
5569 if (!rq->online) {
5570 const struct sched_class *class;
5571
5572 cpumask_set_cpu(rq->cpu, rq->rd->online);
5573 rq->online = 1;
5574
5575 for_each_class(class) {
5576 if (class->rq_online)
5577 class->rq_online(rq);
5578 }
5579 }
5580 }
5581
5582 static void set_rq_offline(struct rq *rq)
5583 {
5584 if (rq->online) {
5585 const struct sched_class *class;
5586
5587 for_each_class(class) {
5588 if (class->rq_offline)
5589 class->rq_offline(rq);
5590 }
5591
5592 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5593 rq->online = 0;
5594 }
5595 }
5596
5597 static void set_cpu_rq_start_time(unsigned int cpu)
5598 {
5599 struct rq *rq = cpu_rq(cpu);
5600
5601 rq->age_stamp = sched_clock_cpu(cpu);
5602 }
5603
5604 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5605
5606 #ifdef CONFIG_SCHED_DEBUG
5607
5608 static __read_mostly int sched_debug_enabled;
5609
5610 static int __init sched_debug_setup(char *str)
5611 {
5612 sched_debug_enabled = 1;
5613
5614 return 0;
5615 }
5616 early_param("sched_debug", sched_debug_setup);
5617
5618 static inline bool sched_debug(void)
5619 {
5620 return sched_debug_enabled;
5621 }
5622
5623 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5624 struct cpumask *groupmask)
5625 {
5626 struct sched_group *group = sd->groups;
5627
5628 cpumask_clear(groupmask);
5629
5630 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5631
5632 if (!(sd->flags & SD_LOAD_BALANCE)) {
5633 printk("does not load-balance\n");
5634 if (sd->parent)
5635 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5636 " has parent");
5637 return -1;
5638 }
5639
5640 printk(KERN_CONT "span %*pbl level %s\n",
5641 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5642
5643 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5644 printk(KERN_ERR "ERROR: domain->span does not contain "
5645 "CPU%d\n", cpu);
5646 }
5647 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5648 printk(KERN_ERR "ERROR: domain->groups does not contain"
5649 " CPU%d\n", cpu);
5650 }
5651
5652 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5653 do {
5654 if (!group) {
5655 printk("\n");
5656 printk(KERN_ERR "ERROR: group is NULL\n");
5657 break;
5658 }
5659
5660 if (!cpumask_weight(sched_group_cpus(group))) {
5661 printk(KERN_CONT "\n");
5662 printk(KERN_ERR "ERROR: empty group\n");
5663 break;
5664 }
5665
5666 if (!(sd->flags & SD_OVERLAP) &&
5667 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5668 printk(KERN_CONT "\n");
5669 printk(KERN_ERR "ERROR: repeated CPUs\n");
5670 break;
5671 }
5672
5673 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5674
5675 printk(KERN_CONT " %*pbl",
5676 cpumask_pr_args(sched_group_cpus(group)));
5677 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5678 printk(KERN_CONT " (cpu_capacity = %d)",
5679 group->sgc->capacity);
5680 }
5681
5682 group = group->next;
5683 } while (group != sd->groups);
5684 printk(KERN_CONT "\n");
5685
5686 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5687 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5688
5689 if (sd->parent &&
5690 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5691 printk(KERN_ERR "ERROR: parent span is not a superset "
5692 "of domain->span\n");
5693 return 0;
5694 }
5695
5696 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5697 {
5698 int level = 0;
5699
5700 if (!sched_debug_enabled)
5701 return;
5702
5703 if (!sd) {
5704 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5705 return;
5706 }
5707
5708 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5709
5710 for (;;) {
5711 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5712 break;
5713 level++;
5714 sd = sd->parent;
5715 if (!sd)
5716 break;
5717 }
5718 }
5719 #else /* !CONFIG_SCHED_DEBUG */
5720 # define sched_domain_debug(sd, cpu) do { } while (0)
5721 static inline bool sched_debug(void)
5722 {
5723 return false;
5724 }
5725 #endif /* CONFIG_SCHED_DEBUG */
5726
5727 static int sd_degenerate(struct sched_domain *sd)
5728 {
5729 if (cpumask_weight(sched_domain_span(sd)) == 1)
5730 return 1;
5731
5732 /* Following flags need at least 2 groups */
5733 if (sd->flags & (SD_LOAD_BALANCE |
5734 SD_BALANCE_NEWIDLE |
5735 SD_BALANCE_FORK |
5736 SD_BALANCE_EXEC |
5737 SD_SHARE_CPUCAPACITY |
5738 SD_SHARE_PKG_RESOURCES |
5739 SD_SHARE_POWERDOMAIN)) {
5740 if (sd->groups != sd->groups->next)
5741 return 0;
5742 }
5743
5744 /* Following flags don't use groups */
5745 if (sd->flags & (SD_WAKE_AFFINE))
5746 return 0;
5747
5748 return 1;
5749 }
5750
5751 static int
5752 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5753 {
5754 unsigned long cflags = sd->flags, pflags = parent->flags;
5755
5756 if (sd_degenerate(parent))
5757 return 1;
5758
5759 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5760 return 0;
5761
5762 /* Flags needing groups don't count if only 1 group in parent */
5763 if (parent->groups == parent->groups->next) {
5764 pflags &= ~(SD_LOAD_BALANCE |
5765 SD_BALANCE_NEWIDLE |
5766 SD_BALANCE_FORK |
5767 SD_BALANCE_EXEC |
5768 SD_SHARE_CPUCAPACITY |
5769 SD_SHARE_PKG_RESOURCES |
5770 SD_PREFER_SIBLING |
5771 SD_SHARE_POWERDOMAIN);
5772 if (nr_node_ids == 1)
5773 pflags &= ~SD_SERIALIZE;
5774 }
5775 if (~cflags & pflags)
5776 return 0;
5777
5778 return 1;
5779 }
5780
5781 static void free_rootdomain(struct rcu_head *rcu)
5782 {
5783 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5784
5785 cpupri_cleanup(&rd->cpupri);
5786 cpudl_cleanup(&rd->cpudl);
5787 free_cpumask_var(rd->dlo_mask);
5788 free_cpumask_var(rd->rto_mask);
5789 free_cpumask_var(rd->online);
5790 free_cpumask_var(rd->span);
5791 kfree(rd);
5792 }
5793
5794 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5795 {
5796 struct root_domain *old_rd = NULL;
5797 unsigned long flags;
5798
5799 raw_spin_lock_irqsave(&rq->lock, flags);
5800
5801 if (rq->rd) {
5802 old_rd = rq->rd;
5803
5804 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5805 set_rq_offline(rq);
5806
5807 cpumask_clear_cpu(rq->cpu, old_rd->span);
5808
5809 /*
5810 * If we dont want to free the old_rd yet then
5811 * set old_rd to NULL to skip the freeing later
5812 * in this function:
5813 */
5814 if (!atomic_dec_and_test(&old_rd->refcount))
5815 old_rd = NULL;
5816 }
5817
5818 atomic_inc(&rd->refcount);
5819 rq->rd = rd;
5820
5821 cpumask_set_cpu(rq->cpu, rd->span);
5822 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5823 set_rq_online(rq);
5824
5825 raw_spin_unlock_irqrestore(&rq->lock, flags);
5826
5827 if (old_rd)
5828 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5829 }
5830
5831 static int init_rootdomain(struct root_domain *rd)
5832 {
5833 memset(rd, 0, sizeof(*rd));
5834
5835 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5836 goto out;
5837 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5838 goto free_span;
5839 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5840 goto free_online;
5841 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5842 goto free_dlo_mask;
5843
5844 init_dl_bw(&rd->dl_bw);
5845 if (cpudl_init(&rd->cpudl) != 0)
5846 goto free_dlo_mask;
5847
5848 if (cpupri_init(&rd->cpupri) != 0)
5849 goto free_rto_mask;
5850 return 0;
5851
5852 free_rto_mask:
5853 free_cpumask_var(rd->rto_mask);
5854 free_dlo_mask:
5855 free_cpumask_var(rd->dlo_mask);
5856 free_online:
5857 free_cpumask_var(rd->online);
5858 free_span:
5859 free_cpumask_var(rd->span);
5860 out:
5861 return -ENOMEM;
5862 }
5863
5864 /*
5865 * By default the system creates a single root-domain with all cpus as
5866 * members (mimicking the global state we have today).
5867 */
5868 struct root_domain def_root_domain;
5869
5870 static void init_defrootdomain(void)
5871 {
5872 init_rootdomain(&def_root_domain);
5873
5874 atomic_set(&def_root_domain.refcount, 1);
5875 }
5876
5877 static struct root_domain *alloc_rootdomain(void)
5878 {
5879 struct root_domain *rd;
5880
5881 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5882 if (!rd)
5883 return NULL;
5884
5885 if (init_rootdomain(rd) != 0) {
5886 kfree(rd);
5887 return NULL;
5888 }
5889
5890 return rd;
5891 }
5892
5893 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5894 {
5895 struct sched_group *tmp, *first;
5896
5897 if (!sg)
5898 return;
5899
5900 first = sg;
5901 do {
5902 tmp = sg->next;
5903
5904 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5905 kfree(sg->sgc);
5906
5907 kfree(sg);
5908 sg = tmp;
5909 } while (sg != first);
5910 }
5911
5912 static void free_sched_domain(struct rcu_head *rcu)
5913 {
5914 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5915
5916 /*
5917 * If its an overlapping domain it has private groups, iterate and
5918 * nuke them all.
5919 */
5920 if (sd->flags & SD_OVERLAP) {
5921 free_sched_groups(sd->groups, 1);
5922 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5923 kfree(sd->groups->sgc);
5924 kfree(sd->groups);
5925 }
5926 kfree(sd);
5927 }
5928
5929 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5930 {
5931 call_rcu(&sd->rcu, free_sched_domain);
5932 }
5933
5934 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5935 {
5936 for (; sd; sd = sd->parent)
5937 destroy_sched_domain(sd, cpu);
5938 }
5939
5940 /*
5941 * Keep a special pointer to the highest sched_domain that has
5942 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5943 * allows us to avoid some pointer chasing select_idle_sibling().
5944 *
5945 * Also keep a unique ID per domain (we use the first cpu number in
5946 * the cpumask of the domain), this allows us to quickly tell if
5947 * two cpus are in the same cache domain, see cpus_share_cache().
5948 */
5949 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5950 DEFINE_PER_CPU(int, sd_llc_size);
5951 DEFINE_PER_CPU(int, sd_llc_id);
5952 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5953 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5954 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5955
5956 static void update_top_cache_domain(int cpu)
5957 {
5958 struct sched_domain *sd;
5959 struct sched_domain *busy_sd = NULL;
5960 int id = cpu;
5961 int size = 1;
5962
5963 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5964 if (sd) {
5965 id = cpumask_first(sched_domain_span(sd));
5966 size = cpumask_weight(sched_domain_span(sd));
5967 busy_sd = sd->parent; /* sd_busy */
5968 }
5969 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5970
5971 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5972 per_cpu(sd_llc_size, cpu) = size;
5973 per_cpu(sd_llc_id, cpu) = id;
5974
5975 sd = lowest_flag_domain(cpu, SD_NUMA);
5976 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5977
5978 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5979 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5980 }
5981
5982 /*
5983 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5984 * hold the hotplug lock.
5985 */
5986 static void
5987 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5988 {
5989 struct rq *rq = cpu_rq(cpu);
5990 struct sched_domain *tmp;
5991
5992 /* Remove the sched domains which do not contribute to scheduling. */
5993 for (tmp = sd; tmp; ) {
5994 struct sched_domain *parent = tmp->parent;
5995 if (!parent)
5996 break;
5997
5998 if (sd_parent_degenerate(tmp, parent)) {
5999 tmp->parent = parent->parent;
6000 if (parent->parent)
6001 parent->parent->child = tmp;
6002 /*
6003 * Transfer SD_PREFER_SIBLING down in case of a
6004 * degenerate parent; the spans match for this
6005 * so the property transfers.
6006 */
6007 if (parent->flags & SD_PREFER_SIBLING)
6008 tmp->flags |= SD_PREFER_SIBLING;
6009 destroy_sched_domain(parent, cpu);
6010 } else
6011 tmp = tmp->parent;
6012 }
6013
6014 if (sd && sd_degenerate(sd)) {
6015 tmp = sd;
6016 sd = sd->parent;
6017 destroy_sched_domain(tmp, cpu);
6018 if (sd)
6019 sd->child = NULL;
6020 }
6021
6022 sched_domain_debug(sd, cpu);
6023
6024 rq_attach_root(rq, rd);
6025 tmp = rq->sd;
6026 rcu_assign_pointer(rq->sd, sd);
6027 destroy_sched_domains(tmp, cpu);
6028
6029 update_top_cache_domain(cpu);
6030 }
6031
6032 /* Setup the mask of cpus configured for isolated domains */
6033 static int __init isolated_cpu_setup(char *str)
6034 {
6035 int ret;
6036
6037 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6038 ret = cpulist_parse(str, cpu_isolated_map);
6039 if (ret) {
6040 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6041 return 0;
6042 }
6043 return 1;
6044 }
6045 __setup("isolcpus=", isolated_cpu_setup);
6046
6047 struct s_data {
6048 struct sched_domain ** __percpu sd;
6049 struct root_domain *rd;
6050 };
6051
6052 enum s_alloc {
6053 sa_rootdomain,
6054 sa_sd,
6055 sa_sd_storage,
6056 sa_none,
6057 };
6058
6059 /*
6060 * Build an iteration mask that can exclude certain CPUs from the upwards
6061 * domain traversal.
6062 *
6063 * Asymmetric node setups can result in situations where the domain tree is of
6064 * unequal depth, make sure to skip domains that already cover the entire
6065 * range.
6066 *
6067 * In that case build_sched_domains() will have terminated the iteration early
6068 * and our sibling sd spans will be empty. Domains should always include the
6069 * cpu they're built on, so check that.
6070 *
6071 */
6072 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6073 {
6074 const struct cpumask *span = sched_domain_span(sd);
6075 struct sd_data *sdd = sd->private;
6076 struct sched_domain *sibling;
6077 int i;
6078
6079 for_each_cpu(i, span) {
6080 sibling = *per_cpu_ptr(sdd->sd, i);
6081 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6082 continue;
6083
6084 cpumask_set_cpu(i, sched_group_mask(sg));
6085 }
6086 }
6087
6088 /*
6089 * Return the canonical balance cpu for this group, this is the first cpu
6090 * of this group that's also in the iteration mask.
6091 */
6092 int group_balance_cpu(struct sched_group *sg)
6093 {
6094 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6095 }
6096
6097 static int
6098 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6099 {
6100 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6101 const struct cpumask *span = sched_domain_span(sd);
6102 struct cpumask *covered = sched_domains_tmpmask;
6103 struct sd_data *sdd = sd->private;
6104 struct sched_domain *sibling;
6105 int i;
6106
6107 cpumask_clear(covered);
6108
6109 for_each_cpu(i, span) {
6110 struct cpumask *sg_span;
6111
6112 if (cpumask_test_cpu(i, covered))
6113 continue;
6114
6115 sibling = *per_cpu_ptr(sdd->sd, i);
6116
6117 /* See the comment near build_group_mask(). */
6118 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6119 continue;
6120
6121 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6122 GFP_KERNEL, cpu_to_node(cpu));
6123
6124 if (!sg)
6125 goto fail;
6126
6127 sg_span = sched_group_cpus(sg);
6128 if (sibling->child)
6129 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6130 else
6131 cpumask_set_cpu(i, sg_span);
6132
6133 cpumask_or(covered, covered, sg_span);
6134
6135 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6136 if (atomic_inc_return(&sg->sgc->ref) == 1)
6137 build_group_mask(sd, sg);
6138
6139 /*
6140 * Initialize sgc->capacity such that even if we mess up the
6141 * domains and no possible iteration will get us here, we won't
6142 * die on a /0 trap.
6143 */
6144 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6145
6146 /*
6147 * Make sure the first group of this domain contains the
6148 * canonical balance cpu. Otherwise the sched_domain iteration
6149 * breaks. See update_sg_lb_stats().
6150 */
6151 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6152 group_balance_cpu(sg) == cpu)
6153 groups = sg;
6154
6155 if (!first)
6156 first = sg;
6157 if (last)
6158 last->next = sg;
6159 last = sg;
6160 last->next = first;
6161 }
6162 sd->groups = groups;
6163
6164 return 0;
6165
6166 fail:
6167 free_sched_groups(first, 0);
6168
6169 return -ENOMEM;
6170 }
6171
6172 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6173 {
6174 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6175 struct sched_domain *child = sd->child;
6176
6177 if (child)
6178 cpu = cpumask_first(sched_domain_span(child));
6179
6180 if (sg) {
6181 *sg = *per_cpu_ptr(sdd->sg, cpu);
6182 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6183 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6184 }
6185
6186 return cpu;
6187 }
6188
6189 /*
6190 * build_sched_groups will build a circular linked list of the groups
6191 * covered by the given span, and will set each group's ->cpumask correctly,
6192 * and ->cpu_capacity to 0.
6193 *
6194 * Assumes the sched_domain tree is fully constructed
6195 */
6196 static int
6197 build_sched_groups(struct sched_domain *sd, int cpu)
6198 {
6199 struct sched_group *first = NULL, *last = NULL;
6200 struct sd_data *sdd = sd->private;
6201 const struct cpumask *span = sched_domain_span(sd);
6202 struct cpumask *covered;
6203 int i;
6204
6205 get_group(cpu, sdd, &sd->groups);
6206 atomic_inc(&sd->groups->ref);
6207
6208 if (cpu != cpumask_first(span))
6209 return 0;
6210
6211 lockdep_assert_held(&sched_domains_mutex);
6212 covered = sched_domains_tmpmask;
6213
6214 cpumask_clear(covered);
6215
6216 for_each_cpu(i, span) {
6217 struct sched_group *sg;
6218 int group, j;
6219
6220 if (cpumask_test_cpu(i, covered))
6221 continue;
6222
6223 group = get_group(i, sdd, &sg);
6224 cpumask_setall(sched_group_mask(sg));
6225
6226 for_each_cpu(j, span) {
6227 if (get_group(j, sdd, NULL) != group)
6228 continue;
6229
6230 cpumask_set_cpu(j, covered);
6231 cpumask_set_cpu(j, sched_group_cpus(sg));
6232 }
6233
6234 if (!first)
6235 first = sg;
6236 if (last)
6237 last->next = sg;
6238 last = sg;
6239 }
6240 last->next = first;
6241
6242 return 0;
6243 }
6244
6245 /*
6246 * Initialize sched groups cpu_capacity.
6247 *
6248 * cpu_capacity indicates the capacity of sched group, which is used while
6249 * distributing the load between different sched groups in a sched domain.
6250 * Typically cpu_capacity for all the groups in a sched domain will be same
6251 * unless there are asymmetries in the topology. If there are asymmetries,
6252 * group having more cpu_capacity will pickup more load compared to the
6253 * group having less cpu_capacity.
6254 */
6255 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6256 {
6257 struct sched_group *sg = sd->groups;
6258
6259 WARN_ON(!sg);
6260
6261 do {
6262 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6263 sg = sg->next;
6264 } while (sg != sd->groups);
6265
6266 if (cpu != group_balance_cpu(sg))
6267 return;
6268
6269 update_group_capacity(sd, cpu);
6270 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6271 }
6272
6273 /*
6274 * Initializers for schedule domains
6275 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6276 */
6277
6278 static int default_relax_domain_level = -1;
6279 int sched_domain_level_max;
6280
6281 static int __init setup_relax_domain_level(char *str)
6282 {
6283 if (kstrtoint(str, 0, &default_relax_domain_level))
6284 pr_warn("Unable to set relax_domain_level\n");
6285
6286 return 1;
6287 }
6288 __setup("relax_domain_level=", setup_relax_domain_level);
6289
6290 static void set_domain_attribute(struct sched_domain *sd,
6291 struct sched_domain_attr *attr)
6292 {
6293 int request;
6294
6295 if (!attr || attr->relax_domain_level < 0) {
6296 if (default_relax_domain_level < 0)
6297 return;
6298 else
6299 request = default_relax_domain_level;
6300 } else
6301 request = attr->relax_domain_level;
6302 if (request < sd->level) {
6303 /* turn off idle balance on this domain */
6304 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6305 } else {
6306 /* turn on idle balance on this domain */
6307 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6308 }
6309 }
6310
6311 static void __sdt_free(const struct cpumask *cpu_map);
6312 static int __sdt_alloc(const struct cpumask *cpu_map);
6313
6314 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6315 const struct cpumask *cpu_map)
6316 {
6317 switch (what) {
6318 case sa_rootdomain:
6319 if (!atomic_read(&d->rd->refcount))
6320 free_rootdomain(&d->rd->rcu); /* fall through */
6321 case sa_sd:
6322 free_percpu(d->sd); /* fall through */
6323 case sa_sd_storage:
6324 __sdt_free(cpu_map); /* fall through */
6325 case sa_none:
6326 break;
6327 }
6328 }
6329
6330 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6331 const struct cpumask *cpu_map)
6332 {
6333 memset(d, 0, sizeof(*d));
6334
6335 if (__sdt_alloc(cpu_map))
6336 return sa_sd_storage;
6337 d->sd = alloc_percpu(struct sched_domain *);
6338 if (!d->sd)
6339 return sa_sd_storage;
6340 d->rd = alloc_rootdomain();
6341 if (!d->rd)
6342 return sa_sd;
6343 return sa_rootdomain;
6344 }
6345
6346 /*
6347 * NULL the sd_data elements we've used to build the sched_domain and
6348 * sched_group structure so that the subsequent __free_domain_allocs()
6349 * will not free the data we're using.
6350 */
6351 static void claim_allocations(int cpu, struct sched_domain *sd)
6352 {
6353 struct sd_data *sdd = sd->private;
6354
6355 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6356 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6357
6358 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6359 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6360
6361 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6362 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6363 }
6364
6365 #ifdef CONFIG_NUMA
6366 static int sched_domains_numa_levels;
6367 enum numa_topology_type sched_numa_topology_type;
6368 static int *sched_domains_numa_distance;
6369 int sched_max_numa_distance;
6370 static struct cpumask ***sched_domains_numa_masks;
6371 static int sched_domains_curr_level;
6372 #endif
6373
6374 /*
6375 * SD_flags allowed in topology descriptions.
6376 *
6377 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6378 * SD_SHARE_PKG_RESOURCES - describes shared caches
6379 * SD_NUMA - describes NUMA topologies
6380 * SD_SHARE_POWERDOMAIN - describes shared power domain
6381 *
6382 * Odd one out:
6383 * SD_ASYM_PACKING - describes SMT quirks
6384 */
6385 #define TOPOLOGY_SD_FLAGS \
6386 (SD_SHARE_CPUCAPACITY | \
6387 SD_SHARE_PKG_RESOURCES | \
6388 SD_NUMA | \
6389 SD_ASYM_PACKING | \
6390 SD_SHARE_POWERDOMAIN)
6391
6392 static struct sched_domain *
6393 sd_init(struct sched_domain_topology_level *tl, int cpu)
6394 {
6395 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6396 int sd_weight, sd_flags = 0;
6397
6398 #ifdef CONFIG_NUMA
6399 /*
6400 * Ugly hack to pass state to sd_numa_mask()...
6401 */
6402 sched_domains_curr_level = tl->numa_level;
6403 #endif
6404
6405 sd_weight = cpumask_weight(tl->mask(cpu));
6406
6407 if (tl->sd_flags)
6408 sd_flags = (*tl->sd_flags)();
6409 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6410 "wrong sd_flags in topology description\n"))
6411 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6412
6413 *sd = (struct sched_domain){
6414 .min_interval = sd_weight,
6415 .max_interval = 2*sd_weight,
6416 .busy_factor = 32,
6417 .imbalance_pct = 125,
6418
6419 .cache_nice_tries = 0,
6420 .busy_idx = 0,
6421 .idle_idx = 0,
6422 .newidle_idx = 0,
6423 .wake_idx = 0,
6424 .forkexec_idx = 0,
6425
6426 .flags = 1*SD_LOAD_BALANCE
6427 | 1*SD_BALANCE_NEWIDLE
6428 | 1*SD_BALANCE_EXEC
6429 | 1*SD_BALANCE_FORK
6430 | 0*SD_BALANCE_WAKE
6431 | 1*SD_WAKE_AFFINE
6432 | 0*SD_SHARE_CPUCAPACITY
6433 | 0*SD_SHARE_PKG_RESOURCES
6434 | 0*SD_SERIALIZE
6435 | 0*SD_PREFER_SIBLING
6436 | 0*SD_NUMA
6437 | sd_flags
6438 ,
6439
6440 .last_balance = jiffies,
6441 .balance_interval = sd_weight,
6442 .smt_gain = 0,
6443 .max_newidle_lb_cost = 0,
6444 .next_decay_max_lb_cost = jiffies,
6445 #ifdef CONFIG_SCHED_DEBUG
6446 .name = tl->name,
6447 #endif
6448 };
6449
6450 /*
6451 * Convert topological properties into behaviour.
6452 */
6453
6454 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6455 sd->flags |= SD_PREFER_SIBLING;
6456 sd->imbalance_pct = 110;
6457 sd->smt_gain = 1178; /* ~15% */
6458
6459 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6460 sd->imbalance_pct = 117;
6461 sd->cache_nice_tries = 1;
6462 sd->busy_idx = 2;
6463
6464 #ifdef CONFIG_NUMA
6465 } else if (sd->flags & SD_NUMA) {
6466 sd->cache_nice_tries = 2;
6467 sd->busy_idx = 3;
6468 sd->idle_idx = 2;
6469
6470 sd->flags |= SD_SERIALIZE;
6471 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6472 sd->flags &= ~(SD_BALANCE_EXEC |
6473 SD_BALANCE_FORK |
6474 SD_WAKE_AFFINE);
6475 }
6476
6477 #endif
6478 } else {
6479 sd->flags |= SD_PREFER_SIBLING;
6480 sd->cache_nice_tries = 1;
6481 sd->busy_idx = 2;
6482 sd->idle_idx = 1;
6483 }
6484
6485 sd->private = &tl->data;
6486
6487 return sd;
6488 }
6489
6490 /*
6491 * Topology list, bottom-up.
6492 */
6493 static struct sched_domain_topology_level default_topology[] = {
6494 #ifdef CONFIG_SCHED_SMT
6495 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6496 #endif
6497 #ifdef CONFIG_SCHED_MC
6498 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6499 #endif
6500 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6501 { NULL, },
6502 };
6503
6504 static struct sched_domain_topology_level *sched_domain_topology =
6505 default_topology;
6506
6507 #define for_each_sd_topology(tl) \
6508 for (tl = sched_domain_topology; tl->mask; tl++)
6509
6510 void set_sched_topology(struct sched_domain_topology_level *tl)
6511 {
6512 sched_domain_topology = tl;
6513 }
6514
6515 #ifdef CONFIG_NUMA
6516
6517 static const struct cpumask *sd_numa_mask(int cpu)
6518 {
6519 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6520 }
6521
6522 static void sched_numa_warn(const char *str)
6523 {
6524 static int done = false;
6525 int i,j;
6526
6527 if (done)
6528 return;
6529
6530 done = true;
6531
6532 printk(KERN_WARNING "ERROR: %s\n\n", str);
6533
6534 for (i = 0; i < nr_node_ids; i++) {
6535 printk(KERN_WARNING " ");
6536 for (j = 0; j < nr_node_ids; j++)
6537 printk(KERN_CONT "%02d ", node_distance(i,j));
6538 printk(KERN_CONT "\n");
6539 }
6540 printk(KERN_WARNING "\n");
6541 }
6542
6543 bool find_numa_distance(int distance)
6544 {
6545 int i;
6546
6547 if (distance == node_distance(0, 0))
6548 return true;
6549
6550 for (i = 0; i < sched_domains_numa_levels; i++) {
6551 if (sched_domains_numa_distance[i] == distance)
6552 return true;
6553 }
6554
6555 return false;
6556 }
6557
6558 /*
6559 * A system can have three types of NUMA topology:
6560 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6561 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6562 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6563 *
6564 * The difference between a glueless mesh topology and a backplane
6565 * topology lies in whether communication between not directly
6566 * connected nodes goes through intermediary nodes (where programs
6567 * could run), or through backplane controllers. This affects
6568 * placement of programs.
6569 *
6570 * The type of topology can be discerned with the following tests:
6571 * - If the maximum distance between any nodes is 1 hop, the system
6572 * is directly connected.
6573 * - If for two nodes A and B, located N > 1 hops away from each other,
6574 * there is an intermediary node C, which is < N hops away from both
6575 * nodes A and B, the system is a glueless mesh.
6576 */
6577 static void init_numa_topology_type(void)
6578 {
6579 int a, b, c, n;
6580
6581 n = sched_max_numa_distance;
6582
6583 if (sched_domains_numa_levels <= 1) {
6584 sched_numa_topology_type = NUMA_DIRECT;
6585 return;
6586 }
6587
6588 for_each_online_node(a) {
6589 for_each_online_node(b) {
6590 /* Find two nodes furthest removed from each other. */
6591 if (node_distance(a, b) < n)
6592 continue;
6593
6594 /* Is there an intermediary node between a and b? */
6595 for_each_online_node(c) {
6596 if (node_distance(a, c) < n &&
6597 node_distance(b, c) < n) {
6598 sched_numa_topology_type =
6599 NUMA_GLUELESS_MESH;
6600 return;
6601 }
6602 }
6603
6604 sched_numa_topology_type = NUMA_BACKPLANE;
6605 return;
6606 }
6607 }
6608 }
6609
6610 static void sched_init_numa(void)
6611 {
6612 int next_distance, curr_distance = node_distance(0, 0);
6613 struct sched_domain_topology_level *tl;
6614 int level = 0;
6615 int i, j, k;
6616
6617 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6618 if (!sched_domains_numa_distance)
6619 return;
6620
6621 /*
6622 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6623 * unique distances in the node_distance() table.
6624 *
6625 * Assumes node_distance(0,j) includes all distances in
6626 * node_distance(i,j) in order to avoid cubic time.
6627 */
6628 next_distance = curr_distance;
6629 for (i = 0; i < nr_node_ids; i++) {
6630 for (j = 0; j < nr_node_ids; j++) {
6631 for (k = 0; k < nr_node_ids; k++) {
6632 int distance = node_distance(i, k);
6633
6634 if (distance > curr_distance &&
6635 (distance < next_distance ||
6636 next_distance == curr_distance))
6637 next_distance = distance;
6638
6639 /*
6640 * While not a strong assumption it would be nice to know
6641 * about cases where if node A is connected to B, B is not
6642 * equally connected to A.
6643 */
6644 if (sched_debug() && node_distance(k, i) != distance)
6645 sched_numa_warn("Node-distance not symmetric");
6646
6647 if (sched_debug() && i && !find_numa_distance(distance))
6648 sched_numa_warn("Node-0 not representative");
6649 }
6650 if (next_distance != curr_distance) {
6651 sched_domains_numa_distance[level++] = next_distance;
6652 sched_domains_numa_levels = level;
6653 curr_distance = next_distance;
6654 } else break;
6655 }
6656
6657 /*
6658 * In case of sched_debug() we verify the above assumption.
6659 */
6660 if (!sched_debug())
6661 break;
6662 }
6663
6664 if (!level)
6665 return;
6666
6667 /*
6668 * 'level' contains the number of unique distances, excluding the
6669 * identity distance node_distance(i,i).
6670 *
6671 * The sched_domains_numa_distance[] array includes the actual distance
6672 * numbers.
6673 */
6674
6675 /*
6676 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6677 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6678 * the array will contain less then 'level' members. This could be
6679 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6680 * in other functions.
6681 *
6682 * We reset it to 'level' at the end of this function.
6683 */
6684 sched_domains_numa_levels = 0;
6685
6686 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6687 if (!sched_domains_numa_masks)
6688 return;
6689
6690 /*
6691 * Now for each level, construct a mask per node which contains all
6692 * cpus of nodes that are that many hops away from us.
6693 */
6694 for (i = 0; i < level; i++) {
6695 sched_domains_numa_masks[i] =
6696 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6697 if (!sched_domains_numa_masks[i])
6698 return;
6699
6700 for (j = 0; j < nr_node_ids; j++) {
6701 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6702 if (!mask)
6703 return;
6704
6705 sched_domains_numa_masks[i][j] = mask;
6706
6707 for_each_node(k) {
6708 if (node_distance(j, k) > sched_domains_numa_distance[i])
6709 continue;
6710
6711 cpumask_or(mask, mask, cpumask_of_node(k));
6712 }
6713 }
6714 }
6715
6716 /* Compute default topology size */
6717 for (i = 0; sched_domain_topology[i].mask; i++);
6718
6719 tl = kzalloc((i + level + 1) *
6720 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6721 if (!tl)
6722 return;
6723
6724 /*
6725 * Copy the default topology bits..
6726 */
6727 for (i = 0; sched_domain_topology[i].mask; i++)
6728 tl[i] = sched_domain_topology[i];
6729
6730 /*
6731 * .. and append 'j' levels of NUMA goodness.
6732 */
6733 for (j = 0; j < level; i++, j++) {
6734 tl[i] = (struct sched_domain_topology_level){
6735 .mask = sd_numa_mask,
6736 .sd_flags = cpu_numa_flags,
6737 .flags = SDTL_OVERLAP,
6738 .numa_level = j,
6739 SD_INIT_NAME(NUMA)
6740 };
6741 }
6742
6743 sched_domain_topology = tl;
6744
6745 sched_domains_numa_levels = level;
6746 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6747
6748 init_numa_topology_type();
6749 }
6750
6751 static void sched_domains_numa_masks_set(unsigned int cpu)
6752 {
6753 int node = cpu_to_node(cpu);
6754 int i, j;
6755
6756 for (i = 0; i < sched_domains_numa_levels; i++) {
6757 for (j = 0; j < nr_node_ids; j++) {
6758 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6759 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6760 }
6761 }
6762 }
6763
6764 static void sched_domains_numa_masks_clear(unsigned int cpu)
6765 {
6766 int i, j;
6767
6768 for (i = 0; i < sched_domains_numa_levels; i++) {
6769 for (j = 0; j < nr_node_ids; j++)
6770 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6771 }
6772 }
6773
6774 #else
6775 static inline void sched_init_numa(void) { }
6776 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6777 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6778 #endif /* CONFIG_NUMA */
6779
6780 static int __sdt_alloc(const struct cpumask *cpu_map)
6781 {
6782 struct sched_domain_topology_level *tl;
6783 int j;
6784
6785 for_each_sd_topology(tl) {
6786 struct sd_data *sdd = &tl->data;
6787
6788 sdd->sd = alloc_percpu(struct sched_domain *);
6789 if (!sdd->sd)
6790 return -ENOMEM;
6791
6792 sdd->sg = alloc_percpu(struct sched_group *);
6793 if (!sdd->sg)
6794 return -ENOMEM;
6795
6796 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6797 if (!sdd->sgc)
6798 return -ENOMEM;
6799
6800 for_each_cpu(j, cpu_map) {
6801 struct sched_domain *sd;
6802 struct sched_group *sg;
6803 struct sched_group_capacity *sgc;
6804
6805 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6806 GFP_KERNEL, cpu_to_node(j));
6807 if (!sd)
6808 return -ENOMEM;
6809
6810 *per_cpu_ptr(sdd->sd, j) = sd;
6811
6812 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6813 GFP_KERNEL, cpu_to_node(j));
6814 if (!sg)
6815 return -ENOMEM;
6816
6817 sg->next = sg;
6818
6819 *per_cpu_ptr(sdd->sg, j) = sg;
6820
6821 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6822 GFP_KERNEL, cpu_to_node(j));
6823 if (!sgc)
6824 return -ENOMEM;
6825
6826 *per_cpu_ptr(sdd->sgc, j) = sgc;
6827 }
6828 }
6829
6830 return 0;
6831 }
6832
6833 static void __sdt_free(const struct cpumask *cpu_map)
6834 {
6835 struct sched_domain_topology_level *tl;
6836 int j;
6837
6838 for_each_sd_topology(tl) {
6839 struct sd_data *sdd = &tl->data;
6840
6841 for_each_cpu(j, cpu_map) {
6842 struct sched_domain *sd;
6843
6844 if (sdd->sd) {
6845 sd = *per_cpu_ptr(sdd->sd, j);
6846 if (sd && (sd->flags & SD_OVERLAP))
6847 free_sched_groups(sd->groups, 0);
6848 kfree(*per_cpu_ptr(sdd->sd, j));
6849 }
6850
6851 if (sdd->sg)
6852 kfree(*per_cpu_ptr(sdd->sg, j));
6853 if (sdd->sgc)
6854 kfree(*per_cpu_ptr(sdd->sgc, j));
6855 }
6856 free_percpu(sdd->sd);
6857 sdd->sd = NULL;
6858 free_percpu(sdd->sg);
6859 sdd->sg = NULL;
6860 free_percpu(sdd->sgc);
6861 sdd->sgc = NULL;
6862 }
6863 }
6864
6865 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6866 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6867 struct sched_domain *child, int cpu)
6868 {
6869 struct sched_domain *sd = sd_init(tl, cpu);
6870 if (!sd)
6871 return child;
6872
6873 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6874 if (child) {
6875 sd->level = child->level + 1;
6876 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6877 child->parent = sd;
6878 sd->child = child;
6879
6880 if (!cpumask_subset(sched_domain_span(child),
6881 sched_domain_span(sd))) {
6882 pr_err("BUG: arch topology borken\n");
6883 #ifdef CONFIG_SCHED_DEBUG
6884 pr_err(" the %s domain not a subset of the %s domain\n",
6885 child->name, sd->name);
6886 #endif
6887 /* Fixup, ensure @sd has at least @child cpus. */
6888 cpumask_or(sched_domain_span(sd),
6889 sched_domain_span(sd),
6890 sched_domain_span(child));
6891 }
6892
6893 }
6894 set_domain_attribute(sd, attr);
6895
6896 return sd;
6897 }
6898
6899 /*
6900 * Build sched domains for a given set of cpus and attach the sched domains
6901 * to the individual cpus
6902 */
6903 static int build_sched_domains(const struct cpumask *cpu_map,
6904 struct sched_domain_attr *attr)
6905 {
6906 enum s_alloc alloc_state;
6907 struct sched_domain *sd;
6908 struct s_data d;
6909 int i, ret = -ENOMEM;
6910
6911 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6912 if (alloc_state != sa_rootdomain)
6913 goto error;
6914
6915 /* Set up domains for cpus specified by the cpu_map. */
6916 for_each_cpu(i, cpu_map) {
6917 struct sched_domain_topology_level *tl;
6918
6919 sd = NULL;
6920 for_each_sd_topology(tl) {
6921 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6922 if (tl == sched_domain_topology)
6923 *per_cpu_ptr(d.sd, i) = sd;
6924 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6925 sd->flags |= SD_OVERLAP;
6926 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6927 break;
6928 }
6929 }
6930
6931 /* Build the groups for the domains */
6932 for_each_cpu(i, cpu_map) {
6933 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6934 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6935 if (sd->flags & SD_OVERLAP) {
6936 if (build_overlap_sched_groups(sd, i))
6937 goto error;
6938 } else {
6939 if (build_sched_groups(sd, i))
6940 goto error;
6941 }
6942 }
6943 }
6944
6945 /* Calculate CPU capacity for physical packages and nodes */
6946 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6947 if (!cpumask_test_cpu(i, cpu_map))
6948 continue;
6949
6950 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6951 claim_allocations(i, sd);
6952 init_sched_groups_capacity(i, sd);
6953 }
6954 }
6955
6956 /* Attach the domains */
6957 rcu_read_lock();
6958 for_each_cpu(i, cpu_map) {
6959 sd = *per_cpu_ptr(d.sd, i);
6960 cpu_attach_domain(sd, d.rd, i);
6961 }
6962 rcu_read_unlock();
6963
6964 ret = 0;
6965 error:
6966 __free_domain_allocs(&d, alloc_state, cpu_map);
6967 return ret;
6968 }
6969
6970 static cpumask_var_t *doms_cur; /* current sched domains */
6971 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6972 static struct sched_domain_attr *dattr_cur;
6973 /* attribues of custom domains in 'doms_cur' */
6974
6975 /*
6976 * Special case: If a kmalloc of a doms_cur partition (array of
6977 * cpumask) fails, then fallback to a single sched domain,
6978 * as determined by the single cpumask fallback_doms.
6979 */
6980 static cpumask_var_t fallback_doms;
6981
6982 /*
6983 * arch_update_cpu_topology lets virtualized architectures update the
6984 * cpu core maps. It is supposed to return 1 if the topology changed
6985 * or 0 if it stayed the same.
6986 */
6987 int __weak arch_update_cpu_topology(void)
6988 {
6989 return 0;
6990 }
6991
6992 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6993 {
6994 int i;
6995 cpumask_var_t *doms;
6996
6997 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6998 if (!doms)
6999 return NULL;
7000 for (i = 0; i < ndoms; i++) {
7001 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7002 free_sched_domains(doms, i);
7003 return NULL;
7004 }
7005 }
7006 return doms;
7007 }
7008
7009 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7010 {
7011 unsigned int i;
7012 for (i = 0; i < ndoms; i++)
7013 free_cpumask_var(doms[i]);
7014 kfree(doms);
7015 }
7016
7017 /*
7018 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7019 * For now this just excludes isolated cpus, but could be used to
7020 * exclude other special cases in the future.
7021 */
7022 static int init_sched_domains(const struct cpumask *cpu_map)
7023 {
7024 int err;
7025
7026 arch_update_cpu_topology();
7027 ndoms_cur = 1;
7028 doms_cur = alloc_sched_domains(ndoms_cur);
7029 if (!doms_cur)
7030 doms_cur = &fallback_doms;
7031 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7032 err = build_sched_domains(doms_cur[0], NULL);
7033 register_sched_domain_sysctl();
7034
7035 return err;
7036 }
7037
7038 /*
7039 * Detach sched domains from a group of cpus specified in cpu_map
7040 * These cpus will now be attached to the NULL domain
7041 */
7042 static void detach_destroy_domains(const struct cpumask *cpu_map)
7043 {
7044 int i;
7045
7046 rcu_read_lock();
7047 for_each_cpu(i, cpu_map)
7048 cpu_attach_domain(NULL, &def_root_domain, i);
7049 rcu_read_unlock();
7050 }
7051
7052 /* handle null as "default" */
7053 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7054 struct sched_domain_attr *new, int idx_new)
7055 {
7056 struct sched_domain_attr tmp;
7057
7058 /* fast path */
7059 if (!new && !cur)
7060 return 1;
7061
7062 tmp = SD_ATTR_INIT;
7063 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7064 new ? (new + idx_new) : &tmp,
7065 sizeof(struct sched_domain_attr));
7066 }
7067
7068 /*
7069 * Partition sched domains as specified by the 'ndoms_new'
7070 * cpumasks in the array doms_new[] of cpumasks. This compares
7071 * doms_new[] to the current sched domain partitioning, doms_cur[].
7072 * It destroys each deleted domain and builds each new domain.
7073 *
7074 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7075 * The masks don't intersect (don't overlap.) We should setup one
7076 * sched domain for each mask. CPUs not in any of the cpumasks will
7077 * not be load balanced. If the same cpumask appears both in the
7078 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7079 * it as it is.
7080 *
7081 * The passed in 'doms_new' should be allocated using
7082 * alloc_sched_domains. This routine takes ownership of it and will
7083 * free_sched_domains it when done with it. If the caller failed the
7084 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7085 * and partition_sched_domains() will fallback to the single partition
7086 * 'fallback_doms', it also forces the domains to be rebuilt.
7087 *
7088 * If doms_new == NULL it will be replaced with cpu_online_mask.
7089 * ndoms_new == 0 is a special case for destroying existing domains,
7090 * and it will not create the default domain.
7091 *
7092 * Call with hotplug lock held
7093 */
7094 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7095 struct sched_domain_attr *dattr_new)
7096 {
7097 int i, j, n;
7098 int new_topology;
7099
7100 mutex_lock(&sched_domains_mutex);
7101
7102 /* always unregister in case we don't destroy any domains */
7103 unregister_sched_domain_sysctl();
7104
7105 /* Let architecture update cpu core mappings. */
7106 new_topology = arch_update_cpu_topology();
7107
7108 n = doms_new ? ndoms_new : 0;
7109
7110 /* Destroy deleted domains */
7111 for (i = 0; i < ndoms_cur; i++) {
7112 for (j = 0; j < n && !new_topology; j++) {
7113 if (cpumask_equal(doms_cur[i], doms_new[j])
7114 && dattrs_equal(dattr_cur, i, dattr_new, j))
7115 goto match1;
7116 }
7117 /* no match - a current sched domain not in new doms_new[] */
7118 detach_destroy_domains(doms_cur[i]);
7119 match1:
7120 ;
7121 }
7122
7123 n = ndoms_cur;
7124 if (doms_new == NULL) {
7125 n = 0;
7126 doms_new = &fallback_doms;
7127 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7128 WARN_ON_ONCE(dattr_new);
7129 }
7130
7131 /* Build new domains */
7132 for (i = 0; i < ndoms_new; i++) {
7133 for (j = 0; j < n && !new_topology; j++) {
7134 if (cpumask_equal(doms_new[i], doms_cur[j])
7135 && dattrs_equal(dattr_new, i, dattr_cur, j))
7136 goto match2;
7137 }
7138 /* no match - add a new doms_new */
7139 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7140 match2:
7141 ;
7142 }
7143
7144 /* Remember the new sched domains */
7145 if (doms_cur != &fallback_doms)
7146 free_sched_domains(doms_cur, ndoms_cur);
7147 kfree(dattr_cur); /* kfree(NULL) is safe */
7148 doms_cur = doms_new;
7149 dattr_cur = dattr_new;
7150 ndoms_cur = ndoms_new;
7151
7152 register_sched_domain_sysctl();
7153
7154 mutex_unlock(&sched_domains_mutex);
7155 }
7156
7157 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7158
7159 /*
7160 * Update cpusets according to cpu_active mask. If cpusets are
7161 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7162 * around partition_sched_domains().
7163 *
7164 * If we come here as part of a suspend/resume, don't touch cpusets because we
7165 * want to restore it back to its original state upon resume anyway.
7166 */
7167 static void cpuset_cpu_active(void)
7168 {
7169 if (cpuhp_tasks_frozen) {
7170 /*
7171 * num_cpus_frozen tracks how many CPUs are involved in suspend
7172 * resume sequence. As long as this is not the last online
7173 * operation in the resume sequence, just build a single sched
7174 * domain, ignoring cpusets.
7175 */
7176 num_cpus_frozen--;
7177 if (likely(num_cpus_frozen)) {
7178 partition_sched_domains(1, NULL, NULL);
7179 return;
7180 }
7181 /*
7182 * This is the last CPU online operation. So fall through and
7183 * restore the original sched domains by considering the
7184 * cpuset configurations.
7185 */
7186 }
7187 cpuset_update_active_cpus(true);
7188 }
7189
7190 static int cpuset_cpu_inactive(unsigned int cpu)
7191 {
7192 unsigned long flags;
7193 struct dl_bw *dl_b;
7194 bool overflow;
7195 int cpus;
7196
7197 if (!cpuhp_tasks_frozen) {
7198 rcu_read_lock_sched();
7199 dl_b = dl_bw_of(cpu);
7200
7201 raw_spin_lock_irqsave(&dl_b->lock, flags);
7202 cpus = dl_bw_cpus(cpu);
7203 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7204 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7205
7206 rcu_read_unlock_sched();
7207
7208 if (overflow)
7209 return -EBUSY;
7210 cpuset_update_active_cpus(false);
7211 } else {
7212 num_cpus_frozen++;
7213 partition_sched_domains(1, NULL, NULL);
7214 }
7215 return 0;
7216 }
7217
7218 int sched_cpu_activate(unsigned int cpu)
7219 {
7220 struct rq *rq = cpu_rq(cpu);
7221 unsigned long flags;
7222
7223 set_cpu_active(cpu, true);
7224
7225 if (sched_smp_initialized) {
7226 sched_domains_numa_masks_set(cpu);
7227 cpuset_cpu_active();
7228 }
7229
7230 /*
7231 * Put the rq online, if not already. This happens:
7232 *
7233 * 1) In the early boot process, because we build the real domains
7234 * after all cpus have been brought up.
7235 *
7236 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7237 * domains.
7238 */
7239 raw_spin_lock_irqsave(&rq->lock, flags);
7240 if (rq->rd) {
7241 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7242 set_rq_online(rq);
7243 }
7244 raw_spin_unlock_irqrestore(&rq->lock, flags);
7245
7246 update_max_interval();
7247
7248 return 0;
7249 }
7250
7251 int sched_cpu_deactivate(unsigned int cpu)
7252 {
7253 int ret;
7254
7255 set_cpu_active(cpu, false);
7256 /*
7257 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7258 * users of this state to go away such that all new such users will
7259 * observe it.
7260 *
7261 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7262 * not imply sync_sched(), so wait for both.
7263 *
7264 * Do sync before park smpboot threads to take care the rcu boost case.
7265 */
7266 if (IS_ENABLED(CONFIG_PREEMPT))
7267 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7268 else
7269 synchronize_rcu();
7270
7271 if (!sched_smp_initialized)
7272 return 0;
7273
7274 ret = cpuset_cpu_inactive(cpu);
7275 if (ret) {
7276 set_cpu_active(cpu, true);
7277 return ret;
7278 }
7279 sched_domains_numa_masks_clear(cpu);
7280 return 0;
7281 }
7282
7283 static void sched_rq_cpu_starting(unsigned int cpu)
7284 {
7285 struct rq *rq = cpu_rq(cpu);
7286
7287 rq->calc_load_update = calc_load_update;
7288 update_max_interval();
7289 }
7290
7291 int sched_cpu_starting(unsigned int cpu)
7292 {
7293 set_cpu_rq_start_time(cpu);
7294 sched_rq_cpu_starting(cpu);
7295 return 0;
7296 }
7297
7298 #ifdef CONFIG_HOTPLUG_CPU
7299 int sched_cpu_dying(unsigned int cpu)
7300 {
7301 struct rq *rq = cpu_rq(cpu);
7302 unsigned long flags;
7303
7304 /* Handle pending wakeups and then migrate everything off */
7305 sched_ttwu_pending();
7306 raw_spin_lock_irqsave(&rq->lock, flags);
7307 if (rq->rd) {
7308 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7309 set_rq_offline(rq);
7310 }
7311 migrate_tasks(rq);
7312 BUG_ON(rq->nr_running != 1);
7313 raw_spin_unlock_irqrestore(&rq->lock, flags);
7314 calc_load_migrate(rq);
7315 update_max_interval();
7316 nohz_balance_exit_idle(cpu);
7317 hrtick_clear(rq);
7318 return 0;
7319 }
7320 #endif
7321
7322 void __init sched_init_smp(void)
7323 {
7324 cpumask_var_t non_isolated_cpus;
7325
7326 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7327 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7328
7329 sched_init_numa();
7330
7331 /*
7332 * There's no userspace yet to cause hotplug operations; hence all the
7333 * cpu masks are stable and all blatant races in the below code cannot
7334 * happen.
7335 */
7336 mutex_lock(&sched_domains_mutex);
7337 init_sched_domains(cpu_active_mask);
7338 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7339 if (cpumask_empty(non_isolated_cpus))
7340 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7341 mutex_unlock(&sched_domains_mutex);
7342
7343 /* Move init over to a non-isolated CPU */
7344 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7345 BUG();
7346 sched_init_granularity();
7347 free_cpumask_var(non_isolated_cpus);
7348
7349 init_sched_rt_class();
7350 init_sched_dl_class();
7351 sched_smp_initialized = true;
7352 }
7353
7354 static int __init migration_init(void)
7355 {
7356 sched_rq_cpu_starting(smp_processor_id());
7357 return 0;
7358 }
7359 early_initcall(migration_init);
7360
7361 #else
7362 void __init sched_init_smp(void)
7363 {
7364 sched_init_granularity();
7365 }
7366 #endif /* CONFIG_SMP */
7367
7368 int in_sched_functions(unsigned long addr)
7369 {
7370 return in_lock_functions(addr) ||
7371 (addr >= (unsigned long)__sched_text_start
7372 && addr < (unsigned long)__sched_text_end);
7373 }
7374
7375 #ifdef CONFIG_CGROUP_SCHED
7376 /*
7377 * Default task group.
7378 * Every task in system belongs to this group at bootup.
7379 */
7380 struct task_group root_task_group;
7381 LIST_HEAD(task_groups);
7382
7383 /* Cacheline aligned slab cache for task_group */
7384 static struct kmem_cache *task_group_cache __read_mostly;
7385 #endif
7386
7387 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7388
7389 void __init sched_init(void)
7390 {
7391 int i, j;
7392 unsigned long alloc_size = 0, ptr;
7393
7394 #ifdef CONFIG_FAIR_GROUP_SCHED
7395 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7396 #endif
7397 #ifdef CONFIG_RT_GROUP_SCHED
7398 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7399 #endif
7400 if (alloc_size) {
7401 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7402
7403 #ifdef CONFIG_FAIR_GROUP_SCHED
7404 root_task_group.se = (struct sched_entity **)ptr;
7405 ptr += nr_cpu_ids * sizeof(void **);
7406
7407 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7408 ptr += nr_cpu_ids * sizeof(void **);
7409
7410 #endif /* CONFIG_FAIR_GROUP_SCHED */
7411 #ifdef CONFIG_RT_GROUP_SCHED
7412 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7413 ptr += nr_cpu_ids * sizeof(void **);
7414
7415 root_task_group.rt_rq = (struct rt_rq **)ptr;
7416 ptr += nr_cpu_ids * sizeof(void **);
7417
7418 #endif /* CONFIG_RT_GROUP_SCHED */
7419 }
7420 #ifdef CONFIG_CPUMASK_OFFSTACK
7421 for_each_possible_cpu(i) {
7422 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7423 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7424 }
7425 #endif /* CONFIG_CPUMASK_OFFSTACK */
7426
7427 init_rt_bandwidth(&def_rt_bandwidth,
7428 global_rt_period(), global_rt_runtime());
7429 init_dl_bandwidth(&def_dl_bandwidth,
7430 global_rt_period(), global_rt_runtime());
7431
7432 #ifdef CONFIG_SMP
7433 init_defrootdomain();
7434 #endif
7435
7436 #ifdef CONFIG_RT_GROUP_SCHED
7437 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7438 global_rt_period(), global_rt_runtime());
7439 #endif /* CONFIG_RT_GROUP_SCHED */
7440
7441 #ifdef CONFIG_CGROUP_SCHED
7442 task_group_cache = KMEM_CACHE(task_group, 0);
7443
7444 list_add(&root_task_group.list, &task_groups);
7445 INIT_LIST_HEAD(&root_task_group.children);
7446 INIT_LIST_HEAD(&root_task_group.siblings);
7447 autogroup_init(&init_task);
7448 #endif /* CONFIG_CGROUP_SCHED */
7449
7450 for_each_possible_cpu(i) {
7451 struct rq *rq;
7452
7453 rq = cpu_rq(i);
7454 raw_spin_lock_init(&rq->lock);
7455 rq->nr_running = 0;
7456 rq->calc_load_active = 0;
7457 rq->calc_load_update = jiffies + LOAD_FREQ;
7458 init_cfs_rq(&rq->cfs);
7459 init_rt_rq(&rq->rt);
7460 init_dl_rq(&rq->dl);
7461 #ifdef CONFIG_FAIR_GROUP_SCHED
7462 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7463 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7464 /*
7465 * How much cpu bandwidth does root_task_group get?
7466 *
7467 * In case of task-groups formed thr' the cgroup filesystem, it
7468 * gets 100% of the cpu resources in the system. This overall
7469 * system cpu resource is divided among the tasks of
7470 * root_task_group and its child task-groups in a fair manner,
7471 * based on each entity's (task or task-group's) weight
7472 * (se->load.weight).
7473 *
7474 * In other words, if root_task_group has 10 tasks of weight
7475 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7476 * then A0's share of the cpu resource is:
7477 *
7478 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7479 *
7480 * We achieve this by letting root_task_group's tasks sit
7481 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7482 */
7483 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7484 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7485 #endif /* CONFIG_FAIR_GROUP_SCHED */
7486
7487 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7488 #ifdef CONFIG_RT_GROUP_SCHED
7489 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7490 #endif
7491
7492 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7493 rq->cpu_load[j] = 0;
7494
7495 #ifdef CONFIG_SMP
7496 rq->sd = NULL;
7497 rq->rd = NULL;
7498 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7499 rq->balance_callback = NULL;
7500 rq->active_balance = 0;
7501 rq->next_balance = jiffies;
7502 rq->push_cpu = 0;
7503 rq->cpu = i;
7504 rq->online = 0;
7505 rq->idle_stamp = 0;
7506 rq->avg_idle = 2*sysctl_sched_migration_cost;
7507 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7508
7509 INIT_LIST_HEAD(&rq->cfs_tasks);
7510
7511 rq_attach_root(rq, &def_root_domain);
7512 #ifdef CONFIG_NO_HZ_COMMON
7513 rq->last_load_update_tick = jiffies;
7514 rq->nohz_flags = 0;
7515 #endif
7516 #ifdef CONFIG_NO_HZ_FULL
7517 rq->last_sched_tick = 0;
7518 #endif
7519 #endif /* CONFIG_SMP */
7520 init_rq_hrtick(rq);
7521 atomic_set(&rq->nr_iowait, 0);
7522 }
7523
7524 set_load_weight(&init_task);
7525
7526 #ifdef CONFIG_PREEMPT_NOTIFIERS
7527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7528 #endif
7529
7530 /*
7531 * The boot idle thread does lazy MMU switching as well:
7532 */
7533 atomic_inc(&init_mm.mm_count);
7534 enter_lazy_tlb(&init_mm, current);
7535
7536 /*
7537 * During early bootup we pretend to be a normal task:
7538 */
7539 current->sched_class = &fair_sched_class;
7540
7541 /*
7542 * Make us the idle thread. Technically, schedule() should not be
7543 * called from this thread, however somewhere below it might be,
7544 * but because we are the idle thread, we just pick up running again
7545 * when this runqueue becomes "idle".
7546 */
7547 init_idle(current, smp_processor_id());
7548
7549 calc_load_update = jiffies + LOAD_FREQ;
7550
7551 #ifdef CONFIG_SMP
7552 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7553 /* May be allocated at isolcpus cmdline parse time */
7554 if (cpu_isolated_map == NULL)
7555 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7556 idle_thread_set_boot_cpu();
7557 set_cpu_rq_start_time(smp_processor_id());
7558 #endif
7559 init_sched_fair_class();
7560
7561 init_schedstats();
7562
7563 scheduler_running = 1;
7564 }
7565
7566 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7567 static inline int preempt_count_equals(int preempt_offset)
7568 {
7569 int nested = preempt_count() + rcu_preempt_depth();
7570
7571 return (nested == preempt_offset);
7572 }
7573
7574 void __might_sleep(const char *file, int line, int preempt_offset)
7575 {
7576 /*
7577 * Blocking primitives will set (and therefore destroy) current->state,
7578 * since we will exit with TASK_RUNNING make sure we enter with it,
7579 * otherwise we will destroy state.
7580 */
7581 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7582 "do not call blocking ops when !TASK_RUNNING; "
7583 "state=%lx set at [<%p>] %pS\n",
7584 current->state,
7585 (void *)current->task_state_change,
7586 (void *)current->task_state_change);
7587
7588 ___might_sleep(file, line, preempt_offset);
7589 }
7590 EXPORT_SYMBOL(__might_sleep);
7591
7592 void ___might_sleep(const char *file, int line, int preempt_offset)
7593 {
7594 static unsigned long prev_jiffy; /* ratelimiting */
7595
7596 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7597 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7598 !is_idle_task(current)) ||
7599 system_state != SYSTEM_RUNNING || oops_in_progress)
7600 return;
7601 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7602 return;
7603 prev_jiffy = jiffies;
7604
7605 printk(KERN_ERR
7606 "BUG: sleeping function called from invalid context at %s:%d\n",
7607 file, line);
7608 printk(KERN_ERR
7609 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7610 in_atomic(), irqs_disabled(),
7611 current->pid, current->comm);
7612
7613 if (task_stack_end_corrupted(current))
7614 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7615
7616 debug_show_held_locks(current);
7617 if (irqs_disabled())
7618 print_irqtrace_events(current);
7619 #ifdef CONFIG_DEBUG_PREEMPT
7620 if (!preempt_count_equals(preempt_offset)) {
7621 pr_err("Preemption disabled at:");
7622 print_ip_sym(current->preempt_disable_ip);
7623 pr_cont("\n");
7624 }
7625 #endif
7626 dump_stack();
7627 }
7628 EXPORT_SYMBOL(___might_sleep);
7629 #endif
7630
7631 #ifdef CONFIG_MAGIC_SYSRQ
7632 void normalize_rt_tasks(void)
7633 {
7634 struct task_struct *g, *p;
7635 struct sched_attr attr = {
7636 .sched_policy = SCHED_NORMAL,
7637 };
7638
7639 read_lock(&tasklist_lock);
7640 for_each_process_thread(g, p) {
7641 /*
7642 * Only normalize user tasks:
7643 */
7644 if (p->flags & PF_KTHREAD)
7645 continue;
7646
7647 p->se.exec_start = 0;
7648 #ifdef CONFIG_SCHEDSTATS
7649 p->se.statistics.wait_start = 0;
7650 p->se.statistics.sleep_start = 0;
7651 p->se.statistics.block_start = 0;
7652 #endif
7653
7654 if (!dl_task(p) && !rt_task(p)) {
7655 /*
7656 * Renice negative nice level userspace
7657 * tasks back to 0:
7658 */
7659 if (task_nice(p) < 0)
7660 set_user_nice(p, 0);
7661 continue;
7662 }
7663
7664 __sched_setscheduler(p, &attr, false, false);
7665 }
7666 read_unlock(&tasklist_lock);
7667 }
7668
7669 #endif /* CONFIG_MAGIC_SYSRQ */
7670
7671 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7672 /*
7673 * These functions are only useful for the IA64 MCA handling, or kdb.
7674 *
7675 * They can only be called when the whole system has been
7676 * stopped - every CPU needs to be quiescent, and no scheduling
7677 * activity can take place. Using them for anything else would
7678 * be a serious bug, and as a result, they aren't even visible
7679 * under any other configuration.
7680 */
7681
7682 /**
7683 * curr_task - return the current task for a given cpu.
7684 * @cpu: the processor in question.
7685 *
7686 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7687 *
7688 * Return: The current task for @cpu.
7689 */
7690 struct task_struct *curr_task(int cpu)
7691 {
7692 return cpu_curr(cpu);
7693 }
7694
7695 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7696
7697 #ifdef CONFIG_IA64
7698 /**
7699 * set_curr_task - set the current task for a given cpu.
7700 * @cpu: the processor in question.
7701 * @p: the task pointer to set.
7702 *
7703 * Description: This function must only be used when non-maskable interrupts
7704 * are serviced on a separate stack. It allows the architecture to switch the
7705 * notion of the current task on a cpu in a non-blocking manner. This function
7706 * must be called with all CPU's synchronized, and interrupts disabled, the
7707 * and caller must save the original value of the current task (see
7708 * curr_task() above) and restore that value before reenabling interrupts and
7709 * re-starting the system.
7710 *
7711 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7712 */
7713 void set_curr_task(int cpu, struct task_struct *p)
7714 {
7715 cpu_curr(cpu) = p;
7716 }
7717
7718 #endif
7719
7720 #ifdef CONFIG_CGROUP_SCHED
7721 /* task_group_lock serializes the addition/removal of task groups */
7722 static DEFINE_SPINLOCK(task_group_lock);
7723
7724 static void sched_free_group(struct task_group *tg)
7725 {
7726 free_fair_sched_group(tg);
7727 free_rt_sched_group(tg);
7728 autogroup_free(tg);
7729 kmem_cache_free(task_group_cache, tg);
7730 }
7731
7732 /* allocate runqueue etc for a new task group */
7733 struct task_group *sched_create_group(struct task_group *parent)
7734 {
7735 struct task_group *tg;
7736
7737 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7738 if (!tg)
7739 return ERR_PTR(-ENOMEM);
7740
7741 if (!alloc_fair_sched_group(tg, parent))
7742 goto err;
7743
7744 if (!alloc_rt_sched_group(tg, parent))
7745 goto err;
7746
7747 return tg;
7748
7749 err:
7750 sched_free_group(tg);
7751 return ERR_PTR(-ENOMEM);
7752 }
7753
7754 void sched_online_group(struct task_group *tg, struct task_group *parent)
7755 {
7756 unsigned long flags;
7757
7758 spin_lock_irqsave(&task_group_lock, flags);
7759 list_add_rcu(&tg->list, &task_groups);
7760
7761 WARN_ON(!parent); /* root should already exist */
7762
7763 tg->parent = parent;
7764 INIT_LIST_HEAD(&tg->children);
7765 list_add_rcu(&tg->siblings, &parent->children);
7766 spin_unlock_irqrestore(&task_group_lock, flags);
7767
7768 online_fair_sched_group(tg);
7769 }
7770
7771 /* rcu callback to free various structures associated with a task group */
7772 static void sched_free_group_rcu(struct rcu_head *rhp)
7773 {
7774 /* now it should be safe to free those cfs_rqs */
7775 sched_free_group(container_of(rhp, struct task_group, rcu));
7776 }
7777
7778 void sched_destroy_group(struct task_group *tg)
7779 {
7780 /* wait for possible concurrent references to cfs_rqs complete */
7781 call_rcu(&tg->rcu, sched_free_group_rcu);
7782 }
7783
7784 void sched_offline_group(struct task_group *tg)
7785 {
7786 unsigned long flags;
7787
7788 /* end participation in shares distribution */
7789 unregister_fair_sched_group(tg);
7790
7791 spin_lock_irqsave(&task_group_lock, flags);
7792 list_del_rcu(&tg->list);
7793 list_del_rcu(&tg->siblings);
7794 spin_unlock_irqrestore(&task_group_lock, flags);
7795 }
7796
7797 static void sched_change_group(struct task_struct *tsk, int type)
7798 {
7799 struct task_group *tg;
7800
7801 /*
7802 * All callers are synchronized by task_rq_lock(); we do not use RCU
7803 * which is pointless here. Thus, we pass "true" to task_css_check()
7804 * to prevent lockdep warnings.
7805 */
7806 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7807 struct task_group, css);
7808 tg = autogroup_task_group(tsk, tg);
7809 tsk->sched_task_group = tg;
7810
7811 #ifdef CONFIG_FAIR_GROUP_SCHED
7812 if (tsk->sched_class->task_change_group)
7813 tsk->sched_class->task_change_group(tsk, type);
7814 else
7815 #endif
7816 set_task_rq(tsk, task_cpu(tsk));
7817 }
7818
7819 /*
7820 * Change task's runqueue when it moves between groups.
7821 *
7822 * The caller of this function should have put the task in its new group by
7823 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7824 * its new group.
7825 */
7826 void sched_move_task(struct task_struct *tsk)
7827 {
7828 int queued, running;
7829 struct rq_flags rf;
7830 struct rq *rq;
7831
7832 rq = task_rq_lock(tsk, &rf);
7833
7834 running = task_current(rq, tsk);
7835 queued = task_on_rq_queued(tsk);
7836
7837 if (queued)
7838 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7839 if (unlikely(running))
7840 put_prev_task(rq, tsk);
7841
7842 sched_change_group(tsk, TASK_MOVE_GROUP);
7843
7844 if (unlikely(running))
7845 tsk->sched_class->set_curr_task(rq);
7846 if (queued)
7847 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7848
7849 task_rq_unlock(rq, tsk, &rf);
7850 }
7851 #endif /* CONFIG_CGROUP_SCHED */
7852
7853 #ifdef CONFIG_RT_GROUP_SCHED
7854 /*
7855 * Ensure that the real time constraints are schedulable.
7856 */
7857 static DEFINE_MUTEX(rt_constraints_mutex);
7858
7859 /* Must be called with tasklist_lock held */
7860 static inline int tg_has_rt_tasks(struct task_group *tg)
7861 {
7862 struct task_struct *g, *p;
7863
7864 /*
7865 * Autogroups do not have RT tasks; see autogroup_create().
7866 */
7867 if (task_group_is_autogroup(tg))
7868 return 0;
7869
7870 for_each_process_thread(g, p) {
7871 if (rt_task(p) && task_group(p) == tg)
7872 return 1;
7873 }
7874
7875 return 0;
7876 }
7877
7878 struct rt_schedulable_data {
7879 struct task_group *tg;
7880 u64 rt_period;
7881 u64 rt_runtime;
7882 };
7883
7884 static int tg_rt_schedulable(struct task_group *tg, void *data)
7885 {
7886 struct rt_schedulable_data *d = data;
7887 struct task_group *child;
7888 unsigned long total, sum = 0;
7889 u64 period, runtime;
7890
7891 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7892 runtime = tg->rt_bandwidth.rt_runtime;
7893
7894 if (tg == d->tg) {
7895 period = d->rt_period;
7896 runtime = d->rt_runtime;
7897 }
7898
7899 /*
7900 * Cannot have more runtime than the period.
7901 */
7902 if (runtime > period && runtime != RUNTIME_INF)
7903 return -EINVAL;
7904
7905 /*
7906 * Ensure we don't starve existing RT tasks.
7907 */
7908 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7909 return -EBUSY;
7910
7911 total = to_ratio(period, runtime);
7912
7913 /*
7914 * Nobody can have more than the global setting allows.
7915 */
7916 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7917 return -EINVAL;
7918
7919 /*
7920 * The sum of our children's runtime should not exceed our own.
7921 */
7922 list_for_each_entry_rcu(child, &tg->children, siblings) {
7923 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7924 runtime = child->rt_bandwidth.rt_runtime;
7925
7926 if (child == d->tg) {
7927 period = d->rt_period;
7928 runtime = d->rt_runtime;
7929 }
7930
7931 sum += to_ratio(period, runtime);
7932 }
7933
7934 if (sum > total)
7935 return -EINVAL;
7936
7937 return 0;
7938 }
7939
7940 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7941 {
7942 int ret;
7943
7944 struct rt_schedulable_data data = {
7945 .tg = tg,
7946 .rt_period = period,
7947 .rt_runtime = runtime,
7948 };
7949
7950 rcu_read_lock();
7951 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7952 rcu_read_unlock();
7953
7954 return ret;
7955 }
7956
7957 static int tg_set_rt_bandwidth(struct task_group *tg,
7958 u64 rt_period, u64 rt_runtime)
7959 {
7960 int i, err = 0;
7961
7962 /*
7963 * Disallowing the root group RT runtime is BAD, it would disallow the
7964 * kernel creating (and or operating) RT threads.
7965 */
7966 if (tg == &root_task_group && rt_runtime == 0)
7967 return -EINVAL;
7968
7969 /* No period doesn't make any sense. */
7970 if (rt_period == 0)
7971 return -EINVAL;
7972
7973 mutex_lock(&rt_constraints_mutex);
7974 read_lock(&tasklist_lock);
7975 err = __rt_schedulable(tg, rt_period, rt_runtime);
7976 if (err)
7977 goto unlock;
7978
7979 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7980 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7981 tg->rt_bandwidth.rt_runtime = rt_runtime;
7982
7983 for_each_possible_cpu(i) {
7984 struct rt_rq *rt_rq = tg->rt_rq[i];
7985
7986 raw_spin_lock(&rt_rq->rt_runtime_lock);
7987 rt_rq->rt_runtime = rt_runtime;
7988 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7989 }
7990 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7991 unlock:
7992 read_unlock(&tasklist_lock);
7993 mutex_unlock(&rt_constraints_mutex);
7994
7995 return err;
7996 }
7997
7998 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7999 {
8000 u64 rt_runtime, rt_period;
8001
8002 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8003 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8004 if (rt_runtime_us < 0)
8005 rt_runtime = RUNTIME_INF;
8006
8007 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8008 }
8009
8010 static long sched_group_rt_runtime(struct task_group *tg)
8011 {
8012 u64 rt_runtime_us;
8013
8014 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8015 return -1;
8016
8017 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8018 do_div(rt_runtime_us, NSEC_PER_USEC);
8019 return rt_runtime_us;
8020 }
8021
8022 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8023 {
8024 u64 rt_runtime, rt_period;
8025
8026 rt_period = rt_period_us * NSEC_PER_USEC;
8027 rt_runtime = tg->rt_bandwidth.rt_runtime;
8028
8029 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8030 }
8031
8032 static long sched_group_rt_period(struct task_group *tg)
8033 {
8034 u64 rt_period_us;
8035
8036 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8037 do_div(rt_period_us, NSEC_PER_USEC);
8038 return rt_period_us;
8039 }
8040 #endif /* CONFIG_RT_GROUP_SCHED */
8041
8042 #ifdef CONFIG_RT_GROUP_SCHED
8043 static int sched_rt_global_constraints(void)
8044 {
8045 int ret = 0;
8046
8047 mutex_lock(&rt_constraints_mutex);
8048 read_lock(&tasklist_lock);
8049 ret = __rt_schedulable(NULL, 0, 0);
8050 read_unlock(&tasklist_lock);
8051 mutex_unlock(&rt_constraints_mutex);
8052
8053 return ret;
8054 }
8055
8056 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8057 {
8058 /* Don't accept realtime tasks when there is no way for them to run */
8059 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8060 return 0;
8061
8062 return 1;
8063 }
8064
8065 #else /* !CONFIG_RT_GROUP_SCHED */
8066 static int sched_rt_global_constraints(void)
8067 {
8068 unsigned long flags;
8069 int i;
8070
8071 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8072 for_each_possible_cpu(i) {
8073 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8074
8075 raw_spin_lock(&rt_rq->rt_runtime_lock);
8076 rt_rq->rt_runtime = global_rt_runtime();
8077 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8078 }
8079 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8080
8081 return 0;
8082 }
8083 #endif /* CONFIG_RT_GROUP_SCHED */
8084
8085 static int sched_dl_global_validate(void)
8086 {
8087 u64 runtime = global_rt_runtime();
8088 u64 period = global_rt_period();
8089 u64 new_bw = to_ratio(period, runtime);
8090 struct dl_bw *dl_b;
8091 int cpu, ret = 0;
8092 unsigned long flags;
8093
8094 /*
8095 * Here we want to check the bandwidth not being set to some
8096 * value smaller than the currently allocated bandwidth in
8097 * any of the root_domains.
8098 *
8099 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8100 * cycling on root_domains... Discussion on different/better
8101 * solutions is welcome!
8102 */
8103 for_each_possible_cpu(cpu) {
8104 rcu_read_lock_sched();
8105 dl_b = dl_bw_of(cpu);
8106
8107 raw_spin_lock_irqsave(&dl_b->lock, flags);
8108 if (new_bw < dl_b->total_bw)
8109 ret = -EBUSY;
8110 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8111
8112 rcu_read_unlock_sched();
8113
8114 if (ret)
8115 break;
8116 }
8117
8118 return ret;
8119 }
8120
8121 static void sched_dl_do_global(void)
8122 {
8123 u64 new_bw = -1;
8124 struct dl_bw *dl_b;
8125 int cpu;
8126 unsigned long flags;
8127
8128 def_dl_bandwidth.dl_period = global_rt_period();
8129 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8130
8131 if (global_rt_runtime() != RUNTIME_INF)
8132 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8133
8134 /*
8135 * FIXME: As above...
8136 */
8137 for_each_possible_cpu(cpu) {
8138 rcu_read_lock_sched();
8139 dl_b = dl_bw_of(cpu);
8140
8141 raw_spin_lock_irqsave(&dl_b->lock, flags);
8142 dl_b->bw = new_bw;
8143 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8144
8145 rcu_read_unlock_sched();
8146 }
8147 }
8148
8149 static int sched_rt_global_validate(void)
8150 {
8151 if (sysctl_sched_rt_period <= 0)
8152 return -EINVAL;
8153
8154 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8155 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8156 return -EINVAL;
8157
8158 return 0;
8159 }
8160
8161 static void sched_rt_do_global(void)
8162 {
8163 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8164 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8165 }
8166
8167 int sched_rt_handler(struct ctl_table *table, int write,
8168 void __user *buffer, size_t *lenp,
8169 loff_t *ppos)
8170 {
8171 int old_period, old_runtime;
8172 static DEFINE_MUTEX(mutex);
8173 int ret;
8174
8175 mutex_lock(&mutex);
8176 old_period = sysctl_sched_rt_period;
8177 old_runtime = sysctl_sched_rt_runtime;
8178
8179 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8180
8181 if (!ret && write) {
8182 ret = sched_rt_global_validate();
8183 if (ret)
8184 goto undo;
8185
8186 ret = sched_dl_global_validate();
8187 if (ret)
8188 goto undo;
8189
8190 ret = sched_rt_global_constraints();
8191 if (ret)
8192 goto undo;
8193
8194 sched_rt_do_global();
8195 sched_dl_do_global();
8196 }
8197 if (0) {
8198 undo:
8199 sysctl_sched_rt_period = old_period;
8200 sysctl_sched_rt_runtime = old_runtime;
8201 }
8202 mutex_unlock(&mutex);
8203
8204 return ret;
8205 }
8206
8207 int sched_rr_handler(struct ctl_table *table, int write,
8208 void __user *buffer, size_t *lenp,
8209 loff_t *ppos)
8210 {
8211 int ret;
8212 static DEFINE_MUTEX(mutex);
8213
8214 mutex_lock(&mutex);
8215 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8216 /* make sure that internally we keep jiffies */
8217 /* also, writing zero resets timeslice to default */
8218 if (!ret && write) {
8219 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8220 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8221 }
8222 mutex_unlock(&mutex);
8223 return ret;
8224 }
8225
8226 #ifdef CONFIG_CGROUP_SCHED
8227
8228 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8229 {
8230 return css ? container_of(css, struct task_group, css) : NULL;
8231 }
8232
8233 static struct cgroup_subsys_state *
8234 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8235 {
8236 struct task_group *parent = css_tg(parent_css);
8237 struct task_group *tg;
8238
8239 if (!parent) {
8240 /* This is early initialization for the top cgroup */
8241 return &root_task_group.css;
8242 }
8243
8244 tg = sched_create_group(parent);
8245 if (IS_ERR(tg))
8246 return ERR_PTR(-ENOMEM);
8247
8248 sched_online_group(tg, parent);
8249
8250 return &tg->css;
8251 }
8252
8253 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8254 {
8255 struct task_group *tg = css_tg(css);
8256
8257 sched_offline_group(tg);
8258 }
8259
8260 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8261 {
8262 struct task_group *tg = css_tg(css);
8263
8264 /*
8265 * Relies on the RCU grace period between css_released() and this.
8266 */
8267 sched_free_group(tg);
8268 }
8269
8270 /*
8271 * This is called before wake_up_new_task(), therefore we really only
8272 * have to set its group bits, all the other stuff does not apply.
8273 */
8274 static void cpu_cgroup_fork(struct task_struct *task)
8275 {
8276 struct rq_flags rf;
8277 struct rq *rq;
8278
8279 rq = task_rq_lock(task, &rf);
8280
8281 sched_change_group(task, TASK_SET_GROUP);
8282
8283 task_rq_unlock(rq, task, &rf);
8284 }
8285
8286 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8287 {
8288 struct task_struct *task;
8289 struct cgroup_subsys_state *css;
8290 int ret = 0;
8291
8292 cgroup_taskset_for_each(task, css, tset) {
8293 #ifdef CONFIG_RT_GROUP_SCHED
8294 if (!sched_rt_can_attach(css_tg(css), task))
8295 return -EINVAL;
8296 #else
8297 /* We don't support RT-tasks being in separate groups */
8298 if (task->sched_class != &fair_sched_class)
8299 return -EINVAL;
8300 #endif
8301 /*
8302 * Serialize against wake_up_new_task() such that if its
8303 * running, we're sure to observe its full state.
8304 */
8305 raw_spin_lock_irq(&task->pi_lock);
8306 /*
8307 * Avoid calling sched_move_task() before wake_up_new_task()
8308 * has happened. This would lead to problems with PELT, due to
8309 * move wanting to detach+attach while we're not attached yet.
8310 */
8311 if (task->state == TASK_NEW)
8312 ret = -EINVAL;
8313 raw_spin_unlock_irq(&task->pi_lock);
8314
8315 if (ret)
8316 break;
8317 }
8318 return ret;
8319 }
8320
8321 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8322 {
8323 struct task_struct *task;
8324 struct cgroup_subsys_state *css;
8325
8326 cgroup_taskset_for_each(task, css, tset)
8327 sched_move_task(task);
8328 }
8329
8330 #ifdef CONFIG_FAIR_GROUP_SCHED
8331 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8332 struct cftype *cftype, u64 shareval)
8333 {
8334 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8335 }
8336
8337 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8338 struct cftype *cft)
8339 {
8340 struct task_group *tg = css_tg(css);
8341
8342 return (u64) scale_load_down(tg->shares);
8343 }
8344
8345 #ifdef CONFIG_CFS_BANDWIDTH
8346 static DEFINE_MUTEX(cfs_constraints_mutex);
8347
8348 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8349 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8350
8351 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8352
8353 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8354 {
8355 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8356 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8357
8358 if (tg == &root_task_group)
8359 return -EINVAL;
8360
8361 /*
8362 * Ensure we have at some amount of bandwidth every period. This is
8363 * to prevent reaching a state of large arrears when throttled via
8364 * entity_tick() resulting in prolonged exit starvation.
8365 */
8366 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8367 return -EINVAL;
8368
8369 /*
8370 * Likewise, bound things on the otherside by preventing insane quota
8371 * periods. This also allows us to normalize in computing quota
8372 * feasibility.
8373 */
8374 if (period > max_cfs_quota_period)
8375 return -EINVAL;
8376
8377 /*
8378 * Prevent race between setting of cfs_rq->runtime_enabled and
8379 * unthrottle_offline_cfs_rqs().
8380 */
8381 get_online_cpus();
8382 mutex_lock(&cfs_constraints_mutex);
8383 ret = __cfs_schedulable(tg, period, quota);
8384 if (ret)
8385 goto out_unlock;
8386
8387 runtime_enabled = quota != RUNTIME_INF;
8388 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8389 /*
8390 * If we need to toggle cfs_bandwidth_used, off->on must occur
8391 * before making related changes, and on->off must occur afterwards
8392 */
8393 if (runtime_enabled && !runtime_was_enabled)
8394 cfs_bandwidth_usage_inc();
8395 raw_spin_lock_irq(&cfs_b->lock);
8396 cfs_b->period = ns_to_ktime(period);
8397 cfs_b->quota = quota;
8398
8399 __refill_cfs_bandwidth_runtime(cfs_b);
8400 /* restart the period timer (if active) to handle new period expiry */
8401 if (runtime_enabled)
8402 start_cfs_bandwidth(cfs_b);
8403 raw_spin_unlock_irq(&cfs_b->lock);
8404
8405 for_each_online_cpu(i) {
8406 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8407 struct rq *rq = cfs_rq->rq;
8408
8409 raw_spin_lock_irq(&rq->lock);
8410 cfs_rq->runtime_enabled = runtime_enabled;
8411 cfs_rq->runtime_remaining = 0;
8412
8413 if (cfs_rq->throttled)
8414 unthrottle_cfs_rq(cfs_rq);
8415 raw_spin_unlock_irq(&rq->lock);
8416 }
8417 if (runtime_was_enabled && !runtime_enabled)
8418 cfs_bandwidth_usage_dec();
8419 out_unlock:
8420 mutex_unlock(&cfs_constraints_mutex);
8421 put_online_cpus();
8422
8423 return ret;
8424 }
8425
8426 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8427 {
8428 u64 quota, period;
8429
8430 period = ktime_to_ns(tg->cfs_bandwidth.period);
8431 if (cfs_quota_us < 0)
8432 quota = RUNTIME_INF;
8433 else
8434 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8435
8436 return tg_set_cfs_bandwidth(tg, period, quota);
8437 }
8438
8439 long tg_get_cfs_quota(struct task_group *tg)
8440 {
8441 u64 quota_us;
8442
8443 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8444 return -1;
8445
8446 quota_us = tg->cfs_bandwidth.quota;
8447 do_div(quota_us, NSEC_PER_USEC);
8448
8449 return quota_us;
8450 }
8451
8452 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8453 {
8454 u64 quota, period;
8455
8456 period = (u64)cfs_period_us * NSEC_PER_USEC;
8457 quota = tg->cfs_bandwidth.quota;
8458
8459 return tg_set_cfs_bandwidth(tg, period, quota);
8460 }
8461
8462 long tg_get_cfs_period(struct task_group *tg)
8463 {
8464 u64 cfs_period_us;
8465
8466 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8467 do_div(cfs_period_us, NSEC_PER_USEC);
8468
8469 return cfs_period_us;
8470 }
8471
8472 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8473 struct cftype *cft)
8474 {
8475 return tg_get_cfs_quota(css_tg(css));
8476 }
8477
8478 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8479 struct cftype *cftype, s64 cfs_quota_us)
8480 {
8481 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8482 }
8483
8484 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8485 struct cftype *cft)
8486 {
8487 return tg_get_cfs_period(css_tg(css));
8488 }
8489
8490 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8491 struct cftype *cftype, u64 cfs_period_us)
8492 {
8493 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8494 }
8495
8496 struct cfs_schedulable_data {
8497 struct task_group *tg;
8498 u64 period, quota;
8499 };
8500
8501 /*
8502 * normalize group quota/period to be quota/max_period
8503 * note: units are usecs
8504 */
8505 static u64 normalize_cfs_quota(struct task_group *tg,
8506 struct cfs_schedulable_data *d)
8507 {
8508 u64 quota, period;
8509
8510 if (tg == d->tg) {
8511 period = d->period;
8512 quota = d->quota;
8513 } else {
8514 period = tg_get_cfs_period(tg);
8515 quota = tg_get_cfs_quota(tg);
8516 }
8517
8518 /* note: these should typically be equivalent */
8519 if (quota == RUNTIME_INF || quota == -1)
8520 return RUNTIME_INF;
8521
8522 return to_ratio(period, quota);
8523 }
8524
8525 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8526 {
8527 struct cfs_schedulable_data *d = data;
8528 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8529 s64 quota = 0, parent_quota = -1;
8530
8531 if (!tg->parent) {
8532 quota = RUNTIME_INF;
8533 } else {
8534 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8535
8536 quota = normalize_cfs_quota(tg, d);
8537 parent_quota = parent_b->hierarchical_quota;
8538
8539 /*
8540 * ensure max(child_quota) <= parent_quota, inherit when no
8541 * limit is set
8542 */
8543 if (quota == RUNTIME_INF)
8544 quota = parent_quota;
8545 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8546 return -EINVAL;
8547 }
8548 cfs_b->hierarchical_quota = quota;
8549
8550 return 0;
8551 }
8552
8553 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8554 {
8555 int ret;
8556 struct cfs_schedulable_data data = {
8557 .tg = tg,
8558 .period = period,
8559 .quota = quota,
8560 };
8561
8562 if (quota != RUNTIME_INF) {
8563 do_div(data.period, NSEC_PER_USEC);
8564 do_div(data.quota, NSEC_PER_USEC);
8565 }
8566
8567 rcu_read_lock();
8568 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8569 rcu_read_unlock();
8570
8571 return ret;
8572 }
8573
8574 static int cpu_stats_show(struct seq_file *sf, void *v)
8575 {
8576 struct task_group *tg = css_tg(seq_css(sf));
8577 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8578
8579 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8580 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8581 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8582
8583 return 0;
8584 }
8585 #endif /* CONFIG_CFS_BANDWIDTH */
8586 #endif /* CONFIG_FAIR_GROUP_SCHED */
8587
8588 #ifdef CONFIG_RT_GROUP_SCHED
8589 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8590 struct cftype *cft, s64 val)
8591 {
8592 return sched_group_set_rt_runtime(css_tg(css), val);
8593 }
8594
8595 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8596 struct cftype *cft)
8597 {
8598 return sched_group_rt_runtime(css_tg(css));
8599 }
8600
8601 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8602 struct cftype *cftype, u64 rt_period_us)
8603 {
8604 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8605 }
8606
8607 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8608 struct cftype *cft)
8609 {
8610 return sched_group_rt_period(css_tg(css));
8611 }
8612 #endif /* CONFIG_RT_GROUP_SCHED */
8613
8614 static struct cftype cpu_files[] = {
8615 #ifdef CONFIG_FAIR_GROUP_SCHED
8616 {
8617 .name = "shares",
8618 .read_u64 = cpu_shares_read_u64,
8619 .write_u64 = cpu_shares_write_u64,
8620 },
8621 #endif
8622 #ifdef CONFIG_CFS_BANDWIDTH
8623 {
8624 .name = "cfs_quota_us",
8625 .read_s64 = cpu_cfs_quota_read_s64,
8626 .write_s64 = cpu_cfs_quota_write_s64,
8627 },
8628 {
8629 .name = "cfs_period_us",
8630 .read_u64 = cpu_cfs_period_read_u64,
8631 .write_u64 = cpu_cfs_period_write_u64,
8632 },
8633 {
8634 .name = "stat",
8635 .seq_show = cpu_stats_show,
8636 },
8637 #endif
8638 #ifdef CONFIG_RT_GROUP_SCHED
8639 {
8640 .name = "rt_runtime_us",
8641 .read_s64 = cpu_rt_runtime_read,
8642 .write_s64 = cpu_rt_runtime_write,
8643 },
8644 {
8645 .name = "rt_period_us",
8646 .read_u64 = cpu_rt_period_read_uint,
8647 .write_u64 = cpu_rt_period_write_uint,
8648 },
8649 #endif
8650 { } /* terminate */
8651 };
8652
8653 struct cgroup_subsys cpu_cgrp_subsys = {
8654 .css_alloc = cpu_cgroup_css_alloc,
8655 .css_released = cpu_cgroup_css_released,
8656 .css_free = cpu_cgroup_css_free,
8657 .fork = cpu_cgroup_fork,
8658 .can_attach = cpu_cgroup_can_attach,
8659 .attach = cpu_cgroup_attach,
8660 .legacy_cftypes = cpu_files,
8661 .early_init = true,
8662 };
8663
8664 #endif /* CONFIG_CGROUP_SCHED */
8665
8666 void dump_cpu_task(int cpu)
8667 {
8668 pr_info("Task dump for CPU %d:\n", cpu);
8669 sched_show_task(cpu_curr(cpu));
8670 }
8671
8672 /*
8673 * Nice levels are multiplicative, with a gentle 10% change for every
8674 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8675 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8676 * that remained on nice 0.
8677 *
8678 * The "10% effect" is relative and cumulative: from _any_ nice level,
8679 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8680 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8681 * If a task goes up by ~10% and another task goes down by ~10% then
8682 * the relative distance between them is ~25%.)
8683 */
8684 const int sched_prio_to_weight[40] = {
8685 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8686 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8687 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8688 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8689 /* 0 */ 1024, 820, 655, 526, 423,
8690 /* 5 */ 335, 272, 215, 172, 137,
8691 /* 10 */ 110, 87, 70, 56, 45,
8692 /* 15 */ 36, 29, 23, 18, 15,
8693 };
8694
8695 /*
8696 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8697 *
8698 * In cases where the weight does not change often, we can use the
8699 * precalculated inverse to speed up arithmetics by turning divisions
8700 * into multiplications:
8701 */
8702 const u32 sched_prio_to_wmult[40] = {
8703 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8704 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8705 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8706 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8707 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8708 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8709 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8710 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8711 };
This page took 0.229364 seconds and 6 git commands to generate.