sched: Reduce trigger_load_balance() parameters
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15
16 struct rq;
17
18 extern __read_mostly int scheduler_running;
19
20 extern unsigned long calc_load_update;
21 extern atomic_long_t calc_load_tasks;
22
23 extern long calc_load_fold_active(struct rq *this_rq);
24 extern void update_cpu_load_active(struct rq *this_rq);
25
26 /*
27 * Convert user-nice values [ -20 ... 0 ... 19 ]
28 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
29 * and back.
30 */
31 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
32 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
33 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
34
35 /*
36 * 'User priority' is the nice value converted to something we
37 * can work with better when scaling various scheduler parameters,
38 * it's a [ 0 ... 39 ] range.
39 */
40 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
41 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
42 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
43
44 /*
45 * Helpers for converting nanosecond timing to jiffy resolution
46 */
47 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
48
49 /*
50 * Increase resolution of nice-level calculations for 64-bit architectures.
51 * The extra resolution improves shares distribution and load balancing of
52 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
53 * hierarchies, especially on larger systems. This is not a user-visible change
54 * and does not change the user-interface for setting shares/weights.
55 *
56 * We increase resolution only if we have enough bits to allow this increased
57 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
58 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
59 * increased costs.
60 */
61 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
62 # define SCHED_LOAD_RESOLUTION 10
63 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
64 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
65 #else
66 # define SCHED_LOAD_RESOLUTION 0
67 # define scale_load(w) (w)
68 # define scale_load_down(w) (w)
69 #endif
70
71 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
72 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
73
74 #define NICE_0_LOAD SCHED_LOAD_SCALE
75 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
76
77 /*
78 * Single value that decides SCHED_DEADLINE internal math precision.
79 * 10 -> just above 1us
80 * 9 -> just above 0.5us
81 */
82 #define DL_SCALE (10)
83
84 /*
85 * These are the 'tuning knobs' of the scheduler:
86 */
87
88 /*
89 * single value that denotes runtime == period, ie unlimited time.
90 */
91 #define RUNTIME_INF ((u64)~0ULL)
92
93 static inline int fair_policy(int policy)
94 {
95 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
96 }
97
98 static inline int rt_policy(int policy)
99 {
100 return policy == SCHED_FIFO || policy == SCHED_RR;
101 }
102
103 static inline int dl_policy(int policy)
104 {
105 return policy == SCHED_DEADLINE;
106 }
107
108 static inline int task_has_rt_policy(struct task_struct *p)
109 {
110 return rt_policy(p->policy);
111 }
112
113 static inline int task_has_dl_policy(struct task_struct *p)
114 {
115 return dl_policy(p->policy);
116 }
117
118 static inline bool dl_time_before(u64 a, u64 b)
119 {
120 return (s64)(a - b) < 0;
121 }
122
123 /*
124 * Tells if entity @a should preempt entity @b.
125 */
126 static inline bool
127 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
128 {
129 return dl_time_before(a->deadline, b->deadline);
130 }
131
132 /*
133 * This is the priority-queue data structure of the RT scheduling class:
134 */
135 struct rt_prio_array {
136 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
137 struct list_head queue[MAX_RT_PRIO];
138 };
139
140 struct rt_bandwidth {
141 /* nests inside the rq lock: */
142 raw_spinlock_t rt_runtime_lock;
143 ktime_t rt_period;
144 u64 rt_runtime;
145 struct hrtimer rt_period_timer;
146 };
147 /*
148 * To keep the bandwidth of -deadline tasks and groups under control
149 * we need some place where:
150 * - store the maximum -deadline bandwidth of the system (the group);
151 * - cache the fraction of that bandwidth that is currently allocated.
152 *
153 * This is all done in the data structure below. It is similar to the
154 * one used for RT-throttling (rt_bandwidth), with the main difference
155 * that, since here we are only interested in admission control, we
156 * do not decrease any runtime while the group "executes", neither we
157 * need a timer to replenish it.
158 *
159 * With respect to SMP, the bandwidth is given on a per-CPU basis,
160 * meaning that:
161 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
162 * - dl_total_bw array contains, in the i-eth element, the currently
163 * allocated bandwidth on the i-eth CPU.
164 * Moreover, groups consume bandwidth on each CPU, while tasks only
165 * consume bandwidth on the CPU they're running on.
166 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
167 * that will be shown the next time the proc or cgroup controls will
168 * be red. It on its turn can be changed by writing on its own
169 * control.
170 */
171 struct dl_bandwidth {
172 raw_spinlock_t dl_runtime_lock;
173 u64 dl_runtime;
174 u64 dl_period;
175 };
176
177 static inline int dl_bandwidth_enabled(void)
178 {
179 return sysctl_sched_rt_runtime >= 0;
180 }
181
182 extern struct dl_bw *dl_bw_of(int i);
183
184 struct dl_bw {
185 raw_spinlock_t lock;
186 u64 bw, total_bw;
187 };
188
189 extern struct mutex sched_domains_mutex;
190
191 #ifdef CONFIG_CGROUP_SCHED
192
193 #include <linux/cgroup.h>
194
195 struct cfs_rq;
196 struct rt_rq;
197
198 extern struct list_head task_groups;
199
200 struct cfs_bandwidth {
201 #ifdef CONFIG_CFS_BANDWIDTH
202 raw_spinlock_t lock;
203 ktime_t period;
204 u64 quota, runtime;
205 s64 hierarchal_quota;
206 u64 runtime_expires;
207
208 int idle, timer_active;
209 struct hrtimer period_timer, slack_timer;
210 struct list_head throttled_cfs_rq;
211
212 /* statistics */
213 int nr_periods, nr_throttled;
214 u64 throttled_time;
215 #endif
216 };
217
218 /* task group related information */
219 struct task_group {
220 struct cgroup_subsys_state css;
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 /* schedulable entities of this group on each cpu */
224 struct sched_entity **se;
225 /* runqueue "owned" by this group on each cpu */
226 struct cfs_rq **cfs_rq;
227 unsigned long shares;
228
229 #ifdef CONFIG_SMP
230 atomic_long_t load_avg;
231 atomic_t runnable_avg;
232 #endif
233 #endif
234
235 #ifdef CONFIG_RT_GROUP_SCHED
236 struct sched_rt_entity **rt_se;
237 struct rt_rq **rt_rq;
238
239 struct rt_bandwidth rt_bandwidth;
240 #endif
241
242 struct rcu_head rcu;
243 struct list_head list;
244
245 struct task_group *parent;
246 struct list_head siblings;
247 struct list_head children;
248
249 #ifdef CONFIG_SCHED_AUTOGROUP
250 struct autogroup *autogroup;
251 #endif
252
253 struct cfs_bandwidth cfs_bandwidth;
254 };
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
258
259 /*
260 * A weight of 0 or 1 can cause arithmetics problems.
261 * A weight of a cfs_rq is the sum of weights of which entities
262 * are queued on this cfs_rq, so a weight of a entity should not be
263 * too large, so as the shares value of a task group.
264 * (The default weight is 1024 - so there's no practical
265 * limitation from this.)
266 */
267 #define MIN_SHARES (1UL << 1)
268 #define MAX_SHARES (1UL << 18)
269 #endif
270
271 typedef int (*tg_visitor)(struct task_group *, void *);
272
273 extern int walk_tg_tree_from(struct task_group *from,
274 tg_visitor down, tg_visitor up, void *data);
275
276 /*
277 * Iterate the full tree, calling @down when first entering a node and @up when
278 * leaving it for the final time.
279 *
280 * Caller must hold rcu_lock or sufficient equivalent.
281 */
282 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
283 {
284 return walk_tg_tree_from(&root_task_group, down, up, data);
285 }
286
287 extern int tg_nop(struct task_group *tg, void *data);
288
289 extern void free_fair_sched_group(struct task_group *tg);
290 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
291 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
292 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
293 struct sched_entity *se, int cpu,
294 struct sched_entity *parent);
295 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
296 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
297
298 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
299 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
300 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
301
302 extern void free_rt_sched_group(struct task_group *tg);
303 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
304 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
305 struct sched_rt_entity *rt_se, int cpu,
306 struct sched_rt_entity *parent);
307
308 extern struct task_group *sched_create_group(struct task_group *parent);
309 extern void sched_online_group(struct task_group *tg,
310 struct task_group *parent);
311 extern void sched_destroy_group(struct task_group *tg);
312 extern void sched_offline_group(struct task_group *tg);
313
314 extern void sched_move_task(struct task_struct *tsk);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
318 #endif
319
320 #else /* CONFIG_CGROUP_SCHED */
321
322 struct cfs_bandwidth { };
323
324 #endif /* CONFIG_CGROUP_SCHED */
325
326 /* CFS-related fields in a runqueue */
327 struct cfs_rq {
328 struct load_weight load;
329 unsigned int nr_running, h_nr_running;
330
331 u64 exec_clock;
332 u64 min_vruntime;
333 #ifndef CONFIG_64BIT
334 u64 min_vruntime_copy;
335 #endif
336
337 struct rb_root tasks_timeline;
338 struct rb_node *rb_leftmost;
339
340 /*
341 * 'curr' points to currently running entity on this cfs_rq.
342 * It is set to NULL otherwise (i.e when none are currently running).
343 */
344 struct sched_entity *curr, *next, *last, *skip;
345
346 #ifdef CONFIG_SCHED_DEBUG
347 unsigned int nr_spread_over;
348 #endif
349
350 #ifdef CONFIG_SMP
351 /*
352 * CFS Load tracking
353 * Under CFS, load is tracked on a per-entity basis and aggregated up.
354 * This allows for the description of both thread and group usage (in
355 * the FAIR_GROUP_SCHED case).
356 */
357 unsigned long runnable_load_avg, blocked_load_avg;
358 atomic64_t decay_counter;
359 u64 last_decay;
360 atomic_long_t removed_load;
361
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 /* Required to track per-cpu representation of a task_group */
364 u32 tg_runnable_contrib;
365 unsigned long tg_load_contrib;
366
367 /*
368 * h_load = weight * f(tg)
369 *
370 * Where f(tg) is the recursive weight fraction assigned to
371 * this group.
372 */
373 unsigned long h_load;
374 u64 last_h_load_update;
375 struct sched_entity *h_load_next;
376 #endif /* CONFIG_FAIR_GROUP_SCHED */
377 #endif /* CONFIG_SMP */
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 int on_list;
391 struct list_head leaf_cfs_rq_list;
392 struct task_group *tg; /* group that "owns" this runqueue */
393
394 #ifdef CONFIG_CFS_BANDWIDTH
395 int runtime_enabled;
396 u64 runtime_expires;
397 s64 runtime_remaining;
398
399 u64 throttled_clock, throttled_clock_task;
400 u64 throttled_clock_task_time;
401 int throttled, throttle_count;
402 struct list_head throttled_list;
403 #endif /* CONFIG_CFS_BANDWIDTH */
404 #endif /* CONFIG_FAIR_GROUP_SCHED */
405 };
406
407 static inline int rt_bandwidth_enabled(void)
408 {
409 return sysctl_sched_rt_runtime >= 0;
410 }
411
412 /* Real-Time classes' related field in a runqueue: */
413 struct rt_rq {
414 struct rt_prio_array active;
415 unsigned int rt_nr_running;
416 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
417 struct {
418 int curr; /* highest queued rt task prio */
419 #ifdef CONFIG_SMP
420 int next; /* next highest */
421 #endif
422 } highest_prio;
423 #endif
424 #ifdef CONFIG_SMP
425 unsigned long rt_nr_migratory;
426 unsigned long rt_nr_total;
427 int overloaded;
428 struct plist_head pushable_tasks;
429 #endif
430 int rt_throttled;
431 u64 rt_time;
432 u64 rt_runtime;
433 /* Nests inside the rq lock: */
434 raw_spinlock_t rt_runtime_lock;
435
436 #ifdef CONFIG_RT_GROUP_SCHED
437 unsigned long rt_nr_boosted;
438
439 struct rq *rq;
440 struct task_group *tg;
441 #endif
442 };
443
444 /* Deadline class' related fields in a runqueue */
445 struct dl_rq {
446 /* runqueue is an rbtree, ordered by deadline */
447 struct rb_root rb_root;
448 struct rb_node *rb_leftmost;
449
450 unsigned long dl_nr_running;
451
452 #ifdef CONFIG_SMP
453 /*
454 * Deadline values of the currently executing and the
455 * earliest ready task on this rq. Caching these facilitates
456 * the decision wether or not a ready but not running task
457 * should migrate somewhere else.
458 */
459 struct {
460 u64 curr;
461 u64 next;
462 } earliest_dl;
463
464 unsigned long dl_nr_migratory;
465 unsigned long dl_nr_total;
466 int overloaded;
467
468 /*
469 * Tasks on this rq that can be pushed away. They are kept in
470 * an rb-tree, ordered by tasks' deadlines, with caching
471 * of the leftmost (earliest deadline) element.
472 */
473 struct rb_root pushable_dl_tasks_root;
474 struct rb_node *pushable_dl_tasks_leftmost;
475 #else
476 struct dl_bw dl_bw;
477 #endif
478 };
479
480 #ifdef CONFIG_SMP
481
482 /*
483 * We add the notion of a root-domain which will be used to define per-domain
484 * variables. Each exclusive cpuset essentially defines an island domain by
485 * fully partitioning the member cpus from any other cpuset. Whenever a new
486 * exclusive cpuset is created, we also create and attach a new root-domain
487 * object.
488 *
489 */
490 struct root_domain {
491 atomic_t refcount;
492 atomic_t rto_count;
493 struct rcu_head rcu;
494 cpumask_var_t span;
495 cpumask_var_t online;
496
497 /*
498 * The bit corresponding to a CPU gets set here if such CPU has more
499 * than one runnable -deadline task (as it is below for RT tasks).
500 */
501 cpumask_var_t dlo_mask;
502 atomic_t dlo_count;
503 struct dl_bw dl_bw;
504 struct cpudl cpudl;
505
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 struct cpupri cpupri;
512 };
513
514 extern struct root_domain def_root_domain;
515
516 #endif /* CONFIG_SMP */
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 raw_spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned int nr_running;
534 #ifdef CONFIG_NUMA_BALANCING
535 unsigned int nr_numa_running;
536 unsigned int nr_preferred_running;
537 #endif
538 #define CPU_LOAD_IDX_MAX 5
539 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
540 unsigned long last_load_update_tick;
541 #ifdef CONFIG_NO_HZ_COMMON
542 u64 nohz_stamp;
543 unsigned long nohz_flags;
544 #endif
545 #ifdef CONFIG_NO_HZ_FULL
546 unsigned long last_sched_tick;
547 #endif
548 int skip_clock_update;
549
550 /* capture load from *all* tasks on this cpu: */
551 struct load_weight load;
552 unsigned long nr_load_updates;
553 u64 nr_switches;
554
555 struct cfs_rq cfs;
556 struct rt_rq rt;
557 struct dl_rq dl;
558
559 #ifdef CONFIG_FAIR_GROUP_SCHED
560 /* list of leaf cfs_rq on this cpu: */
561 struct list_head leaf_cfs_rq_list;
562 #endif /* CONFIG_FAIR_GROUP_SCHED */
563
564 #ifdef CONFIG_RT_GROUP_SCHED
565 struct list_head leaf_rt_rq_list;
566 #endif
567
568 /*
569 * This is part of a global counter where only the total sum
570 * over all CPUs matters. A task can increase this counter on
571 * one CPU and if it got migrated afterwards it may decrease
572 * it on another CPU. Always updated under the runqueue lock:
573 */
574 unsigned long nr_uninterruptible;
575
576 struct task_struct *curr, *idle, *stop;
577 unsigned long next_balance;
578 struct mm_struct *prev_mm;
579
580 u64 clock;
581 u64 clock_task;
582
583 atomic_t nr_iowait;
584
585 #ifdef CONFIG_SMP
586 struct root_domain *rd;
587 struct sched_domain *sd;
588
589 unsigned long cpu_power;
590
591 unsigned char idle_balance;
592 /* For active balancing */
593 int post_schedule;
594 int active_balance;
595 int push_cpu;
596 struct cpu_stop_work active_balance_work;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
601 struct list_head cfs_tasks;
602
603 u64 rt_avg;
604 u64 age_stamp;
605 u64 idle_stamp;
606 u64 avg_idle;
607
608 /* This is used to determine avg_idle's max value */
609 u64 max_idle_balance_cost;
610 #endif
611
612 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
613 u64 prev_irq_time;
614 #endif
615 #ifdef CONFIG_PARAVIRT
616 u64 prev_steal_time;
617 #endif
618 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
619 u64 prev_steal_time_rq;
620 #endif
621
622 /* calc_load related fields */
623 unsigned long calc_load_update;
624 long calc_load_active;
625
626 #ifdef CONFIG_SCHED_HRTICK
627 #ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630 #endif
631 struct hrtimer hrtick_timer;
632 #endif
633
634 #ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
639
640 /* sys_sched_yield() stats */
641 unsigned int yld_count;
642
643 /* schedule() stats */
644 unsigned int sched_count;
645 unsigned int sched_goidle;
646
647 /* try_to_wake_up() stats */
648 unsigned int ttwu_count;
649 unsigned int ttwu_local;
650 #endif
651
652 #ifdef CONFIG_SMP
653 struct llist_head wake_list;
654 #endif
655
656 struct sched_avg avg;
657 };
658
659 static inline int cpu_of(struct rq *rq)
660 {
661 #ifdef CONFIG_SMP
662 return rq->cpu;
663 #else
664 return 0;
665 #endif
666 }
667
668 DECLARE_PER_CPU(struct rq, runqueues);
669
670 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
671 #define this_rq() (&__get_cpu_var(runqueues))
672 #define task_rq(p) cpu_rq(task_cpu(p))
673 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
674 #define raw_rq() (&__raw_get_cpu_var(runqueues))
675
676 static inline u64 rq_clock(struct rq *rq)
677 {
678 return rq->clock;
679 }
680
681 static inline u64 rq_clock_task(struct rq *rq)
682 {
683 return rq->clock_task;
684 }
685
686 #ifdef CONFIG_NUMA_BALANCING
687 extern void sched_setnuma(struct task_struct *p, int node);
688 extern int migrate_task_to(struct task_struct *p, int cpu);
689 extern int migrate_swap(struct task_struct *, struct task_struct *);
690 #endif /* CONFIG_NUMA_BALANCING */
691
692 #ifdef CONFIG_SMP
693
694 #define rcu_dereference_check_sched_domain(p) \
695 rcu_dereference_check((p), \
696 lockdep_is_held(&sched_domains_mutex))
697
698 /*
699 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
700 * See detach_destroy_domains: synchronize_sched for details.
701 *
702 * The domain tree of any CPU may only be accessed from within
703 * preempt-disabled sections.
704 */
705 #define for_each_domain(cpu, __sd) \
706 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
707 __sd; __sd = __sd->parent)
708
709 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
710
711 /**
712 * highest_flag_domain - Return highest sched_domain containing flag.
713 * @cpu: The cpu whose highest level of sched domain is to
714 * be returned.
715 * @flag: The flag to check for the highest sched_domain
716 * for the given cpu.
717 *
718 * Returns the highest sched_domain of a cpu which contains the given flag.
719 */
720 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
721 {
722 struct sched_domain *sd, *hsd = NULL;
723
724 for_each_domain(cpu, sd) {
725 if (!(sd->flags & flag))
726 break;
727 hsd = sd;
728 }
729
730 return hsd;
731 }
732
733 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
734 {
735 struct sched_domain *sd;
736
737 for_each_domain(cpu, sd) {
738 if (sd->flags & flag)
739 break;
740 }
741
742 return sd;
743 }
744
745 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
746 DECLARE_PER_CPU(int, sd_llc_size);
747 DECLARE_PER_CPU(int, sd_llc_id);
748 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
749 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
750 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
751
752 struct sched_group_power {
753 atomic_t ref;
754 /*
755 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
756 * single CPU.
757 */
758 unsigned int power, power_orig;
759 unsigned long next_update;
760 int imbalance; /* XXX unrelated to power but shared group state */
761 /*
762 * Number of busy cpus in this group.
763 */
764 atomic_t nr_busy_cpus;
765
766 unsigned long cpumask[0]; /* iteration mask */
767 };
768
769 struct sched_group {
770 struct sched_group *next; /* Must be a circular list */
771 atomic_t ref;
772
773 unsigned int group_weight;
774 struct sched_group_power *sgp;
775
776 /*
777 * The CPUs this group covers.
778 *
779 * NOTE: this field is variable length. (Allocated dynamically
780 * by attaching extra space to the end of the structure,
781 * depending on how many CPUs the kernel has booted up with)
782 */
783 unsigned long cpumask[0];
784 };
785
786 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
787 {
788 return to_cpumask(sg->cpumask);
789 }
790
791 /*
792 * cpumask masking which cpus in the group are allowed to iterate up the domain
793 * tree.
794 */
795 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
796 {
797 return to_cpumask(sg->sgp->cpumask);
798 }
799
800 /**
801 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
802 * @group: The group whose first cpu is to be returned.
803 */
804 static inline unsigned int group_first_cpu(struct sched_group *group)
805 {
806 return cpumask_first(sched_group_cpus(group));
807 }
808
809 extern int group_balance_cpu(struct sched_group *sg);
810
811 #endif /* CONFIG_SMP */
812
813 #include "stats.h"
814 #include "auto_group.h"
815
816 #ifdef CONFIG_CGROUP_SCHED
817
818 /*
819 * Return the group to which this tasks belongs.
820 *
821 * We cannot use task_css() and friends because the cgroup subsystem
822 * changes that value before the cgroup_subsys::attach() method is called,
823 * therefore we cannot pin it and might observe the wrong value.
824 *
825 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
826 * core changes this before calling sched_move_task().
827 *
828 * Instead we use a 'copy' which is updated from sched_move_task() while
829 * holding both task_struct::pi_lock and rq::lock.
830 */
831 static inline struct task_group *task_group(struct task_struct *p)
832 {
833 return p->sched_task_group;
834 }
835
836 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
837 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
838 {
839 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
840 struct task_group *tg = task_group(p);
841 #endif
842
843 #ifdef CONFIG_FAIR_GROUP_SCHED
844 p->se.cfs_rq = tg->cfs_rq[cpu];
845 p->se.parent = tg->se[cpu];
846 #endif
847
848 #ifdef CONFIG_RT_GROUP_SCHED
849 p->rt.rt_rq = tg->rt_rq[cpu];
850 p->rt.parent = tg->rt_se[cpu];
851 #endif
852 }
853
854 #else /* CONFIG_CGROUP_SCHED */
855
856 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
857 static inline struct task_group *task_group(struct task_struct *p)
858 {
859 return NULL;
860 }
861
862 #endif /* CONFIG_CGROUP_SCHED */
863
864 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
865 {
866 set_task_rq(p, cpu);
867 #ifdef CONFIG_SMP
868 /*
869 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
870 * successfuly executed on another CPU. We must ensure that updates of
871 * per-task data have been completed by this moment.
872 */
873 smp_wmb();
874 task_thread_info(p)->cpu = cpu;
875 p->wake_cpu = cpu;
876 #endif
877 }
878
879 /*
880 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
881 */
882 #ifdef CONFIG_SCHED_DEBUG
883 # include <linux/static_key.h>
884 # define const_debug __read_mostly
885 #else
886 # define const_debug const
887 #endif
888
889 extern const_debug unsigned int sysctl_sched_features;
890
891 #define SCHED_FEAT(name, enabled) \
892 __SCHED_FEAT_##name ,
893
894 enum {
895 #include "features.h"
896 __SCHED_FEAT_NR,
897 };
898
899 #undef SCHED_FEAT
900
901 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
902 static __always_inline bool static_branch__true(struct static_key *key)
903 {
904 return static_key_true(key); /* Not out of line branch. */
905 }
906
907 static __always_inline bool static_branch__false(struct static_key *key)
908 {
909 return static_key_false(key); /* Out of line branch. */
910 }
911
912 #define SCHED_FEAT(name, enabled) \
913 static __always_inline bool static_branch_##name(struct static_key *key) \
914 { \
915 return static_branch__##enabled(key); \
916 }
917
918 #include "features.h"
919
920 #undef SCHED_FEAT
921
922 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
923 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
924 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
925 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
926 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
927
928 #ifdef CONFIG_NUMA_BALANCING
929 #define sched_feat_numa(x) sched_feat(x)
930 #ifdef CONFIG_SCHED_DEBUG
931 #define numabalancing_enabled sched_feat_numa(NUMA)
932 #else
933 extern bool numabalancing_enabled;
934 #endif /* CONFIG_SCHED_DEBUG */
935 #else
936 #define sched_feat_numa(x) (0)
937 #define numabalancing_enabled (0)
938 #endif /* CONFIG_NUMA_BALANCING */
939
940 static inline u64 global_rt_period(void)
941 {
942 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
943 }
944
945 static inline u64 global_rt_runtime(void)
946 {
947 if (sysctl_sched_rt_runtime < 0)
948 return RUNTIME_INF;
949
950 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
951 }
952
953 static inline int task_current(struct rq *rq, struct task_struct *p)
954 {
955 return rq->curr == p;
956 }
957
958 static inline int task_running(struct rq *rq, struct task_struct *p)
959 {
960 #ifdef CONFIG_SMP
961 return p->on_cpu;
962 #else
963 return task_current(rq, p);
964 #endif
965 }
966
967
968 #ifndef prepare_arch_switch
969 # define prepare_arch_switch(next) do { } while (0)
970 #endif
971 #ifndef finish_arch_switch
972 # define finish_arch_switch(prev) do { } while (0)
973 #endif
974 #ifndef finish_arch_post_lock_switch
975 # define finish_arch_post_lock_switch() do { } while (0)
976 #endif
977
978 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
979 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
980 {
981 #ifdef CONFIG_SMP
982 /*
983 * We can optimise this out completely for !SMP, because the
984 * SMP rebalancing from interrupt is the only thing that cares
985 * here.
986 */
987 next->on_cpu = 1;
988 #endif
989 }
990
991 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
992 {
993 #ifdef CONFIG_SMP
994 /*
995 * After ->on_cpu is cleared, the task can be moved to a different CPU.
996 * We must ensure this doesn't happen until the switch is completely
997 * finished.
998 */
999 smp_wmb();
1000 prev->on_cpu = 0;
1001 #endif
1002 #ifdef CONFIG_DEBUG_SPINLOCK
1003 /* this is a valid case when another task releases the spinlock */
1004 rq->lock.owner = current;
1005 #endif
1006 /*
1007 * If we are tracking spinlock dependencies then we have to
1008 * fix up the runqueue lock - which gets 'carried over' from
1009 * prev into current:
1010 */
1011 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1012
1013 raw_spin_unlock_irq(&rq->lock);
1014 }
1015
1016 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1017 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1018 {
1019 #ifdef CONFIG_SMP
1020 /*
1021 * We can optimise this out completely for !SMP, because the
1022 * SMP rebalancing from interrupt is the only thing that cares
1023 * here.
1024 */
1025 next->on_cpu = 1;
1026 #endif
1027 raw_spin_unlock(&rq->lock);
1028 }
1029
1030 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1031 {
1032 #ifdef CONFIG_SMP
1033 /*
1034 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1035 * We must ensure this doesn't happen until the switch is completely
1036 * finished.
1037 */
1038 smp_wmb();
1039 prev->on_cpu = 0;
1040 #endif
1041 local_irq_enable();
1042 }
1043 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1044
1045 /*
1046 * wake flags
1047 */
1048 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1049 #define WF_FORK 0x02 /* child wakeup after fork */
1050 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1051
1052 /*
1053 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1054 * of tasks with abnormal "nice" values across CPUs the contribution that
1055 * each task makes to its run queue's load is weighted according to its
1056 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1057 * scaled version of the new time slice allocation that they receive on time
1058 * slice expiry etc.
1059 */
1060
1061 #define WEIGHT_IDLEPRIO 3
1062 #define WMULT_IDLEPRIO 1431655765
1063
1064 /*
1065 * Nice levels are multiplicative, with a gentle 10% change for every
1066 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1067 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1068 * that remained on nice 0.
1069 *
1070 * The "10% effect" is relative and cumulative: from _any_ nice level,
1071 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1072 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1073 * If a task goes up by ~10% and another task goes down by ~10% then
1074 * the relative distance between them is ~25%.)
1075 */
1076 static const int prio_to_weight[40] = {
1077 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1078 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1079 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1080 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1081 /* 0 */ 1024, 820, 655, 526, 423,
1082 /* 5 */ 335, 272, 215, 172, 137,
1083 /* 10 */ 110, 87, 70, 56, 45,
1084 /* 15 */ 36, 29, 23, 18, 15,
1085 };
1086
1087 /*
1088 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1089 *
1090 * In cases where the weight does not change often, we can use the
1091 * precalculated inverse to speed up arithmetics by turning divisions
1092 * into multiplications:
1093 */
1094 static const u32 prio_to_wmult[40] = {
1095 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1096 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1097 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1098 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1099 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1100 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1101 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1102 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1103 };
1104
1105 #define ENQUEUE_WAKEUP 1
1106 #define ENQUEUE_HEAD 2
1107 #ifdef CONFIG_SMP
1108 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1109 #else
1110 #define ENQUEUE_WAKING 0
1111 #endif
1112 #define ENQUEUE_REPLENISH 8
1113
1114 #define DEQUEUE_SLEEP 1
1115
1116 struct sched_class {
1117 const struct sched_class *next;
1118
1119 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1120 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1121 void (*yield_task) (struct rq *rq);
1122 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1123
1124 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1125
1126 struct task_struct * (*pick_next_task) (struct rq *rq);
1127 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128
1129 #ifdef CONFIG_SMP
1130 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1131 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132
1133 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1134 void (*post_schedule) (struct rq *this_rq);
1135 void (*task_waking) (struct task_struct *task);
1136 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1137
1138 void (*set_cpus_allowed)(struct task_struct *p,
1139 const struct cpumask *newmask);
1140
1141 void (*rq_online)(struct rq *rq);
1142 void (*rq_offline)(struct rq *rq);
1143 #endif
1144
1145 void (*set_curr_task) (struct rq *rq);
1146 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1147 void (*task_fork) (struct task_struct *p);
1148 void (*task_dead) (struct task_struct *p);
1149
1150 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1151 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1152 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1153 int oldprio);
1154
1155 unsigned int (*get_rr_interval) (struct rq *rq,
1156 struct task_struct *task);
1157
1158 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 void (*task_move_group) (struct task_struct *p, int on_rq);
1160 #endif
1161 };
1162
1163 #define sched_class_highest (&stop_sched_class)
1164 #define for_each_class(class) \
1165 for (class = sched_class_highest; class; class = class->next)
1166
1167 extern const struct sched_class stop_sched_class;
1168 extern const struct sched_class dl_sched_class;
1169 extern const struct sched_class rt_sched_class;
1170 extern const struct sched_class fair_sched_class;
1171 extern const struct sched_class idle_sched_class;
1172
1173
1174 #ifdef CONFIG_SMP
1175
1176 extern void update_group_power(struct sched_domain *sd, int cpu);
1177
1178 extern void trigger_load_balance(struct rq *rq);
1179 extern void idle_balance(int this_cpu, struct rq *this_rq);
1180
1181 extern void idle_enter_fair(struct rq *this_rq);
1182 extern void idle_exit_fair(struct rq *this_rq);
1183
1184 #else /* CONFIG_SMP */
1185
1186 static inline void idle_balance(int cpu, struct rq *rq)
1187 {
1188 }
1189
1190 #endif
1191
1192 extern void sysrq_sched_debug_show(void);
1193 extern void sched_init_granularity(void);
1194 extern void update_max_interval(void);
1195
1196 extern void init_sched_dl_class(void);
1197 extern void init_sched_rt_class(void);
1198 extern void init_sched_fair_class(void);
1199 extern void init_sched_dl_class(void);
1200
1201 extern void resched_task(struct task_struct *p);
1202 extern void resched_cpu(int cpu);
1203
1204 extern struct rt_bandwidth def_rt_bandwidth;
1205 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1206
1207 extern struct dl_bandwidth def_dl_bandwidth;
1208 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1209 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1210
1211 unsigned long to_ratio(u64 period, u64 runtime);
1212
1213 extern void update_idle_cpu_load(struct rq *this_rq);
1214
1215 extern void init_task_runnable_average(struct task_struct *p);
1216
1217 #ifdef CONFIG_PARAVIRT
1218 static inline u64 steal_ticks(u64 steal)
1219 {
1220 if (unlikely(steal > NSEC_PER_SEC))
1221 return div_u64(steal, TICK_NSEC);
1222
1223 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1224 }
1225 #endif
1226
1227 static inline void inc_nr_running(struct rq *rq)
1228 {
1229 rq->nr_running++;
1230
1231 #ifdef CONFIG_NO_HZ_FULL
1232 if (rq->nr_running == 2) {
1233 if (tick_nohz_full_cpu(rq->cpu)) {
1234 /* Order rq->nr_running write against the IPI */
1235 smp_wmb();
1236 smp_send_reschedule(rq->cpu);
1237 }
1238 }
1239 #endif
1240 }
1241
1242 static inline void dec_nr_running(struct rq *rq)
1243 {
1244 rq->nr_running--;
1245 }
1246
1247 static inline void rq_last_tick_reset(struct rq *rq)
1248 {
1249 #ifdef CONFIG_NO_HZ_FULL
1250 rq->last_sched_tick = jiffies;
1251 #endif
1252 }
1253
1254 extern void update_rq_clock(struct rq *rq);
1255
1256 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1257 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1258
1259 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1260
1261 extern const_debug unsigned int sysctl_sched_time_avg;
1262 extern const_debug unsigned int sysctl_sched_nr_migrate;
1263 extern const_debug unsigned int sysctl_sched_migration_cost;
1264
1265 static inline u64 sched_avg_period(void)
1266 {
1267 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1268 }
1269
1270 #ifdef CONFIG_SCHED_HRTICK
1271
1272 /*
1273 * Use hrtick when:
1274 * - enabled by features
1275 * - hrtimer is actually high res
1276 */
1277 static inline int hrtick_enabled(struct rq *rq)
1278 {
1279 if (!sched_feat(HRTICK))
1280 return 0;
1281 if (!cpu_active(cpu_of(rq)))
1282 return 0;
1283 return hrtimer_is_hres_active(&rq->hrtick_timer);
1284 }
1285
1286 void hrtick_start(struct rq *rq, u64 delay);
1287
1288 #else
1289
1290 static inline int hrtick_enabled(struct rq *rq)
1291 {
1292 return 0;
1293 }
1294
1295 #endif /* CONFIG_SCHED_HRTICK */
1296
1297 #ifdef CONFIG_SMP
1298 extern void sched_avg_update(struct rq *rq);
1299 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300 {
1301 rq->rt_avg += rt_delta;
1302 sched_avg_update(rq);
1303 }
1304 #else
1305 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1306 static inline void sched_avg_update(struct rq *rq) { }
1307 #endif
1308
1309 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1310
1311 #ifdef CONFIG_SMP
1312 #ifdef CONFIG_PREEMPT
1313
1314 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1315
1316 /*
1317 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1318 * way at the expense of forcing extra atomic operations in all
1319 * invocations. This assures that the double_lock is acquired using the
1320 * same underlying policy as the spinlock_t on this architecture, which
1321 * reduces latency compared to the unfair variant below. However, it
1322 * also adds more overhead and therefore may reduce throughput.
1323 */
1324 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1325 __releases(this_rq->lock)
1326 __acquires(busiest->lock)
1327 __acquires(this_rq->lock)
1328 {
1329 raw_spin_unlock(&this_rq->lock);
1330 double_rq_lock(this_rq, busiest);
1331
1332 return 1;
1333 }
1334
1335 #else
1336 /*
1337 * Unfair double_lock_balance: Optimizes throughput at the expense of
1338 * latency by eliminating extra atomic operations when the locks are
1339 * already in proper order on entry. This favors lower cpu-ids and will
1340 * grant the double lock to lower cpus over higher ids under contention,
1341 * regardless of entry order into the function.
1342 */
1343 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1344 __releases(this_rq->lock)
1345 __acquires(busiest->lock)
1346 __acquires(this_rq->lock)
1347 {
1348 int ret = 0;
1349
1350 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1351 if (busiest < this_rq) {
1352 raw_spin_unlock(&this_rq->lock);
1353 raw_spin_lock(&busiest->lock);
1354 raw_spin_lock_nested(&this_rq->lock,
1355 SINGLE_DEPTH_NESTING);
1356 ret = 1;
1357 } else
1358 raw_spin_lock_nested(&busiest->lock,
1359 SINGLE_DEPTH_NESTING);
1360 }
1361 return ret;
1362 }
1363
1364 #endif /* CONFIG_PREEMPT */
1365
1366 /*
1367 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1368 */
1369 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1370 {
1371 if (unlikely(!irqs_disabled())) {
1372 /* printk() doesn't work good under rq->lock */
1373 raw_spin_unlock(&this_rq->lock);
1374 BUG_ON(1);
1375 }
1376
1377 return _double_lock_balance(this_rq, busiest);
1378 }
1379
1380 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1381 __releases(busiest->lock)
1382 {
1383 raw_spin_unlock(&busiest->lock);
1384 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1385 }
1386
1387 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1388 {
1389 if (l1 > l2)
1390 swap(l1, l2);
1391
1392 spin_lock(l1);
1393 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1394 }
1395
1396 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1397 {
1398 if (l1 > l2)
1399 swap(l1, l2);
1400
1401 raw_spin_lock(l1);
1402 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1403 }
1404
1405 /*
1406 * double_rq_lock - safely lock two runqueues
1407 *
1408 * Note this does not disable interrupts like task_rq_lock,
1409 * you need to do so manually before calling.
1410 */
1411 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1412 __acquires(rq1->lock)
1413 __acquires(rq2->lock)
1414 {
1415 BUG_ON(!irqs_disabled());
1416 if (rq1 == rq2) {
1417 raw_spin_lock(&rq1->lock);
1418 __acquire(rq2->lock); /* Fake it out ;) */
1419 } else {
1420 if (rq1 < rq2) {
1421 raw_spin_lock(&rq1->lock);
1422 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1423 } else {
1424 raw_spin_lock(&rq2->lock);
1425 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1426 }
1427 }
1428 }
1429
1430 /*
1431 * double_rq_unlock - safely unlock two runqueues
1432 *
1433 * Note this does not restore interrupts like task_rq_unlock,
1434 * you need to do so manually after calling.
1435 */
1436 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1437 __releases(rq1->lock)
1438 __releases(rq2->lock)
1439 {
1440 raw_spin_unlock(&rq1->lock);
1441 if (rq1 != rq2)
1442 raw_spin_unlock(&rq2->lock);
1443 else
1444 __release(rq2->lock);
1445 }
1446
1447 #else /* CONFIG_SMP */
1448
1449 /*
1450 * double_rq_lock - safely lock two runqueues
1451 *
1452 * Note this does not disable interrupts like task_rq_lock,
1453 * you need to do so manually before calling.
1454 */
1455 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1456 __acquires(rq1->lock)
1457 __acquires(rq2->lock)
1458 {
1459 BUG_ON(!irqs_disabled());
1460 BUG_ON(rq1 != rq2);
1461 raw_spin_lock(&rq1->lock);
1462 __acquire(rq2->lock); /* Fake it out ;) */
1463 }
1464
1465 /*
1466 * double_rq_unlock - safely unlock two runqueues
1467 *
1468 * Note this does not restore interrupts like task_rq_unlock,
1469 * you need to do so manually after calling.
1470 */
1471 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1472 __releases(rq1->lock)
1473 __releases(rq2->lock)
1474 {
1475 BUG_ON(rq1 != rq2);
1476 raw_spin_unlock(&rq1->lock);
1477 __release(rq2->lock);
1478 }
1479
1480 #endif
1481
1482 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1483 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1484 extern void print_cfs_stats(struct seq_file *m, int cpu);
1485 extern void print_rt_stats(struct seq_file *m, int cpu);
1486
1487 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1488 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1489 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1490
1491 extern void cfs_bandwidth_usage_inc(void);
1492 extern void cfs_bandwidth_usage_dec(void);
1493
1494 #ifdef CONFIG_NO_HZ_COMMON
1495 enum rq_nohz_flag_bits {
1496 NOHZ_TICK_STOPPED,
1497 NOHZ_BALANCE_KICK,
1498 };
1499
1500 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1501 #endif
1502
1503 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1504
1505 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1506 DECLARE_PER_CPU(u64, cpu_softirq_time);
1507
1508 #ifndef CONFIG_64BIT
1509 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1510
1511 static inline void irq_time_write_begin(void)
1512 {
1513 __this_cpu_inc(irq_time_seq.sequence);
1514 smp_wmb();
1515 }
1516
1517 static inline void irq_time_write_end(void)
1518 {
1519 smp_wmb();
1520 __this_cpu_inc(irq_time_seq.sequence);
1521 }
1522
1523 static inline u64 irq_time_read(int cpu)
1524 {
1525 u64 irq_time;
1526 unsigned seq;
1527
1528 do {
1529 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1530 irq_time = per_cpu(cpu_softirq_time, cpu) +
1531 per_cpu(cpu_hardirq_time, cpu);
1532 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1533
1534 return irq_time;
1535 }
1536 #else /* CONFIG_64BIT */
1537 static inline void irq_time_write_begin(void)
1538 {
1539 }
1540
1541 static inline void irq_time_write_end(void)
1542 {
1543 }
1544
1545 static inline u64 irq_time_read(int cpu)
1546 {
1547 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1548 }
1549 #endif /* CONFIG_64BIT */
1550 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.062488 seconds and 5 git commands to generate.