time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19
20 #include "ntp_internal.h"
21
22 /*
23 * NTP timekeeping variables:
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
26 */
27
28
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
31
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
34
35 static u64 tick_length;
36 static u64 tick_length_base;
37
38 #define SECS_PER_DAY 86400
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42
43 /*
44 * phase-lock loop variables
45 */
46
47 /*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52 static int time_state = TIME_OK;
53
54 /* clock status bits: */
55 static int time_status = STA_UNSYNC;
56
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
59
60 /* pll time constant: */
61 static long time_constant = 2;
62
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
65
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
68
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
71
72 /* time at last adjustment (secs): */
73 static long time_reftime;
74
75 static long time_adjust;
76
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
79
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t ntp_next_leap_sec = TIME64_MAX;
82
83 #ifdef CONFIG_NTP_PPS
84
85 /*
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
89 */
90 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
91 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
98
99 static int pps_valid; /* signal watchdog counter */
100 static long pps_tf[3]; /* phase median filter */
101 static long pps_jitter; /* current jitter (ns) */
102 static struct timespec pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift; /* current interval duration (s) (shift) */
104 static int pps_intcnt; /* interval counter */
105 static s64 pps_freq; /* frequency offset (scaled ns/s) */
106 static long pps_stabil; /* current stability (scaled ns/s) */
107
108 /*
109 * PPS signal quality monitors
110 */
111 static long pps_calcnt; /* calibration intervals */
112 static long pps_jitcnt; /* jitter limit exceeded */
113 static long pps_stbcnt; /* stability limit exceeded */
114 static long pps_errcnt; /* calibration errors */
115
116
117 /* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
119 */
120 static inline s64 ntp_offset_chunk(s64 offset)
121 {
122 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 return offset;
124 else
125 return shift_right(offset, SHIFT_PLL + time_constant);
126 }
127
128 static inline void pps_reset_freq_interval(void)
129 {
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift = PPS_INTMIN;
133 pps_intcnt = 0;
134 }
135
136 /**
137 * pps_clear - Clears the PPS state variables
138 */
139 static inline void pps_clear(void)
140 {
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
147 }
148
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
152 */
153 static inline void pps_dec_valid(void)
154 {
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
161 }
162 }
163
164 static inline void pps_set_freq(s64 freq)
165 {
166 pps_freq = freq;
167 }
168
169 static inline int is_error_status(int status)
170 {
171 return (status & (STA_UNSYNC|STA_CLOCKERR))
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
174 */
175 || ((status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(status & STA_PPSSIGNAL))
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
179 || ((status & (STA_PPSTIME|STA_PPSJITTER))
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
183 */
184 || ((status & STA_PPSFREQ)
185 && (status & (STA_PPSWANDER|STA_PPSERROR)));
186 }
187
188 static inline void pps_fill_timex(struct timex *txc)
189 {
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
201 }
202
203 #else /* !CONFIG_NTP_PPS */
204
205 static inline s64 ntp_offset_chunk(s64 offset)
206 {
207 return shift_right(offset, SHIFT_PLL + time_constant);
208 }
209
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
214
215 static inline int is_error_status(int status)
216 {
217 return status & (STA_UNSYNC|STA_CLOCKERR);
218 }
219
220 static inline void pps_fill_timex(struct timex *txc)
221 {
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
231 }
232
233 #endif /* CONFIG_NTP_PPS */
234
235
236 /**
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238 *
239 */
240 static inline int ntp_synced(void)
241 {
242 return !(time_status & STA_UNSYNC);
243 }
244
245
246 /*
247 * NTP methods:
248 */
249
250 /*
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
253 */
254 static void ntp_update_frequency(void)
255 {
256 u64 second_length;
257 u64 new_base;
258
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
261
262 second_length += ntp_tick_adj;
263 second_length += time_freq;
264
265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
267
268 /*
269 * Don't wait for the next second_overflow, apply
270 * the change to the tick length immediately:
271 */
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
274 }
275
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
277 {
278 time_status &= ~STA_MODE;
279
280 if (secs < MINSEC)
281 return 0;
282
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 return 0;
285
286 time_status |= STA_MODE;
287
288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
289 }
290
291 static void ntp_update_offset(long offset)
292 {
293 s64 freq_adj;
294 s64 offset64;
295 long secs;
296
297 if (!(time_status & STA_PLL))
298 return;
299
300 if (!(time_status & STA_NANO))
301 offset *= NSEC_PER_USEC;
302
303 /*
304 * Scale the phase adjustment and
305 * clamp to the operating range.
306 */
307 offset = min(offset, MAXPHASE);
308 offset = max(offset, -MAXPHASE);
309
310 /*
311 * Select how the frequency is to be controlled
312 * and in which mode (PLL or FLL).
313 */
314 secs = get_seconds() - time_reftime;
315 if (unlikely(time_status & STA_FREQHOLD))
316 secs = 0;
317
318 time_reftime = get_seconds();
319
320 offset64 = offset;
321 freq_adj = ntp_update_offset_fll(offset64, secs);
322
323 /*
324 * Clamp update interval to reduce PLL gain with low
325 * sampling rate (e.g. intermittent network connection)
326 * to avoid instability.
327 */
328 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 secs = 1 << (SHIFT_PLL + 1 + time_constant);
330
331 freq_adj += (offset64 * secs) <<
332 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
333
334 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
335
336 time_freq = max(freq_adj, -MAXFREQ_SCALED);
337
338 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
339 }
340
341 /**
342 * ntp_clear - Clears the NTP state variables
343 */
344 void ntp_clear(void)
345 {
346 time_adjust = 0; /* stop active adjtime() */
347 time_status |= STA_UNSYNC;
348 time_maxerror = NTP_PHASE_LIMIT;
349 time_esterror = NTP_PHASE_LIMIT;
350
351 ntp_update_frequency();
352
353 tick_length = tick_length_base;
354 time_offset = 0;
355
356 ntp_next_leap_sec = TIME64_MAX;
357 /* Clear PPS state variables */
358 pps_clear();
359 }
360
361
362 u64 ntp_tick_length(void)
363 {
364 return tick_length;
365 }
366
367 /**
368 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
369 *
370 * Provides the time of the next leapsecond against CLOCK_REALTIME in
371 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
372 */
373 ktime_t ntp_get_next_leap(void)
374 {
375 ktime_t ret;
376
377 if ((time_state == TIME_INS) && (time_status & STA_INS))
378 return ktime_set(ntp_next_leap_sec, 0);
379 ret.tv64 = KTIME_MAX;
380 return ret;
381 }
382
383 /*
384 * this routine handles the overflow of the microsecond field
385 *
386 * The tricky bits of code to handle the accurate clock support
387 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388 * They were originally developed for SUN and DEC kernels.
389 * All the kudos should go to Dave for this stuff.
390 *
391 * Also handles leap second processing, and returns leap offset
392 */
393 int second_overflow(unsigned long secs)
394 {
395 s64 delta;
396 int leap = 0;
397
398 /*
399 * Leap second processing. If in leap-insert state at the end of the
400 * day, the system clock is set back one second; if in leap-delete
401 * state, the system clock is set ahead one second.
402 */
403 switch (time_state) {
404 case TIME_OK:
405 if (time_status & STA_INS) {
406 time_state = TIME_INS;
407 ntp_next_leap_sec = secs + SECS_PER_DAY -
408 (secs % SECS_PER_DAY);
409 } else if (time_status & STA_DEL) {
410 time_state = TIME_DEL;
411 ntp_next_leap_sec = secs + SECS_PER_DAY -
412 ((secs+1) % SECS_PER_DAY);
413 }
414 break;
415 case TIME_INS:
416 if (!(time_status & STA_INS)) {
417 ntp_next_leap_sec = TIME64_MAX;
418 time_state = TIME_OK;
419 } else if (secs % SECS_PER_DAY == 0) {
420 leap = -1;
421 time_state = TIME_OOP;
422 printk(KERN_NOTICE
423 "Clock: inserting leap second 23:59:60 UTC\n");
424 }
425 break;
426 case TIME_DEL:
427 if (!(time_status & STA_DEL)) {
428 ntp_next_leap_sec = TIME64_MAX;
429 time_state = TIME_OK;
430 } else if ((secs + 1) % SECS_PER_DAY == 0) {
431 leap = 1;
432 ntp_next_leap_sec = TIME64_MAX;
433 time_state = TIME_WAIT;
434 printk(KERN_NOTICE
435 "Clock: deleting leap second 23:59:59 UTC\n");
436 }
437 break;
438 case TIME_OOP:
439 ntp_next_leap_sec = TIME64_MAX;
440 time_state = TIME_WAIT;
441 break;
442 case TIME_WAIT:
443 if (!(time_status & (STA_INS | STA_DEL)))
444 time_state = TIME_OK;
445 break;
446 }
447
448
449 /* Bump the maxerror field */
450 time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 if (time_maxerror > NTP_PHASE_LIMIT) {
452 time_maxerror = NTP_PHASE_LIMIT;
453 time_status |= STA_UNSYNC;
454 }
455
456 /* Compute the phase adjustment for the next second */
457 tick_length = tick_length_base;
458
459 delta = ntp_offset_chunk(time_offset);
460 time_offset -= delta;
461 tick_length += delta;
462
463 /* Check PPS signal */
464 pps_dec_valid();
465
466 if (!time_adjust)
467 goto out;
468
469 if (time_adjust > MAX_TICKADJ) {
470 time_adjust -= MAX_TICKADJ;
471 tick_length += MAX_TICKADJ_SCALED;
472 goto out;
473 }
474
475 if (time_adjust < -MAX_TICKADJ) {
476 time_adjust += MAX_TICKADJ;
477 tick_length -= MAX_TICKADJ_SCALED;
478 goto out;
479 }
480
481 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 << NTP_SCALE_SHIFT;
483 time_adjust = 0;
484
485 out:
486 return leap;
487 }
488
489 #ifdef CONFIG_GENERIC_CMOS_UPDATE
490 int __weak update_persistent_clock64(struct timespec64 now64)
491 {
492 struct timespec now;
493
494 now = timespec64_to_timespec(now64);
495 return update_persistent_clock(now);
496 }
497 #endif
498
499 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
500 static void sync_cmos_clock(struct work_struct *work);
501
502 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
503
504 static void sync_cmos_clock(struct work_struct *work)
505 {
506 struct timespec64 now;
507 struct timespec next;
508 int fail = 1;
509
510 /*
511 * If we have an externally synchronized Linux clock, then update
512 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
513 * called as close as possible to 500 ms before the new second starts.
514 * This code is run on a timer. If the clock is set, that timer
515 * may not expire at the correct time. Thus, we adjust...
516 * We want the clock to be within a couple of ticks from the target.
517 */
518 if (!ntp_synced()) {
519 /*
520 * Not synced, exit, do not restart a timer (if one is
521 * running, let it run out).
522 */
523 return;
524 }
525
526 getnstimeofday64(&now);
527 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
528 struct timespec64 adjust = now;
529
530 fail = -ENODEV;
531 if (persistent_clock_is_local)
532 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
533 #ifdef CONFIG_GENERIC_CMOS_UPDATE
534 fail = update_persistent_clock64(adjust);
535 #endif
536
537 #ifdef CONFIG_RTC_SYSTOHC
538 if (fail == -ENODEV)
539 fail = rtc_set_ntp_time(adjust);
540 #endif
541 }
542
543 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
544 if (next.tv_nsec <= 0)
545 next.tv_nsec += NSEC_PER_SEC;
546
547 if (!fail || fail == -ENODEV)
548 next.tv_sec = 659;
549 else
550 next.tv_sec = 0;
551
552 if (next.tv_nsec >= NSEC_PER_SEC) {
553 next.tv_sec++;
554 next.tv_nsec -= NSEC_PER_SEC;
555 }
556 queue_delayed_work(system_power_efficient_wq,
557 &sync_cmos_work, timespec_to_jiffies(&next));
558 }
559
560 void ntp_notify_cmos_timer(void)
561 {
562 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
563 }
564
565 #else
566 void ntp_notify_cmos_timer(void) { }
567 #endif
568
569
570 /*
571 * Propagate a new txc->status value into the NTP state:
572 */
573 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
574 {
575 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
576 time_state = TIME_OK;
577 time_status = STA_UNSYNC;
578 ntp_next_leap_sec = TIME64_MAX;
579 /* restart PPS frequency calibration */
580 pps_reset_freq_interval();
581 }
582
583 /*
584 * If we turn on PLL adjustments then reset the
585 * reference time to current time.
586 */
587 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
588 time_reftime = get_seconds();
589
590 /* only set allowed bits */
591 time_status &= STA_RONLY;
592 time_status |= txc->status & ~STA_RONLY;
593 }
594
595
596 static inline void process_adjtimex_modes(struct timex *txc,
597 struct timespec64 *ts,
598 s32 *time_tai)
599 {
600 if (txc->modes & ADJ_STATUS)
601 process_adj_status(txc, ts);
602
603 if (txc->modes & ADJ_NANO)
604 time_status |= STA_NANO;
605
606 if (txc->modes & ADJ_MICRO)
607 time_status &= ~STA_NANO;
608
609 if (txc->modes & ADJ_FREQUENCY) {
610 time_freq = txc->freq * PPM_SCALE;
611 time_freq = min(time_freq, MAXFREQ_SCALED);
612 time_freq = max(time_freq, -MAXFREQ_SCALED);
613 /* update pps_freq */
614 pps_set_freq(time_freq);
615 }
616
617 if (txc->modes & ADJ_MAXERROR)
618 time_maxerror = txc->maxerror;
619
620 if (txc->modes & ADJ_ESTERROR)
621 time_esterror = txc->esterror;
622
623 if (txc->modes & ADJ_TIMECONST) {
624 time_constant = txc->constant;
625 if (!(time_status & STA_NANO))
626 time_constant += 4;
627 time_constant = min(time_constant, (long)MAXTC);
628 time_constant = max(time_constant, 0l);
629 }
630
631 if (txc->modes & ADJ_TAI && txc->constant > 0)
632 *time_tai = txc->constant;
633
634 if (txc->modes & ADJ_OFFSET)
635 ntp_update_offset(txc->offset);
636
637 if (txc->modes & ADJ_TICK)
638 tick_usec = txc->tick;
639
640 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
641 ntp_update_frequency();
642 }
643
644
645
646 /**
647 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
648 */
649 int ntp_validate_timex(struct timex *txc)
650 {
651 if (txc->modes & ADJ_ADJTIME) {
652 /* singleshot must not be used with any other mode bits */
653 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
654 return -EINVAL;
655 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
656 !capable(CAP_SYS_TIME))
657 return -EPERM;
658 } else {
659 /* In order to modify anything, you gotta be super-user! */
660 if (txc->modes && !capable(CAP_SYS_TIME))
661 return -EPERM;
662 /*
663 * if the quartz is off by more than 10% then
664 * something is VERY wrong!
665 */
666 if (txc->modes & ADJ_TICK &&
667 (txc->tick < 900000/USER_HZ ||
668 txc->tick > 1100000/USER_HZ))
669 return -EINVAL;
670 }
671
672 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
673 return -EPERM;
674
675 /*
676 * Check for potential multiplication overflows that can
677 * only happen on 64-bit systems:
678 */
679 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
680 if (LLONG_MIN / PPM_SCALE > txc->freq)
681 return -EINVAL;
682 if (LLONG_MAX / PPM_SCALE < txc->freq)
683 return -EINVAL;
684 }
685
686 return 0;
687 }
688
689
690 /*
691 * adjtimex mainly allows reading (and writing, if superuser) of
692 * kernel time-keeping variables. used by xntpd.
693 */
694 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
695 {
696 int result;
697
698 if (txc->modes & ADJ_ADJTIME) {
699 long save_adjust = time_adjust;
700
701 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
702 /* adjtime() is independent from ntp_adjtime() */
703 time_adjust = txc->offset;
704 ntp_update_frequency();
705 }
706 txc->offset = save_adjust;
707 } else {
708
709 /* If there are input parameters, then process them: */
710 if (txc->modes)
711 process_adjtimex_modes(txc, ts, time_tai);
712
713 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
714 NTP_SCALE_SHIFT);
715 if (!(time_status & STA_NANO))
716 txc->offset /= NSEC_PER_USEC;
717 }
718
719 result = time_state; /* mostly `TIME_OK' */
720 /* check for errors */
721 if (is_error_status(time_status))
722 result = TIME_ERROR;
723
724 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
725 PPM_SCALE_INV, NTP_SCALE_SHIFT);
726 txc->maxerror = time_maxerror;
727 txc->esterror = time_esterror;
728 txc->status = time_status;
729 txc->constant = time_constant;
730 txc->precision = 1;
731 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
732 txc->tick = tick_usec;
733 txc->tai = *time_tai;
734
735 /* fill PPS status fields */
736 pps_fill_timex(txc);
737
738 txc->time.tv_sec = (time_t)ts->tv_sec;
739 txc->time.tv_usec = ts->tv_nsec;
740 if (!(time_status & STA_NANO))
741 txc->time.tv_usec /= NSEC_PER_USEC;
742
743 return result;
744 }
745
746 #ifdef CONFIG_NTP_PPS
747
748 /* actually struct pps_normtime is good old struct timespec, but it is
749 * semantically different (and it is the reason why it was invented):
750 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
751 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
752 struct pps_normtime {
753 __kernel_time_t sec; /* seconds */
754 long nsec; /* nanoseconds */
755 };
756
757 /* normalize the timestamp so that nsec is in the
758 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
759 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
760 {
761 struct pps_normtime norm = {
762 .sec = ts.tv_sec,
763 .nsec = ts.tv_nsec
764 };
765
766 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
767 norm.nsec -= NSEC_PER_SEC;
768 norm.sec++;
769 }
770
771 return norm;
772 }
773
774 /* get current phase correction and jitter */
775 static inline long pps_phase_filter_get(long *jitter)
776 {
777 *jitter = pps_tf[0] - pps_tf[1];
778 if (*jitter < 0)
779 *jitter = -*jitter;
780
781 /* TODO: test various filters */
782 return pps_tf[0];
783 }
784
785 /* add the sample to the phase filter */
786 static inline void pps_phase_filter_add(long err)
787 {
788 pps_tf[2] = pps_tf[1];
789 pps_tf[1] = pps_tf[0];
790 pps_tf[0] = err;
791 }
792
793 /* decrease frequency calibration interval length.
794 * It is halved after four consecutive unstable intervals.
795 */
796 static inline void pps_dec_freq_interval(void)
797 {
798 if (--pps_intcnt <= -PPS_INTCOUNT) {
799 pps_intcnt = -PPS_INTCOUNT;
800 if (pps_shift > PPS_INTMIN) {
801 pps_shift--;
802 pps_intcnt = 0;
803 }
804 }
805 }
806
807 /* increase frequency calibration interval length.
808 * It is doubled after four consecutive stable intervals.
809 */
810 static inline void pps_inc_freq_interval(void)
811 {
812 if (++pps_intcnt >= PPS_INTCOUNT) {
813 pps_intcnt = PPS_INTCOUNT;
814 if (pps_shift < PPS_INTMAX) {
815 pps_shift++;
816 pps_intcnt = 0;
817 }
818 }
819 }
820
821 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
822 * timestamps
823 *
824 * At the end of the calibration interval the difference between the
825 * first and last MONOTONIC_RAW clock timestamps divided by the length
826 * of the interval becomes the frequency update. If the interval was
827 * too long, the data are discarded.
828 * Returns the difference between old and new frequency values.
829 */
830 static long hardpps_update_freq(struct pps_normtime freq_norm)
831 {
832 long delta, delta_mod;
833 s64 ftemp;
834
835 /* check if the frequency interval was too long */
836 if (freq_norm.sec > (2 << pps_shift)) {
837 time_status |= STA_PPSERROR;
838 pps_errcnt++;
839 pps_dec_freq_interval();
840 printk_deferred(KERN_ERR
841 "hardpps: PPSERROR: interval too long - %ld s\n",
842 freq_norm.sec);
843 return 0;
844 }
845
846 /* here the raw frequency offset and wander (stability) is
847 * calculated. If the wander is less than the wander threshold
848 * the interval is increased; otherwise it is decreased.
849 */
850 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
851 freq_norm.sec);
852 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
853 pps_freq = ftemp;
854 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
855 printk_deferred(KERN_WARNING
856 "hardpps: PPSWANDER: change=%ld\n", delta);
857 time_status |= STA_PPSWANDER;
858 pps_stbcnt++;
859 pps_dec_freq_interval();
860 } else { /* good sample */
861 pps_inc_freq_interval();
862 }
863
864 /* the stability metric is calculated as the average of recent
865 * frequency changes, but is used only for performance
866 * monitoring
867 */
868 delta_mod = delta;
869 if (delta_mod < 0)
870 delta_mod = -delta_mod;
871 pps_stabil += (div_s64(((s64)delta_mod) <<
872 (NTP_SCALE_SHIFT - SHIFT_USEC),
873 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
874
875 /* if enabled, the system clock frequency is updated */
876 if ((time_status & STA_PPSFREQ) != 0 &&
877 (time_status & STA_FREQHOLD) == 0) {
878 time_freq = pps_freq;
879 ntp_update_frequency();
880 }
881
882 return delta;
883 }
884
885 /* correct REALTIME clock phase error against PPS signal */
886 static void hardpps_update_phase(long error)
887 {
888 long correction = -error;
889 long jitter;
890
891 /* add the sample to the median filter */
892 pps_phase_filter_add(correction);
893 correction = pps_phase_filter_get(&jitter);
894
895 /* Nominal jitter is due to PPS signal noise. If it exceeds the
896 * threshold, the sample is discarded; otherwise, if so enabled,
897 * the time offset is updated.
898 */
899 if (jitter > (pps_jitter << PPS_POPCORN)) {
900 printk_deferred(KERN_WARNING
901 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
902 jitter, (pps_jitter << PPS_POPCORN));
903 time_status |= STA_PPSJITTER;
904 pps_jitcnt++;
905 } else if (time_status & STA_PPSTIME) {
906 /* correct the time using the phase offset */
907 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
908 NTP_INTERVAL_FREQ);
909 /* cancel running adjtime() */
910 time_adjust = 0;
911 }
912 /* update jitter */
913 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
914 }
915
916 /*
917 * __hardpps() - discipline CPU clock oscillator to external PPS signal
918 *
919 * This routine is called at each PPS signal arrival in order to
920 * discipline the CPU clock oscillator to the PPS signal. It takes two
921 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
922 * is used to correct clock phase error and the latter is used to
923 * correct the frequency.
924 *
925 * This code is based on David Mills's reference nanokernel
926 * implementation. It was mostly rewritten but keeps the same idea.
927 */
928 void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
929 {
930 struct pps_normtime pts_norm, freq_norm;
931
932 pts_norm = pps_normalize_ts(*phase_ts);
933
934 /* clear the error bits, they will be set again if needed */
935 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
936
937 /* indicate signal presence */
938 time_status |= STA_PPSSIGNAL;
939 pps_valid = PPS_VALID;
940
941 /* when called for the first time,
942 * just start the frequency interval */
943 if (unlikely(pps_fbase.tv_sec == 0)) {
944 pps_fbase = *raw_ts;
945 return;
946 }
947
948 /* ok, now we have a base for frequency calculation */
949 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
950
951 /* check that the signal is in the range
952 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
953 if ((freq_norm.sec == 0) ||
954 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
955 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
956 time_status |= STA_PPSJITTER;
957 /* restart the frequency calibration interval */
958 pps_fbase = *raw_ts;
959 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
960 return;
961 }
962
963 /* signal is ok */
964
965 /* check if the current frequency interval is finished */
966 if (freq_norm.sec >= (1 << pps_shift)) {
967 pps_calcnt++;
968 /* restart the frequency calibration interval */
969 pps_fbase = *raw_ts;
970 hardpps_update_freq(freq_norm);
971 }
972
973 hardpps_update_phase(pts_norm.nsec);
974
975 }
976 #endif /* CONFIG_NTP_PPS */
977
978 static int __init ntp_tick_adj_setup(char *str)
979 {
980 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
981
982 if (rc)
983 return rc;
984 ntp_tick_adj <<= NTP_SCALE_SHIFT;
985
986 return 1;
987 }
988
989 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
990
991 void __init ntp_init(void)
992 {
993 ntp_clear();
994 }
This page took 0.072789 seconds and 5 git commands to generate.