sched: cleanup: rename task_grp to task_group
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 static inline int rt_policy(int policy)
135 {
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 /*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152 };
153
154 #ifdef CONFIG_FAIR_GROUP_SCHED
155
156 struct cfs_rq;
157
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 };
166
167 /* Default task group's sched entity on each cpu */
168 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
169 /* Default task group's cfs_rq on each cpu */
170 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
171
172 static struct sched_entity *init_sched_entity_p[NR_CPUS];
173 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
174
175 /* Default task group.
176 * Every task in system belong to this group at bootup.
177 */
178 struct task_group init_task_group = {
179 .se = init_sched_entity_p,
180 .cfs_rq = init_cfs_rq_p,
181 };
182
183 #ifdef CONFIG_FAIR_USER_SCHED
184 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
185 #else
186 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
187 #endif
188
189 static int init_task_group_load = INIT_TASK_GRP_LOAD;
190
191 /* return group to which a task belongs */
192 static inline struct task_group *task_group(struct task_struct *p)
193 {
194 struct task_group *tg;
195
196 #ifdef CONFIG_FAIR_USER_SCHED
197 tg = p->user->tg;
198 #else
199 tg = &init_task_group;
200 #endif
201
202 return tg;
203 }
204
205 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
206 static inline void set_task_cfs_rq(struct task_struct *p)
207 {
208 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
209 p->se.parent = task_group(p)->se[task_cpu(p)];
210 }
211
212 #else
213
214 static inline void set_task_cfs_rq(struct task_struct *p) { }
215
216 #endif /* CONFIG_FAIR_GROUP_SCHED */
217
218 /* CFS-related fields in a runqueue */
219 struct cfs_rq {
220 struct load_weight load;
221 unsigned long nr_running;
222
223 u64 exec_clock;
224 u64 min_vruntime;
225
226 struct rb_root tasks_timeline;
227 struct rb_node *rb_leftmost;
228 struct rb_node *rb_load_balance_curr;
229 /* 'curr' points to currently running entity on this cfs_rq.
230 * It is set to NULL otherwise (i.e when none are currently running).
231 */
232 struct sched_entity *curr;
233
234 unsigned long nr_spread_over;
235
236 #ifdef CONFIG_FAIR_GROUP_SCHED
237 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
238
239 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
240 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
241 * (like users, containers etc.)
242 *
243 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
244 * list is used during load balance.
245 */
246 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
247 struct task_group *tg; /* group that "owns" this runqueue */
248 struct rcu_head rcu;
249 #endif
250 };
251
252 /* Real-Time classes' related field in a runqueue: */
253 struct rt_rq {
254 struct rt_prio_array active;
255 int rt_load_balance_idx;
256 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
257 };
258
259 /*
260 * This is the main, per-CPU runqueue data structure.
261 *
262 * Locking rule: those places that want to lock multiple runqueues
263 * (such as the load balancing or the thread migration code), lock
264 * acquire operations must be ordered by ascending &runqueue.
265 */
266 struct rq {
267 spinlock_t lock; /* runqueue lock */
268
269 /*
270 * nr_running and cpu_load should be in the same cacheline because
271 * remote CPUs use both these fields when doing load calculation.
272 */
273 unsigned long nr_running;
274 #define CPU_LOAD_IDX_MAX 5
275 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
276 unsigned char idle_at_tick;
277 #ifdef CONFIG_NO_HZ
278 unsigned char in_nohz_recently;
279 #endif
280 struct load_weight load; /* capture load from *all* tasks on this cpu */
281 unsigned long nr_load_updates;
282 u64 nr_switches;
283
284 struct cfs_rq cfs;
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
287 #endif
288 struct rt_rq rt;
289
290 /*
291 * This is part of a global counter where only the total sum
292 * over all CPUs matters. A task can increase this counter on
293 * one CPU and if it got migrated afterwards it may decrease
294 * it on another CPU. Always updated under the runqueue lock:
295 */
296 unsigned long nr_uninterruptible;
297
298 struct task_struct *curr, *idle;
299 unsigned long next_balance;
300 struct mm_struct *prev_mm;
301
302 u64 clock, prev_clock_raw;
303 s64 clock_max_delta;
304
305 unsigned int clock_warps, clock_overflows;
306 u64 idle_clock;
307 unsigned int clock_deep_idle_events;
308 u64 tick_timestamp;
309
310 atomic_t nr_iowait;
311
312 #ifdef CONFIG_SMP
313 struct sched_domain *sd;
314
315 /* For active balancing */
316 int active_balance;
317 int push_cpu;
318 int cpu; /* cpu of this runqueue */
319
320 struct task_struct *migration_thread;
321 struct list_head migration_queue;
322 #endif
323
324 #ifdef CONFIG_SCHEDSTATS
325 /* latency stats */
326 struct sched_info rq_sched_info;
327
328 /* sys_sched_yield() stats */
329 unsigned long yld_exp_empty;
330 unsigned long yld_act_empty;
331 unsigned long yld_both_empty;
332 unsigned long yld_count;
333
334 /* schedule() stats */
335 unsigned long sched_switch;
336 unsigned long sched_count;
337 unsigned long sched_goidle;
338
339 /* try_to_wake_up() stats */
340 unsigned long ttwu_count;
341 unsigned long ttwu_local;
342
343 /* BKL stats */
344 unsigned long bkl_count;
345 #endif
346 struct lock_class_key rq_lock_key;
347 };
348
349 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
350 static DEFINE_MUTEX(sched_hotcpu_mutex);
351
352 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
353 {
354 rq->curr->sched_class->check_preempt_curr(rq, p);
355 }
356
357 static inline int cpu_of(struct rq *rq)
358 {
359 #ifdef CONFIG_SMP
360 return rq->cpu;
361 #else
362 return 0;
363 #endif
364 }
365
366 /*
367 * Update the per-runqueue clock, as finegrained as the platform can give
368 * us, but without assuming monotonicity, etc.:
369 */
370 static void __update_rq_clock(struct rq *rq)
371 {
372 u64 prev_raw = rq->prev_clock_raw;
373 u64 now = sched_clock();
374 s64 delta = now - prev_raw;
375 u64 clock = rq->clock;
376
377 #ifdef CONFIG_SCHED_DEBUG
378 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
379 #endif
380 /*
381 * Protect against sched_clock() occasionally going backwards:
382 */
383 if (unlikely(delta < 0)) {
384 clock++;
385 rq->clock_warps++;
386 } else {
387 /*
388 * Catch too large forward jumps too:
389 */
390 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
391 if (clock < rq->tick_timestamp + TICK_NSEC)
392 clock = rq->tick_timestamp + TICK_NSEC;
393 else
394 clock++;
395 rq->clock_overflows++;
396 } else {
397 if (unlikely(delta > rq->clock_max_delta))
398 rq->clock_max_delta = delta;
399 clock += delta;
400 }
401 }
402
403 rq->prev_clock_raw = now;
404 rq->clock = clock;
405 }
406
407 static void update_rq_clock(struct rq *rq)
408 {
409 if (likely(smp_processor_id() == cpu_of(rq)))
410 __update_rq_clock(rq);
411 }
412
413 /*
414 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
415 * See detach_destroy_domains: synchronize_sched for details.
416 *
417 * The domain tree of any CPU may only be accessed from within
418 * preempt-disabled sections.
419 */
420 #define for_each_domain(cpu, __sd) \
421 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
422
423 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
424 #define this_rq() (&__get_cpu_var(runqueues))
425 #define task_rq(p) cpu_rq(task_cpu(p))
426 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
427
428 /*
429 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
430 */
431 #ifdef CONFIG_SCHED_DEBUG
432 # define const_debug __read_mostly
433 #else
434 # define const_debug static const
435 #endif
436
437 /*
438 * Debugging: various feature bits
439 */
440 enum {
441 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
442 SCHED_FEAT_START_DEBIT = 2,
443 SCHED_FEAT_TREE_AVG = 4,
444 SCHED_FEAT_APPROX_AVG = 8,
445 };
446
447 const_debug unsigned int sysctl_sched_features =
448 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
449 SCHED_FEAT_START_DEBIT *1 |
450 SCHED_FEAT_TREE_AVG *0 |
451 SCHED_FEAT_APPROX_AVG *0;
452
453 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
454
455 /*
456 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
457 * clock constructed from sched_clock():
458 */
459 unsigned long long cpu_clock(int cpu)
460 {
461 unsigned long long now;
462 unsigned long flags;
463 struct rq *rq;
464
465 local_irq_save(flags);
466 rq = cpu_rq(cpu);
467 update_rq_clock(rq);
468 now = rq->clock;
469 local_irq_restore(flags);
470
471 return now;
472 }
473
474 #ifndef prepare_arch_switch
475 # define prepare_arch_switch(next) do { } while (0)
476 #endif
477 #ifndef finish_arch_switch
478 # define finish_arch_switch(prev) do { } while (0)
479 #endif
480
481 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
482 static inline int task_running(struct rq *rq, struct task_struct *p)
483 {
484 return rq->curr == p;
485 }
486
487 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
488 {
489 }
490
491 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
492 {
493 #ifdef CONFIG_DEBUG_SPINLOCK
494 /* this is a valid case when another task releases the spinlock */
495 rq->lock.owner = current;
496 #endif
497 /*
498 * If we are tracking spinlock dependencies then we have to
499 * fix up the runqueue lock - which gets 'carried over' from
500 * prev into current:
501 */
502 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
503
504 spin_unlock_irq(&rq->lock);
505 }
506
507 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
508 static inline int task_running(struct rq *rq, struct task_struct *p)
509 {
510 #ifdef CONFIG_SMP
511 return p->oncpu;
512 #else
513 return rq->curr == p;
514 #endif
515 }
516
517 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
518 {
519 #ifdef CONFIG_SMP
520 /*
521 * We can optimise this out completely for !SMP, because the
522 * SMP rebalancing from interrupt is the only thing that cares
523 * here.
524 */
525 next->oncpu = 1;
526 #endif
527 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
528 spin_unlock_irq(&rq->lock);
529 #else
530 spin_unlock(&rq->lock);
531 #endif
532 }
533
534 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
535 {
536 #ifdef CONFIG_SMP
537 /*
538 * After ->oncpu is cleared, the task can be moved to a different CPU.
539 * We must ensure this doesn't happen until the switch is completely
540 * finished.
541 */
542 smp_wmb();
543 prev->oncpu = 0;
544 #endif
545 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
546 local_irq_enable();
547 #endif
548 }
549 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
550
551 /*
552 * __task_rq_lock - lock the runqueue a given task resides on.
553 * Must be called interrupts disabled.
554 */
555 static inline struct rq *__task_rq_lock(struct task_struct *p)
556 __acquires(rq->lock)
557 {
558 struct rq *rq;
559
560 repeat_lock_task:
561 rq = task_rq(p);
562 spin_lock(&rq->lock);
563 if (unlikely(rq != task_rq(p))) {
564 spin_unlock(&rq->lock);
565 goto repeat_lock_task;
566 }
567 return rq;
568 }
569
570 /*
571 * task_rq_lock - lock the runqueue a given task resides on and disable
572 * interrupts. Note the ordering: we can safely lookup the task_rq without
573 * explicitly disabling preemption.
574 */
575 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
576 __acquires(rq->lock)
577 {
578 struct rq *rq;
579
580 repeat_lock_task:
581 local_irq_save(*flags);
582 rq = task_rq(p);
583 spin_lock(&rq->lock);
584 if (unlikely(rq != task_rq(p))) {
585 spin_unlock_irqrestore(&rq->lock, *flags);
586 goto repeat_lock_task;
587 }
588 return rq;
589 }
590
591 static void __task_rq_unlock(struct rq *rq)
592 __releases(rq->lock)
593 {
594 spin_unlock(&rq->lock);
595 }
596
597 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
598 __releases(rq->lock)
599 {
600 spin_unlock_irqrestore(&rq->lock, *flags);
601 }
602
603 /*
604 * this_rq_lock - lock this runqueue and disable interrupts.
605 */
606 static struct rq *this_rq_lock(void)
607 __acquires(rq->lock)
608 {
609 struct rq *rq;
610
611 local_irq_disable();
612 rq = this_rq();
613 spin_lock(&rq->lock);
614
615 return rq;
616 }
617
618 /*
619 * We are going deep-idle (irqs are disabled):
620 */
621 void sched_clock_idle_sleep_event(void)
622 {
623 struct rq *rq = cpu_rq(smp_processor_id());
624
625 spin_lock(&rq->lock);
626 __update_rq_clock(rq);
627 spin_unlock(&rq->lock);
628 rq->clock_deep_idle_events++;
629 }
630 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
631
632 /*
633 * We just idled delta nanoseconds (called with irqs disabled):
634 */
635 void sched_clock_idle_wakeup_event(u64 delta_ns)
636 {
637 struct rq *rq = cpu_rq(smp_processor_id());
638 u64 now = sched_clock();
639
640 rq->idle_clock += delta_ns;
641 /*
642 * Override the previous timestamp and ignore all
643 * sched_clock() deltas that occured while we idled,
644 * and use the PM-provided delta_ns to advance the
645 * rq clock:
646 */
647 spin_lock(&rq->lock);
648 rq->prev_clock_raw = now;
649 rq->clock += delta_ns;
650 spin_unlock(&rq->lock);
651 }
652 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
653
654 /*
655 * resched_task - mark a task 'to be rescheduled now'.
656 *
657 * On UP this means the setting of the need_resched flag, on SMP it
658 * might also involve a cross-CPU call to trigger the scheduler on
659 * the target CPU.
660 */
661 #ifdef CONFIG_SMP
662
663 #ifndef tsk_is_polling
664 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
665 #endif
666
667 static void resched_task(struct task_struct *p)
668 {
669 int cpu;
670
671 assert_spin_locked(&task_rq(p)->lock);
672
673 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
674 return;
675
676 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
677
678 cpu = task_cpu(p);
679 if (cpu == smp_processor_id())
680 return;
681
682 /* NEED_RESCHED must be visible before we test polling */
683 smp_mb();
684 if (!tsk_is_polling(p))
685 smp_send_reschedule(cpu);
686 }
687
688 static void resched_cpu(int cpu)
689 {
690 struct rq *rq = cpu_rq(cpu);
691 unsigned long flags;
692
693 if (!spin_trylock_irqsave(&rq->lock, flags))
694 return;
695 resched_task(cpu_curr(cpu));
696 spin_unlock_irqrestore(&rq->lock, flags);
697 }
698 #else
699 static inline void resched_task(struct task_struct *p)
700 {
701 assert_spin_locked(&task_rq(p)->lock);
702 set_tsk_need_resched(p);
703 }
704 #endif
705
706 #if BITS_PER_LONG == 32
707 # define WMULT_CONST (~0UL)
708 #else
709 # define WMULT_CONST (1UL << 32)
710 #endif
711
712 #define WMULT_SHIFT 32
713
714 /*
715 * Shift right and round:
716 */
717 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
718
719 static unsigned long
720 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
721 struct load_weight *lw)
722 {
723 u64 tmp;
724
725 if (unlikely(!lw->inv_weight))
726 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
727
728 tmp = (u64)delta_exec * weight;
729 /*
730 * Check whether we'd overflow the 64-bit multiplication:
731 */
732 if (unlikely(tmp > WMULT_CONST))
733 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
734 WMULT_SHIFT/2);
735 else
736 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
737
738 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
739 }
740
741 static inline unsigned long
742 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
743 {
744 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
745 }
746
747 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
748 {
749 lw->weight += inc;
750 }
751
752 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
753 {
754 lw->weight -= dec;
755 }
756
757 /*
758 * To aid in avoiding the subversion of "niceness" due to uneven distribution
759 * of tasks with abnormal "nice" values across CPUs the contribution that
760 * each task makes to its run queue's load is weighted according to its
761 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
762 * scaled version of the new time slice allocation that they receive on time
763 * slice expiry etc.
764 */
765
766 #define WEIGHT_IDLEPRIO 2
767 #define WMULT_IDLEPRIO (1 << 31)
768
769 /*
770 * Nice levels are multiplicative, with a gentle 10% change for every
771 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
772 * nice 1, it will get ~10% less CPU time than another CPU-bound task
773 * that remained on nice 0.
774 *
775 * The "10% effect" is relative and cumulative: from _any_ nice level,
776 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
777 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
778 * If a task goes up by ~10% and another task goes down by ~10% then
779 * the relative distance between them is ~25%.)
780 */
781 static const int prio_to_weight[40] = {
782 /* -20 */ 88761, 71755, 56483, 46273, 36291,
783 /* -15 */ 29154, 23254, 18705, 14949, 11916,
784 /* -10 */ 9548, 7620, 6100, 4904, 3906,
785 /* -5 */ 3121, 2501, 1991, 1586, 1277,
786 /* 0 */ 1024, 820, 655, 526, 423,
787 /* 5 */ 335, 272, 215, 172, 137,
788 /* 10 */ 110, 87, 70, 56, 45,
789 /* 15 */ 36, 29, 23, 18, 15,
790 };
791
792 /*
793 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
794 *
795 * In cases where the weight does not change often, we can use the
796 * precalculated inverse to speed up arithmetics by turning divisions
797 * into multiplications:
798 */
799 static const u32 prio_to_wmult[40] = {
800 /* -20 */ 48388, 59856, 76040, 92818, 118348,
801 /* -15 */ 147320, 184698, 229616, 287308, 360437,
802 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
803 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
804 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
805 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
806 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
807 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
808 };
809
810 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
811
812 /*
813 * runqueue iterator, to support SMP load-balancing between different
814 * scheduling classes, without having to expose their internal data
815 * structures to the load-balancing proper:
816 */
817 struct rq_iterator {
818 void *arg;
819 struct task_struct *(*start)(void *);
820 struct task_struct *(*next)(void *);
821 };
822
823 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
824 unsigned long max_nr_move, unsigned long max_load_move,
825 struct sched_domain *sd, enum cpu_idle_type idle,
826 int *all_pinned, unsigned long *load_moved,
827 int *this_best_prio, struct rq_iterator *iterator);
828
829 #include "sched_stats.h"
830 #include "sched_idletask.c"
831 #include "sched_fair.c"
832 #include "sched_rt.c"
833 #ifdef CONFIG_SCHED_DEBUG
834 # include "sched_debug.c"
835 #endif
836
837 #define sched_class_highest (&rt_sched_class)
838
839 /*
840 * Update delta_exec, delta_fair fields for rq.
841 *
842 * delta_fair clock advances at a rate inversely proportional to
843 * total load (rq->load.weight) on the runqueue, while
844 * delta_exec advances at the same rate as wall-clock (provided
845 * cpu is not idle).
846 *
847 * delta_exec / delta_fair is a measure of the (smoothened) load on this
848 * runqueue over any given interval. This (smoothened) load is used
849 * during load balance.
850 *
851 * This function is called /before/ updating rq->load
852 * and when switching tasks.
853 */
854 static inline void inc_load(struct rq *rq, const struct task_struct *p)
855 {
856 update_load_add(&rq->load, p->se.load.weight);
857 }
858
859 static inline void dec_load(struct rq *rq, const struct task_struct *p)
860 {
861 update_load_sub(&rq->load, p->se.load.weight);
862 }
863
864 static void inc_nr_running(struct task_struct *p, struct rq *rq)
865 {
866 rq->nr_running++;
867 inc_load(rq, p);
868 }
869
870 static void dec_nr_running(struct task_struct *p, struct rq *rq)
871 {
872 rq->nr_running--;
873 dec_load(rq, p);
874 }
875
876 static void set_load_weight(struct task_struct *p)
877 {
878 if (task_has_rt_policy(p)) {
879 p->se.load.weight = prio_to_weight[0] * 2;
880 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
881 return;
882 }
883
884 /*
885 * SCHED_IDLE tasks get minimal weight:
886 */
887 if (p->policy == SCHED_IDLE) {
888 p->se.load.weight = WEIGHT_IDLEPRIO;
889 p->se.load.inv_weight = WMULT_IDLEPRIO;
890 return;
891 }
892
893 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
894 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
895 }
896
897 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
898 {
899 sched_info_queued(p);
900 p->sched_class->enqueue_task(rq, p, wakeup);
901 p->se.on_rq = 1;
902 }
903
904 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
905 {
906 p->sched_class->dequeue_task(rq, p, sleep);
907 p->se.on_rq = 0;
908 }
909
910 /*
911 * __normal_prio - return the priority that is based on the static prio
912 */
913 static inline int __normal_prio(struct task_struct *p)
914 {
915 return p->static_prio;
916 }
917
918 /*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
925 static inline int normal_prio(struct task_struct *p)
926 {
927 int prio;
928
929 if (task_has_rt_policy(p))
930 prio = MAX_RT_PRIO-1 - p->rt_priority;
931 else
932 prio = __normal_prio(p);
933 return prio;
934 }
935
936 /*
937 * Calculate the current priority, i.e. the priority
938 * taken into account by the scheduler. This value might
939 * be boosted by RT tasks, or might be boosted by
940 * interactivity modifiers. Will be RT if the task got
941 * RT-boosted. If not then it returns p->normal_prio.
942 */
943 static int effective_prio(struct task_struct *p)
944 {
945 p->normal_prio = normal_prio(p);
946 /*
947 * If we are RT tasks or we were boosted to RT priority,
948 * keep the priority unchanged. Otherwise, update priority
949 * to the normal priority:
950 */
951 if (!rt_prio(p->prio))
952 return p->normal_prio;
953 return p->prio;
954 }
955
956 /*
957 * activate_task - move a task to the runqueue.
958 */
959 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
960 {
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
963
964 enqueue_task(rq, p, wakeup);
965 inc_nr_running(p, rq);
966 }
967
968 /*
969 * deactivate_task - remove a task from the runqueue.
970 */
971 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
972 {
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
976 dequeue_task(rq, p, sleep);
977 dec_nr_running(p, rq);
978 }
979
980 /**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
984 inline int task_curr(const struct task_struct *p)
985 {
986 return cpu_curr(task_cpu(p)) == p;
987 }
988
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu)
991 {
992 return cpu_rq(cpu)->load.weight;
993 }
994
995 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996 {
997 #ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 #endif
1000 set_task_cfs_rq(p);
1001 }
1002
1003 #ifdef CONFIG_SMP
1004
1005 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1006 {
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1010 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1011 u64 clock_offset;
1012
1013 clock_offset = old_rq->clock - new_rq->clock;
1014
1015 #ifdef CONFIG_SCHEDSTATS
1016 if (p->se.wait_start)
1017 p->se.wait_start -= clock_offset;
1018 if (p->se.sleep_start)
1019 p->se.sleep_start -= clock_offset;
1020 if (p->se.block_start)
1021 p->se.block_start -= clock_offset;
1022 #endif
1023 p->se.vruntime -= old_cfsrq->min_vruntime -
1024 new_cfsrq->min_vruntime;
1025
1026 __set_task_cpu(p, new_cpu);
1027 }
1028
1029 struct migration_req {
1030 struct list_head list;
1031
1032 struct task_struct *task;
1033 int dest_cpu;
1034
1035 struct completion done;
1036 };
1037
1038 /*
1039 * The task's runqueue lock must be held.
1040 * Returns true if you have to wait for migration thread.
1041 */
1042 static int
1043 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1044 {
1045 struct rq *rq = task_rq(p);
1046
1047 /*
1048 * If the task is not on a runqueue (and not running), then
1049 * it is sufficient to simply update the task's cpu field.
1050 */
1051 if (!p->se.on_rq && !task_running(rq, p)) {
1052 set_task_cpu(p, dest_cpu);
1053 return 0;
1054 }
1055
1056 init_completion(&req->done);
1057 req->task = p;
1058 req->dest_cpu = dest_cpu;
1059 list_add(&req->list, &rq->migration_queue);
1060
1061 return 1;
1062 }
1063
1064 /*
1065 * wait_task_inactive - wait for a thread to unschedule.
1066 *
1067 * The caller must ensure that the task *will* unschedule sometime soon,
1068 * else this function might spin for a *long* time. This function can't
1069 * be called with interrupts off, or it may introduce deadlock with
1070 * smp_call_function() if an IPI is sent by the same process we are
1071 * waiting to become inactive.
1072 */
1073 void wait_task_inactive(struct task_struct *p)
1074 {
1075 unsigned long flags;
1076 int running, on_rq;
1077 struct rq *rq;
1078
1079 repeat:
1080 /*
1081 * We do the initial early heuristics without holding
1082 * any task-queue locks at all. We'll only try to get
1083 * the runqueue lock when things look like they will
1084 * work out!
1085 */
1086 rq = task_rq(p);
1087
1088 /*
1089 * If the task is actively running on another CPU
1090 * still, just relax and busy-wait without holding
1091 * any locks.
1092 *
1093 * NOTE! Since we don't hold any locks, it's not
1094 * even sure that "rq" stays as the right runqueue!
1095 * But we don't care, since "task_running()" will
1096 * return false if the runqueue has changed and p
1097 * is actually now running somewhere else!
1098 */
1099 while (task_running(rq, p))
1100 cpu_relax();
1101
1102 /*
1103 * Ok, time to look more closely! We need the rq
1104 * lock now, to be *sure*. If we're wrong, we'll
1105 * just go back and repeat.
1106 */
1107 rq = task_rq_lock(p, &flags);
1108 running = task_running(rq, p);
1109 on_rq = p->se.on_rq;
1110 task_rq_unlock(rq, &flags);
1111
1112 /*
1113 * Was it really running after all now that we
1114 * checked with the proper locks actually held?
1115 *
1116 * Oops. Go back and try again..
1117 */
1118 if (unlikely(running)) {
1119 cpu_relax();
1120 goto repeat;
1121 }
1122
1123 /*
1124 * It's not enough that it's not actively running,
1125 * it must be off the runqueue _entirely_, and not
1126 * preempted!
1127 *
1128 * So if it wa still runnable (but just not actively
1129 * running right now), it's preempted, and we should
1130 * yield - it could be a while.
1131 */
1132 if (unlikely(on_rq)) {
1133 yield();
1134 goto repeat;
1135 }
1136
1137 /*
1138 * Ahh, all good. It wasn't running, and it wasn't
1139 * runnable, which means that it will never become
1140 * running in the future either. We're all done!
1141 */
1142 }
1143
1144 /***
1145 * kick_process - kick a running thread to enter/exit the kernel
1146 * @p: the to-be-kicked thread
1147 *
1148 * Cause a process which is running on another CPU to enter
1149 * kernel-mode, without any delay. (to get signals handled.)
1150 *
1151 * NOTE: this function doesnt have to take the runqueue lock,
1152 * because all it wants to ensure is that the remote task enters
1153 * the kernel. If the IPI races and the task has been migrated
1154 * to another CPU then no harm is done and the purpose has been
1155 * achieved as well.
1156 */
1157 void kick_process(struct task_struct *p)
1158 {
1159 int cpu;
1160
1161 preempt_disable();
1162 cpu = task_cpu(p);
1163 if ((cpu != smp_processor_id()) && task_curr(p))
1164 smp_send_reschedule(cpu);
1165 preempt_enable();
1166 }
1167
1168 /*
1169 * Return a low guess at the load of a migration-source cpu weighted
1170 * according to the scheduling class and "nice" value.
1171 *
1172 * We want to under-estimate the load of migration sources, to
1173 * balance conservatively.
1174 */
1175 static unsigned long source_load(int cpu, int type)
1176 {
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long total = weighted_cpuload(cpu);
1179
1180 if (type == 0)
1181 return total;
1182
1183 return min(rq->cpu_load[type-1], total);
1184 }
1185
1186 /*
1187 * Return a high guess at the load of a migration-target cpu weighted
1188 * according to the scheduling class and "nice" value.
1189 */
1190 static unsigned long target_load(int cpu, int type)
1191 {
1192 struct rq *rq = cpu_rq(cpu);
1193 unsigned long total = weighted_cpuload(cpu);
1194
1195 if (type == 0)
1196 return total;
1197
1198 return max(rq->cpu_load[type-1], total);
1199 }
1200
1201 /*
1202 * Return the average load per task on the cpu's run queue
1203 */
1204 static inline unsigned long cpu_avg_load_per_task(int cpu)
1205 {
1206 struct rq *rq = cpu_rq(cpu);
1207 unsigned long total = weighted_cpuload(cpu);
1208 unsigned long n = rq->nr_running;
1209
1210 return n ? total / n : SCHED_LOAD_SCALE;
1211 }
1212
1213 /*
1214 * find_idlest_group finds and returns the least busy CPU group within the
1215 * domain.
1216 */
1217 static struct sched_group *
1218 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1219 {
1220 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1221 unsigned long min_load = ULONG_MAX, this_load = 0;
1222 int load_idx = sd->forkexec_idx;
1223 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1224
1225 do {
1226 unsigned long load, avg_load;
1227 int local_group;
1228 int i;
1229
1230 /* Skip over this group if it has no CPUs allowed */
1231 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1232 goto nextgroup;
1233
1234 local_group = cpu_isset(this_cpu, group->cpumask);
1235
1236 /* Tally up the load of all CPUs in the group */
1237 avg_load = 0;
1238
1239 for_each_cpu_mask(i, group->cpumask) {
1240 /* Bias balancing toward cpus of our domain */
1241 if (local_group)
1242 load = source_load(i, load_idx);
1243 else
1244 load = target_load(i, load_idx);
1245
1246 avg_load += load;
1247 }
1248
1249 /* Adjust by relative CPU power of the group */
1250 avg_load = sg_div_cpu_power(group,
1251 avg_load * SCHED_LOAD_SCALE);
1252
1253 if (local_group) {
1254 this_load = avg_load;
1255 this = group;
1256 } else if (avg_load < min_load) {
1257 min_load = avg_load;
1258 idlest = group;
1259 }
1260 nextgroup:
1261 group = group->next;
1262 } while (group != sd->groups);
1263
1264 if (!idlest || 100*this_load < imbalance*min_load)
1265 return NULL;
1266 return idlest;
1267 }
1268
1269 /*
1270 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1271 */
1272 static int
1273 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1274 {
1275 cpumask_t tmp;
1276 unsigned long load, min_load = ULONG_MAX;
1277 int idlest = -1;
1278 int i;
1279
1280 /* Traverse only the allowed CPUs */
1281 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1282
1283 for_each_cpu_mask(i, tmp) {
1284 load = weighted_cpuload(i);
1285
1286 if (load < min_load || (load == min_load && i == this_cpu)) {
1287 min_load = load;
1288 idlest = i;
1289 }
1290 }
1291
1292 return idlest;
1293 }
1294
1295 /*
1296 * sched_balance_self: balance the current task (running on cpu) in domains
1297 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1298 * SD_BALANCE_EXEC.
1299 *
1300 * Balance, ie. select the least loaded group.
1301 *
1302 * Returns the target CPU number, or the same CPU if no balancing is needed.
1303 *
1304 * preempt must be disabled.
1305 */
1306 static int sched_balance_self(int cpu, int flag)
1307 {
1308 struct task_struct *t = current;
1309 struct sched_domain *tmp, *sd = NULL;
1310
1311 for_each_domain(cpu, tmp) {
1312 /*
1313 * If power savings logic is enabled for a domain, stop there.
1314 */
1315 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1316 break;
1317 if (tmp->flags & flag)
1318 sd = tmp;
1319 }
1320
1321 while (sd) {
1322 cpumask_t span;
1323 struct sched_group *group;
1324 int new_cpu, weight;
1325
1326 if (!(sd->flags & flag)) {
1327 sd = sd->child;
1328 continue;
1329 }
1330
1331 span = sd->span;
1332 group = find_idlest_group(sd, t, cpu);
1333 if (!group) {
1334 sd = sd->child;
1335 continue;
1336 }
1337
1338 new_cpu = find_idlest_cpu(group, t, cpu);
1339 if (new_cpu == -1 || new_cpu == cpu) {
1340 /* Now try balancing at a lower domain level of cpu */
1341 sd = sd->child;
1342 continue;
1343 }
1344
1345 /* Now try balancing at a lower domain level of new_cpu */
1346 cpu = new_cpu;
1347 sd = NULL;
1348 weight = cpus_weight(span);
1349 for_each_domain(cpu, tmp) {
1350 if (weight <= cpus_weight(tmp->span))
1351 break;
1352 if (tmp->flags & flag)
1353 sd = tmp;
1354 }
1355 /* while loop will break here if sd == NULL */
1356 }
1357
1358 return cpu;
1359 }
1360
1361 #endif /* CONFIG_SMP */
1362
1363 /*
1364 * wake_idle() will wake a task on an idle cpu if task->cpu is
1365 * not idle and an idle cpu is available. The span of cpus to
1366 * search starts with cpus closest then further out as needed,
1367 * so we always favor a closer, idle cpu.
1368 *
1369 * Returns the CPU we should wake onto.
1370 */
1371 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1372 static int wake_idle(int cpu, struct task_struct *p)
1373 {
1374 cpumask_t tmp;
1375 struct sched_domain *sd;
1376 int i;
1377
1378 /*
1379 * If it is idle, then it is the best cpu to run this task.
1380 *
1381 * This cpu is also the best, if it has more than one task already.
1382 * Siblings must be also busy(in most cases) as they didn't already
1383 * pickup the extra load from this cpu and hence we need not check
1384 * sibling runqueue info. This will avoid the checks and cache miss
1385 * penalities associated with that.
1386 */
1387 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1388 return cpu;
1389
1390 for_each_domain(cpu, sd) {
1391 if (sd->flags & SD_WAKE_IDLE) {
1392 cpus_and(tmp, sd->span, p->cpus_allowed);
1393 for_each_cpu_mask(i, tmp) {
1394 if (idle_cpu(i))
1395 return i;
1396 }
1397 } else {
1398 break;
1399 }
1400 }
1401 return cpu;
1402 }
1403 #else
1404 static inline int wake_idle(int cpu, struct task_struct *p)
1405 {
1406 return cpu;
1407 }
1408 #endif
1409
1410 /***
1411 * try_to_wake_up - wake up a thread
1412 * @p: the to-be-woken-up thread
1413 * @state: the mask of task states that can be woken
1414 * @sync: do a synchronous wakeup?
1415 *
1416 * Put it on the run-queue if it's not already there. The "current"
1417 * thread is always on the run-queue (except when the actual
1418 * re-schedule is in progress), and as such you're allowed to do
1419 * the simpler "current->state = TASK_RUNNING" to mark yourself
1420 * runnable without the overhead of this.
1421 *
1422 * returns failure only if the task is already active.
1423 */
1424 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1425 {
1426 int cpu, this_cpu, success = 0;
1427 unsigned long flags;
1428 long old_state;
1429 struct rq *rq;
1430 #ifdef CONFIG_SMP
1431 struct sched_domain *sd, *this_sd = NULL;
1432 unsigned long load, this_load;
1433 int new_cpu;
1434 #endif
1435
1436 rq = task_rq_lock(p, &flags);
1437 old_state = p->state;
1438 if (!(old_state & state))
1439 goto out;
1440
1441 if (p->se.on_rq)
1442 goto out_running;
1443
1444 cpu = task_cpu(p);
1445 this_cpu = smp_processor_id();
1446
1447 #ifdef CONFIG_SMP
1448 if (unlikely(task_running(rq, p)))
1449 goto out_activate;
1450
1451 new_cpu = cpu;
1452
1453 schedstat_inc(rq, ttwu_count);
1454 if (cpu == this_cpu) {
1455 schedstat_inc(rq, ttwu_local);
1456 goto out_set_cpu;
1457 }
1458
1459 for_each_domain(this_cpu, sd) {
1460 if (cpu_isset(cpu, sd->span)) {
1461 schedstat_inc(sd, ttwu_wake_remote);
1462 this_sd = sd;
1463 break;
1464 }
1465 }
1466
1467 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1468 goto out_set_cpu;
1469
1470 /*
1471 * Check for affine wakeup and passive balancing possibilities.
1472 */
1473 if (this_sd) {
1474 int idx = this_sd->wake_idx;
1475 unsigned int imbalance;
1476
1477 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1478
1479 load = source_load(cpu, idx);
1480 this_load = target_load(this_cpu, idx);
1481
1482 new_cpu = this_cpu; /* Wake to this CPU if we can */
1483
1484 if (this_sd->flags & SD_WAKE_AFFINE) {
1485 unsigned long tl = this_load;
1486 unsigned long tl_per_task;
1487
1488 tl_per_task = cpu_avg_load_per_task(this_cpu);
1489
1490 /*
1491 * If sync wakeup then subtract the (maximum possible)
1492 * effect of the currently running task from the load
1493 * of the current CPU:
1494 */
1495 if (sync)
1496 tl -= current->se.load.weight;
1497
1498 if ((tl <= load &&
1499 tl + target_load(cpu, idx) <= tl_per_task) ||
1500 100*(tl + p->se.load.weight) <= imbalance*load) {
1501 /*
1502 * This domain has SD_WAKE_AFFINE and
1503 * p is cache cold in this domain, and
1504 * there is no bad imbalance.
1505 */
1506 schedstat_inc(this_sd, ttwu_move_affine);
1507 goto out_set_cpu;
1508 }
1509 }
1510
1511 /*
1512 * Start passive balancing when half the imbalance_pct
1513 * limit is reached.
1514 */
1515 if (this_sd->flags & SD_WAKE_BALANCE) {
1516 if (imbalance*this_load <= 100*load) {
1517 schedstat_inc(this_sd, ttwu_move_balance);
1518 goto out_set_cpu;
1519 }
1520 }
1521 }
1522
1523 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1524 out_set_cpu:
1525 new_cpu = wake_idle(new_cpu, p);
1526 if (new_cpu != cpu) {
1527 set_task_cpu(p, new_cpu);
1528 task_rq_unlock(rq, &flags);
1529 /* might preempt at this point */
1530 rq = task_rq_lock(p, &flags);
1531 old_state = p->state;
1532 if (!(old_state & state))
1533 goto out;
1534 if (p->se.on_rq)
1535 goto out_running;
1536
1537 this_cpu = smp_processor_id();
1538 cpu = task_cpu(p);
1539 }
1540
1541 out_activate:
1542 #endif /* CONFIG_SMP */
1543 update_rq_clock(rq);
1544 activate_task(rq, p, 1);
1545 /*
1546 * Sync wakeups (i.e. those types of wakeups where the waker
1547 * has indicated that it will leave the CPU in short order)
1548 * don't trigger a preemption, if the woken up task will run on
1549 * this cpu. (in this case the 'I will reschedule' promise of
1550 * the waker guarantees that the freshly woken up task is going
1551 * to be considered on this CPU.)
1552 */
1553 if (!sync || cpu != this_cpu)
1554 check_preempt_curr(rq, p);
1555 success = 1;
1556
1557 out_running:
1558 p->state = TASK_RUNNING;
1559 out:
1560 task_rq_unlock(rq, &flags);
1561
1562 return success;
1563 }
1564
1565 int fastcall wake_up_process(struct task_struct *p)
1566 {
1567 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1568 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1569 }
1570 EXPORT_SYMBOL(wake_up_process);
1571
1572 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1573 {
1574 return try_to_wake_up(p, state, 0);
1575 }
1576
1577 /*
1578 * Perform scheduler related setup for a newly forked process p.
1579 * p is forked by current.
1580 *
1581 * __sched_fork() is basic setup used by init_idle() too:
1582 */
1583 static void __sched_fork(struct task_struct *p)
1584 {
1585 p->se.exec_start = 0;
1586 p->se.sum_exec_runtime = 0;
1587 p->se.prev_sum_exec_runtime = 0;
1588
1589 #ifdef CONFIG_SCHEDSTATS
1590 p->se.wait_start = 0;
1591 p->se.sum_sleep_runtime = 0;
1592 p->se.sleep_start = 0;
1593 p->se.block_start = 0;
1594 p->se.sleep_max = 0;
1595 p->se.block_max = 0;
1596 p->se.exec_max = 0;
1597 p->se.slice_max = 0;
1598 p->se.wait_max = 0;
1599 #endif
1600
1601 INIT_LIST_HEAD(&p->run_list);
1602 p->se.on_rq = 0;
1603
1604 #ifdef CONFIG_PREEMPT_NOTIFIERS
1605 INIT_HLIST_HEAD(&p->preempt_notifiers);
1606 #endif
1607
1608 /*
1609 * We mark the process as running here, but have not actually
1610 * inserted it onto the runqueue yet. This guarantees that
1611 * nobody will actually run it, and a signal or other external
1612 * event cannot wake it up and insert it on the runqueue either.
1613 */
1614 p->state = TASK_RUNNING;
1615 }
1616
1617 /*
1618 * fork()/clone()-time setup:
1619 */
1620 void sched_fork(struct task_struct *p, int clone_flags)
1621 {
1622 int cpu = get_cpu();
1623
1624 __sched_fork(p);
1625
1626 #ifdef CONFIG_SMP
1627 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1628 #endif
1629 set_task_cpu(p, cpu);
1630
1631 /*
1632 * Make sure we do not leak PI boosting priority to the child:
1633 */
1634 p->prio = current->normal_prio;
1635 if (!rt_prio(p->prio))
1636 p->sched_class = &fair_sched_class;
1637
1638 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1639 if (likely(sched_info_on()))
1640 memset(&p->sched_info, 0, sizeof(p->sched_info));
1641 #endif
1642 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1643 p->oncpu = 0;
1644 #endif
1645 #ifdef CONFIG_PREEMPT
1646 /* Want to start with kernel preemption disabled. */
1647 task_thread_info(p)->preempt_count = 1;
1648 #endif
1649 put_cpu();
1650 }
1651
1652 /*
1653 * wake_up_new_task - wake up a newly created task for the first time.
1654 *
1655 * This function will do some initial scheduler statistics housekeeping
1656 * that must be done for every newly created context, then puts the task
1657 * on the runqueue and wakes it.
1658 */
1659 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1660 {
1661 unsigned long flags;
1662 struct rq *rq;
1663 int this_cpu;
1664
1665 rq = task_rq_lock(p, &flags);
1666 BUG_ON(p->state != TASK_RUNNING);
1667 this_cpu = smp_processor_id(); /* parent's CPU */
1668 update_rq_clock(rq);
1669
1670 p->prio = effective_prio(p);
1671
1672 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1673 !current->se.on_rq) {
1674 activate_task(rq, p, 0);
1675 } else {
1676 /*
1677 * Let the scheduling class do new task startup
1678 * management (if any):
1679 */
1680 p->sched_class->task_new(rq, p);
1681 inc_nr_running(p, rq);
1682 }
1683 check_preempt_curr(rq, p);
1684 task_rq_unlock(rq, &flags);
1685 }
1686
1687 #ifdef CONFIG_PREEMPT_NOTIFIERS
1688
1689 /**
1690 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1691 * @notifier: notifier struct to register
1692 */
1693 void preempt_notifier_register(struct preempt_notifier *notifier)
1694 {
1695 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1696 }
1697 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1698
1699 /**
1700 * preempt_notifier_unregister - no longer interested in preemption notifications
1701 * @notifier: notifier struct to unregister
1702 *
1703 * This is safe to call from within a preemption notifier.
1704 */
1705 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1706 {
1707 hlist_del(&notifier->link);
1708 }
1709 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1710
1711 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1712 {
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1718 }
1719
1720 static void
1721 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1722 struct task_struct *next)
1723 {
1724 struct preempt_notifier *notifier;
1725 struct hlist_node *node;
1726
1727 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1728 notifier->ops->sched_out(notifier, next);
1729 }
1730
1731 #else
1732
1733 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1734 {
1735 }
1736
1737 static void
1738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1739 struct task_struct *next)
1740 {
1741 }
1742
1743 #endif
1744
1745 /**
1746 * prepare_task_switch - prepare to switch tasks
1747 * @rq: the runqueue preparing to switch
1748 * @prev: the current task that is being switched out
1749 * @next: the task we are going to switch to.
1750 *
1751 * This is called with the rq lock held and interrupts off. It must
1752 * be paired with a subsequent finish_task_switch after the context
1753 * switch.
1754 *
1755 * prepare_task_switch sets up locking and calls architecture specific
1756 * hooks.
1757 */
1758 static inline void
1759 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1760 struct task_struct *next)
1761 {
1762 fire_sched_out_preempt_notifiers(prev, next);
1763 prepare_lock_switch(rq, next);
1764 prepare_arch_switch(next);
1765 }
1766
1767 /**
1768 * finish_task_switch - clean up after a task-switch
1769 * @rq: runqueue associated with task-switch
1770 * @prev: the thread we just switched away from.
1771 *
1772 * finish_task_switch must be called after the context switch, paired
1773 * with a prepare_task_switch call before the context switch.
1774 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1775 * and do any other architecture-specific cleanup actions.
1776 *
1777 * Note that we may have delayed dropping an mm in context_switch(). If
1778 * so, we finish that here outside of the runqueue lock. (Doing it
1779 * with the lock held can cause deadlocks; see schedule() for
1780 * details.)
1781 */
1782 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1783 __releases(rq->lock)
1784 {
1785 struct mm_struct *mm = rq->prev_mm;
1786 long prev_state;
1787
1788 rq->prev_mm = NULL;
1789
1790 /*
1791 * A task struct has one reference for the use as "current".
1792 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1793 * schedule one last time. The schedule call will never return, and
1794 * the scheduled task must drop that reference.
1795 * The test for TASK_DEAD must occur while the runqueue locks are
1796 * still held, otherwise prev could be scheduled on another cpu, die
1797 * there before we look at prev->state, and then the reference would
1798 * be dropped twice.
1799 * Manfred Spraul <manfred@colorfullife.com>
1800 */
1801 prev_state = prev->state;
1802 finish_arch_switch(prev);
1803 finish_lock_switch(rq, prev);
1804 fire_sched_in_preempt_notifiers(current);
1805 if (mm)
1806 mmdrop(mm);
1807 if (unlikely(prev_state == TASK_DEAD)) {
1808 /*
1809 * Remove function-return probe instances associated with this
1810 * task and put them back on the free list.
1811 */
1812 kprobe_flush_task(prev);
1813 put_task_struct(prev);
1814 }
1815 }
1816
1817 /**
1818 * schedule_tail - first thing a freshly forked thread must call.
1819 * @prev: the thread we just switched away from.
1820 */
1821 asmlinkage void schedule_tail(struct task_struct *prev)
1822 __releases(rq->lock)
1823 {
1824 struct rq *rq = this_rq();
1825
1826 finish_task_switch(rq, prev);
1827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1828 /* In this case, finish_task_switch does not reenable preemption */
1829 preempt_enable();
1830 #endif
1831 if (current->set_child_tid)
1832 put_user(current->pid, current->set_child_tid);
1833 }
1834
1835 /*
1836 * context_switch - switch to the new MM and the new
1837 * thread's register state.
1838 */
1839 static inline void
1840 context_switch(struct rq *rq, struct task_struct *prev,
1841 struct task_struct *next)
1842 {
1843 struct mm_struct *mm, *oldmm;
1844
1845 prepare_task_switch(rq, prev, next);
1846 mm = next->mm;
1847 oldmm = prev->active_mm;
1848 /*
1849 * For paravirt, this is coupled with an exit in switch_to to
1850 * combine the page table reload and the switch backend into
1851 * one hypercall.
1852 */
1853 arch_enter_lazy_cpu_mode();
1854
1855 if (unlikely(!mm)) {
1856 next->active_mm = oldmm;
1857 atomic_inc(&oldmm->mm_count);
1858 enter_lazy_tlb(oldmm, next);
1859 } else
1860 switch_mm(oldmm, mm, next);
1861
1862 if (unlikely(!prev->mm)) {
1863 prev->active_mm = NULL;
1864 rq->prev_mm = oldmm;
1865 }
1866 /*
1867 * Since the runqueue lock will be released by the next
1868 * task (which is an invalid locking op but in the case
1869 * of the scheduler it's an obvious special-case), so we
1870 * do an early lockdep release here:
1871 */
1872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1874 #endif
1875
1876 /* Here we just switch the register state and the stack. */
1877 switch_to(prev, next, prev);
1878
1879 barrier();
1880 /*
1881 * this_rq must be evaluated again because prev may have moved
1882 * CPUs since it called schedule(), thus the 'rq' on its stack
1883 * frame will be invalid.
1884 */
1885 finish_task_switch(this_rq(), prev);
1886 }
1887
1888 /*
1889 * nr_running, nr_uninterruptible and nr_context_switches:
1890 *
1891 * externally visible scheduler statistics: current number of runnable
1892 * threads, current number of uninterruptible-sleeping threads, total
1893 * number of context switches performed since bootup.
1894 */
1895 unsigned long nr_running(void)
1896 {
1897 unsigned long i, sum = 0;
1898
1899 for_each_online_cpu(i)
1900 sum += cpu_rq(i)->nr_running;
1901
1902 return sum;
1903 }
1904
1905 unsigned long nr_uninterruptible(void)
1906 {
1907 unsigned long i, sum = 0;
1908
1909 for_each_possible_cpu(i)
1910 sum += cpu_rq(i)->nr_uninterruptible;
1911
1912 /*
1913 * Since we read the counters lockless, it might be slightly
1914 * inaccurate. Do not allow it to go below zero though:
1915 */
1916 if (unlikely((long)sum < 0))
1917 sum = 0;
1918
1919 return sum;
1920 }
1921
1922 unsigned long long nr_context_switches(void)
1923 {
1924 int i;
1925 unsigned long long sum = 0;
1926
1927 for_each_possible_cpu(i)
1928 sum += cpu_rq(i)->nr_switches;
1929
1930 return sum;
1931 }
1932
1933 unsigned long nr_iowait(void)
1934 {
1935 unsigned long i, sum = 0;
1936
1937 for_each_possible_cpu(i)
1938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1939
1940 return sum;
1941 }
1942
1943 unsigned long nr_active(void)
1944 {
1945 unsigned long i, running = 0, uninterruptible = 0;
1946
1947 for_each_online_cpu(i) {
1948 running += cpu_rq(i)->nr_running;
1949 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1950 }
1951
1952 if (unlikely((long)uninterruptible < 0))
1953 uninterruptible = 0;
1954
1955 return running + uninterruptible;
1956 }
1957
1958 /*
1959 * Update rq->cpu_load[] statistics. This function is usually called every
1960 * scheduler tick (TICK_NSEC).
1961 */
1962 static void update_cpu_load(struct rq *this_rq)
1963 {
1964 unsigned long this_load = this_rq->load.weight;
1965 int i, scale;
1966
1967 this_rq->nr_load_updates++;
1968
1969 /* Update our load: */
1970 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1971 unsigned long old_load, new_load;
1972
1973 /* scale is effectively 1 << i now, and >> i divides by scale */
1974
1975 old_load = this_rq->cpu_load[i];
1976 new_load = this_load;
1977 /*
1978 * Round up the averaging division if load is increasing. This
1979 * prevents us from getting stuck on 9 if the load is 10, for
1980 * example.
1981 */
1982 if (new_load > old_load)
1983 new_load += scale-1;
1984 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1985 }
1986 }
1987
1988 #ifdef CONFIG_SMP
1989
1990 /*
1991 * double_rq_lock - safely lock two runqueues
1992 *
1993 * Note this does not disable interrupts like task_rq_lock,
1994 * you need to do so manually before calling.
1995 */
1996 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1997 __acquires(rq1->lock)
1998 __acquires(rq2->lock)
1999 {
2000 BUG_ON(!irqs_disabled());
2001 if (rq1 == rq2) {
2002 spin_lock(&rq1->lock);
2003 __acquire(rq2->lock); /* Fake it out ;) */
2004 } else {
2005 if (rq1 < rq2) {
2006 spin_lock(&rq1->lock);
2007 spin_lock(&rq2->lock);
2008 } else {
2009 spin_lock(&rq2->lock);
2010 spin_lock(&rq1->lock);
2011 }
2012 }
2013 update_rq_clock(rq1);
2014 update_rq_clock(rq2);
2015 }
2016
2017 /*
2018 * double_rq_unlock - safely unlock two runqueues
2019 *
2020 * Note this does not restore interrupts like task_rq_unlock,
2021 * you need to do so manually after calling.
2022 */
2023 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2024 __releases(rq1->lock)
2025 __releases(rq2->lock)
2026 {
2027 spin_unlock(&rq1->lock);
2028 if (rq1 != rq2)
2029 spin_unlock(&rq2->lock);
2030 else
2031 __release(rq2->lock);
2032 }
2033
2034 /*
2035 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2036 */
2037 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2038 __releases(this_rq->lock)
2039 __acquires(busiest->lock)
2040 __acquires(this_rq->lock)
2041 {
2042 if (unlikely(!irqs_disabled())) {
2043 /* printk() doesn't work good under rq->lock */
2044 spin_unlock(&this_rq->lock);
2045 BUG_ON(1);
2046 }
2047 if (unlikely(!spin_trylock(&busiest->lock))) {
2048 if (busiest < this_rq) {
2049 spin_unlock(&this_rq->lock);
2050 spin_lock(&busiest->lock);
2051 spin_lock(&this_rq->lock);
2052 } else
2053 spin_lock(&busiest->lock);
2054 }
2055 }
2056
2057 /*
2058 * If dest_cpu is allowed for this process, migrate the task to it.
2059 * This is accomplished by forcing the cpu_allowed mask to only
2060 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2061 * the cpu_allowed mask is restored.
2062 */
2063 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2064 {
2065 struct migration_req req;
2066 unsigned long flags;
2067 struct rq *rq;
2068
2069 rq = task_rq_lock(p, &flags);
2070 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2071 || unlikely(cpu_is_offline(dest_cpu)))
2072 goto out;
2073
2074 /* force the process onto the specified CPU */
2075 if (migrate_task(p, dest_cpu, &req)) {
2076 /* Need to wait for migration thread (might exit: take ref). */
2077 struct task_struct *mt = rq->migration_thread;
2078
2079 get_task_struct(mt);
2080 task_rq_unlock(rq, &flags);
2081 wake_up_process(mt);
2082 put_task_struct(mt);
2083 wait_for_completion(&req.done);
2084
2085 return;
2086 }
2087 out:
2088 task_rq_unlock(rq, &flags);
2089 }
2090
2091 /*
2092 * sched_exec - execve() is a valuable balancing opportunity, because at
2093 * this point the task has the smallest effective memory and cache footprint.
2094 */
2095 void sched_exec(void)
2096 {
2097 int new_cpu, this_cpu = get_cpu();
2098 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2099 put_cpu();
2100 if (new_cpu != this_cpu)
2101 sched_migrate_task(current, new_cpu);
2102 }
2103
2104 /*
2105 * pull_task - move a task from a remote runqueue to the local runqueue.
2106 * Both runqueues must be locked.
2107 */
2108 static void pull_task(struct rq *src_rq, struct task_struct *p,
2109 struct rq *this_rq, int this_cpu)
2110 {
2111 deactivate_task(src_rq, p, 0);
2112 set_task_cpu(p, this_cpu);
2113 activate_task(this_rq, p, 0);
2114 /*
2115 * Note that idle threads have a prio of MAX_PRIO, for this test
2116 * to be always true for them.
2117 */
2118 check_preempt_curr(this_rq, p);
2119 }
2120
2121 /*
2122 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2123 */
2124 static
2125 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2126 struct sched_domain *sd, enum cpu_idle_type idle,
2127 int *all_pinned)
2128 {
2129 /*
2130 * We do not migrate tasks that are:
2131 * 1) running (obviously), or
2132 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2133 * 3) are cache-hot on their current CPU.
2134 */
2135 if (!cpu_isset(this_cpu, p->cpus_allowed))
2136 return 0;
2137 *all_pinned = 0;
2138
2139 if (task_running(rq, p))
2140 return 0;
2141
2142 return 1;
2143 }
2144
2145 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146 unsigned long max_nr_move, unsigned long max_load_move,
2147 struct sched_domain *sd, enum cpu_idle_type idle,
2148 int *all_pinned, unsigned long *load_moved,
2149 int *this_best_prio, struct rq_iterator *iterator)
2150 {
2151 int pulled = 0, pinned = 0, skip_for_load;
2152 struct task_struct *p;
2153 long rem_load_move = max_load_move;
2154
2155 if (max_nr_move == 0 || max_load_move == 0)
2156 goto out;
2157
2158 pinned = 1;
2159
2160 /*
2161 * Start the load-balancing iterator:
2162 */
2163 p = iterator->start(iterator->arg);
2164 next:
2165 if (!p)
2166 goto out;
2167 /*
2168 * To help distribute high priority tasks accross CPUs we don't
2169 * skip a task if it will be the highest priority task (i.e. smallest
2170 * prio value) on its new queue regardless of its load weight
2171 */
2172 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2173 SCHED_LOAD_SCALE_FUZZ;
2174 if ((skip_for_load && p->prio >= *this_best_prio) ||
2175 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2176 p = iterator->next(iterator->arg);
2177 goto next;
2178 }
2179
2180 pull_task(busiest, p, this_rq, this_cpu);
2181 pulled++;
2182 rem_load_move -= p->se.load.weight;
2183
2184 /*
2185 * We only want to steal up to the prescribed number of tasks
2186 * and the prescribed amount of weighted load.
2187 */
2188 if (pulled < max_nr_move && rem_load_move > 0) {
2189 if (p->prio < *this_best_prio)
2190 *this_best_prio = p->prio;
2191 p = iterator->next(iterator->arg);
2192 goto next;
2193 }
2194 out:
2195 /*
2196 * Right now, this is the only place pull_task() is called,
2197 * so we can safely collect pull_task() stats here rather than
2198 * inside pull_task().
2199 */
2200 schedstat_add(sd, lb_gained[idle], pulled);
2201
2202 if (all_pinned)
2203 *all_pinned = pinned;
2204 *load_moved = max_load_move - rem_load_move;
2205 return pulled;
2206 }
2207
2208 /*
2209 * move_tasks tries to move up to max_load_move weighted load from busiest to
2210 * this_rq, as part of a balancing operation within domain "sd".
2211 * Returns 1 if successful and 0 otherwise.
2212 *
2213 * Called with both runqueues locked.
2214 */
2215 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2216 unsigned long max_load_move,
2217 struct sched_domain *sd, enum cpu_idle_type idle,
2218 int *all_pinned)
2219 {
2220 const struct sched_class *class = sched_class_highest;
2221 unsigned long total_load_moved = 0;
2222 int this_best_prio = this_rq->curr->prio;
2223
2224 do {
2225 total_load_moved +=
2226 class->load_balance(this_rq, this_cpu, busiest,
2227 ULONG_MAX, max_load_move - total_load_moved,
2228 sd, idle, all_pinned, &this_best_prio);
2229 class = class->next;
2230 } while (class && max_load_move > total_load_moved);
2231
2232 return total_load_moved > 0;
2233 }
2234
2235 /*
2236 * move_one_task tries to move exactly one task from busiest to this_rq, as
2237 * part of active balancing operations within "domain".
2238 * Returns 1 if successful and 0 otherwise.
2239 *
2240 * Called with both runqueues locked.
2241 */
2242 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2243 struct sched_domain *sd, enum cpu_idle_type idle)
2244 {
2245 const struct sched_class *class;
2246 int this_best_prio = MAX_PRIO;
2247
2248 for (class = sched_class_highest; class; class = class->next)
2249 if (class->load_balance(this_rq, this_cpu, busiest,
2250 1, ULONG_MAX, sd, idle, NULL,
2251 &this_best_prio))
2252 return 1;
2253
2254 return 0;
2255 }
2256
2257 /*
2258 * find_busiest_group finds and returns the busiest CPU group within the
2259 * domain. It calculates and returns the amount of weighted load which
2260 * should be moved to restore balance via the imbalance parameter.
2261 */
2262 static struct sched_group *
2263 find_busiest_group(struct sched_domain *sd, int this_cpu,
2264 unsigned long *imbalance, enum cpu_idle_type idle,
2265 int *sd_idle, cpumask_t *cpus, int *balance)
2266 {
2267 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2268 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2269 unsigned long max_pull;
2270 unsigned long busiest_load_per_task, busiest_nr_running;
2271 unsigned long this_load_per_task, this_nr_running;
2272 int load_idx;
2273 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2274 int power_savings_balance = 1;
2275 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2276 unsigned long min_nr_running = ULONG_MAX;
2277 struct sched_group *group_min = NULL, *group_leader = NULL;
2278 #endif
2279
2280 max_load = this_load = total_load = total_pwr = 0;
2281 busiest_load_per_task = busiest_nr_running = 0;
2282 this_load_per_task = this_nr_running = 0;
2283 if (idle == CPU_NOT_IDLE)
2284 load_idx = sd->busy_idx;
2285 else if (idle == CPU_NEWLY_IDLE)
2286 load_idx = sd->newidle_idx;
2287 else
2288 load_idx = sd->idle_idx;
2289
2290 do {
2291 unsigned long load, group_capacity;
2292 int local_group;
2293 int i;
2294 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2295 unsigned long sum_nr_running, sum_weighted_load;
2296
2297 local_group = cpu_isset(this_cpu, group->cpumask);
2298
2299 if (local_group)
2300 balance_cpu = first_cpu(group->cpumask);
2301
2302 /* Tally up the load of all CPUs in the group */
2303 sum_weighted_load = sum_nr_running = avg_load = 0;
2304
2305 for_each_cpu_mask(i, group->cpumask) {
2306 struct rq *rq;
2307
2308 if (!cpu_isset(i, *cpus))
2309 continue;
2310
2311 rq = cpu_rq(i);
2312
2313 if (*sd_idle && rq->nr_running)
2314 *sd_idle = 0;
2315
2316 /* Bias balancing toward cpus of our domain */
2317 if (local_group) {
2318 if (idle_cpu(i) && !first_idle_cpu) {
2319 first_idle_cpu = 1;
2320 balance_cpu = i;
2321 }
2322
2323 load = target_load(i, load_idx);
2324 } else
2325 load = source_load(i, load_idx);
2326
2327 avg_load += load;
2328 sum_nr_running += rq->nr_running;
2329 sum_weighted_load += weighted_cpuload(i);
2330 }
2331
2332 /*
2333 * First idle cpu or the first cpu(busiest) in this sched group
2334 * is eligible for doing load balancing at this and above
2335 * domains. In the newly idle case, we will allow all the cpu's
2336 * to do the newly idle load balance.
2337 */
2338 if (idle != CPU_NEWLY_IDLE && local_group &&
2339 balance_cpu != this_cpu && balance) {
2340 *balance = 0;
2341 goto ret;
2342 }
2343
2344 total_load += avg_load;
2345 total_pwr += group->__cpu_power;
2346
2347 /* Adjust by relative CPU power of the group */
2348 avg_load = sg_div_cpu_power(group,
2349 avg_load * SCHED_LOAD_SCALE);
2350
2351 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2352
2353 if (local_group) {
2354 this_load = avg_load;
2355 this = group;
2356 this_nr_running = sum_nr_running;
2357 this_load_per_task = sum_weighted_load;
2358 } else if (avg_load > max_load &&
2359 sum_nr_running > group_capacity) {
2360 max_load = avg_load;
2361 busiest = group;
2362 busiest_nr_running = sum_nr_running;
2363 busiest_load_per_task = sum_weighted_load;
2364 }
2365
2366 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2367 /*
2368 * Busy processors will not participate in power savings
2369 * balance.
2370 */
2371 if (idle == CPU_NOT_IDLE ||
2372 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2373 goto group_next;
2374
2375 /*
2376 * If the local group is idle or completely loaded
2377 * no need to do power savings balance at this domain
2378 */
2379 if (local_group && (this_nr_running >= group_capacity ||
2380 !this_nr_running))
2381 power_savings_balance = 0;
2382
2383 /*
2384 * If a group is already running at full capacity or idle,
2385 * don't include that group in power savings calculations
2386 */
2387 if (!power_savings_balance || sum_nr_running >= group_capacity
2388 || !sum_nr_running)
2389 goto group_next;
2390
2391 /*
2392 * Calculate the group which has the least non-idle load.
2393 * This is the group from where we need to pick up the load
2394 * for saving power
2395 */
2396 if ((sum_nr_running < min_nr_running) ||
2397 (sum_nr_running == min_nr_running &&
2398 first_cpu(group->cpumask) <
2399 first_cpu(group_min->cpumask))) {
2400 group_min = group;
2401 min_nr_running = sum_nr_running;
2402 min_load_per_task = sum_weighted_load /
2403 sum_nr_running;
2404 }
2405
2406 /*
2407 * Calculate the group which is almost near its
2408 * capacity but still has some space to pick up some load
2409 * from other group and save more power
2410 */
2411 if (sum_nr_running <= group_capacity - 1) {
2412 if (sum_nr_running > leader_nr_running ||
2413 (sum_nr_running == leader_nr_running &&
2414 first_cpu(group->cpumask) >
2415 first_cpu(group_leader->cpumask))) {
2416 group_leader = group;
2417 leader_nr_running = sum_nr_running;
2418 }
2419 }
2420 group_next:
2421 #endif
2422 group = group->next;
2423 } while (group != sd->groups);
2424
2425 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2426 goto out_balanced;
2427
2428 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2429
2430 if (this_load >= avg_load ||
2431 100*max_load <= sd->imbalance_pct*this_load)
2432 goto out_balanced;
2433
2434 busiest_load_per_task /= busiest_nr_running;
2435 /*
2436 * We're trying to get all the cpus to the average_load, so we don't
2437 * want to push ourselves above the average load, nor do we wish to
2438 * reduce the max loaded cpu below the average load, as either of these
2439 * actions would just result in more rebalancing later, and ping-pong
2440 * tasks around. Thus we look for the minimum possible imbalance.
2441 * Negative imbalances (*we* are more loaded than anyone else) will
2442 * be counted as no imbalance for these purposes -- we can't fix that
2443 * by pulling tasks to us. Be careful of negative numbers as they'll
2444 * appear as very large values with unsigned longs.
2445 */
2446 if (max_load <= busiest_load_per_task)
2447 goto out_balanced;
2448
2449 /*
2450 * In the presence of smp nice balancing, certain scenarios can have
2451 * max load less than avg load(as we skip the groups at or below
2452 * its cpu_power, while calculating max_load..)
2453 */
2454 if (max_load < avg_load) {
2455 *imbalance = 0;
2456 goto small_imbalance;
2457 }
2458
2459 /* Don't want to pull so many tasks that a group would go idle */
2460 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2461
2462 /* How much load to actually move to equalise the imbalance */
2463 *imbalance = min(max_pull * busiest->__cpu_power,
2464 (avg_load - this_load) * this->__cpu_power)
2465 / SCHED_LOAD_SCALE;
2466
2467 /*
2468 * if *imbalance is less than the average load per runnable task
2469 * there is no gaurantee that any tasks will be moved so we'll have
2470 * a think about bumping its value to force at least one task to be
2471 * moved
2472 */
2473 if (*imbalance < busiest_load_per_task) {
2474 unsigned long tmp, pwr_now, pwr_move;
2475 unsigned int imbn;
2476
2477 small_imbalance:
2478 pwr_move = pwr_now = 0;
2479 imbn = 2;
2480 if (this_nr_running) {
2481 this_load_per_task /= this_nr_running;
2482 if (busiest_load_per_task > this_load_per_task)
2483 imbn = 1;
2484 } else
2485 this_load_per_task = SCHED_LOAD_SCALE;
2486
2487 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2488 busiest_load_per_task * imbn) {
2489 *imbalance = busiest_load_per_task;
2490 return busiest;
2491 }
2492
2493 /*
2494 * OK, we don't have enough imbalance to justify moving tasks,
2495 * however we may be able to increase total CPU power used by
2496 * moving them.
2497 */
2498
2499 pwr_now += busiest->__cpu_power *
2500 min(busiest_load_per_task, max_load);
2501 pwr_now += this->__cpu_power *
2502 min(this_load_per_task, this_load);
2503 pwr_now /= SCHED_LOAD_SCALE;
2504
2505 /* Amount of load we'd subtract */
2506 tmp = sg_div_cpu_power(busiest,
2507 busiest_load_per_task * SCHED_LOAD_SCALE);
2508 if (max_load > tmp)
2509 pwr_move += busiest->__cpu_power *
2510 min(busiest_load_per_task, max_load - tmp);
2511
2512 /* Amount of load we'd add */
2513 if (max_load * busiest->__cpu_power <
2514 busiest_load_per_task * SCHED_LOAD_SCALE)
2515 tmp = sg_div_cpu_power(this,
2516 max_load * busiest->__cpu_power);
2517 else
2518 tmp = sg_div_cpu_power(this,
2519 busiest_load_per_task * SCHED_LOAD_SCALE);
2520 pwr_move += this->__cpu_power *
2521 min(this_load_per_task, this_load + tmp);
2522 pwr_move /= SCHED_LOAD_SCALE;
2523
2524 /* Move if we gain throughput */
2525 if (pwr_move > pwr_now)
2526 *imbalance = busiest_load_per_task;
2527 }
2528
2529 return busiest;
2530
2531 out_balanced:
2532 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2533 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2534 goto ret;
2535
2536 if (this == group_leader && group_leader != group_min) {
2537 *imbalance = min_load_per_task;
2538 return group_min;
2539 }
2540 #endif
2541 ret:
2542 *imbalance = 0;
2543 return NULL;
2544 }
2545
2546 /*
2547 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2548 */
2549 static struct rq *
2550 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2551 unsigned long imbalance, cpumask_t *cpus)
2552 {
2553 struct rq *busiest = NULL, *rq;
2554 unsigned long max_load = 0;
2555 int i;
2556
2557 for_each_cpu_mask(i, group->cpumask) {
2558 unsigned long wl;
2559
2560 if (!cpu_isset(i, *cpus))
2561 continue;
2562
2563 rq = cpu_rq(i);
2564 wl = weighted_cpuload(i);
2565
2566 if (rq->nr_running == 1 && wl > imbalance)
2567 continue;
2568
2569 if (wl > max_load) {
2570 max_load = wl;
2571 busiest = rq;
2572 }
2573 }
2574
2575 return busiest;
2576 }
2577
2578 /*
2579 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2580 * so long as it is large enough.
2581 */
2582 #define MAX_PINNED_INTERVAL 512
2583
2584 /*
2585 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2586 * tasks if there is an imbalance.
2587 */
2588 static int load_balance(int this_cpu, struct rq *this_rq,
2589 struct sched_domain *sd, enum cpu_idle_type idle,
2590 int *balance)
2591 {
2592 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2593 struct sched_group *group;
2594 unsigned long imbalance;
2595 struct rq *busiest;
2596 cpumask_t cpus = CPU_MASK_ALL;
2597 unsigned long flags;
2598
2599 /*
2600 * When power savings policy is enabled for the parent domain, idle
2601 * sibling can pick up load irrespective of busy siblings. In this case,
2602 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2603 * portraying it as CPU_NOT_IDLE.
2604 */
2605 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2606 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2607 sd_idle = 1;
2608
2609 schedstat_inc(sd, lb_count[idle]);
2610
2611 redo:
2612 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2613 &cpus, balance);
2614
2615 if (*balance == 0)
2616 goto out_balanced;
2617
2618 if (!group) {
2619 schedstat_inc(sd, lb_nobusyg[idle]);
2620 goto out_balanced;
2621 }
2622
2623 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2624 if (!busiest) {
2625 schedstat_inc(sd, lb_nobusyq[idle]);
2626 goto out_balanced;
2627 }
2628
2629 BUG_ON(busiest == this_rq);
2630
2631 schedstat_add(sd, lb_imbalance[idle], imbalance);
2632
2633 ld_moved = 0;
2634 if (busiest->nr_running > 1) {
2635 /*
2636 * Attempt to move tasks. If find_busiest_group has found
2637 * an imbalance but busiest->nr_running <= 1, the group is
2638 * still unbalanced. ld_moved simply stays zero, so it is
2639 * correctly treated as an imbalance.
2640 */
2641 local_irq_save(flags);
2642 double_rq_lock(this_rq, busiest);
2643 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2644 imbalance, sd, idle, &all_pinned);
2645 double_rq_unlock(this_rq, busiest);
2646 local_irq_restore(flags);
2647
2648 /*
2649 * some other cpu did the load balance for us.
2650 */
2651 if (ld_moved && this_cpu != smp_processor_id())
2652 resched_cpu(this_cpu);
2653
2654 /* All tasks on this runqueue were pinned by CPU affinity */
2655 if (unlikely(all_pinned)) {
2656 cpu_clear(cpu_of(busiest), cpus);
2657 if (!cpus_empty(cpus))
2658 goto redo;
2659 goto out_balanced;
2660 }
2661 }
2662
2663 if (!ld_moved) {
2664 schedstat_inc(sd, lb_failed[idle]);
2665 sd->nr_balance_failed++;
2666
2667 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2668
2669 spin_lock_irqsave(&busiest->lock, flags);
2670
2671 /* don't kick the migration_thread, if the curr
2672 * task on busiest cpu can't be moved to this_cpu
2673 */
2674 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2675 spin_unlock_irqrestore(&busiest->lock, flags);
2676 all_pinned = 1;
2677 goto out_one_pinned;
2678 }
2679
2680 if (!busiest->active_balance) {
2681 busiest->active_balance = 1;
2682 busiest->push_cpu = this_cpu;
2683 active_balance = 1;
2684 }
2685 spin_unlock_irqrestore(&busiest->lock, flags);
2686 if (active_balance)
2687 wake_up_process(busiest->migration_thread);
2688
2689 /*
2690 * We've kicked active balancing, reset the failure
2691 * counter.
2692 */
2693 sd->nr_balance_failed = sd->cache_nice_tries+1;
2694 }
2695 } else
2696 sd->nr_balance_failed = 0;
2697
2698 if (likely(!active_balance)) {
2699 /* We were unbalanced, so reset the balancing interval */
2700 sd->balance_interval = sd->min_interval;
2701 } else {
2702 /*
2703 * If we've begun active balancing, start to back off. This
2704 * case may not be covered by the all_pinned logic if there
2705 * is only 1 task on the busy runqueue (because we don't call
2706 * move_tasks).
2707 */
2708 if (sd->balance_interval < sd->max_interval)
2709 sd->balance_interval *= 2;
2710 }
2711
2712 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2713 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2714 return -1;
2715 return ld_moved;
2716
2717 out_balanced:
2718 schedstat_inc(sd, lb_balanced[idle]);
2719
2720 sd->nr_balance_failed = 0;
2721
2722 out_one_pinned:
2723 /* tune up the balancing interval */
2724 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2725 (sd->balance_interval < sd->max_interval))
2726 sd->balance_interval *= 2;
2727
2728 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2729 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2730 return -1;
2731 return 0;
2732 }
2733
2734 /*
2735 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2736 * tasks if there is an imbalance.
2737 *
2738 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2739 * this_rq is locked.
2740 */
2741 static int
2742 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2743 {
2744 struct sched_group *group;
2745 struct rq *busiest = NULL;
2746 unsigned long imbalance;
2747 int ld_moved = 0;
2748 int sd_idle = 0;
2749 int all_pinned = 0;
2750 cpumask_t cpus = CPU_MASK_ALL;
2751
2752 /*
2753 * When power savings policy is enabled for the parent domain, idle
2754 * sibling can pick up load irrespective of busy siblings. In this case,
2755 * let the state of idle sibling percolate up as IDLE, instead of
2756 * portraying it as CPU_NOT_IDLE.
2757 */
2758 if (sd->flags & SD_SHARE_CPUPOWER &&
2759 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2760 sd_idle = 1;
2761
2762 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2763 redo:
2764 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2765 &sd_idle, &cpus, NULL);
2766 if (!group) {
2767 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2768 goto out_balanced;
2769 }
2770
2771 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2772 &cpus);
2773 if (!busiest) {
2774 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2775 goto out_balanced;
2776 }
2777
2778 BUG_ON(busiest == this_rq);
2779
2780 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2781
2782 ld_moved = 0;
2783 if (busiest->nr_running > 1) {
2784 /* Attempt to move tasks */
2785 double_lock_balance(this_rq, busiest);
2786 /* this_rq->clock is already updated */
2787 update_rq_clock(busiest);
2788 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2789 imbalance, sd, CPU_NEWLY_IDLE,
2790 &all_pinned);
2791 spin_unlock(&busiest->lock);
2792
2793 if (unlikely(all_pinned)) {
2794 cpu_clear(cpu_of(busiest), cpus);
2795 if (!cpus_empty(cpus))
2796 goto redo;
2797 }
2798 }
2799
2800 if (!ld_moved) {
2801 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2802 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2803 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2804 return -1;
2805 } else
2806 sd->nr_balance_failed = 0;
2807
2808 return ld_moved;
2809
2810 out_balanced:
2811 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2812 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2813 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2814 return -1;
2815 sd->nr_balance_failed = 0;
2816
2817 return 0;
2818 }
2819
2820 /*
2821 * idle_balance is called by schedule() if this_cpu is about to become
2822 * idle. Attempts to pull tasks from other CPUs.
2823 */
2824 static void idle_balance(int this_cpu, struct rq *this_rq)
2825 {
2826 struct sched_domain *sd;
2827 int pulled_task = -1;
2828 unsigned long next_balance = jiffies + HZ;
2829
2830 for_each_domain(this_cpu, sd) {
2831 unsigned long interval;
2832
2833 if (!(sd->flags & SD_LOAD_BALANCE))
2834 continue;
2835
2836 if (sd->flags & SD_BALANCE_NEWIDLE)
2837 /* If we've pulled tasks over stop searching: */
2838 pulled_task = load_balance_newidle(this_cpu,
2839 this_rq, sd);
2840
2841 interval = msecs_to_jiffies(sd->balance_interval);
2842 if (time_after(next_balance, sd->last_balance + interval))
2843 next_balance = sd->last_balance + interval;
2844 if (pulled_task)
2845 break;
2846 }
2847 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2848 /*
2849 * We are going idle. next_balance may be set based on
2850 * a busy processor. So reset next_balance.
2851 */
2852 this_rq->next_balance = next_balance;
2853 }
2854 }
2855
2856 /*
2857 * active_load_balance is run by migration threads. It pushes running tasks
2858 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2859 * running on each physical CPU where possible, and avoids physical /
2860 * logical imbalances.
2861 *
2862 * Called with busiest_rq locked.
2863 */
2864 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2865 {
2866 int target_cpu = busiest_rq->push_cpu;
2867 struct sched_domain *sd;
2868 struct rq *target_rq;
2869
2870 /* Is there any task to move? */
2871 if (busiest_rq->nr_running <= 1)
2872 return;
2873
2874 target_rq = cpu_rq(target_cpu);
2875
2876 /*
2877 * This condition is "impossible", if it occurs
2878 * we need to fix it. Originally reported by
2879 * Bjorn Helgaas on a 128-cpu setup.
2880 */
2881 BUG_ON(busiest_rq == target_rq);
2882
2883 /* move a task from busiest_rq to target_rq */
2884 double_lock_balance(busiest_rq, target_rq);
2885 update_rq_clock(busiest_rq);
2886 update_rq_clock(target_rq);
2887
2888 /* Search for an sd spanning us and the target CPU. */
2889 for_each_domain(target_cpu, sd) {
2890 if ((sd->flags & SD_LOAD_BALANCE) &&
2891 cpu_isset(busiest_cpu, sd->span))
2892 break;
2893 }
2894
2895 if (likely(sd)) {
2896 schedstat_inc(sd, alb_count);
2897
2898 if (move_one_task(target_rq, target_cpu, busiest_rq,
2899 sd, CPU_IDLE))
2900 schedstat_inc(sd, alb_pushed);
2901 else
2902 schedstat_inc(sd, alb_failed);
2903 }
2904 spin_unlock(&target_rq->lock);
2905 }
2906
2907 #ifdef CONFIG_NO_HZ
2908 static struct {
2909 atomic_t load_balancer;
2910 cpumask_t cpu_mask;
2911 } nohz ____cacheline_aligned = {
2912 .load_balancer = ATOMIC_INIT(-1),
2913 .cpu_mask = CPU_MASK_NONE,
2914 };
2915
2916 /*
2917 * This routine will try to nominate the ilb (idle load balancing)
2918 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2919 * load balancing on behalf of all those cpus. If all the cpus in the system
2920 * go into this tickless mode, then there will be no ilb owner (as there is
2921 * no need for one) and all the cpus will sleep till the next wakeup event
2922 * arrives...
2923 *
2924 * For the ilb owner, tick is not stopped. And this tick will be used
2925 * for idle load balancing. ilb owner will still be part of
2926 * nohz.cpu_mask..
2927 *
2928 * While stopping the tick, this cpu will become the ilb owner if there
2929 * is no other owner. And will be the owner till that cpu becomes busy
2930 * or if all cpus in the system stop their ticks at which point
2931 * there is no need for ilb owner.
2932 *
2933 * When the ilb owner becomes busy, it nominates another owner, during the
2934 * next busy scheduler_tick()
2935 */
2936 int select_nohz_load_balancer(int stop_tick)
2937 {
2938 int cpu = smp_processor_id();
2939
2940 if (stop_tick) {
2941 cpu_set(cpu, nohz.cpu_mask);
2942 cpu_rq(cpu)->in_nohz_recently = 1;
2943
2944 /*
2945 * If we are going offline and still the leader, give up!
2946 */
2947 if (cpu_is_offline(cpu) &&
2948 atomic_read(&nohz.load_balancer) == cpu) {
2949 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2950 BUG();
2951 return 0;
2952 }
2953
2954 /* time for ilb owner also to sleep */
2955 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2956 if (atomic_read(&nohz.load_balancer) == cpu)
2957 atomic_set(&nohz.load_balancer, -1);
2958 return 0;
2959 }
2960
2961 if (atomic_read(&nohz.load_balancer) == -1) {
2962 /* make me the ilb owner */
2963 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2964 return 1;
2965 } else if (atomic_read(&nohz.load_balancer) == cpu)
2966 return 1;
2967 } else {
2968 if (!cpu_isset(cpu, nohz.cpu_mask))
2969 return 0;
2970
2971 cpu_clear(cpu, nohz.cpu_mask);
2972
2973 if (atomic_read(&nohz.load_balancer) == cpu)
2974 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2975 BUG();
2976 }
2977 return 0;
2978 }
2979 #endif
2980
2981 static DEFINE_SPINLOCK(balancing);
2982
2983 /*
2984 * It checks each scheduling domain to see if it is due to be balanced,
2985 * and initiates a balancing operation if so.
2986 *
2987 * Balancing parameters are set up in arch_init_sched_domains.
2988 */
2989 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
2990 {
2991 int balance = 1;
2992 struct rq *rq = cpu_rq(cpu);
2993 unsigned long interval;
2994 struct sched_domain *sd;
2995 /* Earliest time when we have to do rebalance again */
2996 unsigned long next_balance = jiffies + 60*HZ;
2997 int update_next_balance = 0;
2998
2999 for_each_domain(cpu, sd) {
3000 if (!(sd->flags & SD_LOAD_BALANCE))
3001 continue;
3002
3003 interval = sd->balance_interval;
3004 if (idle != CPU_IDLE)
3005 interval *= sd->busy_factor;
3006
3007 /* scale ms to jiffies */
3008 interval = msecs_to_jiffies(interval);
3009 if (unlikely(!interval))
3010 interval = 1;
3011 if (interval > HZ*NR_CPUS/10)
3012 interval = HZ*NR_CPUS/10;
3013
3014
3015 if (sd->flags & SD_SERIALIZE) {
3016 if (!spin_trylock(&balancing))
3017 goto out;
3018 }
3019
3020 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3021 if (load_balance(cpu, rq, sd, idle, &balance)) {
3022 /*
3023 * We've pulled tasks over so either we're no
3024 * longer idle, or one of our SMT siblings is
3025 * not idle.
3026 */
3027 idle = CPU_NOT_IDLE;
3028 }
3029 sd->last_balance = jiffies;
3030 }
3031 if (sd->flags & SD_SERIALIZE)
3032 spin_unlock(&balancing);
3033 out:
3034 if (time_after(next_balance, sd->last_balance + interval)) {
3035 next_balance = sd->last_balance + interval;
3036 update_next_balance = 1;
3037 }
3038
3039 /*
3040 * Stop the load balance at this level. There is another
3041 * CPU in our sched group which is doing load balancing more
3042 * actively.
3043 */
3044 if (!balance)
3045 break;
3046 }
3047
3048 /*
3049 * next_balance will be updated only when there is a need.
3050 * When the cpu is attached to null domain for ex, it will not be
3051 * updated.
3052 */
3053 if (likely(update_next_balance))
3054 rq->next_balance = next_balance;
3055 }
3056
3057 /*
3058 * run_rebalance_domains is triggered when needed from the scheduler tick.
3059 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3060 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3061 */
3062 static void run_rebalance_domains(struct softirq_action *h)
3063 {
3064 int this_cpu = smp_processor_id();
3065 struct rq *this_rq = cpu_rq(this_cpu);
3066 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3067 CPU_IDLE : CPU_NOT_IDLE;
3068
3069 rebalance_domains(this_cpu, idle);
3070
3071 #ifdef CONFIG_NO_HZ
3072 /*
3073 * If this cpu is the owner for idle load balancing, then do the
3074 * balancing on behalf of the other idle cpus whose ticks are
3075 * stopped.
3076 */
3077 if (this_rq->idle_at_tick &&
3078 atomic_read(&nohz.load_balancer) == this_cpu) {
3079 cpumask_t cpus = nohz.cpu_mask;
3080 struct rq *rq;
3081 int balance_cpu;
3082
3083 cpu_clear(this_cpu, cpus);
3084 for_each_cpu_mask(balance_cpu, cpus) {
3085 /*
3086 * If this cpu gets work to do, stop the load balancing
3087 * work being done for other cpus. Next load
3088 * balancing owner will pick it up.
3089 */
3090 if (need_resched())
3091 break;
3092
3093 rebalance_domains(balance_cpu, CPU_IDLE);
3094
3095 rq = cpu_rq(balance_cpu);
3096 if (time_after(this_rq->next_balance, rq->next_balance))
3097 this_rq->next_balance = rq->next_balance;
3098 }
3099 }
3100 #endif
3101 }
3102
3103 /*
3104 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3105 *
3106 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3107 * idle load balancing owner or decide to stop the periodic load balancing,
3108 * if the whole system is idle.
3109 */
3110 static inline void trigger_load_balance(struct rq *rq, int cpu)
3111 {
3112 #ifdef CONFIG_NO_HZ
3113 /*
3114 * If we were in the nohz mode recently and busy at the current
3115 * scheduler tick, then check if we need to nominate new idle
3116 * load balancer.
3117 */
3118 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3119 rq->in_nohz_recently = 0;
3120
3121 if (atomic_read(&nohz.load_balancer) == cpu) {
3122 cpu_clear(cpu, nohz.cpu_mask);
3123 atomic_set(&nohz.load_balancer, -1);
3124 }
3125
3126 if (atomic_read(&nohz.load_balancer) == -1) {
3127 /*
3128 * simple selection for now: Nominate the
3129 * first cpu in the nohz list to be the next
3130 * ilb owner.
3131 *
3132 * TBD: Traverse the sched domains and nominate
3133 * the nearest cpu in the nohz.cpu_mask.
3134 */
3135 int ilb = first_cpu(nohz.cpu_mask);
3136
3137 if (ilb != NR_CPUS)
3138 resched_cpu(ilb);
3139 }
3140 }
3141
3142 /*
3143 * If this cpu is idle and doing idle load balancing for all the
3144 * cpus with ticks stopped, is it time for that to stop?
3145 */
3146 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3147 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3148 resched_cpu(cpu);
3149 return;
3150 }
3151
3152 /*
3153 * If this cpu is idle and the idle load balancing is done by
3154 * someone else, then no need raise the SCHED_SOFTIRQ
3155 */
3156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3157 cpu_isset(cpu, nohz.cpu_mask))
3158 return;
3159 #endif
3160 if (time_after_eq(jiffies, rq->next_balance))
3161 raise_softirq(SCHED_SOFTIRQ);
3162 }
3163
3164 #else /* CONFIG_SMP */
3165
3166 /*
3167 * on UP we do not need to balance between CPUs:
3168 */
3169 static inline void idle_balance(int cpu, struct rq *rq)
3170 {
3171 }
3172
3173 /* Avoid "used but not defined" warning on UP */
3174 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3175 unsigned long max_nr_move, unsigned long max_load_move,
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *all_pinned, unsigned long *load_moved,
3178 int *this_best_prio, struct rq_iterator *iterator)
3179 {
3180 *load_moved = 0;
3181
3182 return 0;
3183 }
3184
3185 #endif
3186
3187 DEFINE_PER_CPU(struct kernel_stat, kstat);
3188
3189 EXPORT_PER_CPU_SYMBOL(kstat);
3190
3191 /*
3192 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3193 * that have not yet been banked in case the task is currently running.
3194 */
3195 unsigned long long task_sched_runtime(struct task_struct *p)
3196 {
3197 unsigned long flags;
3198 u64 ns, delta_exec;
3199 struct rq *rq;
3200
3201 rq = task_rq_lock(p, &flags);
3202 ns = p->se.sum_exec_runtime;
3203 if (rq->curr == p) {
3204 update_rq_clock(rq);
3205 delta_exec = rq->clock - p->se.exec_start;
3206 if ((s64)delta_exec > 0)
3207 ns += delta_exec;
3208 }
3209 task_rq_unlock(rq, &flags);
3210
3211 return ns;
3212 }
3213
3214 /*
3215 * Account user cpu time to a process.
3216 * @p: the process that the cpu time gets accounted to
3217 * @hardirq_offset: the offset to subtract from hardirq_count()
3218 * @cputime: the cpu time spent in user space since the last update
3219 */
3220 void account_user_time(struct task_struct *p, cputime_t cputime)
3221 {
3222 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3223 cputime64_t tmp;
3224
3225 p->utime = cputime_add(p->utime, cputime);
3226
3227 /* Add user time to cpustat. */
3228 tmp = cputime_to_cputime64(cputime);
3229 if (TASK_NICE(p) > 0)
3230 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3231 else
3232 cpustat->user = cputime64_add(cpustat->user, tmp);
3233 }
3234
3235 /*
3236 * Account system cpu time to a process.
3237 * @p: the process that the cpu time gets accounted to
3238 * @hardirq_offset: the offset to subtract from hardirq_count()
3239 * @cputime: the cpu time spent in kernel space since the last update
3240 */
3241 void account_system_time(struct task_struct *p, int hardirq_offset,
3242 cputime_t cputime)
3243 {
3244 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245 struct rq *rq = this_rq();
3246 cputime64_t tmp;
3247
3248 p->stime = cputime_add(p->stime, cputime);
3249
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3256 else if (p != rq->idle)
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3258 else if (atomic_read(&rq->nr_iowait) > 0)
3259 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3260 else
3261 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3262 /* Account for system time used */
3263 acct_update_integrals(p);
3264 }
3265
3266 /*
3267 * Account for involuntary wait time.
3268 * @p: the process from which the cpu time has been stolen
3269 * @steal: the cpu time spent in involuntary wait
3270 */
3271 void account_steal_time(struct task_struct *p, cputime_t steal)
3272 {
3273 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3274 cputime64_t tmp = cputime_to_cputime64(steal);
3275 struct rq *rq = this_rq();
3276
3277 if (p == rq->idle) {
3278 p->stime = cputime_add(p->stime, steal);
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3283 } else
3284 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3285 }
3286
3287 /*
3288 * This function gets called by the timer code, with HZ frequency.
3289 * We call it with interrupts disabled.
3290 *
3291 * It also gets called by the fork code, when changing the parent's
3292 * timeslices.
3293 */
3294 void scheduler_tick(void)
3295 {
3296 int cpu = smp_processor_id();
3297 struct rq *rq = cpu_rq(cpu);
3298 struct task_struct *curr = rq->curr;
3299 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3300
3301 spin_lock(&rq->lock);
3302 __update_rq_clock(rq);
3303 /*
3304 * Let rq->clock advance by at least TICK_NSEC:
3305 */
3306 if (unlikely(rq->clock < next_tick))
3307 rq->clock = next_tick;
3308 rq->tick_timestamp = rq->clock;
3309 update_cpu_load(rq);
3310 if (curr != rq->idle) /* FIXME: needed? */
3311 curr->sched_class->task_tick(rq, curr);
3312 spin_unlock(&rq->lock);
3313
3314 #ifdef CONFIG_SMP
3315 rq->idle_at_tick = idle_cpu(cpu);
3316 trigger_load_balance(rq, cpu);
3317 #endif
3318 }
3319
3320 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3321
3322 void fastcall add_preempt_count(int val)
3323 {
3324 /*
3325 * Underflow?
3326 */
3327 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3328 return;
3329 preempt_count() += val;
3330 /*
3331 * Spinlock count overflowing soon?
3332 */
3333 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3334 PREEMPT_MASK - 10);
3335 }
3336 EXPORT_SYMBOL(add_preempt_count);
3337
3338 void fastcall sub_preempt_count(int val)
3339 {
3340 /*
3341 * Underflow?
3342 */
3343 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3344 return;
3345 /*
3346 * Is the spinlock portion underflowing?
3347 */
3348 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3349 !(preempt_count() & PREEMPT_MASK)))
3350 return;
3351
3352 preempt_count() -= val;
3353 }
3354 EXPORT_SYMBOL(sub_preempt_count);
3355
3356 #endif
3357
3358 /*
3359 * Print scheduling while atomic bug:
3360 */
3361 static noinline void __schedule_bug(struct task_struct *prev)
3362 {
3363 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3364 prev->comm, preempt_count(), prev->pid);
3365 debug_show_held_locks(prev);
3366 if (irqs_disabled())
3367 print_irqtrace_events(prev);
3368 dump_stack();
3369 }
3370
3371 /*
3372 * Various schedule()-time debugging checks and statistics:
3373 */
3374 static inline void schedule_debug(struct task_struct *prev)
3375 {
3376 /*
3377 * Test if we are atomic. Since do_exit() needs to call into
3378 * schedule() atomically, we ignore that path for now.
3379 * Otherwise, whine if we are scheduling when we should not be.
3380 */
3381 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3382 __schedule_bug(prev);
3383
3384 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3385
3386 schedstat_inc(this_rq(), sched_count);
3387 #ifdef CONFIG_SCHEDSTATS
3388 if (unlikely(prev->lock_depth >= 0)) {
3389 schedstat_inc(this_rq(), bkl_count);
3390 schedstat_inc(prev, sched_info.bkl_count);
3391 }
3392 #endif
3393 }
3394
3395 /*
3396 * Pick up the highest-prio task:
3397 */
3398 static inline struct task_struct *
3399 pick_next_task(struct rq *rq, struct task_struct *prev)
3400 {
3401 const struct sched_class *class;
3402 struct task_struct *p;
3403
3404 /*
3405 * Optimization: we know that if all tasks are in
3406 * the fair class we can call that function directly:
3407 */
3408 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3409 p = fair_sched_class.pick_next_task(rq);
3410 if (likely(p))
3411 return p;
3412 }
3413
3414 class = sched_class_highest;
3415 for ( ; ; ) {
3416 p = class->pick_next_task(rq);
3417 if (p)
3418 return p;
3419 /*
3420 * Will never be NULL as the idle class always
3421 * returns a non-NULL p:
3422 */
3423 class = class->next;
3424 }
3425 }
3426
3427 /*
3428 * schedule() is the main scheduler function.
3429 */
3430 asmlinkage void __sched schedule(void)
3431 {
3432 struct task_struct *prev, *next;
3433 long *switch_count;
3434 struct rq *rq;
3435 int cpu;
3436
3437 need_resched:
3438 preempt_disable();
3439 cpu = smp_processor_id();
3440 rq = cpu_rq(cpu);
3441 rcu_qsctr_inc(cpu);
3442 prev = rq->curr;
3443 switch_count = &prev->nivcsw;
3444
3445 release_kernel_lock(prev);
3446 need_resched_nonpreemptible:
3447
3448 schedule_debug(prev);
3449
3450 /*
3451 * Do the rq-clock update outside the rq lock:
3452 */
3453 local_irq_disable();
3454 __update_rq_clock(rq);
3455 spin_lock(&rq->lock);
3456 clear_tsk_need_resched(prev);
3457
3458 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3459 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3460 unlikely(signal_pending(prev)))) {
3461 prev->state = TASK_RUNNING;
3462 } else {
3463 deactivate_task(rq, prev, 1);
3464 }
3465 switch_count = &prev->nvcsw;
3466 }
3467
3468 if (unlikely(!rq->nr_running))
3469 idle_balance(cpu, rq);
3470
3471 prev->sched_class->put_prev_task(rq, prev);
3472 next = pick_next_task(rq, prev);
3473
3474 sched_info_switch(prev, next);
3475
3476 if (likely(prev != next)) {
3477 rq->nr_switches++;
3478 rq->curr = next;
3479 ++*switch_count;
3480
3481 context_switch(rq, prev, next); /* unlocks the rq */
3482 } else
3483 spin_unlock_irq(&rq->lock);
3484
3485 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3486 cpu = smp_processor_id();
3487 rq = cpu_rq(cpu);
3488 goto need_resched_nonpreemptible;
3489 }
3490 preempt_enable_no_resched();
3491 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3492 goto need_resched;
3493 }
3494 EXPORT_SYMBOL(schedule);
3495
3496 #ifdef CONFIG_PREEMPT
3497 /*
3498 * this is the entry point to schedule() from in-kernel preemption
3499 * off of preempt_enable. Kernel preemptions off return from interrupt
3500 * occur there and call schedule directly.
3501 */
3502 asmlinkage void __sched preempt_schedule(void)
3503 {
3504 struct thread_info *ti = current_thread_info();
3505 #ifdef CONFIG_PREEMPT_BKL
3506 struct task_struct *task = current;
3507 int saved_lock_depth;
3508 #endif
3509 /*
3510 * If there is a non-zero preempt_count or interrupts are disabled,
3511 * we do not want to preempt the current task. Just return..
3512 */
3513 if (likely(ti->preempt_count || irqs_disabled()))
3514 return;
3515
3516 need_resched:
3517 add_preempt_count(PREEMPT_ACTIVE);
3518 /*
3519 * We keep the big kernel semaphore locked, but we
3520 * clear ->lock_depth so that schedule() doesnt
3521 * auto-release the semaphore:
3522 */
3523 #ifdef CONFIG_PREEMPT_BKL
3524 saved_lock_depth = task->lock_depth;
3525 task->lock_depth = -1;
3526 #endif
3527 schedule();
3528 #ifdef CONFIG_PREEMPT_BKL
3529 task->lock_depth = saved_lock_depth;
3530 #endif
3531 sub_preempt_count(PREEMPT_ACTIVE);
3532
3533 /* we could miss a preemption opportunity between schedule and now */
3534 barrier();
3535 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3536 goto need_resched;
3537 }
3538 EXPORT_SYMBOL(preempt_schedule);
3539
3540 /*
3541 * this is the entry point to schedule() from kernel preemption
3542 * off of irq context.
3543 * Note, that this is called and return with irqs disabled. This will
3544 * protect us against recursive calling from irq.
3545 */
3546 asmlinkage void __sched preempt_schedule_irq(void)
3547 {
3548 struct thread_info *ti = current_thread_info();
3549 #ifdef CONFIG_PREEMPT_BKL
3550 struct task_struct *task = current;
3551 int saved_lock_depth;
3552 #endif
3553 /* Catch callers which need to be fixed */
3554 BUG_ON(ti->preempt_count || !irqs_disabled());
3555
3556 need_resched:
3557 add_preempt_count(PREEMPT_ACTIVE);
3558 /*
3559 * We keep the big kernel semaphore locked, but we
3560 * clear ->lock_depth so that schedule() doesnt
3561 * auto-release the semaphore:
3562 */
3563 #ifdef CONFIG_PREEMPT_BKL
3564 saved_lock_depth = task->lock_depth;
3565 task->lock_depth = -1;
3566 #endif
3567 local_irq_enable();
3568 schedule();
3569 local_irq_disable();
3570 #ifdef CONFIG_PREEMPT_BKL
3571 task->lock_depth = saved_lock_depth;
3572 #endif
3573 sub_preempt_count(PREEMPT_ACTIVE);
3574
3575 /* we could miss a preemption opportunity between schedule and now */
3576 barrier();
3577 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3578 goto need_resched;
3579 }
3580
3581 #endif /* CONFIG_PREEMPT */
3582
3583 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3584 void *key)
3585 {
3586 return try_to_wake_up(curr->private, mode, sync);
3587 }
3588 EXPORT_SYMBOL(default_wake_function);
3589
3590 /*
3591 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3592 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3593 * number) then we wake all the non-exclusive tasks and one exclusive task.
3594 *
3595 * There are circumstances in which we can try to wake a task which has already
3596 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3597 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3598 */
3599 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3600 int nr_exclusive, int sync, void *key)
3601 {
3602 wait_queue_t *curr, *next;
3603
3604 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3605 unsigned flags = curr->flags;
3606
3607 if (curr->func(curr, mode, sync, key) &&
3608 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3609 break;
3610 }
3611 }
3612
3613 /**
3614 * __wake_up - wake up threads blocked on a waitqueue.
3615 * @q: the waitqueue
3616 * @mode: which threads
3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618 * @key: is directly passed to the wakeup function
3619 */
3620 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3621 int nr_exclusive, void *key)
3622 {
3623 unsigned long flags;
3624
3625 spin_lock_irqsave(&q->lock, flags);
3626 __wake_up_common(q, mode, nr_exclusive, 0, key);
3627 spin_unlock_irqrestore(&q->lock, flags);
3628 }
3629 EXPORT_SYMBOL(__wake_up);
3630
3631 /*
3632 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3633 */
3634 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3635 {
3636 __wake_up_common(q, mode, 1, 0, NULL);
3637 }
3638
3639 /**
3640 * __wake_up_sync - wake up threads blocked on a waitqueue.
3641 * @q: the waitqueue
3642 * @mode: which threads
3643 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3644 *
3645 * The sync wakeup differs that the waker knows that it will schedule
3646 * away soon, so while the target thread will be woken up, it will not
3647 * be migrated to another CPU - ie. the two threads are 'synchronized'
3648 * with each other. This can prevent needless bouncing between CPUs.
3649 *
3650 * On UP it can prevent extra preemption.
3651 */
3652 void fastcall
3653 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3654 {
3655 unsigned long flags;
3656 int sync = 1;
3657
3658 if (unlikely(!q))
3659 return;
3660
3661 if (unlikely(!nr_exclusive))
3662 sync = 0;
3663
3664 spin_lock_irqsave(&q->lock, flags);
3665 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3666 spin_unlock_irqrestore(&q->lock, flags);
3667 }
3668 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3669
3670 void fastcall complete(struct completion *x)
3671 {
3672 unsigned long flags;
3673
3674 spin_lock_irqsave(&x->wait.lock, flags);
3675 x->done++;
3676 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3677 1, 0, NULL);
3678 spin_unlock_irqrestore(&x->wait.lock, flags);
3679 }
3680 EXPORT_SYMBOL(complete);
3681
3682 void fastcall complete_all(struct completion *x)
3683 {
3684 unsigned long flags;
3685
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done += UINT_MAX/2;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 0, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3691 }
3692 EXPORT_SYMBOL(complete_all);
3693
3694 void fastcall __sched wait_for_completion(struct completion *x)
3695 {
3696 might_sleep();
3697
3698 spin_lock_irq(&x->wait.lock);
3699 if (!x->done) {
3700 DECLARE_WAITQUEUE(wait, current);
3701
3702 wait.flags |= WQ_FLAG_EXCLUSIVE;
3703 __add_wait_queue_tail(&x->wait, &wait);
3704 do {
3705 __set_current_state(TASK_UNINTERRUPTIBLE);
3706 spin_unlock_irq(&x->wait.lock);
3707 schedule();
3708 spin_lock_irq(&x->wait.lock);
3709 } while (!x->done);
3710 __remove_wait_queue(&x->wait, &wait);
3711 }
3712 x->done--;
3713 spin_unlock_irq(&x->wait.lock);
3714 }
3715 EXPORT_SYMBOL(wait_for_completion);
3716
3717 unsigned long fastcall __sched
3718 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3719 {
3720 might_sleep();
3721
3722 spin_lock_irq(&x->wait.lock);
3723 if (!x->done) {
3724 DECLARE_WAITQUEUE(wait, current);
3725
3726 wait.flags |= WQ_FLAG_EXCLUSIVE;
3727 __add_wait_queue_tail(&x->wait, &wait);
3728 do {
3729 __set_current_state(TASK_UNINTERRUPTIBLE);
3730 spin_unlock_irq(&x->wait.lock);
3731 timeout = schedule_timeout(timeout);
3732 spin_lock_irq(&x->wait.lock);
3733 if (!timeout) {
3734 __remove_wait_queue(&x->wait, &wait);
3735 goto out;
3736 }
3737 } while (!x->done);
3738 __remove_wait_queue(&x->wait, &wait);
3739 }
3740 x->done--;
3741 out:
3742 spin_unlock_irq(&x->wait.lock);
3743 return timeout;
3744 }
3745 EXPORT_SYMBOL(wait_for_completion_timeout);
3746
3747 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3748 {
3749 int ret = 0;
3750
3751 might_sleep();
3752
3753 spin_lock_irq(&x->wait.lock);
3754 if (!x->done) {
3755 DECLARE_WAITQUEUE(wait, current);
3756
3757 wait.flags |= WQ_FLAG_EXCLUSIVE;
3758 __add_wait_queue_tail(&x->wait, &wait);
3759 do {
3760 if (signal_pending(current)) {
3761 ret = -ERESTARTSYS;
3762 __remove_wait_queue(&x->wait, &wait);
3763 goto out;
3764 }
3765 __set_current_state(TASK_INTERRUPTIBLE);
3766 spin_unlock_irq(&x->wait.lock);
3767 schedule();
3768 spin_lock_irq(&x->wait.lock);
3769 } while (!x->done);
3770 __remove_wait_queue(&x->wait, &wait);
3771 }
3772 x->done--;
3773 out:
3774 spin_unlock_irq(&x->wait.lock);
3775
3776 return ret;
3777 }
3778 EXPORT_SYMBOL(wait_for_completion_interruptible);
3779
3780 unsigned long fastcall __sched
3781 wait_for_completion_interruptible_timeout(struct completion *x,
3782 unsigned long timeout)
3783 {
3784 might_sleep();
3785
3786 spin_lock_irq(&x->wait.lock);
3787 if (!x->done) {
3788 DECLARE_WAITQUEUE(wait, current);
3789
3790 wait.flags |= WQ_FLAG_EXCLUSIVE;
3791 __add_wait_queue_tail(&x->wait, &wait);
3792 do {
3793 if (signal_pending(current)) {
3794 timeout = -ERESTARTSYS;
3795 __remove_wait_queue(&x->wait, &wait);
3796 goto out;
3797 }
3798 __set_current_state(TASK_INTERRUPTIBLE);
3799 spin_unlock_irq(&x->wait.lock);
3800 timeout = schedule_timeout(timeout);
3801 spin_lock_irq(&x->wait.lock);
3802 if (!timeout) {
3803 __remove_wait_queue(&x->wait, &wait);
3804 goto out;
3805 }
3806 } while (!x->done);
3807 __remove_wait_queue(&x->wait, &wait);
3808 }
3809 x->done--;
3810 out:
3811 spin_unlock_irq(&x->wait.lock);
3812 return timeout;
3813 }
3814 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3815
3816 static inline void
3817 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3818 {
3819 spin_lock_irqsave(&q->lock, *flags);
3820 __add_wait_queue(q, wait);
3821 spin_unlock(&q->lock);
3822 }
3823
3824 static inline void
3825 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3826 {
3827 spin_lock_irq(&q->lock);
3828 __remove_wait_queue(q, wait);
3829 spin_unlock_irqrestore(&q->lock, *flags);
3830 }
3831
3832 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3833 {
3834 unsigned long flags;
3835 wait_queue_t wait;
3836
3837 init_waitqueue_entry(&wait, current);
3838
3839 current->state = TASK_INTERRUPTIBLE;
3840
3841 sleep_on_head(q, &wait, &flags);
3842 schedule();
3843 sleep_on_tail(q, &wait, &flags);
3844 }
3845 EXPORT_SYMBOL(interruptible_sleep_on);
3846
3847 long __sched
3848 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3849 {
3850 unsigned long flags;
3851 wait_queue_t wait;
3852
3853 init_waitqueue_entry(&wait, current);
3854
3855 current->state = TASK_INTERRUPTIBLE;
3856
3857 sleep_on_head(q, &wait, &flags);
3858 timeout = schedule_timeout(timeout);
3859 sleep_on_tail(q, &wait, &flags);
3860
3861 return timeout;
3862 }
3863 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3864
3865 void __sched sleep_on(wait_queue_head_t *q)
3866 {
3867 unsigned long flags;
3868 wait_queue_t wait;
3869
3870 init_waitqueue_entry(&wait, current);
3871
3872 current->state = TASK_UNINTERRUPTIBLE;
3873
3874 sleep_on_head(q, &wait, &flags);
3875 schedule();
3876 sleep_on_tail(q, &wait, &flags);
3877 }
3878 EXPORT_SYMBOL(sleep_on);
3879
3880 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3881 {
3882 unsigned long flags;
3883 wait_queue_t wait;
3884
3885 init_waitqueue_entry(&wait, current);
3886
3887 current->state = TASK_UNINTERRUPTIBLE;
3888
3889 sleep_on_head(q, &wait, &flags);
3890 timeout = schedule_timeout(timeout);
3891 sleep_on_tail(q, &wait, &flags);
3892
3893 return timeout;
3894 }
3895 EXPORT_SYMBOL(sleep_on_timeout);
3896
3897 #ifdef CONFIG_RT_MUTEXES
3898
3899 /*
3900 * rt_mutex_setprio - set the current priority of a task
3901 * @p: task
3902 * @prio: prio value (kernel-internal form)
3903 *
3904 * This function changes the 'effective' priority of a task. It does
3905 * not touch ->normal_prio like __setscheduler().
3906 *
3907 * Used by the rt_mutex code to implement priority inheritance logic.
3908 */
3909 void rt_mutex_setprio(struct task_struct *p, int prio)
3910 {
3911 unsigned long flags;
3912 int oldprio, on_rq, running;
3913 struct rq *rq;
3914
3915 BUG_ON(prio < 0 || prio > MAX_PRIO);
3916
3917 rq = task_rq_lock(p, &flags);
3918 update_rq_clock(rq);
3919
3920 oldprio = p->prio;
3921 on_rq = p->se.on_rq;
3922 running = task_running(rq, p);
3923 if (on_rq) {
3924 dequeue_task(rq, p, 0);
3925 if (running)
3926 p->sched_class->put_prev_task(rq, p);
3927 }
3928
3929 if (rt_prio(prio))
3930 p->sched_class = &rt_sched_class;
3931 else
3932 p->sched_class = &fair_sched_class;
3933
3934 p->prio = prio;
3935
3936 if (on_rq) {
3937 if (running)
3938 p->sched_class->set_curr_task(rq);
3939 enqueue_task(rq, p, 0);
3940 /*
3941 * Reschedule if we are currently running on this runqueue and
3942 * our priority decreased, or if we are not currently running on
3943 * this runqueue and our priority is higher than the current's
3944 */
3945 if (running) {
3946 if (p->prio > oldprio)
3947 resched_task(rq->curr);
3948 } else {
3949 check_preempt_curr(rq, p);
3950 }
3951 }
3952 task_rq_unlock(rq, &flags);
3953 }
3954
3955 #endif
3956
3957 void set_user_nice(struct task_struct *p, long nice)
3958 {
3959 int old_prio, delta, on_rq;
3960 unsigned long flags;
3961 struct rq *rq;
3962
3963 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3964 return;
3965 /*
3966 * We have to be careful, if called from sys_setpriority(),
3967 * the task might be in the middle of scheduling on another CPU.
3968 */
3969 rq = task_rq_lock(p, &flags);
3970 update_rq_clock(rq);
3971 /*
3972 * The RT priorities are set via sched_setscheduler(), but we still
3973 * allow the 'normal' nice value to be set - but as expected
3974 * it wont have any effect on scheduling until the task is
3975 * SCHED_FIFO/SCHED_RR:
3976 */
3977 if (task_has_rt_policy(p)) {
3978 p->static_prio = NICE_TO_PRIO(nice);
3979 goto out_unlock;
3980 }
3981 on_rq = p->se.on_rq;
3982 if (on_rq) {
3983 dequeue_task(rq, p, 0);
3984 dec_load(rq, p);
3985 }
3986
3987 p->static_prio = NICE_TO_PRIO(nice);
3988 set_load_weight(p);
3989 old_prio = p->prio;
3990 p->prio = effective_prio(p);
3991 delta = p->prio - old_prio;
3992
3993 if (on_rq) {
3994 enqueue_task(rq, p, 0);
3995 inc_load(rq, p);
3996 /*
3997 * If the task increased its priority or is running and
3998 * lowered its priority, then reschedule its CPU:
3999 */
4000 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4001 resched_task(rq->curr);
4002 }
4003 out_unlock:
4004 task_rq_unlock(rq, &flags);
4005 }
4006 EXPORT_SYMBOL(set_user_nice);
4007
4008 /*
4009 * can_nice - check if a task can reduce its nice value
4010 * @p: task
4011 * @nice: nice value
4012 */
4013 int can_nice(const struct task_struct *p, const int nice)
4014 {
4015 /* convert nice value [19,-20] to rlimit style value [1,40] */
4016 int nice_rlim = 20 - nice;
4017
4018 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4019 capable(CAP_SYS_NICE));
4020 }
4021
4022 #ifdef __ARCH_WANT_SYS_NICE
4023
4024 /*
4025 * sys_nice - change the priority of the current process.
4026 * @increment: priority increment
4027 *
4028 * sys_setpriority is a more generic, but much slower function that
4029 * does similar things.
4030 */
4031 asmlinkage long sys_nice(int increment)
4032 {
4033 long nice, retval;
4034
4035 /*
4036 * Setpriority might change our priority at the same moment.
4037 * We don't have to worry. Conceptually one call occurs first
4038 * and we have a single winner.
4039 */
4040 if (increment < -40)
4041 increment = -40;
4042 if (increment > 40)
4043 increment = 40;
4044
4045 nice = PRIO_TO_NICE(current->static_prio) + increment;
4046 if (nice < -20)
4047 nice = -20;
4048 if (nice > 19)
4049 nice = 19;
4050
4051 if (increment < 0 && !can_nice(current, nice))
4052 return -EPERM;
4053
4054 retval = security_task_setnice(current, nice);
4055 if (retval)
4056 return retval;
4057
4058 set_user_nice(current, nice);
4059 return 0;
4060 }
4061
4062 #endif
4063
4064 /**
4065 * task_prio - return the priority value of a given task.
4066 * @p: the task in question.
4067 *
4068 * This is the priority value as seen by users in /proc.
4069 * RT tasks are offset by -200. Normal tasks are centered
4070 * around 0, value goes from -16 to +15.
4071 */
4072 int task_prio(const struct task_struct *p)
4073 {
4074 return p->prio - MAX_RT_PRIO;
4075 }
4076
4077 /**
4078 * task_nice - return the nice value of a given task.
4079 * @p: the task in question.
4080 */
4081 int task_nice(const struct task_struct *p)
4082 {
4083 return TASK_NICE(p);
4084 }
4085 EXPORT_SYMBOL_GPL(task_nice);
4086
4087 /**
4088 * idle_cpu - is a given cpu idle currently?
4089 * @cpu: the processor in question.
4090 */
4091 int idle_cpu(int cpu)
4092 {
4093 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4094 }
4095
4096 /**
4097 * idle_task - return the idle task for a given cpu.
4098 * @cpu: the processor in question.
4099 */
4100 struct task_struct *idle_task(int cpu)
4101 {
4102 return cpu_rq(cpu)->idle;
4103 }
4104
4105 /**
4106 * find_process_by_pid - find a process with a matching PID value.
4107 * @pid: the pid in question.
4108 */
4109 static struct task_struct *find_process_by_pid(pid_t pid)
4110 {
4111 return pid ? find_task_by_pid(pid) : current;
4112 }
4113
4114 /* Actually do priority change: must hold rq lock. */
4115 static void
4116 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4117 {
4118 BUG_ON(p->se.on_rq);
4119
4120 p->policy = policy;
4121 switch (p->policy) {
4122 case SCHED_NORMAL:
4123 case SCHED_BATCH:
4124 case SCHED_IDLE:
4125 p->sched_class = &fair_sched_class;
4126 break;
4127 case SCHED_FIFO:
4128 case SCHED_RR:
4129 p->sched_class = &rt_sched_class;
4130 break;
4131 }
4132
4133 p->rt_priority = prio;
4134 p->normal_prio = normal_prio(p);
4135 /* we are holding p->pi_lock already */
4136 p->prio = rt_mutex_getprio(p);
4137 set_load_weight(p);
4138 }
4139
4140 /**
4141 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4142 * @p: the task in question.
4143 * @policy: new policy.
4144 * @param: structure containing the new RT priority.
4145 *
4146 * NOTE that the task may be already dead.
4147 */
4148 int sched_setscheduler(struct task_struct *p, int policy,
4149 struct sched_param *param)
4150 {
4151 int retval, oldprio, oldpolicy = -1, on_rq, running;
4152 unsigned long flags;
4153 struct rq *rq;
4154
4155 /* may grab non-irq protected spin_locks */
4156 BUG_ON(in_interrupt());
4157 recheck:
4158 /* double check policy once rq lock held */
4159 if (policy < 0)
4160 policy = oldpolicy = p->policy;
4161 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4162 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4163 policy != SCHED_IDLE)
4164 return -EINVAL;
4165 /*
4166 * Valid priorities for SCHED_FIFO and SCHED_RR are
4167 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4168 * SCHED_BATCH and SCHED_IDLE is 0.
4169 */
4170 if (param->sched_priority < 0 ||
4171 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4172 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4173 return -EINVAL;
4174 if (rt_policy(policy) != (param->sched_priority != 0))
4175 return -EINVAL;
4176
4177 /*
4178 * Allow unprivileged RT tasks to decrease priority:
4179 */
4180 if (!capable(CAP_SYS_NICE)) {
4181 if (rt_policy(policy)) {
4182 unsigned long rlim_rtprio;
4183
4184 if (!lock_task_sighand(p, &flags))
4185 return -ESRCH;
4186 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4187 unlock_task_sighand(p, &flags);
4188
4189 /* can't set/change the rt policy */
4190 if (policy != p->policy && !rlim_rtprio)
4191 return -EPERM;
4192
4193 /* can't increase priority */
4194 if (param->sched_priority > p->rt_priority &&
4195 param->sched_priority > rlim_rtprio)
4196 return -EPERM;
4197 }
4198 /*
4199 * Like positive nice levels, dont allow tasks to
4200 * move out of SCHED_IDLE either:
4201 */
4202 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4203 return -EPERM;
4204
4205 /* can't change other user's priorities */
4206 if ((current->euid != p->euid) &&
4207 (current->euid != p->uid))
4208 return -EPERM;
4209 }
4210
4211 retval = security_task_setscheduler(p, policy, param);
4212 if (retval)
4213 return retval;
4214 /*
4215 * make sure no PI-waiters arrive (or leave) while we are
4216 * changing the priority of the task:
4217 */
4218 spin_lock_irqsave(&p->pi_lock, flags);
4219 /*
4220 * To be able to change p->policy safely, the apropriate
4221 * runqueue lock must be held.
4222 */
4223 rq = __task_rq_lock(p);
4224 /* recheck policy now with rq lock held */
4225 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4226 policy = oldpolicy = -1;
4227 __task_rq_unlock(rq);
4228 spin_unlock_irqrestore(&p->pi_lock, flags);
4229 goto recheck;
4230 }
4231 update_rq_clock(rq);
4232 on_rq = p->se.on_rq;
4233 running = task_running(rq, p);
4234 if (on_rq) {
4235 deactivate_task(rq, p, 0);
4236 if (running)
4237 p->sched_class->put_prev_task(rq, p);
4238 }
4239
4240 oldprio = p->prio;
4241 __setscheduler(rq, p, policy, param->sched_priority);
4242
4243 if (on_rq) {
4244 if (running)
4245 p->sched_class->set_curr_task(rq);
4246 activate_task(rq, p, 0);
4247 /*
4248 * Reschedule if we are currently running on this runqueue and
4249 * our priority decreased, or if we are not currently running on
4250 * this runqueue and our priority is higher than the current's
4251 */
4252 if (running) {
4253 if (p->prio > oldprio)
4254 resched_task(rq->curr);
4255 } else {
4256 check_preempt_curr(rq, p);
4257 }
4258 }
4259 __task_rq_unlock(rq);
4260 spin_unlock_irqrestore(&p->pi_lock, flags);
4261
4262 rt_mutex_adjust_pi(p);
4263
4264 return 0;
4265 }
4266 EXPORT_SYMBOL_GPL(sched_setscheduler);
4267
4268 static int
4269 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4270 {
4271 struct sched_param lparam;
4272 struct task_struct *p;
4273 int retval;
4274
4275 if (!param || pid < 0)
4276 return -EINVAL;
4277 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4278 return -EFAULT;
4279
4280 rcu_read_lock();
4281 retval = -ESRCH;
4282 p = find_process_by_pid(pid);
4283 if (p != NULL)
4284 retval = sched_setscheduler(p, policy, &lparam);
4285 rcu_read_unlock();
4286
4287 return retval;
4288 }
4289
4290 /**
4291 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4292 * @pid: the pid in question.
4293 * @policy: new policy.
4294 * @param: structure containing the new RT priority.
4295 */
4296 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4297 struct sched_param __user *param)
4298 {
4299 /* negative values for policy are not valid */
4300 if (policy < 0)
4301 return -EINVAL;
4302
4303 return do_sched_setscheduler(pid, policy, param);
4304 }
4305
4306 /**
4307 * sys_sched_setparam - set/change the RT priority of a thread
4308 * @pid: the pid in question.
4309 * @param: structure containing the new RT priority.
4310 */
4311 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4312 {
4313 return do_sched_setscheduler(pid, -1, param);
4314 }
4315
4316 /**
4317 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4318 * @pid: the pid in question.
4319 */
4320 asmlinkage long sys_sched_getscheduler(pid_t pid)
4321 {
4322 struct task_struct *p;
4323 int retval = -EINVAL;
4324
4325 if (pid < 0)
4326 goto out_nounlock;
4327
4328 retval = -ESRCH;
4329 read_lock(&tasklist_lock);
4330 p = find_process_by_pid(pid);
4331 if (p) {
4332 retval = security_task_getscheduler(p);
4333 if (!retval)
4334 retval = p->policy;
4335 }
4336 read_unlock(&tasklist_lock);
4337
4338 out_nounlock:
4339 return retval;
4340 }
4341
4342 /**
4343 * sys_sched_getscheduler - get the RT priority of a thread
4344 * @pid: the pid in question.
4345 * @param: structure containing the RT priority.
4346 */
4347 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4348 {
4349 struct sched_param lp;
4350 struct task_struct *p;
4351 int retval = -EINVAL;
4352
4353 if (!param || pid < 0)
4354 goto out_nounlock;
4355
4356 read_lock(&tasklist_lock);
4357 p = find_process_by_pid(pid);
4358 retval = -ESRCH;
4359 if (!p)
4360 goto out_unlock;
4361
4362 retval = security_task_getscheduler(p);
4363 if (retval)
4364 goto out_unlock;
4365
4366 lp.sched_priority = p->rt_priority;
4367 read_unlock(&tasklist_lock);
4368
4369 /*
4370 * This one might sleep, we cannot do it with a spinlock held ...
4371 */
4372 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4373
4374 out_nounlock:
4375 return retval;
4376
4377 out_unlock:
4378 read_unlock(&tasklist_lock);
4379 return retval;
4380 }
4381
4382 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4383 {
4384 cpumask_t cpus_allowed;
4385 struct task_struct *p;
4386 int retval;
4387
4388 mutex_lock(&sched_hotcpu_mutex);
4389 read_lock(&tasklist_lock);
4390
4391 p = find_process_by_pid(pid);
4392 if (!p) {
4393 read_unlock(&tasklist_lock);
4394 mutex_unlock(&sched_hotcpu_mutex);
4395 return -ESRCH;
4396 }
4397
4398 /*
4399 * It is not safe to call set_cpus_allowed with the
4400 * tasklist_lock held. We will bump the task_struct's
4401 * usage count and then drop tasklist_lock.
4402 */
4403 get_task_struct(p);
4404 read_unlock(&tasklist_lock);
4405
4406 retval = -EPERM;
4407 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4408 !capable(CAP_SYS_NICE))
4409 goto out_unlock;
4410
4411 retval = security_task_setscheduler(p, 0, NULL);
4412 if (retval)
4413 goto out_unlock;
4414
4415 cpus_allowed = cpuset_cpus_allowed(p);
4416 cpus_and(new_mask, new_mask, cpus_allowed);
4417 retval = set_cpus_allowed(p, new_mask);
4418
4419 out_unlock:
4420 put_task_struct(p);
4421 mutex_unlock(&sched_hotcpu_mutex);
4422 return retval;
4423 }
4424
4425 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4426 cpumask_t *new_mask)
4427 {
4428 if (len < sizeof(cpumask_t)) {
4429 memset(new_mask, 0, sizeof(cpumask_t));
4430 } else if (len > sizeof(cpumask_t)) {
4431 len = sizeof(cpumask_t);
4432 }
4433 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4434 }
4435
4436 /**
4437 * sys_sched_setaffinity - set the cpu affinity of a process
4438 * @pid: pid of the process
4439 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4440 * @user_mask_ptr: user-space pointer to the new cpu mask
4441 */
4442 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4443 unsigned long __user *user_mask_ptr)
4444 {
4445 cpumask_t new_mask;
4446 int retval;
4447
4448 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4449 if (retval)
4450 return retval;
4451
4452 return sched_setaffinity(pid, new_mask);
4453 }
4454
4455 /*
4456 * Represents all cpu's present in the system
4457 * In systems capable of hotplug, this map could dynamically grow
4458 * as new cpu's are detected in the system via any platform specific
4459 * method, such as ACPI for e.g.
4460 */
4461
4462 cpumask_t cpu_present_map __read_mostly;
4463 EXPORT_SYMBOL(cpu_present_map);
4464
4465 #ifndef CONFIG_SMP
4466 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4467 EXPORT_SYMBOL(cpu_online_map);
4468
4469 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4470 EXPORT_SYMBOL(cpu_possible_map);
4471 #endif
4472
4473 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4474 {
4475 struct task_struct *p;
4476 int retval;
4477
4478 mutex_lock(&sched_hotcpu_mutex);
4479 read_lock(&tasklist_lock);
4480
4481 retval = -ESRCH;
4482 p = find_process_by_pid(pid);
4483 if (!p)
4484 goto out_unlock;
4485
4486 retval = security_task_getscheduler(p);
4487 if (retval)
4488 goto out_unlock;
4489
4490 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4491
4492 out_unlock:
4493 read_unlock(&tasklist_lock);
4494 mutex_unlock(&sched_hotcpu_mutex);
4495
4496 return retval;
4497 }
4498
4499 /**
4500 * sys_sched_getaffinity - get the cpu affinity of a process
4501 * @pid: pid of the process
4502 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4503 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4504 */
4505 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4506 unsigned long __user *user_mask_ptr)
4507 {
4508 int ret;
4509 cpumask_t mask;
4510
4511 if (len < sizeof(cpumask_t))
4512 return -EINVAL;
4513
4514 ret = sched_getaffinity(pid, &mask);
4515 if (ret < 0)
4516 return ret;
4517
4518 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4519 return -EFAULT;
4520
4521 return sizeof(cpumask_t);
4522 }
4523
4524 /**
4525 * sys_sched_yield - yield the current processor to other threads.
4526 *
4527 * This function yields the current CPU to other tasks. If there are no
4528 * other threads running on this CPU then this function will return.
4529 */
4530 asmlinkage long sys_sched_yield(void)
4531 {
4532 struct rq *rq = this_rq_lock();
4533
4534 schedstat_inc(rq, yld_count);
4535 current->sched_class->yield_task(rq);
4536
4537 /*
4538 * Since we are going to call schedule() anyway, there's
4539 * no need to preempt or enable interrupts:
4540 */
4541 __release(rq->lock);
4542 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4543 _raw_spin_unlock(&rq->lock);
4544 preempt_enable_no_resched();
4545
4546 schedule();
4547
4548 return 0;
4549 }
4550
4551 static void __cond_resched(void)
4552 {
4553 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4554 __might_sleep(__FILE__, __LINE__);
4555 #endif
4556 /*
4557 * The BKS might be reacquired before we have dropped
4558 * PREEMPT_ACTIVE, which could trigger a second
4559 * cond_resched() call.
4560 */
4561 do {
4562 add_preempt_count(PREEMPT_ACTIVE);
4563 schedule();
4564 sub_preempt_count(PREEMPT_ACTIVE);
4565 } while (need_resched());
4566 }
4567
4568 int __sched cond_resched(void)
4569 {
4570 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4571 system_state == SYSTEM_RUNNING) {
4572 __cond_resched();
4573 return 1;
4574 }
4575 return 0;
4576 }
4577 EXPORT_SYMBOL(cond_resched);
4578
4579 /*
4580 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4581 * call schedule, and on return reacquire the lock.
4582 *
4583 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4584 * operations here to prevent schedule() from being called twice (once via
4585 * spin_unlock(), once by hand).
4586 */
4587 int cond_resched_lock(spinlock_t *lock)
4588 {
4589 int ret = 0;
4590
4591 if (need_lockbreak(lock)) {
4592 spin_unlock(lock);
4593 cpu_relax();
4594 ret = 1;
4595 spin_lock(lock);
4596 }
4597 if (need_resched() && system_state == SYSTEM_RUNNING) {
4598 spin_release(&lock->dep_map, 1, _THIS_IP_);
4599 _raw_spin_unlock(lock);
4600 preempt_enable_no_resched();
4601 __cond_resched();
4602 ret = 1;
4603 spin_lock(lock);
4604 }
4605 return ret;
4606 }
4607 EXPORT_SYMBOL(cond_resched_lock);
4608
4609 int __sched cond_resched_softirq(void)
4610 {
4611 BUG_ON(!in_softirq());
4612
4613 if (need_resched() && system_state == SYSTEM_RUNNING) {
4614 local_bh_enable();
4615 __cond_resched();
4616 local_bh_disable();
4617 return 1;
4618 }
4619 return 0;
4620 }
4621 EXPORT_SYMBOL(cond_resched_softirq);
4622
4623 /**
4624 * yield - yield the current processor to other threads.
4625 *
4626 * This is a shortcut for kernel-space yielding - it marks the
4627 * thread runnable and calls sys_sched_yield().
4628 */
4629 void __sched yield(void)
4630 {
4631 set_current_state(TASK_RUNNING);
4632 sys_sched_yield();
4633 }
4634 EXPORT_SYMBOL(yield);
4635
4636 /*
4637 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4638 * that process accounting knows that this is a task in IO wait state.
4639 *
4640 * But don't do that if it is a deliberate, throttling IO wait (this task
4641 * has set its backing_dev_info: the queue against which it should throttle)
4642 */
4643 void __sched io_schedule(void)
4644 {
4645 struct rq *rq = &__raw_get_cpu_var(runqueues);
4646
4647 delayacct_blkio_start();
4648 atomic_inc(&rq->nr_iowait);
4649 schedule();
4650 atomic_dec(&rq->nr_iowait);
4651 delayacct_blkio_end();
4652 }
4653 EXPORT_SYMBOL(io_schedule);
4654
4655 long __sched io_schedule_timeout(long timeout)
4656 {
4657 struct rq *rq = &__raw_get_cpu_var(runqueues);
4658 long ret;
4659
4660 delayacct_blkio_start();
4661 atomic_inc(&rq->nr_iowait);
4662 ret = schedule_timeout(timeout);
4663 atomic_dec(&rq->nr_iowait);
4664 delayacct_blkio_end();
4665 return ret;
4666 }
4667
4668 /**
4669 * sys_sched_get_priority_max - return maximum RT priority.
4670 * @policy: scheduling class.
4671 *
4672 * this syscall returns the maximum rt_priority that can be used
4673 * by a given scheduling class.
4674 */
4675 asmlinkage long sys_sched_get_priority_max(int policy)
4676 {
4677 int ret = -EINVAL;
4678
4679 switch (policy) {
4680 case SCHED_FIFO:
4681 case SCHED_RR:
4682 ret = MAX_USER_RT_PRIO-1;
4683 break;
4684 case SCHED_NORMAL:
4685 case SCHED_BATCH:
4686 case SCHED_IDLE:
4687 ret = 0;
4688 break;
4689 }
4690 return ret;
4691 }
4692
4693 /**
4694 * sys_sched_get_priority_min - return minimum RT priority.
4695 * @policy: scheduling class.
4696 *
4697 * this syscall returns the minimum rt_priority that can be used
4698 * by a given scheduling class.
4699 */
4700 asmlinkage long sys_sched_get_priority_min(int policy)
4701 {
4702 int ret = -EINVAL;
4703
4704 switch (policy) {
4705 case SCHED_FIFO:
4706 case SCHED_RR:
4707 ret = 1;
4708 break;
4709 case SCHED_NORMAL:
4710 case SCHED_BATCH:
4711 case SCHED_IDLE:
4712 ret = 0;
4713 }
4714 return ret;
4715 }
4716
4717 /**
4718 * sys_sched_rr_get_interval - return the default timeslice of a process.
4719 * @pid: pid of the process.
4720 * @interval: userspace pointer to the timeslice value.
4721 *
4722 * this syscall writes the default timeslice value of a given process
4723 * into the user-space timespec buffer. A value of '0' means infinity.
4724 */
4725 asmlinkage
4726 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4727 {
4728 struct task_struct *p;
4729 unsigned int time_slice;
4730 int retval = -EINVAL;
4731 struct timespec t;
4732
4733 if (pid < 0)
4734 goto out_nounlock;
4735
4736 retval = -ESRCH;
4737 read_lock(&tasklist_lock);
4738 p = find_process_by_pid(pid);
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
4746 if (p->policy == SCHED_FIFO)
4747 time_slice = 0;
4748 else if (p->policy == SCHED_RR)
4749 time_slice = DEF_TIMESLICE;
4750 else {
4751 struct sched_entity *se = &p->se;
4752 unsigned long flags;
4753 struct rq *rq;
4754
4755 rq = task_rq_lock(p, &flags);
4756 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4757 task_rq_unlock(rq, &flags);
4758 }
4759 read_unlock(&tasklist_lock);
4760 jiffies_to_timespec(time_slice, &t);
4761 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4762 out_nounlock:
4763 return retval;
4764 out_unlock:
4765 read_unlock(&tasklist_lock);
4766 return retval;
4767 }
4768
4769 static const char stat_nam[] = "RSDTtZX";
4770
4771 static void show_task(struct task_struct *p)
4772 {
4773 unsigned long free = 0;
4774 unsigned state;
4775
4776 state = p->state ? __ffs(p->state) + 1 : 0;
4777 printk("%-13.13s %c", p->comm,
4778 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4779 #if BITS_PER_LONG == 32
4780 if (state == TASK_RUNNING)
4781 printk(" running ");
4782 else
4783 printk(" %08lx ", thread_saved_pc(p));
4784 #else
4785 if (state == TASK_RUNNING)
4786 printk(" running task ");
4787 else
4788 printk(" %016lx ", thread_saved_pc(p));
4789 #endif
4790 #ifdef CONFIG_DEBUG_STACK_USAGE
4791 {
4792 unsigned long *n = end_of_stack(p);
4793 while (!*n)
4794 n++;
4795 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4796 }
4797 #endif
4798 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4799
4800 if (state != TASK_RUNNING)
4801 show_stack(p, NULL);
4802 }
4803
4804 void show_state_filter(unsigned long state_filter)
4805 {
4806 struct task_struct *g, *p;
4807
4808 #if BITS_PER_LONG == 32
4809 printk(KERN_INFO
4810 " task PC stack pid father\n");
4811 #else
4812 printk(KERN_INFO
4813 " task PC stack pid father\n");
4814 #endif
4815 read_lock(&tasklist_lock);
4816 do_each_thread(g, p) {
4817 /*
4818 * reset the NMI-timeout, listing all files on a slow
4819 * console might take alot of time:
4820 */
4821 touch_nmi_watchdog();
4822 if (!state_filter || (p->state & state_filter))
4823 show_task(p);
4824 } while_each_thread(g, p);
4825
4826 touch_all_softlockup_watchdogs();
4827
4828 #ifdef CONFIG_SCHED_DEBUG
4829 sysrq_sched_debug_show();
4830 #endif
4831 read_unlock(&tasklist_lock);
4832 /*
4833 * Only show locks if all tasks are dumped:
4834 */
4835 if (state_filter == -1)
4836 debug_show_all_locks();
4837 }
4838
4839 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4840 {
4841 idle->sched_class = &idle_sched_class;
4842 }
4843
4844 /**
4845 * init_idle - set up an idle thread for a given CPU
4846 * @idle: task in question
4847 * @cpu: cpu the idle task belongs to
4848 *
4849 * NOTE: this function does not set the idle thread's NEED_RESCHED
4850 * flag, to make booting more robust.
4851 */
4852 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4853 {
4854 struct rq *rq = cpu_rq(cpu);
4855 unsigned long flags;
4856
4857 __sched_fork(idle);
4858 idle->se.exec_start = sched_clock();
4859
4860 idle->prio = idle->normal_prio = MAX_PRIO;
4861 idle->cpus_allowed = cpumask_of_cpu(cpu);
4862 __set_task_cpu(idle, cpu);
4863
4864 spin_lock_irqsave(&rq->lock, flags);
4865 rq->curr = rq->idle = idle;
4866 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4867 idle->oncpu = 1;
4868 #endif
4869 spin_unlock_irqrestore(&rq->lock, flags);
4870
4871 /* Set the preempt count _outside_ the spinlocks! */
4872 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4873 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4874 #else
4875 task_thread_info(idle)->preempt_count = 0;
4876 #endif
4877 /*
4878 * The idle tasks have their own, simple scheduling class:
4879 */
4880 idle->sched_class = &idle_sched_class;
4881 }
4882
4883 /*
4884 * In a system that switches off the HZ timer nohz_cpu_mask
4885 * indicates which cpus entered this state. This is used
4886 * in the rcu update to wait only for active cpus. For system
4887 * which do not switch off the HZ timer nohz_cpu_mask should
4888 * always be CPU_MASK_NONE.
4889 */
4890 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4891
4892 #ifdef CONFIG_SMP
4893 /*
4894 * This is how migration works:
4895 *
4896 * 1) we queue a struct migration_req structure in the source CPU's
4897 * runqueue and wake up that CPU's migration thread.
4898 * 2) we down() the locked semaphore => thread blocks.
4899 * 3) migration thread wakes up (implicitly it forces the migrated
4900 * thread off the CPU)
4901 * 4) it gets the migration request and checks whether the migrated
4902 * task is still in the wrong runqueue.
4903 * 5) if it's in the wrong runqueue then the migration thread removes
4904 * it and puts it into the right queue.
4905 * 6) migration thread up()s the semaphore.
4906 * 7) we wake up and the migration is done.
4907 */
4908
4909 /*
4910 * Change a given task's CPU affinity. Migrate the thread to a
4911 * proper CPU and schedule it away if the CPU it's executing on
4912 * is removed from the allowed bitmask.
4913 *
4914 * NOTE: the caller must have a valid reference to the task, the
4915 * task must not exit() & deallocate itself prematurely. The
4916 * call is not atomic; no spinlocks may be held.
4917 */
4918 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4919 {
4920 struct migration_req req;
4921 unsigned long flags;
4922 struct rq *rq;
4923 int ret = 0;
4924
4925 rq = task_rq_lock(p, &flags);
4926 if (!cpus_intersects(new_mask, cpu_online_map)) {
4927 ret = -EINVAL;
4928 goto out;
4929 }
4930
4931 p->cpus_allowed = new_mask;
4932 /* Can the task run on the task's current CPU? If so, we're done */
4933 if (cpu_isset(task_cpu(p), new_mask))
4934 goto out;
4935
4936 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4937 /* Need help from migration thread: drop lock and wait. */
4938 task_rq_unlock(rq, &flags);
4939 wake_up_process(rq->migration_thread);
4940 wait_for_completion(&req.done);
4941 tlb_migrate_finish(p->mm);
4942 return 0;
4943 }
4944 out:
4945 task_rq_unlock(rq, &flags);
4946
4947 return ret;
4948 }
4949 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4950
4951 /*
4952 * Move (not current) task off this cpu, onto dest cpu. We're doing
4953 * this because either it can't run here any more (set_cpus_allowed()
4954 * away from this CPU, or CPU going down), or because we're
4955 * attempting to rebalance this task on exec (sched_exec).
4956 *
4957 * So we race with normal scheduler movements, but that's OK, as long
4958 * as the task is no longer on this CPU.
4959 *
4960 * Returns non-zero if task was successfully migrated.
4961 */
4962 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4963 {
4964 struct rq *rq_dest, *rq_src;
4965 int ret = 0, on_rq;
4966
4967 if (unlikely(cpu_is_offline(dest_cpu)))
4968 return ret;
4969
4970 rq_src = cpu_rq(src_cpu);
4971 rq_dest = cpu_rq(dest_cpu);
4972
4973 double_rq_lock(rq_src, rq_dest);
4974 /* Already moved. */
4975 if (task_cpu(p) != src_cpu)
4976 goto out;
4977 /* Affinity changed (again). */
4978 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4979 goto out;
4980
4981 on_rq = p->se.on_rq;
4982 if (on_rq)
4983 deactivate_task(rq_src, p, 0);
4984
4985 set_task_cpu(p, dest_cpu);
4986 if (on_rq) {
4987 activate_task(rq_dest, p, 0);
4988 check_preempt_curr(rq_dest, p);
4989 }
4990 ret = 1;
4991 out:
4992 double_rq_unlock(rq_src, rq_dest);
4993 return ret;
4994 }
4995
4996 /*
4997 * migration_thread - this is a highprio system thread that performs
4998 * thread migration by bumping thread off CPU then 'pushing' onto
4999 * another runqueue.
5000 */
5001 static int migration_thread(void *data)
5002 {
5003 int cpu = (long)data;
5004 struct rq *rq;
5005
5006 rq = cpu_rq(cpu);
5007 BUG_ON(rq->migration_thread != current);
5008
5009 set_current_state(TASK_INTERRUPTIBLE);
5010 while (!kthread_should_stop()) {
5011 struct migration_req *req;
5012 struct list_head *head;
5013
5014 spin_lock_irq(&rq->lock);
5015
5016 if (cpu_is_offline(cpu)) {
5017 spin_unlock_irq(&rq->lock);
5018 goto wait_to_die;
5019 }
5020
5021 if (rq->active_balance) {
5022 active_load_balance(rq, cpu);
5023 rq->active_balance = 0;
5024 }
5025
5026 head = &rq->migration_queue;
5027
5028 if (list_empty(head)) {
5029 spin_unlock_irq(&rq->lock);
5030 schedule();
5031 set_current_state(TASK_INTERRUPTIBLE);
5032 continue;
5033 }
5034 req = list_entry(head->next, struct migration_req, list);
5035 list_del_init(head->next);
5036
5037 spin_unlock(&rq->lock);
5038 __migrate_task(req->task, cpu, req->dest_cpu);
5039 local_irq_enable();
5040
5041 complete(&req->done);
5042 }
5043 __set_current_state(TASK_RUNNING);
5044 return 0;
5045
5046 wait_to_die:
5047 /* Wait for kthread_stop */
5048 set_current_state(TASK_INTERRUPTIBLE);
5049 while (!kthread_should_stop()) {
5050 schedule();
5051 set_current_state(TASK_INTERRUPTIBLE);
5052 }
5053 __set_current_state(TASK_RUNNING);
5054 return 0;
5055 }
5056
5057 #ifdef CONFIG_HOTPLUG_CPU
5058 /*
5059 * Figure out where task on dead CPU should go, use force if neccessary.
5060 * NOTE: interrupts should be disabled by the caller
5061 */
5062 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5063 {
5064 unsigned long flags;
5065 cpumask_t mask;
5066 struct rq *rq;
5067 int dest_cpu;
5068
5069 restart:
5070 /* On same node? */
5071 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5072 cpus_and(mask, mask, p->cpus_allowed);
5073 dest_cpu = any_online_cpu(mask);
5074
5075 /* On any allowed CPU? */
5076 if (dest_cpu == NR_CPUS)
5077 dest_cpu = any_online_cpu(p->cpus_allowed);
5078
5079 /* No more Mr. Nice Guy. */
5080 if (dest_cpu == NR_CPUS) {
5081 rq = task_rq_lock(p, &flags);
5082 cpus_setall(p->cpus_allowed);
5083 dest_cpu = any_online_cpu(p->cpus_allowed);
5084 task_rq_unlock(rq, &flags);
5085
5086 /*
5087 * Don't tell them about moving exiting tasks or
5088 * kernel threads (both mm NULL), since they never
5089 * leave kernel.
5090 */
5091 if (p->mm && printk_ratelimit())
5092 printk(KERN_INFO "process %d (%s) no "
5093 "longer affine to cpu%d\n",
5094 p->pid, p->comm, dead_cpu);
5095 }
5096 if (!__migrate_task(p, dead_cpu, dest_cpu))
5097 goto restart;
5098 }
5099
5100 /*
5101 * While a dead CPU has no uninterruptible tasks queued at this point,
5102 * it might still have a nonzero ->nr_uninterruptible counter, because
5103 * for performance reasons the counter is not stricly tracking tasks to
5104 * their home CPUs. So we just add the counter to another CPU's counter,
5105 * to keep the global sum constant after CPU-down:
5106 */
5107 static void migrate_nr_uninterruptible(struct rq *rq_src)
5108 {
5109 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5110 unsigned long flags;
5111
5112 local_irq_save(flags);
5113 double_rq_lock(rq_src, rq_dest);
5114 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5115 rq_src->nr_uninterruptible = 0;
5116 double_rq_unlock(rq_src, rq_dest);
5117 local_irq_restore(flags);
5118 }
5119
5120 /* Run through task list and migrate tasks from the dead cpu. */
5121 static void migrate_live_tasks(int src_cpu)
5122 {
5123 struct task_struct *p, *t;
5124
5125 write_lock_irq(&tasklist_lock);
5126
5127 do_each_thread(t, p) {
5128 if (p == current)
5129 continue;
5130
5131 if (task_cpu(p) == src_cpu)
5132 move_task_off_dead_cpu(src_cpu, p);
5133 } while_each_thread(t, p);
5134
5135 write_unlock_irq(&tasklist_lock);
5136 }
5137
5138 /*
5139 * activate_idle_task - move idle task to the _front_ of runqueue.
5140 */
5141 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5142 {
5143 update_rq_clock(rq);
5144
5145 if (p->state == TASK_UNINTERRUPTIBLE)
5146 rq->nr_uninterruptible--;
5147
5148 enqueue_task(rq, p, 0);
5149 inc_nr_running(p, rq);
5150 }
5151
5152 /*
5153 * Schedules idle task to be the next runnable task on current CPU.
5154 * It does so by boosting its priority to highest possible and adding it to
5155 * the _front_ of the runqueue. Used by CPU offline code.
5156 */
5157 void sched_idle_next(void)
5158 {
5159 int this_cpu = smp_processor_id();
5160 struct rq *rq = cpu_rq(this_cpu);
5161 struct task_struct *p = rq->idle;
5162 unsigned long flags;
5163
5164 /* cpu has to be offline */
5165 BUG_ON(cpu_online(this_cpu));
5166
5167 /*
5168 * Strictly not necessary since rest of the CPUs are stopped by now
5169 * and interrupts disabled on the current cpu.
5170 */
5171 spin_lock_irqsave(&rq->lock, flags);
5172
5173 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5174
5175 /* Add idle task to the _front_ of its priority queue: */
5176 activate_idle_task(p, rq);
5177
5178 spin_unlock_irqrestore(&rq->lock, flags);
5179 }
5180
5181 /*
5182 * Ensures that the idle task is using init_mm right before its cpu goes
5183 * offline.
5184 */
5185 void idle_task_exit(void)
5186 {
5187 struct mm_struct *mm = current->active_mm;
5188
5189 BUG_ON(cpu_online(smp_processor_id()));
5190
5191 if (mm != &init_mm)
5192 switch_mm(mm, &init_mm, current);
5193 mmdrop(mm);
5194 }
5195
5196 /* called under rq->lock with disabled interrupts */
5197 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5198 {
5199 struct rq *rq = cpu_rq(dead_cpu);
5200
5201 /* Must be exiting, otherwise would be on tasklist. */
5202 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5203
5204 /* Cannot have done final schedule yet: would have vanished. */
5205 BUG_ON(p->state == TASK_DEAD);
5206
5207 get_task_struct(p);
5208
5209 /*
5210 * Drop lock around migration; if someone else moves it,
5211 * that's OK. No task can be added to this CPU, so iteration is
5212 * fine.
5213 * NOTE: interrupts should be left disabled --dev@
5214 */
5215 spin_unlock(&rq->lock);
5216 move_task_off_dead_cpu(dead_cpu, p);
5217 spin_lock(&rq->lock);
5218
5219 put_task_struct(p);
5220 }
5221
5222 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5223 static void migrate_dead_tasks(unsigned int dead_cpu)
5224 {
5225 struct rq *rq = cpu_rq(dead_cpu);
5226 struct task_struct *next;
5227
5228 for ( ; ; ) {
5229 if (!rq->nr_running)
5230 break;
5231 update_rq_clock(rq);
5232 next = pick_next_task(rq, rq->curr);
5233 if (!next)
5234 break;
5235 migrate_dead(dead_cpu, next);
5236
5237 }
5238 }
5239 #endif /* CONFIG_HOTPLUG_CPU */
5240
5241 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5242
5243 static struct ctl_table sd_ctl_dir[] = {
5244 {
5245 .procname = "sched_domain",
5246 .mode = 0555,
5247 },
5248 {0,},
5249 };
5250
5251 static struct ctl_table sd_ctl_root[] = {
5252 {
5253 .ctl_name = CTL_KERN,
5254 .procname = "kernel",
5255 .mode = 0555,
5256 .child = sd_ctl_dir,
5257 },
5258 {0,},
5259 };
5260
5261 static struct ctl_table *sd_alloc_ctl_entry(int n)
5262 {
5263 struct ctl_table *entry =
5264 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5265
5266 BUG_ON(!entry);
5267 memset(entry, 0, n * sizeof(struct ctl_table));
5268
5269 return entry;
5270 }
5271
5272 static void
5273 set_table_entry(struct ctl_table *entry,
5274 const char *procname, void *data, int maxlen,
5275 mode_t mode, proc_handler *proc_handler)
5276 {
5277 entry->procname = procname;
5278 entry->data = data;
5279 entry->maxlen = maxlen;
5280 entry->mode = mode;
5281 entry->proc_handler = proc_handler;
5282 }
5283
5284 static struct ctl_table *
5285 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5286 {
5287 struct ctl_table *table = sd_alloc_ctl_entry(14);
5288
5289 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5290 sizeof(long), 0644, proc_doulongvec_minmax);
5291 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5292 sizeof(long), 0644, proc_doulongvec_minmax);
5293 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5294 sizeof(int), 0644, proc_dointvec_minmax);
5295 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[10], "cache_nice_tries",
5308 &sd->cache_nice_tries,
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310 set_table_entry(&table[12], "flags", &sd->flags,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312
5313 return table;
5314 }
5315
5316 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5317 {
5318 struct ctl_table *entry, *table;
5319 struct sched_domain *sd;
5320 int domain_num = 0, i;
5321 char buf[32];
5322
5323 for_each_domain(cpu, sd)
5324 domain_num++;
5325 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5326
5327 i = 0;
5328 for_each_domain(cpu, sd) {
5329 snprintf(buf, 32, "domain%d", i);
5330 entry->procname = kstrdup(buf, GFP_KERNEL);
5331 entry->mode = 0555;
5332 entry->child = sd_alloc_ctl_domain_table(sd);
5333 entry++;
5334 i++;
5335 }
5336 return table;
5337 }
5338
5339 static struct ctl_table_header *sd_sysctl_header;
5340 static void init_sched_domain_sysctl(void)
5341 {
5342 int i, cpu_num = num_online_cpus();
5343 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5344 char buf[32];
5345
5346 sd_ctl_dir[0].child = entry;
5347
5348 for (i = 0; i < cpu_num; i++, entry++) {
5349 snprintf(buf, 32, "cpu%d", i);
5350 entry->procname = kstrdup(buf, GFP_KERNEL);
5351 entry->mode = 0555;
5352 entry->child = sd_alloc_ctl_cpu_table(i);
5353 }
5354 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5355 }
5356 #else
5357 static void init_sched_domain_sysctl(void)
5358 {
5359 }
5360 #endif
5361
5362 /*
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5365 */
5366 static int __cpuinit
5367 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5368 {
5369 struct task_struct *p;
5370 int cpu = (long)hcpu;
5371 unsigned long flags;
5372 struct rq *rq;
5373
5374 switch (action) {
5375 case CPU_LOCK_ACQUIRE:
5376 mutex_lock(&sched_hotcpu_mutex);
5377 break;
5378
5379 case CPU_UP_PREPARE:
5380 case CPU_UP_PREPARE_FROZEN:
5381 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5382 if (IS_ERR(p))
5383 return NOTIFY_BAD;
5384 kthread_bind(p, cpu);
5385 /* Must be high prio: stop_machine expects to yield to it. */
5386 rq = task_rq_lock(p, &flags);
5387 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5388 task_rq_unlock(rq, &flags);
5389 cpu_rq(cpu)->migration_thread = p;
5390 break;
5391
5392 case CPU_ONLINE:
5393 case CPU_ONLINE_FROZEN:
5394 /* Strictly unneccessary, as first user will wake it. */
5395 wake_up_process(cpu_rq(cpu)->migration_thread);
5396 break;
5397
5398 #ifdef CONFIG_HOTPLUG_CPU
5399 case CPU_UP_CANCELED:
5400 case CPU_UP_CANCELED_FROZEN:
5401 if (!cpu_rq(cpu)->migration_thread)
5402 break;
5403 /* Unbind it from offline cpu so it can run. Fall thru. */
5404 kthread_bind(cpu_rq(cpu)->migration_thread,
5405 any_online_cpu(cpu_online_map));
5406 kthread_stop(cpu_rq(cpu)->migration_thread);
5407 cpu_rq(cpu)->migration_thread = NULL;
5408 break;
5409
5410 case CPU_DEAD:
5411 case CPU_DEAD_FROZEN:
5412 migrate_live_tasks(cpu);
5413 rq = cpu_rq(cpu);
5414 kthread_stop(rq->migration_thread);
5415 rq->migration_thread = NULL;
5416 /* Idle task back to normal (off runqueue, low prio) */
5417 rq = task_rq_lock(rq->idle, &flags);
5418 update_rq_clock(rq);
5419 deactivate_task(rq, rq->idle, 0);
5420 rq->idle->static_prio = MAX_PRIO;
5421 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5422 rq->idle->sched_class = &idle_sched_class;
5423 migrate_dead_tasks(cpu);
5424 task_rq_unlock(rq, &flags);
5425 migrate_nr_uninterruptible(rq);
5426 BUG_ON(rq->nr_running != 0);
5427
5428 /* No need to migrate the tasks: it was best-effort if
5429 * they didn't take sched_hotcpu_mutex. Just wake up
5430 * the requestors. */
5431 spin_lock_irq(&rq->lock);
5432 while (!list_empty(&rq->migration_queue)) {
5433 struct migration_req *req;
5434
5435 req = list_entry(rq->migration_queue.next,
5436 struct migration_req, list);
5437 list_del_init(&req->list);
5438 complete(&req->done);
5439 }
5440 spin_unlock_irq(&rq->lock);
5441 break;
5442 #endif
5443 case CPU_LOCK_RELEASE:
5444 mutex_unlock(&sched_hotcpu_mutex);
5445 break;
5446 }
5447 return NOTIFY_OK;
5448 }
5449
5450 /* Register at highest priority so that task migration (migrate_all_tasks)
5451 * happens before everything else.
5452 */
5453 static struct notifier_block __cpuinitdata migration_notifier = {
5454 .notifier_call = migration_call,
5455 .priority = 10
5456 };
5457
5458 int __init migration_init(void)
5459 {
5460 void *cpu = (void *)(long)smp_processor_id();
5461 int err;
5462
5463 /* Start one for the boot CPU: */
5464 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5465 BUG_ON(err == NOTIFY_BAD);
5466 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5467 register_cpu_notifier(&migration_notifier);
5468
5469 return 0;
5470 }
5471 #endif
5472
5473 #ifdef CONFIG_SMP
5474
5475 /* Number of possible processor ids */
5476 int nr_cpu_ids __read_mostly = NR_CPUS;
5477 EXPORT_SYMBOL(nr_cpu_ids);
5478
5479 #ifdef CONFIG_SCHED_DEBUG
5480 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5481 {
5482 int level = 0;
5483
5484 if (!sd) {
5485 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5486 return;
5487 }
5488
5489 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5490
5491 do {
5492 int i;
5493 char str[NR_CPUS];
5494 struct sched_group *group = sd->groups;
5495 cpumask_t groupmask;
5496
5497 cpumask_scnprintf(str, NR_CPUS, sd->span);
5498 cpus_clear(groupmask);
5499
5500 printk(KERN_DEBUG);
5501 for (i = 0; i < level + 1; i++)
5502 printk(" ");
5503 printk("domain %d: ", level);
5504
5505 if (!(sd->flags & SD_LOAD_BALANCE)) {
5506 printk("does not load-balance\n");
5507 if (sd->parent)
5508 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5509 " has parent");
5510 break;
5511 }
5512
5513 printk("span %s\n", str);
5514
5515 if (!cpu_isset(cpu, sd->span))
5516 printk(KERN_ERR "ERROR: domain->span does not contain "
5517 "CPU%d\n", cpu);
5518 if (!cpu_isset(cpu, group->cpumask))
5519 printk(KERN_ERR "ERROR: domain->groups does not contain"
5520 " CPU%d\n", cpu);
5521
5522 printk(KERN_DEBUG);
5523 for (i = 0; i < level + 2; i++)
5524 printk(" ");
5525 printk("groups:");
5526 do {
5527 if (!group) {
5528 printk("\n");
5529 printk(KERN_ERR "ERROR: group is NULL\n");
5530 break;
5531 }
5532
5533 if (!group->__cpu_power) {
5534 printk("\n");
5535 printk(KERN_ERR "ERROR: domain->cpu_power not "
5536 "set\n");
5537 break;
5538 }
5539
5540 if (!cpus_weight(group->cpumask)) {
5541 printk("\n");
5542 printk(KERN_ERR "ERROR: empty group\n");
5543 break;
5544 }
5545
5546 if (cpus_intersects(groupmask, group->cpumask)) {
5547 printk("\n");
5548 printk(KERN_ERR "ERROR: repeated CPUs\n");
5549 break;
5550 }
5551
5552 cpus_or(groupmask, groupmask, group->cpumask);
5553
5554 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5555 printk(" %s", str);
5556
5557 group = group->next;
5558 } while (group != sd->groups);
5559 printk("\n");
5560
5561 if (!cpus_equal(sd->span, groupmask))
5562 printk(KERN_ERR "ERROR: groups don't span "
5563 "domain->span\n");
5564
5565 level++;
5566 sd = sd->parent;
5567 if (!sd)
5568 continue;
5569
5570 if (!cpus_subset(groupmask, sd->span))
5571 printk(KERN_ERR "ERROR: parent span is not a superset "
5572 "of domain->span\n");
5573
5574 } while (sd);
5575 }
5576 #else
5577 # define sched_domain_debug(sd, cpu) do { } while (0)
5578 #endif
5579
5580 static int sd_degenerate(struct sched_domain *sd)
5581 {
5582 if (cpus_weight(sd->span) == 1)
5583 return 1;
5584
5585 /* Following flags need at least 2 groups */
5586 if (sd->flags & (SD_LOAD_BALANCE |
5587 SD_BALANCE_NEWIDLE |
5588 SD_BALANCE_FORK |
5589 SD_BALANCE_EXEC |
5590 SD_SHARE_CPUPOWER |
5591 SD_SHARE_PKG_RESOURCES)) {
5592 if (sd->groups != sd->groups->next)
5593 return 0;
5594 }
5595
5596 /* Following flags don't use groups */
5597 if (sd->flags & (SD_WAKE_IDLE |
5598 SD_WAKE_AFFINE |
5599 SD_WAKE_BALANCE))
5600 return 0;
5601
5602 return 1;
5603 }
5604
5605 static int
5606 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5607 {
5608 unsigned long cflags = sd->flags, pflags = parent->flags;
5609
5610 if (sd_degenerate(parent))
5611 return 1;
5612
5613 if (!cpus_equal(sd->span, parent->span))
5614 return 0;
5615
5616 /* Does parent contain flags not in child? */
5617 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5618 if (cflags & SD_WAKE_AFFINE)
5619 pflags &= ~SD_WAKE_BALANCE;
5620 /* Flags needing groups don't count if only 1 group in parent */
5621 if (parent->groups == parent->groups->next) {
5622 pflags &= ~(SD_LOAD_BALANCE |
5623 SD_BALANCE_NEWIDLE |
5624 SD_BALANCE_FORK |
5625 SD_BALANCE_EXEC |
5626 SD_SHARE_CPUPOWER |
5627 SD_SHARE_PKG_RESOURCES);
5628 }
5629 if (~cflags & pflags)
5630 return 0;
5631
5632 return 1;
5633 }
5634
5635 /*
5636 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5637 * hold the hotplug lock.
5638 */
5639 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5640 {
5641 struct rq *rq = cpu_rq(cpu);
5642 struct sched_domain *tmp;
5643
5644 /* Remove the sched domains which do not contribute to scheduling. */
5645 for (tmp = sd; tmp; tmp = tmp->parent) {
5646 struct sched_domain *parent = tmp->parent;
5647 if (!parent)
5648 break;
5649 if (sd_parent_degenerate(tmp, parent)) {
5650 tmp->parent = parent->parent;
5651 if (parent->parent)
5652 parent->parent->child = tmp;
5653 }
5654 }
5655
5656 if (sd && sd_degenerate(sd)) {
5657 sd = sd->parent;
5658 if (sd)
5659 sd->child = NULL;
5660 }
5661
5662 sched_domain_debug(sd, cpu);
5663
5664 rcu_assign_pointer(rq->sd, sd);
5665 }
5666
5667 /* cpus with isolated domains */
5668 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5669
5670 /* Setup the mask of cpus configured for isolated domains */
5671 static int __init isolated_cpu_setup(char *str)
5672 {
5673 int ints[NR_CPUS], i;
5674
5675 str = get_options(str, ARRAY_SIZE(ints), ints);
5676 cpus_clear(cpu_isolated_map);
5677 for (i = 1; i <= ints[0]; i++)
5678 if (ints[i] < NR_CPUS)
5679 cpu_set(ints[i], cpu_isolated_map);
5680 return 1;
5681 }
5682
5683 __setup("isolcpus=", isolated_cpu_setup);
5684
5685 /*
5686 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5687 * to a function which identifies what group(along with sched group) a CPU
5688 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5689 * (due to the fact that we keep track of groups covered with a cpumask_t).
5690 *
5691 * init_sched_build_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
5694 */
5695 static void
5696 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5697 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5698 struct sched_group **sg))
5699 {
5700 struct sched_group *first = NULL, *last = NULL;
5701 cpumask_t covered = CPU_MASK_NONE;
5702 int i;
5703
5704 for_each_cpu_mask(i, span) {
5705 struct sched_group *sg;
5706 int group = group_fn(i, cpu_map, &sg);
5707 int j;
5708
5709 if (cpu_isset(i, covered))
5710 continue;
5711
5712 sg->cpumask = CPU_MASK_NONE;
5713 sg->__cpu_power = 0;
5714
5715 for_each_cpu_mask(j, span) {
5716 if (group_fn(j, cpu_map, NULL) != group)
5717 continue;
5718
5719 cpu_set(j, covered);
5720 cpu_set(j, sg->cpumask);
5721 }
5722 if (!first)
5723 first = sg;
5724 if (last)
5725 last->next = sg;
5726 last = sg;
5727 }
5728 last->next = first;
5729 }
5730
5731 #define SD_NODES_PER_DOMAIN 16
5732
5733 #ifdef CONFIG_NUMA
5734
5735 /**
5736 * find_next_best_node - find the next node to include in a sched_domain
5737 * @node: node whose sched_domain we're building
5738 * @used_nodes: nodes already in the sched_domain
5739 *
5740 * Find the next node to include in a given scheduling domain. Simply
5741 * finds the closest node not already in the @used_nodes map.
5742 *
5743 * Should use nodemask_t.
5744 */
5745 static int find_next_best_node(int node, unsigned long *used_nodes)
5746 {
5747 int i, n, val, min_val, best_node = 0;
5748
5749 min_val = INT_MAX;
5750
5751 for (i = 0; i < MAX_NUMNODES; i++) {
5752 /* Start at @node */
5753 n = (node + i) % MAX_NUMNODES;
5754
5755 if (!nr_cpus_node(n))
5756 continue;
5757
5758 /* Skip already used nodes */
5759 if (test_bit(n, used_nodes))
5760 continue;
5761
5762 /* Simple min distance search */
5763 val = node_distance(node, n);
5764
5765 if (val < min_val) {
5766 min_val = val;
5767 best_node = n;
5768 }
5769 }
5770
5771 set_bit(best_node, used_nodes);
5772 return best_node;
5773 }
5774
5775 /**
5776 * sched_domain_node_span - get a cpumask for a node's sched_domain
5777 * @node: node whose cpumask we're constructing
5778 * @size: number of nodes to include in this span
5779 *
5780 * Given a node, construct a good cpumask for its sched_domain to span. It
5781 * should be one that prevents unnecessary balancing, but also spreads tasks
5782 * out optimally.
5783 */
5784 static cpumask_t sched_domain_node_span(int node)
5785 {
5786 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5787 cpumask_t span, nodemask;
5788 int i;
5789
5790 cpus_clear(span);
5791 bitmap_zero(used_nodes, MAX_NUMNODES);
5792
5793 nodemask = node_to_cpumask(node);
5794 cpus_or(span, span, nodemask);
5795 set_bit(node, used_nodes);
5796
5797 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5798 int next_node = find_next_best_node(node, used_nodes);
5799
5800 nodemask = node_to_cpumask(next_node);
5801 cpus_or(span, span, nodemask);
5802 }
5803
5804 return span;
5805 }
5806 #endif
5807
5808 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5809
5810 /*
5811 * SMT sched-domains:
5812 */
5813 #ifdef CONFIG_SCHED_SMT
5814 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5815 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5816
5817 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5818 struct sched_group **sg)
5819 {
5820 if (sg)
5821 *sg = &per_cpu(sched_group_cpus, cpu);
5822 return cpu;
5823 }
5824 #endif
5825
5826 /*
5827 * multi-core sched-domains:
5828 */
5829 #ifdef CONFIG_SCHED_MC
5830 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5831 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5832 #endif
5833
5834 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5835 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
5837 {
5838 int group;
5839 cpumask_t mask = cpu_sibling_map[cpu];
5840 cpus_and(mask, mask, *cpu_map);
5841 group = first_cpu(mask);
5842 if (sg)
5843 *sg = &per_cpu(sched_group_core, group);
5844 return group;
5845 }
5846 #elif defined(CONFIG_SCHED_MC)
5847 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5848 struct sched_group **sg)
5849 {
5850 if (sg)
5851 *sg = &per_cpu(sched_group_core, cpu);
5852 return cpu;
5853 }
5854 #endif
5855
5856 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5857 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5858
5859 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
5861 {
5862 int group;
5863 #ifdef CONFIG_SCHED_MC
5864 cpumask_t mask = cpu_coregroup_map(cpu);
5865 cpus_and(mask, mask, *cpu_map);
5866 group = first_cpu(mask);
5867 #elif defined(CONFIG_SCHED_SMT)
5868 cpumask_t mask = cpu_sibling_map[cpu];
5869 cpus_and(mask, mask, *cpu_map);
5870 group = first_cpu(mask);
5871 #else
5872 group = cpu;
5873 #endif
5874 if (sg)
5875 *sg = &per_cpu(sched_group_phys, group);
5876 return group;
5877 }
5878
5879 #ifdef CONFIG_NUMA
5880 /*
5881 * The init_sched_build_groups can't handle what we want to do with node
5882 * groups, so roll our own. Now each node has its own list of groups which
5883 * gets dynamically allocated.
5884 */
5885 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5886 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5887
5888 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5889 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5890
5891 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5892 struct sched_group **sg)
5893 {
5894 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5895 int group;
5896
5897 cpus_and(nodemask, nodemask, *cpu_map);
5898 group = first_cpu(nodemask);
5899
5900 if (sg)
5901 *sg = &per_cpu(sched_group_allnodes, group);
5902 return group;
5903 }
5904
5905 static void init_numa_sched_groups_power(struct sched_group *group_head)
5906 {
5907 struct sched_group *sg = group_head;
5908 int j;
5909
5910 if (!sg)
5911 return;
5912 next_sg:
5913 for_each_cpu_mask(j, sg->cpumask) {
5914 struct sched_domain *sd;
5915
5916 sd = &per_cpu(phys_domains, j);
5917 if (j != first_cpu(sd->groups->cpumask)) {
5918 /*
5919 * Only add "power" once for each
5920 * physical package.
5921 */
5922 continue;
5923 }
5924
5925 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5926 }
5927 sg = sg->next;
5928 if (sg != group_head)
5929 goto next_sg;
5930 }
5931 #endif
5932
5933 #ifdef CONFIG_NUMA
5934 /* Free memory allocated for various sched_group structures */
5935 static void free_sched_groups(const cpumask_t *cpu_map)
5936 {
5937 int cpu, i;
5938
5939 for_each_cpu_mask(cpu, *cpu_map) {
5940 struct sched_group **sched_group_nodes
5941 = sched_group_nodes_bycpu[cpu];
5942
5943 if (!sched_group_nodes)
5944 continue;
5945
5946 for (i = 0; i < MAX_NUMNODES; i++) {
5947 cpumask_t nodemask = node_to_cpumask(i);
5948 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5949
5950 cpus_and(nodemask, nodemask, *cpu_map);
5951 if (cpus_empty(nodemask))
5952 continue;
5953
5954 if (sg == NULL)
5955 continue;
5956 sg = sg->next;
5957 next_sg:
5958 oldsg = sg;
5959 sg = sg->next;
5960 kfree(oldsg);
5961 if (oldsg != sched_group_nodes[i])
5962 goto next_sg;
5963 }
5964 kfree(sched_group_nodes);
5965 sched_group_nodes_bycpu[cpu] = NULL;
5966 }
5967 }
5968 #else
5969 static void free_sched_groups(const cpumask_t *cpu_map)
5970 {
5971 }
5972 #endif
5973
5974 /*
5975 * Initialize sched groups cpu_power.
5976 *
5977 * cpu_power indicates the capacity of sched group, which is used while
5978 * distributing the load between different sched groups in a sched domain.
5979 * Typically cpu_power for all the groups in a sched domain will be same unless
5980 * there are asymmetries in the topology. If there are asymmetries, group
5981 * having more cpu_power will pickup more load compared to the group having
5982 * less cpu_power.
5983 *
5984 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5985 * the maximum number of tasks a group can handle in the presence of other idle
5986 * or lightly loaded groups in the same sched domain.
5987 */
5988 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5989 {
5990 struct sched_domain *child;
5991 struct sched_group *group;
5992
5993 WARN_ON(!sd || !sd->groups);
5994
5995 if (cpu != first_cpu(sd->groups->cpumask))
5996 return;
5997
5998 child = sd->child;
5999
6000 sd->groups->__cpu_power = 0;
6001
6002 /*
6003 * For perf policy, if the groups in child domain share resources
6004 * (for example cores sharing some portions of the cache hierarchy
6005 * or SMT), then set this domain groups cpu_power such that each group
6006 * can handle only one task, when there are other idle groups in the
6007 * same sched domain.
6008 */
6009 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6010 (child->flags &
6011 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6012 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6013 return;
6014 }
6015
6016 /*
6017 * add cpu_power of each child group to this groups cpu_power
6018 */
6019 group = child->groups;
6020 do {
6021 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6022 group = group->next;
6023 } while (group != child->groups);
6024 }
6025
6026 /*
6027 * Build sched domains for a given set of cpus and attach the sched domains
6028 * to the individual cpus
6029 */
6030 static int build_sched_domains(const cpumask_t *cpu_map)
6031 {
6032 int i;
6033 #ifdef CONFIG_NUMA
6034 struct sched_group **sched_group_nodes = NULL;
6035 int sd_allnodes = 0;
6036
6037 /*
6038 * Allocate the per-node list of sched groups
6039 */
6040 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6041 GFP_KERNEL);
6042 if (!sched_group_nodes) {
6043 printk(KERN_WARNING "Can not alloc sched group node list\n");
6044 return -ENOMEM;
6045 }
6046 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6047 #endif
6048
6049 /*
6050 * Set up domains for cpus specified by the cpu_map.
6051 */
6052 for_each_cpu_mask(i, *cpu_map) {
6053 struct sched_domain *sd = NULL, *p;
6054 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6055
6056 cpus_and(nodemask, nodemask, *cpu_map);
6057
6058 #ifdef CONFIG_NUMA
6059 if (cpus_weight(*cpu_map) >
6060 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6061 sd = &per_cpu(allnodes_domains, i);
6062 *sd = SD_ALLNODES_INIT;
6063 sd->span = *cpu_map;
6064 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6065 p = sd;
6066 sd_allnodes = 1;
6067 } else
6068 p = NULL;
6069
6070 sd = &per_cpu(node_domains, i);
6071 *sd = SD_NODE_INIT;
6072 sd->span = sched_domain_node_span(cpu_to_node(i));
6073 sd->parent = p;
6074 if (p)
6075 p->child = sd;
6076 cpus_and(sd->span, sd->span, *cpu_map);
6077 #endif
6078
6079 p = sd;
6080 sd = &per_cpu(phys_domains, i);
6081 *sd = SD_CPU_INIT;
6082 sd->span = nodemask;
6083 sd->parent = p;
6084 if (p)
6085 p->child = sd;
6086 cpu_to_phys_group(i, cpu_map, &sd->groups);
6087
6088 #ifdef CONFIG_SCHED_MC
6089 p = sd;
6090 sd = &per_cpu(core_domains, i);
6091 *sd = SD_MC_INIT;
6092 sd->span = cpu_coregroup_map(i);
6093 cpus_and(sd->span, sd->span, *cpu_map);
6094 sd->parent = p;
6095 p->child = sd;
6096 cpu_to_core_group(i, cpu_map, &sd->groups);
6097 #endif
6098
6099 #ifdef CONFIG_SCHED_SMT
6100 p = sd;
6101 sd = &per_cpu(cpu_domains, i);
6102 *sd = SD_SIBLING_INIT;
6103 sd->span = cpu_sibling_map[i];
6104 cpus_and(sd->span, sd->span, *cpu_map);
6105 sd->parent = p;
6106 p->child = sd;
6107 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6108 #endif
6109 }
6110
6111 #ifdef CONFIG_SCHED_SMT
6112 /* Set up CPU (sibling) groups */
6113 for_each_cpu_mask(i, *cpu_map) {
6114 cpumask_t this_sibling_map = cpu_sibling_map[i];
6115 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6116 if (i != first_cpu(this_sibling_map))
6117 continue;
6118
6119 init_sched_build_groups(this_sibling_map, cpu_map,
6120 &cpu_to_cpu_group);
6121 }
6122 #endif
6123
6124 #ifdef CONFIG_SCHED_MC
6125 /* Set up multi-core groups */
6126 for_each_cpu_mask(i, *cpu_map) {
6127 cpumask_t this_core_map = cpu_coregroup_map(i);
6128 cpus_and(this_core_map, this_core_map, *cpu_map);
6129 if (i != first_cpu(this_core_map))
6130 continue;
6131 init_sched_build_groups(this_core_map, cpu_map,
6132 &cpu_to_core_group);
6133 }
6134 #endif
6135
6136 /* Set up physical groups */
6137 for (i = 0; i < MAX_NUMNODES; i++) {
6138 cpumask_t nodemask = node_to_cpumask(i);
6139
6140 cpus_and(nodemask, nodemask, *cpu_map);
6141 if (cpus_empty(nodemask))
6142 continue;
6143
6144 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6145 }
6146
6147 #ifdef CONFIG_NUMA
6148 /* Set up node groups */
6149 if (sd_allnodes)
6150 init_sched_build_groups(*cpu_map, cpu_map,
6151 &cpu_to_allnodes_group);
6152
6153 for (i = 0; i < MAX_NUMNODES; i++) {
6154 /* Set up node groups */
6155 struct sched_group *sg, *prev;
6156 cpumask_t nodemask = node_to_cpumask(i);
6157 cpumask_t domainspan;
6158 cpumask_t covered = CPU_MASK_NONE;
6159 int j;
6160
6161 cpus_and(nodemask, nodemask, *cpu_map);
6162 if (cpus_empty(nodemask)) {
6163 sched_group_nodes[i] = NULL;
6164 continue;
6165 }
6166
6167 domainspan = sched_domain_node_span(i);
6168 cpus_and(domainspan, domainspan, *cpu_map);
6169
6170 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6171 if (!sg) {
6172 printk(KERN_WARNING "Can not alloc domain group for "
6173 "node %d\n", i);
6174 goto error;
6175 }
6176 sched_group_nodes[i] = sg;
6177 for_each_cpu_mask(j, nodemask) {
6178 struct sched_domain *sd;
6179
6180 sd = &per_cpu(node_domains, j);
6181 sd->groups = sg;
6182 }
6183 sg->__cpu_power = 0;
6184 sg->cpumask = nodemask;
6185 sg->next = sg;
6186 cpus_or(covered, covered, nodemask);
6187 prev = sg;
6188
6189 for (j = 0; j < MAX_NUMNODES; j++) {
6190 cpumask_t tmp, notcovered;
6191 int n = (i + j) % MAX_NUMNODES;
6192
6193 cpus_complement(notcovered, covered);
6194 cpus_and(tmp, notcovered, *cpu_map);
6195 cpus_and(tmp, tmp, domainspan);
6196 if (cpus_empty(tmp))
6197 break;
6198
6199 nodemask = node_to_cpumask(n);
6200 cpus_and(tmp, tmp, nodemask);
6201 if (cpus_empty(tmp))
6202 continue;
6203
6204 sg = kmalloc_node(sizeof(struct sched_group),
6205 GFP_KERNEL, i);
6206 if (!sg) {
6207 printk(KERN_WARNING
6208 "Can not alloc domain group for node %d\n", j);
6209 goto error;
6210 }
6211 sg->__cpu_power = 0;
6212 sg->cpumask = tmp;
6213 sg->next = prev->next;
6214 cpus_or(covered, covered, tmp);
6215 prev->next = sg;
6216 prev = sg;
6217 }
6218 }
6219 #endif
6220
6221 /* Calculate CPU power for physical packages and nodes */
6222 #ifdef CONFIG_SCHED_SMT
6223 for_each_cpu_mask(i, *cpu_map) {
6224 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6225
6226 init_sched_groups_power(i, sd);
6227 }
6228 #endif
6229 #ifdef CONFIG_SCHED_MC
6230 for_each_cpu_mask(i, *cpu_map) {
6231 struct sched_domain *sd = &per_cpu(core_domains, i);
6232
6233 init_sched_groups_power(i, sd);
6234 }
6235 #endif
6236
6237 for_each_cpu_mask(i, *cpu_map) {
6238 struct sched_domain *sd = &per_cpu(phys_domains, i);
6239
6240 init_sched_groups_power(i, sd);
6241 }
6242
6243 #ifdef CONFIG_NUMA
6244 for (i = 0; i < MAX_NUMNODES; i++)
6245 init_numa_sched_groups_power(sched_group_nodes[i]);
6246
6247 if (sd_allnodes) {
6248 struct sched_group *sg;
6249
6250 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6251 init_numa_sched_groups_power(sg);
6252 }
6253 #endif
6254
6255 /* Attach the domains */
6256 for_each_cpu_mask(i, *cpu_map) {
6257 struct sched_domain *sd;
6258 #ifdef CONFIG_SCHED_SMT
6259 sd = &per_cpu(cpu_domains, i);
6260 #elif defined(CONFIG_SCHED_MC)
6261 sd = &per_cpu(core_domains, i);
6262 #else
6263 sd = &per_cpu(phys_domains, i);
6264 #endif
6265 cpu_attach_domain(sd, i);
6266 }
6267
6268 return 0;
6269
6270 #ifdef CONFIG_NUMA
6271 error:
6272 free_sched_groups(cpu_map);
6273 return -ENOMEM;
6274 #endif
6275 }
6276 /*
6277 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6278 */
6279 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6280 {
6281 cpumask_t cpu_default_map;
6282 int err;
6283
6284 /*
6285 * Setup mask for cpus without special case scheduling requirements.
6286 * For now this just excludes isolated cpus, but could be used to
6287 * exclude other special cases in the future.
6288 */
6289 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6290
6291 err = build_sched_domains(&cpu_default_map);
6292
6293 return err;
6294 }
6295
6296 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6297 {
6298 free_sched_groups(cpu_map);
6299 }
6300
6301 /*
6302 * Detach sched domains from a group of cpus specified in cpu_map
6303 * These cpus will now be attached to the NULL domain
6304 */
6305 static void detach_destroy_domains(const cpumask_t *cpu_map)
6306 {
6307 int i;
6308
6309 for_each_cpu_mask(i, *cpu_map)
6310 cpu_attach_domain(NULL, i);
6311 synchronize_sched();
6312 arch_destroy_sched_domains(cpu_map);
6313 }
6314
6315 /*
6316 * Partition sched domains as specified by the cpumasks below.
6317 * This attaches all cpus from the cpumasks to the NULL domain,
6318 * waits for a RCU quiescent period, recalculates sched
6319 * domain information and then attaches them back to the
6320 * correct sched domains
6321 * Call with hotplug lock held
6322 */
6323 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6324 {
6325 cpumask_t change_map;
6326 int err = 0;
6327
6328 cpus_and(*partition1, *partition1, cpu_online_map);
6329 cpus_and(*partition2, *partition2, cpu_online_map);
6330 cpus_or(change_map, *partition1, *partition2);
6331
6332 /* Detach sched domains from all of the affected cpus */
6333 detach_destroy_domains(&change_map);
6334 if (!cpus_empty(*partition1))
6335 err = build_sched_domains(partition1);
6336 if (!err && !cpus_empty(*partition2))
6337 err = build_sched_domains(partition2);
6338
6339 return err;
6340 }
6341
6342 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6343 static int arch_reinit_sched_domains(void)
6344 {
6345 int err;
6346
6347 mutex_lock(&sched_hotcpu_mutex);
6348 detach_destroy_domains(&cpu_online_map);
6349 err = arch_init_sched_domains(&cpu_online_map);
6350 mutex_unlock(&sched_hotcpu_mutex);
6351
6352 return err;
6353 }
6354
6355 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6356 {
6357 int ret;
6358
6359 if (buf[0] != '0' && buf[0] != '1')
6360 return -EINVAL;
6361
6362 if (smt)
6363 sched_smt_power_savings = (buf[0] == '1');
6364 else
6365 sched_mc_power_savings = (buf[0] == '1');
6366
6367 ret = arch_reinit_sched_domains();
6368
6369 return ret ? ret : count;
6370 }
6371
6372 #ifdef CONFIG_SCHED_MC
6373 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6374 {
6375 return sprintf(page, "%u\n", sched_mc_power_savings);
6376 }
6377 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
6379 {
6380 return sched_power_savings_store(buf, count, 0);
6381 }
6382 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6383 sched_mc_power_savings_store);
6384 #endif
6385
6386 #ifdef CONFIG_SCHED_SMT
6387 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6388 {
6389 return sprintf(page, "%u\n", sched_smt_power_savings);
6390 }
6391 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6392 const char *buf, size_t count)
6393 {
6394 return sched_power_savings_store(buf, count, 1);
6395 }
6396 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6397 sched_smt_power_savings_store);
6398 #endif
6399
6400 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6401 {
6402 int err = 0;
6403
6404 #ifdef CONFIG_SCHED_SMT
6405 if (smt_capable())
6406 err = sysfs_create_file(&cls->kset.kobj,
6407 &attr_sched_smt_power_savings.attr);
6408 #endif
6409 #ifdef CONFIG_SCHED_MC
6410 if (!err && mc_capable())
6411 err = sysfs_create_file(&cls->kset.kobj,
6412 &attr_sched_mc_power_savings.attr);
6413 #endif
6414 return err;
6415 }
6416 #endif
6417
6418 /*
6419 * Force a reinitialization of the sched domains hierarchy. The domains
6420 * and groups cannot be updated in place without racing with the balancing
6421 * code, so we temporarily attach all running cpus to the NULL domain
6422 * which will prevent rebalancing while the sched domains are recalculated.
6423 */
6424 static int update_sched_domains(struct notifier_block *nfb,
6425 unsigned long action, void *hcpu)
6426 {
6427 switch (action) {
6428 case CPU_UP_PREPARE:
6429 case CPU_UP_PREPARE_FROZEN:
6430 case CPU_DOWN_PREPARE:
6431 case CPU_DOWN_PREPARE_FROZEN:
6432 detach_destroy_domains(&cpu_online_map);
6433 return NOTIFY_OK;
6434
6435 case CPU_UP_CANCELED:
6436 case CPU_UP_CANCELED_FROZEN:
6437 case CPU_DOWN_FAILED:
6438 case CPU_DOWN_FAILED_FROZEN:
6439 case CPU_ONLINE:
6440 case CPU_ONLINE_FROZEN:
6441 case CPU_DEAD:
6442 case CPU_DEAD_FROZEN:
6443 /*
6444 * Fall through and re-initialise the domains.
6445 */
6446 break;
6447 default:
6448 return NOTIFY_DONE;
6449 }
6450
6451 /* The hotplug lock is already held by cpu_up/cpu_down */
6452 arch_init_sched_domains(&cpu_online_map);
6453
6454 return NOTIFY_OK;
6455 }
6456
6457 void __init sched_init_smp(void)
6458 {
6459 cpumask_t non_isolated_cpus;
6460
6461 mutex_lock(&sched_hotcpu_mutex);
6462 arch_init_sched_domains(&cpu_online_map);
6463 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6464 if (cpus_empty(non_isolated_cpus))
6465 cpu_set(smp_processor_id(), non_isolated_cpus);
6466 mutex_unlock(&sched_hotcpu_mutex);
6467 /* XXX: Theoretical race here - CPU may be hotplugged now */
6468 hotcpu_notifier(update_sched_domains, 0);
6469
6470 init_sched_domain_sysctl();
6471
6472 /* Move init over to a non-isolated CPU */
6473 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6474 BUG();
6475 }
6476 #else
6477 void __init sched_init_smp(void)
6478 {
6479 }
6480 #endif /* CONFIG_SMP */
6481
6482 int in_sched_functions(unsigned long addr)
6483 {
6484 /* Linker adds these: start and end of __sched functions */
6485 extern char __sched_text_start[], __sched_text_end[];
6486
6487 return in_lock_functions(addr) ||
6488 (addr >= (unsigned long)__sched_text_start
6489 && addr < (unsigned long)__sched_text_end);
6490 }
6491
6492 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6493 {
6494 cfs_rq->tasks_timeline = RB_ROOT;
6495 #ifdef CONFIG_FAIR_GROUP_SCHED
6496 cfs_rq->rq = rq;
6497 #endif
6498 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6499 }
6500
6501 void __init sched_init(void)
6502 {
6503 int highest_cpu = 0;
6504 int i, j;
6505
6506 for_each_possible_cpu(i) {
6507 struct rt_prio_array *array;
6508 struct rq *rq;
6509
6510 rq = cpu_rq(i);
6511 spin_lock_init(&rq->lock);
6512 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6513 rq->nr_running = 0;
6514 rq->clock = 1;
6515 init_cfs_rq(&rq->cfs, rq);
6516 #ifdef CONFIG_FAIR_GROUP_SCHED
6517 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6518 {
6519 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6520 struct sched_entity *se =
6521 &per_cpu(init_sched_entity, i);
6522
6523 init_cfs_rq_p[i] = cfs_rq;
6524 init_cfs_rq(cfs_rq, rq);
6525 cfs_rq->tg = &init_task_group;
6526 list_add(&cfs_rq->leaf_cfs_rq_list,
6527 &rq->leaf_cfs_rq_list);
6528
6529 init_sched_entity_p[i] = se;
6530 se->cfs_rq = &rq->cfs;
6531 se->my_q = cfs_rq;
6532 se->load.weight = init_task_group_load;
6533 se->load.inv_weight =
6534 div64_64(1ULL<<32, init_task_group_load);
6535 se->parent = NULL;
6536 }
6537 init_task_group.shares = init_task_group_load;
6538 #endif
6539
6540 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6541 rq->cpu_load[j] = 0;
6542 #ifdef CONFIG_SMP
6543 rq->sd = NULL;
6544 rq->active_balance = 0;
6545 rq->next_balance = jiffies;
6546 rq->push_cpu = 0;
6547 rq->cpu = i;
6548 rq->migration_thread = NULL;
6549 INIT_LIST_HEAD(&rq->migration_queue);
6550 #endif
6551 atomic_set(&rq->nr_iowait, 0);
6552
6553 array = &rq->rt.active;
6554 for (j = 0; j < MAX_RT_PRIO; j++) {
6555 INIT_LIST_HEAD(array->queue + j);
6556 __clear_bit(j, array->bitmap);
6557 }
6558 highest_cpu = i;
6559 /* delimiter for bitsearch: */
6560 __set_bit(MAX_RT_PRIO, array->bitmap);
6561 }
6562
6563 set_load_weight(&init_task);
6564
6565 #ifdef CONFIG_PREEMPT_NOTIFIERS
6566 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6567 #endif
6568
6569 #ifdef CONFIG_SMP
6570 nr_cpu_ids = highest_cpu + 1;
6571 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6572 #endif
6573
6574 #ifdef CONFIG_RT_MUTEXES
6575 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6576 #endif
6577
6578 /*
6579 * The boot idle thread does lazy MMU switching as well:
6580 */
6581 atomic_inc(&init_mm.mm_count);
6582 enter_lazy_tlb(&init_mm, current);
6583
6584 /*
6585 * Make us the idle thread. Technically, schedule() should not be
6586 * called from this thread, however somewhere below it might be,
6587 * but because we are the idle thread, we just pick up running again
6588 * when this runqueue becomes "idle".
6589 */
6590 init_idle(current, smp_processor_id());
6591 /*
6592 * During early bootup we pretend to be a normal task:
6593 */
6594 current->sched_class = &fair_sched_class;
6595 }
6596
6597 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6598 void __might_sleep(char *file, int line)
6599 {
6600 #ifdef in_atomic
6601 static unsigned long prev_jiffy; /* ratelimiting */
6602
6603 if ((in_atomic() || irqs_disabled()) &&
6604 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6605 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6606 return;
6607 prev_jiffy = jiffies;
6608 printk(KERN_ERR "BUG: sleeping function called from invalid"
6609 " context at %s:%d\n", file, line);
6610 printk("in_atomic():%d, irqs_disabled():%d\n",
6611 in_atomic(), irqs_disabled());
6612 debug_show_held_locks(current);
6613 if (irqs_disabled())
6614 print_irqtrace_events(current);
6615 dump_stack();
6616 }
6617 #endif
6618 }
6619 EXPORT_SYMBOL(__might_sleep);
6620 #endif
6621
6622 #ifdef CONFIG_MAGIC_SYSRQ
6623 void normalize_rt_tasks(void)
6624 {
6625 struct task_struct *g, *p;
6626 unsigned long flags;
6627 struct rq *rq;
6628 int on_rq;
6629
6630 read_lock_irq(&tasklist_lock);
6631 do_each_thread(g, p) {
6632 p->se.exec_start = 0;
6633 #ifdef CONFIG_SCHEDSTATS
6634 p->se.wait_start = 0;
6635 p->se.sleep_start = 0;
6636 p->se.block_start = 0;
6637 #endif
6638 task_rq(p)->clock = 0;
6639
6640 if (!rt_task(p)) {
6641 /*
6642 * Renice negative nice level userspace
6643 * tasks back to 0:
6644 */
6645 if (TASK_NICE(p) < 0 && p->mm)
6646 set_user_nice(p, 0);
6647 continue;
6648 }
6649
6650 spin_lock_irqsave(&p->pi_lock, flags);
6651 rq = __task_rq_lock(p);
6652 #ifdef CONFIG_SMP
6653 /*
6654 * Do not touch the migration thread:
6655 */
6656 if (p == rq->migration_thread)
6657 goto out_unlock;
6658 #endif
6659
6660 update_rq_clock(rq);
6661 on_rq = p->se.on_rq;
6662 if (on_rq)
6663 deactivate_task(rq, p, 0);
6664 __setscheduler(rq, p, SCHED_NORMAL, 0);
6665 if (on_rq) {
6666 activate_task(rq, p, 0);
6667 resched_task(rq->curr);
6668 }
6669 #ifdef CONFIG_SMP
6670 out_unlock:
6671 #endif
6672 __task_rq_unlock(rq);
6673 spin_unlock_irqrestore(&p->pi_lock, flags);
6674 } while_each_thread(g, p);
6675
6676 read_unlock_irq(&tasklist_lock);
6677 }
6678
6679 #endif /* CONFIG_MAGIC_SYSRQ */
6680
6681 #ifdef CONFIG_IA64
6682 /*
6683 * These functions are only useful for the IA64 MCA handling.
6684 *
6685 * They can only be called when the whole system has been
6686 * stopped - every CPU needs to be quiescent, and no scheduling
6687 * activity can take place. Using them for anything else would
6688 * be a serious bug, and as a result, they aren't even visible
6689 * under any other configuration.
6690 */
6691
6692 /**
6693 * curr_task - return the current task for a given cpu.
6694 * @cpu: the processor in question.
6695 *
6696 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6697 */
6698 struct task_struct *curr_task(int cpu)
6699 {
6700 return cpu_curr(cpu);
6701 }
6702
6703 /**
6704 * set_curr_task - set the current task for a given cpu.
6705 * @cpu: the processor in question.
6706 * @p: the task pointer to set.
6707 *
6708 * Description: This function must only be used when non-maskable interrupts
6709 * are serviced on a separate stack. It allows the architecture to switch the
6710 * notion of the current task on a cpu in a non-blocking manner. This function
6711 * must be called with all CPU's synchronized, and interrupts disabled, the
6712 * and caller must save the original value of the current task (see
6713 * curr_task() above) and restore that value before reenabling interrupts and
6714 * re-starting the system.
6715 *
6716 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6717 */
6718 void set_curr_task(int cpu, struct task_struct *p)
6719 {
6720 cpu_curr(cpu) = p;
6721 }
6722
6723 #endif
6724
6725 #ifdef CONFIG_FAIR_GROUP_SCHED
6726
6727 /* allocate runqueue etc for a new task group */
6728 struct task_group *sched_create_group(void)
6729 {
6730 struct task_group *tg;
6731 struct cfs_rq *cfs_rq;
6732 struct sched_entity *se;
6733 struct rq *rq;
6734 int i;
6735
6736 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6737 if (!tg)
6738 return ERR_PTR(-ENOMEM);
6739
6740 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6741 if (!tg->cfs_rq)
6742 goto err;
6743 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6744 if (!tg->se)
6745 goto err;
6746
6747 for_each_possible_cpu(i) {
6748 rq = cpu_rq(i);
6749
6750 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6751 cpu_to_node(i));
6752 if (!cfs_rq)
6753 goto err;
6754
6755 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6756 cpu_to_node(i));
6757 if (!se)
6758 goto err;
6759
6760 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6761 memset(se, 0, sizeof(struct sched_entity));
6762
6763 tg->cfs_rq[i] = cfs_rq;
6764 init_cfs_rq(cfs_rq, rq);
6765 cfs_rq->tg = tg;
6766
6767 tg->se[i] = se;
6768 se->cfs_rq = &rq->cfs;
6769 se->my_q = cfs_rq;
6770 se->load.weight = NICE_0_LOAD;
6771 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6772 se->parent = NULL;
6773 }
6774
6775 for_each_possible_cpu(i) {
6776 rq = cpu_rq(i);
6777 cfs_rq = tg->cfs_rq[i];
6778 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6779 }
6780
6781 tg->shares = NICE_0_LOAD;
6782
6783 return tg;
6784
6785 err:
6786 for_each_possible_cpu(i) {
6787 if (tg->cfs_rq)
6788 kfree(tg->cfs_rq[i]);
6789 if (tg->se)
6790 kfree(tg->se[i]);
6791 }
6792 kfree(tg->cfs_rq);
6793 kfree(tg->se);
6794 kfree(tg);
6795
6796 return ERR_PTR(-ENOMEM);
6797 }
6798
6799 /* rcu callback to free various structures associated with a task group */
6800 static void free_sched_group(struct rcu_head *rhp)
6801 {
6802 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6803 struct task_group *tg = cfs_rq->tg;
6804 struct sched_entity *se;
6805 int i;
6806
6807 /* now it should be safe to free those cfs_rqs */
6808 for_each_possible_cpu(i) {
6809 cfs_rq = tg->cfs_rq[i];
6810 kfree(cfs_rq);
6811
6812 se = tg->se[i];
6813 kfree(se);
6814 }
6815
6816 kfree(tg->cfs_rq);
6817 kfree(tg->se);
6818 kfree(tg);
6819 }
6820
6821 /* Destroy runqueue etc associated with a task group */
6822 void sched_destroy_group(struct task_group *tg)
6823 {
6824 struct cfs_rq *cfs_rq;
6825 int i;
6826
6827 for_each_possible_cpu(i) {
6828 cfs_rq = tg->cfs_rq[i];
6829 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6830 }
6831
6832 cfs_rq = tg->cfs_rq[0];
6833
6834 /* wait for possible concurrent references to cfs_rqs complete */
6835 call_rcu(&cfs_rq->rcu, free_sched_group);
6836 }
6837
6838 /* change task's runqueue when it moves between groups.
6839 * The caller of this function should have put the task in its new group
6840 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6841 * reflect its new group.
6842 */
6843 void sched_move_task(struct task_struct *tsk)
6844 {
6845 int on_rq, running;
6846 unsigned long flags;
6847 struct rq *rq;
6848
6849 rq = task_rq_lock(tsk, &flags);
6850
6851 if (tsk->sched_class != &fair_sched_class)
6852 goto done;
6853
6854 update_rq_clock(rq);
6855
6856 running = task_running(rq, tsk);
6857 on_rq = tsk->se.on_rq;
6858
6859 if (on_rq) {
6860 dequeue_task(rq, tsk, 0);
6861 if (unlikely(running))
6862 tsk->sched_class->put_prev_task(rq, tsk);
6863 }
6864
6865 set_task_cfs_rq(tsk);
6866
6867 if (on_rq) {
6868 if (unlikely(running))
6869 tsk->sched_class->set_curr_task(rq);
6870 enqueue_task(rq, tsk, 0);
6871 }
6872
6873 done:
6874 task_rq_unlock(rq, &flags);
6875 }
6876
6877 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6878 {
6879 struct cfs_rq *cfs_rq = se->cfs_rq;
6880 struct rq *rq = cfs_rq->rq;
6881 int on_rq;
6882
6883 spin_lock_irq(&rq->lock);
6884
6885 on_rq = se->on_rq;
6886 if (on_rq)
6887 dequeue_entity(cfs_rq, se, 0);
6888
6889 se->load.weight = shares;
6890 se->load.inv_weight = div64_64((1ULL<<32), shares);
6891
6892 if (on_rq)
6893 enqueue_entity(cfs_rq, se, 0);
6894
6895 spin_unlock_irq(&rq->lock);
6896 }
6897
6898 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6899 {
6900 int i;
6901
6902 if (tg->shares == shares)
6903 return 0;
6904
6905 /* return -EINVAL if the new value is not sane */
6906
6907 tg->shares = shares;
6908 for_each_possible_cpu(i)
6909 set_se_shares(tg->se[i], shares);
6910
6911 return 0;
6912 }
6913
6914 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.178757 seconds and 5 git commands to generate.