sched: Add wrapper for checking task_struct::on_rq
[deliverable/linux.git] / kernel / sched / deadline.c
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17 #include "sched.h"
18
19 #include <linux/slab.h>
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58 }
59
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
70 }
71
72 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
73 {
74 dl_rq->rb_root = RB_ROOT;
75
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87
88 #ifdef CONFIG_SMP
89
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 return atomic_read(&rq->rd->dlo_count);
93 }
94
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 if (!rq->online)
98 return;
99
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 /*
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
104 *
105 * Matched by the barrier in pull_dl_task().
106 */
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
109 }
110
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 if (!rq->online)
114 return;
115
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
126 }
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
130 }
131 }
132
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 struct task_struct *p = dl_task_of(dl_se);
136
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
139
140 update_dl_migration(dl_rq);
141 }
142
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 struct task_struct *p = dl_task_of(dl_se);
146
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
149
150 update_dl_migration(dl_rq);
151 }
152
153 /*
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156 */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
164
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
176 }
177 }
178
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
184 }
185
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187 {
188 struct dl_rq *dl_rq = &rq->dl;
189
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
192
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
195
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
198 }
199
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
202 }
203
204 static inline int has_pushable_dl_tasks(struct rq *rq)
205 {
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207 }
208
209 static int push_dl_task(struct rq *rq);
210
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212 {
213 return dl_task(prev);
214 }
215
216 static inline void set_post_schedule(struct rq *rq)
217 {
218 rq->post_schedule = has_pushable_dl_tasks(rq);
219 }
220
221 #else
222
223 static inline
224 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
225 {
226 }
227
228 static inline
229 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
230 {
231 }
232
233 static inline
234 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
235 {
236 }
237
238 static inline
239 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
240 {
241 }
242
243 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
244 {
245 return false;
246 }
247
248 static inline int pull_dl_task(struct rq *rq)
249 {
250 return 0;
251 }
252
253 static inline void set_post_schedule(struct rq *rq)
254 {
255 }
256 #endif /* CONFIG_SMP */
257
258 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
259 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
260 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
261 int flags);
262
263 /*
264 * We are being explicitly informed that a new instance is starting,
265 * and this means that:
266 * - the absolute deadline of the entity has to be placed at
267 * current time + relative deadline;
268 * - the runtime of the entity has to be set to the maximum value.
269 *
270 * The capability of specifying such event is useful whenever a -deadline
271 * entity wants to (try to!) synchronize its behaviour with the scheduler's
272 * one, and to (try to!) reconcile itself with its own scheduling
273 * parameters.
274 */
275 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
276 struct sched_dl_entity *pi_se)
277 {
278 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
279 struct rq *rq = rq_of_dl_rq(dl_rq);
280
281 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
282
283 /*
284 * We use the regular wall clock time to set deadlines in the
285 * future; in fact, we must consider execution overheads (time
286 * spent on hardirq context, etc.).
287 */
288 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
289 dl_se->runtime = pi_se->dl_runtime;
290 dl_se->dl_new = 0;
291 }
292
293 /*
294 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
295 * possibility of a entity lasting more than what it declared, and thus
296 * exhausting its runtime.
297 *
298 * Here we are interested in making runtime overrun possible, but we do
299 * not want a entity which is misbehaving to affect the scheduling of all
300 * other entities.
301 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
302 * is used, in order to confine each entity within its own bandwidth.
303 *
304 * This function deals exactly with that, and ensures that when the runtime
305 * of a entity is replenished, its deadline is also postponed. That ensures
306 * the overrunning entity can't interfere with other entity in the system and
307 * can't make them miss their deadlines. Reasons why this kind of overruns
308 * could happen are, typically, a entity voluntarily trying to overcome its
309 * runtime, or it just underestimated it during sched_setattr().
310 */
311 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
312 struct sched_dl_entity *pi_se)
313 {
314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
315 struct rq *rq = rq_of_dl_rq(dl_rq);
316
317 BUG_ON(pi_se->dl_runtime <= 0);
318
319 /*
320 * This could be the case for a !-dl task that is boosted.
321 * Just go with full inherited parameters.
322 */
323 if (dl_se->dl_deadline == 0) {
324 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
325 dl_se->runtime = pi_se->dl_runtime;
326 }
327
328 /*
329 * We keep moving the deadline away until we get some
330 * available runtime for the entity. This ensures correct
331 * handling of situations where the runtime overrun is
332 * arbitrary large.
333 */
334 while (dl_se->runtime <= 0) {
335 dl_se->deadline += pi_se->dl_period;
336 dl_se->runtime += pi_se->dl_runtime;
337 }
338
339 /*
340 * At this point, the deadline really should be "in
341 * the future" with respect to rq->clock. If it's
342 * not, we are, for some reason, lagging too much!
343 * Anyway, after having warn userspace abut that,
344 * we still try to keep the things running by
345 * resetting the deadline and the budget of the
346 * entity.
347 */
348 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
349 printk_deferred_once("sched: DL replenish lagged to much\n");
350 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
351 dl_se->runtime = pi_se->dl_runtime;
352 }
353 }
354
355 /*
356 * Here we check if --at time t-- an entity (which is probably being
357 * [re]activated or, in general, enqueued) can use its remaining runtime
358 * and its current deadline _without_ exceeding the bandwidth it is
359 * assigned (function returns true if it can't). We are in fact applying
360 * one of the CBS rules: when a task wakes up, if the residual runtime
361 * over residual deadline fits within the allocated bandwidth, then we
362 * can keep the current (absolute) deadline and residual budget without
363 * disrupting the schedulability of the system. Otherwise, we should
364 * refill the runtime and set the deadline a period in the future,
365 * because keeping the current (absolute) deadline of the task would
366 * result in breaking guarantees promised to other tasks (refer to
367 * Documentation/scheduler/sched-deadline.txt for more informations).
368 *
369 * This function returns true if:
370 *
371 * runtime / (deadline - t) > dl_runtime / dl_period ,
372 *
373 * IOW we can't recycle current parameters.
374 *
375 * Notice that the bandwidth check is done against the period. For
376 * task with deadline equal to period this is the same of using
377 * dl_deadline instead of dl_period in the equation above.
378 */
379 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se, u64 t)
381 {
382 u64 left, right;
383
384 /*
385 * left and right are the two sides of the equation above,
386 * after a bit of shuffling to use multiplications instead
387 * of divisions.
388 *
389 * Note that none of the time values involved in the two
390 * multiplications are absolute: dl_deadline and dl_runtime
391 * are the relative deadline and the maximum runtime of each
392 * instance, runtime is the runtime left for the last instance
393 * and (deadline - t), since t is rq->clock, is the time left
394 * to the (absolute) deadline. Even if overflowing the u64 type
395 * is very unlikely to occur in both cases, here we scale down
396 * as we want to avoid that risk at all. Scaling down by 10
397 * means that we reduce granularity to 1us. We are fine with it,
398 * since this is only a true/false check and, anyway, thinking
399 * of anything below microseconds resolution is actually fiction
400 * (but still we want to give the user that illusion >;).
401 */
402 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
403 right = ((dl_se->deadline - t) >> DL_SCALE) *
404 (pi_se->dl_runtime >> DL_SCALE);
405
406 return dl_time_before(right, left);
407 }
408
409 /*
410 * When a -deadline entity is queued back on the runqueue, its runtime and
411 * deadline might need updating.
412 *
413 * The policy here is that we update the deadline of the entity only if:
414 * - the current deadline is in the past,
415 * - using the remaining runtime with the current deadline would make
416 * the entity exceed its bandwidth.
417 */
418 static void update_dl_entity(struct sched_dl_entity *dl_se,
419 struct sched_dl_entity *pi_se)
420 {
421 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
422 struct rq *rq = rq_of_dl_rq(dl_rq);
423
424 /*
425 * The arrival of a new instance needs special treatment, i.e.,
426 * the actual scheduling parameters have to be "renewed".
427 */
428 if (dl_se->dl_new) {
429 setup_new_dl_entity(dl_se, pi_se);
430 return;
431 }
432
433 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
434 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
435 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
436 dl_se->runtime = pi_se->dl_runtime;
437 }
438 }
439
440 /*
441 * If the entity depleted all its runtime, and if we want it to sleep
442 * while waiting for some new execution time to become available, we
443 * set the bandwidth enforcement timer to the replenishment instant
444 * and try to activate it.
445 *
446 * Notice that it is important for the caller to know if the timer
447 * actually started or not (i.e., the replenishment instant is in
448 * the future or in the past).
449 */
450 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
451 {
452 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
453 struct rq *rq = rq_of_dl_rq(dl_rq);
454 ktime_t now, act;
455 ktime_t soft, hard;
456 unsigned long range;
457 s64 delta;
458
459 if (boosted)
460 return 0;
461 /*
462 * We want the timer to fire at the deadline, but considering
463 * that it is actually coming from rq->clock and not from
464 * hrtimer's time base reading.
465 */
466 act = ns_to_ktime(dl_se->deadline);
467 now = hrtimer_cb_get_time(&dl_se->dl_timer);
468 delta = ktime_to_ns(now) - rq_clock(rq);
469 act = ktime_add_ns(act, delta);
470
471 /*
472 * If the expiry time already passed, e.g., because the value
473 * chosen as the deadline is too small, don't even try to
474 * start the timer in the past!
475 */
476 if (ktime_us_delta(act, now) < 0)
477 return 0;
478
479 hrtimer_set_expires(&dl_se->dl_timer, act);
480
481 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
482 hard = hrtimer_get_expires(&dl_se->dl_timer);
483 range = ktime_to_ns(ktime_sub(hard, soft));
484 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
485 range, HRTIMER_MODE_ABS, 0);
486
487 return hrtimer_active(&dl_se->dl_timer);
488 }
489
490 /*
491 * This is the bandwidth enforcement timer callback. If here, we know
492 * a task is not on its dl_rq, since the fact that the timer was running
493 * means the task is throttled and needs a runtime replenishment.
494 *
495 * However, what we actually do depends on the fact the task is active,
496 * (it is on its rq) or has been removed from there by a call to
497 * dequeue_task_dl(). In the former case we must issue the runtime
498 * replenishment and add the task back to the dl_rq; in the latter, we just
499 * do nothing but clearing dl_throttled, so that runtime and deadline
500 * updating (and the queueing back to dl_rq) will be done by the
501 * next call to enqueue_task_dl().
502 */
503 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
504 {
505 struct sched_dl_entity *dl_se = container_of(timer,
506 struct sched_dl_entity,
507 dl_timer);
508 struct task_struct *p = dl_task_of(dl_se);
509 struct rq *rq;
510 again:
511 rq = task_rq(p);
512 raw_spin_lock(&rq->lock);
513
514 if (rq != task_rq(p)) {
515 /* Task was moved, retrying. */
516 raw_spin_unlock(&rq->lock);
517 goto again;
518 }
519
520 /*
521 * We need to take care of a possible races here. In fact, the
522 * task might have changed its scheduling policy to something
523 * different from SCHED_DEADLINE or changed its reservation
524 * parameters (through sched_setattr()).
525 */
526 if (!dl_task(p) || dl_se->dl_new)
527 goto unlock;
528
529 sched_clock_tick();
530 update_rq_clock(rq);
531 dl_se->dl_throttled = 0;
532 dl_se->dl_yielded = 0;
533 if (task_on_rq_queued(p)) {
534 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
535 if (task_has_dl_policy(rq->curr))
536 check_preempt_curr_dl(rq, p, 0);
537 else
538 resched_curr(rq);
539 #ifdef CONFIG_SMP
540 /*
541 * Queueing this task back might have overloaded rq,
542 * check if we need to kick someone away.
543 */
544 if (has_pushable_dl_tasks(rq))
545 push_dl_task(rq);
546 #endif
547 }
548 unlock:
549 raw_spin_unlock(&rq->lock);
550
551 return HRTIMER_NORESTART;
552 }
553
554 void init_dl_task_timer(struct sched_dl_entity *dl_se)
555 {
556 struct hrtimer *timer = &dl_se->dl_timer;
557
558 if (hrtimer_active(timer)) {
559 hrtimer_try_to_cancel(timer);
560 return;
561 }
562
563 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
564 timer->function = dl_task_timer;
565 }
566
567 static
568 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
569 {
570 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
571 int rorun = dl_se->runtime <= 0;
572
573 if (!rorun && !dmiss)
574 return 0;
575
576 /*
577 * If we are beyond our current deadline and we are still
578 * executing, then we have already used some of the runtime of
579 * the next instance. Thus, if we do not account that, we are
580 * stealing bandwidth from the system at each deadline miss!
581 */
582 if (dmiss) {
583 dl_se->runtime = rorun ? dl_se->runtime : 0;
584 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
585 }
586
587 return 1;
588 }
589
590 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
591
592 /*
593 * Update the current task's runtime statistics (provided it is still
594 * a -deadline task and has not been removed from the dl_rq).
595 */
596 static void update_curr_dl(struct rq *rq)
597 {
598 struct task_struct *curr = rq->curr;
599 struct sched_dl_entity *dl_se = &curr->dl;
600 u64 delta_exec;
601
602 if (!dl_task(curr) || !on_dl_rq(dl_se))
603 return;
604
605 /*
606 * Consumed budget is computed considering the time as
607 * observed by schedulable tasks (excluding time spent
608 * in hardirq context, etc.). Deadlines are instead
609 * computed using hard walltime. This seems to be the more
610 * natural solution, but the full ramifications of this
611 * approach need further study.
612 */
613 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
614 if (unlikely((s64)delta_exec <= 0))
615 return;
616
617 schedstat_set(curr->se.statistics.exec_max,
618 max(curr->se.statistics.exec_max, delta_exec));
619
620 curr->se.sum_exec_runtime += delta_exec;
621 account_group_exec_runtime(curr, delta_exec);
622
623 curr->se.exec_start = rq_clock_task(rq);
624 cpuacct_charge(curr, delta_exec);
625
626 sched_rt_avg_update(rq, delta_exec);
627
628 dl_se->runtime -= delta_exec;
629 if (dl_runtime_exceeded(rq, dl_se)) {
630 __dequeue_task_dl(rq, curr, 0);
631 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
632 dl_se->dl_throttled = 1;
633 else
634 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
635
636 if (!is_leftmost(curr, &rq->dl))
637 resched_curr(rq);
638 }
639
640 /*
641 * Because -- for now -- we share the rt bandwidth, we need to
642 * account our runtime there too, otherwise actual rt tasks
643 * would be able to exceed the shared quota.
644 *
645 * Account to the root rt group for now.
646 *
647 * The solution we're working towards is having the RT groups scheduled
648 * using deadline servers -- however there's a few nasties to figure
649 * out before that can happen.
650 */
651 if (rt_bandwidth_enabled()) {
652 struct rt_rq *rt_rq = &rq->rt;
653
654 raw_spin_lock(&rt_rq->rt_runtime_lock);
655 /*
656 * We'll let actual RT tasks worry about the overflow here, we
657 * have our own CBS to keep us inline; only account when RT
658 * bandwidth is relevant.
659 */
660 if (sched_rt_bandwidth_account(rt_rq))
661 rt_rq->rt_time += delta_exec;
662 raw_spin_unlock(&rt_rq->rt_runtime_lock);
663 }
664 }
665
666 #ifdef CONFIG_SMP
667
668 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
669
670 static inline u64 next_deadline(struct rq *rq)
671 {
672 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
673
674 if (next && dl_prio(next->prio))
675 return next->dl.deadline;
676 else
677 return 0;
678 }
679
680 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
681 {
682 struct rq *rq = rq_of_dl_rq(dl_rq);
683
684 if (dl_rq->earliest_dl.curr == 0 ||
685 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
686 /*
687 * If the dl_rq had no -deadline tasks, or if the new task
688 * has shorter deadline than the current one on dl_rq, we
689 * know that the previous earliest becomes our next earliest,
690 * as the new task becomes the earliest itself.
691 */
692 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
693 dl_rq->earliest_dl.curr = deadline;
694 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
695 } else if (dl_rq->earliest_dl.next == 0 ||
696 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
697 /*
698 * On the other hand, if the new -deadline task has a
699 * a later deadline than the earliest one on dl_rq, but
700 * it is earlier than the next (if any), we must
701 * recompute the next-earliest.
702 */
703 dl_rq->earliest_dl.next = next_deadline(rq);
704 }
705 }
706
707 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
708 {
709 struct rq *rq = rq_of_dl_rq(dl_rq);
710
711 /*
712 * Since we may have removed our earliest (and/or next earliest)
713 * task we must recompute them.
714 */
715 if (!dl_rq->dl_nr_running) {
716 dl_rq->earliest_dl.curr = 0;
717 dl_rq->earliest_dl.next = 0;
718 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
719 } else {
720 struct rb_node *leftmost = dl_rq->rb_leftmost;
721 struct sched_dl_entity *entry;
722
723 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
724 dl_rq->earliest_dl.curr = entry->deadline;
725 dl_rq->earliest_dl.next = next_deadline(rq);
726 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
727 }
728 }
729
730 #else
731
732 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
733 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
734
735 #endif /* CONFIG_SMP */
736
737 static inline
738 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
739 {
740 int prio = dl_task_of(dl_se)->prio;
741 u64 deadline = dl_se->deadline;
742
743 WARN_ON(!dl_prio(prio));
744 dl_rq->dl_nr_running++;
745 add_nr_running(rq_of_dl_rq(dl_rq), 1);
746
747 inc_dl_deadline(dl_rq, deadline);
748 inc_dl_migration(dl_se, dl_rq);
749 }
750
751 static inline
752 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
753 {
754 int prio = dl_task_of(dl_se)->prio;
755
756 WARN_ON(!dl_prio(prio));
757 WARN_ON(!dl_rq->dl_nr_running);
758 dl_rq->dl_nr_running--;
759 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
760
761 dec_dl_deadline(dl_rq, dl_se->deadline);
762 dec_dl_migration(dl_se, dl_rq);
763 }
764
765 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
766 {
767 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
768 struct rb_node **link = &dl_rq->rb_root.rb_node;
769 struct rb_node *parent = NULL;
770 struct sched_dl_entity *entry;
771 int leftmost = 1;
772
773 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
774
775 while (*link) {
776 parent = *link;
777 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
778 if (dl_time_before(dl_se->deadline, entry->deadline))
779 link = &parent->rb_left;
780 else {
781 link = &parent->rb_right;
782 leftmost = 0;
783 }
784 }
785
786 if (leftmost)
787 dl_rq->rb_leftmost = &dl_se->rb_node;
788
789 rb_link_node(&dl_se->rb_node, parent, link);
790 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
791
792 inc_dl_tasks(dl_se, dl_rq);
793 }
794
795 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
796 {
797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
798
799 if (RB_EMPTY_NODE(&dl_se->rb_node))
800 return;
801
802 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
803 struct rb_node *next_node;
804
805 next_node = rb_next(&dl_se->rb_node);
806 dl_rq->rb_leftmost = next_node;
807 }
808
809 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
810 RB_CLEAR_NODE(&dl_se->rb_node);
811
812 dec_dl_tasks(dl_se, dl_rq);
813 }
814
815 static void
816 enqueue_dl_entity(struct sched_dl_entity *dl_se,
817 struct sched_dl_entity *pi_se, int flags)
818 {
819 BUG_ON(on_dl_rq(dl_se));
820
821 /*
822 * If this is a wakeup or a new instance, the scheduling
823 * parameters of the task might need updating. Otherwise,
824 * we want a replenishment of its runtime.
825 */
826 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
827 replenish_dl_entity(dl_se, pi_se);
828 else
829 update_dl_entity(dl_se, pi_se);
830
831 __enqueue_dl_entity(dl_se);
832 }
833
834 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
835 {
836 __dequeue_dl_entity(dl_se);
837 }
838
839 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
840 {
841 struct task_struct *pi_task = rt_mutex_get_top_task(p);
842 struct sched_dl_entity *pi_se = &p->dl;
843
844 /*
845 * Use the scheduling parameters of the top pi-waiter
846 * task if we have one and its (relative) deadline is
847 * smaller than our one... OTW we keep our runtime and
848 * deadline.
849 */
850 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
851 pi_se = &pi_task->dl;
852
853 /*
854 * If p is throttled, we do nothing. In fact, if it exhausted
855 * its budget it needs a replenishment and, since it now is on
856 * its rq, the bandwidth timer callback (which clearly has not
857 * run yet) will take care of this.
858 */
859 if (p->dl.dl_throttled)
860 return;
861
862 enqueue_dl_entity(&p->dl, pi_se, flags);
863
864 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
865 enqueue_pushable_dl_task(rq, p);
866 }
867
868 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
869 {
870 dequeue_dl_entity(&p->dl);
871 dequeue_pushable_dl_task(rq, p);
872 }
873
874 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
875 {
876 update_curr_dl(rq);
877 __dequeue_task_dl(rq, p, flags);
878 }
879
880 /*
881 * Yield task semantic for -deadline tasks is:
882 *
883 * get off from the CPU until our next instance, with
884 * a new runtime. This is of little use now, since we
885 * don't have a bandwidth reclaiming mechanism. Anyway,
886 * bandwidth reclaiming is planned for the future, and
887 * yield_task_dl will indicate that some spare budget
888 * is available for other task instances to use it.
889 */
890 static void yield_task_dl(struct rq *rq)
891 {
892 struct task_struct *p = rq->curr;
893
894 /*
895 * We make the task go to sleep until its current deadline by
896 * forcing its runtime to zero. This way, update_curr_dl() stops
897 * it and the bandwidth timer will wake it up and will give it
898 * new scheduling parameters (thanks to dl_yielded=1).
899 */
900 if (p->dl.runtime > 0) {
901 rq->curr->dl.dl_yielded = 1;
902 p->dl.runtime = 0;
903 }
904 update_curr_dl(rq);
905 }
906
907 #ifdef CONFIG_SMP
908
909 static int find_later_rq(struct task_struct *task);
910
911 static int
912 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
913 {
914 struct task_struct *curr;
915 struct rq *rq;
916
917 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
918 goto out;
919
920 rq = cpu_rq(cpu);
921
922 rcu_read_lock();
923 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
924
925 /*
926 * If we are dealing with a -deadline task, we must
927 * decide where to wake it up.
928 * If it has a later deadline and the current task
929 * on this rq can't move (provided the waking task
930 * can!) we prefer to send it somewhere else. On the
931 * other hand, if it has a shorter deadline, we
932 * try to make it stay here, it might be important.
933 */
934 if (unlikely(dl_task(curr)) &&
935 (curr->nr_cpus_allowed < 2 ||
936 !dl_entity_preempt(&p->dl, &curr->dl)) &&
937 (p->nr_cpus_allowed > 1)) {
938 int target = find_later_rq(p);
939
940 if (target != -1)
941 cpu = target;
942 }
943 rcu_read_unlock();
944
945 out:
946 return cpu;
947 }
948
949 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
950 {
951 /*
952 * Current can't be migrated, useless to reschedule,
953 * let's hope p can move out.
954 */
955 if (rq->curr->nr_cpus_allowed == 1 ||
956 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
957 return;
958
959 /*
960 * p is migratable, so let's not schedule it and
961 * see if it is pushed or pulled somewhere else.
962 */
963 if (p->nr_cpus_allowed != 1 &&
964 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
965 return;
966
967 resched_curr(rq);
968 }
969
970 static int pull_dl_task(struct rq *this_rq);
971
972 #endif /* CONFIG_SMP */
973
974 /*
975 * Only called when both the current and waking task are -deadline
976 * tasks.
977 */
978 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
979 int flags)
980 {
981 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
982 resched_curr(rq);
983 return;
984 }
985
986 #ifdef CONFIG_SMP
987 /*
988 * In the unlikely case current and p have the same deadline
989 * let us try to decide what's the best thing to do...
990 */
991 if ((p->dl.deadline == rq->curr->dl.deadline) &&
992 !test_tsk_need_resched(rq->curr))
993 check_preempt_equal_dl(rq, p);
994 #endif /* CONFIG_SMP */
995 }
996
997 #ifdef CONFIG_SCHED_HRTICK
998 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
999 {
1000 s64 delta = p->dl.dl_runtime - p->dl.runtime;
1001
1002 if (delta > 10000)
1003 hrtick_start(rq, p->dl.runtime);
1004 }
1005 #endif
1006
1007 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1008 struct dl_rq *dl_rq)
1009 {
1010 struct rb_node *left = dl_rq->rb_leftmost;
1011
1012 if (!left)
1013 return NULL;
1014
1015 return rb_entry(left, struct sched_dl_entity, rb_node);
1016 }
1017
1018 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1019 {
1020 struct sched_dl_entity *dl_se;
1021 struct task_struct *p;
1022 struct dl_rq *dl_rq;
1023
1024 dl_rq = &rq->dl;
1025
1026 if (need_pull_dl_task(rq, prev)) {
1027 pull_dl_task(rq);
1028 /*
1029 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1030 * means a stop task can slip in, in which case we need to
1031 * re-start task selection.
1032 */
1033 if (rq->stop && task_on_rq_queued(rq->stop))
1034 return RETRY_TASK;
1035 }
1036
1037 /*
1038 * When prev is DL, we may throttle it in put_prev_task().
1039 * So, we update time before we check for dl_nr_running.
1040 */
1041 if (prev->sched_class == &dl_sched_class)
1042 update_curr_dl(rq);
1043
1044 if (unlikely(!dl_rq->dl_nr_running))
1045 return NULL;
1046
1047 put_prev_task(rq, prev);
1048
1049 dl_se = pick_next_dl_entity(rq, dl_rq);
1050 BUG_ON(!dl_se);
1051
1052 p = dl_task_of(dl_se);
1053 p->se.exec_start = rq_clock_task(rq);
1054
1055 /* Running task will never be pushed. */
1056 dequeue_pushable_dl_task(rq, p);
1057
1058 #ifdef CONFIG_SCHED_HRTICK
1059 if (hrtick_enabled(rq))
1060 start_hrtick_dl(rq, p);
1061 #endif
1062
1063 set_post_schedule(rq);
1064
1065 return p;
1066 }
1067
1068 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1069 {
1070 update_curr_dl(rq);
1071
1072 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1073 enqueue_pushable_dl_task(rq, p);
1074 }
1075
1076 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1077 {
1078 update_curr_dl(rq);
1079
1080 #ifdef CONFIG_SCHED_HRTICK
1081 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1082 start_hrtick_dl(rq, p);
1083 #endif
1084 }
1085
1086 static void task_fork_dl(struct task_struct *p)
1087 {
1088 /*
1089 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1090 * sched_fork()
1091 */
1092 }
1093
1094 static void task_dead_dl(struct task_struct *p)
1095 {
1096 struct hrtimer *timer = &p->dl.dl_timer;
1097 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1098
1099 /*
1100 * Since we are TASK_DEAD we won't slip out of the domain!
1101 */
1102 raw_spin_lock_irq(&dl_b->lock);
1103 dl_b->total_bw -= p->dl.dl_bw;
1104 raw_spin_unlock_irq(&dl_b->lock);
1105
1106 hrtimer_cancel(timer);
1107 }
1108
1109 static void set_curr_task_dl(struct rq *rq)
1110 {
1111 struct task_struct *p = rq->curr;
1112
1113 p->se.exec_start = rq_clock_task(rq);
1114
1115 /* You can't push away the running task */
1116 dequeue_pushable_dl_task(rq, p);
1117 }
1118
1119 #ifdef CONFIG_SMP
1120
1121 /* Only try algorithms three times */
1122 #define DL_MAX_TRIES 3
1123
1124 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1125 {
1126 if (!task_running(rq, p) &&
1127 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1128 (p->nr_cpus_allowed > 1))
1129 return 1;
1130
1131 return 0;
1132 }
1133
1134 /* Returns the second earliest -deadline task, NULL otherwise */
1135 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1136 {
1137 struct rb_node *next_node = rq->dl.rb_leftmost;
1138 struct sched_dl_entity *dl_se;
1139 struct task_struct *p = NULL;
1140
1141 next_node:
1142 next_node = rb_next(next_node);
1143 if (next_node) {
1144 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1145 p = dl_task_of(dl_se);
1146
1147 if (pick_dl_task(rq, p, cpu))
1148 return p;
1149
1150 goto next_node;
1151 }
1152
1153 return NULL;
1154 }
1155
1156 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1157
1158 static int find_later_rq(struct task_struct *task)
1159 {
1160 struct sched_domain *sd;
1161 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1162 int this_cpu = smp_processor_id();
1163 int best_cpu, cpu = task_cpu(task);
1164
1165 /* Make sure the mask is initialized first */
1166 if (unlikely(!later_mask))
1167 return -1;
1168
1169 if (task->nr_cpus_allowed == 1)
1170 return -1;
1171
1172 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1173 task, later_mask);
1174 if (best_cpu == -1)
1175 return -1;
1176
1177 /*
1178 * If we are here, some target has been found,
1179 * the most suitable of which is cached in best_cpu.
1180 * This is, among the runqueues where the current tasks
1181 * have later deadlines than the task's one, the rq
1182 * with the latest possible one.
1183 *
1184 * Now we check how well this matches with task's
1185 * affinity and system topology.
1186 *
1187 * The last cpu where the task run is our first
1188 * guess, since it is most likely cache-hot there.
1189 */
1190 if (cpumask_test_cpu(cpu, later_mask))
1191 return cpu;
1192 /*
1193 * Check if this_cpu is to be skipped (i.e., it is
1194 * not in the mask) or not.
1195 */
1196 if (!cpumask_test_cpu(this_cpu, later_mask))
1197 this_cpu = -1;
1198
1199 rcu_read_lock();
1200 for_each_domain(cpu, sd) {
1201 if (sd->flags & SD_WAKE_AFFINE) {
1202
1203 /*
1204 * If possible, preempting this_cpu is
1205 * cheaper than migrating.
1206 */
1207 if (this_cpu != -1 &&
1208 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1209 rcu_read_unlock();
1210 return this_cpu;
1211 }
1212
1213 /*
1214 * Last chance: if best_cpu is valid and is
1215 * in the mask, that becomes our choice.
1216 */
1217 if (best_cpu < nr_cpu_ids &&
1218 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1219 rcu_read_unlock();
1220 return best_cpu;
1221 }
1222 }
1223 }
1224 rcu_read_unlock();
1225
1226 /*
1227 * At this point, all our guesses failed, we just return
1228 * 'something', and let the caller sort the things out.
1229 */
1230 if (this_cpu != -1)
1231 return this_cpu;
1232
1233 cpu = cpumask_any(later_mask);
1234 if (cpu < nr_cpu_ids)
1235 return cpu;
1236
1237 return -1;
1238 }
1239
1240 /* Locks the rq it finds */
1241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1242 {
1243 struct rq *later_rq = NULL;
1244 int tries;
1245 int cpu;
1246
1247 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1248 cpu = find_later_rq(task);
1249
1250 if ((cpu == -1) || (cpu == rq->cpu))
1251 break;
1252
1253 later_rq = cpu_rq(cpu);
1254
1255 /* Retry if something changed. */
1256 if (double_lock_balance(rq, later_rq)) {
1257 if (unlikely(task_rq(task) != rq ||
1258 !cpumask_test_cpu(later_rq->cpu,
1259 &task->cpus_allowed) ||
1260 task_running(rq, task) ||
1261 !task_on_rq_queued(task))) {
1262 double_unlock_balance(rq, later_rq);
1263 later_rq = NULL;
1264 break;
1265 }
1266 }
1267
1268 /*
1269 * If the rq we found has no -deadline task, or
1270 * its earliest one has a later deadline than our
1271 * task, the rq is a good one.
1272 */
1273 if (!later_rq->dl.dl_nr_running ||
1274 dl_time_before(task->dl.deadline,
1275 later_rq->dl.earliest_dl.curr))
1276 break;
1277
1278 /* Otherwise we try again. */
1279 double_unlock_balance(rq, later_rq);
1280 later_rq = NULL;
1281 }
1282
1283 return later_rq;
1284 }
1285
1286 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1287 {
1288 struct task_struct *p;
1289
1290 if (!has_pushable_dl_tasks(rq))
1291 return NULL;
1292
1293 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1294 struct task_struct, pushable_dl_tasks);
1295
1296 BUG_ON(rq->cpu != task_cpu(p));
1297 BUG_ON(task_current(rq, p));
1298 BUG_ON(p->nr_cpus_allowed <= 1);
1299
1300 BUG_ON(!task_on_rq_queued(p));
1301 BUG_ON(!dl_task(p));
1302
1303 return p;
1304 }
1305
1306 /*
1307 * See if the non running -deadline tasks on this rq
1308 * can be sent to some other CPU where they can preempt
1309 * and start executing.
1310 */
1311 static int push_dl_task(struct rq *rq)
1312 {
1313 struct task_struct *next_task;
1314 struct rq *later_rq;
1315
1316 if (!rq->dl.overloaded)
1317 return 0;
1318
1319 next_task = pick_next_pushable_dl_task(rq);
1320 if (!next_task)
1321 return 0;
1322
1323 retry:
1324 if (unlikely(next_task == rq->curr)) {
1325 WARN_ON(1);
1326 return 0;
1327 }
1328
1329 /*
1330 * If next_task preempts rq->curr, and rq->curr
1331 * can move away, it makes sense to just reschedule
1332 * without going further in pushing next_task.
1333 */
1334 if (dl_task(rq->curr) &&
1335 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1336 rq->curr->nr_cpus_allowed > 1) {
1337 resched_curr(rq);
1338 return 0;
1339 }
1340
1341 /* We might release rq lock */
1342 get_task_struct(next_task);
1343
1344 /* Will lock the rq it'll find */
1345 later_rq = find_lock_later_rq(next_task, rq);
1346 if (!later_rq) {
1347 struct task_struct *task;
1348
1349 /*
1350 * We must check all this again, since
1351 * find_lock_later_rq releases rq->lock and it is
1352 * then possible that next_task has migrated.
1353 */
1354 task = pick_next_pushable_dl_task(rq);
1355 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1356 /*
1357 * The task is still there. We don't try
1358 * again, some other cpu will pull it when ready.
1359 */
1360 dequeue_pushable_dl_task(rq, next_task);
1361 goto out;
1362 }
1363
1364 if (!task)
1365 /* No more tasks */
1366 goto out;
1367
1368 put_task_struct(next_task);
1369 next_task = task;
1370 goto retry;
1371 }
1372
1373 deactivate_task(rq, next_task, 0);
1374 set_task_cpu(next_task, later_rq->cpu);
1375 activate_task(later_rq, next_task, 0);
1376
1377 resched_curr(later_rq);
1378
1379 double_unlock_balance(rq, later_rq);
1380
1381 out:
1382 put_task_struct(next_task);
1383
1384 return 1;
1385 }
1386
1387 static void push_dl_tasks(struct rq *rq)
1388 {
1389 /* Terminates as it moves a -deadline task */
1390 while (push_dl_task(rq))
1391 ;
1392 }
1393
1394 static int pull_dl_task(struct rq *this_rq)
1395 {
1396 int this_cpu = this_rq->cpu, ret = 0, cpu;
1397 struct task_struct *p;
1398 struct rq *src_rq;
1399 u64 dmin = LONG_MAX;
1400
1401 if (likely(!dl_overloaded(this_rq)))
1402 return 0;
1403
1404 /*
1405 * Match the barrier from dl_set_overloaded; this guarantees that if we
1406 * see overloaded we must also see the dlo_mask bit.
1407 */
1408 smp_rmb();
1409
1410 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1411 if (this_cpu == cpu)
1412 continue;
1413
1414 src_rq = cpu_rq(cpu);
1415
1416 /*
1417 * It looks racy, abd it is! However, as in sched_rt.c,
1418 * we are fine with this.
1419 */
1420 if (this_rq->dl.dl_nr_running &&
1421 dl_time_before(this_rq->dl.earliest_dl.curr,
1422 src_rq->dl.earliest_dl.next))
1423 continue;
1424
1425 /* Might drop this_rq->lock */
1426 double_lock_balance(this_rq, src_rq);
1427
1428 /*
1429 * If there are no more pullable tasks on the
1430 * rq, we're done with it.
1431 */
1432 if (src_rq->dl.dl_nr_running <= 1)
1433 goto skip;
1434
1435 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1436
1437 /*
1438 * We found a task to be pulled if:
1439 * - it preempts our current (if there's one),
1440 * - it will preempt the last one we pulled (if any).
1441 */
1442 if (p && dl_time_before(p->dl.deadline, dmin) &&
1443 (!this_rq->dl.dl_nr_running ||
1444 dl_time_before(p->dl.deadline,
1445 this_rq->dl.earliest_dl.curr))) {
1446 WARN_ON(p == src_rq->curr);
1447 WARN_ON(!task_on_rq_queued(p));
1448
1449 /*
1450 * Then we pull iff p has actually an earlier
1451 * deadline than the current task of its runqueue.
1452 */
1453 if (dl_time_before(p->dl.deadline,
1454 src_rq->curr->dl.deadline))
1455 goto skip;
1456
1457 ret = 1;
1458
1459 deactivate_task(src_rq, p, 0);
1460 set_task_cpu(p, this_cpu);
1461 activate_task(this_rq, p, 0);
1462 dmin = p->dl.deadline;
1463
1464 /* Is there any other task even earlier? */
1465 }
1466 skip:
1467 double_unlock_balance(this_rq, src_rq);
1468 }
1469
1470 return ret;
1471 }
1472
1473 static void post_schedule_dl(struct rq *rq)
1474 {
1475 push_dl_tasks(rq);
1476 }
1477
1478 /*
1479 * Since the task is not running and a reschedule is not going to happen
1480 * anytime soon on its runqueue, we try pushing it away now.
1481 */
1482 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1483 {
1484 if (!task_running(rq, p) &&
1485 !test_tsk_need_resched(rq->curr) &&
1486 has_pushable_dl_tasks(rq) &&
1487 p->nr_cpus_allowed > 1 &&
1488 dl_task(rq->curr) &&
1489 (rq->curr->nr_cpus_allowed < 2 ||
1490 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1491 push_dl_tasks(rq);
1492 }
1493 }
1494
1495 static void set_cpus_allowed_dl(struct task_struct *p,
1496 const struct cpumask *new_mask)
1497 {
1498 struct rq *rq;
1499 int weight;
1500
1501 BUG_ON(!dl_task(p));
1502
1503 /*
1504 * Update only if the task is actually running (i.e.,
1505 * it is on the rq AND it is not throttled).
1506 */
1507 if (!on_dl_rq(&p->dl))
1508 return;
1509
1510 weight = cpumask_weight(new_mask);
1511
1512 /*
1513 * Only update if the process changes its state from whether it
1514 * can migrate or not.
1515 */
1516 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1517 return;
1518
1519 rq = task_rq(p);
1520
1521 /*
1522 * The process used to be able to migrate OR it can now migrate
1523 */
1524 if (weight <= 1) {
1525 if (!task_current(rq, p))
1526 dequeue_pushable_dl_task(rq, p);
1527 BUG_ON(!rq->dl.dl_nr_migratory);
1528 rq->dl.dl_nr_migratory--;
1529 } else {
1530 if (!task_current(rq, p))
1531 enqueue_pushable_dl_task(rq, p);
1532 rq->dl.dl_nr_migratory++;
1533 }
1534
1535 update_dl_migration(&rq->dl);
1536 }
1537
1538 /* Assumes rq->lock is held */
1539 static void rq_online_dl(struct rq *rq)
1540 {
1541 if (rq->dl.overloaded)
1542 dl_set_overload(rq);
1543
1544 if (rq->dl.dl_nr_running > 0)
1545 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1546 }
1547
1548 /* Assumes rq->lock is held */
1549 static void rq_offline_dl(struct rq *rq)
1550 {
1551 if (rq->dl.overloaded)
1552 dl_clear_overload(rq);
1553
1554 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1555 }
1556
1557 void init_sched_dl_class(void)
1558 {
1559 unsigned int i;
1560
1561 for_each_possible_cpu(i)
1562 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1563 GFP_KERNEL, cpu_to_node(i));
1564 }
1565
1566 #endif /* CONFIG_SMP */
1567
1568 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1569 {
1570 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1571 hrtimer_try_to_cancel(&p->dl.dl_timer);
1572
1573 #ifdef CONFIG_SMP
1574 /*
1575 * Since this might be the only -deadline task on the rq,
1576 * this is the right place to try to pull some other one
1577 * from an overloaded cpu, if any.
1578 */
1579 if (!rq->dl.dl_nr_running)
1580 pull_dl_task(rq);
1581 #endif
1582 }
1583
1584 /*
1585 * When switching to -deadline, we may overload the rq, then
1586 * we try to push someone off, if possible.
1587 */
1588 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1589 {
1590 int check_resched = 1;
1591
1592 /*
1593 * If p is throttled, don't consider the possibility
1594 * of preempting rq->curr, the check will be done right
1595 * after its runtime will get replenished.
1596 */
1597 if (unlikely(p->dl.dl_throttled))
1598 return;
1599
1600 if (task_on_rq_queued(p) && rq->curr != p) {
1601 #ifdef CONFIG_SMP
1602 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1603 /* Only reschedule if pushing failed */
1604 check_resched = 0;
1605 #endif /* CONFIG_SMP */
1606 if (check_resched && task_has_dl_policy(rq->curr))
1607 check_preempt_curr_dl(rq, p, 0);
1608 }
1609 }
1610
1611 /*
1612 * If the scheduling parameters of a -deadline task changed,
1613 * a push or pull operation might be needed.
1614 */
1615 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1616 int oldprio)
1617 {
1618 if (task_on_rq_queued(p) || rq->curr == p) {
1619 #ifdef CONFIG_SMP
1620 /*
1621 * This might be too much, but unfortunately
1622 * we don't have the old deadline value, and
1623 * we can't argue if the task is increasing
1624 * or lowering its prio, so...
1625 */
1626 if (!rq->dl.overloaded)
1627 pull_dl_task(rq);
1628
1629 /*
1630 * If we now have a earlier deadline task than p,
1631 * then reschedule, provided p is still on this
1632 * runqueue.
1633 */
1634 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1635 rq->curr == p)
1636 resched_curr(rq);
1637 #else
1638 /*
1639 * Again, we don't know if p has a earlier
1640 * or later deadline, so let's blindly set a
1641 * (maybe not needed) rescheduling point.
1642 */
1643 resched_curr(rq);
1644 #endif /* CONFIG_SMP */
1645 } else
1646 switched_to_dl(rq, p);
1647 }
1648
1649 const struct sched_class dl_sched_class = {
1650 .next = &rt_sched_class,
1651 .enqueue_task = enqueue_task_dl,
1652 .dequeue_task = dequeue_task_dl,
1653 .yield_task = yield_task_dl,
1654
1655 .check_preempt_curr = check_preempt_curr_dl,
1656
1657 .pick_next_task = pick_next_task_dl,
1658 .put_prev_task = put_prev_task_dl,
1659
1660 #ifdef CONFIG_SMP
1661 .select_task_rq = select_task_rq_dl,
1662 .set_cpus_allowed = set_cpus_allowed_dl,
1663 .rq_online = rq_online_dl,
1664 .rq_offline = rq_offline_dl,
1665 .post_schedule = post_schedule_dl,
1666 .task_woken = task_woken_dl,
1667 #endif
1668
1669 .set_curr_task = set_curr_task_dl,
1670 .task_tick = task_tick_dl,
1671 .task_fork = task_fork_dl,
1672 .task_dead = task_dead_dl,
1673
1674 .prio_changed = prio_changed_dl,
1675 .switched_from = switched_from_dl,
1676 .switched_to = switched_to_dl,
1677 };
This page took 0.065212 seconds and 5 git commands to generate.