fa909f9fd5591801968523032e00f8fe816fb23f
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108 /*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112 #ifdef CONFIG_SMP
113
114 /*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123
124 #define migration_base migration_cpu_base.clock_base[0]
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
178 }
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184 {
185 if (pinned || !base->migration_enabled)
186 return base;
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193 {
194 return base;
195 }
196 #endif
197
198 /*
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
209 */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
213 {
214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 struct hrtimer_clock_base *new_base;
216 int basenum = base->index;
217
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (new_cpu_base != this_cpu_base &&
242 hrtimer_check_target(timer, new_base)) {
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 new_cpu_base = this_cpu_base;
246 timer->base = base;
247 goto again;
248 }
249 timer->base = new_base;
250 } else {
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 new_cpu_base = this_cpu_base;
254 goto again;
255 }
256 }
257 return new_base;
258 }
259
260 #else /* CONFIG_SMP */
261
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 struct hrtimer_clock_base *base = timer->base;
266
267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268
269 return base;
270 }
271
272 # define switch_hrtimer_base(t, b, p) (b)
273
274 #endif /* !CONFIG_SMP */
275
276 /*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280 #if BITS_PER_LONG < 64
281 /*
282 * Divide a ktime value by a nanosecond value
283 */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 int sft = 0;
287 s64 dclc;
288 u64 tmp;
289
290 dclc = ktime_to_ns(kt);
291 tmp = dclc < 0 ? -dclc : dclc;
292
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304
305 /*
306 * Add two ktime values and do a safety check for overflow:
307 */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 ktime_t res = ktime_add(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320 }
321
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326 static struct debug_obj_descr hrtimer_debug_descr;
327
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 return ((struct hrtimer *) addr)->function;
331 }
332
333 /*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
337 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return 1;
346 default:
347 return 0;
348 }
349 }
350
351 /*
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown object is activated (might be a statically initialized object)
355 */
356 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 switch (state) {
359
360 case ODEBUG_STATE_NOTAVAILABLE:
361 WARN_ON_ONCE(1);
362 return 0;
363
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
368 return 0;
369 }
370 }
371
372 /*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
384 return 1;
385 default:
386 return 0;
387 }
388 }
389
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
392 .debug_hint = hrtimer_debug_hint,
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396 };
397
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 debug_object_init(timer, &hrtimer_debug_descr);
401 }
402
403 static inline void debug_hrtimer_activate(struct hrtimer *timer)
404 {
405 debug_object_activate(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
409 {
410 debug_object_deactivate(timer, &hrtimer_debug_descr);
411 }
412
413 static inline void debug_hrtimer_free(struct hrtimer *timer)
414 {
415 debug_object_free(timer, &hrtimer_debug_descr);
416 }
417
418 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
419 enum hrtimer_mode mode);
420
421 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode)
423 {
424 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
425 __hrtimer_init(timer, clock_id, mode);
426 }
427 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428
429 void destroy_hrtimer_on_stack(struct hrtimer *timer)
430 {
431 debug_object_free(timer, &hrtimer_debug_descr);
432 }
433
434 #else
435 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
436 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
437 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
438 #endif
439
440 static inline void
441 debug_init(struct hrtimer *timer, clockid_t clockid,
442 enum hrtimer_mode mode)
443 {
444 debug_hrtimer_init(timer);
445 trace_hrtimer_init(timer, clockid, mode);
446 }
447
448 static inline void debug_activate(struct hrtimer *timer)
449 {
450 debug_hrtimer_activate(timer);
451 trace_hrtimer_start(timer);
452 }
453
454 static inline void debug_deactivate(struct hrtimer *timer)
455 {
456 debug_hrtimer_deactivate(timer);
457 trace_hrtimer_cancel(timer);
458 }
459
460 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
462 struct hrtimer *timer)
463 {
464 #ifdef CONFIG_HIGH_RES_TIMERS
465 cpu_base->next_timer = timer;
466 #endif
467 }
468
469 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 {
471 struct hrtimer_clock_base *base = cpu_base->clock_base;
472 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473 unsigned int active = cpu_base->active_bases;
474
475 hrtimer_update_next_timer(cpu_base, NULL);
476 for (; active; base++, active >>= 1) {
477 struct timerqueue_node *next;
478 struct hrtimer *timer;
479
480 if (!(active & 0x01))
481 continue;
482
483 next = timerqueue_getnext(&base->active);
484 timer = container_of(next, struct hrtimer, node);
485 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486 if (expires.tv64 < expires_next.tv64) {
487 expires_next = expires;
488 hrtimer_update_next_timer(cpu_base, timer);
489 }
490 }
491 /*
492 * clock_was_set() might have changed base->offset of any of
493 * the clock bases so the result might be negative. Fix it up
494 * to prevent a false positive in clockevents_program_event().
495 */
496 if (expires_next.tv64 < 0)
497 expires_next.tv64 = 0;
498 return expires_next;
499 }
500 #endif
501
502 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
503 {
504 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
505 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
506 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
507
508 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
509 offs_real, offs_boot, offs_tai);
510 }
511
512 /* High resolution timer related functions */
513 #ifdef CONFIG_HIGH_RES_TIMERS
514
515 /*
516 * High resolution timer enabled ?
517 */
518 static int hrtimer_hres_enabled __read_mostly = 1;
519 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
520 EXPORT_SYMBOL_GPL(hrtimer_resolution);
521
522 /*
523 * Enable / Disable high resolution mode
524 */
525 static int __init setup_hrtimer_hres(char *str)
526 {
527 if (!strcmp(str, "off"))
528 hrtimer_hres_enabled = 0;
529 else if (!strcmp(str, "on"))
530 hrtimer_hres_enabled = 1;
531 else
532 return 0;
533 return 1;
534 }
535
536 __setup("highres=", setup_hrtimer_hres);
537
538 /*
539 * hrtimer_high_res_enabled - query, if the highres mode is enabled
540 */
541 static inline int hrtimer_is_hres_enabled(void)
542 {
543 return hrtimer_hres_enabled;
544 }
545
546 /*
547 * Is the high resolution mode active ?
548 */
549 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
550 {
551 return cpu_base->hres_active;
552 }
553
554 static inline int hrtimer_hres_active(void)
555 {
556 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
557 }
558
559 /*
560 * Reprogram the event source with checking both queues for the
561 * next event
562 * Called with interrupts disabled and base->lock held
563 */
564 static void
565 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
566 {
567 ktime_t expires_next;
568
569 if (!cpu_base->hres_active)
570 return;
571
572 expires_next = __hrtimer_get_next_event(cpu_base);
573
574 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
575 return;
576
577 cpu_base->expires_next.tv64 = expires_next.tv64;
578
579 /*
580 * If a hang was detected in the last timer interrupt then we
581 * leave the hang delay active in the hardware. We want the
582 * system to make progress. That also prevents the following
583 * scenario:
584 * T1 expires 50ms from now
585 * T2 expires 5s from now
586 *
587 * T1 is removed, so this code is called and would reprogram
588 * the hardware to 5s from now. Any hrtimer_start after that
589 * will not reprogram the hardware due to hang_detected being
590 * set. So we'd effectivly block all timers until the T2 event
591 * fires.
592 */
593 if (cpu_base->hang_detected)
594 return;
595
596 tick_program_event(cpu_base->expires_next, 1);
597 }
598
599 /*
600 * When a timer is enqueued and expires earlier than the already enqueued
601 * timers, we have to check, whether it expires earlier than the timer for
602 * which the clock event device was armed.
603 *
604 * Called with interrupts disabled and base->cpu_base.lock held
605 */
606 static void hrtimer_reprogram(struct hrtimer *timer,
607 struct hrtimer_clock_base *base)
608 {
609 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
610 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611
612 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613
614 /*
615 * If the timer is not on the current cpu, we cannot reprogram
616 * the other cpus clock event device.
617 */
618 if (base->cpu_base != cpu_base)
619 return;
620
621 /*
622 * If the hrtimer interrupt is running, then it will
623 * reevaluate the clock bases and reprogram the clock event
624 * device. The callbacks are always executed in hard interrupt
625 * context so we don't need an extra check for a running
626 * callback.
627 */
628 if (cpu_base->in_hrtirq)
629 return;
630
631 /*
632 * CLOCK_REALTIME timer might be requested with an absolute
633 * expiry time which is less than base->offset. Set it to 0.
634 */
635 if (expires.tv64 < 0)
636 expires.tv64 = 0;
637
638 if (expires.tv64 >= cpu_base->expires_next.tv64)
639 return;
640
641 /* Update the pointer to the next expiring timer */
642 cpu_base->next_timer = timer;
643
644 /*
645 * If a hang was detected in the last timer interrupt then we
646 * do not schedule a timer which is earlier than the expiry
647 * which we enforced in the hang detection. We want the system
648 * to make progress.
649 */
650 if (cpu_base->hang_detected)
651 return;
652
653 /*
654 * Program the timer hardware. We enforce the expiry for
655 * events which are already in the past.
656 */
657 cpu_base->expires_next = expires;
658 tick_program_event(expires, 1);
659 }
660
661 /*
662 * Initialize the high resolution related parts of cpu_base
663 */
664 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
665 {
666 base->expires_next.tv64 = KTIME_MAX;
667 base->hres_active = 0;
668 }
669
670 /*
671 * Retrigger next event is called after clock was set
672 *
673 * Called with interrupts disabled via on_each_cpu()
674 */
675 static void retrigger_next_event(void *arg)
676 {
677 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678
679 if (!base->hres_active)
680 return;
681
682 raw_spin_lock(&base->lock);
683 hrtimer_update_base(base);
684 hrtimer_force_reprogram(base, 0);
685 raw_spin_unlock(&base->lock);
686 }
687
688 /*
689 * Switch to high resolution mode
690 */
691 static void hrtimer_switch_to_hres(void)
692 {
693 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694
695 if (tick_init_highres()) {
696 printk(KERN_WARNING "Could not switch to high resolution "
697 "mode on CPU %d\n", base->cpu);
698 return;
699 }
700 base->hres_active = 1;
701 hrtimer_resolution = HIGH_RES_NSEC;
702
703 tick_setup_sched_timer();
704 /* "Retrigger" the interrupt to get things going */
705 retrigger_next_event(NULL);
706 }
707
708 static void clock_was_set_work(struct work_struct *work)
709 {
710 clock_was_set();
711 }
712
713 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
714
715 /*
716 * Called from timekeeping and resume code to reprogramm the hrtimer
717 * interrupt device on all cpus.
718 */
719 void clock_was_set_delayed(void)
720 {
721 schedule_work(&hrtimer_work);
722 }
723
724 #else
725
726 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
727 static inline int hrtimer_hres_active(void) { return 0; }
728 static inline int hrtimer_is_hres_enabled(void) { return 0; }
729 static inline void hrtimer_switch_to_hres(void) { }
730 static inline void
731 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
732 static inline int hrtimer_reprogram(struct hrtimer *timer,
733 struct hrtimer_clock_base *base)
734 {
735 return 0;
736 }
737 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
738 static inline void retrigger_next_event(void *arg) { }
739
740 #endif /* CONFIG_HIGH_RES_TIMERS */
741
742 /*
743 * Clock realtime was set
744 *
745 * Change the offset of the realtime clock vs. the monotonic
746 * clock.
747 *
748 * We might have to reprogram the high resolution timer interrupt. On
749 * SMP we call the architecture specific code to retrigger _all_ high
750 * resolution timer interrupts. On UP we just disable interrupts and
751 * call the high resolution interrupt code.
752 */
753 void clock_was_set(void)
754 {
755 #ifdef CONFIG_HIGH_RES_TIMERS
756 /* Retrigger the CPU local events everywhere */
757 on_each_cpu(retrigger_next_event, NULL, 1);
758 #endif
759 timerfd_clock_was_set();
760 }
761
762 /*
763 * During resume we might have to reprogram the high resolution timer
764 * interrupt on all online CPUs. However, all other CPUs will be
765 * stopped with IRQs interrupts disabled so the clock_was_set() call
766 * must be deferred.
767 */
768 void hrtimers_resume(void)
769 {
770 WARN_ONCE(!irqs_disabled(),
771 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
772
773 /* Retrigger on the local CPU */
774 retrigger_next_event(NULL);
775 /* And schedule a retrigger for all others */
776 clock_was_set_delayed();
777 }
778
779 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
780 {
781 #ifdef CONFIG_TIMER_STATS
782 if (timer->start_site)
783 return;
784 timer->start_site = __builtin_return_address(0);
785 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
786 timer->start_pid = current->pid;
787 #endif
788 }
789
790 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
791 {
792 #ifdef CONFIG_TIMER_STATS
793 timer->start_site = NULL;
794 #endif
795 }
796
797 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
798 {
799 #ifdef CONFIG_TIMER_STATS
800 if (likely(!timer_stats_active))
801 return;
802 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
803 timer->function, timer->start_comm, 0);
804 #endif
805 }
806
807 /*
808 * Counterpart to lock_hrtimer_base above:
809 */
810 static inline
811 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
812 {
813 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
814 }
815
816 /**
817 * hrtimer_forward - forward the timer expiry
818 * @timer: hrtimer to forward
819 * @now: forward past this time
820 * @interval: the interval to forward
821 *
822 * Forward the timer expiry so it will expire in the future.
823 * Returns the number of overruns.
824 *
825 * Can be safely called from the callback function of @timer. If
826 * called from other contexts @timer must neither be enqueued nor
827 * running the callback and the caller needs to take care of
828 * serialization.
829 *
830 * Note: This only updates the timer expiry value and does not requeue
831 * the timer.
832 */
833 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
834 {
835 u64 orun = 1;
836 ktime_t delta;
837
838 delta = ktime_sub(now, hrtimer_get_expires(timer));
839
840 if (delta.tv64 < 0)
841 return 0;
842
843 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
844 return 0;
845
846 if (interval.tv64 < hrtimer_resolution)
847 interval.tv64 = hrtimer_resolution;
848
849 if (unlikely(delta.tv64 >= interval.tv64)) {
850 s64 incr = ktime_to_ns(interval);
851
852 orun = ktime_divns(delta, incr);
853 hrtimer_add_expires_ns(timer, incr * orun);
854 if (hrtimer_get_expires_tv64(timer) > now.tv64)
855 return orun;
856 /*
857 * This (and the ktime_add() below) is the
858 * correction for exact:
859 */
860 orun++;
861 }
862 hrtimer_add_expires(timer, interval);
863
864 return orun;
865 }
866 EXPORT_SYMBOL_GPL(hrtimer_forward);
867
868 /*
869 * enqueue_hrtimer - internal function to (re)start a timer
870 *
871 * The timer is inserted in expiry order. Insertion into the
872 * red black tree is O(log(n)). Must hold the base lock.
873 *
874 * Returns 1 when the new timer is the leftmost timer in the tree.
875 */
876 static int enqueue_hrtimer(struct hrtimer *timer,
877 struct hrtimer_clock_base *base)
878 {
879 debug_activate(timer);
880
881 base->cpu_base->active_bases |= 1 << base->index;
882
883 timer->state = HRTIMER_STATE_ENQUEUED;
884
885 return timerqueue_add(&base->active, &timer->node);
886 }
887
888 /*
889 * __remove_hrtimer - internal function to remove a timer
890 *
891 * Caller must hold the base lock.
892 *
893 * High resolution timer mode reprograms the clock event device when the
894 * timer is the one which expires next. The caller can disable this by setting
895 * reprogram to zero. This is useful, when the context does a reprogramming
896 * anyway (e.g. timer interrupt)
897 */
898 static void __remove_hrtimer(struct hrtimer *timer,
899 struct hrtimer_clock_base *base,
900 u8 newstate, int reprogram)
901 {
902 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
903 u8 state = timer->state;
904
905 timer->state = newstate;
906 if (!(state & HRTIMER_STATE_ENQUEUED))
907 return;
908
909 if (!timerqueue_del(&base->active, &timer->node))
910 cpu_base->active_bases &= ~(1 << base->index);
911
912 #ifdef CONFIG_HIGH_RES_TIMERS
913 /*
914 * Note: If reprogram is false we do not update
915 * cpu_base->next_timer. This happens when we remove the first
916 * timer on a remote cpu. No harm as we never dereference
917 * cpu_base->next_timer. So the worst thing what can happen is
918 * an superflous call to hrtimer_force_reprogram() on the
919 * remote cpu later on if the same timer gets enqueued again.
920 */
921 if (reprogram && timer == cpu_base->next_timer)
922 hrtimer_force_reprogram(cpu_base, 1);
923 #endif
924 }
925
926 /*
927 * remove hrtimer, called with base lock held
928 */
929 static inline int
930 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
931 {
932 if (hrtimer_is_queued(timer)) {
933 u8 state = timer->state;
934 int reprogram;
935
936 /*
937 * Remove the timer and force reprogramming when high
938 * resolution mode is active and the timer is on the current
939 * CPU. If we remove a timer on another CPU, reprogramming is
940 * skipped. The interrupt event on this CPU is fired and
941 * reprogramming happens in the interrupt handler. This is a
942 * rare case and less expensive than a smp call.
943 */
944 debug_deactivate(timer);
945 timer_stats_hrtimer_clear_start_info(timer);
946 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
947
948 if (!restart)
949 state = HRTIMER_STATE_INACTIVE;
950
951 __remove_hrtimer(timer, base, state, reprogram);
952 return 1;
953 }
954 return 0;
955 }
956
957 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
958 const enum hrtimer_mode mode)
959 {
960 #ifdef CONFIG_TIME_LOW_RES
961 /*
962 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
963 * granular time values. For relative timers we add hrtimer_resolution
964 * (i.e. one jiffie) to prevent short timeouts.
965 */
966 timer->is_rel = mode & HRTIMER_MODE_REL;
967 if (timer->is_rel)
968 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
969 #endif
970 return tim;
971 }
972
973 /**
974 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
975 * @timer: the timer to be added
976 * @tim: expiry time
977 * @delta_ns: "slack" range for the timer
978 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
979 * relative (HRTIMER_MODE_REL)
980 */
981 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
982 unsigned long delta_ns, const enum hrtimer_mode mode)
983 {
984 struct hrtimer_clock_base *base, *new_base;
985 unsigned long flags;
986 int leftmost;
987
988 base = lock_hrtimer_base(timer, &flags);
989
990 /* Remove an active timer from the queue: */
991 remove_hrtimer(timer, base, true);
992
993 if (mode & HRTIMER_MODE_REL)
994 tim = ktime_add_safe(tim, base->get_time());
995
996 tim = hrtimer_update_lowres(timer, tim, mode);
997
998 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
999
1000 /* Switch the timer base, if necessary: */
1001 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1002
1003 timer_stats_hrtimer_set_start_info(timer);
1004
1005 leftmost = enqueue_hrtimer(timer, new_base);
1006 if (!leftmost)
1007 goto unlock;
1008
1009 if (!hrtimer_is_hres_active(timer)) {
1010 /*
1011 * Kick to reschedule the next tick to handle the new timer
1012 * on dynticks target.
1013 */
1014 if (new_base->cpu_base->nohz_active)
1015 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1016 } else {
1017 hrtimer_reprogram(timer, new_base);
1018 }
1019 unlock:
1020 unlock_hrtimer_base(timer, &flags);
1021 }
1022 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1023
1024 /**
1025 * hrtimer_try_to_cancel - try to deactivate a timer
1026 * @timer: hrtimer to stop
1027 *
1028 * Returns:
1029 * 0 when the timer was not active
1030 * 1 when the timer was active
1031 * -1 when the timer is currently excuting the callback function and
1032 * cannot be stopped
1033 */
1034 int hrtimer_try_to_cancel(struct hrtimer *timer)
1035 {
1036 struct hrtimer_clock_base *base;
1037 unsigned long flags;
1038 int ret = -1;
1039
1040 /*
1041 * Check lockless first. If the timer is not active (neither
1042 * enqueued nor running the callback, nothing to do here. The
1043 * base lock does not serialize against a concurrent enqueue,
1044 * so we can avoid taking it.
1045 */
1046 if (!hrtimer_active(timer))
1047 return 0;
1048
1049 base = lock_hrtimer_base(timer, &flags);
1050
1051 if (!hrtimer_callback_running(timer))
1052 ret = remove_hrtimer(timer, base, false);
1053
1054 unlock_hrtimer_base(timer, &flags);
1055
1056 return ret;
1057
1058 }
1059 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1060
1061 /**
1062 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1063 * @timer: the timer to be cancelled
1064 *
1065 * Returns:
1066 * 0 when the timer was not active
1067 * 1 when the timer was active
1068 */
1069 int hrtimer_cancel(struct hrtimer *timer)
1070 {
1071 for (;;) {
1072 int ret = hrtimer_try_to_cancel(timer);
1073
1074 if (ret >= 0)
1075 return ret;
1076 cpu_relax();
1077 }
1078 }
1079 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1080
1081 /**
1082 * hrtimer_get_remaining - get remaining time for the timer
1083 * @timer: the timer to read
1084 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1085 */
1086 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1087 {
1088 unsigned long flags;
1089 ktime_t rem;
1090
1091 lock_hrtimer_base(timer, &flags);
1092 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1093 rem = hrtimer_expires_remaining_adjusted(timer);
1094 else
1095 rem = hrtimer_expires_remaining(timer);
1096 unlock_hrtimer_base(timer, &flags);
1097
1098 return rem;
1099 }
1100 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1101
1102 #ifdef CONFIG_NO_HZ_COMMON
1103 /**
1104 * hrtimer_get_next_event - get the time until next expiry event
1105 *
1106 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1107 */
1108 u64 hrtimer_get_next_event(void)
1109 {
1110 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1111 u64 expires = KTIME_MAX;
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1115
1116 if (!__hrtimer_hres_active(cpu_base))
1117 expires = __hrtimer_get_next_event(cpu_base).tv64;
1118
1119 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1120
1121 return expires;
1122 }
1123 #endif
1124
1125 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1126 enum hrtimer_mode mode)
1127 {
1128 struct hrtimer_cpu_base *cpu_base;
1129 int base;
1130
1131 memset(timer, 0, sizeof(struct hrtimer));
1132
1133 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1134
1135 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1136 clock_id = CLOCK_MONOTONIC;
1137
1138 base = hrtimer_clockid_to_base(clock_id);
1139 timer->base = &cpu_base->clock_base[base];
1140 timerqueue_init(&timer->node);
1141
1142 #ifdef CONFIG_TIMER_STATS
1143 timer->start_site = NULL;
1144 timer->start_pid = -1;
1145 memset(timer->start_comm, 0, TASK_COMM_LEN);
1146 #endif
1147 }
1148
1149 /**
1150 * hrtimer_init - initialize a timer to the given clock
1151 * @timer: the timer to be initialized
1152 * @clock_id: the clock to be used
1153 * @mode: timer mode abs/rel
1154 */
1155 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1156 enum hrtimer_mode mode)
1157 {
1158 debug_init(timer, clock_id, mode);
1159 __hrtimer_init(timer, clock_id, mode);
1160 }
1161 EXPORT_SYMBOL_GPL(hrtimer_init);
1162
1163 /*
1164 * A timer is active, when it is enqueued into the rbtree or the
1165 * callback function is running or it's in the state of being migrated
1166 * to another cpu.
1167 *
1168 * It is important for this function to not return a false negative.
1169 */
1170 bool hrtimer_active(const struct hrtimer *timer)
1171 {
1172 struct hrtimer_cpu_base *cpu_base;
1173 unsigned int seq;
1174
1175 do {
1176 cpu_base = READ_ONCE(timer->base->cpu_base);
1177 seq = raw_read_seqcount_begin(&cpu_base->seq);
1178
1179 if (timer->state != HRTIMER_STATE_INACTIVE ||
1180 cpu_base->running == timer)
1181 return true;
1182
1183 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1184 cpu_base != READ_ONCE(timer->base->cpu_base));
1185
1186 return false;
1187 }
1188 EXPORT_SYMBOL_GPL(hrtimer_active);
1189
1190 /*
1191 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1192 * distinct sections:
1193 *
1194 * - queued: the timer is queued
1195 * - callback: the timer is being ran
1196 * - post: the timer is inactive or (re)queued
1197 *
1198 * On the read side we ensure we observe timer->state and cpu_base->running
1199 * from the same section, if anything changed while we looked at it, we retry.
1200 * This includes timer->base changing because sequence numbers alone are
1201 * insufficient for that.
1202 *
1203 * The sequence numbers are required because otherwise we could still observe
1204 * a false negative if the read side got smeared over multiple consequtive
1205 * __run_hrtimer() invocations.
1206 */
1207
1208 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1209 struct hrtimer_clock_base *base,
1210 struct hrtimer *timer, ktime_t *now)
1211 {
1212 enum hrtimer_restart (*fn)(struct hrtimer *);
1213 int restart;
1214
1215 lockdep_assert_held(&cpu_base->lock);
1216
1217 debug_deactivate(timer);
1218 cpu_base->running = timer;
1219
1220 /*
1221 * Separate the ->running assignment from the ->state assignment.
1222 *
1223 * As with a regular write barrier, this ensures the read side in
1224 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1225 * timer->state == INACTIVE.
1226 */
1227 raw_write_seqcount_barrier(&cpu_base->seq);
1228
1229 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1230 timer_stats_account_hrtimer(timer);
1231 fn = timer->function;
1232
1233 /*
1234 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1235 * timer is restarted with a period then it becomes an absolute
1236 * timer. If its not restarted it does not matter.
1237 */
1238 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1239 timer->is_rel = false;
1240
1241 /*
1242 * Because we run timers from hardirq context, there is no chance
1243 * they get migrated to another cpu, therefore its safe to unlock
1244 * the timer base.
1245 */
1246 raw_spin_unlock(&cpu_base->lock);
1247 trace_hrtimer_expire_entry(timer, now);
1248 restart = fn(timer);
1249 trace_hrtimer_expire_exit(timer);
1250 raw_spin_lock(&cpu_base->lock);
1251
1252 /*
1253 * Note: We clear the running state after enqueue_hrtimer and
1254 * we do not reprogramm the event hardware. Happens either in
1255 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1256 *
1257 * Note: Because we dropped the cpu_base->lock above,
1258 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1259 * for us already.
1260 */
1261 if (restart != HRTIMER_NORESTART &&
1262 !(timer->state & HRTIMER_STATE_ENQUEUED))
1263 enqueue_hrtimer(timer, base);
1264
1265 /*
1266 * Separate the ->running assignment from the ->state assignment.
1267 *
1268 * As with a regular write barrier, this ensures the read side in
1269 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1270 * timer->state == INACTIVE.
1271 */
1272 raw_write_seqcount_barrier(&cpu_base->seq);
1273
1274 WARN_ON_ONCE(cpu_base->running != timer);
1275 cpu_base->running = NULL;
1276 }
1277
1278 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1279 {
1280 struct hrtimer_clock_base *base = cpu_base->clock_base;
1281 unsigned int active = cpu_base->active_bases;
1282
1283 for (; active; base++, active >>= 1) {
1284 struct timerqueue_node *node;
1285 ktime_t basenow;
1286
1287 if (!(active & 0x01))
1288 continue;
1289
1290 basenow = ktime_add(now, base->offset);
1291
1292 while ((node = timerqueue_getnext(&base->active))) {
1293 struct hrtimer *timer;
1294
1295 timer = container_of(node, struct hrtimer, node);
1296
1297 /*
1298 * The immediate goal for using the softexpires is
1299 * minimizing wakeups, not running timers at the
1300 * earliest interrupt after their soft expiration.
1301 * This allows us to avoid using a Priority Search
1302 * Tree, which can answer a stabbing querry for
1303 * overlapping intervals and instead use the simple
1304 * BST we already have.
1305 * We don't add extra wakeups by delaying timers that
1306 * are right-of a not yet expired timer, because that
1307 * timer will have to trigger a wakeup anyway.
1308 */
1309 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1310 break;
1311
1312 __run_hrtimer(cpu_base, base, timer, &basenow);
1313 }
1314 }
1315 }
1316
1317 #ifdef CONFIG_HIGH_RES_TIMERS
1318
1319 /*
1320 * High resolution timer interrupt
1321 * Called with interrupts disabled
1322 */
1323 void hrtimer_interrupt(struct clock_event_device *dev)
1324 {
1325 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1326 ktime_t expires_next, now, entry_time, delta;
1327 int retries = 0;
1328
1329 BUG_ON(!cpu_base->hres_active);
1330 cpu_base->nr_events++;
1331 dev->next_event.tv64 = KTIME_MAX;
1332
1333 raw_spin_lock(&cpu_base->lock);
1334 entry_time = now = hrtimer_update_base(cpu_base);
1335 retry:
1336 cpu_base->in_hrtirq = 1;
1337 /*
1338 * We set expires_next to KTIME_MAX here with cpu_base->lock
1339 * held to prevent that a timer is enqueued in our queue via
1340 * the migration code. This does not affect enqueueing of
1341 * timers which run their callback and need to be requeued on
1342 * this CPU.
1343 */
1344 cpu_base->expires_next.tv64 = KTIME_MAX;
1345
1346 __hrtimer_run_queues(cpu_base, now);
1347
1348 /* Reevaluate the clock bases for the next expiry */
1349 expires_next = __hrtimer_get_next_event(cpu_base);
1350 /*
1351 * Store the new expiry value so the migration code can verify
1352 * against it.
1353 */
1354 cpu_base->expires_next = expires_next;
1355 cpu_base->in_hrtirq = 0;
1356 raw_spin_unlock(&cpu_base->lock);
1357
1358 /* Reprogramming necessary ? */
1359 if (!tick_program_event(expires_next, 0)) {
1360 cpu_base->hang_detected = 0;
1361 return;
1362 }
1363
1364 /*
1365 * The next timer was already expired due to:
1366 * - tracing
1367 * - long lasting callbacks
1368 * - being scheduled away when running in a VM
1369 *
1370 * We need to prevent that we loop forever in the hrtimer
1371 * interrupt routine. We give it 3 attempts to avoid
1372 * overreacting on some spurious event.
1373 *
1374 * Acquire base lock for updating the offsets and retrieving
1375 * the current time.
1376 */
1377 raw_spin_lock(&cpu_base->lock);
1378 now = hrtimer_update_base(cpu_base);
1379 cpu_base->nr_retries++;
1380 if (++retries < 3)
1381 goto retry;
1382 /*
1383 * Give the system a chance to do something else than looping
1384 * here. We stored the entry time, so we know exactly how long
1385 * we spent here. We schedule the next event this amount of
1386 * time away.
1387 */
1388 cpu_base->nr_hangs++;
1389 cpu_base->hang_detected = 1;
1390 raw_spin_unlock(&cpu_base->lock);
1391 delta = ktime_sub(now, entry_time);
1392 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1393 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1394 /*
1395 * Limit it to a sensible value as we enforce a longer
1396 * delay. Give the CPU at least 100ms to catch up.
1397 */
1398 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1399 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1400 else
1401 expires_next = ktime_add(now, delta);
1402 tick_program_event(expires_next, 1);
1403 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1404 ktime_to_ns(delta));
1405 }
1406
1407 /*
1408 * local version of hrtimer_peek_ahead_timers() called with interrupts
1409 * disabled.
1410 */
1411 static inline void __hrtimer_peek_ahead_timers(void)
1412 {
1413 struct tick_device *td;
1414
1415 if (!hrtimer_hres_active())
1416 return;
1417
1418 td = this_cpu_ptr(&tick_cpu_device);
1419 if (td && td->evtdev)
1420 hrtimer_interrupt(td->evtdev);
1421 }
1422
1423 #else /* CONFIG_HIGH_RES_TIMERS */
1424
1425 static inline void __hrtimer_peek_ahead_timers(void) { }
1426
1427 #endif /* !CONFIG_HIGH_RES_TIMERS */
1428
1429 /*
1430 * Called from run_local_timers in hardirq context every jiffy
1431 */
1432 void hrtimer_run_queues(void)
1433 {
1434 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1435 ktime_t now;
1436
1437 if (__hrtimer_hres_active(cpu_base))
1438 return;
1439
1440 /*
1441 * This _is_ ugly: We have to check periodically, whether we
1442 * can switch to highres and / or nohz mode. The clocksource
1443 * switch happens with xtime_lock held. Notification from
1444 * there only sets the check bit in the tick_oneshot code,
1445 * otherwise we might deadlock vs. xtime_lock.
1446 */
1447 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1448 hrtimer_switch_to_hres();
1449 return;
1450 }
1451
1452 raw_spin_lock(&cpu_base->lock);
1453 now = hrtimer_update_base(cpu_base);
1454 __hrtimer_run_queues(cpu_base, now);
1455 raw_spin_unlock(&cpu_base->lock);
1456 }
1457
1458 /*
1459 * Sleep related functions:
1460 */
1461 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1462 {
1463 struct hrtimer_sleeper *t =
1464 container_of(timer, struct hrtimer_sleeper, timer);
1465 struct task_struct *task = t->task;
1466
1467 t->task = NULL;
1468 if (task)
1469 wake_up_process(task);
1470
1471 return HRTIMER_NORESTART;
1472 }
1473
1474 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1475 {
1476 sl->timer.function = hrtimer_wakeup;
1477 sl->task = task;
1478 }
1479 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480
1481 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482 {
1483 hrtimer_init_sleeper(t, current);
1484
1485 do {
1486 set_current_state(TASK_INTERRUPTIBLE);
1487 hrtimer_start_expires(&t->timer, mode);
1488
1489 if (likely(t->task))
1490 freezable_schedule();
1491
1492 hrtimer_cancel(&t->timer);
1493 mode = HRTIMER_MODE_ABS;
1494
1495 } while (t->task && !signal_pending(current));
1496
1497 __set_current_state(TASK_RUNNING);
1498
1499 return t->task == NULL;
1500 }
1501
1502 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1503 {
1504 struct timespec rmt;
1505 ktime_t rem;
1506
1507 rem = hrtimer_expires_remaining(timer);
1508 if (rem.tv64 <= 0)
1509 return 0;
1510 rmt = ktime_to_timespec(rem);
1511
1512 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1513 return -EFAULT;
1514
1515 return 1;
1516 }
1517
1518 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1519 {
1520 struct hrtimer_sleeper t;
1521 struct timespec __user *rmtp;
1522 int ret = 0;
1523
1524 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1525 HRTIMER_MODE_ABS);
1526 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1527
1528 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1529 goto out;
1530
1531 rmtp = restart->nanosleep.rmtp;
1532 if (rmtp) {
1533 ret = update_rmtp(&t.timer, rmtp);
1534 if (ret <= 0)
1535 goto out;
1536 }
1537
1538 /* The other values in restart are already filled in */
1539 ret = -ERESTART_RESTARTBLOCK;
1540 out:
1541 destroy_hrtimer_on_stack(&t.timer);
1542 return ret;
1543 }
1544
1545 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1546 const enum hrtimer_mode mode, const clockid_t clockid)
1547 {
1548 struct restart_block *restart;
1549 struct hrtimer_sleeper t;
1550 int ret = 0;
1551 unsigned long slack;
1552
1553 slack = current->timer_slack_ns;
1554 if (dl_task(current) || rt_task(current))
1555 slack = 0;
1556
1557 hrtimer_init_on_stack(&t.timer, clockid, mode);
1558 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1559 if (do_nanosleep(&t, mode))
1560 goto out;
1561
1562 /* Absolute timers do not update the rmtp value and restart: */
1563 if (mode == HRTIMER_MODE_ABS) {
1564 ret = -ERESTARTNOHAND;
1565 goto out;
1566 }
1567
1568 if (rmtp) {
1569 ret = update_rmtp(&t.timer, rmtp);
1570 if (ret <= 0)
1571 goto out;
1572 }
1573
1574 restart = &current->restart_block;
1575 restart->fn = hrtimer_nanosleep_restart;
1576 restart->nanosleep.clockid = t.timer.base->clockid;
1577 restart->nanosleep.rmtp = rmtp;
1578 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1579
1580 ret = -ERESTART_RESTARTBLOCK;
1581 out:
1582 destroy_hrtimer_on_stack(&t.timer);
1583 return ret;
1584 }
1585
1586 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1587 struct timespec __user *, rmtp)
1588 {
1589 struct timespec tu;
1590
1591 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1592 return -EFAULT;
1593
1594 if (!timespec_valid(&tu))
1595 return -EINVAL;
1596
1597 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1598 }
1599
1600 /*
1601 * Functions related to boot-time initialization:
1602 */
1603 static void init_hrtimers_cpu(int cpu)
1604 {
1605 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1606 int i;
1607
1608 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1609 cpu_base->clock_base[i].cpu_base = cpu_base;
1610 timerqueue_init_head(&cpu_base->clock_base[i].active);
1611 }
1612
1613 cpu_base->cpu = cpu;
1614 hrtimer_init_hres(cpu_base);
1615 }
1616
1617 #ifdef CONFIG_HOTPLUG_CPU
1618
1619 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1620 struct hrtimer_clock_base *new_base)
1621 {
1622 struct hrtimer *timer;
1623 struct timerqueue_node *node;
1624
1625 while ((node = timerqueue_getnext(&old_base->active))) {
1626 timer = container_of(node, struct hrtimer, node);
1627 BUG_ON(hrtimer_callback_running(timer));
1628 debug_deactivate(timer);
1629
1630 /*
1631 * Mark it as ENQUEUED not INACTIVE otherwise the
1632 * timer could be seen as !active and just vanish away
1633 * under us on another CPU
1634 */
1635 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1636 timer->base = new_base;
1637 /*
1638 * Enqueue the timers on the new cpu. This does not
1639 * reprogram the event device in case the timer
1640 * expires before the earliest on this CPU, but we run
1641 * hrtimer_interrupt after we migrated everything to
1642 * sort out already expired timers and reprogram the
1643 * event device.
1644 */
1645 enqueue_hrtimer(timer, new_base);
1646 }
1647 }
1648
1649 static void migrate_hrtimers(int scpu)
1650 {
1651 struct hrtimer_cpu_base *old_base, *new_base;
1652 int i;
1653
1654 BUG_ON(cpu_online(scpu));
1655 tick_cancel_sched_timer(scpu);
1656
1657 local_irq_disable();
1658 old_base = &per_cpu(hrtimer_bases, scpu);
1659 new_base = this_cpu_ptr(&hrtimer_bases);
1660 /*
1661 * The caller is globally serialized and nobody else
1662 * takes two locks at once, deadlock is not possible.
1663 */
1664 raw_spin_lock(&new_base->lock);
1665 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1666
1667 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1668 migrate_hrtimer_list(&old_base->clock_base[i],
1669 &new_base->clock_base[i]);
1670 }
1671
1672 raw_spin_unlock(&old_base->lock);
1673 raw_spin_unlock(&new_base->lock);
1674
1675 /* Check, if we got expired work to do */
1676 __hrtimer_peek_ahead_timers();
1677 local_irq_enable();
1678 }
1679
1680 #endif /* CONFIG_HOTPLUG_CPU */
1681
1682 static int hrtimer_cpu_notify(struct notifier_block *self,
1683 unsigned long action, void *hcpu)
1684 {
1685 int scpu = (long)hcpu;
1686
1687 switch (action) {
1688
1689 case CPU_UP_PREPARE:
1690 case CPU_UP_PREPARE_FROZEN:
1691 init_hrtimers_cpu(scpu);
1692 break;
1693
1694 #ifdef CONFIG_HOTPLUG_CPU
1695 case CPU_DEAD:
1696 case CPU_DEAD_FROZEN:
1697 migrate_hrtimers(scpu);
1698 break;
1699 #endif
1700
1701 default:
1702 break;
1703 }
1704
1705 return NOTIFY_OK;
1706 }
1707
1708 static struct notifier_block hrtimers_nb = {
1709 .notifier_call = hrtimer_cpu_notify,
1710 };
1711
1712 void __init hrtimers_init(void)
1713 {
1714 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1715 (void *)(long)smp_processor_id());
1716 register_cpu_notifier(&hrtimers_nb);
1717 }
1718
1719 /**
1720 * schedule_hrtimeout_range_clock - sleep until timeout
1721 * @expires: timeout value (ktime_t)
1722 * @delta: slack in expires timeout (ktime_t)
1723 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1724 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1725 */
1726 int __sched
1727 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1728 const enum hrtimer_mode mode, int clock)
1729 {
1730 struct hrtimer_sleeper t;
1731
1732 /*
1733 * Optimize when a zero timeout value is given. It does not
1734 * matter whether this is an absolute or a relative time.
1735 */
1736 if (expires && !expires->tv64) {
1737 __set_current_state(TASK_RUNNING);
1738 return 0;
1739 }
1740
1741 /*
1742 * A NULL parameter means "infinite"
1743 */
1744 if (!expires) {
1745 schedule();
1746 return -EINTR;
1747 }
1748
1749 hrtimer_init_on_stack(&t.timer, clock, mode);
1750 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1751
1752 hrtimer_init_sleeper(&t, current);
1753
1754 hrtimer_start_expires(&t.timer, mode);
1755
1756 if (likely(t.task))
1757 schedule();
1758
1759 hrtimer_cancel(&t.timer);
1760 destroy_hrtimer_on_stack(&t.timer);
1761
1762 __set_current_state(TASK_RUNNING);
1763
1764 return !t.task ? 0 : -EINTR;
1765 }
1766
1767 /**
1768 * schedule_hrtimeout_range - sleep until timeout
1769 * @expires: timeout value (ktime_t)
1770 * @delta: slack in expires timeout (ktime_t)
1771 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1772 *
1773 * Make the current task sleep until the given expiry time has
1774 * elapsed. The routine will return immediately unless
1775 * the current task state has been set (see set_current_state()).
1776 *
1777 * The @delta argument gives the kernel the freedom to schedule the
1778 * actual wakeup to a time that is both power and performance friendly.
1779 * The kernel give the normal best effort behavior for "@expires+@delta",
1780 * but may decide to fire the timer earlier, but no earlier than @expires.
1781 *
1782 * You can set the task state as follows -
1783 *
1784 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1785 * pass before the routine returns.
1786 *
1787 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1788 * delivered to the current task.
1789 *
1790 * The current task state is guaranteed to be TASK_RUNNING when this
1791 * routine returns.
1792 *
1793 * Returns 0 when the timer has expired otherwise -EINTR
1794 */
1795 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1796 const enum hrtimer_mode mode)
1797 {
1798 return schedule_hrtimeout_range_clock(expires, delta, mode,
1799 CLOCK_MONOTONIC);
1800 }
1801 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1802
1803 /**
1804 * schedule_hrtimeout - sleep until timeout
1805 * @expires: timeout value (ktime_t)
1806 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1807 *
1808 * Make the current task sleep until the given expiry time has
1809 * elapsed. The routine will return immediately unless
1810 * the current task state has been set (see set_current_state()).
1811 *
1812 * You can set the task state as follows -
1813 *
1814 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1815 * pass before the routine returns.
1816 *
1817 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1818 * delivered to the current task.
1819 *
1820 * The current task state is guaranteed to be TASK_RUNNING when this
1821 * routine returns.
1822 *
1823 * Returns 0 when the timer has expired otherwise -EINTR
1824 */
1825 int __sched schedule_hrtimeout(ktime_t *expires,
1826 const enum hrtimer_mode mode)
1827 {
1828 return schedule_hrtimeout_range(expires, 0, mode);
1829 }
1830 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.065879 seconds and 4 git commands to generate.