m68knommu: fix user a5 register being overwritten
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
698 /*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723 void post_init_entity_util_avg(struct sched_entity *se)
724 {
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728 u64 now = cfs_rq_clock_task(cfs_rq);
729 int tg_update;
730
731 if (cap > 0) {
732 if (cfs_rq->avg.util_avg != 0) {
733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
734 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
735
736 if (sa->util_avg > cap)
737 sa->util_avg = cap;
738 } else {
739 sa->util_avg = cap;
740 }
741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
742 }
743
744 if (entity_is_task(se)) {
745 struct task_struct *p = task_of(se);
746 if (p->sched_class != &fair_sched_class) {
747 /*
748 * For !fair tasks do:
749 *
750 update_cfs_rq_load_avg(now, cfs_rq, false);
751 attach_entity_load_avg(cfs_rq, se);
752 switched_from_fair(rq, p);
753 *
754 * such that the next switched_to_fair() has the
755 * expected state.
756 */
757 se->avg.last_update_time = now;
758 return;
759 }
760 }
761
762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
763 attach_entity_load_avg(cfs_rq, se);
764 if (tg_update)
765 update_tg_load_avg(cfs_rq, false);
766 }
767
768 #else /* !CONFIG_SMP */
769 void init_entity_runnable_average(struct sched_entity *se)
770 {
771 }
772 void post_init_entity_util_avg(struct sched_entity *se)
773 {
774 }
775 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
776 {
777 }
778 #endif /* CONFIG_SMP */
779
780 /*
781 * Update the current task's runtime statistics.
782 */
783 static void update_curr(struct cfs_rq *cfs_rq)
784 {
785 struct sched_entity *curr = cfs_rq->curr;
786 u64 now = rq_clock_task(rq_of(cfs_rq));
787 u64 delta_exec;
788
789 if (unlikely(!curr))
790 return;
791
792 delta_exec = now - curr->exec_start;
793 if (unlikely((s64)delta_exec <= 0))
794 return;
795
796 curr->exec_start = now;
797
798 schedstat_set(curr->statistics.exec_max,
799 max(delta_exec, curr->statistics.exec_max));
800
801 curr->sum_exec_runtime += delta_exec;
802 schedstat_add(cfs_rq, exec_clock, delta_exec);
803
804 curr->vruntime += calc_delta_fair(delta_exec, curr);
805 update_min_vruntime(cfs_rq);
806
807 if (entity_is_task(curr)) {
808 struct task_struct *curtask = task_of(curr);
809
810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
811 cpuacct_charge(curtask, delta_exec);
812 account_group_exec_runtime(curtask, delta_exec);
813 }
814
815 account_cfs_rq_runtime(cfs_rq, delta_exec);
816 }
817
818 static void update_curr_fair(struct rq *rq)
819 {
820 update_curr(cfs_rq_of(&rq->curr->se));
821 }
822
823 #ifdef CONFIG_SCHEDSTATS
824 static inline void
825 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 u64 wait_start = rq_clock(rq_of(cfs_rq));
828
829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 likely(wait_start > se->statistics.wait_start))
831 wait_start -= se->statistics.wait_start;
832
833 se->statistics.wait_start = wait_start;
834 }
835
836 static void
837 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 struct task_struct *p;
840 u64 delta;
841
842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
843
844 if (entity_is_task(se)) {
845 p = task_of(se);
846 if (task_on_rq_migrating(p)) {
847 /*
848 * Preserve migrating task's wait time so wait_start
849 * time stamp can be adjusted to accumulate wait time
850 * prior to migration.
851 */
852 se->statistics.wait_start = delta;
853 return;
854 }
855 trace_sched_stat_wait(p, delta);
856 }
857
858 se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 se->statistics.wait_count++;
860 se->statistics.wait_sum += delta;
861 se->statistics.wait_start = 0;
862 }
863
864 /*
865 * Task is being enqueued - update stats:
866 */
867 static inline void
868 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
869 {
870 /*
871 * Are we enqueueing a waiting task? (for current tasks
872 * a dequeue/enqueue event is a NOP)
873 */
874 if (se != cfs_rq->curr)
875 update_stats_wait_start(cfs_rq, se);
876 }
877
878 static inline void
879 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
880 {
881 /*
882 * Mark the end of the wait period if dequeueing a
883 * waiting task:
884 */
885 if (se != cfs_rq->curr)
886 update_stats_wait_end(cfs_rq, se);
887
888 if (flags & DEQUEUE_SLEEP) {
889 if (entity_is_task(se)) {
890 struct task_struct *tsk = task_of(se);
891
892 if (tsk->state & TASK_INTERRUPTIBLE)
893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 if (tsk->state & TASK_UNINTERRUPTIBLE)
895 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
896 }
897 }
898
899 }
900 #else
901 static inline void
902 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
903 {
904 }
905
906 static inline void
907 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 }
910
911 static inline void
912 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
913 {
914 }
915
916 static inline void
917 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
918 {
919 }
920 #endif
921
922 /*
923 * We are picking a new current task - update its stats:
924 */
925 static inline void
926 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 {
928 /*
929 * We are starting a new run period:
930 */
931 se->exec_start = rq_clock_task(rq_of(cfs_rq));
932 }
933
934 /**************************************************
935 * Scheduling class queueing methods:
936 */
937
938 #ifdef CONFIG_NUMA_BALANCING
939 /*
940 * Approximate time to scan a full NUMA task in ms. The task scan period is
941 * calculated based on the tasks virtual memory size and
942 * numa_balancing_scan_size.
943 */
944 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
946
947 /* Portion of address space to scan in MB */
948 unsigned int sysctl_numa_balancing_scan_size = 256;
949
950 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951 unsigned int sysctl_numa_balancing_scan_delay = 1000;
952
953 static unsigned int task_nr_scan_windows(struct task_struct *p)
954 {
955 unsigned long rss = 0;
956 unsigned long nr_scan_pages;
957
958 /*
959 * Calculations based on RSS as non-present and empty pages are skipped
960 * by the PTE scanner and NUMA hinting faults should be trapped based
961 * on resident pages
962 */
963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 rss = get_mm_rss(p->mm);
965 if (!rss)
966 rss = nr_scan_pages;
967
968 rss = round_up(rss, nr_scan_pages);
969 return rss / nr_scan_pages;
970 }
971
972 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973 #define MAX_SCAN_WINDOW 2560
974
975 static unsigned int task_scan_min(struct task_struct *p)
976 {
977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
978 unsigned int scan, floor;
979 unsigned int windows = 1;
980
981 if (scan_size < MAX_SCAN_WINDOW)
982 windows = MAX_SCAN_WINDOW / scan_size;
983 floor = 1000 / windows;
984
985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 return max_t(unsigned int, floor, scan);
987 }
988
989 static unsigned int task_scan_max(struct task_struct *p)
990 {
991 unsigned int smin = task_scan_min(p);
992 unsigned int smax;
993
994 /* Watch for min being lower than max due to floor calculations */
995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 return max(smin, smax);
997 }
998
999 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1000 {
1001 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1003 }
1004
1005 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1006 {
1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1009 }
1010
1011 struct numa_group {
1012 atomic_t refcount;
1013
1014 spinlock_t lock; /* nr_tasks, tasks */
1015 int nr_tasks;
1016 pid_t gid;
1017 int active_nodes;
1018
1019 struct rcu_head rcu;
1020 unsigned long total_faults;
1021 unsigned long max_faults_cpu;
1022 /*
1023 * Faults_cpu is used to decide whether memory should move
1024 * towards the CPU. As a consequence, these stats are weighted
1025 * more by CPU use than by memory faults.
1026 */
1027 unsigned long *faults_cpu;
1028 unsigned long faults[0];
1029 };
1030
1031 /* Shared or private faults. */
1032 #define NR_NUMA_HINT_FAULT_TYPES 2
1033
1034 /* Memory and CPU locality */
1035 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1036
1037 /* Averaged statistics, and temporary buffers. */
1038 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1039
1040 pid_t task_numa_group_id(struct task_struct *p)
1041 {
1042 return p->numa_group ? p->numa_group->gid : 0;
1043 }
1044
1045 /*
1046 * The averaged statistics, shared & private, memory & cpu,
1047 * occupy the first half of the array. The second half of the
1048 * array is for current counters, which are averaged into the
1049 * first set by task_numa_placement.
1050 */
1051 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1052 {
1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1054 }
1055
1056 static inline unsigned long task_faults(struct task_struct *p, int nid)
1057 {
1058 if (!p->numa_faults)
1059 return 0;
1060
1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1063 }
1064
1065 static inline unsigned long group_faults(struct task_struct *p, int nid)
1066 {
1067 if (!p->numa_group)
1068 return 0;
1069
1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1072 }
1073
1074 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1075 {
1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1078 }
1079
1080 /*
1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082 * considered part of a numa group's pseudo-interleaving set. Migrations
1083 * between these nodes are slowed down, to allow things to settle down.
1084 */
1085 #define ACTIVE_NODE_FRACTION 3
1086
1087 static bool numa_is_active_node(int nid, struct numa_group *ng)
1088 {
1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1090 }
1091
1092 /* Handle placement on systems where not all nodes are directly connected. */
1093 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 int maxdist, bool task)
1095 {
1096 unsigned long score = 0;
1097 int node;
1098
1099 /*
1100 * All nodes are directly connected, and the same distance
1101 * from each other. No need for fancy placement algorithms.
1102 */
1103 if (sched_numa_topology_type == NUMA_DIRECT)
1104 return 0;
1105
1106 /*
1107 * This code is called for each node, introducing N^2 complexity,
1108 * which should be ok given the number of nodes rarely exceeds 8.
1109 */
1110 for_each_online_node(node) {
1111 unsigned long faults;
1112 int dist = node_distance(nid, node);
1113
1114 /*
1115 * The furthest away nodes in the system are not interesting
1116 * for placement; nid was already counted.
1117 */
1118 if (dist == sched_max_numa_distance || node == nid)
1119 continue;
1120
1121 /*
1122 * On systems with a backplane NUMA topology, compare groups
1123 * of nodes, and move tasks towards the group with the most
1124 * memory accesses. When comparing two nodes at distance
1125 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 * of each group. Skip other nodes.
1127 */
1128 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1129 dist > maxdist)
1130 continue;
1131
1132 /* Add up the faults from nearby nodes. */
1133 if (task)
1134 faults = task_faults(p, node);
1135 else
1136 faults = group_faults(p, node);
1137
1138 /*
1139 * On systems with a glueless mesh NUMA topology, there are
1140 * no fixed "groups of nodes". Instead, nodes that are not
1141 * directly connected bounce traffic through intermediate
1142 * nodes; a numa_group can occupy any set of nodes.
1143 * The further away a node is, the less the faults count.
1144 * This seems to result in good task placement.
1145 */
1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 faults *= (sched_max_numa_distance - dist);
1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1149 }
1150
1151 score += faults;
1152 }
1153
1154 return score;
1155 }
1156
1157 /*
1158 * These return the fraction of accesses done by a particular task, or
1159 * task group, on a particular numa node. The group weight is given a
1160 * larger multiplier, in order to group tasks together that are almost
1161 * evenly spread out between numa nodes.
1162 */
1163 static inline unsigned long task_weight(struct task_struct *p, int nid,
1164 int dist)
1165 {
1166 unsigned long faults, total_faults;
1167
1168 if (!p->numa_faults)
1169 return 0;
1170
1171 total_faults = p->total_numa_faults;
1172
1173 if (!total_faults)
1174 return 0;
1175
1176 faults = task_faults(p, nid);
1177 faults += score_nearby_nodes(p, nid, dist, true);
1178
1179 return 1000 * faults / total_faults;
1180 }
1181
1182 static inline unsigned long group_weight(struct task_struct *p, int nid,
1183 int dist)
1184 {
1185 unsigned long faults, total_faults;
1186
1187 if (!p->numa_group)
1188 return 0;
1189
1190 total_faults = p->numa_group->total_faults;
1191
1192 if (!total_faults)
1193 return 0;
1194
1195 faults = group_faults(p, nid);
1196 faults += score_nearby_nodes(p, nid, dist, false);
1197
1198 return 1000 * faults / total_faults;
1199 }
1200
1201 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 int src_nid, int dst_cpu)
1203 {
1204 struct numa_group *ng = p->numa_group;
1205 int dst_nid = cpu_to_node(dst_cpu);
1206 int last_cpupid, this_cpupid;
1207
1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1209
1210 /*
1211 * Multi-stage node selection is used in conjunction with a periodic
1212 * migration fault to build a temporal task<->page relation. By using
1213 * a two-stage filter we remove short/unlikely relations.
1214 *
1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 * a task's usage of a particular page (n_p) per total usage of this
1217 * page (n_t) (in a given time-span) to a probability.
1218 *
1219 * Our periodic faults will sample this probability and getting the
1220 * same result twice in a row, given these samples are fully
1221 * independent, is then given by P(n)^2, provided our sample period
1222 * is sufficiently short compared to the usage pattern.
1223 *
1224 * This quadric squishes small probabilities, making it less likely we
1225 * act on an unlikely task<->page relation.
1226 */
1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 if (!cpupid_pid_unset(last_cpupid) &&
1229 cpupid_to_nid(last_cpupid) != dst_nid)
1230 return false;
1231
1232 /* Always allow migrate on private faults */
1233 if (cpupid_match_pid(p, last_cpupid))
1234 return true;
1235
1236 /* A shared fault, but p->numa_group has not been set up yet. */
1237 if (!ng)
1238 return true;
1239
1240 /*
1241 * Destination node is much more heavily used than the source
1242 * node? Allow migration.
1243 */
1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 ACTIVE_NODE_FRACTION)
1246 return true;
1247
1248 /*
1249 * Distribute memory according to CPU & memory use on each node,
1250 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1251 *
1252 * faults_cpu(dst) 3 faults_cpu(src)
1253 * --------------- * - > ---------------
1254 * faults_mem(dst) 4 faults_mem(src)
1255 */
1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1258 }
1259
1260 static unsigned long weighted_cpuload(const int cpu);
1261 static unsigned long source_load(int cpu, int type);
1262 static unsigned long target_load(int cpu, int type);
1263 static unsigned long capacity_of(int cpu);
1264 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1265
1266 /* Cached statistics for all CPUs within a node */
1267 struct numa_stats {
1268 unsigned long nr_running;
1269 unsigned long load;
1270
1271 /* Total compute capacity of CPUs on a node */
1272 unsigned long compute_capacity;
1273
1274 /* Approximate capacity in terms of runnable tasks on a node */
1275 unsigned long task_capacity;
1276 int has_free_capacity;
1277 };
1278
1279 /*
1280 * XXX borrowed from update_sg_lb_stats
1281 */
1282 static void update_numa_stats(struct numa_stats *ns, int nid)
1283 {
1284 int smt, cpu, cpus = 0;
1285 unsigned long capacity;
1286
1287 memset(ns, 0, sizeof(*ns));
1288 for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 ns->nr_running += rq->nr_running;
1292 ns->load += weighted_cpuload(cpu);
1293 ns->compute_capacity += capacity_of(cpu);
1294
1295 cpus++;
1296 }
1297
1298 /*
1299 * If we raced with hotplug and there are no CPUs left in our mask
1300 * the @ns structure is NULL'ed and task_numa_compare() will
1301 * not find this node attractive.
1302 *
1303 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 * imbalance and bail there.
1305 */
1306 if (!cpus)
1307 return;
1308
1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 capacity = cpus / smt; /* cores */
1312
1313 ns->task_capacity = min_t(unsigned, capacity,
1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1316 }
1317
1318 struct task_numa_env {
1319 struct task_struct *p;
1320
1321 int src_cpu, src_nid;
1322 int dst_cpu, dst_nid;
1323
1324 struct numa_stats src_stats, dst_stats;
1325
1326 int imbalance_pct;
1327 int dist;
1328
1329 struct task_struct *best_task;
1330 long best_imp;
1331 int best_cpu;
1332 };
1333
1334 static void task_numa_assign(struct task_numa_env *env,
1335 struct task_struct *p, long imp)
1336 {
1337 if (env->best_task)
1338 put_task_struct(env->best_task);
1339 if (p)
1340 get_task_struct(p);
1341
1342 env->best_task = p;
1343 env->best_imp = imp;
1344 env->best_cpu = env->dst_cpu;
1345 }
1346
1347 static bool load_too_imbalanced(long src_load, long dst_load,
1348 struct task_numa_env *env)
1349 {
1350 long imb, old_imb;
1351 long orig_src_load, orig_dst_load;
1352 long src_capacity, dst_capacity;
1353
1354 /*
1355 * The load is corrected for the CPU capacity available on each node.
1356 *
1357 * src_load dst_load
1358 * ------------ vs ---------
1359 * src_capacity dst_capacity
1360 */
1361 src_capacity = env->src_stats.compute_capacity;
1362 dst_capacity = env->dst_stats.compute_capacity;
1363
1364 /* We care about the slope of the imbalance, not the direction. */
1365 if (dst_load < src_load)
1366 swap(dst_load, src_load);
1367
1368 /* Is the difference below the threshold? */
1369 imb = dst_load * src_capacity * 100 -
1370 src_load * dst_capacity * env->imbalance_pct;
1371 if (imb <= 0)
1372 return false;
1373
1374 /*
1375 * The imbalance is above the allowed threshold.
1376 * Compare it with the old imbalance.
1377 */
1378 orig_src_load = env->src_stats.load;
1379 orig_dst_load = env->dst_stats.load;
1380
1381 if (orig_dst_load < orig_src_load)
1382 swap(orig_dst_load, orig_src_load);
1383
1384 old_imb = orig_dst_load * src_capacity * 100 -
1385 orig_src_load * dst_capacity * env->imbalance_pct;
1386
1387 /* Would this change make things worse? */
1388 return (imb > old_imb);
1389 }
1390
1391 /*
1392 * This checks if the overall compute and NUMA accesses of the system would
1393 * be improved if the source tasks was migrated to the target dst_cpu taking
1394 * into account that it might be best if task running on the dst_cpu should
1395 * be exchanged with the source task
1396 */
1397 static void task_numa_compare(struct task_numa_env *env,
1398 long taskimp, long groupimp)
1399 {
1400 struct rq *src_rq = cpu_rq(env->src_cpu);
1401 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 struct task_struct *cur;
1403 long src_load, dst_load;
1404 long load;
1405 long imp = env->p->numa_group ? groupimp : taskimp;
1406 long moveimp = imp;
1407 int dist = env->dist;
1408
1409 rcu_read_lock();
1410 cur = task_rcu_dereference(&dst_rq->curr);
1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1412 cur = NULL;
1413
1414 /*
1415 * Because we have preemption enabled we can get migrated around and
1416 * end try selecting ourselves (current == env->p) as a swap candidate.
1417 */
1418 if (cur == env->p)
1419 goto unlock;
1420
1421 /*
1422 * "imp" is the fault differential for the source task between the
1423 * source and destination node. Calculate the total differential for
1424 * the source task and potential destination task. The more negative
1425 * the value is, the more rmeote accesses that would be expected to
1426 * be incurred if the tasks were swapped.
1427 */
1428 if (cur) {
1429 /* Skip this swap candidate if cannot move to the source cpu */
1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1431 goto unlock;
1432
1433 /*
1434 * If dst and source tasks are in the same NUMA group, or not
1435 * in any group then look only at task weights.
1436 */
1437 if (cur->numa_group == env->p->numa_group) {
1438 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 task_weight(cur, env->dst_nid, dist);
1440 /*
1441 * Add some hysteresis to prevent swapping the
1442 * tasks within a group over tiny differences.
1443 */
1444 if (cur->numa_group)
1445 imp -= imp/16;
1446 } else {
1447 /*
1448 * Compare the group weights. If a task is all by
1449 * itself (not part of a group), use the task weight
1450 * instead.
1451 */
1452 if (cur->numa_group)
1453 imp += group_weight(cur, env->src_nid, dist) -
1454 group_weight(cur, env->dst_nid, dist);
1455 else
1456 imp += task_weight(cur, env->src_nid, dist) -
1457 task_weight(cur, env->dst_nid, dist);
1458 }
1459 }
1460
1461 if (imp <= env->best_imp && moveimp <= env->best_imp)
1462 goto unlock;
1463
1464 if (!cur) {
1465 /* Is there capacity at our destination? */
1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1467 !env->dst_stats.has_free_capacity)
1468 goto unlock;
1469
1470 goto balance;
1471 }
1472
1473 /* Balance doesn't matter much if we're running a task per cpu */
1474 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 dst_rq->nr_running == 1)
1476 goto assign;
1477
1478 /*
1479 * In the overloaded case, try and keep the load balanced.
1480 */
1481 balance:
1482 load = task_h_load(env->p);
1483 dst_load = env->dst_stats.load + load;
1484 src_load = env->src_stats.load - load;
1485
1486 if (moveimp > imp && moveimp > env->best_imp) {
1487 /*
1488 * If the improvement from just moving env->p direction is
1489 * better than swapping tasks around, check if a move is
1490 * possible. Store a slightly smaller score than moveimp,
1491 * so an actually idle CPU will win.
1492 */
1493 if (!load_too_imbalanced(src_load, dst_load, env)) {
1494 imp = moveimp - 1;
1495 cur = NULL;
1496 goto assign;
1497 }
1498 }
1499
1500 if (imp <= env->best_imp)
1501 goto unlock;
1502
1503 if (cur) {
1504 load = task_h_load(cur);
1505 dst_load -= load;
1506 src_load += load;
1507 }
1508
1509 if (load_too_imbalanced(src_load, dst_load, env))
1510 goto unlock;
1511
1512 /*
1513 * One idle CPU per node is evaluated for a task numa move.
1514 * Call select_idle_sibling to maybe find a better one.
1515 */
1516 if (!cur)
1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1518
1519 assign:
1520 task_numa_assign(env, cur, imp);
1521 unlock:
1522 rcu_read_unlock();
1523 }
1524
1525 static void task_numa_find_cpu(struct task_numa_env *env,
1526 long taskimp, long groupimp)
1527 {
1528 int cpu;
1529
1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 /* Skip this CPU if the source task cannot migrate */
1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1533 continue;
1534
1535 env->dst_cpu = cpu;
1536 task_numa_compare(env, taskimp, groupimp);
1537 }
1538 }
1539
1540 /* Only move tasks to a NUMA node less busy than the current node. */
1541 static bool numa_has_capacity(struct task_numa_env *env)
1542 {
1543 struct numa_stats *src = &env->src_stats;
1544 struct numa_stats *dst = &env->dst_stats;
1545
1546 if (src->has_free_capacity && !dst->has_free_capacity)
1547 return false;
1548
1549 /*
1550 * Only consider a task move if the source has a higher load
1551 * than the destination, corrected for CPU capacity on each node.
1552 *
1553 * src->load dst->load
1554 * --------------------- vs ---------------------
1555 * src->compute_capacity dst->compute_capacity
1556 */
1557 if (src->load * dst->compute_capacity * env->imbalance_pct >
1558
1559 dst->load * src->compute_capacity * 100)
1560 return true;
1561
1562 return false;
1563 }
1564
1565 static int task_numa_migrate(struct task_struct *p)
1566 {
1567 struct task_numa_env env = {
1568 .p = p,
1569
1570 .src_cpu = task_cpu(p),
1571 .src_nid = task_node(p),
1572
1573 .imbalance_pct = 112,
1574
1575 .best_task = NULL,
1576 .best_imp = 0,
1577 .best_cpu = -1,
1578 };
1579 struct sched_domain *sd;
1580 unsigned long taskweight, groupweight;
1581 int nid, ret, dist;
1582 long taskimp, groupimp;
1583
1584 /*
1585 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 * imbalance and would be the first to start moving tasks about.
1587 *
1588 * And we want to avoid any moving of tasks about, as that would create
1589 * random movement of tasks -- counter the numa conditions we're trying
1590 * to satisfy here.
1591 */
1592 rcu_read_lock();
1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1594 if (sd)
1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1596 rcu_read_unlock();
1597
1598 /*
1599 * Cpusets can break the scheduler domain tree into smaller
1600 * balance domains, some of which do not cross NUMA boundaries.
1601 * Tasks that are "trapped" in such domains cannot be migrated
1602 * elsewhere, so there is no point in (re)trying.
1603 */
1604 if (unlikely(!sd)) {
1605 p->numa_preferred_nid = task_node(p);
1606 return -EINVAL;
1607 }
1608
1609 env.dst_nid = p->numa_preferred_nid;
1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 taskweight = task_weight(p, env.src_nid, dist);
1612 groupweight = group_weight(p, env.src_nid, dist);
1613 update_numa_stats(&env.src_stats, env.src_nid);
1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1616 update_numa_stats(&env.dst_stats, env.dst_nid);
1617
1618 /* Try to find a spot on the preferred nid. */
1619 if (numa_has_capacity(&env))
1620 task_numa_find_cpu(&env, taskimp, groupimp);
1621
1622 /*
1623 * Look at other nodes in these cases:
1624 * - there is no space available on the preferred_nid
1625 * - the task is part of a numa_group that is interleaved across
1626 * multiple NUMA nodes; in order to better consolidate the group,
1627 * we need to check other locations.
1628 */
1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1630 for_each_online_node(nid) {
1631 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1632 continue;
1633
1634 dist = node_distance(env.src_nid, env.dst_nid);
1635 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1636 dist != env.dist) {
1637 taskweight = task_weight(p, env.src_nid, dist);
1638 groupweight = group_weight(p, env.src_nid, dist);
1639 }
1640
1641 /* Only consider nodes where both task and groups benefit */
1642 taskimp = task_weight(p, nid, dist) - taskweight;
1643 groupimp = group_weight(p, nid, dist) - groupweight;
1644 if (taskimp < 0 && groupimp < 0)
1645 continue;
1646
1647 env.dist = dist;
1648 env.dst_nid = nid;
1649 update_numa_stats(&env.dst_stats, env.dst_nid);
1650 if (numa_has_capacity(&env))
1651 task_numa_find_cpu(&env, taskimp, groupimp);
1652 }
1653 }
1654
1655 /*
1656 * If the task is part of a workload that spans multiple NUMA nodes,
1657 * and is migrating into one of the workload's active nodes, remember
1658 * this node as the task's preferred numa node, so the workload can
1659 * settle down.
1660 * A task that migrated to a second choice node will be better off
1661 * trying for a better one later. Do not set the preferred node here.
1662 */
1663 if (p->numa_group) {
1664 struct numa_group *ng = p->numa_group;
1665
1666 if (env.best_cpu == -1)
1667 nid = env.src_nid;
1668 else
1669 nid = env.dst_nid;
1670
1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1672 sched_setnuma(p, env.dst_nid);
1673 }
1674
1675 /* No better CPU than the current one was found. */
1676 if (env.best_cpu == -1)
1677 return -EAGAIN;
1678
1679 /*
1680 * Reset the scan period if the task is being rescheduled on an
1681 * alternative node to recheck if the tasks is now properly placed.
1682 */
1683 p->numa_scan_period = task_scan_min(p);
1684
1685 if (env.best_task == NULL) {
1686 ret = migrate_task_to(p, env.best_cpu);
1687 if (ret != 0)
1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1689 return ret;
1690 }
1691
1692 ret = migrate_swap(p, env.best_task);
1693 if (ret != 0)
1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1695 put_task_struct(env.best_task);
1696 return ret;
1697 }
1698
1699 /* Attempt to migrate a task to a CPU on the preferred node. */
1700 static void numa_migrate_preferred(struct task_struct *p)
1701 {
1702 unsigned long interval = HZ;
1703
1704 /* This task has no NUMA fault statistics yet */
1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1706 return;
1707
1708 /* Periodically retry migrating the task to the preferred node */
1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 p->numa_migrate_retry = jiffies + interval;
1711
1712 /* Success if task is already running on preferred CPU */
1713 if (task_node(p) == p->numa_preferred_nid)
1714 return;
1715
1716 /* Otherwise, try migrate to a CPU on the preferred node */
1717 task_numa_migrate(p);
1718 }
1719
1720 /*
1721 * Find out how many nodes on the workload is actively running on. Do this by
1722 * tracking the nodes from which NUMA hinting faults are triggered. This can
1723 * be different from the set of nodes where the workload's memory is currently
1724 * located.
1725 */
1726 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1727 {
1728 unsigned long faults, max_faults = 0;
1729 int nid, active_nodes = 0;
1730
1731 for_each_online_node(nid) {
1732 faults = group_faults_cpu(numa_group, nid);
1733 if (faults > max_faults)
1734 max_faults = faults;
1735 }
1736
1737 for_each_online_node(nid) {
1738 faults = group_faults_cpu(numa_group, nid);
1739 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1740 active_nodes++;
1741 }
1742
1743 numa_group->max_faults_cpu = max_faults;
1744 numa_group->active_nodes = active_nodes;
1745 }
1746
1747 /*
1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749 * increments. The more local the fault statistics are, the higher the scan
1750 * period will be for the next scan window. If local/(local+remote) ratio is
1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752 * the scan period will decrease. Aim for 70% local accesses.
1753 */
1754 #define NUMA_PERIOD_SLOTS 10
1755 #define NUMA_PERIOD_THRESHOLD 7
1756
1757 /*
1758 * Increase the scan period (slow down scanning) if the majority of
1759 * our memory is already on our local node, or if the majority of
1760 * the page accesses are shared with other processes.
1761 * Otherwise, decrease the scan period.
1762 */
1763 static void update_task_scan_period(struct task_struct *p,
1764 unsigned long shared, unsigned long private)
1765 {
1766 unsigned int period_slot;
1767 int ratio;
1768 int diff;
1769
1770 unsigned long remote = p->numa_faults_locality[0];
1771 unsigned long local = p->numa_faults_locality[1];
1772
1773 /*
1774 * If there were no record hinting faults then either the task is
1775 * completely idle or all activity is areas that are not of interest
1776 * to automatic numa balancing. Related to that, if there were failed
1777 * migration then it implies we are migrating too quickly or the local
1778 * node is overloaded. In either case, scan slower
1779 */
1780 if (local + shared == 0 || p->numa_faults_locality[2]) {
1781 p->numa_scan_period = min(p->numa_scan_period_max,
1782 p->numa_scan_period << 1);
1783
1784 p->mm->numa_next_scan = jiffies +
1785 msecs_to_jiffies(p->numa_scan_period);
1786
1787 return;
1788 }
1789
1790 /*
1791 * Prepare to scale scan period relative to the current period.
1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1795 */
1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1800 if (!slot)
1801 slot = 1;
1802 diff = slot * period_slot;
1803 } else {
1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1805
1806 /*
1807 * Scale scan rate increases based on sharing. There is an
1808 * inverse relationship between the degree of sharing and
1809 * the adjustment made to the scanning period. Broadly
1810 * speaking the intent is that there is little point
1811 * scanning faster if shared accesses dominate as it may
1812 * simply bounce migrations uselessly
1813 */
1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1816 }
1817
1818 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 task_scan_min(p), task_scan_max(p));
1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1821 }
1822
1823 /*
1824 * Get the fraction of time the task has been running since the last
1825 * NUMA placement cycle. The scheduler keeps similar statistics, but
1826 * decays those on a 32ms period, which is orders of magnitude off
1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828 * stats only if the task is so new there are no NUMA statistics yet.
1829 */
1830 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1831 {
1832 u64 runtime, delta, now;
1833 /* Use the start of this time slice to avoid calculations. */
1834 now = p->se.exec_start;
1835 runtime = p->se.sum_exec_runtime;
1836
1837 if (p->last_task_numa_placement) {
1838 delta = runtime - p->last_sum_exec_runtime;
1839 *period = now - p->last_task_numa_placement;
1840 } else {
1841 delta = p->se.avg.load_sum / p->se.load.weight;
1842 *period = LOAD_AVG_MAX;
1843 }
1844
1845 p->last_sum_exec_runtime = runtime;
1846 p->last_task_numa_placement = now;
1847
1848 return delta;
1849 }
1850
1851 /*
1852 * Determine the preferred nid for a task in a numa_group. This needs to
1853 * be done in a way that produces consistent results with group_weight,
1854 * otherwise workloads might not converge.
1855 */
1856 static int preferred_group_nid(struct task_struct *p, int nid)
1857 {
1858 nodemask_t nodes;
1859 int dist;
1860
1861 /* Direct connections between all NUMA nodes. */
1862 if (sched_numa_topology_type == NUMA_DIRECT)
1863 return nid;
1864
1865 /*
1866 * On a system with glueless mesh NUMA topology, group_weight
1867 * scores nodes according to the number of NUMA hinting faults on
1868 * both the node itself, and on nearby nodes.
1869 */
1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 unsigned long score, max_score = 0;
1872 int node, max_node = nid;
1873
1874 dist = sched_max_numa_distance;
1875
1876 for_each_online_node(node) {
1877 score = group_weight(p, node, dist);
1878 if (score > max_score) {
1879 max_score = score;
1880 max_node = node;
1881 }
1882 }
1883 return max_node;
1884 }
1885
1886 /*
1887 * Finding the preferred nid in a system with NUMA backplane
1888 * interconnect topology is more involved. The goal is to locate
1889 * tasks from numa_groups near each other in the system, and
1890 * untangle workloads from different sides of the system. This requires
1891 * searching down the hierarchy of node groups, recursively searching
1892 * inside the highest scoring group of nodes. The nodemask tricks
1893 * keep the complexity of the search down.
1894 */
1895 nodes = node_online_map;
1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 unsigned long max_faults = 0;
1898 nodemask_t max_group = NODE_MASK_NONE;
1899 int a, b;
1900
1901 /* Are there nodes at this distance from each other? */
1902 if (!find_numa_distance(dist))
1903 continue;
1904
1905 for_each_node_mask(a, nodes) {
1906 unsigned long faults = 0;
1907 nodemask_t this_group;
1908 nodes_clear(this_group);
1909
1910 /* Sum group's NUMA faults; includes a==b case. */
1911 for_each_node_mask(b, nodes) {
1912 if (node_distance(a, b) < dist) {
1913 faults += group_faults(p, b);
1914 node_set(b, this_group);
1915 node_clear(b, nodes);
1916 }
1917 }
1918
1919 /* Remember the top group. */
1920 if (faults > max_faults) {
1921 max_faults = faults;
1922 max_group = this_group;
1923 /*
1924 * subtle: at the smallest distance there is
1925 * just one node left in each "group", the
1926 * winner is the preferred nid.
1927 */
1928 nid = a;
1929 }
1930 }
1931 /* Next round, evaluate the nodes within max_group. */
1932 if (!max_faults)
1933 break;
1934 nodes = max_group;
1935 }
1936 return nid;
1937 }
1938
1939 static void task_numa_placement(struct task_struct *p)
1940 {
1941 int seq, nid, max_nid = -1, max_group_nid = -1;
1942 unsigned long max_faults = 0, max_group_faults = 0;
1943 unsigned long fault_types[2] = { 0, 0 };
1944 unsigned long total_faults;
1945 u64 runtime, period;
1946 spinlock_t *group_lock = NULL;
1947
1948 /*
1949 * The p->mm->numa_scan_seq field gets updated without
1950 * exclusive access. Use READ_ONCE() here to ensure
1951 * that the field is read in a single access:
1952 */
1953 seq = READ_ONCE(p->mm->numa_scan_seq);
1954 if (p->numa_scan_seq == seq)
1955 return;
1956 p->numa_scan_seq = seq;
1957 p->numa_scan_period_max = task_scan_max(p);
1958
1959 total_faults = p->numa_faults_locality[0] +
1960 p->numa_faults_locality[1];
1961 runtime = numa_get_avg_runtime(p, &period);
1962
1963 /* If the task is part of a group prevent parallel updates to group stats */
1964 if (p->numa_group) {
1965 group_lock = &p->numa_group->lock;
1966 spin_lock_irq(group_lock);
1967 }
1968
1969 /* Find the node with the highest number of faults */
1970 for_each_online_node(nid) {
1971 /* Keep track of the offsets in numa_faults array */
1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1973 unsigned long faults = 0, group_faults = 0;
1974 int priv;
1975
1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1977 long diff, f_diff, f_weight;
1978
1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1983
1984 /* Decay existing window, copy faults since last scan */
1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 fault_types[priv] += p->numa_faults[membuf_idx];
1987 p->numa_faults[membuf_idx] = 0;
1988
1989 /*
1990 * Normalize the faults_from, so all tasks in a group
1991 * count according to CPU use, instead of by the raw
1992 * number of faults. Tasks with little runtime have
1993 * little over-all impact on throughput, and thus their
1994 * faults are less important.
1995 */
1996 f_weight = div64_u64(runtime << 16, period + 1);
1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1998 (total_faults + 1);
1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 p->numa_faults[cpubuf_idx] = 0;
2001
2002 p->numa_faults[mem_idx] += diff;
2003 p->numa_faults[cpu_idx] += f_diff;
2004 faults += p->numa_faults[mem_idx];
2005 p->total_numa_faults += diff;
2006 if (p->numa_group) {
2007 /*
2008 * safe because we can only change our own group
2009 *
2010 * mem_idx represents the offset for a given
2011 * nid and priv in a specific region because it
2012 * is at the beginning of the numa_faults array.
2013 */
2014 p->numa_group->faults[mem_idx] += diff;
2015 p->numa_group->faults_cpu[mem_idx] += f_diff;
2016 p->numa_group->total_faults += diff;
2017 group_faults += p->numa_group->faults[mem_idx];
2018 }
2019 }
2020
2021 if (faults > max_faults) {
2022 max_faults = faults;
2023 max_nid = nid;
2024 }
2025
2026 if (group_faults > max_group_faults) {
2027 max_group_faults = group_faults;
2028 max_group_nid = nid;
2029 }
2030 }
2031
2032 update_task_scan_period(p, fault_types[0], fault_types[1]);
2033
2034 if (p->numa_group) {
2035 numa_group_count_active_nodes(p->numa_group);
2036 spin_unlock_irq(group_lock);
2037 max_nid = preferred_group_nid(p, max_group_nid);
2038 }
2039
2040 if (max_faults) {
2041 /* Set the new preferred node */
2042 if (max_nid != p->numa_preferred_nid)
2043 sched_setnuma(p, max_nid);
2044
2045 if (task_node(p) != p->numa_preferred_nid)
2046 numa_migrate_preferred(p);
2047 }
2048 }
2049
2050 static inline int get_numa_group(struct numa_group *grp)
2051 {
2052 return atomic_inc_not_zero(&grp->refcount);
2053 }
2054
2055 static inline void put_numa_group(struct numa_group *grp)
2056 {
2057 if (atomic_dec_and_test(&grp->refcount))
2058 kfree_rcu(grp, rcu);
2059 }
2060
2061 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2062 int *priv)
2063 {
2064 struct numa_group *grp, *my_grp;
2065 struct task_struct *tsk;
2066 bool join = false;
2067 int cpu = cpupid_to_cpu(cpupid);
2068 int i;
2069
2070 if (unlikely(!p->numa_group)) {
2071 unsigned int size = sizeof(struct numa_group) +
2072 4*nr_node_ids*sizeof(unsigned long);
2073
2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2075 if (!grp)
2076 return;
2077
2078 atomic_set(&grp->refcount, 1);
2079 grp->active_nodes = 1;
2080 grp->max_faults_cpu = 0;
2081 spin_lock_init(&grp->lock);
2082 grp->gid = p->pid;
2083 /* Second half of the array tracks nids where faults happen */
2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2085 nr_node_ids;
2086
2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2088 grp->faults[i] = p->numa_faults[i];
2089
2090 grp->total_faults = p->total_numa_faults;
2091
2092 grp->nr_tasks++;
2093 rcu_assign_pointer(p->numa_group, grp);
2094 }
2095
2096 rcu_read_lock();
2097 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2098
2099 if (!cpupid_match_pid(tsk, cpupid))
2100 goto no_join;
2101
2102 grp = rcu_dereference(tsk->numa_group);
2103 if (!grp)
2104 goto no_join;
2105
2106 my_grp = p->numa_group;
2107 if (grp == my_grp)
2108 goto no_join;
2109
2110 /*
2111 * Only join the other group if its bigger; if we're the bigger group,
2112 * the other task will join us.
2113 */
2114 if (my_grp->nr_tasks > grp->nr_tasks)
2115 goto no_join;
2116
2117 /*
2118 * Tie-break on the grp address.
2119 */
2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2121 goto no_join;
2122
2123 /* Always join threads in the same process. */
2124 if (tsk->mm == current->mm)
2125 join = true;
2126
2127 /* Simple filter to avoid false positives due to PID collisions */
2128 if (flags & TNF_SHARED)
2129 join = true;
2130
2131 /* Update priv based on whether false sharing was detected */
2132 *priv = !join;
2133
2134 if (join && !get_numa_group(grp))
2135 goto no_join;
2136
2137 rcu_read_unlock();
2138
2139 if (!join)
2140 return;
2141
2142 BUG_ON(irqs_disabled());
2143 double_lock_irq(&my_grp->lock, &grp->lock);
2144
2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2146 my_grp->faults[i] -= p->numa_faults[i];
2147 grp->faults[i] += p->numa_faults[i];
2148 }
2149 my_grp->total_faults -= p->total_numa_faults;
2150 grp->total_faults += p->total_numa_faults;
2151
2152 my_grp->nr_tasks--;
2153 grp->nr_tasks++;
2154
2155 spin_unlock(&my_grp->lock);
2156 spin_unlock_irq(&grp->lock);
2157
2158 rcu_assign_pointer(p->numa_group, grp);
2159
2160 put_numa_group(my_grp);
2161 return;
2162
2163 no_join:
2164 rcu_read_unlock();
2165 return;
2166 }
2167
2168 void task_numa_free(struct task_struct *p)
2169 {
2170 struct numa_group *grp = p->numa_group;
2171 void *numa_faults = p->numa_faults;
2172 unsigned long flags;
2173 int i;
2174
2175 if (grp) {
2176 spin_lock_irqsave(&grp->lock, flags);
2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2178 grp->faults[i] -= p->numa_faults[i];
2179 grp->total_faults -= p->total_numa_faults;
2180
2181 grp->nr_tasks--;
2182 spin_unlock_irqrestore(&grp->lock, flags);
2183 RCU_INIT_POINTER(p->numa_group, NULL);
2184 put_numa_group(grp);
2185 }
2186
2187 p->numa_faults = NULL;
2188 kfree(numa_faults);
2189 }
2190
2191 /*
2192 * Got a PROT_NONE fault for a page on @node.
2193 */
2194 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2195 {
2196 struct task_struct *p = current;
2197 bool migrated = flags & TNF_MIGRATED;
2198 int cpu_node = task_node(current);
2199 int local = !!(flags & TNF_FAULT_LOCAL);
2200 struct numa_group *ng;
2201 int priv;
2202
2203 if (!static_branch_likely(&sched_numa_balancing))
2204 return;
2205
2206 /* for example, ksmd faulting in a user's mm */
2207 if (!p->mm)
2208 return;
2209
2210 /* Allocate buffer to track faults on a per-node basis */
2211 if (unlikely(!p->numa_faults)) {
2212 int size = sizeof(*p->numa_faults) *
2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2214
2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 if (!p->numa_faults)
2217 return;
2218
2219 p->total_numa_faults = 0;
2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2221 }
2222
2223 /*
2224 * First accesses are treated as private, otherwise consider accesses
2225 * to be private if the accessing pid has not changed
2226 */
2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2228 priv = 1;
2229 } else {
2230 priv = cpupid_match_pid(p, last_cpupid);
2231 if (!priv && !(flags & TNF_NO_GROUP))
2232 task_numa_group(p, last_cpupid, flags, &priv);
2233 }
2234
2235 /*
2236 * If a workload spans multiple NUMA nodes, a shared fault that
2237 * occurs wholly within the set of nodes that the workload is
2238 * actively using should be counted as local. This allows the
2239 * scan rate to slow down when a workload has settled down.
2240 */
2241 ng = p->numa_group;
2242 if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 numa_is_active_node(cpu_node, ng) &&
2244 numa_is_active_node(mem_node, ng))
2245 local = 1;
2246
2247 task_numa_placement(p);
2248
2249 /*
2250 * Retry task to preferred node migration periodically, in case it
2251 * case it previously failed, or the scheduler moved us.
2252 */
2253 if (time_after(jiffies, p->numa_migrate_retry))
2254 numa_migrate_preferred(p);
2255
2256 if (migrated)
2257 p->numa_pages_migrated += pages;
2258 if (flags & TNF_MIGRATE_FAIL)
2259 p->numa_faults_locality[2] += pages;
2260
2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2263 p->numa_faults_locality[local] += pages;
2264 }
2265
2266 static void reset_ptenuma_scan(struct task_struct *p)
2267 {
2268 /*
2269 * We only did a read acquisition of the mmap sem, so
2270 * p->mm->numa_scan_seq is written to without exclusive access
2271 * and the update is not guaranteed to be atomic. That's not
2272 * much of an issue though, since this is just used for
2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 * expensive, to avoid any form of compiler optimizations:
2275 */
2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2277 p->mm->numa_scan_offset = 0;
2278 }
2279
2280 /*
2281 * The expensive part of numa migration is done from task_work context.
2282 * Triggered from task_tick_numa().
2283 */
2284 void task_numa_work(struct callback_head *work)
2285 {
2286 unsigned long migrate, next_scan, now = jiffies;
2287 struct task_struct *p = current;
2288 struct mm_struct *mm = p->mm;
2289 u64 runtime = p->se.sum_exec_runtime;
2290 struct vm_area_struct *vma;
2291 unsigned long start, end;
2292 unsigned long nr_pte_updates = 0;
2293 long pages, virtpages;
2294
2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2296
2297 work->next = work; /* protect against double add */
2298 /*
2299 * Who cares about NUMA placement when they're dying.
2300 *
2301 * NOTE: make sure not to dereference p->mm before this check,
2302 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 * without p->mm even though we still had it when we enqueued this
2304 * work.
2305 */
2306 if (p->flags & PF_EXITING)
2307 return;
2308
2309 if (!mm->numa_next_scan) {
2310 mm->numa_next_scan = now +
2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2312 }
2313
2314 /*
2315 * Enforce maximal scan/migration frequency..
2316 */
2317 migrate = mm->numa_next_scan;
2318 if (time_before(now, migrate))
2319 return;
2320
2321 if (p->numa_scan_period == 0) {
2322 p->numa_scan_period_max = task_scan_max(p);
2323 p->numa_scan_period = task_scan_min(p);
2324 }
2325
2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2328 return;
2329
2330 /*
2331 * Delay this task enough that another task of this mm will likely win
2332 * the next time around.
2333 */
2334 p->node_stamp += 2 * TICK_NSEC;
2335
2336 start = mm->numa_scan_offset;
2337 pages = sysctl_numa_balancing_scan_size;
2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2339 virtpages = pages * 8; /* Scan up to this much virtual space */
2340 if (!pages)
2341 return;
2342
2343
2344 down_read(&mm->mmap_sem);
2345 vma = find_vma(mm, start);
2346 if (!vma) {
2347 reset_ptenuma_scan(p);
2348 start = 0;
2349 vma = mm->mmap;
2350 }
2351 for (; vma; vma = vma->vm_next) {
2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2354 continue;
2355 }
2356
2357 /*
2358 * Shared library pages mapped by multiple processes are not
2359 * migrated as it is expected they are cache replicated. Avoid
2360 * hinting faults in read-only file-backed mappings or the vdso
2361 * as migrating the pages will be of marginal benefit.
2362 */
2363 if (!vma->vm_mm ||
2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2365 continue;
2366
2367 /*
2368 * Skip inaccessible VMAs to avoid any confusion between
2369 * PROT_NONE and NUMA hinting ptes
2370 */
2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2372 continue;
2373
2374 do {
2375 start = max(start, vma->vm_start);
2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 end = min(end, vma->vm_end);
2378 nr_pte_updates = change_prot_numa(vma, start, end);
2379
2380 /*
2381 * Try to scan sysctl_numa_balancing_size worth of
2382 * hpages that have at least one present PTE that
2383 * is not already pte-numa. If the VMA contains
2384 * areas that are unused or already full of prot_numa
2385 * PTEs, scan up to virtpages, to skip through those
2386 * areas faster.
2387 */
2388 if (nr_pte_updates)
2389 pages -= (end - start) >> PAGE_SHIFT;
2390 virtpages -= (end - start) >> PAGE_SHIFT;
2391
2392 start = end;
2393 if (pages <= 0 || virtpages <= 0)
2394 goto out;
2395
2396 cond_resched();
2397 } while (end != vma->vm_end);
2398 }
2399
2400 out:
2401 /*
2402 * It is possible to reach the end of the VMA list but the last few
2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 * would find the !migratable VMA on the next scan but not reset the
2405 * scanner to the start so check it now.
2406 */
2407 if (vma)
2408 mm->numa_scan_offset = start;
2409 else
2410 reset_ptenuma_scan(p);
2411 up_read(&mm->mmap_sem);
2412
2413 /*
2414 * Make sure tasks use at least 32x as much time to run other code
2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 * Usually update_task_scan_period slows down scanning enough; on an
2417 * overloaded system we need to limit overhead on a per task basis.
2418 */
2419 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 u64 diff = p->se.sum_exec_runtime - runtime;
2421 p->node_stamp += 32 * diff;
2422 }
2423 }
2424
2425 /*
2426 * Drive the periodic memory faults..
2427 */
2428 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2429 {
2430 struct callback_head *work = &curr->numa_work;
2431 u64 period, now;
2432
2433 /*
2434 * We don't care about NUMA placement if we don't have memory.
2435 */
2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2437 return;
2438
2439 /*
2440 * Using runtime rather than walltime has the dual advantage that
2441 * we (mostly) drive the selection from busy threads and that the
2442 * task needs to have done some actual work before we bother with
2443 * NUMA placement.
2444 */
2445 now = curr->se.sum_exec_runtime;
2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2447
2448 if (now > curr->node_stamp + period) {
2449 if (!curr->node_stamp)
2450 curr->numa_scan_period = task_scan_min(curr);
2451 curr->node_stamp += period;
2452
2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 task_work_add(curr, work, true);
2456 }
2457 }
2458 }
2459 #else
2460 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2461 {
2462 }
2463
2464 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2465 {
2466 }
2467
2468 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2469 {
2470 }
2471 #endif /* CONFIG_NUMA_BALANCING */
2472
2473 static void
2474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2475 {
2476 update_load_add(&cfs_rq->load, se->load.weight);
2477 if (!parent_entity(se))
2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2479 #ifdef CONFIG_SMP
2480 if (entity_is_task(se)) {
2481 struct rq *rq = rq_of(cfs_rq);
2482
2483 account_numa_enqueue(rq, task_of(se));
2484 list_add(&se->group_node, &rq->cfs_tasks);
2485 }
2486 #endif
2487 cfs_rq->nr_running++;
2488 }
2489
2490 static void
2491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492 {
2493 update_load_sub(&cfs_rq->load, se->load.weight);
2494 if (!parent_entity(se))
2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2496 #ifdef CONFIG_SMP
2497 if (entity_is_task(se)) {
2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2499 list_del_init(&se->group_node);
2500 }
2501 #endif
2502 cfs_rq->nr_running--;
2503 }
2504
2505 #ifdef CONFIG_FAIR_GROUP_SCHED
2506 # ifdef CONFIG_SMP
2507 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2508 {
2509 long tg_weight, load, shares;
2510
2511 /*
2512 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 * the shares for small weight interactive tasks.
2515 */
2516 load = scale_load_down(cfs_rq->load.weight);
2517
2518 tg_weight = atomic_long_read(&tg->load_avg);
2519
2520 /* Ensure tg_weight >= load */
2521 tg_weight -= cfs_rq->tg_load_avg_contrib;
2522 tg_weight += load;
2523
2524 shares = (tg->shares * load);
2525 if (tg_weight)
2526 shares /= tg_weight;
2527
2528 if (shares < MIN_SHARES)
2529 shares = MIN_SHARES;
2530 if (shares > tg->shares)
2531 shares = tg->shares;
2532
2533 return shares;
2534 }
2535 # else /* CONFIG_SMP */
2536 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2537 {
2538 return tg->shares;
2539 }
2540 # endif /* CONFIG_SMP */
2541
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544 {
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2550 }
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556 }
2557
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 struct task_group *tg;
2563 struct sched_entity *se;
2564 long shares;
2565
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2569 return;
2570 #ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573 #endif
2574 shares = calc_cfs_shares(cfs_rq, tg);
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593 };
2594
2595 /*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604
2605 /*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610 static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613 };
2614
2615 /*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619 static __always_inline u64 decay_load(u64 val, u64 n)
2620 {
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
2641 }
2642
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
2645 }
2646
2647 /*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654 static u32 __compute_runnable_contrib(u64 n)
2655 {
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
2668 }
2669
2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2671
2672 /*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
2700 static __always_inline int
2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2703 {
2704 u64 delta, scaled_delta, periods;
2705 u32 contrib;
2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
2707 unsigned long scale_freq, scale_cpu;
2708
2709 delta = now - sa->last_update_time;
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
2715 sa->last_update_time = now;
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
2726 sa->last_update_time = now;
2727
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
2731 /* delta_w is the amount already accumulated against our next period */
2732 delta_w = sa->period_contrib;
2733 if (delta + delta_w >= 1024) {
2734 decayed = 1;
2735
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
2746 if (weight) {
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
2752 }
2753 if (running)
2754 sa->util_sum += scaled_delta_w * scale_cpu;
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770 contrib = __compute_runnable_contrib(periods);
2771 contrib = cap_scale(contrib, scale_freq);
2772 if (weight) {
2773 sa->load_sum += weight * contrib;
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
2777 if (running)
2778 sa->util_sum += contrib * scale_cpu;
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
2782 scaled_delta = cap_scale(delta, scale_freq);
2783 if (weight) {
2784 sa->load_sum += weight * scaled_delta;
2785 if (cfs_rq)
2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
2787 }
2788 if (running)
2789 sa->util_sum += scaled_delta * scale_cpu;
2790
2791 sa->period_contrib += delta;
2792
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2800 }
2801
2802 return decayed;
2803 }
2804
2805 #ifdef CONFIG_FAIR_GROUP_SCHED
2806 /*
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
2809 */
2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2811 {
2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2813
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2823 }
2824 }
2825
2826 /*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831 void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833 {
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848 #ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863 #else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866 #endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871 }
2872 #else /* CONFIG_FAIR_GROUP_SCHED */
2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874 #endif /* CONFIG_FAIR_GROUP_SCHED */
2875
2876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877 {
2878 struct rq *rq = rq_of(cfs_rq);
2879 int cpu = cpu_of(rq);
2880
2881 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2882 unsigned long max = rq->cpu_capacity_orig;
2883
2884 /*
2885 * There are a few boundary cases this might miss but it should
2886 * get called often enough that that should (hopefully) not be
2887 * a real problem -- added to that it only calls on the local
2888 * CPU, so if we enqueue remotely we'll miss an update, but
2889 * the next tick/schedule should update.
2890 *
2891 * It will not get called when we go idle, because the idle
2892 * thread is a different class (!fair), nor will the utilization
2893 * number include things like RT tasks.
2894 *
2895 * As is, the util number is not freq-invariant (we'd have to
2896 * implement arch_scale_freq_capacity() for that).
2897 *
2898 * See cpu_util().
2899 */
2900 cpufreq_update_util(rq_clock(rq),
2901 min(cfs_rq->avg.util_avg, max), max);
2902 }
2903 }
2904
2905 /*
2906 * Unsigned subtract and clamp on underflow.
2907 *
2908 * Explicitly do a load-store to ensure the intermediate value never hits
2909 * memory. This allows lockless observations without ever seeing the negative
2910 * values.
2911 */
2912 #define sub_positive(_ptr, _val) do { \
2913 typeof(_ptr) ptr = (_ptr); \
2914 typeof(*ptr) val = (_val); \
2915 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2916 res = var - val; \
2917 if (res > var) \
2918 res = 0; \
2919 WRITE_ONCE(*ptr, res); \
2920 } while (0)
2921
2922 /**
2923 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2924 * @now: current time, as per cfs_rq_clock_task()
2925 * @cfs_rq: cfs_rq to update
2926 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2927 *
2928 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2929 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2930 * post_init_entity_util_avg().
2931 *
2932 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2933 *
2934 * Returns true if the load decayed or we removed utilization. It is expected
2935 * that one calls update_tg_load_avg() on this condition, but after you've
2936 * modified the cfs_rq avg (attach/detach), such that we propagate the new
2937 * avg up.
2938 */
2939 static inline int
2940 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2941 {
2942 struct sched_avg *sa = &cfs_rq->avg;
2943 int decayed, removed_load = 0, removed_util = 0;
2944
2945 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2946 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2947 sub_positive(&sa->load_avg, r);
2948 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2949 removed_load = 1;
2950 }
2951
2952 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2953 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2954 sub_positive(&sa->util_avg, r);
2955 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2956 removed_util = 1;
2957 }
2958
2959 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2960 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2961
2962 #ifndef CONFIG_64BIT
2963 smp_wmb();
2964 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2965 #endif
2966
2967 if (update_freq && (decayed || removed_util))
2968 cfs_rq_util_change(cfs_rq);
2969
2970 return decayed || removed_load;
2971 }
2972
2973 /* Update task and its cfs_rq load average */
2974 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2975 {
2976 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2977 u64 now = cfs_rq_clock_task(cfs_rq);
2978 struct rq *rq = rq_of(cfs_rq);
2979 int cpu = cpu_of(rq);
2980
2981 /*
2982 * Track task load average for carrying it to new CPU after migrated, and
2983 * track group sched_entity load average for task_h_load calc in migration
2984 */
2985 __update_load_avg(now, cpu, &se->avg,
2986 se->on_rq * scale_load_down(se->load.weight),
2987 cfs_rq->curr == se, NULL);
2988
2989 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2990 update_tg_load_avg(cfs_rq, 0);
2991 }
2992
2993 /**
2994 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2995 * @cfs_rq: cfs_rq to attach to
2996 * @se: sched_entity to attach
2997 *
2998 * Must call update_cfs_rq_load_avg() before this, since we rely on
2999 * cfs_rq->avg.last_update_time being current.
3000 */
3001 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 if (!sched_feat(ATTACH_AGE_LOAD))
3004 goto skip_aging;
3005
3006 /*
3007 * If we got migrated (either between CPUs or between cgroups) we'll
3008 * have aged the average right before clearing @last_update_time.
3009 *
3010 * Or we're fresh through post_init_entity_util_avg().
3011 */
3012 if (se->avg.last_update_time) {
3013 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3014 &se->avg, 0, 0, NULL);
3015
3016 /*
3017 * XXX: we could have just aged the entire load away if we've been
3018 * absent from the fair class for too long.
3019 */
3020 }
3021
3022 skip_aging:
3023 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3024 cfs_rq->avg.load_avg += se->avg.load_avg;
3025 cfs_rq->avg.load_sum += se->avg.load_sum;
3026 cfs_rq->avg.util_avg += se->avg.util_avg;
3027 cfs_rq->avg.util_sum += se->avg.util_sum;
3028
3029 cfs_rq_util_change(cfs_rq);
3030 }
3031
3032 /**
3033 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3034 * @cfs_rq: cfs_rq to detach from
3035 * @se: sched_entity to detach
3036 *
3037 * Must call update_cfs_rq_load_avg() before this, since we rely on
3038 * cfs_rq->avg.last_update_time being current.
3039 */
3040 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3041 {
3042 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3043 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3044 cfs_rq->curr == se, NULL);
3045
3046 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3047 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3048 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3049 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3050
3051 cfs_rq_util_change(cfs_rq);
3052 }
3053
3054 /* Add the load generated by se into cfs_rq's load average */
3055 static inline void
3056 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3057 {
3058 struct sched_avg *sa = &se->avg;
3059 u64 now = cfs_rq_clock_task(cfs_rq);
3060 int migrated, decayed;
3061
3062 migrated = !sa->last_update_time;
3063 if (!migrated) {
3064 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3065 se->on_rq * scale_load_down(se->load.weight),
3066 cfs_rq->curr == se, NULL);
3067 }
3068
3069 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3070
3071 cfs_rq->runnable_load_avg += sa->load_avg;
3072 cfs_rq->runnable_load_sum += sa->load_sum;
3073
3074 if (migrated)
3075 attach_entity_load_avg(cfs_rq, se);
3076
3077 if (decayed || migrated)
3078 update_tg_load_avg(cfs_rq, 0);
3079 }
3080
3081 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3082 static inline void
3083 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084 {
3085 update_load_avg(se, 1);
3086
3087 cfs_rq->runnable_load_avg =
3088 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3089 cfs_rq->runnable_load_sum =
3090 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3091 }
3092
3093 #ifndef CONFIG_64BIT
3094 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3095 {
3096 u64 last_update_time_copy;
3097 u64 last_update_time;
3098
3099 do {
3100 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3101 smp_rmb();
3102 last_update_time = cfs_rq->avg.last_update_time;
3103 } while (last_update_time != last_update_time_copy);
3104
3105 return last_update_time;
3106 }
3107 #else
3108 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3109 {
3110 return cfs_rq->avg.last_update_time;
3111 }
3112 #endif
3113
3114 /*
3115 * Task first catches up with cfs_rq, and then subtract
3116 * itself from the cfs_rq (task must be off the queue now).
3117 */
3118 void remove_entity_load_avg(struct sched_entity *se)
3119 {
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121 u64 last_update_time;
3122
3123 /*
3124 * tasks cannot exit without having gone through wake_up_new_task() ->
3125 * post_init_entity_util_avg() which will have added things to the
3126 * cfs_rq, so we can remove unconditionally.
3127 *
3128 * Similarly for groups, they will have passed through
3129 * post_init_entity_util_avg() before unregister_sched_fair_group()
3130 * calls this.
3131 */
3132
3133 last_update_time = cfs_rq_last_update_time(cfs_rq);
3134
3135 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3136 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3137 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3138 }
3139
3140 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3141 {
3142 return cfs_rq->runnable_load_avg;
3143 }
3144
3145 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3146 {
3147 return cfs_rq->avg.load_avg;
3148 }
3149
3150 static int idle_balance(struct rq *this_rq);
3151
3152 #else /* CONFIG_SMP */
3153
3154 static inline int
3155 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3156 {
3157 return 0;
3158 }
3159
3160 static inline void update_load_avg(struct sched_entity *se, int not_used)
3161 {
3162 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3163 struct rq *rq = rq_of(cfs_rq);
3164
3165 cpufreq_trigger_update(rq_clock(rq));
3166 }
3167
3168 static inline void
3169 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3170 static inline void
3171 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3172 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3173
3174 static inline void
3175 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3176 static inline void
3177 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3178
3179 static inline int idle_balance(struct rq *rq)
3180 {
3181 return 0;
3182 }
3183
3184 #endif /* CONFIG_SMP */
3185
3186 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3187 {
3188 #ifdef CONFIG_SCHEDSTATS
3189 struct task_struct *tsk = NULL;
3190
3191 if (entity_is_task(se))
3192 tsk = task_of(se);
3193
3194 if (se->statistics.sleep_start) {
3195 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3196
3197 if ((s64)delta < 0)
3198 delta = 0;
3199
3200 if (unlikely(delta > se->statistics.sleep_max))
3201 se->statistics.sleep_max = delta;
3202
3203 se->statistics.sleep_start = 0;
3204 se->statistics.sum_sleep_runtime += delta;
3205
3206 if (tsk) {
3207 account_scheduler_latency(tsk, delta >> 10, 1);
3208 trace_sched_stat_sleep(tsk, delta);
3209 }
3210 }
3211 if (se->statistics.block_start) {
3212 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3213
3214 if ((s64)delta < 0)
3215 delta = 0;
3216
3217 if (unlikely(delta > se->statistics.block_max))
3218 se->statistics.block_max = delta;
3219
3220 se->statistics.block_start = 0;
3221 se->statistics.sum_sleep_runtime += delta;
3222
3223 if (tsk) {
3224 if (tsk->in_iowait) {
3225 se->statistics.iowait_sum += delta;
3226 se->statistics.iowait_count++;
3227 trace_sched_stat_iowait(tsk, delta);
3228 }
3229
3230 trace_sched_stat_blocked(tsk, delta);
3231
3232 /*
3233 * Blocking time is in units of nanosecs, so shift by
3234 * 20 to get a milliseconds-range estimation of the
3235 * amount of time that the task spent sleeping:
3236 */
3237 if (unlikely(prof_on == SLEEP_PROFILING)) {
3238 profile_hits(SLEEP_PROFILING,
3239 (void *)get_wchan(tsk),
3240 delta >> 20);
3241 }
3242 account_scheduler_latency(tsk, delta >> 10, 0);
3243 }
3244 }
3245 #endif
3246 }
3247
3248 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3249 {
3250 #ifdef CONFIG_SCHED_DEBUG
3251 s64 d = se->vruntime - cfs_rq->min_vruntime;
3252
3253 if (d < 0)
3254 d = -d;
3255
3256 if (d > 3*sysctl_sched_latency)
3257 schedstat_inc(cfs_rq, nr_spread_over);
3258 #endif
3259 }
3260
3261 static void
3262 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3263 {
3264 u64 vruntime = cfs_rq->min_vruntime;
3265
3266 /*
3267 * The 'current' period is already promised to the current tasks,
3268 * however the extra weight of the new task will slow them down a
3269 * little, place the new task so that it fits in the slot that
3270 * stays open at the end.
3271 */
3272 if (initial && sched_feat(START_DEBIT))
3273 vruntime += sched_vslice(cfs_rq, se);
3274
3275 /* sleeps up to a single latency don't count. */
3276 if (!initial) {
3277 unsigned long thresh = sysctl_sched_latency;
3278
3279 /*
3280 * Halve their sleep time's effect, to allow
3281 * for a gentler effect of sleepers:
3282 */
3283 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3284 thresh >>= 1;
3285
3286 vruntime -= thresh;
3287 }
3288
3289 /* ensure we never gain time by being placed backwards. */
3290 se->vruntime = max_vruntime(se->vruntime, vruntime);
3291 }
3292
3293 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3294
3295 static inline void check_schedstat_required(void)
3296 {
3297 #ifdef CONFIG_SCHEDSTATS
3298 if (schedstat_enabled())
3299 return;
3300
3301 /* Force schedstat enabled if a dependent tracepoint is active */
3302 if (trace_sched_stat_wait_enabled() ||
3303 trace_sched_stat_sleep_enabled() ||
3304 trace_sched_stat_iowait_enabled() ||
3305 trace_sched_stat_blocked_enabled() ||
3306 trace_sched_stat_runtime_enabled()) {
3307 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3308 "stat_blocked and stat_runtime require the "
3309 "kernel parameter schedstats=enabled or "
3310 "kernel.sched_schedstats=1\n");
3311 }
3312 #endif
3313 }
3314
3315
3316 /*
3317 * MIGRATION
3318 *
3319 * dequeue
3320 * update_curr()
3321 * update_min_vruntime()
3322 * vruntime -= min_vruntime
3323 *
3324 * enqueue
3325 * update_curr()
3326 * update_min_vruntime()
3327 * vruntime += min_vruntime
3328 *
3329 * this way the vruntime transition between RQs is done when both
3330 * min_vruntime are up-to-date.
3331 *
3332 * WAKEUP (remote)
3333 *
3334 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3335 * vruntime -= min_vruntime
3336 *
3337 * enqueue
3338 * update_curr()
3339 * update_min_vruntime()
3340 * vruntime += min_vruntime
3341 *
3342 * this way we don't have the most up-to-date min_vruntime on the originating
3343 * CPU and an up-to-date min_vruntime on the destination CPU.
3344 */
3345
3346 static void
3347 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3348 {
3349 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3350 bool curr = cfs_rq->curr == se;
3351
3352 /*
3353 * If we're the current task, we must renormalise before calling
3354 * update_curr().
3355 */
3356 if (renorm && curr)
3357 se->vruntime += cfs_rq->min_vruntime;
3358
3359 update_curr(cfs_rq);
3360
3361 /*
3362 * Otherwise, renormalise after, such that we're placed at the current
3363 * moment in time, instead of some random moment in the past. Being
3364 * placed in the past could significantly boost this task to the
3365 * fairness detriment of existing tasks.
3366 */
3367 if (renorm && !curr)
3368 se->vruntime += cfs_rq->min_vruntime;
3369
3370 enqueue_entity_load_avg(cfs_rq, se);
3371 account_entity_enqueue(cfs_rq, se);
3372 update_cfs_shares(cfs_rq);
3373
3374 if (flags & ENQUEUE_WAKEUP) {
3375 place_entity(cfs_rq, se, 0);
3376 if (schedstat_enabled())
3377 enqueue_sleeper(cfs_rq, se);
3378 }
3379
3380 check_schedstat_required();
3381 if (schedstat_enabled()) {
3382 update_stats_enqueue(cfs_rq, se);
3383 check_spread(cfs_rq, se);
3384 }
3385 if (!curr)
3386 __enqueue_entity(cfs_rq, se);
3387 se->on_rq = 1;
3388
3389 if (cfs_rq->nr_running == 1) {
3390 list_add_leaf_cfs_rq(cfs_rq);
3391 check_enqueue_throttle(cfs_rq);
3392 }
3393 }
3394
3395 static void __clear_buddies_last(struct sched_entity *se)
3396 {
3397 for_each_sched_entity(se) {
3398 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3399 if (cfs_rq->last != se)
3400 break;
3401
3402 cfs_rq->last = NULL;
3403 }
3404 }
3405
3406 static void __clear_buddies_next(struct sched_entity *se)
3407 {
3408 for_each_sched_entity(se) {
3409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3410 if (cfs_rq->next != se)
3411 break;
3412
3413 cfs_rq->next = NULL;
3414 }
3415 }
3416
3417 static void __clear_buddies_skip(struct sched_entity *se)
3418 {
3419 for_each_sched_entity(se) {
3420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3421 if (cfs_rq->skip != se)
3422 break;
3423
3424 cfs_rq->skip = NULL;
3425 }
3426 }
3427
3428 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3429 {
3430 if (cfs_rq->last == se)
3431 __clear_buddies_last(se);
3432
3433 if (cfs_rq->next == se)
3434 __clear_buddies_next(se);
3435
3436 if (cfs_rq->skip == se)
3437 __clear_buddies_skip(se);
3438 }
3439
3440 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3441
3442 static void
3443 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3444 {
3445 /*
3446 * Update run-time statistics of the 'current'.
3447 */
3448 update_curr(cfs_rq);
3449 dequeue_entity_load_avg(cfs_rq, se);
3450
3451 if (schedstat_enabled())
3452 update_stats_dequeue(cfs_rq, se, flags);
3453
3454 clear_buddies(cfs_rq, se);
3455
3456 if (se != cfs_rq->curr)
3457 __dequeue_entity(cfs_rq, se);
3458 se->on_rq = 0;
3459 account_entity_dequeue(cfs_rq, se);
3460
3461 /*
3462 * Normalize the entity after updating the min_vruntime because the
3463 * update can refer to the ->curr item and we need to reflect this
3464 * movement in our normalized position.
3465 */
3466 if (!(flags & DEQUEUE_SLEEP))
3467 se->vruntime -= cfs_rq->min_vruntime;
3468
3469 /* return excess runtime on last dequeue */
3470 return_cfs_rq_runtime(cfs_rq);
3471
3472 update_min_vruntime(cfs_rq);
3473 update_cfs_shares(cfs_rq);
3474 }
3475
3476 /*
3477 * Preempt the current task with a newly woken task if needed:
3478 */
3479 static void
3480 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3481 {
3482 unsigned long ideal_runtime, delta_exec;
3483 struct sched_entity *se;
3484 s64 delta;
3485
3486 ideal_runtime = sched_slice(cfs_rq, curr);
3487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3488 if (delta_exec > ideal_runtime) {
3489 resched_curr(rq_of(cfs_rq));
3490 /*
3491 * The current task ran long enough, ensure it doesn't get
3492 * re-elected due to buddy favours.
3493 */
3494 clear_buddies(cfs_rq, curr);
3495 return;
3496 }
3497
3498 /*
3499 * Ensure that a task that missed wakeup preemption by a
3500 * narrow margin doesn't have to wait for a full slice.
3501 * This also mitigates buddy induced latencies under load.
3502 */
3503 if (delta_exec < sysctl_sched_min_granularity)
3504 return;
3505
3506 se = __pick_first_entity(cfs_rq);
3507 delta = curr->vruntime - se->vruntime;
3508
3509 if (delta < 0)
3510 return;
3511
3512 if (delta > ideal_runtime)
3513 resched_curr(rq_of(cfs_rq));
3514 }
3515
3516 static void
3517 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3518 {
3519 /* 'current' is not kept within the tree. */
3520 if (se->on_rq) {
3521 /*
3522 * Any task has to be enqueued before it get to execute on
3523 * a CPU. So account for the time it spent waiting on the
3524 * runqueue.
3525 */
3526 if (schedstat_enabled())
3527 update_stats_wait_end(cfs_rq, se);
3528 __dequeue_entity(cfs_rq, se);
3529 update_load_avg(se, 1);
3530 }
3531
3532 update_stats_curr_start(cfs_rq, se);
3533 cfs_rq->curr = se;
3534 #ifdef CONFIG_SCHEDSTATS
3535 /*
3536 * Track our maximum slice length, if the CPU's load is at
3537 * least twice that of our own weight (i.e. dont track it
3538 * when there are only lesser-weight tasks around):
3539 */
3540 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3541 se->statistics.slice_max = max(se->statistics.slice_max,
3542 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3543 }
3544 #endif
3545 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3546 }
3547
3548 static int
3549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3550
3551 /*
3552 * Pick the next process, keeping these things in mind, in this order:
3553 * 1) keep things fair between processes/task groups
3554 * 2) pick the "next" process, since someone really wants that to run
3555 * 3) pick the "last" process, for cache locality
3556 * 4) do not run the "skip" process, if something else is available
3557 */
3558 static struct sched_entity *
3559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3560 {
3561 struct sched_entity *left = __pick_first_entity(cfs_rq);
3562 struct sched_entity *se;
3563
3564 /*
3565 * If curr is set we have to see if its left of the leftmost entity
3566 * still in the tree, provided there was anything in the tree at all.
3567 */
3568 if (!left || (curr && entity_before(curr, left)))
3569 left = curr;
3570
3571 se = left; /* ideally we run the leftmost entity */
3572
3573 /*
3574 * Avoid running the skip buddy, if running something else can
3575 * be done without getting too unfair.
3576 */
3577 if (cfs_rq->skip == se) {
3578 struct sched_entity *second;
3579
3580 if (se == curr) {
3581 second = __pick_first_entity(cfs_rq);
3582 } else {
3583 second = __pick_next_entity(se);
3584 if (!second || (curr && entity_before(curr, second)))
3585 second = curr;
3586 }
3587
3588 if (second && wakeup_preempt_entity(second, left) < 1)
3589 se = second;
3590 }
3591
3592 /*
3593 * Prefer last buddy, try to return the CPU to a preempted task.
3594 */
3595 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3596 se = cfs_rq->last;
3597
3598 /*
3599 * Someone really wants this to run. If it's not unfair, run it.
3600 */
3601 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3602 se = cfs_rq->next;
3603
3604 clear_buddies(cfs_rq, se);
3605
3606 return se;
3607 }
3608
3609 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3610
3611 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3612 {
3613 /*
3614 * If still on the runqueue then deactivate_task()
3615 * was not called and update_curr() has to be done:
3616 */
3617 if (prev->on_rq)
3618 update_curr(cfs_rq);
3619
3620 /* throttle cfs_rqs exceeding runtime */
3621 check_cfs_rq_runtime(cfs_rq);
3622
3623 if (schedstat_enabled()) {
3624 check_spread(cfs_rq, prev);
3625 if (prev->on_rq)
3626 update_stats_wait_start(cfs_rq, prev);
3627 }
3628
3629 if (prev->on_rq) {
3630 /* Put 'current' back into the tree. */
3631 __enqueue_entity(cfs_rq, prev);
3632 /* in !on_rq case, update occurred at dequeue */
3633 update_load_avg(prev, 0);
3634 }
3635 cfs_rq->curr = NULL;
3636 }
3637
3638 static void
3639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3640 {
3641 /*
3642 * Update run-time statistics of the 'current'.
3643 */
3644 update_curr(cfs_rq);
3645
3646 /*
3647 * Ensure that runnable average is periodically updated.
3648 */
3649 update_load_avg(curr, 1);
3650 update_cfs_shares(cfs_rq);
3651
3652 #ifdef CONFIG_SCHED_HRTICK
3653 /*
3654 * queued ticks are scheduled to match the slice, so don't bother
3655 * validating it and just reschedule.
3656 */
3657 if (queued) {
3658 resched_curr(rq_of(cfs_rq));
3659 return;
3660 }
3661 /*
3662 * don't let the period tick interfere with the hrtick preemption
3663 */
3664 if (!sched_feat(DOUBLE_TICK) &&
3665 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3666 return;
3667 #endif
3668
3669 if (cfs_rq->nr_running > 1)
3670 check_preempt_tick(cfs_rq, curr);
3671 }
3672
3673
3674 /**************************************************
3675 * CFS bandwidth control machinery
3676 */
3677
3678 #ifdef CONFIG_CFS_BANDWIDTH
3679
3680 #ifdef HAVE_JUMP_LABEL
3681 static struct static_key __cfs_bandwidth_used;
3682
3683 static inline bool cfs_bandwidth_used(void)
3684 {
3685 return static_key_false(&__cfs_bandwidth_used);
3686 }
3687
3688 void cfs_bandwidth_usage_inc(void)
3689 {
3690 static_key_slow_inc(&__cfs_bandwidth_used);
3691 }
3692
3693 void cfs_bandwidth_usage_dec(void)
3694 {
3695 static_key_slow_dec(&__cfs_bandwidth_used);
3696 }
3697 #else /* HAVE_JUMP_LABEL */
3698 static bool cfs_bandwidth_used(void)
3699 {
3700 return true;
3701 }
3702
3703 void cfs_bandwidth_usage_inc(void) {}
3704 void cfs_bandwidth_usage_dec(void) {}
3705 #endif /* HAVE_JUMP_LABEL */
3706
3707 /*
3708 * default period for cfs group bandwidth.
3709 * default: 0.1s, units: nanoseconds
3710 */
3711 static inline u64 default_cfs_period(void)
3712 {
3713 return 100000000ULL;
3714 }
3715
3716 static inline u64 sched_cfs_bandwidth_slice(void)
3717 {
3718 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3719 }
3720
3721 /*
3722 * Replenish runtime according to assigned quota and update expiration time.
3723 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3724 * additional synchronization around rq->lock.
3725 *
3726 * requires cfs_b->lock
3727 */
3728 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3729 {
3730 u64 now;
3731
3732 if (cfs_b->quota == RUNTIME_INF)
3733 return;
3734
3735 now = sched_clock_cpu(smp_processor_id());
3736 cfs_b->runtime = cfs_b->quota;
3737 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3738 }
3739
3740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3741 {
3742 return &tg->cfs_bandwidth;
3743 }
3744
3745 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3746 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3747 {
3748 if (unlikely(cfs_rq->throttle_count))
3749 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3750
3751 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3752 }
3753
3754 /* returns 0 on failure to allocate runtime */
3755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3756 {
3757 struct task_group *tg = cfs_rq->tg;
3758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3759 u64 amount = 0, min_amount, expires;
3760
3761 /* note: this is a positive sum as runtime_remaining <= 0 */
3762 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3763
3764 raw_spin_lock(&cfs_b->lock);
3765 if (cfs_b->quota == RUNTIME_INF)
3766 amount = min_amount;
3767 else {
3768 start_cfs_bandwidth(cfs_b);
3769
3770 if (cfs_b->runtime > 0) {
3771 amount = min(cfs_b->runtime, min_amount);
3772 cfs_b->runtime -= amount;
3773 cfs_b->idle = 0;
3774 }
3775 }
3776 expires = cfs_b->runtime_expires;
3777 raw_spin_unlock(&cfs_b->lock);
3778
3779 cfs_rq->runtime_remaining += amount;
3780 /*
3781 * we may have advanced our local expiration to account for allowed
3782 * spread between our sched_clock and the one on which runtime was
3783 * issued.
3784 */
3785 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3786 cfs_rq->runtime_expires = expires;
3787
3788 return cfs_rq->runtime_remaining > 0;
3789 }
3790
3791 /*
3792 * Note: This depends on the synchronization provided by sched_clock and the
3793 * fact that rq->clock snapshots this value.
3794 */
3795 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3796 {
3797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3798
3799 /* if the deadline is ahead of our clock, nothing to do */
3800 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3801 return;
3802
3803 if (cfs_rq->runtime_remaining < 0)
3804 return;
3805
3806 /*
3807 * If the local deadline has passed we have to consider the
3808 * possibility that our sched_clock is 'fast' and the global deadline
3809 * has not truly expired.
3810 *
3811 * Fortunately we can check determine whether this the case by checking
3812 * whether the global deadline has advanced. It is valid to compare
3813 * cfs_b->runtime_expires without any locks since we only care about
3814 * exact equality, so a partial write will still work.
3815 */
3816
3817 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3818 /* extend local deadline, drift is bounded above by 2 ticks */
3819 cfs_rq->runtime_expires += TICK_NSEC;
3820 } else {
3821 /* global deadline is ahead, expiration has passed */
3822 cfs_rq->runtime_remaining = 0;
3823 }
3824 }
3825
3826 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3827 {
3828 /* dock delta_exec before expiring quota (as it could span periods) */
3829 cfs_rq->runtime_remaining -= delta_exec;
3830 expire_cfs_rq_runtime(cfs_rq);
3831
3832 if (likely(cfs_rq->runtime_remaining > 0))
3833 return;
3834
3835 /*
3836 * if we're unable to extend our runtime we resched so that the active
3837 * hierarchy can be throttled
3838 */
3839 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3840 resched_curr(rq_of(cfs_rq));
3841 }
3842
3843 static __always_inline
3844 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3845 {
3846 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3847 return;
3848
3849 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3850 }
3851
3852 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3853 {
3854 return cfs_bandwidth_used() && cfs_rq->throttled;
3855 }
3856
3857 /* check whether cfs_rq, or any parent, is throttled */
3858 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3859 {
3860 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3861 }
3862
3863 /*
3864 * Ensure that neither of the group entities corresponding to src_cpu or
3865 * dest_cpu are members of a throttled hierarchy when performing group
3866 * load-balance operations.
3867 */
3868 static inline int throttled_lb_pair(struct task_group *tg,
3869 int src_cpu, int dest_cpu)
3870 {
3871 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3872
3873 src_cfs_rq = tg->cfs_rq[src_cpu];
3874 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3875
3876 return throttled_hierarchy(src_cfs_rq) ||
3877 throttled_hierarchy(dest_cfs_rq);
3878 }
3879
3880 /* updated child weight may affect parent so we have to do this bottom up */
3881 static int tg_unthrottle_up(struct task_group *tg, void *data)
3882 {
3883 struct rq *rq = data;
3884 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3885
3886 cfs_rq->throttle_count--;
3887 if (!cfs_rq->throttle_count) {
3888 /* adjust cfs_rq_clock_task() */
3889 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3890 cfs_rq->throttled_clock_task;
3891 }
3892
3893 return 0;
3894 }
3895
3896 static int tg_throttle_down(struct task_group *tg, void *data)
3897 {
3898 struct rq *rq = data;
3899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3900
3901 /* group is entering throttled state, stop time */
3902 if (!cfs_rq->throttle_count)
3903 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3904 cfs_rq->throttle_count++;
3905
3906 return 0;
3907 }
3908
3909 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3910 {
3911 struct rq *rq = rq_of(cfs_rq);
3912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3913 struct sched_entity *se;
3914 long task_delta, dequeue = 1;
3915 bool empty;
3916
3917 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3918
3919 /* freeze hierarchy runnable averages while throttled */
3920 rcu_read_lock();
3921 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3922 rcu_read_unlock();
3923
3924 task_delta = cfs_rq->h_nr_running;
3925 for_each_sched_entity(se) {
3926 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3927 /* throttled entity or throttle-on-deactivate */
3928 if (!se->on_rq)
3929 break;
3930
3931 if (dequeue)
3932 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3933 qcfs_rq->h_nr_running -= task_delta;
3934
3935 if (qcfs_rq->load.weight)
3936 dequeue = 0;
3937 }
3938
3939 if (!se)
3940 sub_nr_running(rq, task_delta);
3941
3942 cfs_rq->throttled = 1;
3943 cfs_rq->throttled_clock = rq_clock(rq);
3944 raw_spin_lock(&cfs_b->lock);
3945 empty = list_empty(&cfs_b->throttled_cfs_rq);
3946
3947 /*
3948 * Add to the _head_ of the list, so that an already-started
3949 * distribute_cfs_runtime will not see us
3950 */
3951 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3952
3953 /*
3954 * If we're the first throttled task, make sure the bandwidth
3955 * timer is running.
3956 */
3957 if (empty)
3958 start_cfs_bandwidth(cfs_b);
3959
3960 raw_spin_unlock(&cfs_b->lock);
3961 }
3962
3963 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3964 {
3965 struct rq *rq = rq_of(cfs_rq);
3966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3967 struct sched_entity *se;
3968 int enqueue = 1;
3969 long task_delta;
3970
3971 se = cfs_rq->tg->se[cpu_of(rq)];
3972
3973 cfs_rq->throttled = 0;
3974
3975 update_rq_clock(rq);
3976
3977 raw_spin_lock(&cfs_b->lock);
3978 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3979 list_del_rcu(&cfs_rq->throttled_list);
3980 raw_spin_unlock(&cfs_b->lock);
3981
3982 /* update hierarchical throttle state */
3983 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3984
3985 if (!cfs_rq->load.weight)
3986 return;
3987
3988 task_delta = cfs_rq->h_nr_running;
3989 for_each_sched_entity(se) {
3990 if (se->on_rq)
3991 enqueue = 0;
3992
3993 cfs_rq = cfs_rq_of(se);
3994 if (enqueue)
3995 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3996 cfs_rq->h_nr_running += task_delta;
3997
3998 if (cfs_rq_throttled(cfs_rq))
3999 break;
4000 }
4001
4002 if (!se)
4003 add_nr_running(rq, task_delta);
4004
4005 /* determine whether we need to wake up potentially idle cpu */
4006 if (rq->curr == rq->idle && rq->cfs.nr_running)
4007 resched_curr(rq);
4008 }
4009
4010 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4011 u64 remaining, u64 expires)
4012 {
4013 struct cfs_rq *cfs_rq;
4014 u64 runtime;
4015 u64 starting_runtime = remaining;
4016
4017 rcu_read_lock();
4018 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4019 throttled_list) {
4020 struct rq *rq = rq_of(cfs_rq);
4021
4022 raw_spin_lock(&rq->lock);
4023 if (!cfs_rq_throttled(cfs_rq))
4024 goto next;
4025
4026 runtime = -cfs_rq->runtime_remaining + 1;
4027 if (runtime > remaining)
4028 runtime = remaining;
4029 remaining -= runtime;
4030
4031 cfs_rq->runtime_remaining += runtime;
4032 cfs_rq->runtime_expires = expires;
4033
4034 /* we check whether we're throttled above */
4035 if (cfs_rq->runtime_remaining > 0)
4036 unthrottle_cfs_rq(cfs_rq);
4037
4038 next:
4039 raw_spin_unlock(&rq->lock);
4040
4041 if (!remaining)
4042 break;
4043 }
4044 rcu_read_unlock();
4045
4046 return starting_runtime - remaining;
4047 }
4048
4049 /*
4050 * Responsible for refilling a task_group's bandwidth and unthrottling its
4051 * cfs_rqs as appropriate. If there has been no activity within the last
4052 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4053 * used to track this state.
4054 */
4055 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4056 {
4057 u64 runtime, runtime_expires;
4058 int throttled;
4059
4060 /* no need to continue the timer with no bandwidth constraint */
4061 if (cfs_b->quota == RUNTIME_INF)
4062 goto out_deactivate;
4063
4064 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4065 cfs_b->nr_periods += overrun;
4066
4067 /*
4068 * idle depends on !throttled (for the case of a large deficit), and if
4069 * we're going inactive then everything else can be deferred
4070 */
4071 if (cfs_b->idle && !throttled)
4072 goto out_deactivate;
4073
4074 __refill_cfs_bandwidth_runtime(cfs_b);
4075
4076 if (!throttled) {
4077 /* mark as potentially idle for the upcoming period */
4078 cfs_b->idle = 1;
4079 return 0;
4080 }
4081
4082 /* account preceding periods in which throttling occurred */
4083 cfs_b->nr_throttled += overrun;
4084
4085 runtime_expires = cfs_b->runtime_expires;
4086
4087 /*
4088 * This check is repeated as we are holding onto the new bandwidth while
4089 * we unthrottle. This can potentially race with an unthrottled group
4090 * trying to acquire new bandwidth from the global pool. This can result
4091 * in us over-using our runtime if it is all used during this loop, but
4092 * only by limited amounts in that extreme case.
4093 */
4094 while (throttled && cfs_b->runtime > 0) {
4095 runtime = cfs_b->runtime;
4096 raw_spin_unlock(&cfs_b->lock);
4097 /* we can't nest cfs_b->lock while distributing bandwidth */
4098 runtime = distribute_cfs_runtime(cfs_b, runtime,
4099 runtime_expires);
4100 raw_spin_lock(&cfs_b->lock);
4101
4102 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4103
4104 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4105 }
4106
4107 /*
4108 * While we are ensured activity in the period following an
4109 * unthrottle, this also covers the case in which the new bandwidth is
4110 * insufficient to cover the existing bandwidth deficit. (Forcing the
4111 * timer to remain active while there are any throttled entities.)
4112 */
4113 cfs_b->idle = 0;
4114
4115 return 0;
4116
4117 out_deactivate:
4118 return 1;
4119 }
4120
4121 /* a cfs_rq won't donate quota below this amount */
4122 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4123 /* minimum remaining period time to redistribute slack quota */
4124 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4125 /* how long we wait to gather additional slack before distributing */
4126 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4127
4128 /*
4129 * Are we near the end of the current quota period?
4130 *
4131 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4132 * hrtimer base being cleared by hrtimer_start. In the case of
4133 * migrate_hrtimers, base is never cleared, so we are fine.
4134 */
4135 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4136 {
4137 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4138 u64 remaining;
4139
4140 /* if the call-back is running a quota refresh is already occurring */
4141 if (hrtimer_callback_running(refresh_timer))
4142 return 1;
4143
4144 /* is a quota refresh about to occur? */
4145 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4146 if (remaining < min_expire)
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4153 {
4154 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4155
4156 /* if there's a quota refresh soon don't bother with slack */
4157 if (runtime_refresh_within(cfs_b, min_left))
4158 return;
4159
4160 hrtimer_start(&cfs_b->slack_timer,
4161 ns_to_ktime(cfs_bandwidth_slack_period),
4162 HRTIMER_MODE_REL);
4163 }
4164
4165 /* we know any runtime found here is valid as update_curr() precedes return */
4166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4167 {
4168 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4169 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4170
4171 if (slack_runtime <= 0)
4172 return;
4173
4174 raw_spin_lock(&cfs_b->lock);
4175 if (cfs_b->quota != RUNTIME_INF &&
4176 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4177 cfs_b->runtime += slack_runtime;
4178
4179 /* we are under rq->lock, defer unthrottling using a timer */
4180 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4181 !list_empty(&cfs_b->throttled_cfs_rq))
4182 start_cfs_slack_bandwidth(cfs_b);
4183 }
4184 raw_spin_unlock(&cfs_b->lock);
4185
4186 /* even if it's not valid for return we don't want to try again */
4187 cfs_rq->runtime_remaining -= slack_runtime;
4188 }
4189
4190 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4191 {
4192 if (!cfs_bandwidth_used())
4193 return;
4194
4195 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4196 return;
4197
4198 __return_cfs_rq_runtime(cfs_rq);
4199 }
4200
4201 /*
4202 * This is done with a timer (instead of inline with bandwidth return) since
4203 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4204 */
4205 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4206 {
4207 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4208 u64 expires;
4209
4210 /* confirm we're still not at a refresh boundary */
4211 raw_spin_lock(&cfs_b->lock);
4212 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4213 raw_spin_unlock(&cfs_b->lock);
4214 return;
4215 }
4216
4217 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4218 runtime = cfs_b->runtime;
4219
4220 expires = cfs_b->runtime_expires;
4221 raw_spin_unlock(&cfs_b->lock);
4222
4223 if (!runtime)
4224 return;
4225
4226 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4227
4228 raw_spin_lock(&cfs_b->lock);
4229 if (expires == cfs_b->runtime_expires)
4230 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4231 raw_spin_unlock(&cfs_b->lock);
4232 }
4233
4234 /*
4235 * When a group wakes up we want to make sure that its quota is not already
4236 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4237 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4238 */
4239 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4240 {
4241 if (!cfs_bandwidth_used())
4242 return;
4243
4244 /* an active group must be handled by the update_curr()->put() path */
4245 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4246 return;
4247
4248 /* ensure the group is not already throttled */
4249 if (cfs_rq_throttled(cfs_rq))
4250 return;
4251
4252 /* update runtime allocation */
4253 account_cfs_rq_runtime(cfs_rq, 0);
4254 if (cfs_rq->runtime_remaining <= 0)
4255 throttle_cfs_rq(cfs_rq);
4256 }
4257
4258 static void sync_throttle(struct task_group *tg, int cpu)
4259 {
4260 struct cfs_rq *pcfs_rq, *cfs_rq;
4261
4262 if (!cfs_bandwidth_used())
4263 return;
4264
4265 if (!tg->parent)
4266 return;
4267
4268 cfs_rq = tg->cfs_rq[cpu];
4269 pcfs_rq = tg->parent->cfs_rq[cpu];
4270
4271 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4272 pcfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4273 }
4274
4275 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4276 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4277 {
4278 if (!cfs_bandwidth_used())
4279 return false;
4280
4281 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4282 return false;
4283
4284 /*
4285 * it's possible for a throttled entity to be forced into a running
4286 * state (e.g. set_curr_task), in this case we're finished.
4287 */
4288 if (cfs_rq_throttled(cfs_rq))
4289 return true;
4290
4291 throttle_cfs_rq(cfs_rq);
4292 return true;
4293 }
4294
4295 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4296 {
4297 struct cfs_bandwidth *cfs_b =
4298 container_of(timer, struct cfs_bandwidth, slack_timer);
4299
4300 do_sched_cfs_slack_timer(cfs_b);
4301
4302 return HRTIMER_NORESTART;
4303 }
4304
4305 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4306 {
4307 struct cfs_bandwidth *cfs_b =
4308 container_of(timer, struct cfs_bandwidth, period_timer);
4309 int overrun;
4310 int idle = 0;
4311
4312 raw_spin_lock(&cfs_b->lock);
4313 for (;;) {
4314 overrun = hrtimer_forward_now(timer, cfs_b->period);
4315 if (!overrun)
4316 break;
4317
4318 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4319 }
4320 if (idle)
4321 cfs_b->period_active = 0;
4322 raw_spin_unlock(&cfs_b->lock);
4323
4324 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4325 }
4326
4327 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4328 {
4329 raw_spin_lock_init(&cfs_b->lock);
4330 cfs_b->runtime = 0;
4331 cfs_b->quota = RUNTIME_INF;
4332 cfs_b->period = ns_to_ktime(default_cfs_period());
4333
4334 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4335 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4336 cfs_b->period_timer.function = sched_cfs_period_timer;
4337 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4338 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4339 }
4340
4341 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4342 {
4343 cfs_rq->runtime_enabled = 0;
4344 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4345 }
4346
4347 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4348 {
4349 lockdep_assert_held(&cfs_b->lock);
4350
4351 if (!cfs_b->period_active) {
4352 cfs_b->period_active = 1;
4353 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4354 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4355 }
4356 }
4357
4358 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4359 {
4360 /* init_cfs_bandwidth() was not called */
4361 if (!cfs_b->throttled_cfs_rq.next)
4362 return;
4363
4364 hrtimer_cancel(&cfs_b->period_timer);
4365 hrtimer_cancel(&cfs_b->slack_timer);
4366 }
4367
4368 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4369 {
4370 struct cfs_rq *cfs_rq;
4371
4372 for_each_leaf_cfs_rq(rq, cfs_rq) {
4373 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4374
4375 raw_spin_lock(&cfs_b->lock);
4376 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4377 raw_spin_unlock(&cfs_b->lock);
4378 }
4379 }
4380
4381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4382 {
4383 struct cfs_rq *cfs_rq;
4384
4385 for_each_leaf_cfs_rq(rq, cfs_rq) {
4386 if (!cfs_rq->runtime_enabled)
4387 continue;
4388
4389 /*
4390 * clock_task is not advancing so we just need to make sure
4391 * there's some valid quota amount
4392 */
4393 cfs_rq->runtime_remaining = 1;
4394 /*
4395 * Offline rq is schedulable till cpu is completely disabled
4396 * in take_cpu_down(), so we prevent new cfs throttling here.
4397 */
4398 cfs_rq->runtime_enabled = 0;
4399
4400 if (cfs_rq_throttled(cfs_rq))
4401 unthrottle_cfs_rq(cfs_rq);
4402 }
4403 }
4404
4405 #else /* CONFIG_CFS_BANDWIDTH */
4406 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4407 {
4408 return rq_clock_task(rq_of(cfs_rq));
4409 }
4410
4411 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4412 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4413 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4414 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4416
4417 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4418 {
4419 return 0;
4420 }
4421
4422 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4423 {
4424 return 0;
4425 }
4426
4427 static inline int throttled_lb_pair(struct task_group *tg,
4428 int src_cpu, int dest_cpu)
4429 {
4430 return 0;
4431 }
4432
4433 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4434
4435 #ifdef CONFIG_FAIR_GROUP_SCHED
4436 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4437 #endif
4438
4439 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4440 {
4441 return NULL;
4442 }
4443 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4444 static inline void update_runtime_enabled(struct rq *rq) {}
4445 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4446
4447 #endif /* CONFIG_CFS_BANDWIDTH */
4448
4449 /**************************************************
4450 * CFS operations on tasks:
4451 */
4452
4453 #ifdef CONFIG_SCHED_HRTICK
4454 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4455 {
4456 struct sched_entity *se = &p->se;
4457 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4458
4459 WARN_ON(task_rq(p) != rq);
4460
4461 if (cfs_rq->nr_running > 1) {
4462 u64 slice = sched_slice(cfs_rq, se);
4463 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4464 s64 delta = slice - ran;
4465
4466 if (delta < 0) {
4467 if (rq->curr == p)
4468 resched_curr(rq);
4469 return;
4470 }
4471 hrtick_start(rq, delta);
4472 }
4473 }
4474
4475 /*
4476 * called from enqueue/dequeue and updates the hrtick when the
4477 * current task is from our class and nr_running is low enough
4478 * to matter.
4479 */
4480 static void hrtick_update(struct rq *rq)
4481 {
4482 struct task_struct *curr = rq->curr;
4483
4484 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4485 return;
4486
4487 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4488 hrtick_start_fair(rq, curr);
4489 }
4490 #else /* !CONFIG_SCHED_HRTICK */
4491 static inline void
4492 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4493 {
4494 }
4495
4496 static inline void hrtick_update(struct rq *rq)
4497 {
4498 }
4499 #endif
4500
4501 /*
4502 * The enqueue_task method is called before nr_running is
4503 * increased. Here we update the fair scheduling stats and
4504 * then put the task into the rbtree:
4505 */
4506 static void
4507 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4508 {
4509 struct cfs_rq *cfs_rq;
4510 struct sched_entity *se = &p->se;
4511
4512 for_each_sched_entity(se) {
4513 if (se->on_rq)
4514 break;
4515 cfs_rq = cfs_rq_of(se);
4516 enqueue_entity(cfs_rq, se, flags);
4517
4518 /*
4519 * end evaluation on encountering a throttled cfs_rq
4520 *
4521 * note: in the case of encountering a throttled cfs_rq we will
4522 * post the final h_nr_running increment below.
4523 */
4524 if (cfs_rq_throttled(cfs_rq))
4525 break;
4526 cfs_rq->h_nr_running++;
4527
4528 flags = ENQUEUE_WAKEUP;
4529 }
4530
4531 for_each_sched_entity(se) {
4532 cfs_rq = cfs_rq_of(se);
4533 cfs_rq->h_nr_running++;
4534
4535 if (cfs_rq_throttled(cfs_rq))
4536 break;
4537
4538 update_load_avg(se, 1);
4539 update_cfs_shares(cfs_rq);
4540 }
4541
4542 if (!se)
4543 add_nr_running(rq, 1);
4544
4545 hrtick_update(rq);
4546 }
4547
4548 static void set_next_buddy(struct sched_entity *se);
4549
4550 /*
4551 * The dequeue_task method is called before nr_running is
4552 * decreased. We remove the task from the rbtree and
4553 * update the fair scheduling stats:
4554 */
4555 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4556 {
4557 struct cfs_rq *cfs_rq;
4558 struct sched_entity *se = &p->se;
4559 int task_sleep = flags & DEQUEUE_SLEEP;
4560
4561 for_each_sched_entity(se) {
4562 cfs_rq = cfs_rq_of(se);
4563 dequeue_entity(cfs_rq, se, flags);
4564
4565 /*
4566 * end evaluation on encountering a throttled cfs_rq
4567 *
4568 * note: in the case of encountering a throttled cfs_rq we will
4569 * post the final h_nr_running decrement below.
4570 */
4571 if (cfs_rq_throttled(cfs_rq))
4572 break;
4573 cfs_rq->h_nr_running--;
4574
4575 /* Don't dequeue parent if it has other entities besides us */
4576 if (cfs_rq->load.weight) {
4577 /* Avoid re-evaluating load for this entity: */
4578 se = parent_entity(se);
4579 /*
4580 * Bias pick_next to pick a task from this cfs_rq, as
4581 * p is sleeping when it is within its sched_slice.
4582 */
4583 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4584 set_next_buddy(se);
4585 break;
4586 }
4587 flags |= DEQUEUE_SLEEP;
4588 }
4589
4590 for_each_sched_entity(se) {
4591 cfs_rq = cfs_rq_of(se);
4592 cfs_rq->h_nr_running--;
4593
4594 if (cfs_rq_throttled(cfs_rq))
4595 break;
4596
4597 update_load_avg(se, 1);
4598 update_cfs_shares(cfs_rq);
4599 }
4600
4601 if (!se)
4602 sub_nr_running(rq, 1);
4603
4604 hrtick_update(rq);
4605 }
4606
4607 #ifdef CONFIG_SMP
4608 #ifdef CONFIG_NO_HZ_COMMON
4609 /*
4610 * per rq 'load' arrray crap; XXX kill this.
4611 */
4612
4613 /*
4614 * The exact cpuload calculated at every tick would be:
4615 *
4616 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4617 *
4618 * If a cpu misses updates for n ticks (as it was idle) and update gets
4619 * called on the n+1-th tick when cpu may be busy, then we have:
4620 *
4621 * load_n = (1 - 1/2^i)^n * load_0
4622 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4623 *
4624 * decay_load_missed() below does efficient calculation of
4625 *
4626 * load' = (1 - 1/2^i)^n * load
4627 *
4628 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4629 * This allows us to precompute the above in said factors, thereby allowing the
4630 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4631 * fixed_power_int())
4632 *
4633 * The calculation is approximated on a 128 point scale.
4634 */
4635 #define DEGRADE_SHIFT 7
4636
4637 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4638 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4639 { 0, 0, 0, 0, 0, 0, 0, 0 },
4640 { 64, 32, 8, 0, 0, 0, 0, 0 },
4641 { 96, 72, 40, 12, 1, 0, 0, 0 },
4642 { 112, 98, 75, 43, 15, 1, 0, 0 },
4643 { 120, 112, 98, 76, 45, 16, 2, 0 }
4644 };
4645
4646 /*
4647 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4648 * would be when CPU is idle and so we just decay the old load without
4649 * adding any new load.
4650 */
4651 static unsigned long
4652 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4653 {
4654 int j = 0;
4655
4656 if (!missed_updates)
4657 return load;
4658
4659 if (missed_updates >= degrade_zero_ticks[idx])
4660 return 0;
4661
4662 if (idx == 1)
4663 return load >> missed_updates;
4664
4665 while (missed_updates) {
4666 if (missed_updates % 2)
4667 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4668
4669 missed_updates >>= 1;
4670 j++;
4671 }
4672 return load;
4673 }
4674 #endif /* CONFIG_NO_HZ_COMMON */
4675
4676 /**
4677 * __cpu_load_update - update the rq->cpu_load[] statistics
4678 * @this_rq: The rq to update statistics for
4679 * @this_load: The current load
4680 * @pending_updates: The number of missed updates
4681 *
4682 * Update rq->cpu_load[] statistics. This function is usually called every
4683 * scheduler tick (TICK_NSEC).
4684 *
4685 * This function computes a decaying average:
4686 *
4687 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4688 *
4689 * Because of NOHZ it might not get called on every tick which gives need for
4690 * the @pending_updates argument.
4691 *
4692 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4693 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4694 * = A * (A * load[i]_n-2 + B) + B
4695 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4696 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4697 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4698 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4699 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4700 *
4701 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4702 * any change in load would have resulted in the tick being turned back on.
4703 *
4704 * For regular NOHZ, this reduces to:
4705 *
4706 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4707 *
4708 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4709 * term.
4710 */
4711 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4712 unsigned long pending_updates)
4713 {
4714 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4715 int i, scale;
4716
4717 this_rq->nr_load_updates++;
4718
4719 /* Update our load: */
4720 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4721 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4722 unsigned long old_load, new_load;
4723
4724 /* scale is effectively 1 << i now, and >> i divides by scale */
4725
4726 old_load = this_rq->cpu_load[i];
4727 #ifdef CONFIG_NO_HZ_COMMON
4728 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4729 if (tickless_load) {
4730 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4731 /*
4732 * old_load can never be a negative value because a
4733 * decayed tickless_load cannot be greater than the
4734 * original tickless_load.
4735 */
4736 old_load += tickless_load;
4737 }
4738 #endif
4739 new_load = this_load;
4740 /*
4741 * Round up the averaging division if load is increasing. This
4742 * prevents us from getting stuck on 9 if the load is 10, for
4743 * example.
4744 */
4745 if (new_load > old_load)
4746 new_load += scale - 1;
4747
4748 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4749 }
4750
4751 sched_avg_update(this_rq);
4752 }
4753
4754 /* Used instead of source_load when we know the type == 0 */
4755 static unsigned long weighted_cpuload(const int cpu)
4756 {
4757 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4758 }
4759
4760 #ifdef CONFIG_NO_HZ_COMMON
4761 /*
4762 * There is no sane way to deal with nohz on smp when using jiffies because the
4763 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4764 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4765 *
4766 * Therefore we need to avoid the delta approach from the regular tick when
4767 * possible since that would seriously skew the load calculation. This is why we
4768 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4769 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4770 * loop exit, nohz_idle_balance, nohz full exit...)
4771 *
4772 * This means we might still be one tick off for nohz periods.
4773 */
4774
4775 static void cpu_load_update_nohz(struct rq *this_rq,
4776 unsigned long curr_jiffies,
4777 unsigned long load)
4778 {
4779 unsigned long pending_updates;
4780
4781 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4782 if (pending_updates) {
4783 this_rq->last_load_update_tick = curr_jiffies;
4784 /*
4785 * In the regular NOHZ case, we were idle, this means load 0.
4786 * In the NOHZ_FULL case, we were non-idle, we should consider
4787 * its weighted load.
4788 */
4789 cpu_load_update(this_rq, load, pending_updates);
4790 }
4791 }
4792
4793 /*
4794 * Called from nohz_idle_balance() to update the load ratings before doing the
4795 * idle balance.
4796 */
4797 static void cpu_load_update_idle(struct rq *this_rq)
4798 {
4799 /*
4800 * bail if there's load or we're actually up-to-date.
4801 */
4802 if (weighted_cpuload(cpu_of(this_rq)))
4803 return;
4804
4805 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4806 }
4807
4808 /*
4809 * Record CPU load on nohz entry so we know the tickless load to account
4810 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4811 * than other cpu_load[idx] but it should be fine as cpu_load readers
4812 * shouldn't rely into synchronized cpu_load[*] updates.
4813 */
4814 void cpu_load_update_nohz_start(void)
4815 {
4816 struct rq *this_rq = this_rq();
4817
4818 /*
4819 * This is all lockless but should be fine. If weighted_cpuload changes
4820 * concurrently we'll exit nohz. And cpu_load write can race with
4821 * cpu_load_update_idle() but both updater would be writing the same.
4822 */
4823 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4824 }
4825
4826 /*
4827 * Account the tickless load in the end of a nohz frame.
4828 */
4829 void cpu_load_update_nohz_stop(void)
4830 {
4831 unsigned long curr_jiffies = READ_ONCE(jiffies);
4832 struct rq *this_rq = this_rq();
4833 unsigned long load;
4834
4835 if (curr_jiffies == this_rq->last_load_update_tick)
4836 return;
4837
4838 load = weighted_cpuload(cpu_of(this_rq));
4839 raw_spin_lock(&this_rq->lock);
4840 update_rq_clock(this_rq);
4841 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4842 raw_spin_unlock(&this_rq->lock);
4843 }
4844 #else /* !CONFIG_NO_HZ_COMMON */
4845 static inline void cpu_load_update_nohz(struct rq *this_rq,
4846 unsigned long curr_jiffies,
4847 unsigned long load) { }
4848 #endif /* CONFIG_NO_HZ_COMMON */
4849
4850 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4851 {
4852 #ifdef CONFIG_NO_HZ_COMMON
4853 /* See the mess around cpu_load_update_nohz(). */
4854 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4855 #endif
4856 cpu_load_update(this_rq, load, 1);
4857 }
4858
4859 /*
4860 * Called from scheduler_tick()
4861 */
4862 void cpu_load_update_active(struct rq *this_rq)
4863 {
4864 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4865
4866 if (tick_nohz_tick_stopped())
4867 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4868 else
4869 cpu_load_update_periodic(this_rq, load);
4870 }
4871
4872 /*
4873 * Return a low guess at the load of a migration-source cpu weighted
4874 * according to the scheduling class and "nice" value.
4875 *
4876 * We want to under-estimate the load of migration sources, to
4877 * balance conservatively.
4878 */
4879 static unsigned long source_load(int cpu, int type)
4880 {
4881 struct rq *rq = cpu_rq(cpu);
4882 unsigned long total = weighted_cpuload(cpu);
4883
4884 if (type == 0 || !sched_feat(LB_BIAS))
4885 return total;
4886
4887 return min(rq->cpu_load[type-1], total);
4888 }
4889
4890 /*
4891 * Return a high guess at the load of a migration-target cpu weighted
4892 * according to the scheduling class and "nice" value.
4893 */
4894 static unsigned long target_load(int cpu, int type)
4895 {
4896 struct rq *rq = cpu_rq(cpu);
4897 unsigned long total = weighted_cpuload(cpu);
4898
4899 if (type == 0 || !sched_feat(LB_BIAS))
4900 return total;
4901
4902 return max(rq->cpu_load[type-1], total);
4903 }
4904
4905 static unsigned long capacity_of(int cpu)
4906 {
4907 return cpu_rq(cpu)->cpu_capacity;
4908 }
4909
4910 static unsigned long capacity_orig_of(int cpu)
4911 {
4912 return cpu_rq(cpu)->cpu_capacity_orig;
4913 }
4914
4915 static unsigned long cpu_avg_load_per_task(int cpu)
4916 {
4917 struct rq *rq = cpu_rq(cpu);
4918 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4919 unsigned long load_avg = weighted_cpuload(cpu);
4920
4921 if (nr_running)
4922 return load_avg / nr_running;
4923
4924 return 0;
4925 }
4926
4927 #ifdef CONFIG_FAIR_GROUP_SCHED
4928 /*
4929 * effective_load() calculates the load change as seen from the root_task_group
4930 *
4931 * Adding load to a group doesn't make a group heavier, but can cause movement
4932 * of group shares between cpus. Assuming the shares were perfectly aligned one
4933 * can calculate the shift in shares.
4934 *
4935 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4936 * on this @cpu and results in a total addition (subtraction) of @wg to the
4937 * total group weight.
4938 *
4939 * Given a runqueue weight distribution (rw_i) we can compute a shares
4940 * distribution (s_i) using:
4941 *
4942 * s_i = rw_i / \Sum rw_j (1)
4943 *
4944 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4945 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4946 * shares distribution (s_i):
4947 *
4948 * rw_i = { 2, 4, 1, 0 }
4949 * s_i = { 2/7, 4/7, 1/7, 0 }
4950 *
4951 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4952 * task used to run on and the CPU the waker is running on), we need to
4953 * compute the effect of waking a task on either CPU and, in case of a sync
4954 * wakeup, compute the effect of the current task going to sleep.
4955 *
4956 * So for a change of @wl to the local @cpu with an overall group weight change
4957 * of @wl we can compute the new shares distribution (s'_i) using:
4958 *
4959 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4960 *
4961 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4962 * differences in waking a task to CPU 0. The additional task changes the
4963 * weight and shares distributions like:
4964 *
4965 * rw'_i = { 3, 4, 1, 0 }
4966 * s'_i = { 3/8, 4/8, 1/8, 0 }
4967 *
4968 * We can then compute the difference in effective weight by using:
4969 *
4970 * dw_i = S * (s'_i - s_i) (3)
4971 *
4972 * Where 'S' is the group weight as seen by its parent.
4973 *
4974 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4975 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4976 * 4/7) times the weight of the group.
4977 */
4978 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4979 {
4980 struct sched_entity *se = tg->se[cpu];
4981
4982 if (!tg->parent) /* the trivial, non-cgroup case */
4983 return wl;
4984
4985 for_each_sched_entity(se) {
4986 struct cfs_rq *cfs_rq = se->my_q;
4987 long W, w = cfs_rq_load_avg(cfs_rq);
4988
4989 tg = cfs_rq->tg;
4990
4991 /*
4992 * W = @wg + \Sum rw_j
4993 */
4994 W = wg + atomic_long_read(&tg->load_avg);
4995
4996 /* Ensure \Sum rw_j >= rw_i */
4997 W -= cfs_rq->tg_load_avg_contrib;
4998 W += w;
4999
5000 /*
5001 * w = rw_i + @wl
5002 */
5003 w += wl;
5004
5005 /*
5006 * wl = S * s'_i; see (2)
5007 */
5008 if (W > 0 && w < W)
5009 wl = (w * (long)tg->shares) / W;
5010 else
5011 wl = tg->shares;
5012
5013 /*
5014 * Per the above, wl is the new se->load.weight value; since
5015 * those are clipped to [MIN_SHARES, ...) do so now. See
5016 * calc_cfs_shares().
5017 */
5018 if (wl < MIN_SHARES)
5019 wl = MIN_SHARES;
5020
5021 /*
5022 * wl = dw_i = S * (s'_i - s_i); see (3)
5023 */
5024 wl -= se->avg.load_avg;
5025
5026 /*
5027 * Recursively apply this logic to all parent groups to compute
5028 * the final effective load change on the root group. Since
5029 * only the @tg group gets extra weight, all parent groups can
5030 * only redistribute existing shares. @wl is the shift in shares
5031 * resulting from this level per the above.
5032 */
5033 wg = 0;
5034 }
5035
5036 return wl;
5037 }
5038 #else
5039
5040 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5041 {
5042 return wl;
5043 }
5044
5045 #endif
5046
5047 static void record_wakee(struct task_struct *p)
5048 {
5049 /*
5050 * Only decay a single time; tasks that have less then 1 wakeup per
5051 * jiffy will not have built up many flips.
5052 */
5053 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5054 current->wakee_flips >>= 1;
5055 current->wakee_flip_decay_ts = jiffies;
5056 }
5057
5058 if (current->last_wakee != p) {
5059 current->last_wakee = p;
5060 current->wakee_flips++;
5061 }
5062 }
5063
5064 /*
5065 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5066 *
5067 * A waker of many should wake a different task than the one last awakened
5068 * at a frequency roughly N times higher than one of its wakees.
5069 *
5070 * In order to determine whether we should let the load spread vs consolidating
5071 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5072 * partner, and a factor of lls_size higher frequency in the other.
5073 *
5074 * With both conditions met, we can be relatively sure that the relationship is
5075 * non-monogamous, with partner count exceeding socket size.
5076 *
5077 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5078 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5079 * socket size.
5080 */
5081 static int wake_wide(struct task_struct *p)
5082 {
5083 unsigned int master = current->wakee_flips;
5084 unsigned int slave = p->wakee_flips;
5085 int factor = this_cpu_read(sd_llc_size);
5086
5087 if (master < slave)
5088 swap(master, slave);
5089 if (slave < factor || master < slave * factor)
5090 return 0;
5091 return 1;
5092 }
5093
5094 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5095 {
5096 s64 this_load, load;
5097 s64 this_eff_load, prev_eff_load;
5098 int idx, this_cpu, prev_cpu;
5099 struct task_group *tg;
5100 unsigned long weight;
5101 int balanced;
5102
5103 idx = sd->wake_idx;
5104 this_cpu = smp_processor_id();
5105 prev_cpu = task_cpu(p);
5106 load = source_load(prev_cpu, idx);
5107 this_load = target_load(this_cpu, idx);
5108
5109 /*
5110 * If sync wakeup then subtract the (maximum possible)
5111 * effect of the currently running task from the load
5112 * of the current CPU:
5113 */
5114 if (sync) {
5115 tg = task_group(current);
5116 weight = current->se.avg.load_avg;
5117
5118 this_load += effective_load(tg, this_cpu, -weight, -weight);
5119 load += effective_load(tg, prev_cpu, 0, -weight);
5120 }
5121
5122 tg = task_group(p);
5123 weight = p->se.avg.load_avg;
5124
5125 /*
5126 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5127 * due to the sync cause above having dropped this_load to 0, we'll
5128 * always have an imbalance, but there's really nothing you can do
5129 * about that, so that's good too.
5130 *
5131 * Otherwise check if either cpus are near enough in load to allow this
5132 * task to be woken on this_cpu.
5133 */
5134 this_eff_load = 100;
5135 this_eff_load *= capacity_of(prev_cpu);
5136
5137 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5138 prev_eff_load *= capacity_of(this_cpu);
5139
5140 if (this_load > 0) {
5141 this_eff_load *= this_load +
5142 effective_load(tg, this_cpu, weight, weight);
5143
5144 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5145 }
5146
5147 balanced = this_eff_load <= prev_eff_load;
5148
5149 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5150
5151 if (!balanced)
5152 return 0;
5153
5154 schedstat_inc(sd, ttwu_move_affine);
5155 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5156
5157 return 1;
5158 }
5159
5160 /*
5161 * find_idlest_group finds and returns the least busy CPU group within the
5162 * domain.
5163 */
5164 static struct sched_group *
5165 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5166 int this_cpu, int sd_flag)
5167 {
5168 struct sched_group *idlest = NULL, *group = sd->groups;
5169 unsigned long min_load = ULONG_MAX, this_load = 0;
5170 int load_idx = sd->forkexec_idx;
5171 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5172
5173 if (sd_flag & SD_BALANCE_WAKE)
5174 load_idx = sd->wake_idx;
5175
5176 do {
5177 unsigned long load, avg_load;
5178 int local_group;
5179 int i;
5180
5181 /* Skip over this group if it has no CPUs allowed */
5182 if (!cpumask_intersects(sched_group_cpus(group),
5183 tsk_cpus_allowed(p)))
5184 continue;
5185
5186 local_group = cpumask_test_cpu(this_cpu,
5187 sched_group_cpus(group));
5188
5189 /* Tally up the load of all CPUs in the group */
5190 avg_load = 0;
5191
5192 for_each_cpu(i, sched_group_cpus(group)) {
5193 /* Bias balancing toward cpus of our domain */
5194 if (local_group)
5195 load = source_load(i, load_idx);
5196 else
5197 load = target_load(i, load_idx);
5198
5199 avg_load += load;
5200 }
5201
5202 /* Adjust by relative CPU capacity of the group */
5203 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5204
5205 if (local_group) {
5206 this_load = avg_load;
5207 } else if (avg_load < min_load) {
5208 min_load = avg_load;
5209 idlest = group;
5210 }
5211 } while (group = group->next, group != sd->groups);
5212
5213 if (!idlest || 100*this_load < imbalance*min_load)
5214 return NULL;
5215 return idlest;
5216 }
5217
5218 /*
5219 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5220 */
5221 static int
5222 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5223 {
5224 unsigned long load, min_load = ULONG_MAX;
5225 unsigned int min_exit_latency = UINT_MAX;
5226 u64 latest_idle_timestamp = 0;
5227 int least_loaded_cpu = this_cpu;
5228 int shallowest_idle_cpu = -1;
5229 int i;
5230
5231 /* Traverse only the allowed CPUs */
5232 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5233 if (idle_cpu(i)) {
5234 struct rq *rq = cpu_rq(i);
5235 struct cpuidle_state *idle = idle_get_state(rq);
5236 if (idle && idle->exit_latency < min_exit_latency) {
5237 /*
5238 * We give priority to a CPU whose idle state
5239 * has the smallest exit latency irrespective
5240 * of any idle timestamp.
5241 */
5242 min_exit_latency = idle->exit_latency;
5243 latest_idle_timestamp = rq->idle_stamp;
5244 shallowest_idle_cpu = i;
5245 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5246 rq->idle_stamp > latest_idle_timestamp) {
5247 /*
5248 * If equal or no active idle state, then
5249 * the most recently idled CPU might have
5250 * a warmer cache.
5251 */
5252 latest_idle_timestamp = rq->idle_stamp;
5253 shallowest_idle_cpu = i;
5254 }
5255 } else if (shallowest_idle_cpu == -1) {
5256 load = weighted_cpuload(i);
5257 if (load < min_load || (load == min_load && i == this_cpu)) {
5258 min_load = load;
5259 least_loaded_cpu = i;
5260 }
5261 }
5262 }
5263
5264 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5265 }
5266
5267 /*
5268 * Try and locate an idle CPU in the sched_domain.
5269 */
5270 static int select_idle_sibling(struct task_struct *p, int target)
5271 {
5272 struct sched_domain *sd;
5273 struct sched_group *sg;
5274 int i = task_cpu(p);
5275
5276 if (idle_cpu(target))
5277 return target;
5278
5279 /*
5280 * If the prevous cpu is cache affine and idle, don't be stupid.
5281 */
5282 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5283 return i;
5284
5285 /*
5286 * Otherwise, iterate the domains and find an eligible idle cpu.
5287 *
5288 * A completely idle sched group at higher domains is more
5289 * desirable than an idle group at a lower level, because lower
5290 * domains have smaller groups and usually share hardware
5291 * resources which causes tasks to contend on them, e.g. x86
5292 * hyperthread siblings in the lowest domain (SMT) can contend
5293 * on the shared cpu pipeline.
5294 *
5295 * However, while we prefer idle groups at higher domains
5296 * finding an idle cpu at the lowest domain is still better than
5297 * returning 'target', which we've already established, isn't
5298 * idle.
5299 */
5300 sd = rcu_dereference(per_cpu(sd_llc, target));
5301 for_each_lower_domain(sd) {
5302 sg = sd->groups;
5303 do {
5304 if (!cpumask_intersects(sched_group_cpus(sg),
5305 tsk_cpus_allowed(p)))
5306 goto next;
5307
5308 /* Ensure the entire group is idle */
5309 for_each_cpu(i, sched_group_cpus(sg)) {
5310 if (i == target || !idle_cpu(i))
5311 goto next;
5312 }
5313
5314 /*
5315 * It doesn't matter which cpu we pick, the
5316 * whole group is idle.
5317 */
5318 target = cpumask_first_and(sched_group_cpus(sg),
5319 tsk_cpus_allowed(p));
5320 goto done;
5321 next:
5322 sg = sg->next;
5323 } while (sg != sd->groups);
5324 }
5325 done:
5326 return target;
5327 }
5328
5329 /*
5330 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5331 * tasks. The unit of the return value must be the one of capacity so we can
5332 * compare the utilization with the capacity of the CPU that is available for
5333 * CFS task (ie cpu_capacity).
5334 *
5335 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5336 * recent utilization of currently non-runnable tasks on a CPU. It represents
5337 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5338 * capacity_orig is the cpu_capacity available at the highest frequency
5339 * (arch_scale_freq_capacity()).
5340 * The utilization of a CPU converges towards a sum equal to or less than the
5341 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5342 * the running time on this CPU scaled by capacity_curr.
5343 *
5344 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5345 * higher than capacity_orig because of unfortunate rounding in
5346 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5347 * the average stabilizes with the new running time. We need to check that the
5348 * utilization stays within the range of [0..capacity_orig] and cap it if
5349 * necessary. Without utilization capping, a group could be seen as overloaded
5350 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5351 * available capacity. We allow utilization to overshoot capacity_curr (but not
5352 * capacity_orig) as it useful for predicting the capacity required after task
5353 * migrations (scheduler-driven DVFS).
5354 */
5355 static int cpu_util(int cpu)
5356 {
5357 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5358 unsigned long capacity = capacity_orig_of(cpu);
5359
5360 return (util >= capacity) ? capacity : util;
5361 }
5362
5363 /*
5364 * select_task_rq_fair: Select target runqueue for the waking task in domains
5365 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5366 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5367 *
5368 * Balances load by selecting the idlest cpu in the idlest group, or under
5369 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5370 *
5371 * Returns the target cpu number.
5372 *
5373 * preempt must be disabled.
5374 */
5375 static int
5376 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5377 {
5378 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5379 int cpu = smp_processor_id();
5380 int new_cpu = prev_cpu;
5381 int want_affine = 0;
5382 int sync = wake_flags & WF_SYNC;
5383
5384 if (sd_flag & SD_BALANCE_WAKE) {
5385 record_wakee(p);
5386 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5387 }
5388
5389 rcu_read_lock();
5390 for_each_domain(cpu, tmp) {
5391 if (!(tmp->flags & SD_LOAD_BALANCE))
5392 break;
5393
5394 /*
5395 * If both cpu and prev_cpu are part of this domain,
5396 * cpu is a valid SD_WAKE_AFFINE target.
5397 */
5398 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5399 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5400 affine_sd = tmp;
5401 break;
5402 }
5403
5404 if (tmp->flags & sd_flag)
5405 sd = tmp;
5406 else if (!want_affine)
5407 break;
5408 }
5409
5410 if (affine_sd) {
5411 sd = NULL; /* Prefer wake_affine over balance flags */
5412 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5413 new_cpu = cpu;
5414 }
5415
5416 if (!sd) {
5417 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5418 new_cpu = select_idle_sibling(p, new_cpu);
5419
5420 } else while (sd) {
5421 struct sched_group *group;
5422 int weight;
5423
5424 if (!(sd->flags & sd_flag)) {
5425 sd = sd->child;
5426 continue;
5427 }
5428
5429 group = find_idlest_group(sd, p, cpu, sd_flag);
5430 if (!group) {
5431 sd = sd->child;
5432 continue;
5433 }
5434
5435 new_cpu = find_idlest_cpu(group, p, cpu);
5436 if (new_cpu == -1 || new_cpu == cpu) {
5437 /* Now try balancing at a lower domain level of cpu */
5438 sd = sd->child;
5439 continue;
5440 }
5441
5442 /* Now try balancing at a lower domain level of new_cpu */
5443 cpu = new_cpu;
5444 weight = sd->span_weight;
5445 sd = NULL;
5446 for_each_domain(cpu, tmp) {
5447 if (weight <= tmp->span_weight)
5448 break;
5449 if (tmp->flags & sd_flag)
5450 sd = tmp;
5451 }
5452 /* while loop will break here if sd == NULL */
5453 }
5454 rcu_read_unlock();
5455
5456 return new_cpu;
5457 }
5458
5459 /*
5460 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5461 * cfs_rq_of(p) references at time of call are still valid and identify the
5462 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5463 */
5464 static void migrate_task_rq_fair(struct task_struct *p)
5465 {
5466 /*
5467 * As blocked tasks retain absolute vruntime the migration needs to
5468 * deal with this by subtracting the old and adding the new
5469 * min_vruntime -- the latter is done by enqueue_entity() when placing
5470 * the task on the new runqueue.
5471 */
5472 if (p->state == TASK_WAKING) {
5473 struct sched_entity *se = &p->se;
5474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5475 u64 min_vruntime;
5476
5477 #ifndef CONFIG_64BIT
5478 u64 min_vruntime_copy;
5479
5480 do {
5481 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5482 smp_rmb();
5483 min_vruntime = cfs_rq->min_vruntime;
5484 } while (min_vruntime != min_vruntime_copy);
5485 #else
5486 min_vruntime = cfs_rq->min_vruntime;
5487 #endif
5488
5489 se->vruntime -= min_vruntime;
5490 }
5491
5492 /*
5493 * We are supposed to update the task to "current" time, then its up to date
5494 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5495 * what current time is, so simply throw away the out-of-date time. This
5496 * will result in the wakee task is less decayed, but giving the wakee more
5497 * load sounds not bad.
5498 */
5499 remove_entity_load_avg(&p->se);
5500
5501 /* Tell new CPU we are migrated */
5502 p->se.avg.last_update_time = 0;
5503
5504 /* We have migrated, no longer consider this task hot */
5505 p->se.exec_start = 0;
5506 }
5507
5508 static void task_dead_fair(struct task_struct *p)
5509 {
5510 remove_entity_load_avg(&p->se);
5511 }
5512 #endif /* CONFIG_SMP */
5513
5514 static unsigned long
5515 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5516 {
5517 unsigned long gran = sysctl_sched_wakeup_granularity;
5518
5519 /*
5520 * Since its curr running now, convert the gran from real-time
5521 * to virtual-time in his units.
5522 *
5523 * By using 'se' instead of 'curr' we penalize light tasks, so
5524 * they get preempted easier. That is, if 'se' < 'curr' then
5525 * the resulting gran will be larger, therefore penalizing the
5526 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5527 * be smaller, again penalizing the lighter task.
5528 *
5529 * This is especially important for buddies when the leftmost
5530 * task is higher priority than the buddy.
5531 */
5532 return calc_delta_fair(gran, se);
5533 }
5534
5535 /*
5536 * Should 'se' preempt 'curr'.
5537 *
5538 * |s1
5539 * |s2
5540 * |s3
5541 * g
5542 * |<--->|c
5543 *
5544 * w(c, s1) = -1
5545 * w(c, s2) = 0
5546 * w(c, s3) = 1
5547 *
5548 */
5549 static int
5550 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5551 {
5552 s64 gran, vdiff = curr->vruntime - se->vruntime;
5553
5554 if (vdiff <= 0)
5555 return -1;
5556
5557 gran = wakeup_gran(curr, se);
5558 if (vdiff > gran)
5559 return 1;
5560
5561 return 0;
5562 }
5563
5564 static void set_last_buddy(struct sched_entity *se)
5565 {
5566 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5567 return;
5568
5569 for_each_sched_entity(se)
5570 cfs_rq_of(se)->last = se;
5571 }
5572
5573 static void set_next_buddy(struct sched_entity *se)
5574 {
5575 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5576 return;
5577
5578 for_each_sched_entity(se)
5579 cfs_rq_of(se)->next = se;
5580 }
5581
5582 static void set_skip_buddy(struct sched_entity *se)
5583 {
5584 for_each_sched_entity(se)
5585 cfs_rq_of(se)->skip = se;
5586 }
5587
5588 /*
5589 * Preempt the current task with a newly woken task if needed:
5590 */
5591 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5592 {
5593 struct task_struct *curr = rq->curr;
5594 struct sched_entity *se = &curr->se, *pse = &p->se;
5595 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596 int scale = cfs_rq->nr_running >= sched_nr_latency;
5597 int next_buddy_marked = 0;
5598
5599 if (unlikely(se == pse))
5600 return;
5601
5602 /*
5603 * This is possible from callers such as attach_tasks(), in which we
5604 * unconditionally check_prempt_curr() after an enqueue (which may have
5605 * lead to a throttle). This both saves work and prevents false
5606 * next-buddy nomination below.
5607 */
5608 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5609 return;
5610
5611 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5612 set_next_buddy(pse);
5613 next_buddy_marked = 1;
5614 }
5615
5616 /*
5617 * We can come here with TIF_NEED_RESCHED already set from new task
5618 * wake up path.
5619 *
5620 * Note: this also catches the edge-case of curr being in a throttled
5621 * group (e.g. via set_curr_task), since update_curr() (in the
5622 * enqueue of curr) will have resulted in resched being set. This
5623 * prevents us from potentially nominating it as a false LAST_BUDDY
5624 * below.
5625 */
5626 if (test_tsk_need_resched(curr))
5627 return;
5628
5629 /* Idle tasks are by definition preempted by non-idle tasks. */
5630 if (unlikely(curr->policy == SCHED_IDLE) &&
5631 likely(p->policy != SCHED_IDLE))
5632 goto preempt;
5633
5634 /*
5635 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5636 * is driven by the tick):
5637 */
5638 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5639 return;
5640
5641 find_matching_se(&se, &pse);
5642 update_curr(cfs_rq_of(se));
5643 BUG_ON(!pse);
5644 if (wakeup_preempt_entity(se, pse) == 1) {
5645 /*
5646 * Bias pick_next to pick the sched entity that is
5647 * triggering this preemption.
5648 */
5649 if (!next_buddy_marked)
5650 set_next_buddy(pse);
5651 goto preempt;
5652 }
5653
5654 return;
5655
5656 preempt:
5657 resched_curr(rq);
5658 /*
5659 * Only set the backward buddy when the current task is still
5660 * on the rq. This can happen when a wakeup gets interleaved
5661 * with schedule on the ->pre_schedule() or idle_balance()
5662 * point, either of which can * drop the rq lock.
5663 *
5664 * Also, during early boot the idle thread is in the fair class,
5665 * for obvious reasons its a bad idea to schedule back to it.
5666 */
5667 if (unlikely(!se->on_rq || curr == rq->idle))
5668 return;
5669
5670 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5671 set_last_buddy(se);
5672 }
5673
5674 static struct task_struct *
5675 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5676 {
5677 struct cfs_rq *cfs_rq = &rq->cfs;
5678 struct sched_entity *se;
5679 struct task_struct *p;
5680 int new_tasks;
5681
5682 again:
5683 #ifdef CONFIG_FAIR_GROUP_SCHED
5684 if (!cfs_rq->nr_running)
5685 goto idle;
5686
5687 if (prev->sched_class != &fair_sched_class)
5688 goto simple;
5689
5690 /*
5691 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5692 * likely that a next task is from the same cgroup as the current.
5693 *
5694 * Therefore attempt to avoid putting and setting the entire cgroup
5695 * hierarchy, only change the part that actually changes.
5696 */
5697
5698 do {
5699 struct sched_entity *curr = cfs_rq->curr;
5700
5701 /*
5702 * Since we got here without doing put_prev_entity() we also
5703 * have to consider cfs_rq->curr. If it is still a runnable
5704 * entity, update_curr() will update its vruntime, otherwise
5705 * forget we've ever seen it.
5706 */
5707 if (curr) {
5708 if (curr->on_rq)
5709 update_curr(cfs_rq);
5710 else
5711 curr = NULL;
5712
5713 /*
5714 * This call to check_cfs_rq_runtime() will do the
5715 * throttle and dequeue its entity in the parent(s).
5716 * Therefore the 'simple' nr_running test will indeed
5717 * be correct.
5718 */
5719 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5720 goto simple;
5721 }
5722
5723 se = pick_next_entity(cfs_rq, curr);
5724 cfs_rq = group_cfs_rq(se);
5725 } while (cfs_rq);
5726
5727 p = task_of(se);
5728
5729 /*
5730 * Since we haven't yet done put_prev_entity and if the selected task
5731 * is a different task than we started out with, try and touch the
5732 * least amount of cfs_rqs.
5733 */
5734 if (prev != p) {
5735 struct sched_entity *pse = &prev->se;
5736
5737 while (!(cfs_rq = is_same_group(se, pse))) {
5738 int se_depth = se->depth;
5739 int pse_depth = pse->depth;
5740
5741 if (se_depth <= pse_depth) {
5742 put_prev_entity(cfs_rq_of(pse), pse);
5743 pse = parent_entity(pse);
5744 }
5745 if (se_depth >= pse_depth) {
5746 set_next_entity(cfs_rq_of(se), se);
5747 se = parent_entity(se);
5748 }
5749 }
5750
5751 put_prev_entity(cfs_rq, pse);
5752 set_next_entity(cfs_rq, se);
5753 }
5754
5755 if (hrtick_enabled(rq))
5756 hrtick_start_fair(rq, p);
5757
5758 return p;
5759 simple:
5760 cfs_rq = &rq->cfs;
5761 #endif
5762
5763 if (!cfs_rq->nr_running)
5764 goto idle;
5765
5766 put_prev_task(rq, prev);
5767
5768 do {
5769 se = pick_next_entity(cfs_rq, NULL);
5770 set_next_entity(cfs_rq, se);
5771 cfs_rq = group_cfs_rq(se);
5772 } while (cfs_rq);
5773
5774 p = task_of(se);
5775
5776 if (hrtick_enabled(rq))
5777 hrtick_start_fair(rq, p);
5778
5779 return p;
5780
5781 idle:
5782 /*
5783 * This is OK, because current is on_cpu, which avoids it being picked
5784 * for load-balance and preemption/IRQs are still disabled avoiding
5785 * further scheduler activity on it and we're being very careful to
5786 * re-start the picking loop.
5787 */
5788 lockdep_unpin_lock(&rq->lock, cookie);
5789 new_tasks = idle_balance(rq);
5790 lockdep_repin_lock(&rq->lock, cookie);
5791 /*
5792 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5793 * possible for any higher priority task to appear. In that case we
5794 * must re-start the pick_next_entity() loop.
5795 */
5796 if (new_tasks < 0)
5797 return RETRY_TASK;
5798
5799 if (new_tasks > 0)
5800 goto again;
5801
5802 return NULL;
5803 }
5804
5805 /*
5806 * Account for a descheduled task:
5807 */
5808 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5809 {
5810 struct sched_entity *se = &prev->se;
5811 struct cfs_rq *cfs_rq;
5812
5813 for_each_sched_entity(se) {
5814 cfs_rq = cfs_rq_of(se);
5815 put_prev_entity(cfs_rq, se);
5816 }
5817 }
5818
5819 /*
5820 * sched_yield() is very simple
5821 *
5822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5823 */
5824 static void yield_task_fair(struct rq *rq)
5825 {
5826 struct task_struct *curr = rq->curr;
5827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5828 struct sched_entity *se = &curr->se;
5829
5830 /*
5831 * Are we the only task in the tree?
5832 */
5833 if (unlikely(rq->nr_running == 1))
5834 return;
5835
5836 clear_buddies(cfs_rq, se);
5837
5838 if (curr->policy != SCHED_BATCH) {
5839 update_rq_clock(rq);
5840 /*
5841 * Update run-time statistics of the 'current'.
5842 */
5843 update_curr(cfs_rq);
5844 /*
5845 * Tell update_rq_clock() that we've just updated,
5846 * so we don't do microscopic update in schedule()
5847 * and double the fastpath cost.
5848 */
5849 rq_clock_skip_update(rq, true);
5850 }
5851
5852 set_skip_buddy(se);
5853 }
5854
5855 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5856 {
5857 struct sched_entity *se = &p->se;
5858
5859 /* throttled hierarchies are not runnable */
5860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5861 return false;
5862
5863 /* Tell the scheduler that we'd really like pse to run next. */
5864 set_next_buddy(se);
5865
5866 yield_task_fair(rq);
5867
5868 return true;
5869 }
5870
5871 #ifdef CONFIG_SMP
5872 /**************************************************
5873 * Fair scheduling class load-balancing methods.
5874 *
5875 * BASICS
5876 *
5877 * The purpose of load-balancing is to achieve the same basic fairness the
5878 * per-cpu scheduler provides, namely provide a proportional amount of compute
5879 * time to each task. This is expressed in the following equation:
5880 *
5881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5882 *
5883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5884 * W_i,0 is defined as:
5885 *
5886 * W_i,0 = \Sum_j w_i,j (2)
5887 *
5888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5889 * is derived from the nice value as per sched_prio_to_weight[].
5890 *
5891 * The weight average is an exponential decay average of the instantaneous
5892 * weight:
5893 *
5894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5895 *
5896 * C_i is the compute capacity of cpu i, typically it is the
5897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5898 * can also include other factors [XXX].
5899 *
5900 * To achieve this balance we define a measure of imbalance which follows
5901 * directly from (1):
5902 *
5903 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5904 *
5905 * We them move tasks around to minimize the imbalance. In the continuous
5906 * function space it is obvious this converges, in the discrete case we get
5907 * a few fun cases generally called infeasible weight scenarios.
5908 *
5909 * [XXX expand on:
5910 * - infeasible weights;
5911 * - local vs global optima in the discrete case. ]
5912 *
5913 *
5914 * SCHED DOMAINS
5915 *
5916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5917 * for all i,j solution, we create a tree of cpus that follows the hardware
5918 * topology where each level pairs two lower groups (or better). This results
5919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5920 * tree to only the first of the previous level and we decrease the frequency
5921 * of load-balance at each level inv. proportional to the number of cpus in
5922 * the groups.
5923 *
5924 * This yields:
5925 *
5926 * log_2 n 1 n
5927 * \Sum { --- * --- * 2^i } = O(n) (5)
5928 * i = 0 2^i 2^i
5929 * `- size of each group
5930 * | | `- number of cpus doing load-balance
5931 * | `- freq
5932 * `- sum over all levels
5933 *
5934 * Coupled with a limit on how many tasks we can migrate every balance pass,
5935 * this makes (5) the runtime complexity of the balancer.
5936 *
5937 * An important property here is that each CPU is still (indirectly) connected
5938 * to every other cpu in at most O(log n) steps:
5939 *
5940 * The adjacency matrix of the resulting graph is given by:
5941 *
5942 * log_2 n
5943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5944 * k = 0
5945 *
5946 * And you'll find that:
5947 *
5948 * A^(log_2 n)_i,j != 0 for all i,j (7)
5949 *
5950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5951 * The task movement gives a factor of O(m), giving a convergence complexity
5952 * of:
5953 *
5954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5955 *
5956 *
5957 * WORK CONSERVING
5958 *
5959 * In order to avoid CPUs going idle while there's still work to do, new idle
5960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5961 * tree itself instead of relying on other CPUs to bring it work.
5962 *
5963 * This adds some complexity to both (5) and (8) but it reduces the total idle
5964 * time.
5965 *
5966 * [XXX more?]
5967 *
5968 *
5969 * CGROUPS
5970 *
5971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5972 *
5973 * s_k,i
5974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5975 * S_k
5976 *
5977 * Where
5978 *
5979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5980 *
5981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5982 *
5983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5984 * property.
5985 *
5986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5987 * rewrite all of this once again.]
5988 */
5989
5990 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5991
5992 enum fbq_type { regular, remote, all };
5993
5994 #define LBF_ALL_PINNED 0x01
5995 #define LBF_NEED_BREAK 0x02
5996 #define LBF_DST_PINNED 0x04
5997 #define LBF_SOME_PINNED 0x08
5998
5999 struct lb_env {
6000 struct sched_domain *sd;
6001
6002 struct rq *src_rq;
6003 int src_cpu;
6004
6005 int dst_cpu;
6006 struct rq *dst_rq;
6007
6008 struct cpumask *dst_grpmask;
6009 int new_dst_cpu;
6010 enum cpu_idle_type idle;
6011 long imbalance;
6012 /* The set of CPUs under consideration for load-balancing */
6013 struct cpumask *cpus;
6014
6015 unsigned int flags;
6016
6017 unsigned int loop;
6018 unsigned int loop_break;
6019 unsigned int loop_max;
6020
6021 enum fbq_type fbq_type;
6022 struct list_head tasks;
6023 };
6024
6025 /*
6026 * Is this task likely cache-hot:
6027 */
6028 static int task_hot(struct task_struct *p, struct lb_env *env)
6029 {
6030 s64 delta;
6031
6032 lockdep_assert_held(&env->src_rq->lock);
6033
6034 if (p->sched_class != &fair_sched_class)
6035 return 0;
6036
6037 if (unlikely(p->policy == SCHED_IDLE))
6038 return 0;
6039
6040 /*
6041 * Buddy candidates are cache hot:
6042 */
6043 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6044 (&p->se == cfs_rq_of(&p->se)->next ||
6045 &p->se == cfs_rq_of(&p->se)->last))
6046 return 1;
6047
6048 if (sysctl_sched_migration_cost == -1)
6049 return 1;
6050 if (sysctl_sched_migration_cost == 0)
6051 return 0;
6052
6053 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6054
6055 return delta < (s64)sysctl_sched_migration_cost;
6056 }
6057
6058 #ifdef CONFIG_NUMA_BALANCING
6059 /*
6060 * Returns 1, if task migration degrades locality
6061 * Returns 0, if task migration improves locality i.e migration preferred.
6062 * Returns -1, if task migration is not affected by locality.
6063 */
6064 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6065 {
6066 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6067 unsigned long src_faults, dst_faults;
6068 int src_nid, dst_nid;
6069
6070 if (!static_branch_likely(&sched_numa_balancing))
6071 return -1;
6072
6073 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6074 return -1;
6075
6076 src_nid = cpu_to_node(env->src_cpu);
6077 dst_nid = cpu_to_node(env->dst_cpu);
6078
6079 if (src_nid == dst_nid)
6080 return -1;
6081
6082 /* Migrating away from the preferred node is always bad. */
6083 if (src_nid == p->numa_preferred_nid) {
6084 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6085 return 1;
6086 else
6087 return -1;
6088 }
6089
6090 /* Encourage migration to the preferred node. */
6091 if (dst_nid == p->numa_preferred_nid)
6092 return 0;
6093
6094 if (numa_group) {
6095 src_faults = group_faults(p, src_nid);
6096 dst_faults = group_faults(p, dst_nid);
6097 } else {
6098 src_faults = task_faults(p, src_nid);
6099 dst_faults = task_faults(p, dst_nid);
6100 }
6101
6102 return dst_faults < src_faults;
6103 }
6104
6105 #else
6106 static inline int migrate_degrades_locality(struct task_struct *p,
6107 struct lb_env *env)
6108 {
6109 return -1;
6110 }
6111 #endif
6112
6113 /*
6114 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6115 */
6116 static
6117 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6118 {
6119 int tsk_cache_hot;
6120
6121 lockdep_assert_held(&env->src_rq->lock);
6122
6123 /*
6124 * We do not migrate tasks that are:
6125 * 1) throttled_lb_pair, or
6126 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6127 * 3) running (obviously), or
6128 * 4) are cache-hot on their current CPU.
6129 */
6130 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6131 return 0;
6132
6133 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6134 int cpu;
6135
6136 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6137
6138 env->flags |= LBF_SOME_PINNED;
6139
6140 /*
6141 * Remember if this task can be migrated to any other cpu in
6142 * our sched_group. We may want to revisit it if we couldn't
6143 * meet load balance goals by pulling other tasks on src_cpu.
6144 *
6145 * Also avoid computing new_dst_cpu if we have already computed
6146 * one in current iteration.
6147 */
6148 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6149 return 0;
6150
6151 /* Prevent to re-select dst_cpu via env's cpus */
6152 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6153 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6154 env->flags |= LBF_DST_PINNED;
6155 env->new_dst_cpu = cpu;
6156 break;
6157 }
6158 }
6159
6160 return 0;
6161 }
6162
6163 /* Record that we found atleast one task that could run on dst_cpu */
6164 env->flags &= ~LBF_ALL_PINNED;
6165
6166 if (task_running(env->src_rq, p)) {
6167 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6168 return 0;
6169 }
6170
6171 /*
6172 * Aggressive migration if:
6173 * 1) destination numa is preferred
6174 * 2) task is cache cold, or
6175 * 3) too many balance attempts have failed.
6176 */
6177 tsk_cache_hot = migrate_degrades_locality(p, env);
6178 if (tsk_cache_hot == -1)
6179 tsk_cache_hot = task_hot(p, env);
6180
6181 if (tsk_cache_hot <= 0 ||
6182 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6183 if (tsk_cache_hot == 1) {
6184 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6185 schedstat_inc(p, se.statistics.nr_forced_migrations);
6186 }
6187 return 1;
6188 }
6189
6190 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6191 return 0;
6192 }
6193
6194 /*
6195 * detach_task() -- detach the task for the migration specified in env
6196 */
6197 static void detach_task(struct task_struct *p, struct lb_env *env)
6198 {
6199 lockdep_assert_held(&env->src_rq->lock);
6200
6201 p->on_rq = TASK_ON_RQ_MIGRATING;
6202 deactivate_task(env->src_rq, p, 0);
6203 set_task_cpu(p, env->dst_cpu);
6204 }
6205
6206 /*
6207 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6208 * part of active balancing operations within "domain".
6209 *
6210 * Returns a task if successful and NULL otherwise.
6211 */
6212 static struct task_struct *detach_one_task(struct lb_env *env)
6213 {
6214 struct task_struct *p, *n;
6215
6216 lockdep_assert_held(&env->src_rq->lock);
6217
6218 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6219 if (!can_migrate_task(p, env))
6220 continue;
6221
6222 detach_task(p, env);
6223
6224 /*
6225 * Right now, this is only the second place where
6226 * lb_gained[env->idle] is updated (other is detach_tasks)
6227 * so we can safely collect stats here rather than
6228 * inside detach_tasks().
6229 */
6230 schedstat_inc(env->sd, lb_gained[env->idle]);
6231 return p;
6232 }
6233 return NULL;
6234 }
6235
6236 static const unsigned int sched_nr_migrate_break = 32;
6237
6238 /*
6239 * detach_tasks() -- tries to detach up to imbalance weighted load from
6240 * busiest_rq, as part of a balancing operation within domain "sd".
6241 *
6242 * Returns number of detached tasks if successful and 0 otherwise.
6243 */
6244 static int detach_tasks(struct lb_env *env)
6245 {
6246 struct list_head *tasks = &env->src_rq->cfs_tasks;
6247 struct task_struct *p;
6248 unsigned long load;
6249 int detached = 0;
6250
6251 lockdep_assert_held(&env->src_rq->lock);
6252
6253 if (env->imbalance <= 0)
6254 return 0;
6255
6256 while (!list_empty(tasks)) {
6257 /*
6258 * We don't want to steal all, otherwise we may be treated likewise,
6259 * which could at worst lead to a livelock crash.
6260 */
6261 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6262 break;
6263
6264 p = list_first_entry(tasks, struct task_struct, se.group_node);
6265
6266 env->loop++;
6267 /* We've more or less seen every task there is, call it quits */
6268 if (env->loop > env->loop_max)
6269 break;
6270
6271 /* take a breather every nr_migrate tasks */
6272 if (env->loop > env->loop_break) {
6273 env->loop_break += sched_nr_migrate_break;
6274 env->flags |= LBF_NEED_BREAK;
6275 break;
6276 }
6277
6278 if (!can_migrate_task(p, env))
6279 goto next;
6280
6281 load = task_h_load(p);
6282
6283 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6284 goto next;
6285
6286 if ((load / 2) > env->imbalance)
6287 goto next;
6288
6289 detach_task(p, env);
6290 list_add(&p->se.group_node, &env->tasks);
6291
6292 detached++;
6293 env->imbalance -= load;
6294
6295 #ifdef CONFIG_PREEMPT
6296 /*
6297 * NEWIDLE balancing is a source of latency, so preemptible
6298 * kernels will stop after the first task is detached to minimize
6299 * the critical section.
6300 */
6301 if (env->idle == CPU_NEWLY_IDLE)
6302 break;
6303 #endif
6304
6305 /*
6306 * We only want to steal up to the prescribed amount of
6307 * weighted load.
6308 */
6309 if (env->imbalance <= 0)
6310 break;
6311
6312 continue;
6313 next:
6314 list_move_tail(&p->se.group_node, tasks);
6315 }
6316
6317 /*
6318 * Right now, this is one of only two places we collect this stat
6319 * so we can safely collect detach_one_task() stats here rather
6320 * than inside detach_one_task().
6321 */
6322 schedstat_add(env->sd, lb_gained[env->idle], detached);
6323
6324 return detached;
6325 }
6326
6327 /*
6328 * attach_task() -- attach the task detached by detach_task() to its new rq.
6329 */
6330 static void attach_task(struct rq *rq, struct task_struct *p)
6331 {
6332 lockdep_assert_held(&rq->lock);
6333
6334 BUG_ON(task_rq(p) != rq);
6335 activate_task(rq, p, 0);
6336 p->on_rq = TASK_ON_RQ_QUEUED;
6337 check_preempt_curr(rq, p, 0);
6338 }
6339
6340 /*
6341 * attach_one_task() -- attaches the task returned from detach_one_task() to
6342 * its new rq.
6343 */
6344 static void attach_one_task(struct rq *rq, struct task_struct *p)
6345 {
6346 raw_spin_lock(&rq->lock);
6347 attach_task(rq, p);
6348 raw_spin_unlock(&rq->lock);
6349 }
6350
6351 /*
6352 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6353 * new rq.
6354 */
6355 static void attach_tasks(struct lb_env *env)
6356 {
6357 struct list_head *tasks = &env->tasks;
6358 struct task_struct *p;
6359
6360 raw_spin_lock(&env->dst_rq->lock);
6361
6362 while (!list_empty(tasks)) {
6363 p = list_first_entry(tasks, struct task_struct, se.group_node);
6364 list_del_init(&p->se.group_node);
6365
6366 attach_task(env->dst_rq, p);
6367 }
6368
6369 raw_spin_unlock(&env->dst_rq->lock);
6370 }
6371
6372 #ifdef CONFIG_FAIR_GROUP_SCHED
6373 static void update_blocked_averages(int cpu)
6374 {
6375 struct rq *rq = cpu_rq(cpu);
6376 struct cfs_rq *cfs_rq;
6377 unsigned long flags;
6378
6379 raw_spin_lock_irqsave(&rq->lock, flags);
6380 update_rq_clock(rq);
6381
6382 /*
6383 * Iterates the task_group tree in a bottom up fashion, see
6384 * list_add_leaf_cfs_rq() for details.
6385 */
6386 for_each_leaf_cfs_rq(rq, cfs_rq) {
6387 /* throttled entities do not contribute to load */
6388 if (throttled_hierarchy(cfs_rq))
6389 continue;
6390
6391 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6392 update_tg_load_avg(cfs_rq, 0);
6393 }
6394 raw_spin_unlock_irqrestore(&rq->lock, flags);
6395 }
6396
6397 /*
6398 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6399 * This needs to be done in a top-down fashion because the load of a child
6400 * group is a fraction of its parents load.
6401 */
6402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6403 {
6404 struct rq *rq = rq_of(cfs_rq);
6405 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6406 unsigned long now = jiffies;
6407 unsigned long load;
6408
6409 if (cfs_rq->last_h_load_update == now)
6410 return;
6411
6412 cfs_rq->h_load_next = NULL;
6413 for_each_sched_entity(se) {
6414 cfs_rq = cfs_rq_of(se);
6415 cfs_rq->h_load_next = se;
6416 if (cfs_rq->last_h_load_update == now)
6417 break;
6418 }
6419
6420 if (!se) {
6421 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6422 cfs_rq->last_h_load_update = now;
6423 }
6424
6425 while ((se = cfs_rq->h_load_next) != NULL) {
6426 load = cfs_rq->h_load;
6427 load = div64_ul(load * se->avg.load_avg,
6428 cfs_rq_load_avg(cfs_rq) + 1);
6429 cfs_rq = group_cfs_rq(se);
6430 cfs_rq->h_load = load;
6431 cfs_rq->last_h_load_update = now;
6432 }
6433 }
6434
6435 static unsigned long task_h_load(struct task_struct *p)
6436 {
6437 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6438
6439 update_cfs_rq_h_load(cfs_rq);
6440 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6441 cfs_rq_load_avg(cfs_rq) + 1);
6442 }
6443 #else
6444 static inline void update_blocked_averages(int cpu)
6445 {
6446 struct rq *rq = cpu_rq(cpu);
6447 struct cfs_rq *cfs_rq = &rq->cfs;
6448 unsigned long flags;
6449
6450 raw_spin_lock_irqsave(&rq->lock, flags);
6451 update_rq_clock(rq);
6452 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6453 raw_spin_unlock_irqrestore(&rq->lock, flags);
6454 }
6455
6456 static unsigned long task_h_load(struct task_struct *p)
6457 {
6458 return p->se.avg.load_avg;
6459 }
6460 #endif
6461
6462 /********** Helpers for find_busiest_group ************************/
6463
6464 enum group_type {
6465 group_other = 0,
6466 group_imbalanced,
6467 group_overloaded,
6468 };
6469
6470 /*
6471 * sg_lb_stats - stats of a sched_group required for load_balancing
6472 */
6473 struct sg_lb_stats {
6474 unsigned long avg_load; /*Avg load across the CPUs of the group */
6475 unsigned long group_load; /* Total load over the CPUs of the group */
6476 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6477 unsigned long load_per_task;
6478 unsigned long group_capacity;
6479 unsigned long group_util; /* Total utilization of the group */
6480 unsigned int sum_nr_running; /* Nr tasks running in the group */
6481 unsigned int idle_cpus;
6482 unsigned int group_weight;
6483 enum group_type group_type;
6484 int group_no_capacity;
6485 #ifdef CONFIG_NUMA_BALANCING
6486 unsigned int nr_numa_running;
6487 unsigned int nr_preferred_running;
6488 #endif
6489 };
6490
6491 /*
6492 * sd_lb_stats - Structure to store the statistics of a sched_domain
6493 * during load balancing.
6494 */
6495 struct sd_lb_stats {
6496 struct sched_group *busiest; /* Busiest group in this sd */
6497 struct sched_group *local; /* Local group in this sd */
6498 unsigned long total_load; /* Total load of all groups in sd */
6499 unsigned long total_capacity; /* Total capacity of all groups in sd */
6500 unsigned long avg_load; /* Average load across all groups in sd */
6501
6502 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6503 struct sg_lb_stats local_stat; /* Statistics of the local group */
6504 };
6505
6506 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6507 {
6508 /*
6509 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6510 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6511 * We must however clear busiest_stat::avg_load because
6512 * update_sd_pick_busiest() reads this before assignment.
6513 */
6514 *sds = (struct sd_lb_stats){
6515 .busiest = NULL,
6516 .local = NULL,
6517 .total_load = 0UL,
6518 .total_capacity = 0UL,
6519 .busiest_stat = {
6520 .avg_load = 0UL,
6521 .sum_nr_running = 0,
6522 .group_type = group_other,
6523 },
6524 };
6525 }
6526
6527 /**
6528 * get_sd_load_idx - Obtain the load index for a given sched domain.
6529 * @sd: The sched_domain whose load_idx is to be obtained.
6530 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6531 *
6532 * Return: The load index.
6533 */
6534 static inline int get_sd_load_idx(struct sched_domain *sd,
6535 enum cpu_idle_type idle)
6536 {
6537 int load_idx;
6538
6539 switch (idle) {
6540 case CPU_NOT_IDLE:
6541 load_idx = sd->busy_idx;
6542 break;
6543
6544 case CPU_NEWLY_IDLE:
6545 load_idx = sd->newidle_idx;
6546 break;
6547 default:
6548 load_idx = sd->idle_idx;
6549 break;
6550 }
6551
6552 return load_idx;
6553 }
6554
6555 static unsigned long scale_rt_capacity(int cpu)
6556 {
6557 struct rq *rq = cpu_rq(cpu);
6558 u64 total, used, age_stamp, avg;
6559 s64 delta;
6560
6561 /*
6562 * Since we're reading these variables without serialization make sure
6563 * we read them once before doing sanity checks on them.
6564 */
6565 age_stamp = READ_ONCE(rq->age_stamp);
6566 avg = READ_ONCE(rq->rt_avg);
6567 delta = __rq_clock_broken(rq) - age_stamp;
6568
6569 if (unlikely(delta < 0))
6570 delta = 0;
6571
6572 total = sched_avg_period() + delta;
6573
6574 used = div_u64(avg, total);
6575
6576 if (likely(used < SCHED_CAPACITY_SCALE))
6577 return SCHED_CAPACITY_SCALE - used;
6578
6579 return 1;
6580 }
6581
6582 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6583 {
6584 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6585 struct sched_group *sdg = sd->groups;
6586
6587 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6588
6589 capacity *= scale_rt_capacity(cpu);
6590 capacity >>= SCHED_CAPACITY_SHIFT;
6591
6592 if (!capacity)
6593 capacity = 1;
6594
6595 cpu_rq(cpu)->cpu_capacity = capacity;
6596 sdg->sgc->capacity = capacity;
6597 }
6598
6599 void update_group_capacity(struct sched_domain *sd, int cpu)
6600 {
6601 struct sched_domain *child = sd->child;
6602 struct sched_group *group, *sdg = sd->groups;
6603 unsigned long capacity;
6604 unsigned long interval;
6605
6606 interval = msecs_to_jiffies(sd->balance_interval);
6607 interval = clamp(interval, 1UL, max_load_balance_interval);
6608 sdg->sgc->next_update = jiffies + interval;
6609
6610 if (!child) {
6611 update_cpu_capacity(sd, cpu);
6612 return;
6613 }
6614
6615 capacity = 0;
6616
6617 if (child->flags & SD_OVERLAP) {
6618 /*
6619 * SD_OVERLAP domains cannot assume that child groups
6620 * span the current group.
6621 */
6622
6623 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6624 struct sched_group_capacity *sgc;
6625 struct rq *rq = cpu_rq(cpu);
6626
6627 /*
6628 * build_sched_domains() -> init_sched_groups_capacity()
6629 * gets here before we've attached the domains to the
6630 * runqueues.
6631 *
6632 * Use capacity_of(), which is set irrespective of domains
6633 * in update_cpu_capacity().
6634 *
6635 * This avoids capacity from being 0 and
6636 * causing divide-by-zero issues on boot.
6637 */
6638 if (unlikely(!rq->sd)) {
6639 capacity += capacity_of(cpu);
6640 continue;
6641 }
6642
6643 sgc = rq->sd->groups->sgc;
6644 capacity += sgc->capacity;
6645 }
6646 } else {
6647 /*
6648 * !SD_OVERLAP domains can assume that child groups
6649 * span the current group.
6650 */
6651
6652 group = child->groups;
6653 do {
6654 capacity += group->sgc->capacity;
6655 group = group->next;
6656 } while (group != child->groups);
6657 }
6658
6659 sdg->sgc->capacity = capacity;
6660 }
6661
6662 /*
6663 * Check whether the capacity of the rq has been noticeably reduced by side
6664 * activity. The imbalance_pct is used for the threshold.
6665 * Return true is the capacity is reduced
6666 */
6667 static inline int
6668 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6669 {
6670 return ((rq->cpu_capacity * sd->imbalance_pct) <
6671 (rq->cpu_capacity_orig * 100));
6672 }
6673
6674 /*
6675 * Group imbalance indicates (and tries to solve) the problem where balancing
6676 * groups is inadequate due to tsk_cpus_allowed() constraints.
6677 *
6678 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6679 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6680 * Something like:
6681 *
6682 * { 0 1 2 3 } { 4 5 6 7 }
6683 * * * * *
6684 *
6685 * If we were to balance group-wise we'd place two tasks in the first group and
6686 * two tasks in the second group. Clearly this is undesired as it will overload
6687 * cpu 3 and leave one of the cpus in the second group unused.
6688 *
6689 * The current solution to this issue is detecting the skew in the first group
6690 * by noticing the lower domain failed to reach balance and had difficulty
6691 * moving tasks due to affinity constraints.
6692 *
6693 * When this is so detected; this group becomes a candidate for busiest; see
6694 * update_sd_pick_busiest(). And calculate_imbalance() and
6695 * find_busiest_group() avoid some of the usual balance conditions to allow it
6696 * to create an effective group imbalance.
6697 *
6698 * This is a somewhat tricky proposition since the next run might not find the
6699 * group imbalance and decide the groups need to be balanced again. A most
6700 * subtle and fragile situation.
6701 */
6702
6703 static inline int sg_imbalanced(struct sched_group *group)
6704 {
6705 return group->sgc->imbalance;
6706 }
6707
6708 /*
6709 * group_has_capacity returns true if the group has spare capacity that could
6710 * be used by some tasks.
6711 * We consider that a group has spare capacity if the * number of task is
6712 * smaller than the number of CPUs or if the utilization is lower than the
6713 * available capacity for CFS tasks.
6714 * For the latter, we use a threshold to stabilize the state, to take into
6715 * account the variance of the tasks' load and to return true if the available
6716 * capacity in meaningful for the load balancer.
6717 * As an example, an available capacity of 1% can appear but it doesn't make
6718 * any benefit for the load balance.
6719 */
6720 static inline bool
6721 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6722 {
6723 if (sgs->sum_nr_running < sgs->group_weight)
6724 return true;
6725
6726 if ((sgs->group_capacity * 100) >
6727 (sgs->group_util * env->sd->imbalance_pct))
6728 return true;
6729
6730 return false;
6731 }
6732
6733 /*
6734 * group_is_overloaded returns true if the group has more tasks than it can
6735 * handle.
6736 * group_is_overloaded is not equals to !group_has_capacity because a group
6737 * with the exact right number of tasks, has no more spare capacity but is not
6738 * overloaded so both group_has_capacity and group_is_overloaded return
6739 * false.
6740 */
6741 static inline bool
6742 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6743 {
6744 if (sgs->sum_nr_running <= sgs->group_weight)
6745 return false;
6746
6747 if ((sgs->group_capacity * 100) <
6748 (sgs->group_util * env->sd->imbalance_pct))
6749 return true;
6750
6751 return false;
6752 }
6753
6754 static inline enum
6755 group_type group_classify(struct sched_group *group,
6756 struct sg_lb_stats *sgs)
6757 {
6758 if (sgs->group_no_capacity)
6759 return group_overloaded;
6760
6761 if (sg_imbalanced(group))
6762 return group_imbalanced;
6763
6764 return group_other;
6765 }
6766
6767 /**
6768 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6769 * @env: The load balancing environment.
6770 * @group: sched_group whose statistics are to be updated.
6771 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6772 * @local_group: Does group contain this_cpu.
6773 * @sgs: variable to hold the statistics for this group.
6774 * @overload: Indicate more than one runnable task for any CPU.
6775 */
6776 static inline void update_sg_lb_stats(struct lb_env *env,
6777 struct sched_group *group, int load_idx,
6778 int local_group, struct sg_lb_stats *sgs,
6779 bool *overload)
6780 {
6781 unsigned long load;
6782 int i, nr_running;
6783
6784 memset(sgs, 0, sizeof(*sgs));
6785
6786 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6787 struct rq *rq = cpu_rq(i);
6788
6789 /* Bias balancing toward cpus of our domain */
6790 if (local_group)
6791 load = target_load(i, load_idx);
6792 else
6793 load = source_load(i, load_idx);
6794
6795 sgs->group_load += load;
6796 sgs->group_util += cpu_util(i);
6797 sgs->sum_nr_running += rq->cfs.h_nr_running;
6798
6799 nr_running = rq->nr_running;
6800 if (nr_running > 1)
6801 *overload = true;
6802
6803 #ifdef CONFIG_NUMA_BALANCING
6804 sgs->nr_numa_running += rq->nr_numa_running;
6805 sgs->nr_preferred_running += rq->nr_preferred_running;
6806 #endif
6807 sgs->sum_weighted_load += weighted_cpuload(i);
6808 /*
6809 * No need to call idle_cpu() if nr_running is not 0
6810 */
6811 if (!nr_running && idle_cpu(i))
6812 sgs->idle_cpus++;
6813 }
6814
6815 /* Adjust by relative CPU capacity of the group */
6816 sgs->group_capacity = group->sgc->capacity;
6817 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6818
6819 if (sgs->sum_nr_running)
6820 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6821
6822 sgs->group_weight = group->group_weight;
6823
6824 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6825 sgs->group_type = group_classify(group, sgs);
6826 }
6827
6828 /**
6829 * update_sd_pick_busiest - return 1 on busiest group
6830 * @env: The load balancing environment.
6831 * @sds: sched_domain statistics
6832 * @sg: sched_group candidate to be checked for being the busiest
6833 * @sgs: sched_group statistics
6834 *
6835 * Determine if @sg is a busier group than the previously selected
6836 * busiest group.
6837 *
6838 * Return: %true if @sg is a busier group than the previously selected
6839 * busiest group. %false otherwise.
6840 */
6841 static bool update_sd_pick_busiest(struct lb_env *env,
6842 struct sd_lb_stats *sds,
6843 struct sched_group *sg,
6844 struct sg_lb_stats *sgs)
6845 {
6846 struct sg_lb_stats *busiest = &sds->busiest_stat;
6847
6848 if (sgs->group_type > busiest->group_type)
6849 return true;
6850
6851 if (sgs->group_type < busiest->group_type)
6852 return false;
6853
6854 if (sgs->avg_load <= busiest->avg_load)
6855 return false;
6856
6857 /* This is the busiest node in its class. */
6858 if (!(env->sd->flags & SD_ASYM_PACKING))
6859 return true;
6860
6861 /* No ASYM_PACKING if target cpu is already busy */
6862 if (env->idle == CPU_NOT_IDLE)
6863 return true;
6864 /*
6865 * ASYM_PACKING needs to move all the work to the lowest
6866 * numbered CPUs in the group, therefore mark all groups
6867 * higher than ourself as busy.
6868 */
6869 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6870 if (!sds->busiest)
6871 return true;
6872
6873 /* Prefer to move from highest possible cpu's work */
6874 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6875 return true;
6876 }
6877
6878 return false;
6879 }
6880
6881 #ifdef CONFIG_NUMA_BALANCING
6882 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6883 {
6884 if (sgs->sum_nr_running > sgs->nr_numa_running)
6885 return regular;
6886 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6887 return remote;
6888 return all;
6889 }
6890
6891 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6892 {
6893 if (rq->nr_running > rq->nr_numa_running)
6894 return regular;
6895 if (rq->nr_running > rq->nr_preferred_running)
6896 return remote;
6897 return all;
6898 }
6899 #else
6900 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6901 {
6902 return all;
6903 }
6904
6905 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6906 {
6907 return regular;
6908 }
6909 #endif /* CONFIG_NUMA_BALANCING */
6910
6911 /**
6912 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6913 * @env: The load balancing environment.
6914 * @sds: variable to hold the statistics for this sched_domain.
6915 */
6916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6917 {
6918 struct sched_domain *child = env->sd->child;
6919 struct sched_group *sg = env->sd->groups;
6920 struct sg_lb_stats tmp_sgs;
6921 int load_idx, prefer_sibling = 0;
6922 bool overload = false;
6923
6924 if (child && child->flags & SD_PREFER_SIBLING)
6925 prefer_sibling = 1;
6926
6927 load_idx = get_sd_load_idx(env->sd, env->idle);
6928
6929 do {
6930 struct sg_lb_stats *sgs = &tmp_sgs;
6931 int local_group;
6932
6933 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6934 if (local_group) {
6935 sds->local = sg;
6936 sgs = &sds->local_stat;
6937
6938 if (env->idle != CPU_NEWLY_IDLE ||
6939 time_after_eq(jiffies, sg->sgc->next_update))
6940 update_group_capacity(env->sd, env->dst_cpu);
6941 }
6942
6943 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6944 &overload);
6945
6946 if (local_group)
6947 goto next_group;
6948
6949 /*
6950 * In case the child domain prefers tasks go to siblings
6951 * first, lower the sg capacity so that we'll try
6952 * and move all the excess tasks away. We lower the capacity
6953 * of a group only if the local group has the capacity to fit
6954 * these excess tasks. The extra check prevents the case where
6955 * you always pull from the heaviest group when it is already
6956 * under-utilized (possible with a large weight task outweighs
6957 * the tasks on the system).
6958 */
6959 if (prefer_sibling && sds->local &&
6960 group_has_capacity(env, &sds->local_stat) &&
6961 (sgs->sum_nr_running > 1)) {
6962 sgs->group_no_capacity = 1;
6963 sgs->group_type = group_classify(sg, sgs);
6964 }
6965
6966 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6967 sds->busiest = sg;
6968 sds->busiest_stat = *sgs;
6969 }
6970
6971 next_group:
6972 /* Now, start updating sd_lb_stats */
6973 sds->total_load += sgs->group_load;
6974 sds->total_capacity += sgs->group_capacity;
6975
6976 sg = sg->next;
6977 } while (sg != env->sd->groups);
6978
6979 if (env->sd->flags & SD_NUMA)
6980 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6981
6982 if (!env->sd->parent) {
6983 /* update overload indicator if we are at root domain */
6984 if (env->dst_rq->rd->overload != overload)
6985 env->dst_rq->rd->overload = overload;
6986 }
6987
6988 }
6989
6990 /**
6991 * check_asym_packing - Check to see if the group is packed into the
6992 * sched doman.
6993 *
6994 * This is primarily intended to used at the sibling level. Some
6995 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6996 * case of POWER7, it can move to lower SMT modes only when higher
6997 * threads are idle. When in lower SMT modes, the threads will
6998 * perform better since they share less core resources. Hence when we
6999 * have idle threads, we want them to be the higher ones.
7000 *
7001 * This packing function is run on idle threads. It checks to see if
7002 * the busiest CPU in this domain (core in the P7 case) has a higher
7003 * CPU number than the packing function is being run on. Here we are
7004 * assuming lower CPU number will be equivalent to lower a SMT thread
7005 * number.
7006 *
7007 * Return: 1 when packing is required and a task should be moved to
7008 * this CPU. The amount of the imbalance is returned in *imbalance.
7009 *
7010 * @env: The load balancing environment.
7011 * @sds: Statistics of the sched_domain which is to be packed
7012 */
7013 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7014 {
7015 int busiest_cpu;
7016
7017 if (!(env->sd->flags & SD_ASYM_PACKING))
7018 return 0;
7019
7020 if (env->idle == CPU_NOT_IDLE)
7021 return 0;
7022
7023 if (!sds->busiest)
7024 return 0;
7025
7026 busiest_cpu = group_first_cpu(sds->busiest);
7027 if (env->dst_cpu > busiest_cpu)
7028 return 0;
7029
7030 env->imbalance = DIV_ROUND_CLOSEST(
7031 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7032 SCHED_CAPACITY_SCALE);
7033
7034 return 1;
7035 }
7036
7037 /**
7038 * fix_small_imbalance - Calculate the minor imbalance that exists
7039 * amongst the groups of a sched_domain, during
7040 * load balancing.
7041 * @env: The load balancing environment.
7042 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7043 */
7044 static inline
7045 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7046 {
7047 unsigned long tmp, capa_now = 0, capa_move = 0;
7048 unsigned int imbn = 2;
7049 unsigned long scaled_busy_load_per_task;
7050 struct sg_lb_stats *local, *busiest;
7051
7052 local = &sds->local_stat;
7053 busiest = &sds->busiest_stat;
7054
7055 if (!local->sum_nr_running)
7056 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7057 else if (busiest->load_per_task > local->load_per_task)
7058 imbn = 1;
7059
7060 scaled_busy_load_per_task =
7061 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7062 busiest->group_capacity;
7063
7064 if (busiest->avg_load + scaled_busy_load_per_task >=
7065 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7066 env->imbalance = busiest->load_per_task;
7067 return;
7068 }
7069
7070 /*
7071 * OK, we don't have enough imbalance to justify moving tasks,
7072 * however we may be able to increase total CPU capacity used by
7073 * moving them.
7074 */
7075
7076 capa_now += busiest->group_capacity *
7077 min(busiest->load_per_task, busiest->avg_load);
7078 capa_now += local->group_capacity *
7079 min(local->load_per_task, local->avg_load);
7080 capa_now /= SCHED_CAPACITY_SCALE;
7081
7082 /* Amount of load we'd subtract */
7083 if (busiest->avg_load > scaled_busy_load_per_task) {
7084 capa_move += busiest->group_capacity *
7085 min(busiest->load_per_task,
7086 busiest->avg_load - scaled_busy_load_per_task);
7087 }
7088
7089 /* Amount of load we'd add */
7090 if (busiest->avg_load * busiest->group_capacity <
7091 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7092 tmp = (busiest->avg_load * busiest->group_capacity) /
7093 local->group_capacity;
7094 } else {
7095 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7096 local->group_capacity;
7097 }
7098 capa_move += local->group_capacity *
7099 min(local->load_per_task, local->avg_load + tmp);
7100 capa_move /= SCHED_CAPACITY_SCALE;
7101
7102 /* Move if we gain throughput */
7103 if (capa_move > capa_now)
7104 env->imbalance = busiest->load_per_task;
7105 }
7106
7107 /**
7108 * calculate_imbalance - Calculate the amount of imbalance present within the
7109 * groups of a given sched_domain during load balance.
7110 * @env: load balance environment
7111 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7112 */
7113 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7114 {
7115 unsigned long max_pull, load_above_capacity = ~0UL;
7116 struct sg_lb_stats *local, *busiest;
7117
7118 local = &sds->local_stat;
7119 busiest = &sds->busiest_stat;
7120
7121 if (busiest->group_type == group_imbalanced) {
7122 /*
7123 * In the group_imb case we cannot rely on group-wide averages
7124 * to ensure cpu-load equilibrium, look at wider averages. XXX
7125 */
7126 busiest->load_per_task =
7127 min(busiest->load_per_task, sds->avg_load);
7128 }
7129
7130 /*
7131 * Avg load of busiest sg can be less and avg load of local sg can
7132 * be greater than avg load across all sgs of sd because avg load
7133 * factors in sg capacity and sgs with smaller group_type are
7134 * skipped when updating the busiest sg:
7135 */
7136 if (busiest->avg_load <= sds->avg_load ||
7137 local->avg_load >= sds->avg_load) {
7138 env->imbalance = 0;
7139 return fix_small_imbalance(env, sds);
7140 }
7141
7142 /*
7143 * If there aren't any idle cpus, avoid creating some.
7144 */
7145 if (busiest->group_type == group_overloaded &&
7146 local->group_type == group_overloaded) {
7147 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7148 if (load_above_capacity > busiest->group_capacity) {
7149 load_above_capacity -= busiest->group_capacity;
7150 load_above_capacity *= NICE_0_LOAD;
7151 load_above_capacity /= busiest->group_capacity;
7152 } else
7153 load_above_capacity = ~0UL;
7154 }
7155
7156 /*
7157 * We're trying to get all the cpus to the average_load, so we don't
7158 * want to push ourselves above the average load, nor do we wish to
7159 * reduce the max loaded cpu below the average load. At the same time,
7160 * we also don't want to reduce the group load below the group
7161 * capacity. Thus we look for the minimum possible imbalance.
7162 */
7163 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7164
7165 /* How much load to actually move to equalise the imbalance */
7166 env->imbalance = min(
7167 max_pull * busiest->group_capacity,
7168 (sds->avg_load - local->avg_load) * local->group_capacity
7169 ) / SCHED_CAPACITY_SCALE;
7170
7171 /*
7172 * if *imbalance is less than the average load per runnable task
7173 * there is no guarantee that any tasks will be moved so we'll have
7174 * a think about bumping its value to force at least one task to be
7175 * moved
7176 */
7177 if (env->imbalance < busiest->load_per_task)
7178 return fix_small_imbalance(env, sds);
7179 }
7180
7181 /******* find_busiest_group() helpers end here *********************/
7182
7183 /**
7184 * find_busiest_group - Returns the busiest group within the sched_domain
7185 * if there is an imbalance.
7186 *
7187 * Also calculates the amount of weighted load which should be moved
7188 * to restore balance.
7189 *
7190 * @env: The load balancing environment.
7191 *
7192 * Return: - The busiest group if imbalance exists.
7193 */
7194 static struct sched_group *find_busiest_group(struct lb_env *env)
7195 {
7196 struct sg_lb_stats *local, *busiest;
7197 struct sd_lb_stats sds;
7198
7199 init_sd_lb_stats(&sds);
7200
7201 /*
7202 * Compute the various statistics relavent for load balancing at
7203 * this level.
7204 */
7205 update_sd_lb_stats(env, &sds);
7206 local = &sds.local_stat;
7207 busiest = &sds.busiest_stat;
7208
7209 /* ASYM feature bypasses nice load balance check */
7210 if (check_asym_packing(env, &sds))
7211 return sds.busiest;
7212
7213 /* There is no busy sibling group to pull tasks from */
7214 if (!sds.busiest || busiest->sum_nr_running == 0)
7215 goto out_balanced;
7216
7217 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7218 / sds.total_capacity;
7219
7220 /*
7221 * If the busiest group is imbalanced the below checks don't
7222 * work because they assume all things are equal, which typically
7223 * isn't true due to cpus_allowed constraints and the like.
7224 */
7225 if (busiest->group_type == group_imbalanced)
7226 goto force_balance;
7227
7228 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7229 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7230 busiest->group_no_capacity)
7231 goto force_balance;
7232
7233 /*
7234 * If the local group is busier than the selected busiest group
7235 * don't try and pull any tasks.
7236 */
7237 if (local->avg_load >= busiest->avg_load)
7238 goto out_balanced;
7239
7240 /*
7241 * Don't pull any tasks if this group is already above the domain
7242 * average load.
7243 */
7244 if (local->avg_load >= sds.avg_load)
7245 goto out_balanced;
7246
7247 if (env->idle == CPU_IDLE) {
7248 /*
7249 * This cpu is idle. If the busiest group is not overloaded
7250 * and there is no imbalance between this and busiest group
7251 * wrt idle cpus, it is balanced. The imbalance becomes
7252 * significant if the diff is greater than 1 otherwise we
7253 * might end up to just move the imbalance on another group
7254 */
7255 if ((busiest->group_type != group_overloaded) &&
7256 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7257 goto out_balanced;
7258 } else {
7259 /*
7260 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7261 * imbalance_pct to be conservative.
7262 */
7263 if (100 * busiest->avg_load <=
7264 env->sd->imbalance_pct * local->avg_load)
7265 goto out_balanced;
7266 }
7267
7268 force_balance:
7269 /* Looks like there is an imbalance. Compute it */
7270 calculate_imbalance(env, &sds);
7271 return sds.busiest;
7272
7273 out_balanced:
7274 env->imbalance = 0;
7275 return NULL;
7276 }
7277
7278 /*
7279 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7280 */
7281 static struct rq *find_busiest_queue(struct lb_env *env,
7282 struct sched_group *group)
7283 {
7284 struct rq *busiest = NULL, *rq;
7285 unsigned long busiest_load = 0, busiest_capacity = 1;
7286 int i;
7287
7288 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7289 unsigned long capacity, wl;
7290 enum fbq_type rt;
7291
7292 rq = cpu_rq(i);
7293 rt = fbq_classify_rq(rq);
7294
7295 /*
7296 * We classify groups/runqueues into three groups:
7297 * - regular: there are !numa tasks
7298 * - remote: there are numa tasks that run on the 'wrong' node
7299 * - all: there is no distinction
7300 *
7301 * In order to avoid migrating ideally placed numa tasks,
7302 * ignore those when there's better options.
7303 *
7304 * If we ignore the actual busiest queue to migrate another
7305 * task, the next balance pass can still reduce the busiest
7306 * queue by moving tasks around inside the node.
7307 *
7308 * If we cannot move enough load due to this classification
7309 * the next pass will adjust the group classification and
7310 * allow migration of more tasks.
7311 *
7312 * Both cases only affect the total convergence complexity.
7313 */
7314 if (rt > env->fbq_type)
7315 continue;
7316
7317 capacity = capacity_of(i);
7318
7319 wl = weighted_cpuload(i);
7320
7321 /*
7322 * When comparing with imbalance, use weighted_cpuload()
7323 * which is not scaled with the cpu capacity.
7324 */
7325
7326 if (rq->nr_running == 1 && wl > env->imbalance &&
7327 !check_cpu_capacity(rq, env->sd))
7328 continue;
7329
7330 /*
7331 * For the load comparisons with the other cpu's, consider
7332 * the weighted_cpuload() scaled with the cpu capacity, so
7333 * that the load can be moved away from the cpu that is
7334 * potentially running at a lower capacity.
7335 *
7336 * Thus we're looking for max(wl_i / capacity_i), crosswise
7337 * multiplication to rid ourselves of the division works out
7338 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7339 * our previous maximum.
7340 */
7341 if (wl * busiest_capacity > busiest_load * capacity) {
7342 busiest_load = wl;
7343 busiest_capacity = capacity;
7344 busiest = rq;
7345 }
7346 }
7347
7348 return busiest;
7349 }
7350
7351 /*
7352 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7353 * so long as it is large enough.
7354 */
7355 #define MAX_PINNED_INTERVAL 512
7356
7357 /* Working cpumask for load_balance and load_balance_newidle. */
7358 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7359
7360 static int need_active_balance(struct lb_env *env)
7361 {
7362 struct sched_domain *sd = env->sd;
7363
7364 if (env->idle == CPU_NEWLY_IDLE) {
7365
7366 /*
7367 * ASYM_PACKING needs to force migrate tasks from busy but
7368 * higher numbered CPUs in order to pack all tasks in the
7369 * lowest numbered CPUs.
7370 */
7371 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7372 return 1;
7373 }
7374
7375 /*
7376 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7377 * It's worth migrating the task if the src_cpu's capacity is reduced
7378 * because of other sched_class or IRQs if more capacity stays
7379 * available on dst_cpu.
7380 */
7381 if ((env->idle != CPU_NOT_IDLE) &&
7382 (env->src_rq->cfs.h_nr_running == 1)) {
7383 if ((check_cpu_capacity(env->src_rq, sd)) &&
7384 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7385 return 1;
7386 }
7387
7388 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7389 }
7390
7391 static int active_load_balance_cpu_stop(void *data);
7392
7393 static int should_we_balance(struct lb_env *env)
7394 {
7395 struct sched_group *sg = env->sd->groups;
7396 struct cpumask *sg_cpus, *sg_mask;
7397 int cpu, balance_cpu = -1;
7398
7399 /*
7400 * In the newly idle case, we will allow all the cpu's
7401 * to do the newly idle load balance.
7402 */
7403 if (env->idle == CPU_NEWLY_IDLE)
7404 return 1;
7405
7406 sg_cpus = sched_group_cpus(sg);
7407 sg_mask = sched_group_mask(sg);
7408 /* Try to find first idle cpu */
7409 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7410 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7411 continue;
7412
7413 balance_cpu = cpu;
7414 break;
7415 }
7416
7417 if (balance_cpu == -1)
7418 balance_cpu = group_balance_cpu(sg);
7419
7420 /*
7421 * First idle cpu or the first cpu(busiest) in this sched group
7422 * is eligible for doing load balancing at this and above domains.
7423 */
7424 return balance_cpu == env->dst_cpu;
7425 }
7426
7427 /*
7428 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7429 * tasks if there is an imbalance.
7430 */
7431 static int load_balance(int this_cpu, struct rq *this_rq,
7432 struct sched_domain *sd, enum cpu_idle_type idle,
7433 int *continue_balancing)
7434 {
7435 int ld_moved, cur_ld_moved, active_balance = 0;
7436 struct sched_domain *sd_parent = sd->parent;
7437 struct sched_group *group;
7438 struct rq *busiest;
7439 unsigned long flags;
7440 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7441
7442 struct lb_env env = {
7443 .sd = sd,
7444 .dst_cpu = this_cpu,
7445 .dst_rq = this_rq,
7446 .dst_grpmask = sched_group_cpus(sd->groups),
7447 .idle = idle,
7448 .loop_break = sched_nr_migrate_break,
7449 .cpus = cpus,
7450 .fbq_type = all,
7451 .tasks = LIST_HEAD_INIT(env.tasks),
7452 };
7453
7454 /*
7455 * For NEWLY_IDLE load_balancing, we don't need to consider
7456 * other cpus in our group
7457 */
7458 if (idle == CPU_NEWLY_IDLE)
7459 env.dst_grpmask = NULL;
7460
7461 cpumask_copy(cpus, cpu_active_mask);
7462
7463 schedstat_inc(sd, lb_count[idle]);
7464
7465 redo:
7466 if (!should_we_balance(&env)) {
7467 *continue_balancing = 0;
7468 goto out_balanced;
7469 }
7470
7471 group = find_busiest_group(&env);
7472 if (!group) {
7473 schedstat_inc(sd, lb_nobusyg[idle]);
7474 goto out_balanced;
7475 }
7476
7477 busiest = find_busiest_queue(&env, group);
7478 if (!busiest) {
7479 schedstat_inc(sd, lb_nobusyq[idle]);
7480 goto out_balanced;
7481 }
7482
7483 BUG_ON(busiest == env.dst_rq);
7484
7485 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7486
7487 env.src_cpu = busiest->cpu;
7488 env.src_rq = busiest;
7489
7490 ld_moved = 0;
7491 if (busiest->nr_running > 1) {
7492 /*
7493 * Attempt to move tasks. If find_busiest_group has found
7494 * an imbalance but busiest->nr_running <= 1, the group is
7495 * still unbalanced. ld_moved simply stays zero, so it is
7496 * correctly treated as an imbalance.
7497 */
7498 env.flags |= LBF_ALL_PINNED;
7499 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7500
7501 more_balance:
7502 raw_spin_lock_irqsave(&busiest->lock, flags);
7503
7504 /*
7505 * cur_ld_moved - load moved in current iteration
7506 * ld_moved - cumulative load moved across iterations
7507 */
7508 cur_ld_moved = detach_tasks(&env);
7509
7510 /*
7511 * We've detached some tasks from busiest_rq. Every
7512 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7513 * unlock busiest->lock, and we are able to be sure
7514 * that nobody can manipulate the tasks in parallel.
7515 * See task_rq_lock() family for the details.
7516 */
7517
7518 raw_spin_unlock(&busiest->lock);
7519
7520 if (cur_ld_moved) {
7521 attach_tasks(&env);
7522 ld_moved += cur_ld_moved;
7523 }
7524
7525 local_irq_restore(flags);
7526
7527 if (env.flags & LBF_NEED_BREAK) {
7528 env.flags &= ~LBF_NEED_BREAK;
7529 goto more_balance;
7530 }
7531
7532 /*
7533 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7534 * us and move them to an alternate dst_cpu in our sched_group
7535 * where they can run. The upper limit on how many times we
7536 * iterate on same src_cpu is dependent on number of cpus in our
7537 * sched_group.
7538 *
7539 * This changes load balance semantics a bit on who can move
7540 * load to a given_cpu. In addition to the given_cpu itself
7541 * (or a ilb_cpu acting on its behalf where given_cpu is
7542 * nohz-idle), we now have balance_cpu in a position to move
7543 * load to given_cpu. In rare situations, this may cause
7544 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7545 * _independently_ and at _same_ time to move some load to
7546 * given_cpu) causing exceess load to be moved to given_cpu.
7547 * This however should not happen so much in practice and
7548 * moreover subsequent load balance cycles should correct the
7549 * excess load moved.
7550 */
7551 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7552
7553 /* Prevent to re-select dst_cpu via env's cpus */
7554 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7555
7556 env.dst_rq = cpu_rq(env.new_dst_cpu);
7557 env.dst_cpu = env.new_dst_cpu;
7558 env.flags &= ~LBF_DST_PINNED;
7559 env.loop = 0;
7560 env.loop_break = sched_nr_migrate_break;
7561
7562 /*
7563 * Go back to "more_balance" rather than "redo" since we
7564 * need to continue with same src_cpu.
7565 */
7566 goto more_balance;
7567 }
7568
7569 /*
7570 * We failed to reach balance because of affinity.
7571 */
7572 if (sd_parent) {
7573 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7574
7575 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7576 *group_imbalance = 1;
7577 }
7578
7579 /* All tasks on this runqueue were pinned by CPU affinity */
7580 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7581 cpumask_clear_cpu(cpu_of(busiest), cpus);
7582 if (!cpumask_empty(cpus)) {
7583 env.loop = 0;
7584 env.loop_break = sched_nr_migrate_break;
7585 goto redo;
7586 }
7587 goto out_all_pinned;
7588 }
7589 }
7590
7591 if (!ld_moved) {
7592 schedstat_inc(sd, lb_failed[idle]);
7593 /*
7594 * Increment the failure counter only on periodic balance.
7595 * We do not want newidle balance, which can be very
7596 * frequent, pollute the failure counter causing
7597 * excessive cache_hot migrations and active balances.
7598 */
7599 if (idle != CPU_NEWLY_IDLE)
7600 sd->nr_balance_failed++;
7601
7602 if (need_active_balance(&env)) {
7603 raw_spin_lock_irqsave(&busiest->lock, flags);
7604
7605 /* don't kick the active_load_balance_cpu_stop,
7606 * if the curr task on busiest cpu can't be
7607 * moved to this_cpu
7608 */
7609 if (!cpumask_test_cpu(this_cpu,
7610 tsk_cpus_allowed(busiest->curr))) {
7611 raw_spin_unlock_irqrestore(&busiest->lock,
7612 flags);
7613 env.flags |= LBF_ALL_PINNED;
7614 goto out_one_pinned;
7615 }
7616
7617 /*
7618 * ->active_balance synchronizes accesses to
7619 * ->active_balance_work. Once set, it's cleared
7620 * only after active load balance is finished.
7621 */
7622 if (!busiest->active_balance) {
7623 busiest->active_balance = 1;
7624 busiest->push_cpu = this_cpu;
7625 active_balance = 1;
7626 }
7627 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7628
7629 if (active_balance) {
7630 stop_one_cpu_nowait(cpu_of(busiest),
7631 active_load_balance_cpu_stop, busiest,
7632 &busiest->active_balance_work);
7633 }
7634
7635 /* We've kicked active balancing, force task migration. */
7636 sd->nr_balance_failed = sd->cache_nice_tries+1;
7637 }
7638 } else
7639 sd->nr_balance_failed = 0;
7640
7641 if (likely(!active_balance)) {
7642 /* We were unbalanced, so reset the balancing interval */
7643 sd->balance_interval = sd->min_interval;
7644 } else {
7645 /*
7646 * If we've begun active balancing, start to back off. This
7647 * case may not be covered by the all_pinned logic if there
7648 * is only 1 task on the busy runqueue (because we don't call
7649 * detach_tasks).
7650 */
7651 if (sd->balance_interval < sd->max_interval)
7652 sd->balance_interval *= 2;
7653 }
7654
7655 goto out;
7656
7657 out_balanced:
7658 /*
7659 * We reach balance although we may have faced some affinity
7660 * constraints. Clear the imbalance flag if it was set.
7661 */
7662 if (sd_parent) {
7663 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7664
7665 if (*group_imbalance)
7666 *group_imbalance = 0;
7667 }
7668
7669 out_all_pinned:
7670 /*
7671 * We reach balance because all tasks are pinned at this level so
7672 * we can't migrate them. Let the imbalance flag set so parent level
7673 * can try to migrate them.
7674 */
7675 schedstat_inc(sd, lb_balanced[idle]);
7676
7677 sd->nr_balance_failed = 0;
7678
7679 out_one_pinned:
7680 /* tune up the balancing interval */
7681 if (((env.flags & LBF_ALL_PINNED) &&
7682 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7683 (sd->balance_interval < sd->max_interval))
7684 sd->balance_interval *= 2;
7685
7686 ld_moved = 0;
7687 out:
7688 return ld_moved;
7689 }
7690
7691 static inline unsigned long
7692 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7693 {
7694 unsigned long interval = sd->balance_interval;
7695
7696 if (cpu_busy)
7697 interval *= sd->busy_factor;
7698
7699 /* scale ms to jiffies */
7700 interval = msecs_to_jiffies(interval);
7701 interval = clamp(interval, 1UL, max_load_balance_interval);
7702
7703 return interval;
7704 }
7705
7706 static inline void
7707 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7708 {
7709 unsigned long interval, next;
7710
7711 interval = get_sd_balance_interval(sd, cpu_busy);
7712 next = sd->last_balance + interval;
7713
7714 if (time_after(*next_balance, next))
7715 *next_balance = next;
7716 }
7717
7718 /*
7719 * idle_balance is called by schedule() if this_cpu is about to become
7720 * idle. Attempts to pull tasks from other CPUs.
7721 */
7722 static int idle_balance(struct rq *this_rq)
7723 {
7724 unsigned long next_balance = jiffies + HZ;
7725 int this_cpu = this_rq->cpu;
7726 struct sched_domain *sd;
7727 int pulled_task = 0;
7728 u64 curr_cost = 0;
7729
7730 /*
7731 * We must set idle_stamp _before_ calling idle_balance(), such that we
7732 * measure the duration of idle_balance() as idle time.
7733 */
7734 this_rq->idle_stamp = rq_clock(this_rq);
7735
7736 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7737 !this_rq->rd->overload) {
7738 rcu_read_lock();
7739 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7740 if (sd)
7741 update_next_balance(sd, 0, &next_balance);
7742 rcu_read_unlock();
7743
7744 goto out;
7745 }
7746
7747 raw_spin_unlock(&this_rq->lock);
7748
7749 update_blocked_averages(this_cpu);
7750 rcu_read_lock();
7751 for_each_domain(this_cpu, sd) {
7752 int continue_balancing = 1;
7753 u64 t0, domain_cost;
7754
7755 if (!(sd->flags & SD_LOAD_BALANCE))
7756 continue;
7757
7758 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7759 update_next_balance(sd, 0, &next_balance);
7760 break;
7761 }
7762
7763 if (sd->flags & SD_BALANCE_NEWIDLE) {
7764 t0 = sched_clock_cpu(this_cpu);
7765
7766 pulled_task = load_balance(this_cpu, this_rq,
7767 sd, CPU_NEWLY_IDLE,
7768 &continue_balancing);
7769
7770 domain_cost = sched_clock_cpu(this_cpu) - t0;
7771 if (domain_cost > sd->max_newidle_lb_cost)
7772 sd->max_newidle_lb_cost = domain_cost;
7773
7774 curr_cost += domain_cost;
7775 }
7776
7777 update_next_balance(sd, 0, &next_balance);
7778
7779 /*
7780 * Stop searching for tasks to pull if there are
7781 * now runnable tasks on this rq.
7782 */
7783 if (pulled_task || this_rq->nr_running > 0)
7784 break;
7785 }
7786 rcu_read_unlock();
7787
7788 raw_spin_lock(&this_rq->lock);
7789
7790 if (curr_cost > this_rq->max_idle_balance_cost)
7791 this_rq->max_idle_balance_cost = curr_cost;
7792
7793 /*
7794 * While browsing the domains, we released the rq lock, a task could
7795 * have been enqueued in the meantime. Since we're not going idle,
7796 * pretend we pulled a task.
7797 */
7798 if (this_rq->cfs.h_nr_running && !pulled_task)
7799 pulled_task = 1;
7800
7801 out:
7802 /* Move the next balance forward */
7803 if (time_after(this_rq->next_balance, next_balance))
7804 this_rq->next_balance = next_balance;
7805
7806 /* Is there a task of a high priority class? */
7807 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7808 pulled_task = -1;
7809
7810 if (pulled_task)
7811 this_rq->idle_stamp = 0;
7812
7813 return pulled_task;
7814 }
7815
7816 /*
7817 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7818 * running tasks off the busiest CPU onto idle CPUs. It requires at
7819 * least 1 task to be running on each physical CPU where possible, and
7820 * avoids physical / logical imbalances.
7821 */
7822 static int active_load_balance_cpu_stop(void *data)
7823 {
7824 struct rq *busiest_rq = data;
7825 int busiest_cpu = cpu_of(busiest_rq);
7826 int target_cpu = busiest_rq->push_cpu;
7827 struct rq *target_rq = cpu_rq(target_cpu);
7828 struct sched_domain *sd;
7829 struct task_struct *p = NULL;
7830
7831 raw_spin_lock_irq(&busiest_rq->lock);
7832
7833 /* make sure the requested cpu hasn't gone down in the meantime */
7834 if (unlikely(busiest_cpu != smp_processor_id() ||
7835 !busiest_rq->active_balance))
7836 goto out_unlock;
7837
7838 /* Is there any task to move? */
7839 if (busiest_rq->nr_running <= 1)
7840 goto out_unlock;
7841
7842 /*
7843 * This condition is "impossible", if it occurs
7844 * we need to fix it. Originally reported by
7845 * Bjorn Helgaas on a 128-cpu setup.
7846 */
7847 BUG_ON(busiest_rq == target_rq);
7848
7849 /* Search for an sd spanning us and the target CPU. */
7850 rcu_read_lock();
7851 for_each_domain(target_cpu, sd) {
7852 if ((sd->flags & SD_LOAD_BALANCE) &&
7853 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7854 break;
7855 }
7856
7857 if (likely(sd)) {
7858 struct lb_env env = {
7859 .sd = sd,
7860 .dst_cpu = target_cpu,
7861 .dst_rq = target_rq,
7862 .src_cpu = busiest_rq->cpu,
7863 .src_rq = busiest_rq,
7864 .idle = CPU_IDLE,
7865 };
7866
7867 schedstat_inc(sd, alb_count);
7868
7869 p = detach_one_task(&env);
7870 if (p) {
7871 schedstat_inc(sd, alb_pushed);
7872 /* Active balancing done, reset the failure counter. */
7873 sd->nr_balance_failed = 0;
7874 } else {
7875 schedstat_inc(sd, alb_failed);
7876 }
7877 }
7878 rcu_read_unlock();
7879 out_unlock:
7880 busiest_rq->active_balance = 0;
7881 raw_spin_unlock(&busiest_rq->lock);
7882
7883 if (p)
7884 attach_one_task(target_rq, p);
7885
7886 local_irq_enable();
7887
7888 return 0;
7889 }
7890
7891 static inline int on_null_domain(struct rq *rq)
7892 {
7893 return unlikely(!rcu_dereference_sched(rq->sd));
7894 }
7895
7896 #ifdef CONFIG_NO_HZ_COMMON
7897 /*
7898 * idle load balancing details
7899 * - When one of the busy CPUs notice that there may be an idle rebalancing
7900 * needed, they will kick the idle load balancer, which then does idle
7901 * load balancing for all the idle CPUs.
7902 */
7903 static struct {
7904 cpumask_var_t idle_cpus_mask;
7905 atomic_t nr_cpus;
7906 unsigned long next_balance; /* in jiffy units */
7907 } nohz ____cacheline_aligned;
7908
7909 static inline int find_new_ilb(void)
7910 {
7911 int ilb = cpumask_first(nohz.idle_cpus_mask);
7912
7913 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7914 return ilb;
7915
7916 return nr_cpu_ids;
7917 }
7918
7919 /*
7920 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7921 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7922 * CPU (if there is one).
7923 */
7924 static void nohz_balancer_kick(void)
7925 {
7926 int ilb_cpu;
7927
7928 nohz.next_balance++;
7929
7930 ilb_cpu = find_new_ilb();
7931
7932 if (ilb_cpu >= nr_cpu_ids)
7933 return;
7934
7935 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7936 return;
7937 /*
7938 * Use smp_send_reschedule() instead of resched_cpu().
7939 * This way we generate a sched IPI on the target cpu which
7940 * is idle. And the softirq performing nohz idle load balance
7941 * will be run before returning from the IPI.
7942 */
7943 smp_send_reschedule(ilb_cpu);
7944 return;
7945 }
7946
7947 void nohz_balance_exit_idle(unsigned int cpu)
7948 {
7949 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7950 /*
7951 * Completely isolated CPUs don't ever set, so we must test.
7952 */
7953 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7954 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7955 atomic_dec(&nohz.nr_cpus);
7956 }
7957 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7958 }
7959 }
7960
7961 static inline void set_cpu_sd_state_busy(void)
7962 {
7963 struct sched_domain *sd;
7964 int cpu = smp_processor_id();
7965
7966 rcu_read_lock();
7967 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7968
7969 if (!sd || !sd->nohz_idle)
7970 goto unlock;
7971 sd->nohz_idle = 0;
7972
7973 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7974 unlock:
7975 rcu_read_unlock();
7976 }
7977
7978 void set_cpu_sd_state_idle(void)
7979 {
7980 struct sched_domain *sd;
7981 int cpu = smp_processor_id();
7982
7983 rcu_read_lock();
7984 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7985
7986 if (!sd || sd->nohz_idle)
7987 goto unlock;
7988 sd->nohz_idle = 1;
7989
7990 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7991 unlock:
7992 rcu_read_unlock();
7993 }
7994
7995 /*
7996 * This routine will record that the cpu is going idle with tick stopped.
7997 * This info will be used in performing idle load balancing in the future.
7998 */
7999 void nohz_balance_enter_idle(int cpu)
8000 {
8001 /*
8002 * If this cpu is going down, then nothing needs to be done.
8003 */
8004 if (!cpu_active(cpu))
8005 return;
8006
8007 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8008 return;
8009
8010 /*
8011 * If we're a completely isolated CPU, we don't play.
8012 */
8013 if (on_null_domain(cpu_rq(cpu)))
8014 return;
8015
8016 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8017 atomic_inc(&nohz.nr_cpus);
8018 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8019 }
8020 #endif
8021
8022 static DEFINE_SPINLOCK(balancing);
8023
8024 /*
8025 * Scale the max load_balance interval with the number of CPUs in the system.
8026 * This trades load-balance latency on larger machines for less cross talk.
8027 */
8028 void update_max_interval(void)
8029 {
8030 max_load_balance_interval = HZ*num_online_cpus()/10;
8031 }
8032
8033 /*
8034 * It checks each scheduling domain to see if it is due to be balanced,
8035 * and initiates a balancing operation if so.
8036 *
8037 * Balancing parameters are set up in init_sched_domains.
8038 */
8039 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8040 {
8041 int continue_balancing = 1;
8042 int cpu = rq->cpu;
8043 unsigned long interval;
8044 struct sched_domain *sd;
8045 /* Earliest time when we have to do rebalance again */
8046 unsigned long next_balance = jiffies + 60*HZ;
8047 int update_next_balance = 0;
8048 int need_serialize, need_decay = 0;
8049 u64 max_cost = 0;
8050
8051 update_blocked_averages(cpu);
8052
8053 rcu_read_lock();
8054 for_each_domain(cpu, sd) {
8055 /*
8056 * Decay the newidle max times here because this is a regular
8057 * visit to all the domains. Decay ~1% per second.
8058 */
8059 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8060 sd->max_newidle_lb_cost =
8061 (sd->max_newidle_lb_cost * 253) / 256;
8062 sd->next_decay_max_lb_cost = jiffies + HZ;
8063 need_decay = 1;
8064 }
8065 max_cost += sd->max_newidle_lb_cost;
8066
8067 if (!(sd->flags & SD_LOAD_BALANCE))
8068 continue;
8069
8070 /*
8071 * Stop the load balance at this level. There is another
8072 * CPU in our sched group which is doing load balancing more
8073 * actively.
8074 */
8075 if (!continue_balancing) {
8076 if (need_decay)
8077 continue;
8078 break;
8079 }
8080
8081 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8082
8083 need_serialize = sd->flags & SD_SERIALIZE;
8084 if (need_serialize) {
8085 if (!spin_trylock(&balancing))
8086 goto out;
8087 }
8088
8089 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8090 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8091 /*
8092 * The LBF_DST_PINNED logic could have changed
8093 * env->dst_cpu, so we can't know our idle
8094 * state even if we migrated tasks. Update it.
8095 */
8096 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8097 }
8098 sd->last_balance = jiffies;
8099 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8100 }
8101 if (need_serialize)
8102 spin_unlock(&balancing);
8103 out:
8104 if (time_after(next_balance, sd->last_balance + interval)) {
8105 next_balance = sd->last_balance + interval;
8106 update_next_balance = 1;
8107 }
8108 }
8109 if (need_decay) {
8110 /*
8111 * Ensure the rq-wide value also decays but keep it at a
8112 * reasonable floor to avoid funnies with rq->avg_idle.
8113 */
8114 rq->max_idle_balance_cost =
8115 max((u64)sysctl_sched_migration_cost, max_cost);
8116 }
8117 rcu_read_unlock();
8118
8119 /*
8120 * next_balance will be updated only when there is a need.
8121 * When the cpu is attached to null domain for ex, it will not be
8122 * updated.
8123 */
8124 if (likely(update_next_balance)) {
8125 rq->next_balance = next_balance;
8126
8127 #ifdef CONFIG_NO_HZ_COMMON
8128 /*
8129 * If this CPU has been elected to perform the nohz idle
8130 * balance. Other idle CPUs have already rebalanced with
8131 * nohz_idle_balance() and nohz.next_balance has been
8132 * updated accordingly. This CPU is now running the idle load
8133 * balance for itself and we need to update the
8134 * nohz.next_balance accordingly.
8135 */
8136 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8137 nohz.next_balance = rq->next_balance;
8138 #endif
8139 }
8140 }
8141
8142 #ifdef CONFIG_NO_HZ_COMMON
8143 /*
8144 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8145 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8146 */
8147 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8148 {
8149 int this_cpu = this_rq->cpu;
8150 struct rq *rq;
8151 int balance_cpu;
8152 /* Earliest time when we have to do rebalance again */
8153 unsigned long next_balance = jiffies + 60*HZ;
8154 int update_next_balance = 0;
8155
8156 if (idle != CPU_IDLE ||
8157 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8158 goto end;
8159
8160 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8161 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8162 continue;
8163
8164 /*
8165 * If this cpu gets work to do, stop the load balancing
8166 * work being done for other cpus. Next load
8167 * balancing owner will pick it up.
8168 */
8169 if (need_resched())
8170 break;
8171
8172 rq = cpu_rq(balance_cpu);
8173
8174 /*
8175 * If time for next balance is due,
8176 * do the balance.
8177 */
8178 if (time_after_eq(jiffies, rq->next_balance)) {
8179 raw_spin_lock_irq(&rq->lock);
8180 update_rq_clock(rq);
8181 cpu_load_update_idle(rq);
8182 raw_spin_unlock_irq(&rq->lock);
8183 rebalance_domains(rq, CPU_IDLE);
8184 }
8185
8186 if (time_after(next_balance, rq->next_balance)) {
8187 next_balance = rq->next_balance;
8188 update_next_balance = 1;
8189 }
8190 }
8191
8192 /*
8193 * next_balance will be updated only when there is a need.
8194 * When the CPU is attached to null domain for ex, it will not be
8195 * updated.
8196 */
8197 if (likely(update_next_balance))
8198 nohz.next_balance = next_balance;
8199 end:
8200 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8201 }
8202
8203 /*
8204 * Current heuristic for kicking the idle load balancer in the presence
8205 * of an idle cpu in the system.
8206 * - This rq has more than one task.
8207 * - This rq has at least one CFS task and the capacity of the CPU is
8208 * significantly reduced because of RT tasks or IRQs.
8209 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8210 * multiple busy cpu.
8211 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8212 * domain span are idle.
8213 */
8214 static inline bool nohz_kick_needed(struct rq *rq)
8215 {
8216 unsigned long now = jiffies;
8217 struct sched_domain *sd;
8218 struct sched_group_capacity *sgc;
8219 int nr_busy, cpu = rq->cpu;
8220 bool kick = false;
8221
8222 if (unlikely(rq->idle_balance))
8223 return false;
8224
8225 /*
8226 * We may be recently in ticked or tickless idle mode. At the first
8227 * busy tick after returning from idle, we will update the busy stats.
8228 */
8229 set_cpu_sd_state_busy();
8230 nohz_balance_exit_idle(cpu);
8231
8232 /*
8233 * None are in tickless mode and hence no need for NOHZ idle load
8234 * balancing.
8235 */
8236 if (likely(!atomic_read(&nohz.nr_cpus)))
8237 return false;
8238
8239 if (time_before(now, nohz.next_balance))
8240 return false;
8241
8242 if (rq->nr_running >= 2)
8243 return true;
8244
8245 rcu_read_lock();
8246 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8247 if (sd) {
8248 sgc = sd->groups->sgc;
8249 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8250
8251 if (nr_busy > 1) {
8252 kick = true;
8253 goto unlock;
8254 }
8255
8256 }
8257
8258 sd = rcu_dereference(rq->sd);
8259 if (sd) {
8260 if ((rq->cfs.h_nr_running >= 1) &&
8261 check_cpu_capacity(rq, sd)) {
8262 kick = true;
8263 goto unlock;
8264 }
8265 }
8266
8267 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8268 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8269 sched_domain_span(sd)) < cpu)) {
8270 kick = true;
8271 goto unlock;
8272 }
8273
8274 unlock:
8275 rcu_read_unlock();
8276 return kick;
8277 }
8278 #else
8279 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8280 #endif
8281
8282 /*
8283 * run_rebalance_domains is triggered when needed from the scheduler tick.
8284 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8285 */
8286 static void run_rebalance_domains(struct softirq_action *h)
8287 {
8288 struct rq *this_rq = this_rq();
8289 enum cpu_idle_type idle = this_rq->idle_balance ?
8290 CPU_IDLE : CPU_NOT_IDLE;
8291
8292 /*
8293 * If this cpu has a pending nohz_balance_kick, then do the
8294 * balancing on behalf of the other idle cpus whose ticks are
8295 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8296 * give the idle cpus a chance to load balance. Else we may
8297 * load balance only within the local sched_domain hierarchy
8298 * and abort nohz_idle_balance altogether if we pull some load.
8299 */
8300 nohz_idle_balance(this_rq, idle);
8301 rebalance_domains(this_rq, idle);
8302 }
8303
8304 /*
8305 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8306 */
8307 void trigger_load_balance(struct rq *rq)
8308 {
8309 /* Don't need to rebalance while attached to NULL domain */
8310 if (unlikely(on_null_domain(rq)))
8311 return;
8312
8313 if (time_after_eq(jiffies, rq->next_balance))
8314 raise_softirq(SCHED_SOFTIRQ);
8315 #ifdef CONFIG_NO_HZ_COMMON
8316 if (nohz_kick_needed(rq))
8317 nohz_balancer_kick();
8318 #endif
8319 }
8320
8321 static void rq_online_fair(struct rq *rq)
8322 {
8323 update_sysctl();
8324
8325 update_runtime_enabled(rq);
8326 }
8327
8328 static void rq_offline_fair(struct rq *rq)
8329 {
8330 update_sysctl();
8331
8332 /* Ensure any throttled groups are reachable by pick_next_task */
8333 unthrottle_offline_cfs_rqs(rq);
8334 }
8335
8336 #endif /* CONFIG_SMP */
8337
8338 /*
8339 * scheduler tick hitting a task of our scheduling class:
8340 */
8341 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8342 {
8343 struct cfs_rq *cfs_rq;
8344 struct sched_entity *se = &curr->se;
8345
8346 for_each_sched_entity(se) {
8347 cfs_rq = cfs_rq_of(se);
8348 entity_tick(cfs_rq, se, queued);
8349 }
8350
8351 if (static_branch_unlikely(&sched_numa_balancing))
8352 task_tick_numa(rq, curr);
8353 }
8354
8355 /*
8356 * called on fork with the child task as argument from the parent's context
8357 * - child not yet on the tasklist
8358 * - preemption disabled
8359 */
8360 static void task_fork_fair(struct task_struct *p)
8361 {
8362 struct cfs_rq *cfs_rq;
8363 struct sched_entity *se = &p->se, *curr;
8364 struct rq *rq = this_rq();
8365
8366 raw_spin_lock(&rq->lock);
8367 update_rq_clock(rq);
8368
8369 cfs_rq = task_cfs_rq(current);
8370 curr = cfs_rq->curr;
8371 if (curr) {
8372 update_curr(cfs_rq);
8373 se->vruntime = curr->vruntime;
8374 }
8375 place_entity(cfs_rq, se, 1);
8376
8377 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8378 /*
8379 * Upon rescheduling, sched_class::put_prev_task() will place
8380 * 'current' within the tree based on its new key value.
8381 */
8382 swap(curr->vruntime, se->vruntime);
8383 resched_curr(rq);
8384 }
8385
8386 se->vruntime -= cfs_rq->min_vruntime;
8387 raw_spin_unlock(&rq->lock);
8388 }
8389
8390 /*
8391 * Priority of the task has changed. Check to see if we preempt
8392 * the current task.
8393 */
8394 static void
8395 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8396 {
8397 if (!task_on_rq_queued(p))
8398 return;
8399
8400 /*
8401 * Reschedule if we are currently running on this runqueue and
8402 * our priority decreased, or if we are not currently running on
8403 * this runqueue and our priority is higher than the current's
8404 */
8405 if (rq->curr == p) {
8406 if (p->prio > oldprio)
8407 resched_curr(rq);
8408 } else
8409 check_preempt_curr(rq, p, 0);
8410 }
8411
8412 static inline bool vruntime_normalized(struct task_struct *p)
8413 {
8414 struct sched_entity *se = &p->se;
8415
8416 /*
8417 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8418 * the dequeue_entity(.flags=0) will already have normalized the
8419 * vruntime.
8420 */
8421 if (p->on_rq)
8422 return true;
8423
8424 /*
8425 * When !on_rq, vruntime of the task has usually NOT been normalized.
8426 * But there are some cases where it has already been normalized:
8427 *
8428 * - A forked child which is waiting for being woken up by
8429 * wake_up_new_task().
8430 * - A task which has been woken up by try_to_wake_up() and
8431 * waiting for actually being woken up by sched_ttwu_pending().
8432 */
8433 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8434 return true;
8435
8436 return false;
8437 }
8438
8439 static void detach_task_cfs_rq(struct task_struct *p)
8440 {
8441 struct sched_entity *se = &p->se;
8442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8443 u64 now = cfs_rq_clock_task(cfs_rq);
8444 int tg_update;
8445
8446 if (!vruntime_normalized(p)) {
8447 /*
8448 * Fix up our vruntime so that the current sleep doesn't
8449 * cause 'unlimited' sleep bonus.
8450 */
8451 place_entity(cfs_rq, se, 0);
8452 se->vruntime -= cfs_rq->min_vruntime;
8453 }
8454
8455 /* Catch up with the cfs_rq and remove our load when we leave */
8456 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8457 detach_entity_load_avg(cfs_rq, se);
8458 if (tg_update)
8459 update_tg_load_avg(cfs_rq, false);
8460 }
8461
8462 static void attach_task_cfs_rq(struct task_struct *p)
8463 {
8464 struct sched_entity *se = &p->se;
8465 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8466 u64 now = cfs_rq_clock_task(cfs_rq);
8467 int tg_update;
8468
8469 #ifdef CONFIG_FAIR_GROUP_SCHED
8470 /*
8471 * Since the real-depth could have been changed (only FAIR
8472 * class maintain depth value), reset depth properly.
8473 */
8474 se->depth = se->parent ? se->parent->depth + 1 : 0;
8475 #endif
8476
8477 /* Synchronize task with its cfs_rq */
8478 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8479 attach_entity_load_avg(cfs_rq, se);
8480 if (tg_update)
8481 update_tg_load_avg(cfs_rq, false);
8482
8483 if (!vruntime_normalized(p))
8484 se->vruntime += cfs_rq->min_vruntime;
8485 }
8486
8487 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8488 {
8489 detach_task_cfs_rq(p);
8490 }
8491
8492 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8493 {
8494 attach_task_cfs_rq(p);
8495
8496 if (task_on_rq_queued(p)) {
8497 /*
8498 * We were most likely switched from sched_rt, so
8499 * kick off the schedule if running, otherwise just see
8500 * if we can still preempt the current task.
8501 */
8502 if (rq->curr == p)
8503 resched_curr(rq);
8504 else
8505 check_preempt_curr(rq, p, 0);
8506 }
8507 }
8508
8509 /* Account for a task changing its policy or group.
8510 *
8511 * This routine is mostly called to set cfs_rq->curr field when a task
8512 * migrates between groups/classes.
8513 */
8514 static void set_curr_task_fair(struct rq *rq)
8515 {
8516 struct sched_entity *se = &rq->curr->se;
8517
8518 for_each_sched_entity(se) {
8519 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8520
8521 set_next_entity(cfs_rq, se);
8522 /* ensure bandwidth has been allocated on our new cfs_rq */
8523 account_cfs_rq_runtime(cfs_rq, 0);
8524 }
8525 }
8526
8527 void init_cfs_rq(struct cfs_rq *cfs_rq)
8528 {
8529 cfs_rq->tasks_timeline = RB_ROOT;
8530 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8531 #ifndef CONFIG_64BIT
8532 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8533 #endif
8534 #ifdef CONFIG_SMP
8535 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8536 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8537 #endif
8538 }
8539
8540 #ifdef CONFIG_FAIR_GROUP_SCHED
8541 static void task_set_group_fair(struct task_struct *p)
8542 {
8543 struct sched_entity *se = &p->se;
8544
8545 set_task_rq(p, task_cpu(p));
8546 se->depth = se->parent ? se->parent->depth + 1 : 0;
8547 }
8548
8549 static void task_move_group_fair(struct task_struct *p)
8550 {
8551 detach_task_cfs_rq(p);
8552 set_task_rq(p, task_cpu(p));
8553
8554 #ifdef CONFIG_SMP
8555 /* Tell se's cfs_rq has been changed -- migrated */
8556 p->se.avg.last_update_time = 0;
8557 #endif
8558 attach_task_cfs_rq(p);
8559 }
8560
8561 static void task_change_group_fair(struct task_struct *p, int type)
8562 {
8563 switch (type) {
8564 case TASK_SET_GROUP:
8565 task_set_group_fair(p);
8566 break;
8567
8568 case TASK_MOVE_GROUP:
8569 task_move_group_fair(p);
8570 break;
8571 }
8572 }
8573
8574 void free_fair_sched_group(struct task_group *tg)
8575 {
8576 int i;
8577
8578 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8579
8580 for_each_possible_cpu(i) {
8581 if (tg->cfs_rq)
8582 kfree(tg->cfs_rq[i]);
8583 if (tg->se)
8584 kfree(tg->se[i]);
8585 }
8586
8587 kfree(tg->cfs_rq);
8588 kfree(tg->se);
8589 }
8590
8591 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8592 {
8593 struct sched_entity *se;
8594 struct cfs_rq *cfs_rq;
8595 struct rq *rq;
8596 int i;
8597
8598 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8599 if (!tg->cfs_rq)
8600 goto err;
8601 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8602 if (!tg->se)
8603 goto err;
8604
8605 tg->shares = NICE_0_LOAD;
8606
8607 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8608
8609 for_each_possible_cpu(i) {
8610 rq = cpu_rq(i);
8611
8612 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8613 GFP_KERNEL, cpu_to_node(i));
8614 if (!cfs_rq)
8615 goto err;
8616
8617 se = kzalloc_node(sizeof(struct sched_entity),
8618 GFP_KERNEL, cpu_to_node(i));
8619 if (!se)
8620 goto err_free_rq;
8621
8622 init_cfs_rq(cfs_rq);
8623 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8624 init_entity_runnable_average(se);
8625 }
8626
8627 return 1;
8628
8629 err_free_rq:
8630 kfree(cfs_rq);
8631 err:
8632 return 0;
8633 }
8634
8635 void online_fair_sched_group(struct task_group *tg)
8636 {
8637 struct sched_entity *se;
8638 struct rq *rq;
8639 int i;
8640
8641 for_each_possible_cpu(i) {
8642 rq = cpu_rq(i);
8643 se = tg->se[i];
8644
8645 raw_spin_lock_irq(&rq->lock);
8646 post_init_entity_util_avg(se);
8647 sync_throttle(tg, i);
8648 raw_spin_unlock_irq(&rq->lock);
8649 }
8650 }
8651
8652 void unregister_fair_sched_group(struct task_group *tg)
8653 {
8654 unsigned long flags;
8655 struct rq *rq;
8656 int cpu;
8657
8658 for_each_possible_cpu(cpu) {
8659 if (tg->se[cpu])
8660 remove_entity_load_avg(tg->se[cpu]);
8661
8662 /*
8663 * Only empty task groups can be destroyed; so we can speculatively
8664 * check on_list without danger of it being re-added.
8665 */
8666 if (!tg->cfs_rq[cpu]->on_list)
8667 continue;
8668
8669 rq = cpu_rq(cpu);
8670
8671 raw_spin_lock_irqsave(&rq->lock, flags);
8672 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8673 raw_spin_unlock_irqrestore(&rq->lock, flags);
8674 }
8675 }
8676
8677 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8678 struct sched_entity *se, int cpu,
8679 struct sched_entity *parent)
8680 {
8681 struct rq *rq = cpu_rq(cpu);
8682
8683 cfs_rq->tg = tg;
8684 cfs_rq->rq = rq;
8685 init_cfs_rq_runtime(cfs_rq);
8686
8687 tg->cfs_rq[cpu] = cfs_rq;
8688 tg->se[cpu] = se;
8689
8690 /* se could be NULL for root_task_group */
8691 if (!se)
8692 return;
8693
8694 if (!parent) {
8695 se->cfs_rq = &rq->cfs;
8696 se->depth = 0;
8697 } else {
8698 se->cfs_rq = parent->my_q;
8699 se->depth = parent->depth + 1;
8700 }
8701
8702 se->my_q = cfs_rq;
8703 /* guarantee group entities always have weight */
8704 update_load_set(&se->load, NICE_0_LOAD);
8705 se->parent = parent;
8706 }
8707
8708 static DEFINE_MUTEX(shares_mutex);
8709
8710 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8711 {
8712 int i;
8713 unsigned long flags;
8714
8715 /*
8716 * We can't change the weight of the root cgroup.
8717 */
8718 if (!tg->se[0])
8719 return -EINVAL;
8720
8721 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8722
8723 mutex_lock(&shares_mutex);
8724 if (tg->shares == shares)
8725 goto done;
8726
8727 tg->shares = shares;
8728 for_each_possible_cpu(i) {
8729 struct rq *rq = cpu_rq(i);
8730 struct sched_entity *se;
8731
8732 se = tg->se[i];
8733 /* Propagate contribution to hierarchy */
8734 raw_spin_lock_irqsave(&rq->lock, flags);
8735
8736 /* Possible calls to update_curr() need rq clock */
8737 update_rq_clock(rq);
8738 for_each_sched_entity(se)
8739 update_cfs_shares(group_cfs_rq(se));
8740 raw_spin_unlock_irqrestore(&rq->lock, flags);
8741 }
8742
8743 done:
8744 mutex_unlock(&shares_mutex);
8745 return 0;
8746 }
8747 #else /* CONFIG_FAIR_GROUP_SCHED */
8748
8749 void free_fair_sched_group(struct task_group *tg) { }
8750
8751 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8752 {
8753 return 1;
8754 }
8755
8756 void online_fair_sched_group(struct task_group *tg) { }
8757
8758 void unregister_fair_sched_group(struct task_group *tg) { }
8759
8760 #endif /* CONFIG_FAIR_GROUP_SCHED */
8761
8762
8763 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8764 {
8765 struct sched_entity *se = &task->se;
8766 unsigned int rr_interval = 0;
8767
8768 /*
8769 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8770 * idle runqueue:
8771 */
8772 if (rq->cfs.load.weight)
8773 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8774
8775 return rr_interval;
8776 }
8777
8778 /*
8779 * All the scheduling class methods:
8780 */
8781 const struct sched_class fair_sched_class = {
8782 .next = &idle_sched_class,
8783 .enqueue_task = enqueue_task_fair,
8784 .dequeue_task = dequeue_task_fair,
8785 .yield_task = yield_task_fair,
8786 .yield_to_task = yield_to_task_fair,
8787
8788 .check_preempt_curr = check_preempt_wakeup,
8789
8790 .pick_next_task = pick_next_task_fair,
8791 .put_prev_task = put_prev_task_fair,
8792
8793 #ifdef CONFIG_SMP
8794 .select_task_rq = select_task_rq_fair,
8795 .migrate_task_rq = migrate_task_rq_fair,
8796
8797 .rq_online = rq_online_fair,
8798 .rq_offline = rq_offline_fair,
8799
8800 .task_dead = task_dead_fair,
8801 .set_cpus_allowed = set_cpus_allowed_common,
8802 #endif
8803
8804 .set_curr_task = set_curr_task_fair,
8805 .task_tick = task_tick_fair,
8806 .task_fork = task_fork_fair,
8807
8808 .prio_changed = prio_changed_fair,
8809 .switched_from = switched_from_fair,
8810 .switched_to = switched_to_fair,
8811
8812 .get_rr_interval = get_rr_interval_fair,
8813
8814 .update_curr = update_curr_fair,
8815
8816 #ifdef CONFIG_FAIR_GROUP_SCHED
8817 .task_change_group = task_change_group_fair,
8818 #endif
8819 };
8820
8821 #ifdef CONFIG_SCHED_DEBUG
8822 void print_cfs_stats(struct seq_file *m, int cpu)
8823 {
8824 struct cfs_rq *cfs_rq;
8825
8826 rcu_read_lock();
8827 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8828 print_cfs_rq(m, cpu, cfs_rq);
8829 rcu_read_unlock();
8830 }
8831
8832 #ifdef CONFIG_NUMA_BALANCING
8833 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8834 {
8835 int node;
8836 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8837
8838 for_each_online_node(node) {
8839 if (p->numa_faults) {
8840 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8841 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8842 }
8843 if (p->numa_group) {
8844 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8845 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8846 }
8847 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8848 }
8849 }
8850 #endif /* CONFIG_NUMA_BALANCING */
8851 #endif /* CONFIG_SCHED_DEBUG */
8852
8853 __init void init_sched_fair_class(void)
8854 {
8855 #ifdef CONFIG_SMP
8856 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8857
8858 #ifdef CONFIG_NO_HZ_COMMON
8859 nohz.next_balance = jiffies;
8860 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8861 #endif
8862 #endif /* SMP */
8863
8864 }
This page took 0.226942 seconds and 5 git commands to generate.