sched: Add 'autogroup' scheduling feature: automated per session task groups
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135 return rt_policy(p->policy);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194 return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199 ktime_t now;
200
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
223 }
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230 hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
258
259 atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
279 };
280
281 #define root_task_group init_task_group
282
283 /* task_group_lock serializes the addition/removal of task groups */
284 static DEFINE_SPINLOCK(task_group_lock);
285
286 #ifdef CONFIG_FAIR_GROUP_SCHED
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 #endif /* CONFIG_CGROUP_SCHED */
310
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
316 u64 exec_clock;
317 u64 min_vruntime;
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last;
330
331 unsigned int nr_spread_over;
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
344 int on_list;
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
368 */
369 u64 load_avg;
370 u64 load_period;
371 u64 load_stamp, load_last, load_unacc_exec_time;
372
373 unsigned long load_contribution;
374 #endif
375 #endif
376 };
377
378 /* Real-Time classes' related field in a runqueue: */
379 struct rt_rq {
380 struct rt_prio_array active;
381 unsigned long rt_nr_running;
382 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
383 struct {
384 int curr; /* highest queued rt task prio */
385 #ifdef CONFIG_SMP
386 int next; /* next highest */
387 #endif
388 } highest_prio;
389 #endif
390 #ifdef CONFIG_SMP
391 unsigned long rt_nr_migratory;
392 unsigned long rt_nr_total;
393 int overloaded;
394 struct plist_head pushable_tasks;
395 #endif
396 int rt_throttled;
397 u64 rt_time;
398 u64 rt_runtime;
399 /* Nests inside the rq lock: */
400 raw_spinlock_t rt_runtime_lock;
401
402 #ifdef CONFIG_RT_GROUP_SCHED
403 unsigned long rt_nr_boosted;
404
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
408 #endif
409 };
410
411 #ifdef CONFIG_SMP
412
413 /*
414 * We add the notion of a root-domain which will be used to define per-domain
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
420 */
421 struct root_domain {
422 atomic_t refcount;
423 cpumask_var_t span;
424 cpumask_var_t online;
425
426 /*
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
430 cpumask_var_t rto_mask;
431 atomic_t rto_count;
432 struct cpupri cpupri;
433 };
434
435 /*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
439 static struct root_domain def_root_domain;
440
441 #endif /* CONFIG_SMP */
442
443 /*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
450 struct rq {
451 /* runqueue lock: */
452 raw_spinlock_t lock;
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461 unsigned long last_load_update_tick;
462 #ifdef CONFIG_NO_HZ
463 u64 nohz_stamp;
464 unsigned char nohz_balance_kick;
465 #endif
466 unsigned int skip_clock_update;
467
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
474 struct rt_rq rt;
475
476 #ifdef CONFIG_FAIR_GROUP_SCHED
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
479 #endif
480 #ifdef CONFIG_RT_GROUP_SCHED
481 struct list_head leaf_rt_rq_list;
482 #endif
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
492 struct task_struct *curr, *idle, *stop;
493 unsigned long next_balance;
494 struct mm_struct *prev_mm;
495
496 u64 clock;
497 u64 clock_task;
498
499 atomic_t nr_iowait;
500
501 #ifdef CONFIG_SMP
502 struct root_domain *rd;
503 struct sched_domain *sd;
504
505 unsigned long cpu_power;
506
507 unsigned char idle_at_tick;
508 /* For active balancing */
509 int post_schedule;
510 int active_balance;
511 int push_cpu;
512 struct cpu_stop_work active_balance_work;
513 /* cpu of this runqueue: */
514 int cpu;
515 int online;
516
517 unsigned long avg_load_per_task;
518
519 u64 rt_avg;
520 u64 age_stamp;
521 u64 idle_stamp;
522 u64 avg_idle;
523 #endif
524
525 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527 #endif
528
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
533 #ifdef CONFIG_SCHED_HRTICK
534 #ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537 #endif
538 struct hrtimer hrtick_timer;
539 #endif
540
541 #ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
546
547 /* sys_sched_yield() stats */
548 unsigned int yld_count;
549
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
554
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
558
559 /* BKL stats */
560 unsigned int bkl_count;
561 #endif
562 };
563
564 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
565
566
567 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
568
569 static inline int cpu_of(struct rq *rq)
570 {
571 #ifdef CONFIG_SMP
572 return rq->cpu;
573 #else
574 return 0;
575 #endif
576 }
577
578 #define rcu_dereference_check_sched_domain(p) \
579 rcu_dereference_check((p), \
580 rcu_read_lock_sched_held() || \
581 lockdep_is_held(&sched_domains_mutex))
582
583 /*
584 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585 * See detach_destroy_domains: synchronize_sched for details.
586 *
587 * The domain tree of any CPU may only be accessed from within
588 * preempt-disabled sections.
589 */
590 #define for_each_domain(cpu, __sd) \
591 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
592
593 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
594 #define this_rq() (&__get_cpu_var(runqueues))
595 #define task_rq(p) cpu_rq(task_cpu(p))
596 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
597 #define raw_rq() (&__raw_get_cpu_var(runqueues))
598
599 #ifdef CONFIG_CGROUP_SCHED
600
601 /*
602 * Return the group to which this tasks belongs.
603 *
604 * We use task_subsys_state_check() and extend the RCU verification
605 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
606 * holds that lock for each task it moves into the cgroup. Therefore
607 * by holding that lock, we pin the task to the current cgroup.
608 */
609 static inline struct task_group *task_group(struct task_struct *p)
610 {
611 struct task_group *tg;
612 struct cgroup_subsys_state *css;
613
614 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
615 lockdep_is_held(&task_rq(p)->lock));
616 tg = container_of(css, struct task_group, css);
617
618 return autogroup_task_group(p, tg);
619 }
620
621 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
622 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623 {
624 #ifdef CONFIG_FAIR_GROUP_SCHED
625 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
626 p->se.parent = task_group(p)->se[cpu];
627 #endif
628
629 #ifdef CONFIG_RT_GROUP_SCHED
630 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
631 p->rt.parent = task_group(p)->rt_se[cpu];
632 #endif
633 }
634
635 #else /* CONFIG_CGROUP_SCHED */
636
637 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
638 static inline struct task_group *task_group(struct task_struct *p)
639 {
640 return NULL;
641 }
642
643 #endif /* CONFIG_CGROUP_SCHED */
644
645 static u64 irq_time_cpu(int cpu);
646 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
647
648 inline void update_rq_clock(struct rq *rq)
649 {
650 if (!rq->skip_clock_update) {
651 int cpu = cpu_of(rq);
652 u64 irq_time;
653
654 rq->clock = sched_clock_cpu(cpu);
655 irq_time = irq_time_cpu(cpu);
656 if (rq->clock - irq_time > rq->clock_task)
657 rq->clock_task = rq->clock - irq_time;
658
659 sched_irq_time_avg_update(rq, irq_time);
660 }
661 }
662
663 /*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
668 #else
669 # define const_debug static const
670 #endif
671
672 /**
673 * runqueue_is_locked
674 * @cpu: the processor in question.
675 *
676 * Returns true if the current cpu runqueue is locked.
677 * This interface allows printk to be called with the runqueue lock
678 * held and know whether or not it is OK to wake up the klogd.
679 */
680 int runqueue_is_locked(int cpu)
681 {
682 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
683 }
684
685 /*
686 * Debugging: various feature bits
687 */
688
689 #define SCHED_FEAT(name, enabled) \
690 __SCHED_FEAT_##name ,
691
692 enum {
693 #include "sched_features.h"
694 };
695
696 #undef SCHED_FEAT
697
698 #define SCHED_FEAT(name, enabled) \
699 (1UL << __SCHED_FEAT_##name) * enabled |
700
701 const_debug unsigned int sysctl_sched_features =
702 #include "sched_features.h"
703 0;
704
705 #undef SCHED_FEAT
706
707 #ifdef CONFIG_SCHED_DEBUG
708 #define SCHED_FEAT(name, enabled) \
709 #name ,
710
711 static __read_mostly char *sched_feat_names[] = {
712 #include "sched_features.h"
713 NULL
714 };
715
716 #undef SCHED_FEAT
717
718 static int sched_feat_show(struct seq_file *m, void *v)
719 {
720 int i;
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 if (!(sysctl_sched_features & (1UL << i)))
724 seq_puts(m, "NO_");
725 seq_printf(m, "%s ", sched_feat_names[i]);
726 }
727 seq_puts(m, "\n");
728
729 return 0;
730 }
731
732 static ssize_t
733 sched_feat_write(struct file *filp, const char __user *ubuf,
734 size_t cnt, loff_t *ppos)
735 {
736 char buf[64];
737 char *cmp;
738 int neg = 0;
739 int i;
740
741 if (cnt > 63)
742 cnt = 63;
743
744 if (copy_from_user(&buf, ubuf, cnt))
745 return -EFAULT;
746
747 buf[cnt] = 0;
748 cmp = strstrip(buf);
749
750 if (strncmp(buf, "NO_", 3) == 0) {
751 neg = 1;
752 cmp += 3;
753 }
754
755 for (i = 0; sched_feat_names[i]; i++) {
756 if (strcmp(cmp, sched_feat_names[i]) == 0) {
757 if (neg)
758 sysctl_sched_features &= ~(1UL << i);
759 else
760 sysctl_sched_features |= (1UL << i);
761 break;
762 }
763 }
764
765 if (!sched_feat_names[i])
766 return -EINVAL;
767
768 *ppos += cnt;
769
770 return cnt;
771 }
772
773 static int sched_feat_open(struct inode *inode, struct file *filp)
774 {
775 return single_open(filp, sched_feat_show, NULL);
776 }
777
778 static const struct file_operations sched_feat_fops = {
779 .open = sched_feat_open,
780 .write = sched_feat_write,
781 .read = seq_read,
782 .llseek = seq_lseek,
783 .release = single_release,
784 };
785
786 static __init int sched_init_debug(void)
787 {
788 debugfs_create_file("sched_features", 0644, NULL, NULL,
789 &sched_feat_fops);
790
791 return 0;
792 }
793 late_initcall(sched_init_debug);
794
795 #endif
796
797 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
798
799 /*
800 * Number of tasks to iterate in a single balance run.
801 * Limited because this is done with IRQs disabled.
802 */
803 const_debug unsigned int sysctl_sched_nr_migrate = 32;
804
805 /*
806 * period over which we average the RT time consumption, measured
807 * in ms.
808 *
809 * default: 1s
810 */
811 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
812
813 /*
814 * period over which we measure -rt task cpu usage in us.
815 * default: 1s
816 */
817 unsigned int sysctl_sched_rt_period = 1000000;
818
819 static __read_mostly int scheduler_running;
820
821 /*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825 int sysctl_sched_rt_runtime = 950000;
826
827 static inline u64 global_rt_period(void)
828 {
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830 }
831
832 static inline u64 global_rt_runtime(void)
833 {
834 if (sysctl_sched_rt_runtime < 0)
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838 }
839
840 #ifndef prepare_arch_switch
841 # define prepare_arch_switch(next) do { } while (0)
842 #endif
843 #ifndef finish_arch_switch
844 # define finish_arch_switch(prev) do { } while (0)
845 #endif
846
847 static inline int task_current(struct rq *rq, struct task_struct *p)
848 {
849 return rq->curr == p;
850 }
851
852 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
853 static inline int task_running(struct rq *rq, struct task_struct *p)
854 {
855 return task_current(rq, p);
856 }
857
858 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
859 {
860 }
861
862 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
863 {
864 #ifdef CONFIG_DEBUG_SPINLOCK
865 /* this is a valid case when another task releases the spinlock */
866 rq->lock.owner = current;
867 #endif
868 /*
869 * If we are tracking spinlock dependencies then we have to
870 * fix up the runqueue lock - which gets 'carried over' from
871 * prev into current:
872 */
873 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
874
875 raw_spin_unlock_irq(&rq->lock);
876 }
877
878 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
879 static inline int task_running(struct rq *rq, struct task_struct *p)
880 {
881 #ifdef CONFIG_SMP
882 return p->oncpu;
883 #else
884 return task_current(rq, p);
885 #endif
886 }
887
888 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 {
890 #ifdef CONFIG_SMP
891 /*
892 * We can optimise this out completely for !SMP, because the
893 * SMP rebalancing from interrupt is the only thing that cares
894 * here.
895 */
896 next->oncpu = 1;
897 #endif
898 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 raw_spin_unlock_irq(&rq->lock);
900 #else
901 raw_spin_unlock(&rq->lock);
902 #endif
903 }
904
905 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
906 {
907 #ifdef CONFIG_SMP
908 /*
909 * After ->oncpu is cleared, the task can be moved to a different CPU.
910 * We must ensure this doesn't happen until the switch is completely
911 * finished.
912 */
913 smp_wmb();
914 prev->oncpu = 0;
915 #endif
916 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 local_irq_enable();
918 #endif
919 }
920 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
921
922 /*
923 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
924 * against ttwu().
925 */
926 static inline int task_is_waking(struct task_struct *p)
927 {
928 return unlikely(p->state == TASK_WAKING);
929 }
930
931 /*
932 * __task_rq_lock - lock the runqueue a given task resides on.
933 * Must be called interrupts disabled.
934 */
935 static inline struct rq *__task_rq_lock(struct task_struct *p)
936 __acquires(rq->lock)
937 {
938 struct rq *rq;
939
940 for (;;) {
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
946 }
947 }
948
949 /*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
953 */
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
956 {
957 struct rq *rq;
958
959 for (;;) {
960 local_irq_save(*flags);
961 rq = task_rq(p);
962 raw_spin_lock(&rq->lock);
963 if (likely(rq == task_rq(p)))
964 return rq;
965 raw_spin_unlock_irqrestore(&rq->lock, *flags);
966 }
967 }
968
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock(&rq->lock);
973 }
974
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
977 {
978 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980
981 /*
982 * this_rq_lock - lock this runqueue and disable interrupts.
983 */
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
986 {
987 struct rq *rq;
988
989 local_irq_disable();
990 rq = this_rq();
991 raw_spin_lock(&rq->lock);
992
993 return rq;
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 /*
998 * Use HR-timers to deliver accurate preemption points.
999 *
1000 * Its all a bit involved since we cannot program an hrt while holding the
1001 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1002 * reschedule event.
1003 *
1004 * When we get rescheduled we reprogram the hrtick_timer outside of the
1005 * rq->lock.
1006 */
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 static void hrtick_clear(struct rq *rq)
1023 {
1024 if (hrtimer_active(&rq->hrtick_timer))
1025 hrtimer_cancel(&rq->hrtick_timer);
1026 }
1027
1028 /*
1029 * High-resolution timer tick.
1030 * Runs from hardirq context with interrupts disabled.
1031 */
1032 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 {
1034 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035
1036 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037
1038 raw_spin_lock(&rq->lock);
1039 update_rq_clock(rq);
1040 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041 raw_spin_unlock(&rq->lock);
1042
1043 return HRTIMER_NORESTART;
1044 }
1045
1046 #ifdef CONFIG_SMP
1047 /*
1048 * called from hardirq (IPI) context
1049 */
1050 static void __hrtick_start(void *arg)
1051 {
1052 struct rq *rq = arg;
1053
1054 raw_spin_lock(&rq->lock);
1055 hrtimer_restart(&rq->hrtick_timer);
1056 rq->hrtick_csd_pending = 0;
1057 raw_spin_unlock(&rq->lock);
1058 }
1059
1060 /*
1061 * Called to set the hrtick timer state.
1062 *
1063 * called with rq->lock held and irqs disabled
1064 */
1065 static void hrtick_start(struct rq *rq, u64 delay)
1066 {
1067 struct hrtimer *timer = &rq->hrtick_timer;
1068 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069
1070 hrtimer_set_expires(timer, time);
1071
1072 if (rq == this_rq()) {
1073 hrtimer_restart(timer);
1074 } else if (!rq->hrtick_csd_pending) {
1075 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 rq->hrtick_csd_pending = 1;
1077 }
1078 }
1079
1080 static int
1081 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 {
1083 int cpu = (int)(long)hcpu;
1084
1085 switch (action) {
1086 case CPU_UP_CANCELED:
1087 case CPU_UP_CANCELED_FROZEN:
1088 case CPU_DOWN_PREPARE:
1089 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD:
1091 case CPU_DEAD_FROZEN:
1092 hrtick_clear(cpu_rq(cpu));
1093 return NOTIFY_OK;
1094 }
1095
1096 return NOTIFY_DONE;
1097 }
1098
1099 static __init void init_hrtick(void)
1100 {
1101 hotcpu_notifier(hotplug_hrtick, 0);
1102 }
1103 #else
1104 /*
1105 * Called to set the hrtick timer state.
1106 *
1107 * called with rq->lock held and irqs disabled
1108 */
1109 static void hrtick_start(struct rq *rq, u64 delay)
1110 {
1111 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112 HRTIMER_MODE_REL_PINNED, 0);
1113 }
1114
1115 static inline void init_hrtick(void)
1116 {
1117 }
1118 #endif /* CONFIG_SMP */
1119
1120 static void init_rq_hrtick(struct rq *rq)
1121 {
1122 #ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128 #endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 }
1133 #else /* CONFIG_SCHED_HRTICK */
1134 static inline void hrtick_clear(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_rq_hrtick(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SCHED_HRTICK */
1146
1147 /*
1148 * resched_task - mark a task 'to be rescheduled now'.
1149 *
1150 * On UP this means the setting of the need_resched flag, on SMP it
1151 * might also involve a cross-CPU call to trigger the scheduler on
1152 * the target CPU.
1153 */
1154 #ifdef CONFIG_SMP
1155
1156 #ifndef tsk_is_polling
1157 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1158 #endif
1159
1160 static void resched_task(struct task_struct *p)
1161 {
1162 int cpu;
1163
1164 assert_raw_spin_locked(&task_rq(p)->lock);
1165
1166 if (test_tsk_need_resched(p))
1167 return;
1168
1169 set_tsk_need_resched(p);
1170
1171 cpu = task_cpu(p);
1172 if (cpu == smp_processor_id())
1173 return;
1174
1175 /* NEED_RESCHED must be visible before we test polling */
1176 smp_mb();
1177 if (!tsk_is_polling(p))
1178 smp_send_reschedule(cpu);
1179 }
1180
1181 static void resched_cpu(int cpu)
1182 {
1183 struct rq *rq = cpu_rq(cpu);
1184 unsigned long flags;
1185
1186 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 return;
1188 resched_task(cpu_curr(cpu));
1189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1190 }
1191
1192 #ifdef CONFIG_NO_HZ
1193 /*
1194 * In the semi idle case, use the nearest busy cpu for migrating timers
1195 * from an idle cpu. This is good for power-savings.
1196 *
1197 * We don't do similar optimization for completely idle system, as
1198 * selecting an idle cpu will add more delays to the timers than intended
1199 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1200 */
1201 int get_nohz_timer_target(void)
1202 {
1203 int cpu = smp_processor_id();
1204 int i;
1205 struct sched_domain *sd;
1206
1207 for_each_domain(cpu, sd) {
1208 for_each_cpu(i, sched_domain_span(sd))
1209 if (!idle_cpu(i))
1210 return i;
1211 }
1212 return cpu;
1213 }
1214 /*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224 void wake_up_idle_cpu(int cpu)
1225 {
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_need_resched(rq->idle);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252 }
1253
1254 #endif /* CONFIG_NO_HZ */
1255
1256 static u64 sched_avg_period(void)
1257 {
1258 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 }
1260
1261 static void sched_avg_update(struct rq *rq)
1262 {
1263 s64 period = sched_avg_period();
1264
1265 while ((s64)(rq->clock - rq->age_stamp) > period) {
1266 /*
1267 * Inline assembly required to prevent the compiler
1268 * optimising this loop into a divmod call.
1269 * See __iter_div_u64_rem() for another example of this.
1270 */
1271 asm("" : "+rm" (rq->age_stamp));
1272 rq->age_stamp += period;
1273 rq->rt_avg /= 2;
1274 }
1275 }
1276
1277 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278 {
1279 rq->rt_avg += rt_delta;
1280 sched_avg_update(rq);
1281 }
1282
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1285 {
1286 assert_raw_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1288 }
1289
1290 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291 {
1292 }
1293
1294 static void sched_avg_update(struct rq *rq)
1295 {
1296 }
1297 #endif /* CONFIG_SMP */
1298
1299 #if BITS_PER_LONG == 32
1300 # define WMULT_CONST (~0UL)
1301 #else
1302 # define WMULT_CONST (1UL << 32)
1303 #endif
1304
1305 #define WMULT_SHIFT 32
1306
1307 /*
1308 * Shift right and round:
1309 */
1310 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1311
1312 /*
1313 * delta *= weight / lw
1314 */
1315 static unsigned long
1316 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1317 struct load_weight *lw)
1318 {
1319 u64 tmp;
1320
1321 if (!lw->inv_weight) {
1322 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1323 lw->inv_weight = 1;
1324 else
1325 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1326 / (lw->weight+1);
1327 }
1328
1329 tmp = (u64)delta_exec * weight;
1330 /*
1331 * Check whether we'd overflow the 64-bit multiplication:
1332 */
1333 if (unlikely(tmp > WMULT_CONST))
1334 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1335 WMULT_SHIFT/2);
1336 else
1337 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1338
1339 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1340 }
1341
1342 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1343 {
1344 lw->weight += inc;
1345 lw->inv_weight = 0;
1346 }
1347
1348 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1349 {
1350 lw->weight -= dec;
1351 lw->inv_weight = 0;
1352 }
1353
1354 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1355 {
1356 lw->weight = w;
1357 lw->inv_weight = 0;
1358 }
1359
1360 /*
1361 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1362 * of tasks with abnormal "nice" values across CPUs the contribution that
1363 * each task makes to its run queue's load is weighted according to its
1364 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1365 * scaled version of the new time slice allocation that they receive on time
1366 * slice expiry etc.
1367 */
1368
1369 #define WEIGHT_IDLEPRIO 3
1370 #define WMULT_IDLEPRIO 1431655765
1371
1372 /*
1373 * Nice levels are multiplicative, with a gentle 10% change for every
1374 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1375 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1376 * that remained on nice 0.
1377 *
1378 * The "10% effect" is relative and cumulative: from _any_ nice level,
1379 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1380 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1381 * If a task goes up by ~10% and another task goes down by ~10% then
1382 * the relative distance between them is ~25%.)
1383 */
1384 static const int prio_to_weight[40] = {
1385 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1386 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1387 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1388 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1389 /* 0 */ 1024, 820, 655, 526, 423,
1390 /* 5 */ 335, 272, 215, 172, 137,
1391 /* 10 */ 110, 87, 70, 56, 45,
1392 /* 15 */ 36, 29, 23, 18, 15,
1393 };
1394
1395 /*
1396 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1397 *
1398 * In cases where the weight does not change often, we can use the
1399 * precalculated inverse to speed up arithmetics by turning divisions
1400 * into multiplications:
1401 */
1402 static const u32 prio_to_wmult[40] = {
1403 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1404 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1405 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1406 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1407 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1408 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1409 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1410 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1411 };
1412
1413 /* Time spent by the tasks of the cpu accounting group executing in ... */
1414 enum cpuacct_stat_index {
1415 CPUACCT_STAT_USER, /* ... user mode */
1416 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1417
1418 CPUACCT_STAT_NSTATS,
1419 };
1420
1421 #ifdef CONFIG_CGROUP_CPUACCT
1422 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1423 static void cpuacct_update_stats(struct task_struct *tsk,
1424 enum cpuacct_stat_index idx, cputime_t val);
1425 #else
1426 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1427 static inline void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val) {}
1429 #endif
1430
1431 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1432 {
1433 update_load_add(&rq->load, load);
1434 }
1435
1436 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1437 {
1438 update_load_sub(&rq->load, load);
1439 }
1440
1441 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1442 typedef int (*tg_visitor)(struct task_group *, void *);
1443
1444 /*
1445 * Iterate the full tree, calling @down when first entering a node and @up when
1446 * leaving it for the final time.
1447 */
1448 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1449 {
1450 struct task_group *parent, *child;
1451 int ret;
1452
1453 rcu_read_lock();
1454 parent = &root_task_group;
1455 down:
1456 ret = (*down)(parent, data);
1457 if (ret)
1458 goto out_unlock;
1459 list_for_each_entry_rcu(child, &parent->children, siblings) {
1460 parent = child;
1461 goto down;
1462
1463 up:
1464 continue;
1465 }
1466 ret = (*up)(parent, data);
1467 if (ret)
1468 goto out_unlock;
1469
1470 child = parent;
1471 parent = parent->parent;
1472 if (parent)
1473 goto up;
1474 out_unlock:
1475 rcu_read_unlock();
1476
1477 return ret;
1478 }
1479
1480 static int tg_nop(struct task_group *tg, void *data)
1481 {
1482 return 0;
1483 }
1484 #endif
1485
1486 #ifdef CONFIG_SMP
1487 /* Used instead of source_load when we know the type == 0 */
1488 static unsigned long weighted_cpuload(const int cpu)
1489 {
1490 return cpu_rq(cpu)->load.weight;
1491 }
1492
1493 /*
1494 * Return a low guess at the load of a migration-source cpu weighted
1495 * according to the scheduling class and "nice" value.
1496 *
1497 * We want to under-estimate the load of migration sources, to
1498 * balance conservatively.
1499 */
1500 static unsigned long source_load(int cpu, int type)
1501 {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long total = weighted_cpuload(cpu);
1504
1505 if (type == 0 || !sched_feat(LB_BIAS))
1506 return total;
1507
1508 return min(rq->cpu_load[type-1], total);
1509 }
1510
1511 /*
1512 * Return a high guess at the load of a migration-target cpu weighted
1513 * according to the scheduling class and "nice" value.
1514 */
1515 static unsigned long target_load(int cpu, int type)
1516 {
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1519
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1522
1523 return max(rq->cpu_load[type-1], total);
1524 }
1525
1526 static unsigned long power_of(int cpu)
1527 {
1528 return cpu_rq(cpu)->cpu_power;
1529 }
1530
1531 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1532
1533 static unsigned long cpu_avg_load_per_task(int cpu)
1534 {
1535 struct rq *rq = cpu_rq(cpu);
1536 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1537
1538 if (nr_running)
1539 rq->avg_load_per_task = rq->load.weight / nr_running;
1540 else
1541 rq->avg_load_per_task = 0;
1542
1543 return rq->avg_load_per_task;
1544 }
1545
1546 #ifdef CONFIG_FAIR_GROUP_SCHED
1547
1548 /*
1549 * Compute the cpu's hierarchical load factor for each task group.
1550 * This needs to be done in a top-down fashion because the load of a child
1551 * group is a fraction of its parents load.
1552 */
1553 static int tg_load_down(struct task_group *tg, void *data)
1554 {
1555 unsigned long load;
1556 long cpu = (long)data;
1557
1558 if (!tg->parent) {
1559 load = cpu_rq(cpu)->load.weight;
1560 } else {
1561 load = tg->parent->cfs_rq[cpu]->h_load;
1562 load *= tg->se[cpu]->load.weight;
1563 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1564 }
1565
1566 tg->cfs_rq[cpu]->h_load = load;
1567
1568 return 0;
1569 }
1570
1571 static void update_h_load(long cpu)
1572 {
1573 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1574 }
1575
1576 #endif
1577
1578 #ifdef CONFIG_PREEMPT
1579
1580 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1581
1582 /*
1583 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1584 * way at the expense of forcing extra atomic operations in all
1585 * invocations. This assures that the double_lock is acquired using the
1586 * same underlying policy as the spinlock_t on this architecture, which
1587 * reduces latency compared to the unfair variant below. However, it
1588 * also adds more overhead and therefore may reduce throughput.
1589 */
1590 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1591 __releases(this_rq->lock)
1592 __acquires(busiest->lock)
1593 __acquires(this_rq->lock)
1594 {
1595 raw_spin_unlock(&this_rq->lock);
1596 double_rq_lock(this_rq, busiest);
1597
1598 return 1;
1599 }
1600
1601 #else
1602 /*
1603 * Unfair double_lock_balance: Optimizes throughput at the expense of
1604 * latency by eliminating extra atomic operations when the locks are
1605 * already in proper order on entry. This favors lower cpu-ids and will
1606 * grant the double lock to lower cpus over higher ids under contention,
1607 * regardless of entry order into the function.
1608 */
1609 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1610 __releases(this_rq->lock)
1611 __acquires(busiest->lock)
1612 __acquires(this_rq->lock)
1613 {
1614 int ret = 0;
1615
1616 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1617 if (busiest < this_rq) {
1618 raw_spin_unlock(&this_rq->lock);
1619 raw_spin_lock(&busiest->lock);
1620 raw_spin_lock_nested(&this_rq->lock,
1621 SINGLE_DEPTH_NESTING);
1622 ret = 1;
1623 } else
1624 raw_spin_lock_nested(&busiest->lock,
1625 SINGLE_DEPTH_NESTING);
1626 }
1627 return ret;
1628 }
1629
1630 #endif /* CONFIG_PREEMPT */
1631
1632 /*
1633 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1634 */
1635 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1636 {
1637 if (unlikely(!irqs_disabled())) {
1638 /* printk() doesn't work good under rq->lock */
1639 raw_spin_unlock(&this_rq->lock);
1640 BUG_ON(1);
1641 }
1642
1643 return _double_lock_balance(this_rq, busiest);
1644 }
1645
1646 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1647 __releases(busiest->lock)
1648 {
1649 raw_spin_unlock(&busiest->lock);
1650 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1651 }
1652
1653 /*
1654 * double_rq_lock - safely lock two runqueues
1655 *
1656 * Note this does not disable interrupts like task_rq_lock,
1657 * you need to do so manually before calling.
1658 */
1659 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1660 __acquires(rq1->lock)
1661 __acquires(rq2->lock)
1662 {
1663 BUG_ON(!irqs_disabled());
1664 if (rq1 == rq2) {
1665 raw_spin_lock(&rq1->lock);
1666 __acquire(rq2->lock); /* Fake it out ;) */
1667 } else {
1668 if (rq1 < rq2) {
1669 raw_spin_lock(&rq1->lock);
1670 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1671 } else {
1672 raw_spin_lock(&rq2->lock);
1673 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 }
1676 }
1677
1678 /*
1679 * double_rq_unlock - safely unlock two runqueues
1680 *
1681 * Note this does not restore interrupts like task_rq_unlock,
1682 * you need to do so manually after calling.
1683 */
1684 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1685 __releases(rq1->lock)
1686 __releases(rq2->lock)
1687 {
1688 raw_spin_unlock(&rq1->lock);
1689 if (rq1 != rq2)
1690 raw_spin_unlock(&rq2->lock);
1691 else
1692 __release(rq2->lock);
1693 }
1694
1695 #endif
1696
1697 static void calc_load_account_idle(struct rq *this_rq);
1698 static void update_sysctl(void);
1699 static int get_update_sysctl_factor(void);
1700 static void update_cpu_load(struct rq *this_rq);
1701
1702 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1703 {
1704 set_task_rq(p, cpu);
1705 #ifdef CONFIG_SMP
1706 /*
1707 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1708 * successfuly executed on another CPU. We must ensure that updates of
1709 * per-task data have been completed by this moment.
1710 */
1711 smp_wmb();
1712 task_thread_info(p)->cpu = cpu;
1713 #endif
1714 }
1715
1716 static const struct sched_class rt_sched_class;
1717
1718 #define sched_class_highest (&stop_sched_class)
1719 #define for_each_class(class) \
1720 for (class = sched_class_highest; class; class = class->next)
1721
1722 #include "sched_stats.h"
1723
1724 static void inc_nr_running(struct rq *rq)
1725 {
1726 rq->nr_running++;
1727 }
1728
1729 static void dec_nr_running(struct rq *rq)
1730 {
1731 rq->nr_running--;
1732 }
1733
1734 static void set_load_weight(struct task_struct *p)
1735 {
1736 /*
1737 * SCHED_IDLE tasks get minimal weight:
1738 */
1739 if (p->policy == SCHED_IDLE) {
1740 p->se.load.weight = WEIGHT_IDLEPRIO;
1741 p->se.load.inv_weight = WMULT_IDLEPRIO;
1742 return;
1743 }
1744
1745 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1746 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1747 }
1748
1749 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1750 {
1751 update_rq_clock(rq);
1752 sched_info_queued(p);
1753 p->sched_class->enqueue_task(rq, p, flags);
1754 p->se.on_rq = 1;
1755 }
1756
1757 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1758 {
1759 update_rq_clock(rq);
1760 sched_info_dequeued(p);
1761 p->sched_class->dequeue_task(rq, p, flags);
1762 p->se.on_rq = 0;
1763 }
1764
1765 /*
1766 * activate_task - move a task to the runqueue.
1767 */
1768 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1769 {
1770 if (task_contributes_to_load(p))
1771 rq->nr_uninterruptible--;
1772
1773 enqueue_task(rq, p, flags);
1774 inc_nr_running(rq);
1775 }
1776
1777 /*
1778 * deactivate_task - remove a task from the runqueue.
1779 */
1780 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1781 {
1782 if (task_contributes_to_load(p))
1783 rq->nr_uninterruptible++;
1784
1785 dequeue_task(rq, p, flags);
1786 dec_nr_running(rq);
1787 }
1788
1789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1790
1791 /*
1792 * There are no locks covering percpu hardirq/softirq time.
1793 * They are only modified in account_system_vtime, on corresponding CPU
1794 * with interrupts disabled. So, writes are safe.
1795 * They are read and saved off onto struct rq in update_rq_clock().
1796 * This may result in other CPU reading this CPU's irq time and can
1797 * race with irq/account_system_vtime on this CPU. We would either get old
1798 * or new value (or semi updated value on 32 bit) with a side effect of
1799 * accounting a slice of irq time to wrong task when irq is in progress
1800 * while we read rq->clock. That is a worthy compromise in place of having
1801 * locks on each irq in account_system_time.
1802 */
1803 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1804 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1805
1806 static DEFINE_PER_CPU(u64, irq_start_time);
1807 static int sched_clock_irqtime;
1808
1809 void enable_sched_clock_irqtime(void)
1810 {
1811 sched_clock_irqtime = 1;
1812 }
1813
1814 void disable_sched_clock_irqtime(void)
1815 {
1816 sched_clock_irqtime = 0;
1817 }
1818
1819 static u64 irq_time_cpu(int cpu)
1820 {
1821 if (!sched_clock_irqtime)
1822 return 0;
1823
1824 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1825 }
1826
1827 void account_system_vtime(struct task_struct *curr)
1828 {
1829 unsigned long flags;
1830 int cpu;
1831 u64 now, delta;
1832
1833 if (!sched_clock_irqtime)
1834 return;
1835
1836 local_irq_save(flags);
1837
1838 cpu = smp_processor_id();
1839 now = sched_clock_cpu(cpu);
1840 delta = now - per_cpu(irq_start_time, cpu);
1841 per_cpu(irq_start_time, cpu) = now;
1842 /*
1843 * We do not account for softirq time from ksoftirqd here.
1844 * We want to continue accounting softirq time to ksoftirqd thread
1845 * in that case, so as not to confuse scheduler with a special task
1846 * that do not consume any time, but still wants to run.
1847 */
1848 if (hardirq_count())
1849 per_cpu(cpu_hardirq_time, cpu) += delta;
1850 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1851 per_cpu(cpu_softirq_time, cpu) += delta;
1852
1853 local_irq_restore(flags);
1854 }
1855 EXPORT_SYMBOL_GPL(account_system_vtime);
1856
1857 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1858 {
1859 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1860 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1861 rq->prev_irq_time = curr_irq_time;
1862 sched_rt_avg_update(rq, delta_irq);
1863 }
1864 }
1865
1866 #else
1867
1868 static u64 irq_time_cpu(int cpu)
1869 {
1870 return 0;
1871 }
1872
1873 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
1874
1875 #endif
1876
1877 #include "sched_idletask.c"
1878 #include "sched_fair.c"
1879 #include "sched_rt.c"
1880 #include "sched_autogroup.c"
1881 #include "sched_stoptask.c"
1882 #ifdef CONFIG_SCHED_DEBUG
1883 # include "sched_debug.c"
1884 #endif
1885
1886 void sched_set_stop_task(int cpu, struct task_struct *stop)
1887 {
1888 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1889 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1890
1891 if (stop) {
1892 /*
1893 * Make it appear like a SCHED_FIFO task, its something
1894 * userspace knows about and won't get confused about.
1895 *
1896 * Also, it will make PI more or less work without too
1897 * much confusion -- but then, stop work should not
1898 * rely on PI working anyway.
1899 */
1900 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1901
1902 stop->sched_class = &stop_sched_class;
1903 }
1904
1905 cpu_rq(cpu)->stop = stop;
1906
1907 if (old_stop) {
1908 /*
1909 * Reset it back to a normal scheduling class so that
1910 * it can die in pieces.
1911 */
1912 old_stop->sched_class = &rt_sched_class;
1913 }
1914 }
1915
1916 /*
1917 * __normal_prio - return the priority that is based on the static prio
1918 */
1919 static inline int __normal_prio(struct task_struct *p)
1920 {
1921 return p->static_prio;
1922 }
1923
1924 /*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
1931 static inline int normal_prio(struct task_struct *p)
1932 {
1933 int prio;
1934
1935 if (task_has_rt_policy(p))
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940 }
1941
1942 /*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
1949 static int effective_prio(struct task_struct *p)
1950 {
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960 }
1961
1962 /**
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1965 */
1966 inline int task_curr(const struct task_struct *p)
1967 {
1968 return cpu_curr(task_cpu(p)) == p;
1969 }
1970
1971 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1972 const struct sched_class *prev_class,
1973 int oldprio, int running)
1974 {
1975 if (prev_class != p->sched_class) {
1976 if (prev_class->switched_from)
1977 prev_class->switched_from(rq, p, running);
1978 p->sched_class->switched_to(rq, p, running);
1979 } else
1980 p->sched_class->prio_changed(rq, p, oldprio, running);
1981 }
1982
1983 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1984 {
1985 const struct sched_class *class;
1986
1987 if (p->sched_class == rq->curr->sched_class) {
1988 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1989 } else {
1990 for_each_class(class) {
1991 if (class == rq->curr->sched_class)
1992 break;
1993 if (class == p->sched_class) {
1994 resched_task(rq->curr);
1995 break;
1996 }
1997 }
1998 }
1999
2000 /*
2001 * A queue event has occurred, and we're going to schedule. In
2002 * this case, we can save a useless back to back clock update.
2003 */
2004 if (test_tsk_need_resched(rq->curr))
2005 rq->skip_clock_update = 1;
2006 }
2007
2008 #ifdef CONFIG_SMP
2009 /*
2010 * Is this task likely cache-hot:
2011 */
2012 static int
2013 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2014 {
2015 s64 delta;
2016
2017 if (p->sched_class != &fair_sched_class)
2018 return 0;
2019
2020 if (unlikely(p->policy == SCHED_IDLE))
2021 return 0;
2022
2023 /*
2024 * Buddy candidates are cache hot:
2025 */
2026 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2027 (&p->se == cfs_rq_of(&p->se)->next ||
2028 &p->se == cfs_rq_of(&p->se)->last))
2029 return 1;
2030
2031 if (sysctl_sched_migration_cost == -1)
2032 return 1;
2033 if (sysctl_sched_migration_cost == 0)
2034 return 0;
2035
2036 delta = now - p->se.exec_start;
2037
2038 return delta < (s64)sysctl_sched_migration_cost;
2039 }
2040
2041 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2042 {
2043 #ifdef CONFIG_SCHED_DEBUG
2044 /*
2045 * We should never call set_task_cpu() on a blocked task,
2046 * ttwu() will sort out the placement.
2047 */
2048 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2049 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2050 #endif
2051
2052 trace_sched_migrate_task(p, new_cpu);
2053
2054 if (task_cpu(p) != new_cpu) {
2055 p->se.nr_migrations++;
2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2057 }
2058
2059 __set_task_cpu(p, new_cpu);
2060 }
2061
2062 struct migration_arg {
2063 struct task_struct *task;
2064 int dest_cpu;
2065 };
2066
2067 static int migration_cpu_stop(void *data);
2068
2069 /*
2070 * The task's runqueue lock must be held.
2071 * Returns true if you have to wait for migration thread.
2072 */
2073 static bool migrate_task(struct task_struct *p, struct rq *rq)
2074 {
2075 /*
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2078 */
2079 return p->se.on_rq || task_running(rq, p);
2080 }
2081
2082 /*
2083 * wait_task_inactive - wait for a thread to unschedule.
2084 *
2085 * If @match_state is nonzero, it's the @p->state value just checked and
2086 * not expected to change. If it changes, i.e. @p might have woken up,
2087 * then return zero. When we succeed in waiting for @p to be off its CPU,
2088 * we return a positive number (its total switch count). If a second call
2089 * a short while later returns the same number, the caller can be sure that
2090 * @p has remained unscheduled the whole time.
2091 *
2092 * The caller must ensure that the task *will* unschedule sometime soon,
2093 * else this function might spin for a *long* time. This function can't
2094 * be called with interrupts off, or it may introduce deadlock with
2095 * smp_call_function() if an IPI is sent by the same process we are
2096 * waiting to become inactive.
2097 */
2098 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2099 {
2100 unsigned long flags;
2101 int running, on_rq;
2102 unsigned long ncsw;
2103 struct rq *rq;
2104
2105 for (;;) {
2106 /*
2107 * We do the initial early heuristics without holding
2108 * any task-queue locks at all. We'll only try to get
2109 * the runqueue lock when things look like they will
2110 * work out!
2111 */
2112 rq = task_rq(p);
2113
2114 /*
2115 * If the task is actively running on another CPU
2116 * still, just relax and busy-wait without holding
2117 * any locks.
2118 *
2119 * NOTE! Since we don't hold any locks, it's not
2120 * even sure that "rq" stays as the right runqueue!
2121 * But we don't care, since "task_running()" will
2122 * return false if the runqueue has changed and p
2123 * is actually now running somewhere else!
2124 */
2125 while (task_running(rq, p)) {
2126 if (match_state && unlikely(p->state != match_state))
2127 return 0;
2128 cpu_relax();
2129 }
2130
2131 /*
2132 * Ok, time to look more closely! We need the rq
2133 * lock now, to be *sure*. If we're wrong, we'll
2134 * just go back and repeat.
2135 */
2136 rq = task_rq_lock(p, &flags);
2137 trace_sched_wait_task(p);
2138 running = task_running(rq, p);
2139 on_rq = p->se.on_rq;
2140 ncsw = 0;
2141 if (!match_state || p->state == match_state)
2142 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2143 task_rq_unlock(rq, &flags);
2144
2145 /*
2146 * If it changed from the expected state, bail out now.
2147 */
2148 if (unlikely(!ncsw))
2149 break;
2150
2151 /*
2152 * Was it really running after all now that we
2153 * checked with the proper locks actually held?
2154 *
2155 * Oops. Go back and try again..
2156 */
2157 if (unlikely(running)) {
2158 cpu_relax();
2159 continue;
2160 }
2161
2162 /*
2163 * It's not enough that it's not actively running,
2164 * it must be off the runqueue _entirely_, and not
2165 * preempted!
2166 *
2167 * So if it was still runnable (but just not actively
2168 * running right now), it's preempted, and we should
2169 * yield - it could be a while.
2170 */
2171 if (unlikely(on_rq)) {
2172 schedule_timeout_uninterruptible(1);
2173 continue;
2174 }
2175
2176 /*
2177 * Ahh, all good. It wasn't running, and it wasn't
2178 * runnable, which means that it will never become
2179 * running in the future either. We're all done!
2180 */
2181 break;
2182 }
2183
2184 return ncsw;
2185 }
2186
2187 /***
2188 * kick_process - kick a running thread to enter/exit the kernel
2189 * @p: the to-be-kicked thread
2190 *
2191 * Cause a process which is running on another CPU to enter
2192 * kernel-mode, without any delay. (to get signals handled.)
2193 *
2194 * NOTE: this function doesnt have to take the runqueue lock,
2195 * because all it wants to ensure is that the remote task enters
2196 * the kernel. If the IPI races and the task has been migrated
2197 * to another CPU then no harm is done and the purpose has been
2198 * achieved as well.
2199 */
2200 void kick_process(struct task_struct *p)
2201 {
2202 int cpu;
2203
2204 preempt_disable();
2205 cpu = task_cpu(p);
2206 if ((cpu != smp_processor_id()) && task_curr(p))
2207 smp_send_reschedule(cpu);
2208 preempt_enable();
2209 }
2210 EXPORT_SYMBOL_GPL(kick_process);
2211 #endif /* CONFIG_SMP */
2212
2213 /**
2214 * task_oncpu_function_call - call a function on the cpu on which a task runs
2215 * @p: the task to evaluate
2216 * @func: the function to be called
2217 * @info: the function call argument
2218 *
2219 * Calls the function @func when the task is currently running. This might
2220 * be on the current CPU, which just calls the function directly
2221 */
2222 void task_oncpu_function_call(struct task_struct *p,
2223 void (*func) (void *info), void *info)
2224 {
2225 int cpu;
2226
2227 preempt_disable();
2228 cpu = task_cpu(p);
2229 if (task_curr(p))
2230 smp_call_function_single(cpu, func, info, 1);
2231 preempt_enable();
2232 }
2233
2234 #ifdef CONFIG_SMP
2235 /*
2236 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2237 */
2238 static int select_fallback_rq(int cpu, struct task_struct *p)
2239 {
2240 int dest_cpu;
2241 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2242
2243 /* Look for allowed, online CPU in same node. */
2244 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2245 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2246 return dest_cpu;
2247
2248 /* Any allowed, online CPU? */
2249 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2250 if (dest_cpu < nr_cpu_ids)
2251 return dest_cpu;
2252
2253 /* No more Mr. Nice Guy. */
2254 dest_cpu = cpuset_cpus_allowed_fallback(p);
2255 /*
2256 * Don't tell them about moving exiting tasks or
2257 * kernel threads (both mm NULL), since they never
2258 * leave kernel.
2259 */
2260 if (p->mm && printk_ratelimit()) {
2261 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2262 task_pid_nr(p), p->comm, cpu);
2263 }
2264
2265 return dest_cpu;
2266 }
2267
2268 /*
2269 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2270 */
2271 static inline
2272 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2273 {
2274 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2275
2276 /*
2277 * In order not to call set_task_cpu() on a blocking task we need
2278 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2279 * cpu.
2280 *
2281 * Since this is common to all placement strategies, this lives here.
2282 *
2283 * [ this allows ->select_task() to simply return task_cpu(p) and
2284 * not worry about this generic constraint ]
2285 */
2286 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2287 !cpu_online(cpu)))
2288 cpu = select_fallback_rq(task_cpu(p), p);
2289
2290 return cpu;
2291 }
2292
2293 static void update_avg(u64 *avg, u64 sample)
2294 {
2295 s64 diff = sample - *avg;
2296 *avg += diff >> 3;
2297 }
2298 #endif
2299
2300 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2301 bool is_sync, bool is_migrate, bool is_local,
2302 unsigned long en_flags)
2303 {
2304 schedstat_inc(p, se.statistics.nr_wakeups);
2305 if (is_sync)
2306 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2307 if (is_migrate)
2308 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2309 if (is_local)
2310 schedstat_inc(p, se.statistics.nr_wakeups_local);
2311 else
2312 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2313
2314 activate_task(rq, p, en_flags);
2315 }
2316
2317 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2318 int wake_flags, bool success)
2319 {
2320 trace_sched_wakeup(p, success);
2321 check_preempt_curr(rq, p, wake_flags);
2322
2323 p->state = TASK_RUNNING;
2324 #ifdef CONFIG_SMP
2325 if (p->sched_class->task_woken)
2326 p->sched_class->task_woken(rq, p);
2327
2328 if (unlikely(rq->idle_stamp)) {
2329 u64 delta = rq->clock - rq->idle_stamp;
2330 u64 max = 2*sysctl_sched_migration_cost;
2331
2332 if (delta > max)
2333 rq->avg_idle = max;
2334 else
2335 update_avg(&rq->avg_idle, delta);
2336 rq->idle_stamp = 0;
2337 }
2338 #endif
2339 /* if a worker is waking up, notify workqueue */
2340 if ((p->flags & PF_WQ_WORKER) && success)
2341 wq_worker_waking_up(p, cpu_of(rq));
2342 }
2343
2344 /**
2345 * try_to_wake_up - wake up a thread
2346 * @p: the thread to be awakened
2347 * @state: the mask of task states that can be woken
2348 * @wake_flags: wake modifier flags (WF_*)
2349 *
2350 * Put it on the run-queue if it's not already there. The "current"
2351 * thread is always on the run-queue (except when the actual
2352 * re-schedule is in progress), and as such you're allowed to do
2353 * the simpler "current->state = TASK_RUNNING" to mark yourself
2354 * runnable without the overhead of this.
2355 *
2356 * Returns %true if @p was woken up, %false if it was already running
2357 * or @state didn't match @p's state.
2358 */
2359 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2360 int wake_flags)
2361 {
2362 int cpu, orig_cpu, this_cpu, success = 0;
2363 unsigned long flags;
2364 unsigned long en_flags = ENQUEUE_WAKEUP;
2365 struct rq *rq;
2366
2367 this_cpu = get_cpu();
2368
2369 smp_wmb();
2370 rq = task_rq_lock(p, &flags);
2371 if (!(p->state & state))
2372 goto out;
2373
2374 if (p->se.on_rq)
2375 goto out_running;
2376
2377 cpu = task_cpu(p);
2378 orig_cpu = cpu;
2379
2380 #ifdef CONFIG_SMP
2381 if (unlikely(task_running(rq, p)))
2382 goto out_activate;
2383
2384 /*
2385 * In order to handle concurrent wakeups and release the rq->lock
2386 * we put the task in TASK_WAKING state.
2387 *
2388 * First fix up the nr_uninterruptible count:
2389 */
2390 if (task_contributes_to_load(p)) {
2391 if (likely(cpu_online(orig_cpu)))
2392 rq->nr_uninterruptible--;
2393 else
2394 this_rq()->nr_uninterruptible--;
2395 }
2396 p->state = TASK_WAKING;
2397
2398 if (p->sched_class->task_waking) {
2399 p->sched_class->task_waking(rq, p);
2400 en_flags |= ENQUEUE_WAKING;
2401 }
2402
2403 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2404 if (cpu != orig_cpu)
2405 set_task_cpu(p, cpu);
2406 __task_rq_unlock(rq);
2407
2408 rq = cpu_rq(cpu);
2409 raw_spin_lock(&rq->lock);
2410
2411 /*
2412 * We migrated the task without holding either rq->lock, however
2413 * since the task is not on the task list itself, nobody else
2414 * will try and migrate the task, hence the rq should match the
2415 * cpu we just moved it to.
2416 */
2417 WARN_ON(task_cpu(p) != cpu);
2418 WARN_ON(p->state != TASK_WAKING);
2419
2420 #ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433 #endif /* CONFIG_SCHEDSTATS */
2434
2435 out_activate:
2436 #endif /* CONFIG_SMP */
2437 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2438 cpu == this_cpu, en_flags);
2439 success = 1;
2440 out_running:
2441 ttwu_post_activation(p, rq, wake_flags, success);
2442 out:
2443 task_rq_unlock(rq, &flags);
2444 put_cpu();
2445
2446 return success;
2447 }
2448
2449 /**
2450 * try_to_wake_up_local - try to wake up a local task with rq lock held
2451 * @p: the thread to be awakened
2452 *
2453 * Put @p on the run-queue if it's not alredy there. The caller must
2454 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2455 * the current task. this_rq() stays locked over invocation.
2456 */
2457 static void try_to_wake_up_local(struct task_struct *p)
2458 {
2459 struct rq *rq = task_rq(p);
2460 bool success = false;
2461
2462 BUG_ON(rq != this_rq());
2463 BUG_ON(p == current);
2464 lockdep_assert_held(&rq->lock);
2465
2466 if (!(p->state & TASK_NORMAL))
2467 return;
2468
2469 if (!p->se.on_rq) {
2470 if (likely(!task_running(rq, p))) {
2471 schedstat_inc(rq, ttwu_count);
2472 schedstat_inc(rq, ttwu_local);
2473 }
2474 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2475 success = true;
2476 }
2477 ttwu_post_activation(p, rq, 0, success);
2478 }
2479
2480 /**
2481 * wake_up_process - Wake up a specific process
2482 * @p: The process to be woken up.
2483 *
2484 * Attempt to wake up the nominated process and move it to the set of runnable
2485 * processes. Returns 1 if the process was woken up, 0 if it was already
2486 * running.
2487 *
2488 * It may be assumed that this function implies a write memory barrier before
2489 * changing the task state if and only if any tasks are woken up.
2490 */
2491 int wake_up_process(struct task_struct *p)
2492 {
2493 return try_to_wake_up(p, TASK_ALL, 0);
2494 }
2495 EXPORT_SYMBOL(wake_up_process);
2496
2497 int wake_up_state(struct task_struct *p, unsigned int state)
2498 {
2499 return try_to_wake_up(p, state, 0);
2500 }
2501
2502 /*
2503 * Perform scheduler related setup for a newly forked process p.
2504 * p is forked by current.
2505 *
2506 * __sched_fork() is basic setup used by init_idle() too:
2507 */
2508 static void __sched_fork(struct task_struct *p)
2509 {
2510 p->se.exec_start = 0;
2511 p->se.sum_exec_runtime = 0;
2512 p->se.prev_sum_exec_runtime = 0;
2513 p->se.nr_migrations = 0;
2514
2515 #ifdef CONFIG_SCHEDSTATS
2516 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2517 #endif
2518
2519 INIT_LIST_HEAD(&p->rt.run_list);
2520 p->se.on_rq = 0;
2521 INIT_LIST_HEAD(&p->se.group_node);
2522
2523 #ifdef CONFIG_PREEMPT_NOTIFIERS
2524 INIT_HLIST_HEAD(&p->preempt_notifiers);
2525 #endif
2526 }
2527
2528 /*
2529 * fork()/clone()-time setup:
2530 */
2531 void sched_fork(struct task_struct *p, int clone_flags)
2532 {
2533 int cpu = get_cpu();
2534
2535 __sched_fork(p);
2536 /*
2537 * We mark the process as running here. This guarantees that
2538 * nobody will actually run it, and a signal or other external
2539 * event cannot wake it up and insert it on the runqueue either.
2540 */
2541 p->state = TASK_RUNNING;
2542
2543 /*
2544 * Revert to default priority/policy on fork if requested.
2545 */
2546 if (unlikely(p->sched_reset_on_fork)) {
2547 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2548 p->policy = SCHED_NORMAL;
2549 p->normal_prio = p->static_prio;
2550 }
2551
2552 if (PRIO_TO_NICE(p->static_prio) < 0) {
2553 p->static_prio = NICE_TO_PRIO(0);
2554 p->normal_prio = p->static_prio;
2555 set_load_weight(p);
2556 }
2557
2558 /*
2559 * We don't need the reset flag anymore after the fork. It has
2560 * fulfilled its duty:
2561 */
2562 p->sched_reset_on_fork = 0;
2563 }
2564
2565 /*
2566 * Make sure we do not leak PI boosting priority to the child.
2567 */
2568 p->prio = current->normal_prio;
2569
2570 if (!rt_prio(p->prio))
2571 p->sched_class = &fair_sched_class;
2572
2573 if (p->sched_class->task_fork)
2574 p->sched_class->task_fork(p);
2575
2576 /*
2577 * The child is not yet in the pid-hash so no cgroup attach races,
2578 * and the cgroup is pinned to this child due to cgroup_fork()
2579 * is ran before sched_fork().
2580 *
2581 * Silence PROVE_RCU.
2582 */
2583 rcu_read_lock();
2584 set_task_cpu(p, cpu);
2585 rcu_read_unlock();
2586
2587 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2588 if (likely(sched_info_on()))
2589 memset(&p->sched_info, 0, sizeof(p->sched_info));
2590 #endif
2591 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2592 p->oncpu = 0;
2593 #endif
2594 #ifdef CONFIG_PREEMPT
2595 /* Want to start with kernel preemption disabled. */
2596 task_thread_info(p)->preempt_count = 1;
2597 #endif
2598 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2599
2600 put_cpu();
2601 }
2602
2603 /*
2604 * wake_up_new_task - wake up a newly created task for the first time.
2605 *
2606 * This function will do some initial scheduler statistics housekeeping
2607 * that must be done for every newly created context, then puts the task
2608 * on the runqueue and wakes it.
2609 */
2610 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2611 {
2612 unsigned long flags;
2613 struct rq *rq;
2614 int cpu __maybe_unused = get_cpu();
2615
2616 #ifdef CONFIG_SMP
2617 rq = task_rq_lock(p, &flags);
2618 p->state = TASK_WAKING;
2619
2620 /*
2621 * Fork balancing, do it here and not earlier because:
2622 * - cpus_allowed can change in the fork path
2623 * - any previously selected cpu might disappear through hotplug
2624 *
2625 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2626 * without people poking at ->cpus_allowed.
2627 */
2628 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2629 set_task_cpu(p, cpu);
2630
2631 p->state = TASK_RUNNING;
2632 task_rq_unlock(rq, &flags);
2633 #endif
2634
2635 rq = task_rq_lock(p, &flags);
2636 activate_task(rq, p, 0);
2637 trace_sched_wakeup_new(p, 1);
2638 check_preempt_curr(rq, p, WF_FORK);
2639 #ifdef CONFIG_SMP
2640 if (p->sched_class->task_woken)
2641 p->sched_class->task_woken(rq, p);
2642 #endif
2643 task_rq_unlock(rq, &flags);
2644 put_cpu();
2645 }
2646
2647 #ifdef CONFIG_PREEMPT_NOTIFIERS
2648
2649 /**
2650 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2651 * @notifier: notifier struct to register
2652 */
2653 void preempt_notifier_register(struct preempt_notifier *notifier)
2654 {
2655 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2656 }
2657 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2658
2659 /**
2660 * preempt_notifier_unregister - no longer interested in preemption notifications
2661 * @notifier: notifier struct to unregister
2662 *
2663 * This is safe to call from within a preemption notifier.
2664 */
2665 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2666 {
2667 hlist_del(&notifier->link);
2668 }
2669 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2670
2671 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672 {
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2678 }
2679
2680 static void
2681 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683 {
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_out(notifier, next);
2689 }
2690
2691 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2692
2693 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2694 {
2695 }
2696
2697 static void
2698 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2699 struct task_struct *next)
2700 {
2701 }
2702
2703 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2704
2705 /**
2706 * prepare_task_switch - prepare to switch tasks
2707 * @rq: the runqueue preparing to switch
2708 * @prev: the current task that is being switched out
2709 * @next: the task we are going to switch to.
2710 *
2711 * This is called with the rq lock held and interrupts off. It must
2712 * be paired with a subsequent finish_task_switch after the context
2713 * switch.
2714 *
2715 * prepare_task_switch sets up locking and calls architecture specific
2716 * hooks.
2717 */
2718 static inline void
2719 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2720 struct task_struct *next)
2721 {
2722 fire_sched_out_preempt_notifiers(prev, next);
2723 prepare_lock_switch(rq, next);
2724 prepare_arch_switch(next);
2725 }
2726
2727 /**
2728 * finish_task_switch - clean up after a task-switch
2729 * @rq: runqueue associated with task-switch
2730 * @prev: the thread we just switched away from.
2731 *
2732 * finish_task_switch must be called after the context switch, paired
2733 * with a prepare_task_switch call before the context switch.
2734 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2735 * and do any other architecture-specific cleanup actions.
2736 *
2737 * Note that we may have delayed dropping an mm in context_switch(). If
2738 * so, we finish that here outside of the runqueue lock. (Doing it
2739 * with the lock held can cause deadlocks; see schedule() for
2740 * details.)
2741 */
2742 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2743 __releases(rq->lock)
2744 {
2745 struct mm_struct *mm = rq->prev_mm;
2746 long prev_state;
2747
2748 rq->prev_mm = NULL;
2749
2750 /*
2751 * A task struct has one reference for the use as "current".
2752 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2753 * schedule one last time. The schedule call will never return, and
2754 * the scheduled task must drop that reference.
2755 * The test for TASK_DEAD must occur while the runqueue locks are
2756 * still held, otherwise prev could be scheduled on another cpu, die
2757 * there before we look at prev->state, and then the reference would
2758 * be dropped twice.
2759 * Manfred Spraul <manfred@colorfullife.com>
2760 */
2761 prev_state = prev->state;
2762 finish_arch_switch(prev);
2763 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2764 local_irq_disable();
2765 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2766 perf_event_task_sched_in(current);
2767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 local_irq_enable();
2769 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2770 finish_lock_switch(rq, prev);
2771
2772 fire_sched_in_preempt_notifiers(current);
2773 if (mm)
2774 mmdrop(mm);
2775 if (unlikely(prev_state == TASK_DEAD)) {
2776 /*
2777 * Remove function-return probe instances associated with this
2778 * task and put them back on the free list.
2779 */
2780 kprobe_flush_task(prev);
2781 put_task_struct(prev);
2782 }
2783 }
2784
2785 #ifdef CONFIG_SMP
2786
2787 /* assumes rq->lock is held */
2788 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2789 {
2790 if (prev->sched_class->pre_schedule)
2791 prev->sched_class->pre_schedule(rq, prev);
2792 }
2793
2794 /* rq->lock is NOT held, but preemption is disabled */
2795 static inline void post_schedule(struct rq *rq)
2796 {
2797 if (rq->post_schedule) {
2798 unsigned long flags;
2799
2800 raw_spin_lock_irqsave(&rq->lock, flags);
2801 if (rq->curr->sched_class->post_schedule)
2802 rq->curr->sched_class->post_schedule(rq);
2803 raw_spin_unlock_irqrestore(&rq->lock, flags);
2804
2805 rq->post_schedule = 0;
2806 }
2807 }
2808
2809 #else
2810
2811 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2812 {
2813 }
2814
2815 static inline void post_schedule(struct rq *rq)
2816 {
2817 }
2818
2819 #endif
2820
2821 /**
2822 * schedule_tail - first thing a freshly forked thread must call.
2823 * @prev: the thread we just switched away from.
2824 */
2825 asmlinkage void schedule_tail(struct task_struct *prev)
2826 __releases(rq->lock)
2827 {
2828 struct rq *rq = this_rq();
2829
2830 finish_task_switch(rq, prev);
2831
2832 /*
2833 * FIXME: do we need to worry about rq being invalidated by the
2834 * task_switch?
2835 */
2836 post_schedule(rq);
2837
2838 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2839 /* In this case, finish_task_switch does not reenable preemption */
2840 preempt_enable();
2841 #endif
2842 if (current->set_child_tid)
2843 put_user(task_pid_vnr(current), current->set_child_tid);
2844 }
2845
2846 /*
2847 * context_switch - switch to the new MM and the new
2848 * thread's register state.
2849 */
2850 static inline void
2851 context_switch(struct rq *rq, struct task_struct *prev,
2852 struct task_struct *next)
2853 {
2854 struct mm_struct *mm, *oldmm;
2855
2856 prepare_task_switch(rq, prev, next);
2857 trace_sched_switch(prev, next);
2858 mm = next->mm;
2859 oldmm = prev->active_mm;
2860 /*
2861 * For paravirt, this is coupled with an exit in switch_to to
2862 * combine the page table reload and the switch backend into
2863 * one hypercall.
2864 */
2865 arch_start_context_switch(prev);
2866
2867 if (!mm) {
2868 next->active_mm = oldmm;
2869 atomic_inc(&oldmm->mm_count);
2870 enter_lazy_tlb(oldmm, next);
2871 } else
2872 switch_mm(oldmm, mm, next);
2873
2874 if (!prev->mm) {
2875 prev->active_mm = NULL;
2876 rq->prev_mm = oldmm;
2877 }
2878 /*
2879 * Since the runqueue lock will be released by the next
2880 * task (which is an invalid locking op but in the case
2881 * of the scheduler it's an obvious special-case), so we
2882 * do an early lockdep release here:
2883 */
2884 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2885 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2886 #endif
2887
2888 /* Here we just switch the register state and the stack. */
2889 switch_to(prev, next, prev);
2890
2891 barrier();
2892 /*
2893 * this_rq must be evaluated again because prev may have moved
2894 * CPUs since it called schedule(), thus the 'rq' on its stack
2895 * frame will be invalid.
2896 */
2897 finish_task_switch(this_rq(), prev);
2898 }
2899
2900 /*
2901 * nr_running, nr_uninterruptible and nr_context_switches:
2902 *
2903 * externally visible scheduler statistics: current number of runnable
2904 * threads, current number of uninterruptible-sleeping threads, total
2905 * number of context switches performed since bootup.
2906 */
2907 unsigned long nr_running(void)
2908 {
2909 unsigned long i, sum = 0;
2910
2911 for_each_online_cpu(i)
2912 sum += cpu_rq(i)->nr_running;
2913
2914 return sum;
2915 }
2916
2917 unsigned long nr_uninterruptible(void)
2918 {
2919 unsigned long i, sum = 0;
2920
2921 for_each_possible_cpu(i)
2922 sum += cpu_rq(i)->nr_uninterruptible;
2923
2924 /*
2925 * Since we read the counters lockless, it might be slightly
2926 * inaccurate. Do not allow it to go below zero though:
2927 */
2928 if (unlikely((long)sum < 0))
2929 sum = 0;
2930
2931 return sum;
2932 }
2933
2934 unsigned long long nr_context_switches(void)
2935 {
2936 int i;
2937 unsigned long long sum = 0;
2938
2939 for_each_possible_cpu(i)
2940 sum += cpu_rq(i)->nr_switches;
2941
2942 return sum;
2943 }
2944
2945 unsigned long nr_iowait(void)
2946 {
2947 unsigned long i, sum = 0;
2948
2949 for_each_possible_cpu(i)
2950 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2951
2952 return sum;
2953 }
2954
2955 unsigned long nr_iowait_cpu(int cpu)
2956 {
2957 struct rq *this = cpu_rq(cpu);
2958 return atomic_read(&this->nr_iowait);
2959 }
2960
2961 unsigned long this_cpu_load(void)
2962 {
2963 struct rq *this = this_rq();
2964 return this->cpu_load[0];
2965 }
2966
2967
2968 /* Variables and functions for calc_load */
2969 static atomic_long_t calc_load_tasks;
2970 static unsigned long calc_load_update;
2971 unsigned long avenrun[3];
2972 EXPORT_SYMBOL(avenrun);
2973
2974 static long calc_load_fold_active(struct rq *this_rq)
2975 {
2976 long nr_active, delta = 0;
2977
2978 nr_active = this_rq->nr_running;
2979 nr_active += (long) this_rq->nr_uninterruptible;
2980
2981 if (nr_active != this_rq->calc_load_active) {
2982 delta = nr_active - this_rq->calc_load_active;
2983 this_rq->calc_load_active = nr_active;
2984 }
2985
2986 return delta;
2987 }
2988
2989 #ifdef CONFIG_NO_HZ
2990 /*
2991 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2992 *
2993 * When making the ILB scale, we should try to pull this in as well.
2994 */
2995 static atomic_long_t calc_load_tasks_idle;
2996
2997 static void calc_load_account_idle(struct rq *this_rq)
2998 {
2999 long delta;
3000
3001 delta = calc_load_fold_active(this_rq);
3002 if (delta)
3003 atomic_long_add(delta, &calc_load_tasks_idle);
3004 }
3005
3006 static long calc_load_fold_idle(void)
3007 {
3008 long delta = 0;
3009
3010 /*
3011 * Its got a race, we don't care...
3012 */
3013 if (atomic_long_read(&calc_load_tasks_idle))
3014 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3015
3016 return delta;
3017 }
3018 #else
3019 static void calc_load_account_idle(struct rq *this_rq)
3020 {
3021 }
3022
3023 static inline long calc_load_fold_idle(void)
3024 {
3025 return 0;
3026 }
3027 #endif
3028
3029 /**
3030 * get_avenrun - get the load average array
3031 * @loads: pointer to dest load array
3032 * @offset: offset to add
3033 * @shift: shift count to shift the result left
3034 *
3035 * These values are estimates at best, so no need for locking.
3036 */
3037 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3038 {
3039 loads[0] = (avenrun[0] + offset) << shift;
3040 loads[1] = (avenrun[1] + offset) << shift;
3041 loads[2] = (avenrun[2] + offset) << shift;
3042 }
3043
3044 static unsigned long
3045 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3046 {
3047 load *= exp;
3048 load += active * (FIXED_1 - exp);
3049 return load >> FSHIFT;
3050 }
3051
3052 /*
3053 * calc_load - update the avenrun load estimates 10 ticks after the
3054 * CPUs have updated calc_load_tasks.
3055 */
3056 void calc_global_load(void)
3057 {
3058 unsigned long upd = calc_load_update + 10;
3059 long active;
3060
3061 if (time_before(jiffies, upd))
3062 return;
3063
3064 active = atomic_long_read(&calc_load_tasks);
3065 active = active > 0 ? active * FIXED_1 : 0;
3066
3067 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3068 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3069 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3070
3071 calc_load_update += LOAD_FREQ;
3072 }
3073
3074 /*
3075 * Called from update_cpu_load() to periodically update this CPU's
3076 * active count.
3077 */
3078 static void calc_load_account_active(struct rq *this_rq)
3079 {
3080 long delta;
3081
3082 if (time_before(jiffies, this_rq->calc_load_update))
3083 return;
3084
3085 delta = calc_load_fold_active(this_rq);
3086 delta += calc_load_fold_idle();
3087 if (delta)
3088 atomic_long_add(delta, &calc_load_tasks);
3089
3090 this_rq->calc_load_update += LOAD_FREQ;
3091 }
3092
3093 /*
3094 * The exact cpuload at various idx values, calculated at every tick would be
3095 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3096 *
3097 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3098 * on nth tick when cpu may be busy, then we have:
3099 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3100 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3101 *
3102 * decay_load_missed() below does efficient calculation of
3103 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3104 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3105 *
3106 * The calculation is approximated on a 128 point scale.
3107 * degrade_zero_ticks is the number of ticks after which load at any
3108 * particular idx is approximated to be zero.
3109 * degrade_factor is a precomputed table, a row for each load idx.
3110 * Each column corresponds to degradation factor for a power of two ticks,
3111 * based on 128 point scale.
3112 * Example:
3113 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3114 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3115 *
3116 * With this power of 2 load factors, we can degrade the load n times
3117 * by looking at 1 bits in n and doing as many mult/shift instead of
3118 * n mult/shifts needed by the exact degradation.
3119 */
3120 #define DEGRADE_SHIFT 7
3121 static const unsigned char
3122 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3123 static const unsigned char
3124 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3125 {0, 0, 0, 0, 0, 0, 0, 0},
3126 {64, 32, 8, 0, 0, 0, 0, 0},
3127 {96, 72, 40, 12, 1, 0, 0},
3128 {112, 98, 75, 43, 15, 1, 0},
3129 {120, 112, 98, 76, 45, 16, 2} };
3130
3131 /*
3132 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3133 * would be when CPU is idle and so we just decay the old load without
3134 * adding any new load.
3135 */
3136 static unsigned long
3137 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3138 {
3139 int j = 0;
3140
3141 if (!missed_updates)
3142 return load;
3143
3144 if (missed_updates >= degrade_zero_ticks[idx])
3145 return 0;
3146
3147 if (idx == 1)
3148 return load >> missed_updates;
3149
3150 while (missed_updates) {
3151 if (missed_updates % 2)
3152 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3153
3154 missed_updates >>= 1;
3155 j++;
3156 }
3157 return load;
3158 }
3159
3160 /*
3161 * Update rq->cpu_load[] statistics. This function is usually called every
3162 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3163 * every tick. We fix it up based on jiffies.
3164 */
3165 static void update_cpu_load(struct rq *this_rq)
3166 {
3167 unsigned long this_load = this_rq->load.weight;
3168 unsigned long curr_jiffies = jiffies;
3169 unsigned long pending_updates;
3170 int i, scale;
3171
3172 this_rq->nr_load_updates++;
3173
3174 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3175 if (curr_jiffies == this_rq->last_load_update_tick)
3176 return;
3177
3178 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3179 this_rq->last_load_update_tick = curr_jiffies;
3180
3181 /* Update our load: */
3182 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3183 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3184 unsigned long old_load, new_load;
3185
3186 /* scale is effectively 1 << i now, and >> i divides by scale */
3187
3188 old_load = this_rq->cpu_load[i];
3189 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3190 new_load = this_load;
3191 /*
3192 * Round up the averaging division if load is increasing. This
3193 * prevents us from getting stuck on 9 if the load is 10, for
3194 * example.
3195 */
3196 if (new_load > old_load)
3197 new_load += scale - 1;
3198
3199 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3200 }
3201
3202 sched_avg_update(this_rq);
3203 }
3204
3205 static void update_cpu_load_active(struct rq *this_rq)
3206 {
3207 update_cpu_load(this_rq);
3208
3209 calc_load_account_active(this_rq);
3210 }
3211
3212 #ifdef CONFIG_SMP
3213
3214 /*
3215 * sched_exec - execve() is a valuable balancing opportunity, because at
3216 * this point the task has the smallest effective memory and cache footprint.
3217 */
3218 void sched_exec(void)
3219 {
3220 struct task_struct *p = current;
3221 unsigned long flags;
3222 struct rq *rq;
3223 int dest_cpu;
3224
3225 rq = task_rq_lock(p, &flags);
3226 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3227 if (dest_cpu == smp_processor_id())
3228 goto unlock;
3229
3230 /*
3231 * select_task_rq() can race against ->cpus_allowed
3232 */
3233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3234 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3235 struct migration_arg arg = { p, dest_cpu };
3236
3237 task_rq_unlock(rq, &flags);
3238 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3239 return;
3240 }
3241 unlock:
3242 task_rq_unlock(rq, &flags);
3243 }
3244
3245 #endif
3246
3247 DEFINE_PER_CPU(struct kernel_stat, kstat);
3248
3249 EXPORT_PER_CPU_SYMBOL(kstat);
3250
3251 /*
3252 * Return any ns on the sched_clock that have not yet been accounted in
3253 * @p in case that task is currently running.
3254 *
3255 * Called with task_rq_lock() held on @rq.
3256 */
3257 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3258 {
3259 u64 ns = 0;
3260
3261 if (task_current(rq, p)) {
3262 update_rq_clock(rq);
3263 ns = rq->clock_task - p->se.exec_start;
3264 if ((s64)ns < 0)
3265 ns = 0;
3266 }
3267
3268 return ns;
3269 }
3270
3271 unsigned long long task_delta_exec(struct task_struct *p)
3272 {
3273 unsigned long flags;
3274 struct rq *rq;
3275 u64 ns = 0;
3276
3277 rq = task_rq_lock(p, &flags);
3278 ns = do_task_delta_exec(p, rq);
3279 task_rq_unlock(rq, &flags);
3280
3281 return ns;
3282 }
3283
3284 /*
3285 * Return accounted runtime for the task.
3286 * In case the task is currently running, return the runtime plus current's
3287 * pending runtime that have not been accounted yet.
3288 */
3289 unsigned long long task_sched_runtime(struct task_struct *p)
3290 {
3291 unsigned long flags;
3292 struct rq *rq;
3293 u64 ns = 0;
3294
3295 rq = task_rq_lock(p, &flags);
3296 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3297 task_rq_unlock(rq, &flags);
3298
3299 return ns;
3300 }
3301
3302 /*
3303 * Return sum_exec_runtime for the thread group.
3304 * In case the task is currently running, return the sum plus current's
3305 * pending runtime that have not been accounted yet.
3306 *
3307 * Note that the thread group might have other running tasks as well,
3308 * so the return value not includes other pending runtime that other
3309 * running tasks might have.
3310 */
3311 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3312 {
3313 struct task_cputime totals;
3314 unsigned long flags;
3315 struct rq *rq;
3316 u64 ns;
3317
3318 rq = task_rq_lock(p, &flags);
3319 thread_group_cputime(p, &totals);
3320 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3321 task_rq_unlock(rq, &flags);
3322
3323 return ns;
3324 }
3325
3326 /*
3327 * Account user cpu time to a process.
3328 * @p: the process that the cpu time gets accounted to
3329 * @cputime: the cpu time spent in user space since the last update
3330 * @cputime_scaled: cputime scaled by cpu frequency
3331 */
3332 void account_user_time(struct task_struct *p, cputime_t cputime,
3333 cputime_t cputime_scaled)
3334 {
3335 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3336 cputime64_t tmp;
3337
3338 /* Add user time to process. */
3339 p->utime = cputime_add(p->utime, cputime);
3340 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3341 account_group_user_time(p, cputime);
3342
3343 /* Add user time to cpustat. */
3344 tmp = cputime_to_cputime64(cputime);
3345 if (TASK_NICE(p) > 0)
3346 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3347 else
3348 cpustat->user = cputime64_add(cpustat->user, tmp);
3349
3350 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3351 /* Account for user time used */
3352 acct_update_integrals(p);
3353 }
3354
3355 /*
3356 * Account guest cpu time to a process.
3357 * @p: the process that the cpu time gets accounted to
3358 * @cputime: the cpu time spent in virtual machine since the last update
3359 * @cputime_scaled: cputime scaled by cpu frequency
3360 */
3361 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3362 cputime_t cputime_scaled)
3363 {
3364 cputime64_t tmp;
3365 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3366
3367 tmp = cputime_to_cputime64(cputime);
3368
3369 /* Add guest time to process. */
3370 p->utime = cputime_add(p->utime, cputime);
3371 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3372 account_group_user_time(p, cputime);
3373 p->gtime = cputime_add(p->gtime, cputime);
3374
3375 /* Add guest time to cpustat. */
3376 if (TASK_NICE(p) > 0) {
3377 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3378 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3379 } else {
3380 cpustat->user = cputime64_add(cpustat->user, tmp);
3381 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3382 }
3383 }
3384
3385 /*
3386 * Account system cpu time to a process.
3387 * @p: the process that the cpu time gets accounted to
3388 * @hardirq_offset: the offset to subtract from hardirq_count()
3389 * @cputime: the cpu time spent in kernel space since the last update
3390 * @cputime_scaled: cputime scaled by cpu frequency
3391 */
3392 void account_system_time(struct task_struct *p, int hardirq_offset,
3393 cputime_t cputime, cputime_t cputime_scaled)
3394 {
3395 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3396 cputime64_t tmp;
3397
3398 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3399 account_guest_time(p, cputime, cputime_scaled);
3400 return;
3401 }
3402
3403 /* Add system time to process. */
3404 p->stime = cputime_add(p->stime, cputime);
3405 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3406 account_group_system_time(p, cputime);
3407
3408 /* Add system time to cpustat. */
3409 tmp = cputime_to_cputime64(cputime);
3410 if (hardirq_count() - hardirq_offset)
3411 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3412 else if (in_serving_softirq())
3413 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3414 else
3415 cpustat->system = cputime64_add(cpustat->system, tmp);
3416
3417 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3418
3419 /* Account for system time used */
3420 acct_update_integrals(p);
3421 }
3422
3423 /*
3424 * Account for involuntary wait time.
3425 * @steal: the cpu time spent in involuntary wait
3426 */
3427 void account_steal_time(cputime_t cputime)
3428 {
3429 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3430 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3431
3432 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3433 }
3434
3435 /*
3436 * Account for idle time.
3437 * @cputime: the cpu time spent in idle wait
3438 */
3439 void account_idle_time(cputime_t cputime)
3440 {
3441 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3442 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3443 struct rq *rq = this_rq();
3444
3445 if (atomic_read(&rq->nr_iowait) > 0)
3446 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3447 else
3448 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3449 }
3450
3451 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3452
3453 /*
3454 * Account a single tick of cpu time.
3455 * @p: the process that the cpu time gets accounted to
3456 * @user_tick: indicates if the tick is a user or a system tick
3457 */
3458 void account_process_tick(struct task_struct *p, int user_tick)
3459 {
3460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3461 struct rq *rq = this_rq();
3462
3463 if (user_tick)
3464 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3465 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3466 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3467 one_jiffy_scaled);
3468 else
3469 account_idle_time(cputime_one_jiffy);
3470 }
3471
3472 /*
3473 * Account multiple ticks of steal time.
3474 * @p: the process from which the cpu time has been stolen
3475 * @ticks: number of stolen ticks
3476 */
3477 void account_steal_ticks(unsigned long ticks)
3478 {
3479 account_steal_time(jiffies_to_cputime(ticks));
3480 }
3481
3482 /*
3483 * Account multiple ticks of idle time.
3484 * @ticks: number of stolen ticks
3485 */
3486 void account_idle_ticks(unsigned long ticks)
3487 {
3488 account_idle_time(jiffies_to_cputime(ticks));
3489 }
3490
3491 #endif
3492
3493 /*
3494 * Use precise platform statistics if available:
3495 */
3496 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3497 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3498 {
3499 *ut = p->utime;
3500 *st = p->stime;
3501 }
3502
3503 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3504 {
3505 struct task_cputime cputime;
3506
3507 thread_group_cputime(p, &cputime);
3508
3509 *ut = cputime.utime;
3510 *st = cputime.stime;
3511 }
3512 #else
3513
3514 #ifndef nsecs_to_cputime
3515 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3516 #endif
3517
3518 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3519 {
3520 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3521
3522 /*
3523 * Use CFS's precise accounting:
3524 */
3525 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3526
3527 if (total) {
3528 u64 temp = rtime;
3529
3530 temp *= utime;
3531 do_div(temp, total);
3532 utime = (cputime_t)temp;
3533 } else
3534 utime = rtime;
3535
3536 /*
3537 * Compare with previous values, to keep monotonicity:
3538 */
3539 p->prev_utime = max(p->prev_utime, utime);
3540 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3541
3542 *ut = p->prev_utime;
3543 *st = p->prev_stime;
3544 }
3545
3546 /*
3547 * Must be called with siglock held.
3548 */
3549 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3550 {
3551 struct signal_struct *sig = p->signal;
3552 struct task_cputime cputime;
3553 cputime_t rtime, utime, total;
3554
3555 thread_group_cputime(p, &cputime);
3556
3557 total = cputime_add(cputime.utime, cputime.stime);
3558 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3559
3560 if (total) {
3561 u64 temp = rtime;
3562
3563 temp *= cputime.utime;
3564 do_div(temp, total);
3565 utime = (cputime_t)temp;
3566 } else
3567 utime = rtime;
3568
3569 sig->prev_utime = max(sig->prev_utime, utime);
3570 sig->prev_stime = max(sig->prev_stime,
3571 cputime_sub(rtime, sig->prev_utime));
3572
3573 *ut = sig->prev_utime;
3574 *st = sig->prev_stime;
3575 }
3576 #endif
3577
3578 /*
3579 * This function gets called by the timer code, with HZ frequency.
3580 * We call it with interrupts disabled.
3581 *
3582 * It also gets called by the fork code, when changing the parent's
3583 * timeslices.
3584 */
3585 void scheduler_tick(void)
3586 {
3587 int cpu = smp_processor_id();
3588 struct rq *rq = cpu_rq(cpu);
3589 struct task_struct *curr = rq->curr;
3590
3591 sched_clock_tick();
3592
3593 raw_spin_lock(&rq->lock);
3594 update_rq_clock(rq);
3595 update_cpu_load_active(rq);
3596 curr->sched_class->task_tick(rq, curr, 0);
3597 raw_spin_unlock(&rq->lock);
3598
3599 perf_event_task_tick();
3600
3601 #ifdef CONFIG_SMP
3602 rq->idle_at_tick = idle_cpu(cpu);
3603 trigger_load_balance(rq, cpu);
3604 #endif
3605 }
3606
3607 notrace unsigned long get_parent_ip(unsigned long addr)
3608 {
3609 if (in_lock_functions(addr)) {
3610 addr = CALLER_ADDR2;
3611 if (in_lock_functions(addr))
3612 addr = CALLER_ADDR3;
3613 }
3614 return addr;
3615 }
3616
3617 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3618 defined(CONFIG_PREEMPT_TRACER))
3619
3620 void __kprobes add_preempt_count(int val)
3621 {
3622 #ifdef CONFIG_DEBUG_PREEMPT
3623 /*
3624 * Underflow?
3625 */
3626 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3627 return;
3628 #endif
3629 preempt_count() += val;
3630 #ifdef CONFIG_DEBUG_PREEMPT
3631 /*
3632 * Spinlock count overflowing soon?
3633 */
3634 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3635 PREEMPT_MASK - 10);
3636 #endif
3637 if (preempt_count() == val)
3638 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3639 }
3640 EXPORT_SYMBOL(add_preempt_count);
3641
3642 void __kprobes sub_preempt_count(int val)
3643 {
3644 #ifdef CONFIG_DEBUG_PREEMPT
3645 /*
3646 * Underflow?
3647 */
3648 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3649 return;
3650 /*
3651 * Is the spinlock portion underflowing?
3652 */
3653 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3654 !(preempt_count() & PREEMPT_MASK)))
3655 return;
3656 #endif
3657
3658 if (preempt_count() == val)
3659 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3660 preempt_count() -= val;
3661 }
3662 EXPORT_SYMBOL(sub_preempt_count);
3663
3664 #endif
3665
3666 /*
3667 * Print scheduling while atomic bug:
3668 */
3669 static noinline void __schedule_bug(struct task_struct *prev)
3670 {
3671 struct pt_regs *regs = get_irq_regs();
3672
3673 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3674 prev->comm, prev->pid, preempt_count());
3675
3676 debug_show_held_locks(prev);
3677 print_modules();
3678 if (irqs_disabled())
3679 print_irqtrace_events(prev);
3680
3681 if (regs)
3682 show_regs(regs);
3683 else
3684 dump_stack();
3685 }
3686
3687 /*
3688 * Various schedule()-time debugging checks and statistics:
3689 */
3690 static inline void schedule_debug(struct task_struct *prev)
3691 {
3692 /*
3693 * Test if we are atomic. Since do_exit() needs to call into
3694 * schedule() atomically, we ignore that path for now.
3695 * Otherwise, whine if we are scheduling when we should not be.
3696 */
3697 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3698 __schedule_bug(prev);
3699
3700 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3701
3702 schedstat_inc(this_rq(), sched_count);
3703 #ifdef CONFIG_SCHEDSTATS
3704 if (unlikely(prev->lock_depth >= 0)) {
3705 schedstat_inc(this_rq(), bkl_count);
3706 schedstat_inc(prev, sched_info.bkl_count);
3707 }
3708 #endif
3709 }
3710
3711 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3712 {
3713 if (prev->se.on_rq)
3714 update_rq_clock(rq);
3715 rq->skip_clock_update = 0;
3716 prev->sched_class->put_prev_task(rq, prev);
3717 }
3718
3719 /*
3720 * Pick up the highest-prio task:
3721 */
3722 static inline struct task_struct *
3723 pick_next_task(struct rq *rq)
3724 {
3725 const struct sched_class *class;
3726 struct task_struct *p;
3727
3728 /*
3729 * Optimization: we know that if all tasks are in
3730 * the fair class we can call that function directly:
3731 */
3732 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3733 p = fair_sched_class.pick_next_task(rq);
3734 if (likely(p))
3735 return p;
3736 }
3737
3738 for_each_class(class) {
3739 p = class->pick_next_task(rq);
3740 if (p)
3741 return p;
3742 }
3743
3744 BUG(); /* the idle class will always have a runnable task */
3745 }
3746
3747 /*
3748 * schedule() is the main scheduler function.
3749 */
3750 asmlinkage void __sched schedule(void)
3751 {
3752 struct task_struct *prev, *next;
3753 unsigned long *switch_count;
3754 struct rq *rq;
3755 int cpu;
3756
3757 need_resched:
3758 preempt_disable();
3759 cpu = smp_processor_id();
3760 rq = cpu_rq(cpu);
3761 rcu_note_context_switch(cpu);
3762 prev = rq->curr;
3763
3764 release_kernel_lock(prev);
3765 need_resched_nonpreemptible:
3766
3767 schedule_debug(prev);
3768
3769 if (sched_feat(HRTICK))
3770 hrtick_clear(rq);
3771
3772 raw_spin_lock_irq(&rq->lock);
3773 clear_tsk_need_resched(prev);
3774
3775 switch_count = &prev->nivcsw;
3776 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3777 if (unlikely(signal_pending_state(prev->state, prev))) {
3778 prev->state = TASK_RUNNING;
3779 } else {
3780 /*
3781 * If a worker is going to sleep, notify and
3782 * ask workqueue whether it wants to wake up a
3783 * task to maintain concurrency. If so, wake
3784 * up the task.
3785 */
3786 if (prev->flags & PF_WQ_WORKER) {
3787 struct task_struct *to_wakeup;
3788
3789 to_wakeup = wq_worker_sleeping(prev, cpu);
3790 if (to_wakeup)
3791 try_to_wake_up_local(to_wakeup);
3792 }
3793 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3794 }
3795 switch_count = &prev->nvcsw;
3796 }
3797
3798 pre_schedule(rq, prev);
3799
3800 if (unlikely(!rq->nr_running))
3801 idle_balance(cpu, rq);
3802
3803 put_prev_task(rq, prev);
3804 next = pick_next_task(rq);
3805
3806 if (likely(prev != next)) {
3807 sched_info_switch(prev, next);
3808 perf_event_task_sched_out(prev, next);
3809
3810 rq->nr_switches++;
3811 rq->curr = next;
3812 ++*switch_count;
3813
3814 context_switch(rq, prev, next); /* unlocks the rq */
3815 /*
3816 * The context switch have flipped the stack from under us
3817 * and restored the local variables which were saved when
3818 * this task called schedule() in the past. prev == current
3819 * is still correct, but it can be moved to another cpu/rq.
3820 */
3821 cpu = smp_processor_id();
3822 rq = cpu_rq(cpu);
3823 } else
3824 raw_spin_unlock_irq(&rq->lock);
3825
3826 post_schedule(rq);
3827
3828 if (unlikely(reacquire_kernel_lock(prev)))
3829 goto need_resched_nonpreemptible;
3830
3831 preempt_enable_no_resched();
3832 if (need_resched())
3833 goto need_resched;
3834 }
3835 EXPORT_SYMBOL(schedule);
3836
3837 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3838 /*
3839 * Look out! "owner" is an entirely speculative pointer
3840 * access and not reliable.
3841 */
3842 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3843 {
3844 unsigned int cpu;
3845 struct rq *rq;
3846
3847 if (!sched_feat(OWNER_SPIN))
3848 return 0;
3849
3850 #ifdef CONFIG_DEBUG_PAGEALLOC
3851 /*
3852 * Need to access the cpu field knowing that
3853 * DEBUG_PAGEALLOC could have unmapped it if
3854 * the mutex owner just released it and exited.
3855 */
3856 if (probe_kernel_address(&owner->cpu, cpu))
3857 return 0;
3858 #else
3859 cpu = owner->cpu;
3860 #endif
3861
3862 /*
3863 * Even if the access succeeded (likely case),
3864 * the cpu field may no longer be valid.
3865 */
3866 if (cpu >= nr_cpumask_bits)
3867 return 0;
3868
3869 /*
3870 * We need to validate that we can do a
3871 * get_cpu() and that we have the percpu area.
3872 */
3873 if (!cpu_online(cpu))
3874 return 0;
3875
3876 rq = cpu_rq(cpu);
3877
3878 for (;;) {
3879 /*
3880 * Owner changed, break to re-assess state.
3881 */
3882 if (lock->owner != owner) {
3883 /*
3884 * If the lock has switched to a different owner,
3885 * we likely have heavy contention. Return 0 to quit
3886 * optimistic spinning and not contend further:
3887 */
3888 if (lock->owner)
3889 return 0;
3890 break;
3891 }
3892
3893 /*
3894 * Is that owner really running on that cpu?
3895 */
3896 if (task_thread_info(rq->curr) != owner || need_resched())
3897 return 0;
3898
3899 arch_mutex_cpu_relax();
3900 }
3901
3902 return 1;
3903 }
3904 #endif
3905
3906 #ifdef CONFIG_PREEMPT
3907 /*
3908 * this is the entry point to schedule() from in-kernel preemption
3909 * off of preempt_enable. Kernel preemptions off return from interrupt
3910 * occur there and call schedule directly.
3911 */
3912 asmlinkage void __sched notrace preempt_schedule(void)
3913 {
3914 struct thread_info *ti = current_thread_info();
3915
3916 /*
3917 * If there is a non-zero preempt_count or interrupts are disabled,
3918 * we do not want to preempt the current task. Just return..
3919 */
3920 if (likely(ti->preempt_count || irqs_disabled()))
3921 return;
3922
3923 do {
3924 add_preempt_count_notrace(PREEMPT_ACTIVE);
3925 schedule();
3926 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3927
3928 /*
3929 * Check again in case we missed a preemption opportunity
3930 * between schedule and now.
3931 */
3932 barrier();
3933 } while (need_resched());
3934 }
3935 EXPORT_SYMBOL(preempt_schedule);
3936
3937 /*
3938 * this is the entry point to schedule() from kernel preemption
3939 * off of irq context.
3940 * Note, that this is called and return with irqs disabled. This will
3941 * protect us against recursive calling from irq.
3942 */
3943 asmlinkage void __sched preempt_schedule_irq(void)
3944 {
3945 struct thread_info *ti = current_thread_info();
3946
3947 /* Catch callers which need to be fixed */
3948 BUG_ON(ti->preempt_count || !irqs_disabled());
3949
3950 do {
3951 add_preempt_count(PREEMPT_ACTIVE);
3952 local_irq_enable();
3953 schedule();
3954 local_irq_disable();
3955 sub_preempt_count(PREEMPT_ACTIVE);
3956
3957 /*
3958 * Check again in case we missed a preemption opportunity
3959 * between schedule and now.
3960 */
3961 barrier();
3962 } while (need_resched());
3963 }
3964
3965 #endif /* CONFIG_PREEMPT */
3966
3967 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3968 void *key)
3969 {
3970 return try_to_wake_up(curr->private, mode, wake_flags);
3971 }
3972 EXPORT_SYMBOL(default_wake_function);
3973
3974 /*
3975 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3976 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3977 * number) then we wake all the non-exclusive tasks and one exclusive task.
3978 *
3979 * There are circumstances in which we can try to wake a task which has already
3980 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3981 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3982 */
3983 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3984 int nr_exclusive, int wake_flags, void *key)
3985 {
3986 wait_queue_t *curr, *next;
3987
3988 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3989 unsigned flags = curr->flags;
3990
3991 if (curr->func(curr, mode, wake_flags, key) &&
3992 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3993 break;
3994 }
3995 }
3996
3997 /**
3998 * __wake_up - wake up threads blocked on a waitqueue.
3999 * @q: the waitqueue
4000 * @mode: which threads
4001 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4002 * @key: is directly passed to the wakeup function
4003 *
4004 * It may be assumed that this function implies a write memory barrier before
4005 * changing the task state if and only if any tasks are woken up.
4006 */
4007 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4008 int nr_exclusive, void *key)
4009 {
4010 unsigned long flags;
4011
4012 spin_lock_irqsave(&q->lock, flags);
4013 __wake_up_common(q, mode, nr_exclusive, 0, key);
4014 spin_unlock_irqrestore(&q->lock, flags);
4015 }
4016 EXPORT_SYMBOL(__wake_up);
4017
4018 /*
4019 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4020 */
4021 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4022 {
4023 __wake_up_common(q, mode, 1, 0, NULL);
4024 }
4025 EXPORT_SYMBOL_GPL(__wake_up_locked);
4026
4027 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4028 {
4029 __wake_up_common(q, mode, 1, 0, key);
4030 }
4031
4032 /**
4033 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4034 * @q: the waitqueue
4035 * @mode: which threads
4036 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4037 * @key: opaque value to be passed to wakeup targets
4038 *
4039 * The sync wakeup differs that the waker knows that it will schedule
4040 * away soon, so while the target thread will be woken up, it will not
4041 * be migrated to another CPU - ie. the two threads are 'synchronized'
4042 * with each other. This can prevent needless bouncing between CPUs.
4043 *
4044 * On UP it can prevent extra preemption.
4045 *
4046 * It may be assumed that this function implies a write memory barrier before
4047 * changing the task state if and only if any tasks are woken up.
4048 */
4049 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4050 int nr_exclusive, void *key)
4051 {
4052 unsigned long flags;
4053 int wake_flags = WF_SYNC;
4054
4055 if (unlikely(!q))
4056 return;
4057
4058 if (unlikely(!nr_exclusive))
4059 wake_flags = 0;
4060
4061 spin_lock_irqsave(&q->lock, flags);
4062 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4063 spin_unlock_irqrestore(&q->lock, flags);
4064 }
4065 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4066
4067 /*
4068 * __wake_up_sync - see __wake_up_sync_key()
4069 */
4070 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4071 {
4072 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4073 }
4074 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4075
4076 /**
4077 * complete: - signals a single thread waiting on this completion
4078 * @x: holds the state of this particular completion
4079 *
4080 * This will wake up a single thread waiting on this completion. Threads will be
4081 * awakened in the same order in which they were queued.
4082 *
4083 * See also complete_all(), wait_for_completion() and related routines.
4084 *
4085 * It may be assumed that this function implies a write memory barrier before
4086 * changing the task state if and only if any tasks are woken up.
4087 */
4088 void complete(struct completion *x)
4089 {
4090 unsigned long flags;
4091
4092 spin_lock_irqsave(&x->wait.lock, flags);
4093 x->done++;
4094 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4095 spin_unlock_irqrestore(&x->wait.lock, flags);
4096 }
4097 EXPORT_SYMBOL(complete);
4098
4099 /**
4100 * complete_all: - signals all threads waiting on this completion
4101 * @x: holds the state of this particular completion
4102 *
4103 * This will wake up all threads waiting on this particular completion event.
4104 *
4105 * It may be assumed that this function implies a write memory barrier before
4106 * changing the task state if and only if any tasks are woken up.
4107 */
4108 void complete_all(struct completion *x)
4109 {
4110 unsigned long flags;
4111
4112 spin_lock_irqsave(&x->wait.lock, flags);
4113 x->done += UINT_MAX/2;
4114 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4115 spin_unlock_irqrestore(&x->wait.lock, flags);
4116 }
4117 EXPORT_SYMBOL(complete_all);
4118
4119 static inline long __sched
4120 do_wait_for_common(struct completion *x, long timeout, int state)
4121 {
4122 if (!x->done) {
4123 DECLARE_WAITQUEUE(wait, current);
4124
4125 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4126 do {
4127 if (signal_pending_state(state, current)) {
4128 timeout = -ERESTARTSYS;
4129 break;
4130 }
4131 __set_current_state(state);
4132 spin_unlock_irq(&x->wait.lock);
4133 timeout = schedule_timeout(timeout);
4134 spin_lock_irq(&x->wait.lock);
4135 } while (!x->done && timeout);
4136 __remove_wait_queue(&x->wait, &wait);
4137 if (!x->done)
4138 return timeout;
4139 }
4140 x->done--;
4141 return timeout ?: 1;
4142 }
4143
4144 static long __sched
4145 wait_for_common(struct completion *x, long timeout, int state)
4146 {
4147 might_sleep();
4148
4149 spin_lock_irq(&x->wait.lock);
4150 timeout = do_wait_for_common(x, timeout, state);
4151 spin_unlock_irq(&x->wait.lock);
4152 return timeout;
4153 }
4154
4155 /**
4156 * wait_for_completion: - waits for completion of a task
4157 * @x: holds the state of this particular completion
4158 *
4159 * This waits to be signaled for completion of a specific task. It is NOT
4160 * interruptible and there is no timeout.
4161 *
4162 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4163 * and interrupt capability. Also see complete().
4164 */
4165 void __sched wait_for_completion(struct completion *x)
4166 {
4167 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4168 }
4169 EXPORT_SYMBOL(wait_for_completion);
4170
4171 /**
4172 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4173 * @x: holds the state of this particular completion
4174 * @timeout: timeout value in jiffies
4175 *
4176 * This waits for either a completion of a specific task to be signaled or for a
4177 * specified timeout to expire. The timeout is in jiffies. It is not
4178 * interruptible.
4179 */
4180 unsigned long __sched
4181 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4182 {
4183 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4184 }
4185 EXPORT_SYMBOL(wait_for_completion_timeout);
4186
4187 /**
4188 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4189 * @x: holds the state of this particular completion
4190 *
4191 * This waits for completion of a specific task to be signaled. It is
4192 * interruptible.
4193 */
4194 int __sched wait_for_completion_interruptible(struct completion *x)
4195 {
4196 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4197 if (t == -ERESTARTSYS)
4198 return t;
4199 return 0;
4200 }
4201 EXPORT_SYMBOL(wait_for_completion_interruptible);
4202
4203 /**
4204 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4205 * @x: holds the state of this particular completion
4206 * @timeout: timeout value in jiffies
4207 *
4208 * This waits for either a completion of a specific task to be signaled or for a
4209 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4210 */
4211 unsigned long __sched
4212 wait_for_completion_interruptible_timeout(struct completion *x,
4213 unsigned long timeout)
4214 {
4215 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4216 }
4217 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4218
4219 /**
4220 * wait_for_completion_killable: - waits for completion of a task (killable)
4221 * @x: holds the state of this particular completion
4222 *
4223 * This waits to be signaled for completion of a specific task. It can be
4224 * interrupted by a kill signal.
4225 */
4226 int __sched wait_for_completion_killable(struct completion *x)
4227 {
4228 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4229 if (t == -ERESTARTSYS)
4230 return t;
4231 return 0;
4232 }
4233 EXPORT_SYMBOL(wait_for_completion_killable);
4234
4235 /**
4236 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4237 * @x: holds the state of this particular completion
4238 * @timeout: timeout value in jiffies
4239 *
4240 * This waits for either a completion of a specific task to be
4241 * signaled or for a specified timeout to expire. It can be
4242 * interrupted by a kill signal. The timeout is in jiffies.
4243 */
4244 unsigned long __sched
4245 wait_for_completion_killable_timeout(struct completion *x,
4246 unsigned long timeout)
4247 {
4248 return wait_for_common(x, timeout, TASK_KILLABLE);
4249 }
4250 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4251
4252 /**
4253 * try_wait_for_completion - try to decrement a completion without blocking
4254 * @x: completion structure
4255 *
4256 * Returns: 0 if a decrement cannot be done without blocking
4257 * 1 if a decrement succeeded.
4258 *
4259 * If a completion is being used as a counting completion,
4260 * attempt to decrement the counter without blocking. This
4261 * enables us to avoid waiting if the resource the completion
4262 * is protecting is not available.
4263 */
4264 bool try_wait_for_completion(struct completion *x)
4265 {
4266 unsigned long flags;
4267 int ret = 1;
4268
4269 spin_lock_irqsave(&x->wait.lock, flags);
4270 if (!x->done)
4271 ret = 0;
4272 else
4273 x->done--;
4274 spin_unlock_irqrestore(&x->wait.lock, flags);
4275 return ret;
4276 }
4277 EXPORT_SYMBOL(try_wait_for_completion);
4278
4279 /**
4280 * completion_done - Test to see if a completion has any waiters
4281 * @x: completion structure
4282 *
4283 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4284 * 1 if there are no waiters.
4285 *
4286 */
4287 bool completion_done(struct completion *x)
4288 {
4289 unsigned long flags;
4290 int ret = 1;
4291
4292 spin_lock_irqsave(&x->wait.lock, flags);
4293 if (!x->done)
4294 ret = 0;
4295 spin_unlock_irqrestore(&x->wait.lock, flags);
4296 return ret;
4297 }
4298 EXPORT_SYMBOL(completion_done);
4299
4300 static long __sched
4301 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4302 {
4303 unsigned long flags;
4304 wait_queue_t wait;
4305
4306 init_waitqueue_entry(&wait, current);
4307
4308 __set_current_state(state);
4309
4310 spin_lock_irqsave(&q->lock, flags);
4311 __add_wait_queue(q, &wait);
4312 spin_unlock(&q->lock);
4313 timeout = schedule_timeout(timeout);
4314 spin_lock_irq(&q->lock);
4315 __remove_wait_queue(q, &wait);
4316 spin_unlock_irqrestore(&q->lock, flags);
4317
4318 return timeout;
4319 }
4320
4321 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4322 {
4323 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4324 }
4325 EXPORT_SYMBOL(interruptible_sleep_on);
4326
4327 long __sched
4328 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4329 {
4330 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4331 }
4332 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4333
4334 void __sched sleep_on(wait_queue_head_t *q)
4335 {
4336 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4337 }
4338 EXPORT_SYMBOL(sleep_on);
4339
4340 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4341 {
4342 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4343 }
4344 EXPORT_SYMBOL(sleep_on_timeout);
4345
4346 #ifdef CONFIG_RT_MUTEXES
4347
4348 /*
4349 * rt_mutex_setprio - set the current priority of a task
4350 * @p: task
4351 * @prio: prio value (kernel-internal form)
4352 *
4353 * This function changes the 'effective' priority of a task. It does
4354 * not touch ->normal_prio like __setscheduler().
4355 *
4356 * Used by the rt_mutex code to implement priority inheritance logic.
4357 */
4358 void rt_mutex_setprio(struct task_struct *p, int prio)
4359 {
4360 unsigned long flags;
4361 int oldprio, on_rq, running;
4362 struct rq *rq;
4363 const struct sched_class *prev_class;
4364
4365 BUG_ON(prio < 0 || prio > MAX_PRIO);
4366
4367 rq = task_rq_lock(p, &flags);
4368
4369 trace_sched_pi_setprio(p, prio);
4370 oldprio = p->prio;
4371 prev_class = p->sched_class;
4372 on_rq = p->se.on_rq;
4373 running = task_current(rq, p);
4374 if (on_rq)
4375 dequeue_task(rq, p, 0);
4376 if (running)
4377 p->sched_class->put_prev_task(rq, p);
4378
4379 if (rt_prio(prio))
4380 p->sched_class = &rt_sched_class;
4381 else
4382 p->sched_class = &fair_sched_class;
4383
4384 p->prio = prio;
4385
4386 if (running)
4387 p->sched_class->set_curr_task(rq);
4388 if (on_rq) {
4389 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4390
4391 check_class_changed(rq, p, prev_class, oldprio, running);
4392 }
4393 task_rq_unlock(rq, &flags);
4394 }
4395
4396 #endif
4397
4398 void set_user_nice(struct task_struct *p, long nice)
4399 {
4400 int old_prio, delta, on_rq;
4401 unsigned long flags;
4402 struct rq *rq;
4403
4404 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4405 return;
4406 /*
4407 * We have to be careful, if called from sys_setpriority(),
4408 * the task might be in the middle of scheduling on another CPU.
4409 */
4410 rq = task_rq_lock(p, &flags);
4411 /*
4412 * The RT priorities are set via sched_setscheduler(), but we still
4413 * allow the 'normal' nice value to be set - but as expected
4414 * it wont have any effect on scheduling until the task is
4415 * SCHED_FIFO/SCHED_RR:
4416 */
4417 if (task_has_rt_policy(p)) {
4418 p->static_prio = NICE_TO_PRIO(nice);
4419 goto out_unlock;
4420 }
4421 on_rq = p->se.on_rq;
4422 if (on_rq)
4423 dequeue_task(rq, p, 0);
4424
4425 p->static_prio = NICE_TO_PRIO(nice);
4426 set_load_weight(p);
4427 old_prio = p->prio;
4428 p->prio = effective_prio(p);
4429 delta = p->prio - old_prio;
4430
4431 if (on_rq) {
4432 enqueue_task(rq, p, 0);
4433 /*
4434 * If the task increased its priority or is running and
4435 * lowered its priority, then reschedule its CPU:
4436 */
4437 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4438 resched_task(rq->curr);
4439 }
4440 out_unlock:
4441 task_rq_unlock(rq, &flags);
4442 }
4443 EXPORT_SYMBOL(set_user_nice);
4444
4445 /*
4446 * can_nice - check if a task can reduce its nice value
4447 * @p: task
4448 * @nice: nice value
4449 */
4450 int can_nice(const struct task_struct *p, const int nice)
4451 {
4452 /* convert nice value [19,-20] to rlimit style value [1,40] */
4453 int nice_rlim = 20 - nice;
4454
4455 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4456 capable(CAP_SYS_NICE));
4457 }
4458
4459 #ifdef __ARCH_WANT_SYS_NICE
4460
4461 /*
4462 * sys_nice - change the priority of the current process.
4463 * @increment: priority increment
4464 *
4465 * sys_setpriority is a more generic, but much slower function that
4466 * does similar things.
4467 */
4468 SYSCALL_DEFINE1(nice, int, increment)
4469 {
4470 long nice, retval;
4471
4472 /*
4473 * Setpriority might change our priority at the same moment.
4474 * We don't have to worry. Conceptually one call occurs first
4475 * and we have a single winner.
4476 */
4477 if (increment < -40)
4478 increment = -40;
4479 if (increment > 40)
4480 increment = 40;
4481
4482 nice = TASK_NICE(current) + increment;
4483 if (nice < -20)
4484 nice = -20;
4485 if (nice > 19)
4486 nice = 19;
4487
4488 if (increment < 0 && !can_nice(current, nice))
4489 return -EPERM;
4490
4491 retval = security_task_setnice(current, nice);
4492 if (retval)
4493 return retval;
4494
4495 set_user_nice(current, nice);
4496 return 0;
4497 }
4498
4499 #endif
4500
4501 /**
4502 * task_prio - return the priority value of a given task.
4503 * @p: the task in question.
4504 *
4505 * This is the priority value as seen by users in /proc.
4506 * RT tasks are offset by -200. Normal tasks are centered
4507 * around 0, value goes from -16 to +15.
4508 */
4509 int task_prio(const struct task_struct *p)
4510 {
4511 return p->prio - MAX_RT_PRIO;
4512 }
4513
4514 /**
4515 * task_nice - return the nice value of a given task.
4516 * @p: the task in question.
4517 */
4518 int task_nice(const struct task_struct *p)
4519 {
4520 return TASK_NICE(p);
4521 }
4522 EXPORT_SYMBOL(task_nice);
4523
4524 /**
4525 * idle_cpu - is a given cpu idle currently?
4526 * @cpu: the processor in question.
4527 */
4528 int idle_cpu(int cpu)
4529 {
4530 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4531 }
4532
4533 /**
4534 * idle_task - return the idle task for a given cpu.
4535 * @cpu: the processor in question.
4536 */
4537 struct task_struct *idle_task(int cpu)
4538 {
4539 return cpu_rq(cpu)->idle;
4540 }
4541
4542 /**
4543 * find_process_by_pid - find a process with a matching PID value.
4544 * @pid: the pid in question.
4545 */
4546 static struct task_struct *find_process_by_pid(pid_t pid)
4547 {
4548 return pid ? find_task_by_vpid(pid) : current;
4549 }
4550
4551 /* Actually do priority change: must hold rq lock. */
4552 static void
4553 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4554 {
4555 BUG_ON(p->se.on_rq);
4556
4557 p->policy = policy;
4558 p->rt_priority = prio;
4559 p->normal_prio = normal_prio(p);
4560 /* we are holding p->pi_lock already */
4561 p->prio = rt_mutex_getprio(p);
4562 if (rt_prio(p->prio))
4563 p->sched_class = &rt_sched_class;
4564 else
4565 p->sched_class = &fair_sched_class;
4566 set_load_weight(p);
4567 }
4568
4569 /*
4570 * check the target process has a UID that matches the current process's
4571 */
4572 static bool check_same_owner(struct task_struct *p)
4573 {
4574 const struct cred *cred = current_cred(), *pcred;
4575 bool match;
4576
4577 rcu_read_lock();
4578 pcred = __task_cred(p);
4579 match = (cred->euid == pcred->euid ||
4580 cred->euid == pcred->uid);
4581 rcu_read_unlock();
4582 return match;
4583 }
4584
4585 static int __sched_setscheduler(struct task_struct *p, int policy,
4586 const struct sched_param *param, bool user)
4587 {
4588 int retval, oldprio, oldpolicy = -1, on_rq, running;
4589 unsigned long flags;
4590 const struct sched_class *prev_class;
4591 struct rq *rq;
4592 int reset_on_fork;
4593
4594 /* may grab non-irq protected spin_locks */
4595 BUG_ON(in_interrupt());
4596 recheck:
4597 /* double check policy once rq lock held */
4598 if (policy < 0) {
4599 reset_on_fork = p->sched_reset_on_fork;
4600 policy = oldpolicy = p->policy;
4601 } else {
4602 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4603 policy &= ~SCHED_RESET_ON_FORK;
4604
4605 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4606 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4607 policy != SCHED_IDLE)
4608 return -EINVAL;
4609 }
4610
4611 /*
4612 * Valid priorities for SCHED_FIFO and SCHED_RR are
4613 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4614 * SCHED_BATCH and SCHED_IDLE is 0.
4615 */
4616 if (param->sched_priority < 0 ||
4617 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4618 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4619 return -EINVAL;
4620 if (rt_policy(policy) != (param->sched_priority != 0))
4621 return -EINVAL;
4622
4623 /*
4624 * Allow unprivileged RT tasks to decrease priority:
4625 */
4626 if (user && !capable(CAP_SYS_NICE)) {
4627 if (rt_policy(policy)) {
4628 unsigned long rlim_rtprio =
4629 task_rlimit(p, RLIMIT_RTPRIO);
4630
4631 /* can't set/change the rt policy */
4632 if (policy != p->policy && !rlim_rtprio)
4633 return -EPERM;
4634
4635 /* can't increase priority */
4636 if (param->sched_priority > p->rt_priority &&
4637 param->sched_priority > rlim_rtprio)
4638 return -EPERM;
4639 }
4640 /*
4641 * Like positive nice levels, dont allow tasks to
4642 * move out of SCHED_IDLE either:
4643 */
4644 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4645 return -EPERM;
4646
4647 /* can't change other user's priorities */
4648 if (!check_same_owner(p))
4649 return -EPERM;
4650
4651 /* Normal users shall not reset the sched_reset_on_fork flag */
4652 if (p->sched_reset_on_fork && !reset_on_fork)
4653 return -EPERM;
4654 }
4655
4656 if (user) {
4657 retval = security_task_setscheduler(p);
4658 if (retval)
4659 return retval;
4660 }
4661
4662 /*
4663 * make sure no PI-waiters arrive (or leave) while we are
4664 * changing the priority of the task:
4665 */
4666 raw_spin_lock_irqsave(&p->pi_lock, flags);
4667 /*
4668 * To be able to change p->policy safely, the apropriate
4669 * runqueue lock must be held.
4670 */
4671 rq = __task_rq_lock(p);
4672
4673 /*
4674 * Changing the policy of the stop threads its a very bad idea
4675 */
4676 if (p == rq->stop) {
4677 __task_rq_unlock(rq);
4678 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4679 return -EINVAL;
4680 }
4681
4682 #ifdef CONFIG_RT_GROUP_SCHED
4683 if (user) {
4684 /*
4685 * Do not allow realtime tasks into groups that have no runtime
4686 * assigned.
4687 */
4688 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4689 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4690 __task_rq_unlock(rq);
4691 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4692 return -EPERM;
4693 }
4694 }
4695 #endif
4696
4697 /* recheck policy now with rq lock held */
4698 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4699 policy = oldpolicy = -1;
4700 __task_rq_unlock(rq);
4701 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4702 goto recheck;
4703 }
4704 on_rq = p->se.on_rq;
4705 running = task_current(rq, p);
4706 if (on_rq)
4707 deactivate_task(rq, p, 0);
4708 if (running)
4709 p->sched_class->put_prev_task(rq, p);
4710
4711 p->sched_reset_on_fork = reset_on_fork;
4712
4713 oldprio = p->prio;
4714 prev_class = p->sched_class;
4715 __setscheduler(rq, p, policy, param->sched_priority);
4716
4717 if (running)
4718 p->sched_class->set_curr_task(rq);
4719 if (on_rq) {
4720 activate_task(rq, p, 0);
4721
4722 check_class_changed(rq, p, prev_class, oldprio, running);
4723 }
4724 __task_rq_unlock(rq);
4725 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4726
4727 rt_mutex_adjust_pi(p);
4728
4729 return 0;
4730 }
4731
4732 /**
4733 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4734 * @p: the task in question.
4735 * @policy: new policy.
4736 * @param: structure containing the new RT priority.
4737 *
4738 * NOTE that the task may be already dead.
4739 */
4740 int sched_setscheduler(struct task_struct *p, int policy,
4741 const struct sched_param *param)
4742 {
4743 return __sched_setscheduler(p, policy, param, true);
4744 }
4745 EXPORT_SYMBOL_GPL(sched_setscheduler);
4746
4747 /**
4748 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4749 * @p: the task in question.
4750 * @policy: new policy.
4751 * @param: structure containing the new RT priority.
4752 *
4753 * Just like sched_setscheduler, only don't bother checking if the
4754 * current context has permission. For example, this is needed in
4755 * stop_machine(): we create temporary high priority worker threads,
4756 * but our caller might not have that capability.
4757 */
4758 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4759 const struct sched_param *param)
4760 {
4761 return __sched_setscheduler(p, policy, param, false);
4762 }
4763
4764 static int
4765 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4766 {
4767 struct sched_param lparam;
4768 struct task_struct *p;
4769 int retval;
4770
4771 if (!param || pid < 0)
4772 return -EINVAL;
4773 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4774 return -EFAULT;
4775
4776 rcu_read_lock();
4777 retval = -ESRCH;
4778 p = find_process_by_pid(pid);
4779 if (p != NULL)
4780 retval = sched_setscheduler(p, policy, &lparam);
4781 rcu_read_unlock();
4782
4783 return retval;
4784 }
4785
4786 /**
4787 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4788 * @pid: the pid in question.
4789 * @policy: new policy.
4790 * @param: structure containing the new RT priority.
4791 */
4792 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4793 struct sched_param __user *, param)
4794 {
4795 /* negative values for policy are not valid */
4796 if (policy < 0)
4797 return -EINVAL;
4798
4799 return do_sched_setscheduler(pid, policy, param);
4800 }
4801
4802 /**
4803 * sys_sched_setparam - set/change the RT priority of a thread
4804 * @pid: the pid in question.
4805 * @param: structure containing the new RT priority.
4806 */
4807 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4808 {
4809 return do_sched_setscheduler(pid, -1, param);
4810 }
4811
4812 /**
4813 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4814 * @pid: the pid in question.
4815 */
4816 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4817 {
4818 struct task_struct *p;
4819 int retval;
4820
4821 if (pid < 0)
4822 return -EINVAL;
4823
4824 retval = -ESRCH;
4825 rcu_read_lock();
4826 p = find_process_by_pid(pid);
4827 if (p) {
4828 retval = security_task_getscheduler(p);
4829 if (!retval)
4830 retval = p->policy
4831 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4832 }
4833 rcu_read_unlock();
4834 return retval;
4835 }
4836
4837 /**
4838 * sys_sched_getparam - get the RT priority of a thread
4839 * @pid: the pid in question.
4840 * @param: structure containing the RT priority.
4841 */
4842 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4843 {
4844 struct sched_param lp;
4845 struct task_struct *p;
4846 int retval;
4847
4848 if (!param || pid < 0)
4849 return -EINVAL;
4850
4851 rcu_read_lock();
4852 p = find_process_by_pid(pid);
4853 retval = -ESRCH;
4854 if (!p)
4855 goto out_unlock;
4856
4857 retval = security_task_getscheduler(p);
4858 if (retval)
4859 goto out_unlock;
4860
4861 lp.sched_priority = p->rt_priority;
4862 rcu_read_unlock();
4863
4864 /*
4865 * This one might sleep, we cannot do it with a spinlock held ...
4866 */
4867 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4868
4869 return retval;
4870
4871 out_unlock:
4872 rcu_read_unlock();
4873 return retval;
4874 }
4875
4876 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4877 {
4878 cpumask_var_t cpus_allowed, new_mask;
4879 struct task_struct *p;
4880 int retval;
4881
4882 get_online_cpus();
4883 rcu_read_lock();
4884
4885 p = find_process_by_pid(pid);
4886 if (!p) {
4887 rcu_read_unlock();
4888 put_online_cpus();
4889 return -ESRCH;
4890 }
4891
4892 /* Prevent p going away */
4893 get_task_struct(p);
4894 rcu_read_unlock();
4895
4896 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4897 retval = -ENOMEM;
4898 goto out_put_task;
4899 }
4900 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4901 retval = -ENOMEM;
4902 goto out_free_cpus_allowed;
4903 }
4904 retval = -EPERM;
4905 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4906 goto out_unlock;
4907
4908 retval = security_task_setscheduler(p);
4909 if (retval)
4910 goto out_unlock;
4911
4912 cpuset_cpus_allowed(p, cpus_allowed);
4913 cpumask_and(new_mask, in_mask, cpus_allowed);
4914 again:
4915 retval = set_cpus_allowed_ptr(p, new_mask);
4916
4917 if (!retval) {
4918 cpuset_cpus_allowed(p, cpus_allowed);
4919 if (!cpumask_subset(new_mask, cpus_allowed)) {
4920 /*
4921 * We must have raced with a concurrent cpuset
4922 * update. Just reset the cpus_allowed to the
4923 * cpuset's cpus_allowed
4924 */
4925 cpumask_copy(new_mask, cpus_allowed);
4926 goto again;
4927 }
4928 }
4929 out_unlock:
4930 free_cpumask_var(new_mask);
4931 out_free_cpus_allowed:
4932 free_cpumask_var(cpus_allowed);
4933 out_put_task:
4934 put_task_struct(p);
4935 put_online_cpus();
4936 return retval;
4937 }
4938
4939 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4940 struct cpumask *new_mask)
4941 {
4942 if (len < cpumask_size())
4943 cpumask_clear(new_mask);
4944 else if (len > cpumask_size())
4945 len = cpumask_size();
4946
4947 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4948 }
4949
4950 /**
4951 * sys_sched_setaffinity - set the cpu affinity of a process
4952 * @pid: pid of the process
4953 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4954 * @user_mask_ptr: user-space pointer to the new cpu mask
4955 */
4956 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4957 unsigned long __user *, user_mask_ptr)
4958 {
4959 cpumask_var_t new_mask;
4960 int retval;
4961
4962 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4963 return -ENOMEM;
4964
4965 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4966 if (retval == 0)
4967 retval = sched_setaffinity(pid, new_mask);
4968 free_cpumask_var(new_mask);
4969 return retval;
4970 }
4971
4972 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4973 {
4974 struct task_struct *p;
4975 unsigned long flags;
4976 struct rq *rq;
4977 int retval;
4978
4979 get_online_cpus();
4980 rcu_read_lock();
4981
4982 retval = -ESRCH;
4983 p = find_process_by_pid(pid);
4984 if (!p)
4985 goto out_unlock;
4986
4987 retval = security_task_getscheduler(p);
4988 if (retval)
4989 goto out_unlock;
4990
4991 rq = task_rq_lock(p, &flags);
4992 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4993 task_rq_unlock(rq, &flags);
4994
4995 out_unlock:
4996 rcu_read_unlock();
4997 put_online_cpus();
4998
4999 return retval;
5000 }
5001
5002 /**
5003 * sys_sched_getaffinity - get the cpu affinity of a process
5004 * @pid: pid of the process
5005 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5006 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5007 */
5008 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5009 unsigned long __user *, user_mask_ptr)
5010 {
5011 int ret;
5012 cpumask_var_t mask;
5013
5014 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5015 return -EINVAL;
5016 if (len & (sizeof(unsigned long)-1))
5017 return -EINVAL;
5018
5019 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5020 return -ENOMEM;
5021
5022 ret = sched_getaffinity(pid, mask);
5023 if (ret == 0) {
5024 size_t retlen = min_t(size_t, len, cpumask_size());
5025
5026 if (copy_to_user(user_mask_ptr, mask, retlen))
5027 ret = -EFAULT;
5028 else
5029 ret = retlen;
5030 }
5031 free_cpumask_var(mask);
5032
5033 return ret;
5034 }
5035
5036 /**
5037 * sys_sched_yield - yield the current processor to other threads.
5038 *
5039 * This function yields the current CPU to other tasks. If there are no
5040 * other threads running on this CPU then this function will return.
5041 */
5042 SYSCALL_DEFINE0(sched_yield)
5043 {
5044 struct rq *rq = this_rq_lock();
5045
5046 schedstat_inc(rq, yld_count);
5047 current->sched_class->yield_task(rq);
5048
5049 /*
5050 * Since we are going to call schedule() anyway, there's
5051 * no need to preempt or enable interrupts:
5052 */
5053 __release(rq->lock);
5054 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5055 do_raw_spin_unlock(&rq->lock);
5056 preempt_enable_no_resched();
5057
5058 schedule();
5059
5060 return 0;
5061 }
5062
5063 static inline int should_resched(void)
5064 {
5065 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5066 }
5067
5068 static void __cond_resched(void)
5069 {
5070 add_preempt_count(PREEMPT_ACTIVE);
5071 schedule();
5072 sub_preempt_count(PREEMPT_ACTIVE);
5073 }
5074
5075 int __sched _cond_resched(void)
5076 {
5077 if (should_resched()) {
5078 __cond_resched();
5079 return 1;
5080 }
5081 return 0;
5082 }
5083 EXPORT_SYMBOL(_cond_resched);
5084
5085 /*
5086 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5087 * call schedule, and on return reacquire the lock.
5088 *
5089 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5090 * operations here to prevent schedule() from being called twice (once via
5091 * spin_unlock(), once by hand).
5092 */
5093 int __cond_resched_lock(spinlock_t *lock)
5094 {
5095 int resched = should_resched();
5096 int ret = 0;
5097
5098 lockdep_assert_held(lock);
5099
5100 if (spin_needbreak(lock) || resched) {
5101 spin_unlock(lock);
5102 if (resched)
5103 __cond_resched();
5104 else
5105 cpu_relax();
5106 ret = 1;
5107 spin_lock(lock);
5108 }
5109 return ret;
5110 }
5111 EXPORT_SYMBOL(__cond_resched_lock);
5112
5113 int __sched __cond_resched_softirq(void)
5114 {
5115 BUG_ON(!in_softirq());
5116
5117 if (should_resched()) {
5118 local_bh_enable();
5119 __cond_resched();
5120 local_bh_disable();
5121 return 1;
5122 }
5123 return 0;
5124 }
5125 EXPORT_SYMBOL(__cond_resched_softirq);
5126
5127 /**
5128 * yield - yield the current processor to other threads.
5129 *
5130 * This is a shortcut for kernel-space yielding - it marks the
5131 * thread runnable and calls sys_sched_yield().
5132 */
5133 void __sched yield(void)
5134 {
5135 set_current_state(TASK_RUNNING);
5136 sys_sched_yield();
5137 }
5138 EXPORT_SYMBOL(yield);
5139
5140 /*
5141 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5142 * that process accounting knows that this is a task in IO wait state.
5143 */
5144 void __sched io_schedule(void)
5145 {
5146 struct rq *rq = raw_rq();
5147
5148 delayacct_blkio_start();
5149 atomic_inc(&rq->nr_iowait);
5150 current->in_iowait = 1;
5151 schedule();
5152 current->in_iowait = 0;
5153 atomic_dec(&rq->nr_iowait);
5154 delayacct_blkio_end();
5155 }
5156 EXPORT_SYMBOL(io_schedule);
5157
5158 long __sched io_schedule_timeout(long timeout)
5159 {
5160 struct rq *rq = raw_rq();
5161 long ret;
5162
5163 delayacct_blkio_start();
5164 atomic_inc(&rq->nr_iowait);
5165 current->in_iowait = 1;
5166 ret = schedule_timeout(timeout);
5167 current->in_iowait = 0;
5168 atomic_dec(&rq->nr_iowait);
5169 delayacct_blkio_end();
5170 return ret;
5171 }
5172
5173 /**
5174 * sys_sched_get_priority_max - return maximum RT priority.
5175 * @policy: scheduling class.
5176 *
5177 * this syscall returns the maximum rt_priority that can be used
5178 * by a given scheduling class.
5179 */
5180 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5181 {
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = MAX_USER_RT_PRIO-1;
5188 break;
5189 case SCHED_NORMAL:
5190 case SCHED_BATCH:
5191 case SCHED_IDLE:
5192 ret = 0;
5193 break;
5194 }
5195 return ret;
5196 }
5197
5198 /**
5199 * sys_sched_get_priority_min - return minimum RT priority.
5200 * @policy: scheduling class.
5201 *
5202 * this syscall returns the minimum rt_priority that can be used
5203 * by a given scheduling class.
5204 */
5205 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5206 {
5207 int ret = -EINVAL;
5208
5209 switch (policy) {
5210 case SCHED_FIFO:
5211 case SCHED_RR:
5212 ret = 1;
5213 break;
5214 case SCHED_NORMAL:
5215 case SCHED_BATCH:
5216 case SCHED_IDLE:
5217 ret = 0;
5218 }
5219 return ret;
5220 }
5221
5222 /**
5223 * sys_sched_rr_get_interval - return the default timeslice of a process.
5224 * @pid: pid of the process.
5225 * @interval: userspace pointer to the timeslice value.
5226 *
5227 * this syscall writes the default timeslice value of a given process
5228 * into the user-space timespec buffer. A value of '0' means infinity.
5229 */
5230 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5231 struct timespec __user *, interval)
5232 {
5233 struct task_struct *p;
5234 unsigned int time_slice;
5235 unsigned long flags;
5236 struct rq *rq;
5237 int retval;
5238 struct timespec t;
5239
5240 if (pid < 0)
5241 return -EINVAL;
5242
5243 retval = -ESRCH;
5244 rcu_read_lock();
5245 p = find_process_by_pid(pid);
5246 if (!p)
5247 goto out_unlock;
5248
5249 retval = security_task_getscheduler(p);
5250 if (retval)
5251 goto out_unlock;
5252
5253 rq = task_rq_lock(p, &flags);
5254 time_slice = p->sched_class->get_rr_interval(rq, p);
5255 task_rq_unlock(rq, &flags);
5256
5257 rcu_read_unlock();
5258 jiffies_to_timespec(time_slice, &t);
5259 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5260 return retval;
5261
5262 out_unlock:
5263 rcu_read_unlock();
5264 return retval;
5265 }
5266
5267 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5268
5269 void sched_show_task(struct task_struct *p)
5270 {
5271 unsigned long free = 0;
5272 unsigned state;
5273
5274 state = p->state ? __ffs(p->state) + 1 : 0;
5275 printk(KERN_INFO "%-15.15s %c", p->comm,
5276 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5277 #if BITS_PER_LONG == 32
5278 if (state == TASK_RUNNING)
5279 printk(KERN_CONT " running ");
5280 else
5281 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5282 #else
5283 if (state == TASK_RUNNING)
5284 printk(KERN_CONT " running task ");
5285 else
5286 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5287 #endif
5288 #ifdef CONFIG_DEBUG_STACK_USAGE
5289 free = stack_not_used(p);
5290 #endif
5291 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5292 task_pid_nr(p), task_pid_nr(p->real_parent),
5293 (unsigned long)task_thread_info(p)->flags);
5294
5295 show_stack(p, NULL);
5296 }
5297
5298 void show_state_filter(unsigned long state_filter)
5299 {
5300 struct task_struct *g, *p;
5301
5302 #if BITS_PER_LONG == 32
5303 printk(KERN_INFO
5304 " task PC stack pid father\n");
5305 #else
5306 printk(KERN_INFO
5307 " task PC stack pid father\n");
5308 #endif
5309 read_lock(&tasklist_lock);
5310 do_each_thread(g, p) {
5311 /*
5312 * reset the NMI-timeout, listing all files on a slow
5313 * console might take alot of time:
5314 */
5315 touch_nmi_watchdog();
5316 if (!state_filter || (p->state & state_filter))
5317 sched_show_task(p);
5318 } while_each_thread(g, p);
5319
5320 touch_all_softlockup_watchdogs();
5321
5322 #ifdef CONFIG_SCHED_DEBUG
5323 sysrq_sched_debug_show();
5324 #endif
5325 read_unlock(&tasklist_lock);
5326 /*
5327 * Only show locks if all tasks are dumped:
5328 */
5329 if (!state_filter)
5330 debug_show_all_locks();
5331 }
5332
5333 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5334 {
5335 idle->sched_class = &idle_sched_class;
5336 }
5337
5338 /**
5339 * init_idle - set up an idle thread for a given CPU
5340 * @idle: task in question
5341 * @cpu: cpu the idle task belongs to
5342 *
5343 * NOTE: this function does not set the idle thread's NEED_RESCHED
5344 * flag, to make booting more robust.
5345 */
5346 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5347 {
5348 struct rq *rq = cpu_rq(cpu);
5349 unsigned long flags;
5350
5351 raw_spin_lock_irqsave(&rq->lock, flags);
5352
5353 __sched_fork(idle);
5354 idle->state = TASK_RUNNING;
5355 idle->se.exec_start = sched_clock();
5356
5357 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5358 /*
5359 * We're having a chicken and egg problem, even though we are
5360 * holding rq->lock, the cpu isn't yet set to this cpu so the
5361 * lockdep check in task_group() will fail.
5362 *
5363 * Similar case to sched_fork(). / Alternatively we could
5364 * use task_rq_lock() here and obtain the other rq->lock.
5365 *
5366 * Silence PROVE_RCU
5367 */
5368 rcu_read_lock();
5369 __set_task_cpu(idle, cpu);
5370 rcu_read_unlock();
5371
5372 rq->curr = rq->idle = idle;
5373 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5374 idle->oncpu = 1;
5375 #endif
5376 raw_spin_unlock_irqrestore(&rq->lock, flags);
5377
5378 /* Set the preempt count _outside_ the spinlocks! */
5379 #if defined(CONFIG_PREEMPT)
5380 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5381 #else
5382 task_thread_info(idle)->preempt_count = 0;
5383 #endif
5384 /*
5385 * The idle tasks have their own, simple scheduling class:
5386 */
5387 idle->sched_class = &idle_sched_class;
5388 ftrace_graph_init_task(idle);
5389 }
5390
5391 /*
5392 * In a system that switches off the HZ timer nohz_cpu_mask
5393 * indicates which cpus entered this state. This is used
5394 * in the rcu update to wait only for active cpus. For system
5395 * which do not switch off the HZ timer nohz_cpu_mask should
5396 * always be CPU_BITS_NONE.
5397 */
5398 cpumask_var_t nohz_cpu_mask;
5399
5400 /*
5401 * Increase the granularity value when there are more CPUs,
5402 * because with more CPUs the 'effective latency' as visible
5403 * to users decreases. But the relationship is not linear,
5404 * so pick a second-best guess by going with the log2 of the
5405 * number of CPUs.
5406 *
5407 * This idea comes from the SD scheduler of Con Kolivas:
5408 */
5409 static int get_update_sysctl_factor(void)
5410 {
5411 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5412 unsigned int factor;
5413
5414 switch (sysctl_sched_tunable_scaling) {
5415 case SCHED_TUNABLESCALING_NONE:
5416 factor = 1;
5417 break;
5418 case SCHED_TUNABLESCALING_LINEAR:
5419 factor = cpus;
5420 break;
5421 case SCHED_TUNABLESCALING_LOG:
5422 default:
5423 factor = 1 + ilog2(cpus);
5424 break;
5425 }
5426
5427 return factor;
5428 }
5429
5430 static void update_sysctl(void)
5431 {
5432 unsigned int factor = get_update_sysctl_factor();
5433
5434 #define SET_SYSCTL(name) \
5435 (sysctl_##name = (factor) * normalized_sysctl_##name)
5436 SET_SYSCTL(sched_min_granularity);
5437 SET_SYSCTL(sched_latency);
5438 SET_SYSCTL(sched_wakeup_granularity);
5439 #undef SET_SYSCTL
5440 }
5441
5442 static inline void sched_init_granularity(void)
5443 {
5444 update_sysctl();
5445 }
5446
5447 #ifdef CONFIG_SMP
5448 /*
5449 * This is how migration works:
5450 *
5451 * 1) we invoke migration_cpu_stop() on the target CPU using
5452 * stop_one_cpu().
5453 * 2) stopper starts to run (implicitly forcing the migrated thread
5454 * off the CPU)
5455 * 3) it checks whether the migrated task is still in the wrong runqueue.
5456 * 4) if it's in the wrong runqueue then the migration thread removes
5457 * it and puts it into the right queue.
5458 * 5) stopper completes and stop_one_cpu() returns and the migration
5459 * is done.
5460 */
5461
5462 /*
5463 * Change a given task's CPU affinity. Migrate the thread to a
5464 * proper CPU and schedule it away if the CPU it's executing on
5465 * is removed from the allowed bitmask.
5466 *
5467 * NOTE: the caller must have a valid reference to the task, the
5468 * task must not exit() & deallocate itself prematurely. The
5469 * call is not atomic; no spinlocks may be held.
5470 */
5471 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5472 {
5473 unsigned long flags;
5474 struct rq *rq;
5475 unsigned int dest_cpu;
5476 int ret = 0;
5477
5478 /*
5479 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5480 * drop the rq->lock and still rely on ->cpus_allowed.
5481 */
5482 again:
5483 while (task_is_waking(p))
5484 cpu_relax();
5485 rq = task_rq_lock(p, &flags);
5486 if (task_is_waking(p)) {
5487 task_rq_unlock(rq, &flags);
5488 goto again;
5489 }
5490
5491 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5492 ret = -EINVAL;
5493 goto out;
5494 }
5495
5496 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5497 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5498 ret = -EINVAL;
5499 goto out;
5500 }
5501
5502 if (p->sched_class->set_cpus_allowed)
5503 p->sched_class->set_cpus_allowed(p, new_mask);
5504 else {
5505 cpumask_copy(&p->cpus_allowed, new_mask);
5506 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5507 }
5508
5509 /* Can the task run on the task's current CPU? If so, we're done */
5510 if (cpumask_test_cpu(task_cpu(p), new_mask))
5511 goto out;
5512
5513 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5514 if (migrate_task(p, rq)) {
5515 struct migration_arg arg = { p, dest_cpu };
5516 /* Need help from migration thread: drop lock and wait. */
5517 task_rq_unlock(rq, &flags);
5518 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5519 tlb_migrate_finish(p->mm);
5520 return 0;
5521 }
5522 out:
5523 task_rq_unlock(rq, &flags);
5524
5525 return ret;
5526 }
5527 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5528
5529 /*
5530 * Move (not current) task off this cpu, onto dest cpu. We're doing
5531 * this because either it can't run here any more (set_cpus_allowed()
5532 * away from this CPU, or CPU going down), or because we're
5533 * attempting to rebalance this task on exec (sched_exec).
5534 *
5535 * So we race with normal scheduler movements, but that's OK, as long
5536 * as the task is no longer on this CPU.
5537 *
5538 * Returns non-zero if task was successfully migrated.
5539 */
5540 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5541 {
5542 struct rq *rq_dest, *rq_src;
5543 int ret = 0;
5544
5545 if (unlikely(!cpu_active(dest_cpu)))
5546 return ret;
5547
5548 rq_src = cpu_rq(src_cpu);
5549 rq_dest = cpu_rq(dest_cpu);
5550
5551 double_rq_lock(rq_src, rq_dest);
5552 /* Already moved. */
5553 if (task_cpu(p) != src_cpu)
5554 goto done;
5555 /* Affinity changed (again). */
5556 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5557 goto fail;
5558
5559 /*
5560 * If we're not on a rq, the next wake-up will ensure we're
5561 * placed properly.
5562 */
5563 if (p->se.on_rq) {
5564 deactivate_task(rq_src, p, 0);
5565 set_task_cpu(p, dest_cpu);
5566 activate_task(rq_dest, p, 0);
5567 check_preempt_curr(rq_dest, p, 0);
5568 }
5569 done:
5570 ret = 1;
5571 fail:
5572 double_rq_unlock(rq_src, rq_dest);
5573 return ret;
5574 }
5575
5576 /*
5577 * migration_cpu_stop - this will be executed by a highprio stopper thread
5578 * and performs thread migration by bumping thread off CPU then
5579 * 'pushing' onto another runqueue.
5580 */
5581 static int migration_cpu_stop(void *data)
5582 {
5583 struct migration_arg *arg = data;
5584
5585 /*
5586 * The original target cpu might have gone down and we might
5587 * be on another cpu but it doesn't matter.
5588 */
5589 local_irq_disable();
5590 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5591 local_irq_enable();
5592 return 0;
5593 }
5594
5595 #ifdef CONFIG_HOTPLUG_CPU
5596
5597 /*
5598 * Ensures that the idle task is using init_mm right before its cpu goes
5599 * offline.
5600 */
5601 void idle_task_exit(void)
5602 {
5603 struct mm_struct *mm = current->active_mm;
5604
5605 BUG_ON(cpu_online(smp_processor_id()));
5606
5607 if (mm != &init_mm)
5608 switch_mm(mm, &init_mm, current);
5609 mmdrop(mm);
5610 }
5611
5612 /*
5613 * While a dead CPU has no uninterruptible tasks queued at this point,
5614 * it might still have a nonzero ->nr_uninterruptible counter, because
5615 * for performance reasons the counter is not stricly tracking tasks to
5616 * their home CPUs. So we just add the counter to another CPU's counter,
5617 * to keep the global sum constant after CPU-down:
5618 */
5619 static void migrate_nr_uninterruptible(struct rq *rq_src)
5620 {
5621 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5622
5623 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5624 rq_src->nr_uninterruptible = 0;
5625 }
5626
5627 /*
5628 * remove the tasks which were accounted by rq from calc_load_tasks.
5629 */
5630 static void calc_global_load_remove(struct rq *rq)
5631 {
5632 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5633 rq->calc_load_active = 0;
5634 }
5635
5636 /*
5637 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5638 * try_to_wake_up()->select_task_rq().
5639 *
5640 * Called with rq->lock held even though we'er in stop_machine() and
5641 * there's no concurrency possible, we hold the required locks anyway
5642 * because of lock validation efforts.
5643 */
5644 static void migrate_tasks(unsigned int dead_cpu)
5645 {
5646 struct rq *rq = cpu_rq(dead_cpu);
5647 struct task_struct *next, *stop = rq->stop;
5648 int dest_cpu;
5649
5650 /*
5651 * Fudge the rq selection such that the below task selection loop
5652 * doesn't get stuck on the currently eligible stop task.
5653 *
5654 * We're currently inside stop_machine() and the rq is either stuck
5655 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5656 * either way we should never end up calling schedule() until we're
5657 * done here.
5658 */
5659 rq->stop = NULL;
5660
5661 for ( ; ; ) {
5662 /*
5663 * There's this thread running, bail when that's the only
5664 * remaining thread.
5665 */
5666 if (rq->nr_running == 1)
5667 break;
5668
5669 next = pick_next_task(rq);
5670 BUG_ON(!next);
5671 next->sched_class->put_prev_task(rq, next);
5672
5673 /* Find suitable destination for @next, with force if needed. */
5674 dest_cpu = select_fallback_rq(dead_cpu, next);
5675 raw_spin_unlock(&rq->lock);
5676
5677 __migrate_task(next, dead_cpu, dest_cpu);
5678
5679 raw_spin_lock(&rq->lock);
5680 }
5681
5682 rq->stop = stop;
5683 }
5684
5685 #endif /* CONFIG_HOTPLUG_CPU */
5686
5687 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5688
5689 static struct ctl_table sd_ctl_dir[] = {
5690 {
5691 .procname = "sched_domain",
5692 .mode = 0555,
5693 },
5694 {}
5695 };
5696
5697 static struct ctl_table sd_ctl_root[] = {
5698 {
5699 .procname = "kernel",
5700 .mode = 0555,
5701 .child = sd_ctl_dir,
5702 },
5703 {}
5704 };
5705
5706 static struct ctl_table *sd_alloc_ctl_entry(int n)
5707 {
5708 struct ctl_table *entry =
5709 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5710
5711 return entry;
5712 }
5713
5714 static void sd_free_ctl_entry(struct ctl_table **tablep)
5715 {
5716 struct ctl_table *entry;
5717
5718 /*
5719 * In the intermediate directories, both the child directory and
5720 * procname are dynamically allocated and could fail but the mode
5721 * will always be set. In the lowest directory the names are
5722 * static strings and all have proc handlers.
5723 */
5724 for (entry = *tablep; entry->mode; entry++) {
5725 if (entry->child)
5726 sd_free_ctl_entry(&entry->child);
5727 if (entry->proc_handler == NULL)
5728 kfree(entry->procname);
5729 }
5730
5731 kfree(*tablep);
5732 *tablep = NULL;
5733 }
5734
5735 static void
5736 set_table_entry(struct ctl_table *entry,
5737 const char *procname, void *data, int maxlen,
5738 mode_t mode, proc_handler *proc_handler)
5739 {
5740 entry->procname = procname;
5741 entry->data = data;
5742 entry->maxlen = maxlen;
5743 entry->mode = mode;
5744 entry->proc_handler = proc_handler;
5745 }
5746
5747 static struct ctl_table *
5748 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5749 {
5750 struct ctl_table *table = sd_alloc_ctl_entry(13);
5751
5752 if (table == NULL)
5753 return NULL;
5754
5755 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5756 sizeof(long), 0644, proc_doulongvec_minmax);
5757 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5758 sizeof(long), 0644, proc_doulongvec_minmax);
5759 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5760 sizeof(int), 0644, proc_dointvec_minmax);
5761 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5762 sizeof(int), 0644, proc_dointvec_minmax);
5763 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5764 sizeof(int), 0644, proc_dointvec_minmax);
5765 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5766 sizeof(int), 0644, proc_dointvec_minmax);
5767 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5768 sizeof(int), 0644, proc_dointvec_minmax);
5769 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5770 sizeof(int), 0644, proc_dointvec_minmax);
5771 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5772 sizeof(int), 0644, proc_dointvec_minmax);
5773 set_table_entry(&table[9], "cache_nice_tries",
5774 &sd->cache_nice_tries,
5775 sizeof(int), 0644, proc_dointvec_minmax);
5776 set_table_entry(&table[10], "flags", &sd->flags,
5777 sizeof(int), 0644, proc_dointvec_minmax);
5778 set_table_entry(&table[11], "name", sd->name,
5779 CORENAME_MAX_SIZE, 0444, proc_dostring);
5780 /* &table[12] is terminator */
5781
5782 return table;
5783 }
5784
5785 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5786 {
5787 struct ctl_table *entry, *table;
5788 struct sched_domain *sd;
5789 int domain_num = 0, i;
5790 char buf[32];
5791
5792 for_each_domain(cpu, sd)
5793 domain_num++;
5794 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5795 if (table == NULL)
5796 return NULL;
5797
5798 i = 0;
5799 for_each_domain(cpu, sd) {
5800 snprintf(buf, 32, "domain%d", i);
5801 entry->procname = kstrdup(buf, GFP_KERNEL);
5802 entry->mode = 0555;
5803 entry->child = sd_alloc_ctl_domain_table(sd);
5804 entry++;
5805 i++;
5806 }
5807 return table;
5808 }
5809
5810 static struct ctl_table_header *sd_sysctl_header;
5811 static void register_sched_domain_sysctl(void)
5812 {
5813 int i, cpu_num = num_possible_cpus();
5814 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5815 char buf[32];
5816
5817 WARN_ON(sd_ctl_dir[0].child);
5818 sd_ctl_dir[0].child = entry;
5819
5820 if (entry == NULL)
5821 return;
5822
5823 for_each_possible_cpu(i) {
5824 snprintf(buf, 32, "cpu%d", i);
5825 entry->procname = kstrdup(buf, GFP_KERNEL);
5826 entry->mode = 0555;
5827 entry->child = sd_alloc_ctl_cpu_table(i);
5828 entry++;
5829 }
5830
5831 WARN_ON(sd_sysctl_header);
5832 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5833 }
5834
5835 /* may be called multiple times per register */
5836 static void unregister_sched_domain_sysctl(void)
5837 {
5838 if (sd_sysctl_header)
5839 unregister_sysctl_table(sd_sysctl_header);
5840 sd_sysctl_header = NULL;
5841 if (sd_ctl_dir[0].child)
5842 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5843 }
5844 #else
5845 static void register_sched_domain_sysctl(void)
5846 {
5847 }
5848 static void unregister_sched_domain_sysctl(void)
5849 {
5850 }
5851 #endif
5852
5853 static void set_rq_online(struct rq *rq)
5854 {
5855 if (!rq->online) {
5856 const struct sched_class *class;
5857
5858 cpumask_set_cpu(rq->cpu, rq->rd->online);
5859 rq->online = 1;
5860
5861 for_each_class(class) {
5862 if (class->rq_online)
5863 class->rq_online(rq);
5864 }
5865 }
5866 }
5867
5868 static void set_rq_offline(struct rq *rq)
5869 {
5870 if (rq->online) {
5871 const struct sched_class *class;
5872
5873 for_each_class(class) {
5874 if (class->rq_offline)
5875 class->rq_offline(rq);
5876 }
5877
5878 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5879 rq->online = 0;
5880 }
5881 }
5882
5883 /*
5884 * migration_call - callback that gets triggered when a CPU is added.
5885 * Here we can start up the necessary migration thread for the new CPU.
5886 */
5887 static int __cpuinit
5888 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5889 {
5890 int cpu = (long)hcpu;
5891 unsigned long flags;
5892 struct rq *rq = cpu_rq(cpu);
5893
5894 switch (action & ~CPU_TASKS_FROZEN) {
5895
5896 case CPU_UP_PREPARE:
5897 rq->calc_load_update = calc_load_update;
5898 break;
5899
5900 case CPU_ONLINE:
5901 /* Update our root-domain */
5902 raw_spin_lock_irqsave(&rq->lock, flags);
5903 if (rq->rd) {
5904 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5905
5906 set_rq_online(rq);
5907 }
5908 raw_spin_unlock_irqrestore(&rq->lock, flags);
5909 break;
5910
5911 #ifdef CONFIG_HOTPLUG_CPU
5912 case CPU_DYING:
5913 /* Update our root-domain */
5914 raw_spin_lock_irqsave(&rq->lock, flags);
5915 if (rq->rd) {
5916 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5917 set_rq_offline(rq);
5918 }
5919 migrate_tasks(cpu);
5920 BUG_ON(rq->nr_running != 1); /* the migration thread */
5921 raw_spin_unlock_irqrestore(&rq->lock, flags);
5922
5923 migrate_nr_uninterruptible(rq);
5924 calc_global_load_remove(rq);
5925 break;
5926 #endif
5927 }
5928 return NOTIFY_OK;
5929 }
5930
5931 /*
5932 * Register at high priority so that task migration (migrate_all_tasks)
5933 * happens before everything else. This has to be lower priority than
5934 * the notifier in the perf_event subsystem, though.
5935 */
5936 static struct notifier_block __cpuinitdata migration_notifier = {
5937 .notifier_call = migration_call,
5938 .priority = CPU_PRI_MIGRATION,
5939 };
5940
5941 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5942 unsigned long action, void *hcpu)
5943 {
5944 switch (action & ~CPU_TASKS_FROZEN) {
5945 case CPU_ONLINE:
5946 case CPU_DOWN_FAILED:
5947 set_cpu_active((long)hcpu, true);
5948 return NOTIFY_OK;
5949 default:
5950 return NOTIFY_DONE;
5951 }
5952 }
5953
5954 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5955 unsigned long action, void *hcpu)
5956 {
5957 switch (action & ~CPU_TASKS_FROZEN) {
5958 case CPU_DOWN_PREPARE:
5959 set_cpu_active((long)hcpu, false);
5960 return NOTIFY_OK;
5961 default:
5962 return NOTIFY_DONE;
5963 }
5964 }
5965
5966 static int __init migration_init(void)
5967 {
5968 void *cpu = (void *)(long)smp_processor_id();
5969 int err;
5970
5971 /* Initialize migration for the boot CPU */
5972 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5973 BUG_ON(err == NOTIFY_BAD);
5974 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5975 register_cpu_notifier(&migration_notifier);
5976
5977 /* Register cpu active notifiers */
5978 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5979 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5980
5981 return 0;
5982 }
5983 early_initcall(migration_init);
5984 #endif
5985
5986 #ifdef CONFIG_SMP
5987
5988 #ifdef CONFIG_SCHED_DEBUG
5989
5990 static __read_mostly int sched_domain_debug_enabled;
5991
5992 static int __init sched_domain_debug_setup(char *str)
5993 {
5994 sched_domain_debug_enabled = 1;
5995
5996 return 0;
5997 }
5998 early_param("sched_debug", sched_domain_debug_setup);
5999
6000 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6001 struct cpumask *groupmask)
6002 {
6003 struct sched_group *group = sd->groups;
6004 char str[256];
6005
6006 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6007 cpumask_clear(groupmask);
6008
6009 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6010
6011 if (!(sd->flags & SD_LOAD_BALANCE)) {
6012 printk("does not load-balance\n");
6013 if (sd->parent)
6014 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6015 " has parent");
6016 return -1;
6017 }
6018
6019 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6020
6021 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6022 printk(KERN_ERR "ERROR: domain->span does not contain "
6023 "CPU%d\n", cpu);
6024 }
6025 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6026 printk(KERN_ERR "ERROR: domain->groups does not contain"
6027 " CPU%d\n", cpu);
6028 }
6029
6030 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6031 do {
6032 if (!group) {
6033 printk("\n");
6034 printk(KERN_ERR "ERROR: group is NULL\n");
6035 break;
6036 }
6037
6038 if (!group->cpu_power) {
6039 printk(KERN_CONT "\n");
6040 printk(KERN_ERR "ERROR: domain->cpu_power not "
6041 "set\n");
6042 break;
6043 }
6044
6045 if (!cpumask_weight(sched_group_cpus(group))) {
6046 printk(KERN_CONT "\n");
6047 printk(KERN_ERR "ERROR: empty group\n");
6048 break;
6049 }
6050
6051 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6052 printk(KERN_CONT "\n");
6053 printk(KERN_ERR "ERROR: repeated CPUs\n");
6054 break;
6055 }
6056
6057 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6058
6059 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6060
6061 printk(KERN_CONT " %s", str);
6062 if (group->cpu_power != SCHED_LOAD_SCALE) {
6063 printk(KERN_CONT " (cpu_power = %d)",
6064 group->cpu_power);
6065 }
6066
6067 group = group->next;
6068 } while (group != sd->groups);
6069 printk(KERN_CONT "\n");
6070
6071 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6072 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6073
6074 if (sd->parent &&
6075 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6076 printk(KERN_ERR "ERROR: parent span is not a superset "
6077 "of domain->span\n");
6078 return 0;
6079 }
6080
6081 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6082 {
6083 cpumask_var_t groupmask;
6084 int level = 0;
6085
6086 if (!sched_domain_debug_enabled)
6087 return;
6088
6089 if (!sd) {
6090 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6091 return;
6092 }
6093
6094 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6095
6096 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6097 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6098 return;
6099 }
6100
6101 for (;;) {
6102 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6103 break;
6104 level++;
6105 sd = sd->parent;
6106 if (!sd)
6107 break;
6108 }
6109 free_cpumask_var(groupmask);
6110 }
6111 #else /* !CONFIG_SCHED_DEBUG */
6112 # define sched_domain_debug(sd, cpu) do { } while (0)
6113 #endif /* CONFIG_SCHED_DEBUG */
6114
6115 static int sd_degenerate(struct sched_domain *sd)
6116 {
6117 if (cpumask_weight(sched_domain_span(sd)) == 1)
6118 return 1;
6119
6120 /* Following flags need at least 2 groups */
6121 if (sd->flags & (SD_LOAD_BALANCE |
6122 SD_BALANCE_NEWIDLE |
6123 SD_BALANCE_FORK |
6124 SD_BALANCE_EXEC |
6125 SD_SHARE_CPUPOWER |
6126 SD_SHARE_PKG_RESOURCES)) {
6127 if (sd->groups != sd->groups->next)
6128 return 0;
6129 }
6130
6131 /* Following flags don't use groups */
6132 if (sd->flags & (SD_WAKE_AFFINE))
6133 return 0;
6134
6135 return 1;
6136 }
6137
6138 static int
6139 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6140 {
6141 unsigned long cflags = sd->flags, pflags = parent->flags;
6142
6143 if (sd_degenerate(parent))
6144 return 1;
6145
6146 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6147 return 0;
6148
6149 /* Flags needing groups don't count if only 1 group in parent */
6150 if (parent->groups == parent->groups->next) {
6151 pflags &= ~(SD_LOAD_BALANCE |
6152 SD_BALANCE_NEWIDLE |
6153 SD_BALANCE_FORK |
6154 SD_BALANCE_EXEC |
6155 SD_SHARE_CPUPOWER |
6156 SD_SHARE_PKG_RESOURCES);
6157 if (nr_node_ids == 1)
6158 pflags &= ~SD_SERIALIZE;
6159 }
6160 if (~cflags & pflags)
6161 return 0;
6162
6163 return 1;
6164 }
6165
6166 static void free_rootdomain(struct root_domain *rd)
6167 {
6168 synchronize_sched();
6169
6170 cpupri_cleanup(&rd->cpupri);
6171
6172 free_cpumask_var(rd->rto_mask);
6173 free_cpumask_var(rd->online);
6174 free_cpumask_var(rd->span);
6175 kfree(rd);
6176 }
6177
6178 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6179 {
6180 struct root_domain *old_rd = NULL;
6181 unsigned long flags;
6182
6183 raw_spin_lock_irqsave(&rq->lock, flags);
6184
6185 if (rq->rd) {
6186 old_rd = rq->rd;
6187
6188 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6189 set_rq_offline(rq);
6190
6191 cpumask_clear_cpu(rq->cpu, old_rd->span);
6192
6193 /*
6194 * If we dont want to free the old_rt yet then
6195 * set old_rd to NULL to skip the freeing later
6196 * in this function:
6197 */
6198 if (!atomic_dec_and_test(&old_rd->refcount))
6199 old_rd = NULL;
6200 }
6201
6202 atomic_inc(&rd->refcount);
6203 rq->rd = rd;
6204
6205 cpumask_set_cpu(rq->cpu, rd->span);
6206 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6207 set_rq_online(rq);
6208
6209 raw_spin_unlock_irqrestore(&rq->lock, flags);
6210
6211 if (old_rd)
6212 free_rootdomain(old_rd);
6213 }
6214
6215 static int init_rootdomain(struct root_domain *rd)
6216 {
6217 memset(rd, 0, sizeof(*rd));
6218
6219 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6220 goto out;
6221 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6222 goto free_span;
6223 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6224 goto free_online;
6225
6226 if (cpupri_init(&rd->cpupri) != 0)
6227 goto free_rto_mask;
6228 return 0;
6229
6230 free_rto_mask:
6231 free_cpumask_var(rd->rto_mask);
6232 free_online:
6233 free_cpumask_var(rd->online);
6234 free_span:
6235 free_cpumask_var(rd->span);
6236 out:
6237 return -ENOMEM;
6238 }
6239
6240 static void init_defrootdomain(void)
6241 {
6242 init_rootdomain(&def_root_domain);
6243
6244 atomic_set(&def_root_domain.refcount, 1);
6245 }
6246
6247 static struct root_domain *alloc_rootdomain(void)
6248 {
6249 struct root_domain *rd;
6250
6251 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6252 if (!rd)
6253 return NULL;
6254
6255 if (init_rootdomain(rd) != 0) {
6256 kfree(rd);
6257 return NULL;
6258 }
6259
6260 return rd;
6261 }
6262
6263 /*
6264 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6265 * hold the hotplug lock.
6266 */
6267 static void
6268 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6269 {
6270 struct rq *rq = cpu_rq(cpu);
6271 struct sched_domain *tmp;
6272
6273 for (tmp = sd; tmp; tmp = tmp->parent)
6274 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6275
6276 /* Remove the sched domains which do not contribute to scheduling. */
6277 for (tmp = sd; tmp; ) {
6278 struct sched_domain *parent = tmp->parent;
6279 if (!parent)
6280 break;
6281
6282 if (sd_parent_degenerate(tmp, parent)) {
6283 tmp->parent = parent->parent;
6284 if (parent->parent)
6285 parent->parent->child = tmp;
6286 } else
6287 tmp = tmp->parent;
6288 }
6289
6290 if (sd && sd_degenerate(sd)) {
6291 sd = sd->parent;
6292 if (sd)
6293 sd->child = NULL;
6294 }
6295
6296 sched_domain_debug(sd, cpu);
6297
6298 rq_attach_root(rq, rd);
6299 rcu_assign_pointer(rq->sd, sd);
6300 }
6301
6302 /* cpus with isolated domains */
6303 static cpumask_var_t cpu_isolated_map;
6304
6305 /* Setup the mask of cpus configured for isolated domains */
6306 static int __init isolated_cpu_setup(char *str)
6307 {
6308 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6309 cpulist_parse(str, cpu_isolated_map);
6310 return 1;
6311 }
6312
6313 __setup("isolcpus=", isolated_cpu_setup);
6314
6315 /*
6316 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6317 * to a function which identifies what group(along with sched group) a CPU
6318 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6319 * (due to the fact that we keep track of groups covered with a struct cpumask).
6320 *
6321 * init_sched_build_groups will build a circular linked list of the groups
6322 * covered by the given span, and will set each group's ->cpumask correctly,
6323 * and ->cpu_power to 0.
6324 */
6325 static void
6326 init_sched_build_groups(const struct cpumask *span,
6327 const struct cpumask *cpu_map,
6328 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6329 struct sched_group **sg,
6330 struct cpumask *tmpmask),
6331 struct cpumask *covered, struct cpumask *tmpmask)
6332 {
6333 struct sched_group *first = NULL, *last = NULL;
6334 int i;
6335
6336 cpumask_clear(covered);
6337
6338 for_each_cpu(i, span) {
6339 struct sched_group *sg;
6340 int group = group_fn(i, cpu_map, &sg, tmpmask);
6341 int j;
6342
6343 if (cpumask_test_cpu(i, covered))
6344 continue;
6345
6346 cpumask_clear(sched_group_cpus(sg));
6347 sg->cpu_power = 0;
6348
6349 for_each_cpu(j, span) {
6350 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6351 continue;
6352
6353 cpumask_set_cpu(j, covered);
6354 cpumask_set_cpu(j, sched_group_cpus(sg));
6355 }
6356 if (!first)
6357 first = sg;
6358 if (last)
6359 last->next = sg;
6360 last = sg;
6361 }
6362 last->next = first;
6363 }
6364
6365 #define SD_NODES_PER_DOMAIN 16
6366
6367 #ifdef CONFIG_NUMA
6368
6369 /**
6370 * find_next_best_node - find the next node to include in a sched_domain
6371 * @node: node whose sched_domain we're building
6372 * @used_nodes: nodes already in the sched_domain
6373 *
6374 * Find the next node to include in a given scheduling domain. Simply
6375 * finds the closest node not already in the @used_nodes map.
6376 *
6377 * Should use nodemask_t.
6378 */
6379 static int find_next_best_node(int node, nodemask_t *used_nodes)
6380 {
6381 int i, n, val, min_val, best_node = 0;
6382
6383 min_val = INT_MAX;
6384
6385 for (i = 0; i < nr_node_ids; i++) {
6386 /* Start at @node */
6387 n = (node + i) % nr_node_ids;
6388
6389 if (!nr_cpus_node(n))
6390 continue;
6391
6392 /* Skip already used nodes */
6393 if (node_isset(n, *used_nodes))
6394 continue;
6395
6396 /* Simple min distance search */
6397 val = node_distance(node, n);
6398
6399 if (val < min_val) {
6400 min_val = val;
6401 best_node = n;
6402 }
6403 }
6404
6405 node_set(best_node, *used_nodes);
6406 return best_node;
6407 }
6408
6409 /**
6410 * sched_domain_node_span - get a cpumask for a node's sched_domain
6411 * @node: node whose cpumask we're constructing
6412 * @span: resulting cpumask
6413 *
6414 * Given a node, construct a good cpumask for its sched_domain to span. It
6415 * should be one that prevents unnecessary balancing, but also spreads tasks
6416 * out optimally.
6417 */
6418 static void sched_domain_node_span(int node, struct cpumask *span)
6419 {
6420 nodemask_t used_nodes;
6421 int i;
6422
6423 cpumask_clear(span);
6424 nodes_clear(used_nodes);
6425
6426 cpumask_or(span, span, cpumask_of_node(node));
6427 node_set(node, used_nodes);
6428
6429 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6430 int next_node = find_next_best_node(node, &used_nodes);
6431
6432 cpumask_or(span, span, cpumask_of_node(next_node));
6433 }
6434 }
6435 #endif /* CONFIG_NUMA */
6436
6437 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6438
6439 /*
6440 * The cpus mask in sched_group and sched_domain hangs off the end.
6441 *
6442 * ( See the the comments in include/linux/sched.h:struct sched_group
6443 * and struct sched_domain. )
6444 */
6445 struct static_sched_group {
6446 struct sched_group sg;
6447 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6448 };
6449
6450 struct static_sched_domain {
6451 struct sched_domain sd;
6452 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6453 };
6454
6455 struct s_data {
6456 #ifdef CONFIG_NUMA
6457 int sd_allnodes;
6458 cpumask_var_t domainspan;
6459 cpumask_var_t covered;
6460 cpumask_var_t notcovered;
6461 #endif
6462 cpumask_var_t nodemask;
6463 cpumask_var_t this_sibling_map;
6464 cpumask_var_t this_core_map;
6465 cpumask_var_t this_book_map;
6466 cpumask_var_t send_covered;
6467 cpumask_var_t tmpmask;
6468 struct sched_group **sched_group_nodes;
6469 struct root_domain *rd;
6470 };
6471
6472 enum s_alloc {
6473 sa_sched_groups = 0,
6474 sa_rootdomain,
6475 sa_tmpmask,
6476 sa_send_covered,
6477 sa_this_book_map,
6478 sa_this_core_map,
6479 sa_this_sibling_map,
6480 sa_nodemask,
6481 sa_sched_group_nodes,
6482 #ifdef CONFIG_NUMA
6483 sa_notcovered,
6484 sa_covered,
6485 sa_domainspan,
6486 #endif
6487 sa_none,
6488 };
6489
6490 /*
6491 * SMT sched-domains:
6492 */
6493 #ifdef CONFIG_SCHED_SMT
6494 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6495 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6496
6497 static int
6498 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6499 struct sched_group **sg, struct cpumask *unused)
6500 {
6501 if (sg)
6502 *sg = &per_cpu(sched_groups, cpu).sg;
6503 return cpu;
6504 }
6505 #endif /* CONFIG_SCHED_SMT */
6506
6507 /*
6508 * multi-core sched-domains:
6509 */
6510 #ifdef CONFIG_SCHED_MC
6511 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6512 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6513
6514 static int
6515 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6516 struct sched_group **sg, struct cpumask *mask)
6517 {
6518 int group;
6519 #ifdef CONFIG_SCHED_SMT
6520 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6521 group = cpumask_first(mask);
6522 #else
6523 group = cpu;
6524 #endif
6525 if (sg)
6526 *sg = &per_cpu(sched_group_core, group).sg;
6527 return group;
6528 }
6529 #endif /* CONFIG_SCHED_MC */
6530
6531 /*
6532 * book sched-domains:
6533 */
6534 #ifdef CONFIG_SCHED_BOOK
6535 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6536 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6537
6538 static int
6539 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6540 struct sched_group **sg, struct cpumask *mask)
6541 {
6542 int group = cpu;
6543 #ifdef CONFIG_SCHED_MC
6544 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6545 group = cpumask_first(mask);
6546 #elif defined(CONFIG_SCHED_SMT)
6547 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6548 group = cpumask_first(mask);
6549 #endif
6550 if (sg)
6551 *sg = &per_cpu(sched_group_book, group).sg;
6552 return group;
6553 }
6554 #endif /* CONFIG_SCHED_BOOK */
6555
6556 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6557 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6558
6559 static int
6560 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6561 struct sched_group **sg, struct cpumask *mask)
6562 {
6563 int group;
6564 #ifdef CONFIG_SCHED_BOOK
6565 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6566 group = cpumask_first(mask);
6567 #elif defined(CONFIG_SCHED_MC)
6568 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6569 group = cpumask_first(mask);
6570 #elif defined(CONFIG_SCHED_SMT)
6571 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6572 group = cpumask_first(mask);
6573 #else
6574 group = cpu;
6575 #endif
6576 if (sg)
6577 *sg = &per_cpu(sched_group_phys, group).sg;
6578 return group;
6579 }
6580
6581 #ifdef CONFIG_NUMA
6582 /*
6583 * The init_sched_build_groups can't handle what we want to do with node
6584 * groups, so roll our own. Now each node has its own list of groups which
6585 * gets dynamically allocated.
6586 */
6587 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6588 static struct sched_group ***sched_group_nodes_bycpu;
6589
6590 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6591 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6592
6593 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6594 struct sched_group **sg,
6595 struct cpumask *nodemask)
6596 {
6597 int group;
6598
6599 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6600 group = cpumask_first(nodemask);
6601
6602 if (sg)
6603 *sg = &per_cpu(sched_group_allnodes, group).sg;
6604 return group;
6605 }
6606
6607 static void init_numa_sched_groups_power(struct sched_group *group_head)
6608 {
6609 struct sched_group *sg = group_head;
6610 int j;
6611
6612 if (!sg)
6613 return;
6614 do {
6615 for_each_cpu(j, sched_group_cpus(sg)) {
6616 struct sched_domain *sd;
6617
6618 sd = &per_cpu(phys_domains, j).sd;
6619 if (j != group_first_cpu(sd->groups)) {
6620 /*
6621 * Only add "power" once for each
6622 * physical package.
6623 */
6624 continue;
6625 }
6626
6627 sg->cpu_power += sd->groups->cpu_power;
6628 }
6629 sg = sg->next;
6630 } while (sg != group_head);
6631 }
6632
6633 static int build_numa_sched_groups(struct s_data *d,
6634 const struct cpumask *cpu_map, int num)
6635 {
6636 struct sched_domain *sd;
6637 struct sched_group *sg, *prev;
6638 int n, j;
6639
6640 cpumask_clear(d->covered);
6641 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6642 if (cpumask_empty(d->nodemask)) {
6643 d->sched_group_nodes[num] = NULL;
6644 goto out;
6645 }
6646
6647 sched_domain_node_span(num, d->domainspan);
6648 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6649
6650 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6651 GFP_KERNEL, num);
6652 if (!sg) {
6653 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6654 num);
6655 return -ENOMEM;
6656 }
6657 d->sched_group_nodes[num] = sg;
6658
6659 for_each_cpu(j, d->nodemask) {
6660 sd = &per_cpu(node_domains, j).sd;
6661 sd->groups = sg;
6662 }
6663
6664 sg->cpu_power = 0;
6665 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6666 sg->next = sg;
6667 cpumask_or(d->covered, d->covered, d->nodemask);
6668
6669 prev = sg;
6670 for (j = 0; j < nr_node_ids; j++) {
6671 n = (num + j) % nr_node_ids;
6672 cpumask_complement(d->notcovered, d->covered);
6673 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6674 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6675 if (cpumask_empty(d->tmpmask))
6676 break;
6677 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6678 if (cpumask_empty(d->tmpmask))
6679 continue;
6680 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6681 GFP_KERNEL, num);
6682 if (!sg) {
6683 printk(KERN_WARNING
6684 "Can not alloc domain group for node %d\n", j);
6685 return -ENOMEM;
6686 }
6687 sg->cpu_power = 0;
6688 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6689 sg->next = prev->next;
6690 cpumask_or(d->covered, d->covered, d->tmpmask);
6691 prev->next = sg;
6692 prev = sg;
6693 }
6694 out:
6695 return 0;
6696 }
6697 #endif /* CONFIG_NUMA */
6698
6699 #ifdef CONFIG_NUMA
6700 /* Free memory allocated for various sched_group structures */
6701 static void free_sched_groups(const struct cpumask *cpu_map,
6702 struct cpumask *nodemask)
6703 {
6704 int cpu, i;
6705
6706 for_each_cpu(cpu, cpu_map) {
6707 struct sched_group **sched_group_nodes
6708 = sched_group_nodes_bycpu[cpu];
6709
6710 if (!sched_group_nodes)
6711 continue;
6712
6713 for (i = 0; i < nr_node_ids; i++) {
6714 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6715
6716 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6717 if (cpumask_empty(nodemask))
6718 continue;
6719
6720 if (sg == NULL)
6721 continue;
6722 sg = sg->next;
6723 next_sg:
6724 oldsg = sg;
6725 sg = sg->next;
6726 kfree(oldsg);
6727 if (oldsg != sched_group_nodes[i])
6728 goto next_sg;
6729 }
6730 kfree(sched_group_nodes);
6731 sched_group_nodes_bycpu[cpu] = NULL;
6732 }
6733 }
6734 #else /* !CONFIG_NUMA */
6735 static void free_sched_groups(const struct cpumask *cpu_map,
6736 struct cpumask *nodemask)
6737 {
6738 }
6739 #endif /* CONFIG_NUMA */
6740
6741 /*
6742 * Initialize sched groups cpu_power.
6743 *
6744 * cpu_power indicates the capacity of sched group, which is used while
6745 * distributing the load between different sched groups in a sched domain.
6746 * Typically cpu_power for all the groups in a sched domain will be same unless
6747 * there are asymmetries in the topology. If there are asymmetries, group
6748 * having more cpu_power will pickup more load compared to the group having
6749 * less cpu_power.
6750 */
6751 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6752 {
6753 struct sched_domain *child;
6754 struct sched_group *group;
6755 long power;
6756 int weight;
6757
6758 WARN_ON(!sd || !sd->groups);
6759
6760 if (cpu != group_first_cpu(sd->groups))
6761 return;
6762
6763 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6764
6765 child = sd->child;
6766
6767 sd->groups->cpu_power = 0;
6768
6769 if (!child) {
6770 power = SCHED_LOAD_SCALE;
6771 weight = cpumask_weight(sched_domain_span(sd));
6772 /*
6773 * SMT siblings share the power of a single core.
6774 * Usually multiple threads get a better yield out of
6775 * that one core than a single thread would have,
6776 * reflect that in sd->smt_gain.
6777 */
6778 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6779 power *= sd->smt_gain;
6780 power /= weight;
6781 power >>= SCHED_LOAD_SHIFT;
6782 }
6783 sd->groups->cpu_power += power;
6784 return;
6785 }
6786
6787 /*
6788 * Add cpu_power of each child group to this groups cpu_power.
6789 */
6790 group = child->groups;
6791 do {
6792 sd->groups->cpu_power += group->cpu_power;
6793 group = group->next;
6794 } while (group != child->groups);
6795 }
6796
6797 /*
6798 * Initializers for schedule domains
6799 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6800 */
6801
6802 #ifdef CONFIG_SCHED_DEBUG
6803 # define SD_INIT_NAME(sd, type) sd->name = #type
6804 #else
6805 # define SD_INIT_NAME(sd, type) do { } while (0)
6806 #endif
6807
6808 #define SD_INIT(sd, type) sd_init_##type(sd)
6809
6810 #define SD_INIT_FUNC(type) \
6811 static noinline void sd_init_##type(struct sched_domain *sd) \
6812 { \
6813 memset(sd, 0, sizeof(*sd)); \
6814 *sd = SD_##type##_INIT; \
6815 sd->level = SD_LV_##type; \
6816 SD_INIT_NAME(sd, type); \
6817 }
6818
6819 SD_INIT_FUNC(CPU)
6820 #ifdef CONFIG_NUMA
6821 SD_INIT_FUNC(ALLNODES)
6822 SD_INIT_FUNC(NODE)
6823 #endif
6824 #ifdef CONFIG_SCHED_SMT
6825 SD_INIT_FUNC(SIBLING)
6826 #endif
6827 #ifdef CONFIG_SCHED_MC
6828 SD_INIT_FUNC(MC)
6829 #endif
6830 #ifdef CONFIG_SCHED_BOOK
6831 SD_INIT_FUNC(BOOK)
6832 #endif
6833
6834 static int default_relax_domain_level = -1;
6835
6836 static int __init setup_relax_domain_level(char *str)
6837 {
6838 unsigned long val;
6839
6840 val = simple_strtoul(str, NULL, 0);
6841 if (val < SD_LV_MAX)
6842 default_relax_domain_level = val;
6843
6844 return 1;
6845 }
6846 __setup("relax_domain_level=", setup_relax_domain_level);
6847
6848 static void set_domain_attribute(struct sched_domain *sd,
6849 struct sched_domain_attr *attr)
6850 {
6851 int request;
6852
6853 if (!attr || attr->relax_domain_level < 0) {
6854 if (default_relax_domain_level < 0)
6855 return;
6856 else
6857 request = default_relax_domain_level;
6858 } else
6859 request = attr->relax_domain_level;
6860 if (request < sd->level) {
6861 /* turn off idle balance on this domain */
6862 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6863 } else {
6864 /* turn on idle balance on this domain */
6865 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6866 }
6867 }
6868
6869 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6870 const struct cpumask *cpu_map)
6871 {
6872 switch (what) {
6873 case sa_sched_groups:
6874 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6875 d->sched_group_nodes = NULL;
6876 case sa_rootdomain:
6877 free_rootdomain(d->rd); /* fall through */
6878 case sa_tmpmask:
6879 free_cpumask_var(d->tmpmask); /* fall through */
6880 case sa_send_covered:
6881 free_cpumask_var(d->send_covered); /* fall through */
6882 case sa_this_book_map:
6883 free_cpumask_var(d->this_book_map); /* fall through */
6884 case sa_this_core_map:
6885 free_cpumask_var(d->this_core_map); /* fall through */
6886 case sa_this_sibling_map:
6887 free_cpumask_var(d->this_sibling_map); /* fall through */
6888 case sa_nodemask:
6889 free_cpumask_var(d->nodemask); /* fall through */
6890 case sa_sched_group_nodes:
6891 #ifdef CONFIG_NUMA
6892 kfree(d->sched_group_nodes); /* fall through */
6893 case sa_notcovered:
6894 free_cpumask_var(d->notcovered); /* fall through */
6895 case sa_covered:
6896 free_cpumask_var(d->covered); /* fall through */
6897 case sa_domainspan:
6898 free_cpumask_var(d->domainspan); /* fall through */
6899 #endif
6900 case sa_none:
6901 break;
6902 }
6903 }
6904
6905 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6906 const struct cpumask *cpu_map)
6907 {
6908 #ifdef CONFIG_NUMA
6909 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6910 return sa_none;
6911 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6912 return sa_domainspan;
6913 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6914 return sa_covered;
6915 /* Allocate the per-node list of sched groups */
6916 d->sched_group_nodes = kcalloc(nr_node_ids,
6917 sizeof(struct sched_group *), GFP_KERNEL);
6918 if (!d->sched_group_nodes) {
6919 printk(KERN_WARNING "Can not alloc sched group node list\n");
6920 return sa_notcovered;
6921 }
6922 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6923 #endif
6924 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6925 return sa_sched_group_nodes;
6926 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6927 return sa_nodemask;
6928 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6929 return sa_this_sibling_map;
6930 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
6931 return sa_this_core_map;
6932 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6933 return sa_this_book_map;
6934 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6935 return sa_send_covered;
6936 d->rd = alloc_rootdomain();
6937 if (!d->rd) {
6938 printk(KERN_WARNING "Cannot alloc root domain\n");
6939 return sa_tmpmask;
6940 }
6941 return sa_rootdomain;
6942 }
6943
6944 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6945 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6946 {
6947 struct sched_domain *sd = NULL;
6948 #ifdef CONFIG_NUMA
6949 struct sched_domain *parent;
6950
6951 d->sd_allnodes = 0;
6952 if (cpumask_weight(cpu_map) >
6953 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6954 sd = &per_cpu(allnodes_domains, i).sd;
6955 SD_INIT(sd, ALLNODES);
6956 set_domain_attribute(sd, attr);
6957 cpumask_copy(sched_domain_span(sd), cpu_map);
6958 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6959 d->sd_allnodes = 1;
6960 }
6961 parent = sd;
6962
6963 sd = &per_cpu(node_domains, i).sd;
6964 SD_INIT(sd, NODE);
6965 set_domain_attribute(sd, attr);
6966 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6967 sd->parent = parent;
6968 if (parent)
6969 parent->child = sd;
6970 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6971 #endif
6972 return sd;
6973 }
6974
6975 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6977 struct sched_domain *parent, int i)
6978 {
6979 struct sched_domain *sd;
6980 sd = &per_cpu(phys_domains, i).sd;
6981 SD_INIT(sd, CPU);
6982 set_domain_attribute(sd, attr);
6983 cpumask_copy(sched_domain_span(sd), d->nodemask);
6984 sd->parent = parent;
6985 if (parent)
6986 parent->child = sd;
6987 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6988 return sd;
6989 }
6990
6991 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6993 struct sched_domain *parent, int i)
6994 {
6995 struct sched_domain *sd = parent;
6996 #ifdef CONFIG_SCHED_BOOK
6997 sd = &per_cpu(book_domains, i).sd;
6998 SD_INIT(sd, BOOK);
6999 set_domain_attribute(sd, attr);
7000 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7001 sd->parent = parent;
7002 parent->child = sd;
7003 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7004 #endif
7005 return sd;
7006 }
7007
7008 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7009 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7010 struct sched_domain *parent, int i)
7011 {
7012 struct sched_domain *sd = parent;
7013 #ifdef CONFIG_SCHED_MC
7014 sd = &per_cpu(core_domains, i).sd;
7015 SD_INIT(sd, MC);
7016 set_domain_attribute(sd, attr);
7017 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7018 sd->parent = parent;
7019 parent->child = sd;
7020 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7021 #endif
7022 return sd;
7023 }
7024
7025 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7026 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7027 struct sched_domain *parent, int i)
7028 {
7029 struct sched_domain *sd = parent;
7030 #ifdef CONFIG_SCHED_SMT
7031 sd = &per_cpu(cpu_domains, i).sd;
7032 SD_INIT(sd, SIBLING);
7033 set_domain_attribute(sd, attr);
7034 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7035 sd->parent = parent;
7036 parent->child = sd;
7037 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7038 #endif
7039 return sd;
7040 }
7041
7042 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7043 const struct cpumask *cpu_map, int cpu)
7044 {
7045 switch (l) {
7046 #ifdef CONFIG_SCHED_SMT
7047 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7048 cpumask_and(d->this_sibling_map, cpu_map,
7049 topology_thread_cpumask(cpu));
7050 if (cpu == cpumask_first(d->this_sibling_map))
7051 init_sched_build_groups(d->this_sibling_map, cpu_map,
7052 &cpu_to_cpu_group,
7053 d->send_covered, d->tmpmask);
7054 break;
7055 #endif
7056 #ifdef CONFIG_SCHED_MC
7057 case SD_LV_MC: /* set up multi-core groups */
7058 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7059 if (cpu == cpumask_first(d->this_core_map))
7060 init_sched_build_groups(d->this_core_map, cpu_map,
7061 &cpu_to_core_group,
7062 d->send_covered, d->tmpmask);
7063 break;
7064 #endif
7065 #ifdef CONFIG_SCHED_BOOK
7066 case SD_LV_BOOK: /* set up book groups */
7067 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7068 if (cpu == cpumask_first(d->this_book_map))
7069 init_sched_build_groups(d->this_book_map, cpu_map,
7070 &cpu_to_book_group,
7071 d->send_covered, d->tmpmask);
7072 break;
7073 #endif
7074 case SD_LV_CPU: /* set up physical groups */
7075 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7076 if (!cpumask_empty(d->nodemask))
7077 init_sched_build_groups(d->nodemask, cpu_map,
7078 &cpu_to_phys_group,
7079 d->send_covered, d->tmpmask);
7080 break;
7081 #ifdef CONFIG_NUMA
7082 case SD_LV_ALLNODES:
7083 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7084 d->send_covered, d->tmpmask);
7085 break;
7086 #endif
7087 default:
7088 break;
7089 }
7090 }
7091
7092 /*
7093 * Build sched domains for a given set of cpus and attach the sched domains
7094 * to the individual cpus
7095 */
7096 static int __build_sched_domains(const struct cpumask *cpu_map,
7097 struct sched_domain_attr *attr)
7098 {
7099 enum s_alloc alloc_state = sa_none;
7100 struct s_data d;
7101 struct sched_domain *sd;
7102 int i;
7103 #ifdef CONFIG_NUMA
7104 d.sd_allnodes = 0;
7105 #endif
7106
7107 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7108 if (alloc_state != sa_rootdomain)
7109 goto error;
7110 alloc_state = sa_sched_groups;
7111
7112 /*
7113 * Set up domains for cpus specified by the cpu_map.
7114 */
7115 for_each_cpu(i, cpu_map) {
7116 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7117 cpu_map);
7118
7119 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7120 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7121 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7122 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7123 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7124 }
7125
7126 for_each_cpu(i, cpu_map) {
7127 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7128 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7129 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7130 }
7131
7132 /* Set up physical groups */
7133 for (i = 0; i < nr_node_ids; i++)
7134 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7135
7136 #ifdef CONFIG_NUMA
7137 /* Set up node groups */
7138 if (d.sd_allnodes)
7139 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7140
7141 for (i = 0; i < nr_node_ids; i++)
7142 if (build_numa_sched_groups(&d, cpu_map, i))
7143 goto error;
7144 #endif
7145
7146 /* Calculate CPU power for physical packages and nodes */
7147 #ifdef CONFIG_SCHED_SMT
7148 for_each_cpu(i, cpu_map) {
7149 sd = &per_cpu(cpu_domains, i).sd;
7150 init_sched_groups_power(i, sd);
7151 }
7152 #endif
7153 #ifdef CONFIG_SCHED_MC
7154 for_each_cpu(i, cpu_map) {
7155 sd = &per_cpu(core_domains, i).sd;
7156 init_sched_groups_power(i, sd);
7157 }
7158 #endif
7159 #ifdef CONFIG_SCHED_BOOK
7160 for_each_cpu(i, cpu_map) {
7161 sd = &per_cpu(book_domains, i).sd;
7162 init_sched_groups_power(i, sd);
7163 }
7164 #endif
7165
7166 for_each_cpu(i, cpu_map) {
7167 sd = &per_cpu(phys_domains, i).sd;
7168 init_sched_groups_power(i, sd);
7169 }
7170
7171 #ifdef CONFIG_NUMA
7172 for (i = 0; i < nr_node_ids; i++)
7173 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7174
7175 if (d.sd_allnodes) {
7176 struct sched_group *sg;
7177
7178 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7179 d.tmpmask);
7180 init_numa_sched_groups_power(sg);
7181 }
7182 #endif
7183
7184 /* Attach the domains */
7185 for_each_cpu(i, cpu_map) {
7186 #ifdef CONFIG_SCHED_SMT
7187 sd = &per_cpu(cpu_domains, i).sd;
7188 #elif defined(CONFIG_SCHED_MC)
7189 sd = &per_cpu(core_domains, i).sd;
7190 #elif defined(CONFIG_SCHED_BOOK)
7191 sd = &per_cpu(book_domains, i).sd;
7192 #else
7193 sd = &per_cpu(phys_domains, i).sd;
7194 #endif
7195 cpu_attach_domain(sd, d.rd, i);
7196 }
7197
7198 d.sched_group_nodes = NULL; /* don't free this we still need it */
7199 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7200 return 0;
7201
7202 error:
7203 __free_domain_allocs(&d, alloc_state, cpu_map);
7204 return -ENOMEM;
7205 }
7206
7207 static int build_sched_domains(const struct cpumask *cpu_map)
7208 {
7209 return __build_sched_domains(cpu_map, NULL);
7210 }
7211
7212 static cpumask_var_t *doms_cur; /* current sched domains */
7213 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7214 static struct sched_domain_attr *dattr_cur;
7215 /* attribues of custom domains in 'doms_cur' */
7216
7217 /*
7218 * Special case: If a kmalloc of a doms_cur partition (array of
7219 * cpumask) fails, then fallback to a single sched domain,
7220 * as determined by the single cpumask fallback_doms.
7221 */
7222 static cpumask_var_t fallback_doms;
7223
7224 /*
7225 * arch_update_cpu_topology lets virtualized architectures update the
7226 * cpu core maps. It is supposed to return 1 if the topology changed
7227 * or 0 if it stayed the same.
7228 */
7229 int __attribute__((weak)) arch_update_cpu_topology(void)
7230 {
7231 return 0;
7232 }
7233
7234 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7235 {
7236 int i;
7237 cpumask_var_t *doms;
7238
7239 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7240 if (!doms)
7241 return NULL;
7242 for (i = 0; i < ndoms; i++) {
7243 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7244 free_sched_domains(doms, i);
7245 return NULL;
7246 }
7247 }
7248 return doms;
7249 }
7250
7251 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7252 {
7253 unsigned int i;
7254 for (i = 0; i < ndoms; i++)
7255 free_cpumask_var(doms[i]);
7256 kfree(doms);
7257 }
7258
7259 /*
7260 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7261 * For now this just excludes isolated cpus, but could be used to
7262 * exclude other special cases in the future.
7263 */
7264 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7265 {
7266 int err;
7267
7268 arch_update_cpu_topology();
7269 ndoms_cur = 1;
7270 doms_cur = alloc_sched_domains(ndoms_cur);
7271 if (!doms_cur)
7272 doms_cur = &fallback_doms;
7273 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7274 dattr_cur = NULL;
7275 err = build_sched_domains(doms_cur[0]);
7276 register_sched_domain_sysctl();
7277
7278 return err;
7279 }
7280
7281 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7282 struct cpumask *tmpmask)
7283 {
7284 free_sched_groups(cpu_map, tmpmask);
7285 }
7286
7287 /*
7288 * Detach sched domains from a group of cpus specified in cpu_map
7289 * These cpus will now be attached to the NULL domain
7290 */
7291 static void detach_destroy_domains(const struct cpumask *cpu_map)
7292 {
7293 /* Save because hotplug lock held. */
7294 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7295 int i;
7296
7297 for_each_cpu(i, cpu_map)
7298 cpu_attach_domain(NULL, &def_root_domain, i);
7299 synchronize_sched();
7300 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7301 }
7302
7303 /* handle null as "default" */
7304 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7305 struct sched_domain_attr *new, int idx_new)
7306 {
7307 struct sched_domain_attr tmp;
7308
7309 /* fast path */
7310 if (!new && !cur)
7311 return 1;
7312
7313 tmp = SD_ATTR_INIT;
7314 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7315 new ? (new + idx_new) : &tmp,
7316 sizeof(struct sched_domain_attr));
7317 }
7318
7319 /*
7320 * Partition sched domains as specified by the 'ndoms_new'
7321 * cpumasks in the array doms_new[] of cpumasks. This compares
7322 * doms_new[] to the current sched domain partitioning, doms_cur[].
7323 * It destroys each deleted domain and builds each new domain.
7324 *
7325 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7326 * The masks don't intersect (don't overlap.) We should setup one
7327 * sched domain for each mask. CPUs not in any of the cpumasks will
7328 * not be load balanced. If the same cpumask appears both in the
7329 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7330 * it as it is.
7331 *
7332 * The passed in 'doms_new' should be allocated using
7333 * alloc_sched_domains. This routine takes ownership of it and will
7334 * free_sched_domains it when done with it. If the caller failed the
7335 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7336 * and partition_sched_domains() will fallback to the single partition
7337 * 'fallback_doms', it also forces the domains to be rebuilt.
7338 *
7339 * If doms_new == NULL it will be replaced with cpu_online_mask.
7340 * ndoms_new == 0 is a special case for destroying existing domains,
7341 * and it will not create the default domain.
7342 *
7343 * Call with hotplug lock held
7344 */
7345 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7346 struct sched_domain_attr *dattr_new)
7347 {
7348 int i, j, n;
7349 int new_topology;
7350
7351 mutex_lock(&sched_domains_mutex);
7352
7353 /* always unregister in case we don't destroy any domains */
7354 unregister_sched_domain_sysctl();
7355
7356 /* Let architecture update cpu core mappings. */
7357 new_topology = arch_update_cpu_topology();
7358
7359 n = doms_new ? ndoms_new : 0;
7360
7361 /* Destroy deleted domains */
7362 for (i = 0; i < ndoms_cur; i++) {
7363 for (j = 0; j < n && !new_topology; j++) {
7364 if (cpumask_equal(doms_cur[i], doms_new[j])
7365 && dattrs_equal(dattr_cur, i, dattr_new, j))
7366 goto match1;
7367 }
7368 /* no match - a current sched domain not in new doms_new[] */
7369 detach_destroy_domains(doms_cur[i]);
7370 match1:
7371 ;
7372 }
7373
7374 if (doms_new == NULL) {
7375 ndoms_cur = 0;
7376 doms_new = &fallback_doms;
7377 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7378 WARN_ON_ONCE(dattr_new);
7379 }
7380
7381 /* Build new domains */
7382 for (i = 0; i < ndoms_new; i++) {
7383 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7384 if (cpumask_equal(doms_new[i], doms_cur[j])
7385 && dattrs_equal(dattr_new, i, dattr_cur, j))
7386 goto match2;
7387 }
7388 /* no match - add a new doms_new */
7389 __build_sched_domains(doms_new[i],
7390 dattr_new ? dattr_new + i : NULL);
7391 match2:
7392 ;
7393 }
7394
7395 /* Remember the new sched domains */
7396 if (doms_cur != &fallback_doms)
7397 free_sched_domains(doms_cur, ndoms_cur);
7398 kfree(dattr_cur); /* kfree(NULL) is safe */
7399 doms_cur = doms_new;
7400 dattr_cur = dattr_new;
7401 ndoms_cur = ndoms_new;
7402
7403 register_sched_domain_sysctl();
7404
7405 mutex_unlock(&sched_domains_mutex);
7406 }
7407
7408 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7409 static void arch_reinit_sched_domains(void)
7410 {
7411 get_online_cpus();
7412
7413 /* Destroy domains first to force the rebuild */
7414 partition_sched_domains(0, NULL, NULL);
7415
7416 rebuild_sched_domains();
7417 put_online_cpus();
7418 }
7419
7420 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7421 {
7422 unsigned int level = 0;
7423
7424 if (sscanf(buf, "%u", &level) != 1)
7425 return -EINVAL;
7426
7427 /*
7428 * level is always be positive so don't check for
7429 * level < POWERSAVINGS_BALANCE_NONE which is 0
7430 * What happens on 0 or 1 byte write,
7431 * need to check for count as well?
7432 */
7433
7434 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7435 return -EINVAL;
7436
7437 if (smt)
7438 sched_smt_power_savings = level;
7439 else
7440 sched_mc_power_savings = level;
7441
7442 arch_reinit_sched_domains();
7443
7444 return count;
7445 }
7446
7447 #ifdef CONFIG_SCHED_MC
7448 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7449 struct sysdev_class_attribute *attr,
7450 char *page)
7451 {
7452 return sprintf(page, "%u\n", sched_mc_power_savings);
7453 }
7454 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7455 struct sysdev_class_attribute *attr,
7456 const char *buf, size_t count)
7457 {
7458 return sched_power_savings_store(buf, count, 0);
7459 }
7460 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7461 sched_mc_power_savings_show,
7462 sched_mc_power_savings_store);
7463 #endif
7464
7465 #ifdef CONFIG_SCHED_SMT
7466 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7467 struct sysdev_class_attribute *attr,
7468 char *page)
7469 {
7470 return sprintf(page, "%u\n", sched_smt_power_savings);
7471 }
7472 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7473 struct sysdev_class_attribute *attr,
7474 const char *buf, size_t count)
7475 {
7476 return sched_power_savings_store(buf, count, 1);
7477 }
7478 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7479 sched_smt_power_savings_show,
7480 sched_smt_power_savings_store);
7481 #endif
7482
7483 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7484 {
7485 int err = 0;
7486
7487 #ifdef CONFIG_SCHED_SMT
7488 if (smt_capable())
7489 err = sysfs_create_file(&cls->kset.kobj,
7490 &attr_sched_smt_power_savings.attr);
7491 #endif
7492 #ifdef CONFIG_SCHED_MC
7493 if (!err && mc_capable())
7494 err = sysfs_create_file(&cls->kset.kobj,
7495 &attr_sched_mc_power_savings.attr);
7496 #endif
7497 return err;
7498 }
7499 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7500
7501 /*
7502 * Update cpusets according to cpu_active mask. If cpusets are
7503 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7504 * around partition_sched_domains().
7505 */
7506 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7507 void *hcpu)
7508 {
7509 switch (action & ~CPU_TASKS_FROZEN) {
7510 case CPU_ONLINE:
7511 case CPU_DOWN_FAILED:
7512 cpuset_update_active_cpus();
7513 return NOTIFY_OK;
7514 default:
7515 return NOTIFY_DONE;
7516 }
7517 }
7518
7519 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7520 void *hcpu)
7521 {
7522 switch (action & ~CPU_TASKS_FROZEN) {
7523 case CPU_DOWN_PREPARE:
7524 cpuset_update_active_cpus();
7525 return NOTIFY_OK;
7526 default:
7527 return NOTIFY_DONE;
7528 }
7529 }
7530
7531 static int update_runtime(struct notifier_block *nfb,
7532 unsigned long action, void *hcpu)
7533 {
7534 int cpu = (int)(long)hcpu;
7535
7536 switch (action) {
7537 case CPU_DOWN_PREPARE:
7538 case CPU_DOWN_PREPARE_FROZEN:
7539 disable_runtime(cpu_rq(cpu));
7540 return NOTIFY_OK;
7541
7542 case CPU_DOWN_FAILED:
7543 case CPU_DOWN_FAILED_FROZEN:
7544 case CPU_ONLINE:
7545 case CPU_ONLINE_FROZEN:
7546 enable_runtime(cpu_rq(cpu));
7547 return NOTIFY_OK;
7548
7549 default:
7550 return NOTIFY_DONE;
7551 }
7552 }
7553
7554 void __init sched_init_smp(void)
7555 {
7556 cpumask_var_t non_isolated_cpus;
7557
7558 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7559 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7560
7561 #if defined(CONFIG_NUMA)
7562 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7563 GFP_KERNEL);
7564 BUG_ON(sched_group_nodes_bycpu == NULL);
7565 #endif
7566 get_online_cpus();
7567 mutex_lock(&sched_domains_mutex);
7568 arch_init_sched_domains(cpu_active_mask);
7569 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7570 if (cpumask_empty(non_isolated_cpus))
7571 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7572 mutex_unlock(&sched_domains_mutex);
7573 put_online_cpus();
7574
7575 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7576 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7577
7578 /* RT runtime code needs to handle some hotplug events */
7579 hotcpu_notifier(update_runtime, 0);
7580
7581 init_hrtick();
7582
7583 /* Move init over to a non-isolated CPU */
7584 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7585 BUG();
7586 sched_init_granularity();
7587 free_cpumask_var(non_isolated_cpus);
7588
7589 init_sched_rt_class();
7590 }
7591 #else
7592 void __init sched_init_smp(void)
7593 {
7594 sched_init_granularity();
7595 }
7596 #endif /* CONFIG_SMP */
7597
7598 const_debug unsigned int sysctl_timer_migration = 1;
7599
7600 int in_sched_functions(unsigned long addr)
7601 {
7602 return in_lock_functions(addr) ||
7603 (addr >= (unsigned long)__sched_text_start
7604 && addr < (unsigned long)__sched_text_end);
7605 }
7606
7607 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7608 {
7609 cfs_rq->tasks_timeline = RB_ROOT;
7610 INIT_LIST_HEAD(&cfs_rq->tasks);
7611 #ifdef CONFIG_FAIR_GROUP_SCHED
7612 cfs_rq->rq = rq;
7613 #endif
7614 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7615 }
7616
7617 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7618 {
7619 struct rt_prio_array *array;
7620 int i;
7621
7622 array = &rt_rq->active;
7623 for (i = 0; i < MAX_RT_PRIO; i++) {
7624 INIT_LIST_HEAD(array->queue + i);
7625 __clear_bit(i, array->bitmap);
7626 }
7627 /* delimiter for bitsearch: */
7628 __set_bit(MAX_RT_PRIO, array->bitmap);
7629
7630 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7631 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7632 #ifdef CONFIG_SMP
7633 rt_rq->highest_prio.next = MAX_RT_PRIO;
7634 #endif
7635 #endif
7636 #ifdef CONFIG_SMP
7637 rt_rq->rt_nr_migratory = 0;
7638 rt_rq->overloaded = 0;
7639 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7640 #endif
7641
7642 rt_rq->rt_time = 0;
7643 rt_rq->rt_throttled = 0;
7644 rt_rq->rt_runtime = 0;
7645 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7646
7647 #ifdef CONFIG_RT_GROUP_SCHED
7648 rt_rq->rt_nr_boosted = 0;
7649 rt_rq->rq = rq;
7650 #endif
7651 }
7652
7653 #ifdef CONFIG_FAIR_GROUP_SCHED
7654 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7655 struct sched_entity *se, int cpu,
7656 struct sched_entity *parent)
7657 {
7658 struct rq *rq = cpu_rq(cpu);
7659 tg->cfs_rq[cpu] = cfs_rq;
7660 init_cfs_rq(cfs_rq, rq);
7661 cfs_rq->tg = tg;
7662
7663 tg->se[cpu] = se;
7664 /* se could be NULL for init_task_group */
7665 if (!se)
7666 return;
7667
7668 if (!parent)
7669 se->cfs_rq = &rq->cfs;
7670 else
7671 se->cfs_rq = parent->my_q;
7672
7673 se->my_q = cfs_rq;
7674 update_load_set(&se->load, 0);
7675 se->parent = parent;
7676 }
7677 #endif
7678
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7681 struct sched_rt_entity *rt_se, int cpu,
7682 struct sched_rt_entity *parent)
7683 {
7684 struct rq *rq = cpu_rq(cpu);
7685
7686 tg->rt_rq[cpu] = rt_rq;
7687 init_rt_rq(rt_rq, rq);
7688 rt_rq->tg = tg;
7689 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7690
7691 tg->rt_se[cpu] = rt_se;
7692 if (!rt_se)
7693 return;
7694
7695 if (!parent)
7696 rt_se->rt_rq = &rq->rt;
7697 else
7698 rt_se->rt_rq = parent->my_q;
7699
7700 rt_se->my_q = rt_rq;
7701 rt_se->parent = parent;
7702 INIT_LIST_HEAD(&rt_se->run_list);
7703 }
7704 #endif
7705
7706 void __init sched_init(void)
7707 {
7708 int i, j;
7709 unsigned long alloc_size = 0, ptr;
7710
7711 #ifdef CONFIG_FAIR_GROUP_SCHED
7712 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7713 #endif
7714 #ifdef CONFIG_RT_GROUP_SCHED
7715 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7716 #endif
7717 #ifdef CONFIG_CPUMASK_OFFSTACK
7718 alloc_size += num_possible_cpus() * cpumask_size();
7719 #endif
7720 if (alloc_size) {
7721 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7722
7723 #ifdef CONFIG_FAIR_GROUP_SCHED
7724 init_task_group.se = (struct sched_entity **)ptr;
7725 ptr += nr_cpu_ids * sizeof(void **);
7726
7727 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7728 ptr += nr_cpu_ids * sizeof(void **);
7729
7730 #endif /* CONFIG_FAIR_GROUP_SCHED */
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7733 ptr += nr_cpu_ids * sizeof(void **);
7734
7735 init_task_group.rt_rq = (struct rt_rq **)ptr;
7736 ptr += nr_cpu_ids * sizeof(void **);
7737
7738 #endif /* CONFIG_RT_GROUP_SCHED */
7739 #ifdef CONFIG_CPUMASK_OFFSTACK
7740 for_each_possible_cpu(i) {
7741 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7742 ptr += cpumask_size();
7743 }
7744 #endif /* CONFIG_CPUMASK_OFFSTACK */
7745 }
7746
7747 #ifdef CONFIG_SMP
7748 init_defrootdomain();
7749 #endif
7750
7751 init_rt_bandwidth(&def_rt_bandwidth,
7752 global_rt_period(), global_rt_runtime());
7753
7754 #ifdef CONFIG_RT_GROUP_SCHED
7755 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7756 global_rt_period(), global_rt_runtime());
7757 #endif /* CONFIG_RT_GROUP_SCHED */
7758
7759 #ifdef CONFIG_CGROUP_SCHED
7760 list_add(&init_task_group.list, &task_groups);
7761 INIT_LIST_HEAD(&init_task_group.children);
7762 autogroup_init(&init_task);
7763 #endif /* CONFIG_CGROUP_SCHED */
7764
7765 for_each_possible_cpu(i) {
7766 struct rq *rq;
7767
7768 rq = cpu_rq(i);
7769 raw_spin_lock_init(&rq->lock);
7770 rq->nr_running = 0;
7771 rq->calc_load_active = 0;
7772 rq->calc_load_update = jiffies + LOAD_FREQ;
7773 init_cfs_rq(&rq->cfs, rq);
7774 init_rt_rq(&rq->rt, rq);
7775 #ifdef CONFIG_FAIR_GROUP_SCHED
7776 init_task_group.shares = init_task_group_load;
7777 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7778 #ifdef CONFIG_CGROUP_SCHED
7779 /*
7780 * How much cpu bandwidth does init_task_group get?
7781 *
7782 * In case of task-groups formed thr' the cgroup filesystem, it
7783 * gets 100% of the cpu resources in the system. This overall
7784 * system cpu resource is divided among the tasks of
7785 * init_task_group and its child task-groups in a fair manner,
7786 * based on each entity's (task or task-group's) weight
7787 * (se->load.weight).
7788 *
7789 * In other words, if init_task_group has 10 tasks of weight
7790 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7791 * then A0's share of the cpu resource is:
7792 *
7793 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7794 *
7795 * We achieve this by letting init_task_group's tasks sit
7796 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7797 */
7798 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
7799 #endif
7800 #endif /* CONFIG_FAIR_GROUP_SCHED */
7801
7802 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7803 #ifdef CONFIG_RT_GROUP_SCHED
7804 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7805 #ifdef CONFIG_CGROUP_SCHED
7806 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
7807 #endif
7808 #endif
7809
7810 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7811 rq->cpu_load[j] = 0;
7812
7813 rq->last_load_update_tick = jiffies;
7814
7815 #ifdef CONFIG_SMP
7816 rq->sd = NULL;
7817 rq->rd = NULL;
7818 rq->cpu_power = SCHED_LOAD_SCALE;
7819 rq->post_schedule = 0;
7820 rq->active_balance = 0;
7821 rq->next_balance = jiffies;
7822 rq->push_cpu = 0;
7823 rq->cpu = i;
7824 rq->online = 0;
7825 rq->idle_stamp = 0;
7826 rq->avg_idle = 2*sysctl_sched_migration_cost;
7827 rq_attach_root(rq, &def_root_domain);
7828 #ifdef CONFIG_NO_HZ
7829 rq->nohz_balance_kick = 0;
7830 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7831 #endif
7832 #endif
7833 init_rq_hrtick(rq);
7834 atomic_set(&rq->nr_iowait, 0);
7835 }
7836
7837 set_load_weight(&init_task);
7838
7839 #ifdef CONFIG_PREEMPT_NOTIFIERS
7840 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7841 #endif
7842
7843 #ifdef CONFIG_SMP
7844 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7845 #endif
7846
7847 #ifdef CONFIG_RT_MUTEXES
7848 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7849 #endif
7850
7851 /*
7852 * The boot idle thread does lazy MMU switching as well:
7853 */
7854 atomic_inc(&init_mm.mm_count);
7855 enter_lazy_tlb(&init_mm, current);
7856
7857 /*
7858 * Make us the idle thread. Technically, schedule() should not be
7859 * called from this thread, however somewhere below it might be,
7860 * but because we are the idle thread, we just pick up running again
7861 * when this runqueue becomes "idle".
7862 */
7863 init_idle(current, smp_processor_id());
7864
7865 calc_load_update = jiffies + LOAD_FREQ;
7866
7867 /*
7868 * During early bootup we pretend to be a normal task:
7869 */
7870 current->sched_class = &fair_sched_class;
7871
7872 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7873 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7874 #ifdef CONFIG_SMP
7875 #ifdef CONFIG_NO_HZ
7876 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7877 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7878 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7879 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7880 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7881 #endif
7882 /* May be allocated at isolcpus cmdline parse time */
7883 if (cpu_isolated_map == NULL)
7884 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7885 #endif /* SMP */
7886
7887 perf_event_init();
7888
7889 scheduler_running = 1;
7890 }
7891
7892 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7893 static inline int preempt_count_equals(int preempt_offset)
7894 {
7895 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7896
7897 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7898 }
7899
7900 void __might_sleep(const char *file, int line, int preempt_offset)
7901 {
7902 #ifdef in_atomic
7903 static unsigned long prev_jiffy; /* ratelimiting */
7904
7905 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7906 system_state != SYSTEM_RUNNING || oops_in_progress)
7907 return;
7908 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7909 return;
7910 prev_jiffy = jiffies;
7911
7912 printk(KERN_ERR
7913 "BUG: sleeping function called from invalid context at %s:%d\n",
7914 file, line);
7915 printk(KERN_ERR
7916 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7917 in_atomic(), irqs_disabled(),
7918 current->pid, current->comm);
7919
7920 debug_show_held_locks(current);
7921 if (irqs_disabled())
7922 print_irqtrace_events(current);
7923 dump_stack();
7924 #endif
7925 }
7926 EXPORT_SYMBOL(__might_sleep);
7927 #endif
7928
7929 #ifdef CONFIG_MAGIC_SYSRQ
7930 static void normalize_task(struct rq *rq, struct task_struct *p)
7931 {
7932 int on_rq;
7933
7934 on_rq = p->se.on_rq;
7935 if (on_rq)
7936 deactivate_task(rq, p, 0);
7937 __setscheduler(rq, p, SCHED_NORMAL, 0);
7938 if (on_rq) {
7939 activate_task(rq, p, 0);
7940 resched_task(rq->curr);
7941 }
7942 }
7943
7944 void normalize_rt_tasks(void)
7945 {
7946 struct task_struct *g, *p;
7947 unsigned long flags;
7948 struct rq *rq;
7949
7950 read_lock_irqsave(&tasklist_lock, flags);
7951 do_each_thread(g, p) {
7952 /*
7953 * Only normalize user tasks:
7954 */
7955 if (!p->mm)
7956 continue;
7957
7958 p->se.exec_start = 0;
7959 #ifdef CONFIG_SCHEDSTATS
7960 p->se.statistics.wait_start = 0;
7961 p->se.statistics.sleep_start = 0;
7962 p->se.statistics.block_start = 0;
7963 #endif
7964
7965 if (!rt_task(p)) {
7966 /*
7967 * Renice negative nice level userspace
7968 * tasks back to 0:
7969 */
7970 if (TASK_NICE(p) < 0 && p->mm)
7971 set_user_nice(p, 0);
7972 continue;
7973 }
7974
7975 raw_spin_lock(&p->pi_lock);
7976 rq = __task_rq_lock(p);
7977
7978 normalize_task(rq, p);
7979
7980 __task_rq_unlock(rq);
7981 raw_spin_unlock(&p->pi_lock);
7982 } while_each_thread(g, p);
7983
7984 read_unlock_irqrestore(&tasklist_lock, flags);
7985 }
7986
7987 #endif /* CONFIG_MAGIC_SYSRQ */
7988
7989 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7990 /*
7991 * These functions are only useful for the IA64 MCA handling, or kdb.
7992 *
7993 * They can only be called when the whole system has been
7994 * stopped - every CPU needs to be quiescent, and no scheduling
7995 * activity can take place. Using them for anything else would
7996 * be a serious bug, and as a result, they aren't even visible
7997 * under any other configuration.
7998 */
7999
8000 /**
8001 * curr_task - return the current task for a given cpu.
8002 * @cpu: the processor in question.
8003 *
8004 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8005 */
8006 struct task_struct *curr_task(int cpu)
8007 {
8008 return cpu_curr(cpu);
8009 }
8010
8011 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8012
8013 #ifdef CONFIG_IA64
8014 /**
8015 * set_curr_task - set the current task for a given cpu.
8016 * @cpu: the processor in question.
8017 * @p: the task pointer to set.
8018 *
8019 * Description: This function must only be used when non-maskable interrupts
8020 * are serviced on a separate stack. It allows the architecture to switch the
8021 * notion of the current task on a cpu in a non-blocking manner. This function
8022 * must be called with all CPU's synchronized, and interrupts disabled, the
8023 * and caller must save the original value of the current task (see
8024 * curr_task() above) and restore that value before reenabling interrupts and
8025 * re-starting the system.
8026 *
8027 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8028 */
8029 void set_curr_task(int cpu, struct task_struct *p)
8030 {
8031 cpu_curr(cpu) = p;
8032 }
8033
8034 #endif
8035
8036 #ifdef CONFIG_FAIR_GROUP_SCHED
8037 static void free_fair_sched_group(struct task_group *tg)
8038 {
8039 int i;
8040
8041 for_each_possible_cpu(i) {
8042 if (tg->cfs_rq)
8043 kfree(tg->cfs_rq[i]);
8044 if (tg->se)
8045 kfree(tg->se[i]);
8046 }
8047
8048 kfree(tg->cfs_rq);
8049 kfree(tg->se);
8050 }
8051
8052 static
8053 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8054 {
8055 struct cfs_rq *cfs_rq;
8056 struct sched_entity *se;
8057 struct rq *rq;
8058 int i;
8059
8060 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8061 if (!tg->cfs_rq)
8062 goto err;
8063 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8064 if (!tg->se)
8065 goto err;
8066
8067 tg->shares = NICE_0_LOAD;
8068
8069 for_each_possible_cpu(i) {
8070 rq = cpu_rq(i);
8071
8072 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8073 GFP_KERNEL, cpu_to_node(i));
8074 if (!cfs_rq)
8075 goto err;
8076
8077 se = kzalloc_node(sizeof(struct sched_entity),
8078 GFP_KERNEL, cpu_to_node(i));
8079 if (!se)
8080 goto err_free_rq;
8081
8082 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8083 }
8084
8085 return 1;
8086
8087 err_free_rq:
8088 kfree(cfs_rq);
8089 err:
8090 return 0;
8091 }
8092
8093 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8094 {
8095 struct rq *rq = cpu_rq(cpu);
8096 unsigned long flags;
8097
8098 /*
8099 * Only empty task groups can be destroyed; so we can speculatively
8100 * check on_list without danger of it being re-added.
8101 */
8102 if (!tg->cfs_rq[cpu]->on_list)
8103 return;
8104
8105 raw_spin_lock_irqsave(&rq->lock, flags);
8106 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8107 raw_spin_unlock_irqrestore(&rq->lock, flags);
8108 }
8109 #else /* !CONFG_FAIR_GROUP_SCHED */
8110 static inline void free_fair_sched_group(struct task_group *tg)
8111 {
8112 }
8113
8114 static inline
8115 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8116 {
8117 return 1;
8118 }
8119
8120 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8121 {
8122 }
8123 #endif /* CONFIG_FAIR_GROUP_SCHED */
8124
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 static void free_rt_sched_group(struct task_group *tg)
8127 {
8128 int i;
8129
8130 destroy_rt_bandwidth(&tg->rt_bandwidth);
8131
8132 for_each_possible_cpu(i) {
8133 if (tg->rt_rq)
8134 kfree(tg->rt_rq[i]);
8135 if (tg->rt_se)
8136 kfree(tg->rt_se[i]);
8137 }
8138
8139 kfree(tg->rt_rq);
8140 kfree(tg->rt_se);
8141 }
8142
8143 static
8144 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8145 {
8146 struct rt_rq *rt_rq;
8147 struct sched_rt_entity *rt_se;
8148 struct rq *rq;
8149 int i;
8150
8151 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8152 if (!tg->rt_rq)
8153 goto err;
8154 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8155 if (!tg->rt_se)
8156 goto err;
8157
8158 init_rt_bandwidth(&tg->rt_bandwidth,
8159 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8160
8161 for_each_possible_cpu(i) {
8162 rq = cpu_rq(i);
8163
8164 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8165 GFP_KERNEL, cpu_to_node(i));
8166 if (!rt_rq)
8167 goto err;
8168
8169 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8170 GFP_KERNEL, cpu_to_node(i));
8171 if (!rt_se)
8172 goto err_free_rq;
8173
8174 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8175 }
8176
8177 return 1;
8178
8179 err_free_rq:
8180 kfree(rt_rq);
8181 err:
8182 return 0;
8183 }
8184 #else /* !CONFIG_RT_GROUP_SCHED */
8185 static inline void free_rt_sched_group(struct task_group *tg)
8186 {
8187 }
8188
8189 static inline
8190 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8191 {
8192 return 1;
8193 }
8194 #endif /* CONFIG_RT_GROUP_SCHED */
8195
8196 #ifdef CONFIG_CGROUP_SCHED
8197 static void free_sched_group(struct task_group *tg)
8198 {
8199 free_fair_sched_group(tg);
8200 free_rt_sched_group(tg);
8201 kfree(tg);
8202 }
8203
8204 /* allocate runqueue etc for a new task group */
8205 struct task_group *sched_create_group(struct task_group *parent)
8206 {
8207 struct task_group *tg;
8208 unsigned long flags;
8209
8210 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8211 if (!tg)
8212 return ERR_PTR(-ENOMEM);
8213
8214 if (!alloc_fair_sched_group(tg, parent))
8215 goto err;
8216
8217 if (!alloc_rt_sched_group(tg, parent))
8218 goto err;
8219
8220 spin_lock_irqsave(&task_group_lock, flags);
8221 list_add_rcu(&tg->list, &task_groups);
8222
8223 WARN_ON(!parent); /* root should already exist */
8224
8225 tg->parent = parent;
8226 INIT_LIST_HEAD(&tg->children);
8227 list_add_rcu(&tg->siblings, &parent->children);
8228 spin_unlock_irqrestore(&task_group_lock, flags);
8229
8230 return tg;
8231
8232 err:
8233 free_sched_group(tg);
8234 return ERR_PTR(-ENOMEM);
8235 }
8236
8237 /* rcu callback to free various structures associated with a task group */
8238 static void free_sched_group_rcu(struct rcu_head *rhp)
8239 {
8240 /* now it should be safe to free those cfs_rqs */
8241 free_sched_group(container_of(rhp, struct task_group, rcu));
8242 }
8243
8244 /* Destroy runqueue etc associated with a task group */
8245 void sched_destroy_group(struct task_group *tg)
8246 {
8247 unsigned long flags;
8248 int i;
8249
8250 /* end participation in shares distribution */
8251 for_each_possible_cpu(i)
8252 unregister_fair_sched_group(tg, i);
8253
8254 spin_lock_irqsave(&task_group_lock, flags);
8255 list_del_rcu(&tg->list);
8256 list_del_rcu(&tg->siblings);
8257 spin_unlock_irqrestore(&task_group_lock, flags);
8258
8259 /* wait for possible concurrent references to cfs_rqs complete */
8260 call_rcu(&tg->rcu, free_sched_group_rcu);
8261 }
8262
8263 /* change task's runqueue when it moves between groups.
8264 * The caller of this function should have put the task in its new group
8265 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8266 * reflect its new group.
8267 */
8268 void sched_move_task(struct task_struct *tsk)
8269 {
8270 int on_rq, running;
8271 unsigned long flags;
8272 struct rq *rq;
8273
8274 rq = task_rq_lock(tsk, &flags);
8275
8276 running = task_current(rq, tsk);
8277 on_rq = tsk->se.on_rq;
8278
8279 if (on_rq)
8280 dequeue_task(rq, tsk, 0);
8281 if (unlikely(running))
8282 tsk->sched_class->put_prev_task(rq, tsk);
8283
8284 #ifdef CONFIG_FAIR_GROUP_SCHED
8285 if (tsk->sched_class->task_move_group)
8286 tsk->sched_class->task_move_group(tsk, on_rq);
8287 else
8288 #endif
8289 set_task_rq(tsk, task_cpu(tsk));
8290
8291 if (unlikely(running))
8292 tsk->sched_class->set_curr_task(rq);
8293 if (on_rq)
8294 enqueue_task(rq, tsk, 0);
8295
8296 task_rq_unlock(rq, &flags);
8297 }
8298 #endif /* CONFIG_CGROUP_SCHED */
8299
8300 #ifdef CONFIG_FAIR_GROUP_SCHED
8301 static DEFINE_MUTEX(shares_mutex);
8302
8303 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8304 {
8305 int i;
8306 unsigned long flags;
8307
8308 /*
8309 * We can't change the weight of the root cgroup.
8310 */
8311 if (!tg->se[0])
8312 return -EINVAL;
8313
8314 if (shares < MIN_SHARES)
8315 shares = MIN_SHARES;
8316 else if (shares > MAX_SHARES)
8317 shares = MAX_SHARES;
8318
8319 mutex_lock(&shares_mutex);
8320 if (tg->shares == shares)
8321 goto done;
8322
8323 tg->shares = shares;
8324 for_each_possible_cpu(i) {
8325 struct rq *rq = cpu_rq(i);
8326 struct sched_entity *se;
8327
8328 se = tg->se[i];
8329 /* Propagate contribution to hierarchy */
8330 raw_spin_lock_irqsave(&rq->lock, flags);
8331 for_each_sched_entity(se)
8332 update_cfs_shares(group_cfs_rq(se), 0);
8333 raw_spin_unlock_irqrestore(&rq->lock, flags);
8334 }
8335
8336 done:
8337 mutex_unlock(&shares_mutex);
8338 return 0;
8339 }
8340
8341 unsigned long sched_group_shares(struct task_group *tg)
8342 {
8343 return tg->shares;
8344 }
8345 #endif
8346
8347 #ifdef CONFIG_RT_GROUP_SCHED
8348 /*
8349 * Ensure that the real time constraints are schedulable.
8350 */
8351 static DEFINE_MUTEX(rt_constraints_mutex);
8352
8353 static unsigned long to_ratio(u64 period, u64 runtime)
8354 {
8355 if (runtime == RUNTIME_INF)
8356 return 1ULL << 20;
8357
8358 return div64_u64(runtime << 20, period);
8359 }
8360
8361 /* Must be called with tasklist_lock held */
8362 static inline int tg_has_rt_tasks(struct task_group *tg)
8363 {
8364 struct task_struct *g, *p;
8365
8366 do_each_thread(g, p) {
8367 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8368 return 1;
8369 } while_each_thread(g, p);
8370
8371 return 0;
8372 }
8373
8374 struct rt_schedulable_data {
8375 struct task_group *tg;
8376 u64 rt_period;
8377 u64 rt_runtime;
8378 };
8379
8380 static int tg_schedulable(struct task_group *tg, void *data)
8381 {
8382 struct rt_schedulable_data *d = data;
8383 struct task_group *child;
8384 unsigned long total, sum = 0;
8385 u64 period, runtime;
8386
8387 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8388 runtime = tg->rt_bandwidth.rt_runtime;
8389
8390 if (tg == d->tg) {
8391 period = d->rt_period;
8392 runtime = d->rt_runtime;
8393 }
8394
8395 /*
8396 * Cannot have more runtime than the period.
8397 */
8398 if (runtime > period && runtime != RUNTIME_INF)
8399 return -EINVAL;
8400
8401 /*
8402 * Ensure we don't starve existing RT tasks.
8403 */
8404 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8405 return -EBUSY;
8406
8407 total = to_ratio(period, runtime);
8408
8409 /*
8410 * Nobody can have more than the global setting allows.
8411 */
8412 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8413 return -EINVAL;
8414
8415 /*
8416 * The sum of our children's runtime should not exceed our own.
8417 */
8418 list_for_each_entry_rcu(child, &tg->children, siblings) {
8419 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8420 runtime = child->rt_bandwidth.rt_runtime;
8421
8422 if (child == d->tg) {
8423 period = d->rt_period;
8424 runtime = d->rt_runtime;
8425 }
8426
8427 sum += to_ratio(period, runtime);
8428 }
8429
8430 if (sum > total)
8431 return -EINVAL;
8432
8433 return 0;
8434 }
8435
8436 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8437 {
8438 struct rt_schedulable_data data = {
8439 .tg = tg,
8440 .rt_period = period,
8441 .rt_runtime = runtime,
8442 };
8443
8444 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8445 }
8446
8447 static int tg_set_bandwidth(struct task_group *tg,
8448 u64 rt_period, u64 rt_runtime)
8449 {
8450 int i, err = 0;
8451
8452 mutex_lock(&rt_constraints_mutex);
8453 read_lock(&tasklist_lock);
8454 err = __rt_schedulable(tg, rt_period, rt_runtime);
8455 if (err)
8456 goto unlock;
8457
8458 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8459 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8460 tg->rt_bandwidth.rt_runtime = rt_runtime;
8461
8462 for_each_possible_cpu(i) {
8463 struct rt_rq *rt_rq = tg->rt_rq[i];
8464
8465 raw_spin_lock(&rt_rq->rt_runtime_lock);
8466 rt_rq->rt_runtime = rt_runtime;
8467 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8468 }
8469 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8470 unlock:
8471 read_unlock(&tasklist_lock);
8472 mutex_unlock(&rt_constraints_mutex);
8473
8474 return err;
8475 }
8476
8477 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8478 {
8479 u64 rt_runtime, rt_period;
8480
8481 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8482 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8483 if (rt_runtime_us < 0)
8484 rt_runtime = RUNTIME_INF;
8485
8486 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8487 }
8488
8489 long sched_group_rt_runtime(struct task_group *tg)
8490 {
8491 u64 rt_runtime_us;
8492
8493 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8494 return -1;
8495
8496 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8497 do_div(rt_runtime_us, NSEC_PER_USEC);
8498 return rt_runtime_us;
8499 }
8500
8501 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8502 {
8503 u64 rt_runtime, rt_period;
8504
8505 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8506 rt_runtime = tg->rt_bandwidth.rt_runtime;
8507
8508 if (rt_period == 0)
8509 return -EINVAL;
8510
8511 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8512 }
8513
8514 long sched_group_rt_period(struct task_group *tg)
8515 {
8516 u64 rt_period_us;
8517
8518 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8519 do_div(rt_period_us, NSEC_PER_USEC);
8520 return rt_period_us;
8521 }
8522
8523 static int sched_rt_global_constraints(void)
8524 {
8525 u64 runtime, period;
8526 int ret = 0;
8527
8528 if (sysctl_sched_rt_period <= 0)
8529 return -EINVAL;
8530
8531 runtime = global_rt_runtime();
8532 period = global_rt_period();
8533
8534 /*
8535 * Sanity check on the sysctl variables.
8536 */
8537 if (runtime > period && runtime != RUNTIME_INF)
8538 return -EINVAL;
8539
8540 mutex_lock(&rt_constraints_mutex);
8541 read_lock(&tasklist_lock);
8542 ret = __rt_schedulable(NULL, 0, 0);
8543 read_unlock(&tasklist_lock);
8544 mutex_unlock(&rt_constraints_mutex);
8545
8546 return ret;
8547 }
8548
8549 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8550 {
8551 /* Don't accept realtime tasks when there is no way for them to run */
8552 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8553 return 0;
8554
8555 return 1;
8556 }
8557
8558 #else /* !CONFIG_RT_GROUP_SCHED */
8559 static int sched_rt_global_constraints(void)
8560 {
8561 unsigned long flags;
8562 int i;
8563
8564 if (sysctl_sched_rt_period <= 0)
8565 return -EINVAL;
8566
8567 /*
8568 * There's always some RT tasks in the root group
8569 * -- migration, kstopmachine etc..
8570 */
8571 if (sysctl_sched_rt_runtime == 0)
8572 return -EBUSY;
8573
8574 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8575 for_each_possible_cpu(i) {
8576 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8577
8578 raw_spin_lock(&rt_rq->rt_runtime_lock);
8579 rt_rq->rt_runtime = global_rt_runtime();
8580 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8581 }
8582 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8583
8584 return 0;
8585 }
8586 #endif /* CONFIG_RT_GROUP_SCHED */
8587
8588 int sched_rt_handler(struct ctl_table *table, int write,
8589 void __user *buffer, size_t *lenp,
8590 loff_t *ppos)
8591 {
8592 int ret;
8593 int old_period, old_runtime;
8594 static DEFINE_MUTEX(mutex);
8595
8596 mutex_lock(&mutex);
8597 old_period = sysctl_sched_rt_period;
8598 old_runtime = sysctl_sched_rt_runtime;
8599
8600 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8601
8602 if (!ret && write) {
8603 ret = sched_rt_global_constraints();
8604 if (ret) {
8605 sysctl_sched_rt_period = old_period;
8606 sysctl_sched_rt_runtime = old_runtime;
8607 } else {
8608 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8609 def_rt_bandwidth.rt_period =
8610 ns_to_ktime(global_rt_period());
8611 }
8612 }
8613 mutex_unlock(&mutex);
8614
8615 return ret;
8616 }
8617
8618 #ifdef CONFIG_CGROUP_SCHED
8619
8620 /* return corresponding task_group object of a cgroup */
8621 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8622 {
8623 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8624 struct task_group, css);
8625 }
8626
8627 static struct cgroup_subsys_state *
8628 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8629 {
8630 struct task_group *tg, *parent;
8631
8632 if (!cgrp->parent) {
8633 /* This is early initialization for the top cgroup */
8634 return &init_task_group.css;
8635 }
8636
8637 parent = cgroup_tg(cgrp->parent);
8638 tg = sched_create_group(parent);
8639 if (IS_ERR(tg))
8640 return ERR_PTR(-ENOMEM);
8641
8642 return &tg->css;
8643 }
8644
8645 static void
8646 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8647 {
8648 struct task_group *tg = cgroup_tg(cgrp);
8649
8650 sched_destroy_group(tg);
8651 }
8652
8653 static int
8654 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8655 {
8656 #ifdef CONFIG_RT_GROUP_SCHED
8657 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8658 return -EINVAL;
8659 #else
8660 /* We don't support RT-tasks being in separate groups */
8661 if (tsk->sched_class != &fair_sched_class)
8662 return -EINVAL;
8663 #endif
8664 return 0;
8665 }
8666
8667 static int
8668 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8669 struct task_struct *tsk, bool threadgroup)
8670 {
8671 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8672 if (retval)
8673 return retval;
8674 if (threadgroup) {
8675 struct task_struct *c;
8676 rcu_read_lock();
8677 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8678 retval = cpu_cgroup_can_attach_task(cgrp, c);
8679 if (retval) {
8680 rcu_read_unlock();
8681 return retval;
8682 }
8683 }
8684 rcu_read_unlock();
8685 }
8686 return 0;
8687 }
8688
8689 static void
8690 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8691 struct cgroup *old_cont, struct task_struct *tsk,
8692 bool threadgroup)
8693 {
8694 sched_move_task(tsk);
8695 if (threadgroup) {
8696 struct task_struct *c;
8697 rcu_read_lock();
8698 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8699 sched_move_task(c);
8700 }
8701 rcu_read_unlock();
8702 }
8703 }
8704
8705 #ifdef CONFIG_FAIR_GROUP_SCHED
8706 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8707 u64 shareval)
8708 {
8709 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8710 }
8711
8712 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8713 {
8714 struct task_group *tg = cgroup_tg(cgrp);
8715
8716 return (u64) tg->shares;
8717 }
8718 #endif /* CONFIG_FAIR_GROUP_SCHED */
8719
8720 #ifdef CONFIG_RT_GROUP_SCHED
8721 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8722 s64 val)
8723 {
8724 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8725 }
8726
8727 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8728 {
8729 return sched_group_rt_runtime(cgroup_tg(cgrp));
8730 }
8731
8732 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8733 u64 rt_period_us)
8734 {
8735 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8736 }
8737
8738 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8739 {
8740 return sched_group_rt_period(cgroup_tg(cgrp));
8741 }
8742 #endif /* CONFIG_RT_GROUP_SCHED */
8743
8744 static struct cftype cpu_files[] = {
8745 #ifdef CONFIG_FAIR_GROUP_SCHED
8746 {
8747 .name = "shares",
8748 .read_u64 = cpu_shares_read_u64,
8749 .write_u64 = cpu_shares_write_u64,
8750 },
8751 #endif
8752 #ifdef CONFIG_RT_GROUP_SCHED
8753 {
8754 .name = "rt_runtime_us",
8755 .read_s64 = cpu_rt_runtime_read,
8756 .write_s64 = cpu_rt_runtime_write,
8757 },
8758 {
8759 .name = "rt_period_us",
8760 .read_u64 = cpu_rt_period_read_uint,
8761 .write_u64 = cpu_rt_period_write_uint,
8762 },
8763 #endif
8764 };
8765
8766 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8767 {
8768 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8769 }
8770
8771 struct cgroup_subsys cpu_cgroup_subsys = {
8772 .name = "cpu",
8773 .create = cpu_cgroup_create,
8774 .destroy = cpu_cgroup_destroy,
8775 .can_attach = cpu_cgroup_can_attach,
8776 .attach = cpu_cgroup_attach,
8777 .populate = cpu_cgroup_populate,
8778 .subsys_id = cpu_cgroup_subsys_id,
8779 .early_init = 1,
8780 };
8781
8782 #endif /* CONFIG_CGROUP_SCHED */
8783
8784 #ifdef CONFIG_CGROUP_CPUACCT
8785
8786 /*
8787 * CPU accounting code for task groups.
8788 *
8789 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8790 * (balbir@in.ibm.com).
8791 */
8792
8793 /* track cpu usage of a group of tasks and its child groups */
8794 struct cpuacct {
8795 struct cgroup_subsys_state css;
8796 /* cpuusage holds pointer to a u64-type object on every cpu */
8797 u64 __percpu *cpuusage;
8798 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8799 struct cpuacct *parent;
8800 };
8801
8802 struct cgroup_subsys cpuacct_subsys;
8803
8804 /* return cpu accounting group corresponding to this container */
8805 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8806 {
8807 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8808 struct cpuacct, css);
8809 }
8810
8811 /* return cpu accounting group to which this task belongs */
8812 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8813 {
8814 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8815 struct cpuacct, css);
8816 }
8817
8818 /* create a new cpu accounting group */
8819 static struct cgroup_subsys_state *cpuacct_create(
8820 struct cgroup_subsys *ss, struct cgroup *cgrp)
8821 {
8822 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8823 int i;
8824
8825 if (!ca)
8826 goto out;
8827
8828 ca->cpuusage = alloc_percpu(u64);
8829 if (!ca->cpuusage)
8830 goto out_free_ca;
8831
8832 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8833 if (percpu_counter_init(&ca->cpustat[i], 0))
8834 goto out_free_counters;
8835
8836 if (cgrp->parent)
8837 ca->parent = cgroup_ca(cgrp->parent);
8838
8839 return &ca->css;
8840
8841 out_free_counters:
8842 while (--i >= 0)
8843 percpu_counter_destroy(&ca->cpustat[i]);
8844 free_percpu(ca->cpuusage);
8845 out_free_ca:
8846 kfree(ca);
8847 out:
8848 return ERR_PTR(-ENOMEM);
8849 }
8850
8851 /* destroy an existing cpu accounting group */
8852 static void
8853 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8854 {
8855 struct cpuacct *ca = cgroup_ca(cgrp);
8856 int i;
8857
8858 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8859 percpu_counter_destroy(&ca->cpustat[i]);
8860 free_percpu(ca->cpuusage);
8861 kfree(ca);
8862 }
8863
8864 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8865 {
8866 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8867 u64 data;
8868
8869 #ifndef CONFIG_64BIT
8870 /*
8871 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8872 */
8873 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8874 data = *cpuusage;
8875 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8876 #else
8877 data = *cpuusage;
8878 #endif
8879
8880 return data;
8881 }
8882
8883 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8884 {
8885 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8886
8887 #ifndef CONFIG_64BIT
8888 /*
8889 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8890 */
8891 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8892 *cpuusage = val;
8893 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8894 #else
8895 *cpuusage = val;
8896 #endif
8897 }
8898
8899 /* return total cpu usage (in nanoseconds) of a group */
8900 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8901 {
8902 struct cpuacct *ca = cgroup_ca(cgrp);
8903 u64 totalcpuusage = 0;
8904 int i;
8905
8906 for_each_present_cpu(i)
8907 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8908
8909 return totalcpuusage;
8910 }
8911
8912 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8913 u64 reset)
8914 {
8915 struct cpuacct *ca = cgroup_ca(cgrp);
8916 int err = 0;
8917 int i;
8918
8919 if (reset) {
8920 err = -EINVAL;
8921 goto out;
8922 }
8923
8924 for_each_present_cpu(i)
8925 cpuacct_cpuusage_write(ca, i, 0);
8926
8927 out:
8928 return err;
8929 }
8930
8931 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8932 struct seq_file *m)
8933 {
8934 struct cpuacct *ca = cgroup_ca(cgroup);
8935 u64 percpu;
8936 int i;
8937
8938 for_each_present_cpu(i) {
8939 percpu = cpuacct_cpuusage_read(ca, i);
8940 seq_printf(m, "%llu ", (unsigned long long) percpu);
8941 }
8942 seq_printf(m, "\n");
8943 return 0;
8944 }
8945
8946 static const char *cpuacct_stat_desc[] = {
8947 [CPUACCT_STAT_USER] = "user",
8948 [CPUACCT_STAT_SYSTEM] = "system",
8949 };
8950
8951 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8952 struct cgroup_map_cb *cb)
8953 {
8954 struct cpuacct *ca = cgroup_ca(cgrp);
8955 int i;
8956
8957 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8958 s64 val = percpu_counter_read(&ca->cpustat[i]);
8959 val = cputime64_to_clock_t(val);
8960 cb->fill(cb, cpuacct_stat_desc[i], val);
8961 }
8962 return 0;
8963 }
8964
8965 static struct cftype files[] = {
8966 {
8967 .name = "usage",
8968 .read_u64 = cpuusage_read,
8969 .write_u64 = cpuusage_write,
8970 },
8971 {
8972 .name = "usage_percpu",
8973 .read_seq_string = cpuacct_percpu_seq_read,
8974 },
8975 {
8976 .name = "stat",
8977 .read_map = cpuacct_stats_show,
8978 },
8979 };
8980
8981 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8982 {
8983 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8984 }
8985
8986 /*
8987 * charge this task's execution time to its accounting group.
8988 *
8989 * called with rq->lock held.
8990 */
8991 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8992 {
8993 struct cpuacct *ca;
8994 int cpu;
8995
8996 if (unlikely(!cpuacct_subsys.active))
8997 return;
8998
8999 cpu = task_cpu(tsk);
9000
9001 rcu_read_lock();
9002
9003 ca = task_ca(tsk);
9004
9005 for (; ca; ca = ca->parent) {
9006 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9007 *cpuusage += cputime;
9008 }
9009
9010 rcu_read_unlock();
9011 }
9012
9013 /*
9014 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9015 * in cputime_t units. As a result, cpuacct_update_stats calls
9016 * percpu_counter_add with values large enough to always overflow the
9017 * per cpu batch limit causing bad SMP scalability.
9018 *
9019 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9020 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9021 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9022 */
9023 #ifdef CONFIG_SMP
9024 #define CPUACCT_BATCH \
9025 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9026 #else
9027 #define CPUACCT_BATCH 0
9028 #endif
9029
9030 /*
9031 * Charge the system/user time to the task's accounting group.
9032 */
9033 static void cpuacct_update_stats(struct task_struct *tsk,
9034 enum cpuacct_stat_index idx, cputime_t val)
9035 {
9036 struct cpuacct *ca;
9037 int batch = CPUACCT_BATCH;
9038
9039 if (unlikely(!cpuacct_subsys.active))
9040 return;
9041
9042 rcu_read_lock();
9043 ca = task_ca(tsk);
9044
9045 do {
9046 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9047 ca = ca->parent;
9048 } while (ca);
9049 rcu_read_unlock();
9050 }
9051
9052 struct cgroup_subsys cpuacct_subsys = {
9053 .name = "cpuacct",
9054 .create = cpuacct_create,
9055 .destroy = cpuacct_destroy,
9056 .populate = cpuacct_populate,
9057 .subsys_id = cpuacct_subsys_id,
9058 };
9059 #endif /* CONFIG_CGROUP_CPUACCT */
9060
9061 #ifndef CONFIG_SMP
9062
9063 void synchronize_sched_expedited(void)
9064 {
9065 barrier();
9066 }
9067 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9068
9069 #else /* #ifndef CONFIG_SMP */
9070
9071 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9072
9073 static int synchronize_sched_expedited_cpu_stop(void *data)
9074 {
9075 /*
9076 * There must be a full memory barrier on each affected CPU
9077 * between the time that try_stop_cpus() is called and the
9078 * time that it returns.
9079 *
9080 * In the current initial implementation of cpu_stop, the
9081 * above condition is already met when the control reaches
9082 * this point and the following smp_mb() is not strictly
9083 * necessary. Do smp_mb() anyway for documentation and
9084 * robustness against future implementation changes.
9085 */
9086 smp_mb(); /* See above comment block. */
9087 return 0;
9088 }
9089
9090 /*
9091 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9092 * approach to force grace period to end quickly. This consumes
9093 * significant time on all CPUs, and is thus not recommended for
9094 * any sort of common-case code.
9095 *
9096 * Note that it is illegal to call this function while holding any
9097 * lock that is acquired by a CPU-hotplug notifier. Failing to
9098 * observe this restriction will result in deadlock.
9099 */
9100 void synchronize_sched_expedited(void)
9101 {
9102 int snap, trycount = 0;
9103
9104 smp_mb(); /* ensure prior mod happens before capturing snap. */
9105 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9106 get_online_cpus();
9107 while (try_stop_cpus(cpu_online_mask,
9108 synchronize_sched_expedited_cpu_stop,
9109 NULL) == -EAGAIN) {
9110 put_online_cpus();
9111 if (trycount++ < 10)
9112 udelay(trycount * num_online_cpus());
9113 else {
9114 synchronize_sched();
9115 return;
9116 }
9117 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9118 smp_mb(); /* ensure test happens before caller kfree */
9119 return;
9120 }
9121 get_online_cpus();
9122 }
9123 atomic_inc(&synchronize_sched_expedited_count);
9124 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9125 put_online_cpus();
9126 }
9127 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9128
9129 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.222292 seconds and 5 git commands to generate.