Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63 }
64 raw_spin_unlock(&rt_b->rt_runtime_lock);
65 }
66
67 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
68 static void push_irq_work_func(struct irq_work *work);
69 #endif
70
71 void init_rt_rq(struct rt_rq *rt_rq)
72 {
73 struct rt_prio_array *array;
74 int i;
75
76 array = &rt_rq->active;
77 for (i = 0; i < MAX_RT_PRIO; i++) {
78 INIT_LIST_HEAD(array->queue + i);
79 __clear_bit(i, array->bitmap);
80 }
81 /* delimiter for bitsearch: */
82 __set_bit(MAX_RT_PRIO, array->bitmap);
83
84 #if defined CONFIG_SMP
85 rt_rq->highest_prio.curr = MAX_RT_PRIO;
86 rt_rq->highest_prio.next = MAX_RT_PRIO;
87 rt_rq->rt_nr_migratory = 0;
88 rt_rq->overloaded = 0;
89 plist_head_init(&rt_rq->pushable_tasks);
90
91 #ifdef HAVE_RT_PUSH_IPI
92 rt_rq->push_flags = 0;
93 rt_rq->push_cpu = nr_cpu_ids;
94 raw_spin_lock_init(&rt_rq->push_lock);
95 init_irq_work(&rt_rq->push_work, push_irq_work_func);
96 #endif
97 #endif /* CONFIG_SMP */
98 /* We start is dequeued state, because no RT tasks are queued */
99 rt_rq->rt_queued = 0;
100
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125 return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130 return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135 struct rt_rq *rt_rq = rt_se->rt_rq;
136
137 return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142 int i;
143
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
152 }
153
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
161 {
162 struct rq *rq = cpu_rq(cpu);
163
164 rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
168
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
171
172 if (!rt_se)
173 return;
174
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
179
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
190
191 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
197
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
206
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
211
212 init_rt_rq(rt_rq);
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 }
216
217 return 1;
218
219 err_free_rq:
220 kfree(rt_rq);
221 err:
222 return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231 return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236 return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241 struct task_struct *p = rt_task_of(rt_se);
242
243 return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248 struct rq *rq = rq_of_rt_se(rt_se);
249
250 return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257 return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static void pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273 return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278 if (!rq->online)
279 return;
280
281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282 /*
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
287 * updated yet.
288 *
289 * Matched by the barrier in pull_rt_task().
290 */
291 smp_wmb();
292 atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297 if (!rq->online)
298 return;
299
300 /* the order here really doesn't matter */
301 atomic_dec(&rq->rd->rto_count);
302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
311 }
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
315 }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320 struct task_struct *p;
321
322 if (!rt_entity_is_task(rt_se))
323 return;
324
325 p = rt_task_of(rt_se);
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328 rt_rq->rt_nr_total++;
329 if (p->nr_cpus_allowed > 1)
330 rt_rq->rt_nr_migratory++;
331
332 update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337 struct task_struct *p;
338
339 if (!rt_entity_is_task(rt_se))
340 return;
341
342 p = rt_task_of(rt_se);
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345 rt_rq->rt_nr_total--;
346 if (p->nr_cpus_allowed > 1)
347 rt_rq->rt_nr_migratory--;
348
349 update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354 return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362
363 static inline void queue_push_tasks(struct rq *rq)
364 {
365 if (!has_pushable_tasks(rq))
366 return;
367
368 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370
371 static inline void queue_pull_task(struct rq *rq)
372 {
373 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 plist_node_init(&p->pushable_tasks, p->prio);
380 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382 /* Update the highest prio pushable task */
383 if (p->prio < rq->rt.highest_prio.next)
384 rq->rt.highest_prio.next = p->prio;
385 }
386
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391 /* Update the new highest prio pushable task */
392 if (has_pushable_tasks(rq)) {
393 p = plist_first_entry(&rq->rt.pushable_tasks,
394 struct task_struct, pushable_tasks);
395 rq->rt.highest_prio.next = p->prio;
396 } else
397 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399
400 #else
401
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422 return false;
423 }
424
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428
429 static inline void queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 return !list_empty(&rt_se->run_list);
440 }
441
442 #ifdef CONFIG_RT_GROUP_SCHED
443
444 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445 {
446 if (!rt_rq->tg)
447 return RUNTIME_INF;
448
449 return rt_rq->rt_runtime;
450 }
451
452 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453 {
454 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455 }
456
457 typedef struct task_group *rt_rq_iter_t;
458
459 static inline struct task_group *next_task_group(struct task_group *tg)
460 {
461 do {
462 tg = list_entry_rcu(tg->list.next,
463 typeof(struct task_group), list);
464 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465
466 if (&tg->list == &task_groups)
467 tg = NULL;
468
469 return tg;
470 }
471
472 #define for_each_rt_rq(rt_rq, iter, rq) \
473 for (iter = container_of(&task_groups, typeof(*iter), list); \
474 (iter = next_task_group(iter)) && \
475 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
476
477 #define for_each_sched_rt_entity(rt_se) \
478 for (; rt_se; rt_se = rt_se->parent)
479
480 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481 {
482 return rt_se->my_q;
483 }
484
485 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487
488 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489 {
490 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491 struct rq *rq = rq_of_rt_rq(rt_rq);
492 struct sched_rt_entity *rt_se;
493
494 int cpu = cpu_of(rq);
495
496 rt_se = rt_rq->tg->rt_se[cpu];
497
498 if (rt_rq->rt_nr_running) {
499 if (!rt_se)
500 enqueue_top_rt_rq(rt_rq);
501 else if (!on_rt_rq(rt_se))
502 enqueue_rt_entity(rt_se, false);
503
504 if (rt_rq->highest_prio.curr < curr->prio)
505 resched_curr(rq);
506 }
507 }
508
509 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510 {
511 struct sched_rt_entity *rt_se;
512 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513
514 rt_se = rt_rq->tg->rt_se[cpu];
515
516 if (!rt_se)
517 dequeue_top_rt_rq(rt_rq);
518 else if (on_rt_rq(rt_se))
519 dequeue_rt_entity(rt_se);
520 }
521
522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526
527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529 struct rt_rq *rt_rq = group_rt_rq(rt_se);
530 struct task_struct *p;
531
532 if (rt_rq)
533 return !!rt_rq->rt_nr_boosted;
534
535 p = rt_task_of(rt_se);
536 return p->prio != p->normal_prio;
537 }
538
539 #ifdef CONFIG_SMP
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542 return this_rq()->rd->span;
543 }
544 #else
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547 return cpu_online_mask;
548 }
549 #endif
550
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559 return &rt_rq->tg->rt_bandwidth;
560 }
561
562 #else /* !CONFIG_RT_GROUP_SCHED */
563
564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566 return rt_rq->rt_runtime;
567 }
568
569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571 return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573
574 typedef struct rt_rq *rt_rq_iter_t;
575
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579 #define for_each_sched_rt_entity(rt_se) \
580 for (; rt_se; rt_se = NULL)
581
582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584 return NULL;
585 }
586
587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589 struct rq *rq = rq_of_rt_rq(rt_rq);
590
591 if (!rt_rq->rt_nr_running)
592 return;
593
594 enqueue_top_rt_rq(rt_rq);
595 resched_curr(rq);
596 }
597
598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600 dequeue_top_rt_rq(rt_rq);
601 }
602
603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605 return rt_rq->rt_throttled;
606 }
607
608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610 return cpu_online_mask;
611 }
612
613 static inline
614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616 return &cpu_rq(cpu)->rt;
617 }
618
619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621 return &def_rt_bandwidth;
622 }
623
624 #endif /* CONFIG_RT_GROUP_SCHED */
625
626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630 return (hrtimer_active(&rt_b->rt_period_timer) ||
631 rt_rq->rt_time < rt_b->rt_runtime);
632 }
633
634 #ifdef CONFIG_SMP
635 /*
636 * We ran out of runtime, see if we can borrow some from our neighbours.
637 */
638 static void do_balance_runtime(struct rt_rq *rt_rq)
639 {
640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642 int i, weight;
643 u64 rt_period;
644
645 weight = cpumask_weight(rd->span);
646
647 raw_spin_lock(&rt_b->rt_runtime_lock);
648 rt_period = ktime_to_ns(rt_b->rt_period);
649 for_each_cpu(i, rd->span) {
650 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651 s64 diff;
652
653 if (iter == rt_rq)
654 continue;
655
656 raw_spin_lock(&iter->rt_runtime_lock);
657 /*
658 * Either all rqs have inf runtime and there's nothing to steal
659 * or __disable_runtime() below sets a specific rq to inf to
660 * indicate its been disabled and disalow stealing.
661 */
662 if (iter->rt_runtime == RUNTIME_INF)
663 goto next;
664
665 /*
666 * From runqueues with spare time, take 1/n part of their
667 * spare time, but no more than our period.
668 */
669 diff = iter->rt_runtime - iter->rt_time;
670 if (diff > 0) {
671 diff = div_u64((u64)diff, weight);
672 if (rt_rq->rt_runtime + diff > rt_period)
673 diff = rt_period - rt_rq->rt_runtime;
674 iter->rt_runtime -= diff;
675 rt_rq->rt_runtime += diff;
676 if (rt_rq->rt_runtime == rt_period) {
677 raw_spin_unlock(&iter->rt_runtime_lock);
678 break;
679 }
680 }
681 next:
682 raw_spin_unlock(&iter->rt_runtime_lock);
683 }
684 raw_spin_unlock(&rt_b->rt_runtime_lock);
685 }
686
687 /*
688 * Ensure this RQ takes back all the runtime it lend to its neighbours.
689 */
690 static void __disable_runtime(struct rq *rq)
691 {
692 struct root_domain *rd = rq->rd;
693 rt_rq_iter_t iter;
694 struct rt_rq *rt_rq;
695
696 if (unlikely(!scheduler_running))
697 return;
698
699 for_each_rt_rq(rt_rq, iter, rq) {
700 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701 s64 want;
702 int i;
703
704 raw_spin_lock(&rt_b->rt_runtime_lock);
705 raw_spin_lock(&rt_rq->rt_runtime_lock);
706 /*
707 * Either we're all inf and nobody needs to borrow, or we're
708 * already disabled and thus have nothing to do, or we have
709 * exactly the right amount of runtime to take out.
710 */
711 if (rt_rq->rt_runtime == RUNTIME_INF ||
712 rt_rq->rt_runtime == rt_b->rt_runtime)
713 goto balanced;
714 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716 /*
717 * Calculate the difference between what we started out with
718 * and what we current have, that's the amount of runtime
719 * we lend and now have to reclaim.
720 */
721 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723 /*
724 * Greedy reclaim, take back as much as we can.
725 */
726 for_each_cpu(i, rd->span) {
727 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728 s64 diff;
729
730 /*
731 * Can't reclaim from ourselves or disabled runqueues.
732 */
733 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734 continue;
735
736 raw_spin_lock(&iter->rt_runtime_lock);
737 if (want > 0) {
738 diff = min_t(s64, iter->rt_runtime, want);
739 iter->rt_runtime -= diff;
740 want -= diff;
741 } else {
742 iter->rt_runtime -= want;
743 want -= want;
744 }
745 raw_spin_unlock(&iter->rt_runtime_lock);
746
747 if (!want)
748 break;
749 }
750
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 /*
753 * We cannot be left wanting - that would mean some runtime
754 * leaked out of the system.
755 */
756 BUG_ON(want);
757 balanced:
758 /*
759 * Disable all the borrow logic by pretending we have inf
760 * runtime - in which case borrowing doesn't make sense.
761 */
762 rt_rq->rt_runtime = RUNTIME_INF;
763 rt_rq->rt_throttled = 0;
764 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767 /* Make rt_rq available for pick_next_task() */
768 sched_rt_rq_enqueue(rt_rq);
769 }
770 }
771
772 static void __enable_runtime(struct rq *rq)
773 {
774 rt_rq_iter_t iter;
775 struct rt_rq *rt_rq;
776
777 if (unlikely(!scheduler_running))
778 return;
779
780 /*
781 * Reset each runqueue's bandwidth settings
782 */
783 for_each_rt_rq(rt_rq, iter, rq) {
784 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786 raw_spin_lock(&rt_b->rt_runtime_lock);
787 raw_spin_lock(&rt_rq->rt_runtime_lock);
788 rt_rq->rt_runtime = rt_b->rt_runtime;
789 rt_rq->rt_time = 0;
790 rt_rq->rt_throttled = 0;
791 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792 raw_spin_unlock(&rt_b->rt_runtime_lock);
793 }
794 }
795
796 static void balance_runtime(struct rt_rq *rt_rq)
797 {
798 if (!sched_feat(RT_RUNTIME_SHARE))
799 return;
800
801 if (rt_rq->rt_time > rt_rq->rt_runtime) {
802 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803 do_balance_runtime(rt_rq);
804 raw_spin_lock(&rt_rq->rt_runtime_lock);
805 }
806 }
807 #else /* !CONFIG_SMP */
808 static inline void balance_runtime(struct rt_rq *rt_rq) {}
809 #endif /* CONFIG_SMP */
810
811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 {
813 int i, idle = 1, throttled = 0;
814 const struct cpumask *span;
815
816 span = sched_rt_period_mask();
817 #ifdef CONFIG_RT_GROUP_SCHED
818 /*
819 * FIXME: isolated CPUs should really leave the root task group,
820 * whether they are isolcpus or were isolated via cpusets, lest
821 * the timer run on a CPU which does not service all runqueues,
822 * potentially leaving other CPUs indefinitely throttled. If
823 * isolation is really required, the user will turn the throttle
824 * off to kill the perturbations it causes anyway. Meanwhile,
825 * this maintains functionality for boot and/or troubleshooting.
826 */
827 if (rt_b == &root_task_group.rt_bandwidth)
828 span = cpu_online_mask;
829 #endif
830 for_each_cpu(i, span) {
831 int enqueue = 0;
832 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833 struct rq *rq = rq_of_rt_rq(rt_rq);
834
835 raw_spin_lock(&rq->lock);
836 if (rt_rq->rt_time) {
837 u64 runtime;
838
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 if (rt_rq->rt_throttled)
841 balance_runtime(rt_rq);
842 runtime = rt_rq->rt_runtime;
843 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845 rt_rq->rt_throttled = 0;
846 enqueue = 1;
847
848 /*
849 * When we're idle and a woken (rt) task is
850 * throttled check_preempt_curr() will set
851 * skip_update and the time between the wakeup
852 * and this unthrottle will get accounted as
853 * 'runtime'.
854 */
855 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856 rq_clock_skip_update(rq, false);
857 }
858 if (rt_rq->rt_time || rt_rq->rt_nr_running)
859 idle = 0;
860 raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 } else if (rt_rq->rt_nr_running) {
862 idle = 0;
863 if (!rt_rq_throttled(rt_rq))
864 enqueue = 1;
865 }
866 if (rt_rq->rt_throttled)
867 throttled = 1;
868
869 if (enqueue)
870 sched_rt_rq_enqueue(rt_rq);
871 raw_spin_unlock(&rq->lock);
872 }
873
874 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875 return 1;
876
877 return idle;
878 }
879
880 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
881 {
882 #ifdef CONFIG_RT_GROUP_SCHED
883 struct rt_rq *rt_rq = group_rt_rq(rt_se);
884
885 if (rt_rq)
886 return rt_rq->highest_prio.curr;
887 #endif
888
889 return rt_task_of(rt_se)->prio;
890 }
891
892 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
893 {
894 u64 runtime = sched_rt_runtime(rt_rq);
895
896 if (rt_rq->rt_throttled)
897 return rt_rq_throttled(rt_rq);
898
899 if (runtime >= sched_rt_period(rt_rq))
900 return 0;
901
902 balance_runtime(rt_rq);
903 runtime = sched_rt_runtime(rt_rq);
904 if (runtime == RUNTIME_INF)
905 return 0;
906
907 if (rt_rq->rt_time > runtime) {
908 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
909
910 /*
911 * Don't actually throttle groups that have no runtime assigned
912 * but accrue some time due to boosting.
913 */
914 if (likely(rt_b->rt_runtime)) {
915 rt_rq->rt_throttled = 1;
916 printk_deferred_once("sched: RT throttling activated\n");
917 } else {
918 /*
919 * In case we did anyway, make it go away,
920 * replenishment is a joke, since it will replenish us
921 * with exactly 0 ns.
922 */
923 rt_rq->rt_time = 0;
924 }
925
926 if (rt_rq_throttled(rt_rq)) {
927 sched_rt_rq_dequeue(rt_rq);
928 return 1;
929 }
930 }
931
932 return 0;
933 }
934
935 /*
936 * Update the current task's runtime statistics. Skip current tasks that
937 * are not in our scheduling class.
938 */
939 static void update_curr_rt(struct rq *rq)
940 {
941 struct task_struct *curr = rq->curr;
942 struct sched_rt_entity *rt_se = &curr->rt;
943 u64 delta_exec;
944
945 if (curr->sched_class != &rt_sched_class)
946 return;
947
948 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
949 if (unlikely((s64)delta_exec <= 0))
950 return;
951
952 schedstat_set(curr->se.statistics.exec_max,
953 max(curr->se.statistics.exec_max, delta_exec));
954
955 curr->se.sum_exec_runtime += delta_exec;
956 account_group_exec_runtime(curr, delta_exec);
957
958 curr->se.exec_start = rq_clock_task(rq);
959 cpuacct_charge(curr, delta_exec);
960
961 sched_rt_avg_update(rq, delta_exec);
962
963 if (!rt_bandwidth_enabled())
964 return;
965
966 for_each_sched_rt_entity(rt_se) {
967 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
968
969 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
970 raw_spin_lock(&rt_rq->rt_runtime_lock);
971 rt_rq->rt_time += delta_exec;
972 if (sched_rt_runtime_exceeded(rt_rq))
973 resched_curr(rq);
974 raw_spin_unlock(&rt_rq->rt_runtime_lock);
975 }
976 }
977 }
978
979 static void
980 dequeue_top_rt_rq(struct rt_rq *rt_rq)
981 {
982 struct rq *rq = rq_of_rt_rq(rt_rq);
983
984 BUG_ON(&rq->rt != rt_rq);
985
986 if (!rt_rq->rt_queued)
987 return;
988
989 BUG_ON(!rq->nr_running);
990
991 sub_nr_running(rq, rt_rq->rt_nr_running);
992 rt_rq->rt_queued = 0;
993 }
994
995 static void
996 enqueue_top_rt_rq(struct rt_rq *rt_rq)
997 {
998 struct rq *rq = rq_of_rt_rq(rt_rq);
999
1000 BUG_ON(&rq->rt != rt_rq);
1001
1002 if (rt_rq->rt_queued)
1003 return;
1004 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1005 return;
1006
1007 add_nr_running(rq, rt_rq->rt_nr_running);
1008 rt_rq->rt_queued = 1;
1009 }
1010
1011 #if defined CONFIG_SMP
1012
1013 static void
1014 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1015 {
1016 struct rq *rq = rq_of_rt_rq(rt_rq);
1017
1018 #ifdef CONFIG_RT_GROUP_SCHED
1019 /*
1020 * Change rq's cpupri only if rt_rq is the top queue.
1021 */
1022 if (&rq->rt != rt_rq)
1023 return;
1024 #endif
1025 if (rq->online && prio < prev_prio)
1026 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1027 }
1028
1029 static void
1030 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031 {
1032 struct rq *rq = rq_of_rt_rq(rt_rq);
1033
1034 #ifdef CONFIG_RT_GROUP_SCHED
1035 /*
1036 * Change rq's cpupri only if rt_rq is the top queue.
1037 */
1038 if (&rq->rt != rt_rq)
1039 return;
1040 #endif
1041 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1042 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1043 }
1044
1045 #else /* CONFIG_SMP */
1046
1047 static inline
1048 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1049 static inline
1050 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1051
1052 #endif /* CONFIG_SMP */
1053
1054 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1055 static void
1056 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1057 {
1058 int prev_prio = rt_rq->highest_prio.curr;
1059
1060 if (prio < prev_prio)
1061 rt_rq->highest_prio.curr = prio;
1062
1063 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1064 }
1065
1066 static void
1067 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1068 {
1069 int prev_prio = rt_rq->highest_prio.curr;
1070
1071 if (rt_rq->rt_nr_running) {
1072
1073 WARN_ON(prio < prev_prio);
1074
1075 /*
1076 * This may have been our highest task, and therefore
1077 * we may have some recomputation to do
1078 */
1079 if (prio == prev_prio) {
1080 struct rt_prio_array *array = &rt_rq->active;
1081
1082 rt_rq->highest_prio.curr =
1083 sched_find_first_bit(array->bitmap);
1084 }
1085
1086 } else
1087 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1088
1089 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1090 }
1091
1092 #else
1093
1094 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1095 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1096
1097 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1098
1099 #ifdef CONFIG_RT_GROUP_SCHED
1100
1101 static void
1102 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1103 {
1104 if (rt_se_boosted(rt_se))
1105 rt_rq->rt_nr_boosted++;
1106
1107 if (rt_rq->tg)
1108 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1109 }
1110
1111 static void
1112 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113 {
1114 if (rt_se_boosted(rt_se))
1115 rt_rq->rt_nr_boosted--;
1116
1117 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1118 }
1119
1120 #else /* CONFIG_RT_GROUP_SCHED */
1121
1122 static void
1123 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 start_rt_bandwidth(&def_rt_bandwidth);
1126 }
1127
1128 static inline
1129 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1130
1131 #endif /* CONFIG_RT_GROUP_SCHED */
1132
1133 static inline
1134 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1135 {
1136 struct rt_rq *group_rq = group_rt_rq(rt_se);
1137
1138 if (group_rq)
1139 return group_rq->rt_nr_running;
1140 else
1141 return 1;
1142 }
1143
1144 static inline
1145 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146 {
1147 int prio = rt_se_prio(rt_se);
1148
1149 WARN_ON(!rt_prio(prio));
1150 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1151
1152 inc_rt_prio(rt_rq, prio);
1153 inc_rt_migration(rt_se, rt_rq);
1154 inc_rt_group(rt_se, rt_rq);
1155 }
1156
1157 static inline
1158 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1159 {
1160 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1161 WARN_ON(!rt_rq->rt_nr_running);
1162 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1163
1164 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1165 dec_rt_migration(rt_se, rt_rq);
1166 dec_rt_group(rt_se, rt_rq);
1167 }
1168
1169 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1170 {
1171 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1172 struct rt_prio_array *array = &rt_rq->active;
1173 struct rt_rq *group_rq = group_rt_rq(rt_se);
1174 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1175
1176 /*
1177 * Don't enqueue the group if its throttled, or when empty.
1178 * The latter is a consequence of the former when a child group
1179 * get throttled and the current group doesn't have any other
1180 * active members.
1181 */
1182 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1183 return;
1184
1185 if (head)
1186 list_add(&rt_se->run_list, queue);
1187 else
1188 list_add_tail(&rt_se->run_list, queue);
1189 __set_bit(rt_se_prio(rt_se), array->bitmap);
1190
1191 inc_rt_tasks(rt_se, rt_rq);
1192 }
1193
1194 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1195 {
1196 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1197 struct rt_prio_array *array = &rt_rq->active;
1198
1199 list_del_init(&rt_se->run_list);
1200 if (list_empty(array->queue + rt_se_prio(rt_se)))
1201 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1202
1203 dec_rt_tasks(rt_se, rt_rq);
1204 }
1205
1206 /*
1207 * Because the prio of an upper entry depends on the lower
1208 * entries, we must remove entries top - down.
1209 */
1210 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1211 {
1212 struct sched_rt_entity *back = NULL;
1213
1214 for_each_sched_rt_entity(rt_se) {
1215 rt_se->back = back;
1216 back = rt_se;
1217 }
1218
1219 dequeue_top_rt_rq(rt_rq_of_se(back));
1220
1221 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1222 if (on_rt_rq(rt_se))
1223 __dequeue_rt_entity(rt_se);
1224 }
1225 }
1226
1227 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1228 {
1229 struct rq *rq = rq_of_rt_se(rt_se);
1230
1231 dequeue_rt_stack(rt_se);
1232 for_each_sched_rt_entity(rt_se)
1233 __enqueue_rt_entity(rt_se, head);
1234 enqueue_top_rt_rq(&rq->rt);
1235 }
1236
1237 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1238 {
1239 struct rq *rq = rq_of_rt_se(rt_se);
1240
1241 dequeue_rt_stack(rt_se);
1242
1243 for_each_sched_rt_entity(rt_se) {
1244 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1245
1246 if (rt_rq && rt_rq->rt_nr_running)
1247 __enqueue_rt_entity(rt_se, false);
1248 }
1249 enqueue_top_rt_rq(&rq->rt);
1250 }
1251
1252 /*
1253 * Adding/removing a task to/from a priority array:
1254 */
1255 static void
1256 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1257 {
1258 struct sched_rt_entity *rt_se = &p->rt;
1259
1260 if (flags & ENQUEUE_WAKEUP)
1261 rt_se->timeout = 0;
1262
1263 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1264
1265 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1266 enqueue_pushable_task(rq, p);
1267 }
1268
1269 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1270 {
1271 struct sched_rt_entity *rt_se = &p->rt;
1272
1273 update_curr_rt(rq);
1274 dequeue_rt_entity(rt_se);
1275
1276 dequeue_pushable_task(rq, p);
1277 }
1278
1279 /*
1280 * Put task to the head or the end of the run list without the overhead of
1281 * dequeue followed by enqueue.
1282 */
1283 static void
1284 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1285 {
1286 if (on_rt_rq(rt_se)) {
1287 struct rt_prio_array *array = &rt_rq->active;
1288 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289
1290 if (head)
1291 list_move(&rt_se->run_list, queue);
1292 else
1293 list_move_tail(&rt_se->run_list, queue);
1294 }
1295 }
1296
1297 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1298 {
1299 struct sched_rt_entity *rt_se = &p->rt;
1300 struct rt_rq *rt_rq;
1301
1302 for_each_sched_rt_entity(rt_se) {
1303 rt_rq = rt_rq_of_se(rt_se);
1304 requeue_rt_entity(rt_rq, rt_se, head);
1305 }
1306 }
1307
1308 static void yield_task_rt(struct rq *rq)
1309 {
1310 requeue_task_rt(rq, rq->curr, 0);
1311 }
1312
1313 #ifdef CONFIG_SMP
1314 static int find_lowest_rq(struct task_struct *task);
1315
1316 static int
1317 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1318 {
1319 struct task_struct *curr;
1320 struct rq *rq;
1321
1322 /* For anything but wake ups, just return the task_cpu */
1323 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1324 goto out;
1325
1326 rq = cpu_rq(cpu);
1327
1328 rcu_read_lock();
1329 curr = READ_ONCE(rq->curr); /* unlocked access */
1330
1331 /*
1332 * If the current task on @p's runqueue is an RT task, then
1333 * try to see if we can wake this RT task up on another
1334 * runqueue. Otherwise simply start this RT task
1335 * on its current runqueue.
1336 *
1337 * We want to avoid overloading runqueues. If the woken
1338 * task is a higher priority, then it will stay on this CPU
1339 * and the lower prio task should be moved to another CPU.
1340 * Even though this will probably make the lower prio task
1341 * lose its cache, we do not want to bounce a higher task
1342 * around just because it gave up its CPU, perhaps for a
1343 * lock?
1344 *
1345 * For equal prio tasks, we just let the scheduler sort it out.
1346 *
1347 * Otherwise, just let it ride on the affined RQ and the
1348 * post-schedule router will push the preempted task away
1349 *
1350 * This test is optimistic, if we get it wrong the load-balancer
1351 * will have to sort it out.
1352 */
1353 if (curr && unlikely(rt_task(curr)) &&
1354 (curr->nr_cpus_allowed < 2 ||
1355 curr->prio <= p->prio)) {
1356 int target = find_lowest_rq(p);
1357
1358 /*
1359 * Don't bother moving it if the destination CPU is
1360 * not running a lower priority task.
1361 */
1362 if (target != -1 &&
1363 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1364 cpu = target;
1365 }
1366 rcu_read_unlock();
1367
1368 out:
1369 return cpu;
1370 }
1371
1372 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1373 {
1374 /*
1375 * Current can't be migrated, useless to reschedule,
1376 * let's hope p can move out.
1377 */
1378 if (rq->curr->nr_cpus_allowed == 1 ||
1379 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1380 return;
1381
1382 /*
1383 * p is migratable, so let's not schedule it and
1384 * see if it is pushed or pulled somewhere else.
1385 */
1386 if (p->nr_cpus_allowed != 1
1387 && cpupri_find(&rq->rd->cpupri, p, NULL))
1388 return;
1389
1390 /*
1391 * There appears to be other cpus that can accept
1392 * current and none to run 'p', so lets reschedule
1393 * to try and push current away:
1394 */
1395 requeue_task_rt(rq, p, 1);
1396 resched_curr(rq);
1397 }
1398
1399 #endif /* CONFIG_SMP */
1400
1401 /*
1402 * Preempt the current task with a newly woken task if needed:
1403 */
1404 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1405 {
1406 if (p->prio < rq->curr->prio) {
1407 resched_curr(rq);
1408 return;
1409 }
1410
1411 #ifdef CONFIG_SMP
1412 /*
1413 * If:
1414 *
1415 * - the newly woken task is of equal priority to the current task
1416 * - the newly woken task is non-migratable while current is migratable
1417 * - current will be preempted on the next reschedule
1418 *
1419 * we should check to see if current can readily move to a different
1420 * cpu. If so, we will reschedule to allow the push logic to try
1421 * to move current somewhere else, making room for our non-migratable
1422 * task.
1423 */
1424 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1425 check_preempt_equal_prio(rq, p);
1426 #endif
1427 }
1428
1429 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1430 struct rt_rq *rt_rq)
1431 {
1432 struct rt_prio_array *array = &rt_rq->active;
1433 struct sched_rt_entity *next = NULL;
1434 struct list_head *queue;
1435 int idx;
1436
1437 idx = sched_find_first_bit(array->bitmap);
1438 BUG_ON(idx >= MAX_RT_PRIO);
1439
1440 queue = array->queue + idx;
1441 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1442
1443 return next;
1444 }
1445
1446 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1447 {
1448 struct sched_rt_entity *rt_se;
1449 struct task_struct *p;
1450 struct rt_rq *rt_rq = &rq->rt;
1451
1452 do {
1453 rt_se = pick_next_rt_entity(rq, rt_rq);
1454 BUG_ON(!rt_se);
1455 rt_rq = group_rt_rq(rt_se);
1456 } while (rt_rq);
1457
1458 p = rt_task_of(rt_se);
1459 p->se.exec_start = rq_clock_task(rq);
1460
1461 return p;
1462 }
1463
1464 static struct task_struct *
1465 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1466 {
1467 struct task_struct *p;
1468 struct rt_rq *rt_rq = &rq->rt;
1469
1470 if (need_pull_rt_task(rq, prev)) {
1471 /*
1472 * This is OK, because current is on_cpu, which avoids it being
1473 * picked for load-balance and preemption/IRQs are still
1474 * disabled avoiding further scheduler activity on it and we're
1475 * being very careful to re-start the picking loop.
1476 */
1477 lockdep_unpin_lock(&rq->lock);
1478 pull_rt_task(rq);
1479 lockdep_pin_lock(&rq->lock);
1480 /*
1481 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1482 * means a dl or stop task can slip in, in which case we need
1483 * to re-start task selection.
1484 */
1485 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1486 rq->dl.dl_nr_running))
1487 return RETRY_TASK;
1488 }
1489
1490 /*
1491 * We may dequeue prev's rt_rq in put_prev_task().
1492 * So, we update time before rt_nr_running check.
1493 */
1494 if (prev->sched_class == &rt_sched_class)
1495 update_curr_rt(rq);
1496
1497 if (!rt_rq->rt_queued)
1498 return NULL;
1499
1500 put_prev_task(rq, prev);
1501
1502 p = _pick_next_task_rt(rq);
1503
1504 /* The running task is never eligible for pushing */
1505 dequeue_pushable_task(rq, p);
1506
1507 queue_push_tasks(rq);
1508
1509 return p;
1510 }
1511
1512 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1513 {
1514 update_curr_rt(rq);
1515
1516 /*
1517 * The previous task needs to be made eligible for pushing
1518 * if it is still active
1519 */
1520 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1521 enqueue_pushable_task(rq, p);
1522 }
1523
1524 #ifdef CONFIG_SMP
1525
1526 /* Only try algorithms three times */
1527 #define RT_MAX_TRIES 3
1528
1529 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1530 {
1531 if (!task_running(rq, p) &&
1532 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1533 return 1;
1534 return 0;
1535 }
1536
1537 /*
1538 * Return the highest pushable rq's task, which is suitable to be executed
1539 * on the cpu, NULL otherwise
1540 */
1541 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1542 {
1543 struct plist_head *head = &rq->rt.pushable_tasks;
1544 struct task_struct *p;
1545
1546 if (!has_pushable_tasks(rq))
1547 return NULL;
1548
1549 plist_for_each_entry(p, head, pushable_tasks) {
1550 if (pick_rt_task(rq, p, cpu))
1551 return p;
1552 }
1553
1554 return NULL;
1555 }
1556
1557 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1558
1559 static int find_lowest_rq(struct task_struct *task)
1560 {
1561 struct sched_domain *sd;
1562 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1563 int this_cpu = smp_processor_id();
1564 int cpu = task_cpu(task);
1565
1566 /* Make sure the mask is initialized first */
1567 if (unlikely(!lowest_mask))
1568 return -1;
1569
1570 if (task->nr_cpus_allowed == 1)
1571 return -1; /* No other targets possible */
1572
1573 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1574 return -1; /* No targets found */
1575
1576 /*
1577 * At this point we have built a mask of cpus representing the
1578 * lowest priority tasks in the system. Now we want to elect
1579 * the best one based on our affinity and topology.
1580 *
1581 * We prioritize the last cpu that the task executed on since
1582 * it is most likely cache-hot in that location.
1583 */
1584 if (cpumask_test_cpu(cpu, lowest_mask))
1585 return cpu;
1586
1587 /*
1588 * Otherwise, we consult the sched_domains span maps to figure
1589 * out which cpu is logically closest to our hot cache data.
1590 */
1591 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1592 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1593
1594 rcu_read_lock();
1595 for_each_domain(cpu, sd) {
1596 if (sd->flags & SD_WAKE_AFFINE) {
1597 int best_cpu;
1598
1599 /*
1600 * "this_cpu" is cheaper to preempt than a
1601 * remote processor.
1602 */
1603 if (this_cpu != -1 &&
1604 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1605 rcu_read_unlock();
1606 return this_cpu;
1607 }
1608
1609 best_cpu = cpumask_first_and(lowest_mask,
1610 sched_domain_span(sd));
1611 if (best_cpu < nr_cpu_ids) {
1612 rcu_read_unlock();
1613 return best_cpu;
1614 }
1615 }
1616 }
1617 rcu_read_unlock();
1618
1619 /*
1620 * And finally, if there were no matches within the domains
1621 * just give the caller *something* to work with from the compatible
1622 * locations.
1623 */
1624 if (this_cpu != -1)
1625 return this_cpu;
1626
1627 cpu = cpumask_any(lowest_mask);
1628 if (cpu < nr_cpu_ids)
1629 return cpu;
1630 return -1;
1631 }
1632
1633 /* Will lock the rq it finds */
1634 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1635 {
1636 struct rq *lowest_rq = NULL;
1637 int tries;
1638 int cpu;
1639
1640 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1641 cpu = find_lowest_rq(task);
1642
1643 if ((cpu == -1) || (cpu == rq->cpu))
1644 break;
1645
1646 lowest_rq = cpu_rq(cpu);
1647
1648 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1649 /*
1650 * Target rq has tasks of equal or higher priority,
1651 * retrying does not release any lock and is unlikely
1652 * to yield a different result.
1653 */
1654 lowest_rq = NULL;
1655 break;
1656 }
1657
1658 /* if the prio of this runqueue changed, try again */
1659 if (double_lock_balance(rq, lowest_rq)) {
1660 /*
1661 * We had to unlock the run queue. In
1662 * the mean time, task could have
1663 * migrated already or had its affinity changed.
1664 * Also make sure that it wasn't scheduled on its rq.
1665 */
1666 if (unlikely(task_rq(task) != rq ||
1667 !cpumask_test_cpu(lowest_rq->cpu,
1668 tsk_cpus_allowed(task)) ||
1669 task_running(rq, task) ||
1670 !task_on_rq_queued(task))) {
1671
1672 double_unlock_balance(rq, lowest_rq);
1673 lowest_rq = NULL;
1674 break;
1675 }
1676 }
1677
1678 /* If this rq is still suitable use it. */
1679 if (lowest_rq->rt.highest_prio.curr > task->prio)
1680 break;
1681
1682 /* try again */
1683 double_unlock_balance(rq, lowest_rq);
1684 lowest_rq = NULL;
1685 }
1686
1687 return lowest_rq;
1688 }
1689
1690 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1691 {
1692 struct task_struct *p;
1693
1694 if (!has_pushable_tasks(rq))
1695 return NULL;
1696
1697 p = plist_first_entry(&rq->rt.pushable_tasks,
1698 struct task_struct, pushable_tasks);
1699
1700 BUG_ON(rq->cpu != task_cpu(p));
1701 BUG_ON(task_current(rq, p));
1702 BUG_ON(p->nr_cpus_allowed <= 1);
1703
1704 BUG_ON(!task_on_rq_queued(p));
1705 BUG_ON(!rt_task(p));
1706
1707 return p;
1708 }
1709
1710 /*
1711 * If the current CPU has more than one RT task, see if the non
1712 * running task can migrate over to a CPU that is running a task
1713 * of lesser priority.
1714 */
1715 static int push_rt_task(struct rq *rq)
1716 {
1717 struct task_struct *next_task;
1718 struct rq *lowest_rq;
1719 int ret = 0;
1720
1721 if (!rq->rt.overloaded)
1722 return 0;
1723
1724 next_task = pick_next_pushable_task(rq);
1725 if (!next_task)
1726 return 0;
1727
1728 retry:
1729 if (unlikely(next_task == rq->curr)) {
1730 WARN_ON(1);
1731 return 0;
1732 }
1733
1734 /*
1735 * It's possible that the next_task slipped in of
1736 * higher priority than current. If that's the case
1737 * just reschedule current.
1738 */
1739 if (unlikely(next_task->prio < rq->curr->prio)) {
1740 resched_curr(rq);
1741 return 0;
1742 }
1743
1744 /* We might release rq lock */
1745 get_task_struct(next_task);
1746
1747 /* find_lock_lowest_rq locks the rq if found */
1748 lowest_rq = find_lock_lowest_rq(next_task, rq);
1749 if (!lowest_rq) {
1750 struct task_struct *task;
1751 /*
1752 * find_lock_lowest_rq releases rq->lock
1753 * so it is possible that next_task has migrated.
1754 *
1755 * We need to make sure that the task is still on the same
1756 * run-queue and is also still the next task eligible for
1757 * pushing.
1758 */
1759 task = pick_next_pushable_task(rq);
1760 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1761 /*
1762 * The task hasn't migrated, and is still the next
1763 * eligible task, but we failed to find a run-queue
1764 * to push it to. Do not retry in this case, since
1765 * other cpus will pull from us when ready.
1766 */
1767 goto out;
1768 }
1769
1770 if (!task)
1771 /* No more tasks, just exit */
1772 goto out;
1773
1774 /*
1775 * Something has shifted, try again.
1776 */
1777 put_task_struct(next_task);
1778 next_task = task;
1779 goto retry;
1780 }
1781
1782 deactivate_task(rq, next_task, 0);
1783 set_task_cpu(next_task, lowest_rq->cpu);
1784 activate_task(lowest_rq, next_task, 0);
1785 ret = 1;
1786
1787 resched_curr(lowest_rq);
1788
1789 double_unlock_balance(rq, lowest_rq);
1790
1791 out:
1792 put_task_struct(next_task);
1793
1794 return ret;
1795 }
1796
1797 static void push_rt_tasks(struct rq *rq)
1798 {
1799 /* push_rt_task will return true if it moved an RT */
1800 while (push_rt_task(rq))
1801 ;
1802 }
1803
1804 #ifdef HAVE_RT_PUSH_IPI
1805 /*
1806 * The search for the next cpu always starts at rq->cpu and ends
1807 * when we reach rq->cpu again. It will never return rq->cpu.
1808 * This returns the next cpu to check, or nr_cpu_ids if the loop
1809 * is complete.
1810 *
1811 * rq->rt.push_cpu holds the last cpu returned by this function,
1812 * or if this is the first instance, it must hold rq->cpu.
1813 */
1814 static int rto_next_cpu(struct rq *rq)
1815 {
1816 int prev_cpu = rq->rt.push_cpu;
1817 int cpu;
1818
1819 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1820
1821 /*
1822 * If the previous cpu is less than the rq's CPU, then it already
1823 * passed the end of the mask, and has started from the beginning.
1824 * We end if the next CPU is greater or equal to rq's CPU.
1825 */
1826 if (prev_cpu < rq->cpu) {
1827 if (cpu >= rq->cpu)
1828 return nr_cpu_ids;
1829
1830 } else if (cpu >= nr_cpu_ids) {
1831 /*
1832 * We passed the end of the mask, start at the beginning.
1833 * If the result is greater or equal to the rq's CPU, then
1834 * the loop is finished.
1835 */
1836 cpu = cpumask_first(rq->rd->rto_mask);
1837 if (cpu >= rq->cpu)
1838 return nr_cpu_ids;
1839 }
1840 rq->rt.push_cpu = cpu;
1841
1842 /* Return cpu to let the caller know if the loop is finished or not */
1843 return cpu;
1844 }
1845
1846 static int find_next_push_cpu(struct rq *rq)
1847 {
1848 struct rq *next_rq;
1849 int cpu;
1850
1851 while (1) {
1852 cpu = rto_next_cpu(rq);
1853 if (cpu >= nr_cpu_ids)
1854 break;
1855 next_rq = cpu_rq(cpu);
1856
1857 /* Make sure the next rq can push to this rq */
1858 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1859 break;
1860 }
1861
1862 return cpu;
1863 }
1864
1865 #define RT_PUSH_IPI_EXECUTING 1
1866 #define RT_PUSH_IPI_RESTART 2
1867
1868 static void tell_cpu_to_push(struct rq *rq)
1869 {
1870 int cpu;
1871
1872 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1873 raw_spin_lock(&rq->rt.push_lock);
1874 /* Make sure it's still executing */
1875 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1876 /*
1877 * Tell the IPI to restart the loop as things have
1878 * changed since it started.
1879 */
1880 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1881 raw_spin_unlock(&rq->rt.push_lock);
1882 return;
1883 }
1884 raw_spin_unlock(&rq->rt.push_lock);
1885 }
1886
1887 /* When here, there's no IPI going around */
1888
1889 rq->rt.push_cpu = rq->cpu;
1890 cpu = find_next_push_cpu(rq);
1891 if (cpu >= nr_cpu_ids)
1892 return;
1893
1894 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1895
1896 irq_work_queue_on(&rq->rt.push_work, cpu);
1897 }
1898
1899 /* Called from hardirq context */
1900 static void try_to_push_tasks(void *arg)
1901 {
1902 struct rt_rq *rt_rq = arg;
1903 struct rq *rq, *src_rq;
1904 int this_cpu;
1905 int cpu;
1906
1907 this_cpu = rt_rq->push_cpu;
1908
1909 /* Paranoid check */
1910 BUG_ON(this_cpu != smp_processor_id());
1911
1912 rq = cpu_rq(this_cpu);
1913 src_rq = rq_of_rt_rq(rt_rq);
1914
1915 again:
1916 if (has_pushable_tasks(rq)) {
1917 raw_spin_lock(&rq->lock);
1918 push_rt_task(rq);
1919 raw_spin_unlock(&rq->lock);
1920 }
1921
1922 /* Pass the IPI to the next rt overloaded queue */
1923 raw_spin_lock(&rt_rq->push_lock);
1924 /*
1925 * If the source queue changed since the IPI went out,
1926 * we need to restart the search from that CPU again.
1927 */
1928 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1929 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1930 rt_rq->push_cpu = src_rq->cpu;
1931 }
1932
1933 cpu = find_next_push_cpu(src_rq);
1934
1935 if (cpu >= nr_cpu_ids)
1936 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1937 raw_spin_unlock(&rt_rq->push_lock);
1938
1939 if (cpu >= nr_cpu_ids)
1940 return;
1941
1942 /*
1943 * It is possible that a restart caused this CPU to be
1944 * chosen again. Don't bother with an IPI, just see if we
1945 * have more to push.
1946 */
1947 if (unlikely(cpu == rq->cpu))
1948 goto again;
1949
1950 /* Try the next RT overloaded CPU */
1951 irq_work_queue_on(&rt_rq->push_work, cpu);
1952 }
1953
1954 static void push_irq_work_func(struct irq_work *work)
1955 {
1956 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1957
1958 try_to_push_tasks(rt_rq);
1959 }
1960 #endif /* HAVE_RT_PUSH_IPI */
1961
1962 static void pull_rt_task(struct rq *this_rq)
1963 {
1964 int this_cpu = this_rq->cpu, cpu;
1965 bool resched = false;
1966 struct task_struct *p;
1967 struct rq *src_rq;
1968
1969 if (likely(!rt_overloaded(this_rq)))
1970 return;
1971
1972 /*
1973 * Match the barrier from rt_set_overloaded; this guarantees that if we
1974 * see overloaded we must also see the rto_mask bit.
1975 */
1976 smp_rmb();
1977
1978 #ifdef HAVE_RT_PUSH_IPI
1979 if (sched_feat(RT_PUSH_IPI)) {
1980 tell_cpu_to_push(this_rq);
1981 return;
1982 }
1983 #endif
1984
1985 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1986 if (this_cpu == cpu)
1987 continue;
1988
1989 src_rq = cpu_rq(cpu);
1990
1991 /*
1992 * Don't bother taking the src_rq->lock if the next highest
1993 * task is known to be lower-priority than our current task.
1994 * This may look racy, but if this value is about to go
1995 * logically higher, the src_rq will push this task away.
1996 * And if its going logically lower, we do not care
1997 */
1998 if (src_rq->rt.highest_prio.next >=
1999 this_rq->rt.highest_prio.curr)
2000 continue;
2001
2002 /*
2003 * We can potentially drop this_rq's lock in
2004 * double_lock_balance, and another CPU could
2005 * alter this_rq
2006 */
2007 double_lock_balance(this_rq, src_rq);
2008
2009 /*
2010 * We can pull only a task, which is pushable
2011 * on its rq, and no others.
2012 */
2013 p = pick_highest_pushable_task(src_rq, this_cpu);
2014
2015 /*
2016 * Do we have an RT task that preempts
2017 * the to-be-scheduled task?
2018 */
2019 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2020 WARN_ON(p == src_rq->curr);
2021 WARN_ON(!task_on_rq_queued(p));
2022
2023 /*
2024 * There's a chance that p is higher in priority
2025 * than what's currently running on its cpu.
2026 * This is just that p is wakeing up and hasn't
2027 * had a chance to schedule. We only pull
2028 * p if it is lower in priority than the
2029 * current task on the run queue
2030 */
2031 if (p->prio < src_rq->curr->prio)
2032 goto skip;
2033
2034 resched = true;
2035
2036 deactivate_task(src_rq, p, 0);
2037 set_task_cpu(p, this_cpu);
2038 activate_task(this_rq, p, 0);
2039 /*
2040 * We continue with the search, just in
2041 * case there's an even higher prio task
2042 * in another runqueue. (low likelihood
2043 * but possible)
2044 */
2045 }
2046 skip:
2047 double_unlock_balance(this_rq, src_rq);
2048 }
2049
2050 if (resched)
2051 resched_curr(this_rq);
2052 }
2053
2054 /*
2055 * If we are not running and we are not going to reschedule soon, we should
2056 * try to push tasks away now
2057 */
2058 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2059 {
2060 if (!task_running(rq, p) &&
2061 !test_tsk_need_resched(rq->curr) &&
2062 p->nr_cpus_allowed > 1 &&
2063 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2064 (rq->curr->nr_cpus_allowed < 2 ||
2065 rq->curr->prio <= p->prio))
2066 push_rt_tasks(rq);
2067 }
2068
2069 /* Assumes rq->lock is held */
2070 static void rq_online_rt(struct rq *rq)
2071 {
2072 if (rq->rt.overloaded)
2073 rt_set_overload(rq);
2074
2075 __enable_runtime(rq);
2076
2077 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2078 }
2079
2080 /* Assumes rq->lock is held */
2081 static void rq_offline_rt(struct rq *rq)
2082 {
2083 if (rq->rt.overloaded)
2084 rt_clear_overload(rq);
2085
2086 __disable_runtime(rq);
2087
2088 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2089 }
2090
2091 /*
2092 * When switch from the rt queue, we bring ourselves to a position
2093 * that we might want to pull RT tasks from other runqueues.
2094 */
2095 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2096 {
2097 /*
2098 * If there are other RT tasks then we will reschedule
2099 * and the scheduling of the other RT tasks will handle
2100 * the balancing. But if we are the last RT task
2101 * we may need to handle the pulling of RT tasks
2102 * now.
2103 */
2104 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2105 return;
2106
2107 queue_pull_task(rq);
2108 }
2109
2110 void __init init_sched_rt_class(void)
2111 {
2112 unsigned int i;
2113
2114 for_each_possible_cpu(i) {
2115 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2116 GFP_KERNEL, cpu_to_node(i));
2117 }
2118 }
2119 #endif /* CONFIG_SMP */
2120
2121 /*
2122 * When switching a task to RT, we may overload the runqueue
2123 * with RT tasks. In this case we try to push them off to
2124 * other runqueues.
2125 */
2126 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2127 {
2128 /*
2129 * If we are already running, then there's nothing
2130 * that needs to be done. But if we are not running
2131 * we may need to preempt the current running task.
2132 * If that current running task is also an RT task
2133 * then see if we can move to another run queue.
2134 */
2135 if (task_on_rq_queued(p) && rq->curr != p) {
2136 #ifdef CONFIG_SMP
2137 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2138 queue_push_tasks(rq);
2139 #else
2140 if (p->prio < rq->curr->prio)
2141 resched_curr(rq);
2142 #endif /* CONFIG_SMP */
2143 }
2144 }
2145
2146 /*
2147 * Priority of the task has changed. This may cause
2148 * us to initiate a push or pull.
2149 */
2150 static void
2151 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2152 {
2153 if (!task_on_rq_queued(p))
2154 return;
2155
2156 if (rq->curr == p) {
2157 #ifdef CONFIG_SMP
2158 /*
2159 * If our priority decreases while running, we
2160 * may need to pull tasks to this runqueue.
2161 */
2162 if (oldprio < p->prio)
2163 queue_pull_task(rq);
2164
2165 /*
2166 * If there's a higher priority task waiting to run
2167 * then reschedule.
2168 */
2169 if (p->prio > rq->rt.highest_prio.curr)
2170 resched_curr(rq);
2171 #else
2172 /* For UP simply resched on drop of prio */
2173 if (oldprio < p->prio)
2174 resched_curr(rq);
2175 #endif /* CONFIG_SMP */
2176 } else {
2177 /*
2178 * This task is not running, but if it is
2179 * greater than the current running task
2180 * then reschedule.
2181 */
2182 if (p->prio < rq->curr->prio)
2183 resched_curr(rq);
2184 }
2185 }
2186
2187 static void watchdog(struct rq *rq, struct task_struct *p)
2188 {
2189 unsigned long soft, hard;
2190
2191 /* max may change after cur was read, this will be fixed next tick */
2192 soft = task_rlimit(p, RLIMIT_RTTIME);
2193 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2194
2195 if (soft != RLIM_INFINITY) {
2196 unsigned long next;
2197
2198 if (p->rt.watchdog_stamp != jiffies) {
2199 p->rt.timeout++;
2200 p->rt.watchdog_stamp = jiffies;
2201 }
2202
2203 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2204 if (p->rt.timeout > next)
2205 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2206 }
2207 }
2208
2209 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2210 {
2211 struct sched_rt_entity *rt_se = &p->rt;
2212
2213 update_curr_rt(rq);
2214
2215 watchdog(rq, p);
2216
2217 /*
2218 * RR tasks need a special form of timeslice management.
2219 * FIFO tasks have no timeslices.
2220 */
2221 if (p->policy != SCHED_RR)
2222 return;
2223
2224 if (--p->rt.time_slice)
2225 return;
2226
2227 p->rt.time_slice = sched_rr_timeslice;
2228
2229 /*
2230 * Requeue to the end of queue if we (and all of our ancestors) are not
2231 * the only element on the queue
2232 */
2233 for_each_sched_rt_entity(rt_se) {
2234 if (rt_se->run_list.prev != rt_se->run_list.next) {
2235 requeue_task_rt(rq, p, 0);
2236 resched_curr(rq);
2237 return;
2238 }
2239 }
2240 }
2241
2242 static void set_curr_task_rt(struct rq *rq)
2243 {
2244 struct task_struct *p = rq->curr;
2245
2246 p->se.exec_start = rq_clock_task(rq);
2247
2248 /* The running task is never eligible for pushing */
2249 dequeue_pushable_task(rq, p);
2250 }
2251
2252 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2253 {
2254 /*
2255 * Time slice is 0 for SCHED_FIFO tasks
2256 */
2257 if (task->policy == SCHED_RR)
2258 return sched_rr_timeslice;
2259 else
2260 return 0;
2261 }
2262
2263 const struct sched_class rt_sched_class = {
2264 .next = &fair_sched_class,
2265 .enqueue_task = enqueue_task_rt,
2266 .dequeue_task = dequeue_task_rt,
2267 .yield_task = yield_task_rt,
2268
2269 .check_preempt_curr = check_preempt_curr_rt,
2270
2271 .pick_next_task = pick_next_task_rt,
2272 .put_prev_task = put_prev_task_rt,
2273
2274 #ifdef CONFIG_SMP
2275 .select_task_rq = select_task_rq_rt,
2276
2277 .set_cpus_allowed = set_cpus_allowed_common,
2278 .rq_online = rq_online_rt,
2279 .rq_offline = rq_offline_rt,
2280 .task_woken = task_woken_rt,
2281 .switched_from = switched_from_rt,
2282 #endif
2283
2284 .set_curr_task = set_curr_task_rt,
2285 .task_tick = task_tick_rt,
2286
2287 .get_rr_interval = get_rr_interval_rt,
2288
2289 .prio_changed = prio_changed_rt,
2290 .switched_to = switched_to_rt,
2291
2292 .update_curr = update_curr_rt,
2293 };
2294
2295 #ifdef CONFIG_SCHED_DEBUG
2296 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2297
2298 void print_rt_stats(struct seq_file *m, int cpu)
2299 {
2300 rt_rq_iter_t iter;
2301 struct rt_rq *rt_rq;
2302
2303 rcu_read_lock();
2304 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2305 print_rt_rq(m, cpu, rt_rq);
2306 rcu_read_unlock();
2307 }
2308 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.074896 seconds and 6 git commands to generate.