Merge remote-tracking branch 'regulator/for-next'
[deliverable/linux.git] / kernel / sched / deadline.c
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17 #include "sched.h"
18
19 #include <linux/slab.h>
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58 }
59
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70 }
71
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 dl_rq->rb_root = RB_ROOT;
75
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87
88 #ifdef CONFIG_SMP
89
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 return atomic_read(&rq->rd->dlo_count);
93 }
94
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109 }
110
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131 }
132
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 struct task_struct *p = dl_task_of(dl_se);
136
137 if (tsk_nr_cpus_allowed(p) > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141 }
142
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 struct task_struct *p = dl_task_of(dl_se);
146
147 if (tsk_nr_cpus_allowed(p) > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151 }
152
153 /*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost) {
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
182 }
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
203 }
204 }
205
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214
215 static int push_dl_task(struct rq *rq);
216
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 return dl_task(prev);
220 }
221
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 if (!has_pushable_dl_tasks(rq))
231 return;
232
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 struct rq *later_rq = NULL;
246 bool fallback = false;
247
248 later_rq = find_lock_later_rq(p, rq);
249
250 if (!later_rq) {
251 int cpu;
252
253 /*
254 * If we cannot preempt any rq, fall back to pick any
255 * online cpu.
256 */
257 fallback = true;
258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 if (cpu >= nr_cpu_ids) {
260 /*
261 * Fail to find any suitable cpu.
262 * The task will never come back!
263 */
264 BUG_ON(dl_bandwidth_enabled());
265
266 /*
267 * If admission control is disabled we
268 * try a little harder to let the task
269 * run.
270 */
271 cpu = cpumask_any(cpu_active_mask);
272 }
273 later_rq = cpu_rq(cpu);
274 double_lock_balance(rq, later_rq);
275 }
276
277 /*
278 * By now the task is replenished and enqueued; migrate it.
279 */
280 deactivate_task(rq, p, 0);
281 set_task_cpu(p, later_rq->cpu);
282 activate_task(later_rq, p, 0);
283
284 if (!fallback)
285 resched_curr(later_rq);
286
287 double_unlock_balance(later_rq, rq);
288
289 return later_rq;
290 }
291
292 #else
293
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296 {
297 }
298
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301 {
302 }
303
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 }
308
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 }
313
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315 {
316 return false;
317 }
318
319 static inline void pull_dl_task(struct rq *rq)
320 {
321 }
322
323 static inline void queue_push_tasks(struct rq *rq)
324 {
325 }
326
327 static inline void queue_pull_task(struct rq *rq)
328 {
329 }
330 #endif /* CONFIG_SMP */
331
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 int flags);
336
337 /*
338 * We are being explicitly informed that a new instance is starting,
339 * and this means that:
340 * - the absolute deadline of the entity has to be placed at
341 * current time + relative deadline;
342 * - the runtime of the entity has to be set to the maximum value.
343 *
344 * The capability of specifying such event is useful whenever a -deadline
345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
346 * one, and to (try to!) reconcile itself with its own scheduling
347 * parameters.
348 */
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 struct sched_dl_entity *pi_se)
351 {
352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 struct rq *rq = rq_of_dl_rq(dl_rq);
354
355 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356
357 /*
358 * We are racing with the deadline timer. So, do nothing because
359 * the deadline timer handler will take care of properly recharging
360 * the runtime and postponing the deadline
361 */
362 if (dl_se->dl_throttled)
363 return;
364
365 /*
366 * We use the regular wall clock time to set deadlines in the
367 * future; in fact, we must consider execution overheads (time
368 * spent on hardirq context, etc.).
369 */
370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 dl_se->runtime = pi_se->dl_runtime;
372 }
373
374 /*
375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376 * possibility of a entity lasting more than what it declared, and thus
377 * exhausting its runtime.
378 *
379 * Here we are interested in making runtime overrun possible, but we do
380 * not want a entity which is misbehaving to affect the scheduling of all
381 * other entities.
382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383 * is used, in order to confine each entity within its own bandwidth.
384 *
385 * This function deals exactly with that, and ensures that when the runtime
386 * of a entity is replenished, its deadline is also postponed. That ensures
387 * the overrunning entity can't interfere with other entity in the system and
388 * can't make them miss their deadlines. Reasons why this kind of overruns
389 * could happen are, typically, a entity voluntarily trying to overcome its
390 * runtime, or it just underestimated it during sched_setattr().
391 */
392 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 struct sched_dl_entity *pi_se)
394 {
395 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 struct rq *rq = rq_of_dl_rq(dl_rq);
397
398 BUG_ON(pi_se->dl_runtime <= 0);
399
400 /*
401 * This could be the case for a !-dl task that is boosted.
402 * Just go with full inherited parameters.
403 */
404 if (dl_se->dl_deadline == 0) {
405 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 dl_se->runtime = pi_se->dl_runtime;
407 }
408
409 if (dl_se->dl_yielded && dl_se->runtime > 0)
410 dl_se->runtime = 0;
411
412 /*
413 * We keep moving the deadline away until we get some
414 * available runtime for the entity. This ensures correct
415 * handling of situations where the runtime overrun is
416 * arbitrary large.
417 */
418 while (dl_se->runtime <= 0) {
419 dl_se->deadline += pi_se->dl_period;
420 dl_se->runtime += pi_se->dl_runtime;
421 }
422
423 /*
424 * At this point, the deadline really should be "in
425 * the future" with respect to rq->clock. If it's
426 * not, we are, for some reason, lagging too much!
427 * Anyway, after having warn userspace abut that,
428 * we still try to keep the things running by
429 * resetting the deadline and the budget of the
430 * entity.
431 */
432 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
433 printk_deferred_once("sched: DL replenish lagged too much\n");
434 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 dl_se->runtime = pi_se->dl_runtime;
436 }
437
438 if (dl_se->dl_yielded)
439 dl_se->dl_yielded = 0;
440 if (dl_se->dl_throttled)
441 dl_se->dl_throttled = 0;
442 }
443
444 /*
445 * Here we check if --at time t-- an entity (which is probably being
446 * [re]activated or, in general, enqueued) can use its remaining runtime
447 * and its current deadline _without_ exceeding the bandwidth it is
448 * assigned (function returns true if it can't). We are in fact applying
449 * one of the CBS rules: when a task wakes up, if the residual runtime
450 * over residual deadline fits within the allocated bandwidth, then we
451 * can keep the current (absolute) deadline and residual budget without
452 * disrupting the schedulability of the system. Otherwise, we should
453 * refill the runtime and set the deadline a period in the future,
454 * because keeping the current (absolute) deadline of the task would
455 * result in breaking guarantees promised to other tasks (refer to
456 * Documentation/scheduler/sched-deadline.txt for more informations).
457 *
458 * This function returns true if:
459 *
460 * runtime / (deadline - t) > dl_runtime / dl_period ,
461 *
462 * IOW we can't recycle current parameters.
463 *
464 * Notice that the bandwidth check is done against the period. For
465 * task with deadline equal to period this is the same of using
466 * dl_deadline instead of dl_period in the equation above.
467 */
468 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 struct sched_dl_entity *pi_se, u64 t)
470 {
471 u64 left, right;
472
473 /*
474 * left and right are the two sides of the equation above,
475 * after a bit of shuffling to use multiplications instead
476 * of divisions.
477 *
478 * Note that none of the time values involved in the two
479 * multiplications are absolute: dl_deadline and dl_runtime
480 * are the relative deadline and the maximum runtime of each
481 * instance, runtime is the runtime left for the last instance
482 * and (deadline - t), since t is rq->clock, is the time left
483 * to the (absolute) deadline. Even if overflowing the u64 type
484 * is very unlikely to occur in both cases, here we scale down
485 * as we want to avoid that risk at all. Scaling down by 10
486 * means that we reduce granularity to 1us. We are fine with it,
487 * since this is only a true/false check and, anyway, thinking
488 * of anything below microseconds resolution is actually fiction
489 * (but still we want to give the user that illusion >;).
490 */
491 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 right = ((dl_se->deadline - t) >> DL_SCALE) *
493 (pi_se->dl_runtime >> DL_SCALE);
494
495 return dl_time_before(right, left);
496 }
497
498 /*
499 * When a -deadline entity is queued back on the runqueue, its runtime and
500 * deadline might need updating.
501 *
502 * The policy here is that we update the deadline of the entity only if:
503 * - the current deadline is in the past,
504 * - using the remaining runtime with the current deadline would make
505 * the entity exceed its bandwidth.
506 */
507 static void update_dl_entity(struct sched_dl_entity *dl_se,
508 struct sched_dl_entity *pi_se)
509 {
510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 struct rq *rq = rq_of_dl_rq(dl_rq);
512
513 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
514 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 dl_se->runtime = pi_se->dl_runtime;
517 }
518 }
519
520 /*
521 * If the entity depleted all its runtime, and if we want it to sleep
522 * while waiting for some new execution time to become available, we
523 * set the bandwidth enforcement timer to the replenishment instant
524 * and try to activate it.
525 *
526 * Notice that it is important for the caller to know if the timer
527 * actually started or not (i.e., the replenishment instant is in
528 * the future or in the past).
529 */
530 static int start_dl_timer(struct task_struct *p)
531 {
532 struct sched_dl_entity *dl_se = &p->dl;
533 struct hrtimer *timer = &dl_se->dl_timer;
534 struct rq *rq = task_rq(p);
535 ktime_t now, act;
536 s64 delta;
537
538 lockdep_assert_held(&rq->lock);
539
540 /*
541 * We want the timer to fire at the deadline, but considering
542 * that it is actually coming from rq->clock and not from
543 * hrtimer's time base reading.
544 */
545 act = ns_to_ktime(dl_se->deadline);
546 now = hrtimer_cb_get_time(timer);
547 delta = ktime_to_ns(now) - rq_clock(rq);
548 act = ktime_add_ns(act, delta);
549
550 /*
551 * If the expiry time already passed, e.g., because the value
552 * chosen as the deadline is too small, don't even try to
553 * start the timer in the past!
554 */
555 if (ktime_us_delta(act, now) < 0)
556 return 0;
557
558 /*
559 * !enqueued will guarantee another callback; even if one is already in
560 * progress. This ensures a balanced {get,put}_task_struct().
561 *
562 * The race against __run_timer() clearing the enqueued state is
563 * harmless because we're holding task_rq()->lock, therefore the timer
564 * expiring after we've done the check will wait on its task_rq_lock()
565 * and observe our state.
566 */
567 if (!hrtimer_is_queued(timer)) {
568 get_task_struct(p);
569 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 }
571
572 return 1;
573 }
574
575 /*
576 * This is the bandwidth enforcement timer callback. If here, we know
577 * a task is not on its dl_rq, since the fact that the timer was running
578 * means the task is throttled and needs a runtime replenishment.
579 *
580 * However, what we actually do depends on the fact the task is active,
581 * (it is on its rq) or has been removed from there by a call to
582 * dequeue_task_dl(). In the former case we must issue the runtime
583 * replenishment and add the task back to the dl_rq; in the latter, we just
584 * do nothing but clearing dl_throttled, so that runtime and deadline
585 * updating (and the queueing back to dl_rq) will be done by the
586 * next call to enqueue_task_dl().
587 */
588 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589 {
590 struct sched_dl_entity *dl_se = container_of(timer,
591 struct sched_dl_entity,
592 dl_timer);
593 struct task_struct *p = dl_task_of(dl_se);
594 struct rq_flags rf;
595 struct rq *rq;
596
597 rq = task_rq_lock(p, &rf);
598
599 /*
600 * The task might have changed its scheduling policy to something
601 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 */
603 if (!dl_task(p)) {
604 __dl_clear_params(p);
605 goto unlock;
606 }
607
608 /*
609 * The task might have been boosted by someone else and might be in the
610 * boosting/deboosting path, its not throttled.
611 */
612 if (dl_se->dl_boosted)
613 goto unlock;
614
615 /*
616 * Spurious timer due to start_dl_timer() race; or we already received
617 * a replenishment from rt_mutex_setprio().
618 */
619 if (!dl_se->dl_throttled)
620 goto unlock;
621
622 sched_clock_tick();
623 update_rq_clock(rq);
624
625 /*
626 * If the throttle happened during sched-out; like:
627 *
628 * schedule()
629 * deactivate_task()
630 * dequeue_task_dl()
631 * update_curr_dl()
632 * start_dl_timer()
633 * __dequeue_task_dl()
634 * prev->on_rq = 0;
635 *
636 * We can be both throttled and !queued. Replenish the counter
637 * but do not enqueue -- wait for our wakeup to do that.
638 */
639 if (!task_on_rq_queued(p)) {
640 replenish_dl_entity(dl_se, dl_se);
641 goto unlock;
642 }
643
644 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 if (dl_task(rq->curr))
646 check_preempt_curr_dl(rq, p, 0);
647 else
648 resched_curr(rq);
649
650 #ifdef CONFIG_SMP
651 /*
652 * Perform balancing operations here; after the replenishments. We
653 * cannot drop rq->lock before this, otherwise the assertion in
654 * start_dl_timer() about not missing updates is not true.
655 *
656 * If we find that the rq the task was on is no longer available, we
657 * need to select a new rq.
658 *
659 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 */
661 if (unlikely(!rq->online)) {
662 lockdep_unpin_lock(&rq->lock, rf.cookie);
663 rq = dl_task_offline_migration(rq, p);
664 rf.cookie = lockdep_pin_lock(&rq->lock);
665 }
666
667 /*
668 * Queueing this task back might have overloaded rq, check if we need
669 * to kick someone away.
670 */
671 if (has_pushable_dl_tasks(rq)) {
672 /*
673 * Nothing relies on rq->lock after this, so its safe to drop
674 * rq->lock.
675 */
676 lockdep_unpin_lock(&rq->lock, rf.cookie);
677 push_dl_task(rq);
678 lockdep_repin_lock(&rq->lock, rf.cookie);
679 }
680 #endif
681
682 unlock:
683 task_rq_unlock(rq, p, &rf);
684
685 /*
686 * This can free the task_struct, including this hrtimer, do not touch
687 * anything related to that after this.
688 */
689 put_task_struct(p);
690
691 return HRTIMER_NORESTART;
692 }
693
694 void init_dl_task_timer(struct sched_dl_entity *dl_se)
695 {
696 struct hrtimer *timer = &dl_se->dl_timer;
697
698 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
699 timer->function = dl_task_timer;
700 }
701
702 static
703 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
704 {
705 return (dl_se->runtime <= 0);
706 }
707
708 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
709
710 /*
711 * Update the current task's runtime statistics (provided it is still
712 * a -deadline task and has not been removed from the dl_rq).
713 */
714 static void update_curr_dl(struct rq *rq)
715 {
716 struct task_struct *curr = rq->curr;
717 struct sched_dl_entity *dl_se = &curr->dl;
718 u64 delta_exec;
719
720 if (!dl_task(curr) || !on_dl_rq(dl_se))
721 return;
722
723 /*
724 * Consumed budget is computed considering the time as
725 * observed by schedulable tasks (excluding time spent
726 * in hardirq context, etc.). Deadlines are instead
727 * computed using hard walltime. This seems to be the more
728 * natural solution, but the full ramifications of this
729 * approach need further study.
730 */
731 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
732 if (unlikely((s64)delta_exec <= 0)) {
733 if (unlikely(dl_se->dl_yielded))
734 goto throttle;
735 return;
736 }
737
738 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
739 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
740
741 schedstat_set(curr->se.statistics.exec_max,
742 max(curr->se.statistics.exec_max, delta_exec));
743
744 curr->se.sum_exec_runtime += delta_exec;
745 account_group_exec_runtime(curr, delta_exec);
746
747 curr->se.exec_start = rq_clock_task(rq);
748 cpuacct_charge(curr, delta_exec);
749
750 sched_rt_avg_update(rq, delta_exec);
751
752 dl_se->runtime -= delta_exec;
753
754 throttle:
755 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
756 dl_se->dl_throttled = 1;
757 __dequeue_task_dl(rq, curr, 0);
758 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
759 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
760
761 if (!is_leftmost(curr, &rq->dl))
762 resched_curr(rq);
763 }
764
765 /*
766 * Because -- for now -- we share the rt bandwidth, we need to
767 * account our runtime there too, otherwise actual rt tasks
768 * would be able to exceed the shared quota.
769 *
770 * Account to the root rt group for now.
771 *
772 * The solution we're working towards is having the RT groups scheduled
773 * using deadline servers -- however there's a few nasties to figure
774 * out before that can happen.
775 */
776 if (rt_bandwidth_enabled()) {
777 struct rt_rq *rt_rq = &rq->rt;
778
779 raw_spin_lock(&rt_rq->rt_runtime_lock);
780 /*
781 * We'll let actual RT tasks worry about the overflow here, we
782 * have our own CBS to keep us inline; only account when RT
783 * bandwidth is relevant.
784 */
785 if (sched_rt_bandwidth_account(rt_rq))
786 rt_rq->rt_time += delta_exec;
787 raw_spin_unlock(&rt_rq->rt_runtime_lock);
788 }
789 }
790
791 #ifdef CONFIG_SMP
792
793 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
794 {
795 struct rq *rq = rq_of_dl_rq(dl_rq);
796
797 if (dl_rq->earliest_dl.curr == 0 ||
798 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
799 dl_rq->earliest_dl.curr = deadline;
800 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
801 }
802 }
803
804 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
805 {
806 struct rq *rq = rq_of_dl_rq(dl_rq);
807
808 /*
809 * Since we may have removed our earliest (and/or next earliest)
810 * task we must recompute them.
811 */
812 if (!dl_rq->dl_nr_running) {
813 dl_rq->earliest_dl.curr = 0;
814 dl_rq->earliest_dl.next = 0;
815 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
816 } else {
817 struct rb_node *leftmost = dl_rq->rb_leftmost;
818 struct sched_dl_entity *entry;
819
820 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
821 dl_rq->earliest_dl.curr = entry->deadline;
822 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
823 }
824 }
825
826 #else
827
828 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
829 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
830
831 #endif /* CONFIG_SMP */
832
833 static inline
834 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
835 {
836 int prio = dl_task_of(dl_se)->prio;
837 u64 deadline = dl_se->deadline;
838
839 WARN_ON(!dl_prio(prio));
840 dl_rq->dl_nr_running++;
841 add_nr_running(rq_of_dl_rq(dl_rq), 1);
842
843 inc_dl_deadline(dl_rq, deadline);
844 inc_dl_migration(dl_se, dl_rq);
845 }
846
847 static inline
848 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
849 {
850 int prio = dl_task_of(dl_se)->prio;
851
852 WARN_ON(!dl_prio(prio));
853 WARN_ON(!dl_rq->dl_nr_running);
854 dl_rq->dl_nr_running--;
855 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
856
857 dec_dl_deadline(dl_rq, dl_se->deadline);
858 dec_dl_migration(dl_se, dl_rq);
859 }
860
861 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
862 {
863 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
864 struct rb_node **link = &dl_rq->rb_root.rb_node;
865 struct rb_node *parent = NULL;
866 struct sched_dl_entity *entry;
867 int leftmost = 1;
868
869 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
870
871 while (*link) {
872 parent = *link;
873 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
874 if (dl_time_before(dl_se->deadline, entry->deadline))
875 link = &parent->rb_left;
876 else {
877 link = &parent->rb_right;
878 leftmost = 0;
879 }
880 }
881
882 if (leftmost)
883 dl_rq->rb_leftmost = &dl_se->rb_node;
884
885 rb_link_node(&dl_se->rb_node, parent, link);
886 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
887
888 inc_dl_tasks(dl_se, dl_rq);
889 }
890
891 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
892 {
893 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
894
895 if (RB_EMPTY_NODE(&dl_se->rb_node))
896 return;
897
898 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
899 struct rb_node *next_node;
900
901 next_node = rb_next(&dl_se->rb_node);
902 dl_rq->rb_leftmost = next_node;
903 }
904
905 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
906 RB_CLEAR_NODE(&dl_se->rb_node);
907
908 dec_dl_tasks(dl_se, dl_rq);
909 }
910
911 static void
912 enqueue_dl_entity(struct sched_dl_entity *dl_se,
913 struct sched_dl_entity *pi_se, int flags)
914 {
915 BUG_ON(on_dl_rq(dl_se));
916
917 /*
918 * If this is a wakeup or a new instance, the scheduling
919 * parameters of the task might need updating. Otherwise,
920 * we want a replenishment of its runtime.
921 */
922 if (flags & ENQUEUE_WAKEUP)
923 update_dl_entity(dl_se, pi_se);
924 else if (flags & ENQUEUE_REPLENISH)
925 replenish_dl_entity(dl_se, pi_se);
926
927 __enqueue_dl_entity(dl_se);
928 }
929
930 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
931 {
932 __dequeue_dl_entity(dl_se);
933 }
934
935 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
936 {
937 struct task_struct *pi_task = rt_mutex_get_top_task(p);
938 struct sched_dl_entity *pi_se = &p->dl;
939
940 /*
941 * Use the scheduling parameters of the top pi-waiter
942 * task if we have one and its (absolute) deadline is
943 * smaller than our one... OTW we keep our runtime and
944 * deadline.
945 */
946 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
947 pi_se = &pi_task->dl;
948 } else if (!dl_prio(p->normal_prio)) {
949 /*
950 * Special case in which we have a !SCHED_DEADLINE task
951 * that is going to be deboosted, but exceedes its
952 * runtime while doing so. No point in replenishing
953 * it, as it's going to return back to its original
954 * scheduling class after this.
955 */
956 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
957 return;
958 }
959
960 /*
961 * If p is throttled, we do nothing. In fact, if it exhausted
962 * its budget it needs a replenishment and, since it now is on
963 * its rq, the bandwidth timer callback (which clearly has not
964 * run yet) will take care of this.
965 */
966 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
967 return;
968
969 enqueue_dl_entity(&p->dl, pi_se, flags);
970
971 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
972 enqueue_pushable_dl_task(rq, p);
973 }
974
975 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
976 {
977 dequeue_dl_entity(&p->dl);
978 dequeue_pushable_dl_task(rq, p);
979 }
980
981 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
982 {
983 update_curr_dl(rq);
984 __dequeue_task_dl(rq, p, flags);
985 }
986
987 /*
988 * Yield task semantic for -deadline tasks is:
989 *
990 * get off from the CPU until our next instance, with
991 * a new runtime. This is of little use now, since we
992 * don't have a bandwidth reclaiming mechanism. Anyway,
993 * bandwidth reclaiming is planned for the future, and
994 * yield_task_dl will indicate that some spare budget
995 * is available for other task instances to use it.
996 */
997 static void yield_task_dl(struct rq *rq)
998 {
999 /*
1000 * We make the task go to sleep until its current deadline by
1001 * forcing its runtime to zero. This way, update_curr_dl() stops
1002 * it and the bandwidth timer will wake it up and will give it
1003 * new scheduling parameters (thanks to dl_yielded=1).
1004 */
1005 rq->curr->dl.dl_yielded = 1;
1006
1007 update_rq_clock(rq);
1008 update_curr_dl(rq);
1009 /*
1010 * Tell update_rq_clock() that we've just updated,
1011 * so we don't do microscopic update in schedule()
1012 * and double the fastpath cost.
1013 */
1014 rq_clock_skip_update(rq, true);
1015 }
1016
1017 #ifdef CONFIG_SMP
1018
1019 static int find_later_rq(struct task_struct *task);
1020
1021 static int
1022 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1023 {
1024 struct task_struct *curr;
1025 struct rq *rq;
1026
1027 if (sd_flag != SD_BALANCE_WAKE)
1028 goto out;
1029
1030 rq = cpu_rq(cpu);
1031
1032 rcu_read_lock();
1033 curr = READ_ONCE(rq->curr); /* unlocked access */
1034
1035 /*
1036 * If we are dealing with a -deadline task, we must
1037 * decide where to wake it up.
1038 * If it has a later deadline and the current task
1039 * on this rq can't move (provided the waking task
1040 * can!) we prefer to send it somewhere else. On the
1041 * other hand, if it has a shorter deadline, we
1042 * try to make it stay here, it might be important.
1043 */
1044 if (unlikely(dl_task(curr)) &&
1045 (tsk_nr_cpus_allowed(curr) < 2 ||
1046 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1047 (tsk_nr_cpus_allowed(p) > 1)) {
1048 int target = find_later_rq(p);
1049
1050 if (target != -1 &&
1051 (dl_time_before(p->dl.deadline,
1052 cpu_rq(target)->dl.earliest_dl.curr) ||
1053 (cpu_rq(target)->dl.dl_nr_running == 0)))
1054 cpu = target;
1055 }
1056 rcu_read_unlock();
1057
1058 out:
1059 return cpu;
1060 }
1061
1062 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1063 {
1064 /*
1065 * Current can't be migrated, useless to reschedule,
1066 * let's hope p can move out.
1067 */
1068 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1069 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1070 return;
1071
1072 /*
1073 * p is migratable, so let's not schedule it and
1074 * see if it is pushed or pulled somewhere else.
1075 */
1076 if (tsk_nr_cpus_allowed(p) != 1 &&
1077 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1078 return;
1079
1080 resched_curr(rq);
1081 }
1082
1083 #endif /* CONFIG_SMP */
1084
1085 /*
1086 * Only called when both the current and waking task are -deadline
1087 * tasks.
1088 */
1089 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1090 int flags)
1091 {
1092 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1093 resched_curr(rq);
1094 return;
1095 }
1096
1097 #ifdef CONFIG_SMP
1098 /*
1099 * In the unlikely case current and p have the same deadline
1100 * let us try to decide what's the best thing to do...
1101 */
1102 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1103 !test_tsk_need_resched(rq->curr))
1104 check_preempt_equal_dl(rq, p);
1105 #endif /* CONFIG_SMP */
1106 }
1107
1108 #ifdef CONFIG_SCHED_HRTICK
1109 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1110 {
1111 hrtick_start(rq, p->dl.runtime);
1112 }
1113 #else /* !CONFIG_SCHED_HRTICK */
1114 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1115 {
1116 }
1117 #endif
1118
1119 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1120 struct dl_rq *dl_rq)
1121 {
1122 struct rb_node *left = dl_rq->rb_leftmost;
1123
1124 if (!left)
1125 return NULL;
1126
1127 return rb_entry(left, struct sched_dl_entity, rb_node);
1128 }
1129
1130 struct task_struct *
1131 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1132 {
1133 struct sched_dl_entity *dl_se;
1134 struct task_struct *p;
1135 struct dl_rq *dl_rq;
1136
1137 dl_rq = &rq->dl;
1138
1139 if (need_pull_dl_task(rq, prev)) {
1140 /*
1141 * This is OK, because current is on_cpu, which avoids it being
1142 * picked for load-balance and preemption/IRQs are still
1143 * disabled avoiding further scheduler activity on it and we're
1144 * being very careful to re-start the picking loop.
1145 */
1146 lockdep_unpin_lock(&rq->lock, cookie);
1147 pull_dl_task(rq);
1148 lockdep_repin_lock(&rq->lock, cookie);
1149 /*
1150 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1151 * means a stop task can slip in, in which case we need to
1152 * re-start task selection.
1153 */
1154 if (rq->stop && task_on_rq_queued(rq->stop))
1155 return RETRY_TASK;
1156 }
1157
1158 /*
1159 * When prev is DL, we may throttle it in put_prev_task().
1160 * So, we update time before we check for dl_nr_running.
1161 */
1162 if (prev->sched_class == &dl_sched_class)
1163 update_curr_dl(rq);
1164
1165 if (unlikely(!dl_rq->dl_nr_running))
1166 return NULL;
1167
1168 put_prev_task(rq, prev);
1169
1170 dl_se = pick_next_dl_entity(rq, dl_rq);
1171 BUG_ON(!dl_se);
1172
1173 p = dl_task_of(dl_se);
1174 p->se.exec_start = rq_clock_task(rq);
1175
1176 /* Running task will never be pushed. */
1177 dequeue_pushable_dl_task(rq, p);
1178
1179 if (hrtick_enabled(rq))
1180 start_hrtick_dl(rq, p);
1181
1182 queue_push_tasks(rq);
1183
1184 return p;
1185 }
1186
1187 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1188 {
1189 update_curr_dl(rq);
1190
1191 if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1192 enqueue_pushable_dl_task(rq, p);
1193 }
1194
1195 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1196 {
1197 update_curr_dl(rq);
1198
1199 /*
1200 * Even when we have runtime, update_curr_dl() might have resulted in us
1201 * not being the leftmost task anymore. In that case NEED_RESCHED will
1202 * be set and schedule() will start a new hrtick for the next task.
1203 */
1204 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1205 is_leftmost(p, &rq->dl))
1206 start_hrtick_dl(rq, p);
1207 }
1208
1209 static void task_fork_dl(struct task_struct *p)
1210 {
1211 /*
1212 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1213 * sched_fork()
1214 */
1215 }
1216
1217 static void task_dead_dl(struct task_struct *p)
1218 {
1219 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1220
1221 /*
1222 * Since we are TASK_DEAD we won't slip out of the domain!
1223 */
1224 raw_spin_lock_irq(&dl_b->lock);
1225 /* XXX we should retain the bw until 0-lag */
1226 dl_b->total_bw -= p->dl.dl_bw;
1227 raw_spin_unlock_irq(&dl_b->lock);
1228 }
1229
1230 static void set_curr_task_dl(struct rq *rq)
1231 {
1232 struct task_struct *p = rq->curr;
1233
1234 p->se.exec_start = rq_clock_task(rq);
1235
1236 /* You can't push away the running task */
1237 dequeue_pushable_dl_task(rq, p);
1238 }
1239
1240 #ifdef CONFIG_SMP
1241
1242 /* Only try algorithms three times */
1243 #define DL_MAX_TRIES 3
1244
1245 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1246 {
1247 if (!task_running(rq, p) &&
1248 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1249 return 1;
1250 return 0;
1251 }
1252
1253 /*
1254 * Return the earliest pushable rq's task, which is suitable to be executed
1255 * on the CPU, NULL otherwise:
1256 */
1257 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1258 {
1259 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1260 struct task_struct *p = NULL;
1261
1262 if (!has_pushable_dl_tasks(rq))
1263 return NULL;
1264
1265 next_node:
1266 if (next_node) {
1267 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1268
1269 if (pick_dl_task(rq, p, cpu))
1270 return p;
1271
1272 next_node = rb_next(next_node);
1273 goto next_node;
1274 }
1275
1276 return NULL;
1277 }
1278
1279 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1280
1281 static int find_later_rq(struct task_struct *task)
1282 {
1283 struct sched_domain *sd;
1284 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1285 int this_cpu = smp_processor_id();
1286 int best_cpu, cpu = task_cpu(task);
1287
1288 /* Make sure the mask is initialized first */
1289 if (unlikely(!later_mask))
1290 return -1;
1291
1292 if (tsk_nr_cpus_allowed(task) == 1)
1293 return -1;
1294
1295 /*
1296 * We have to consider system topology and task affinity
1297 * first, then we can look for a suitable cpu.
1298 */
1299 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1300 task, later_mask);
1301 if (best_cpu == -1)
1302 return -1;
1303
1304 /*
1305 * If we are here, some target has been found,
1306 * the most suitable of which is cached in best_cpu.
1307 * This is, among the runqueues where the current tasks
1308 * have later deadlines than the task's one, the rq
1309 * with the latest possible one.
1310 *
1311 * Now we check how well this matches with task's
1312 * affinity and system topology.
1313 *
1314 * The last cpu where the task run is our first
1315 * guess, since it is most likely cache-hot there.
1316 */
1317 if (cpumask_test_cpu(cpu, later_mask))
1318 return cpu;
1319 /*
1320 * Check if this_cpu is to be skipped (i.e., it is
1321 * not in the mask) or not.
1322 */
1323 if (!cpumask_test_cpu(this_cpu, later_mask))
1324 this_cpu = -1;
1325
1326 rcu_read_lock();
1327 for_each_domain(cpu, sd) {
1328 if (sd->flags & SD_WAKE_AFFINE) {
1329
1330 /*
1331 * If possible, preempting this_cpu is
1332 * cheaper than migrating.
1333 */
1334 if (this_cpu != -1 &&
1335 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1336 rcu_read_unlock();
1337 return this_cpu;
1338 }
1339
1340 /*
1341 * Last chance: if best_cpu is valid and is
1342 * in the mask, that becomes our choice.
1343 */
1344 if (best_cpu < nr_cpu_ids &&
1345 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1346 rcu_read_unlock();
1347 return best_cpu;
1348 }
1349 }
1350 }
1351 rcu_read_unlock();
1352
1353 /*
1354 * At this point, all our guesses failed, we just return
1355 * 'something', and let the caller sort the things out.
1356 */
1357 if (this_cpu != -1)
1358 return this_cpu;
1359
1360 cpu = cpumask_any(later_mask);
1361 if (cpu < nr_cpu_ids)
1362 return cpu;
1363
1364 return -1;
1365 }
1366
1367 /* Locks the rq it finds */
1368 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1369 {
1370 struct rq *later_rq = NULL;
1371 int tries;
1372 int cpu;
1373
1374 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1375 cpu = find_later_rq(task);
1376
1377 if ((cpu == -1) || (cpu == rq->cpu))
1378 break;
1379
1380 later_rq = cpu_rq(cpu);
1381
1382 if (later_rq->dl.dl_nr_running &&
1383 !dl_time_before(task->dl.deadline,
1384 later_rq->dl.earliest_dl.curr)) {
1385 /*
1386 * Target rq has tasks of equal or earlier deadline,
1387 * retrying does not release any lock and is unlikely
1388 * to yield a different result.
1389 */
1390 later_rq = NULL;
1391 break;
1392 }
1393
1394 /* Retry if something changed. */
1395 if (double_lock_balance(rq, later_rq)) {
1396 if (unlikely(task_rq(task) != rq ||
1397 !cpumask_test_cpu(later_rq->cpu,
1398 tsk_cpus_allowed(task)) ||
1399 task_running(rq, task) ||
1400 !dl_task(task) ||
1401 !task_on_rq_queued(task))) {
1402 double_unlock_balance(rq, later_rq);
1403 later_rq = NULL;
1404 break;
1405 }
1406 }
1407
1408 /*
1409 * If the rq we found has no -deadline task, or
1410 * its earliest one has a later deadline than our
1411 * task, the rq is a good one.
1412 */
1413 if (!later_rq->dl.dl_nr_running ||
1414 dl_time_before(task->dl.deadline,
1415 later_rq->dl.earliest_dl.curr))
1416 break;
1417
1418 /* Otherwise we try again. */
1419 double_unlock_balance(rq, later_rq);
1420 later_rq = NULL;
1421 }
1422
1423 return later_rq;
1424 }
1425
1426 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1427 {
1428 struct task_struct *p;
1429
1430 if (!has_pushable_dl_tasks(rq))
1431 return NULL;
1432
1433 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1434 struct task_struct, pushable_dl_tasks);
1435
1436 BUG_ON(rq->cpu != task_cpu(p));
1437 BUG_ON(task_current(rq, p));
1438 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1439
1440 BUG_ON(!task_on_rq_queued(p));
1441 BUG_ON(!dl_task(p));
1442
1443 return p;
1444 }
1445
1446 /*
1447 * See if the non running -deadline tasks on this rq
1448 * can be sent to some other CPU where they can preempt
1449 * and start executing.
1450 */
1451 static int push_dl_task(struct rq *rq)
1452 {
1453 struct task_struct *next_task;
1454 struct rq *later_rq;
1455 int ret = 0;
1456
1457 if (!rq->dl.overloaded)
1458 return 0;
1459
1460 next_task = pick_next_pushable_dl_task(rq);
1461 if (!next_task)
1462 return 0;
1463
1464 retry:
1465 if (unlikely(next_task == rq->curr)) {
1466 WARN_ON(1);
1467 return 0;
1468 }
1469
1470 /*
1471 * If next_task preempts rq->curr, and rq->curr
1472 * can move away, it makes sense to just reschedule
1473 * without going further in pushing next_task.
1474 */
1475 if (dl_task(rq->curr) &&
1476 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1477 tsk_nr_cpus_allowed(rq->curr) > 1) {
1478 resched_curr(rq);
1479 return 0;
1480 }
1481
1482 /* We might release rq lock */
1483 get_task_struct(next_task);
1484
1485 /* Will lock the rq it'll find */
1486 later_rq = find_lock_later_rq(next_task, rq);
1487 if (!later_rq) {
1488 struct task_struct *task;
1489
1490 /*
1491 * We must check all this again, since
1492 * find_lock_later_rq releases rq->lock and it is
1493 * then possible that next_task has migrated.
1494 */
1495 task = pick_next_pushable_dl_task(rq);
1496 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1497 /*
1498 * The task is still there. We don't try
1499 * again, some other cpu will pull it when ready.
1500 */
1501 goto out;
1502 }
1503
1504 if (!task)
1505 /* No more tasks */
1506 goto out;
1507
1508 put_task_struct(next_task);
1509 next_task = task;
1510 goto retry;
1511 }
1512
1513 deactivate_task(rq, next_task, 0);
1514 set_task_cpu(next_task, later_rq->cpu);
1515 activate_task(later_rq, next_task, 0);
1516 ret = 1;
1517
1518 resched_curr(later_rq);
1519
1520 double_unlock_balance(rq, later_rq);
1521
1522 out:
1523 put_task_struct(next_task);
1524
1525 return ret;
1526 }
1527
1528 static void push_dl_tasks(struct rq *rq)
1529 {
1530 /* push_dl_task() will return true if it moved a -deadline task */
1531 while (push_dl_task(rq))
1532 ;
1533 }
1534
1535 static void pull_dl_task(struct rq *this_rq)
1536 {
1537 int this_cpu = this_rq->cpu, cpu;
1538 struct task_struct *p;
1539 bool resched = false;
1540 struct rq *src_rq;
1541 u64 dmin = LONG_MAX;
1542
1543 if (likely(!dl_overloaded(this_rq)))
1544 return;
1545
1546 /*
1547 * Match the barrier from dl_set_overloaded; this guarantees that if we
1548 * see overloaded we must also see the dlo_mask bit.
1549 */
1550 smp_rmb();
1551
1552 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1553 if (this_cpu == cpu)
1554 continue;
1555
1556 src_rq = cpu_rq(cpu);
1557
1558 /*
1559 * It looks racy, abd it is! However, as in sched_rt.c,
1560 * we are fine with this.
1561 */
1562 if (this_rq->dl.dl_nr_running &&
1563 dl_time_before(this_rq->dl.earliest_dl.curr,
1564 src_rq->dl.earliest_dl.next))
1565 continue;
1566
1567 /* Might drop this_rq->lock */
1568 double_lock_balance(this_rq, src_rq);
1569
1570 /*
1571 * If there are no more pullable tasks on the
1572 * rq, we're done with it.
1573 */
1574 if (src_rq->dl.dl_nr_running <= 1)
1575 goto skip;
1576
1577 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1578
1579 /*
1580 * We found a task to be pulled if:
1581 * - it preempts our current (if there's one),
1582 * - it will preempt the last one we pulled (if any).
1583 */
1584 if (p && dl_time_before(p->dl.deadline, dmin) &&
1585 (!this_rq->dl.dl_nr_running ||
1586 dl_time_before(p->dl.deadline,
1587 this_rq->dl.earliest_dl.curr))) {
1588 WARN_ON(p == src_rq->curr);
1589 WARN_ON(!task_on_rq_queued(p));
1590
1591 /*
1592 * Then we pull iff p has actually an earlier
1593 * deadline than the current task of its runqueue.
1594 */
1595 if (dl_time_before(p->dl.deadline,
1596 src_rq->curr->dl.deadline))
1597 goto skip;
1598
1599 resched = true;
1600
1601 deactivate_task(src_rq, p, 0);
1602 set_task_cpu(p, this_cpu);
1603 activate_task(this_rq, p, 0);
1604 dmin = p->dl.deadline;
1605
1606 /* Is there any other task even earlier? */
1607 }
1608 skip:
1609 double_unlock_balance(this_rq, src_rq);
1610 }
1611
1612 if (resched)
1613 resched_curr(this_rq);
1614 }
1615
1616 /*
1617 * Since the task is not running and a reschedule is not going to happen
1618 * anytime soon on its runqueue, we try pushing it away now.
1619 */
1620 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1621 {
1622 if (!task_running(rq, p) &&
1623 !test_tsk_need_resched(rq->curr) &&
1624 tsk_nr_cpus_allowed(p) > 1 &&
1625 dl_task(rq->curr) &&
1626 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1627 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1628 push_dl_tasks(rq);
1629 }
1630 }
1631
1632 static void set_cpus_allowed_dl(struct task_struct *p,
1633 const struct cpumask *new_mask)
1634 {
1635 struct root_domain *src_rd;
1636 struct rq *rq;
1637
1638 BUG_ON(!dl_task(p));
1639
1640 rq = task_rq(p);
1641 src_rd = rq->rd;
1642 /*
1643 * Migrating a SCHED_DEADLINE task between exclusive
1644 * cpusets (different root_domains) entails a bandwidth
1645 * update. We already made space for us in the destination
1646 * domain (see cpuset_can_attach()).
1647 */
1648 if (!cpumask_intersects(src_rd->span, new_mask)) {
1649 struct dl_bw *src_dl_b;
1650
1651 src_dl_b = dl_bw_of(cpu_of(rq));
1652 /*
1653 * We now free resources of the root_domain we are migrating
1654 * off. In the worst case, sched_setattr() may temporary fail
1655 * until we complete the update.
1656 */
1657 raw_spin_lock(&src_dl_b->lock);
1658 __dl_clear(src_dl_b, p->dl.dl_bw);
1659 raw_spin_unlock(&src_dl_b->lock);
1660 }
1661
1662 set_cpus_allowed_common(p, new_mask);
1663 }
1664
1665 /* Assumes rq->lock is held */
1666 static void rq_online_dl(struct rq *rq)
1667 {
1668 if (rq->dl.overloaded)
1669 dl_set_overload(rq);
1670
1671 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1672 if (rq->dl.dl_nr_running > 0)
1673 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1674 }
1675
1676 /* Assumes rq->lock is held */
1677 static void rq_offline_dl(struct rq *rq)
1678 {
1679 if (rq->dl.overloaded)
1680 dl_clear_overload(rq);
1681
1682 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1683 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1684 }
1685
1686 void __init init_sched_dl_class(void)
1687 {
1688 unsigned int i;
1689
1690 for_each_possible_cpu(i)
1691 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1692 GFP_KERNEL, cpu_to_node(i));
1693 }
1694
1695 #endif /* CONFIG_SMP */
1696
1697 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1698 {
1699 /*
1700 * Start the deadline timer; if we switch back to dl before this we'll
1701 * continue consuming our current CBS slice. If we stay outside of
1702 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1703 * task.
1704 */
1705 if (!start_dl_timer(p))
1706 __dl_clear_params(p);
1707
1708 /*
1709 * Since this might be the only -deadline task on the rq,
1710 * this is the right place to try to pull some other one
1711 * from an overloaded cpu, if any.
1712 */
1713 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1714 return;
1715
1716 queue_pull_task(rq);
1717 }
1718
1719 /*
1720 * When switching to -deadline, we may overload the rq, then
1721 * we try to push someone off, if possible.
1722 */
1723 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1724 {
1725 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1726 setup_new_dl_entity(&p->dl, &p->dl);
1727
1728 if (task_on_rq_queued(p) && rq->curr != p) {
1729 #ifdef CONFIG_SMP
1730 if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1731 queue_push_tasks(rq);
1732 #else
1733 if (dl_task(rq->curr))
1734 check_preempt_curr_dl(rq, p, 0);
1735 else
1736 resched_curr(rq);
1737 #endif
1738 }
1739 }
1740
1741 /*
1742 * If the scheduling parameters of a -deadline task changed,
1743 * a push or pull operation might be needed.
1744 */
1745 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1746 int oldprio)
1747 {
1748 if (task_on_rq_queued(p) || rq->curr == p) {
1749 #ifdef CONFIG_SMP
1750 /*
1751 * This might be too much, but unfortunately
1752 * we don't have the old deadline value, and
1753 * we can't argue if the task is increasing
1754 * or lowering its prio, so...
1755 */
1756 if (!rq->dl.overloaded)
1757 queue_pull_task(rq);
1758
1759 /*
1760 * If we now have a earlier deadline task than p,
1761 * then reschedule, provided p is still on this
1762 * runqueue.
1763 */
1764 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1765 resched_curr(rq);
1766 #else
1767 /*
1768 * Again, we don't know if p has a earlier
1769 * or later deadline, so let's blindly set a
1770 * (maybe not needed) rescheduling point.
1771 */
1772 resched_curr(rq);
1773 #endif /* CONFIG_SMP */
1774 }
1775 }
1776
1777 const struct sched_class dl_sched_class = {
1778 .next = &rt_sched_class,
1779 .enqueue_task = enqueue_task_dl,
1780 .dequeue_task = dequeue_task_dl,
1781 .yield_task = yield_task_dl,
1782
1783 .check_preempt_curr = check_preempt_curr_dl,
1784
1785 .pick_next_task = pick_next_task_dl,
1786 .put_prev_task = put_prev_task_dl,
1787
1788 #ifdef CONFIG_SMP
1789 .select_task_rq = select_task_rq_dl,
1790 .set_cpus_allowed = set_cpus_allowed_dl,
1791 .rq_online = rq_online_dl,
1792 .rq_offline = rq_offline_dl,
1793 .task_woken = task_woken_dl,
1794 #endif
1795
1796 .set_curr_task = set_curr_task_dl,
1797 .task_tick = task_tick_dl,
1798 .task_fork = task_fork_dl,
1799 .task_dead = task_dead_dl,
1800
1801 .prio_changed = prio_changed_dl,
1802 .switched_from = switched_from_dl,
1803 .switched_to = switched_to_dl,
1804
1805 .update_curr = update_curr_dl,
1806 };
1807
1808 #ifdef CONFIG_SCHED_DEBUG
1809 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1810
1811 void print_dl_stats(struct seq_file *m, int cpu)
1812 {
1813 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1814 }
1815 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.076256 seconds and 5 git commands to generate.