time: Verify time values in adjtimex ADJ_SETOFFSET to avoid overflow
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19
20 #include "ntp_internal.h"
21
22 /*
23 * NTP timekeeping variables:
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
26 */
27
28
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
31
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
34
35 static u64 tick_length;
36 static u64 tick_length_base;
37
38 #define SECS_PER_DAY 86400
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42
43 /*
44 * phase-lock loop variables
45 */
46
47 /*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52 static int time_state = TIME_OK;
53
54 /* clock status bits: */
55 static int time_status = STA_UNSYNC;
56
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
59
60 /* pll time constant: */
61 static long time_constant = 2;
62
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
65
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
68
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
71
72 /* time at last adjustment (secs): */
73 static long time_reftime;
74
75 static long time_adjust;
76
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
79
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t ntp_next_leap_sec = TIME64_MAX;
82
83 #ifdef CONFIG_NTP_PPS
84
85 /*
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
89 */
90 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
91 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
98
99 static int pps_valid; /* signal watchdog counter */
100 static long pps_tf[3]; /* phase median filter */
101 static long pps_jitter; /* current jitter (ns) */
102 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift; /* current interval duration (s) (shift) */
104 static int pps_intcnt; /* interval counter */
105 static s64 pps_freq; /* frequency offset (scaled ns/s) */
106 static long pps_stabil; /* current stability (scaled ns/s) */
107
108 /*
109 * PPS signal quality monitors
110 */
111 static long pps_calcnt; /* calibration intervals */
112 static long pps_jitcnt; /* jitter limit exceeded */
113 static long pps_stbcnt; /* stability limit exceeded */
114 static long pps_errcnt; /* calibration errors */
115
116
117 /* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
119 */
120 static inline s64 ntp_offset_chunk(s64 offset)
121 {
122 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 return offset;
124 else
125 return shift_right(offset, SHIFT_PLL + time_constant);
126 }
127
128 static inline void pps_reset_freq_interval(void)
129 {
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift = PPS_INTMIN;
133 pps_intcnt = 0;
134 }
135
136 /**
137 * pps_clear - Clears the PPS state variables
138 */
139 static inline void pps_clear(void)
140 {
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
147 }
148
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
152 */
153 static inline void pps_dec_valid(void)
154 {
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
161 }
162 }
163
164 static inline void pps_set_freq(s64 freq)
165 {
166 pps_freq = freq;
167 }
168
169 static inline int is_error_status(int status)
170 {
171 return (status & (STA_UNSYNC|STA_CLOCKERR))
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
174 */
175 || ((status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(status & STA_PPSSIGNAL))
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
179 || ((status & (STA_PPSTIME|STA_PPSJITTER))
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
183 */
184 || ((status & STA_PPSFREQ)
185 && (status & (STA_PPSWANDER|STA_PPSERROR)));
186 }
187
188 static inline void pps_fill_timex(struct timex *txc)
189 {
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
201 }
202
203 #else /* !CONFIG_NTP_PPS */
204
205 static inline s64 ntp_offset_chunk(s64 offset)
206 {
207 return shift_right(offset, SHIFT_PLL + time_constant);
208 }
209
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
214
215 static inline int is_error_status(int status)
216 {
217 return status & (STA_UNSYNC|STA_CLOCKERR);
218 }
219
220 static inline void pps_fill_timex(struct timex *txc)
221 {
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
231 }
232
233 #endif /* CONFIG_NTP_PPS */
234
235
236 /**
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238 *
239 */
240 static inline int ntp_synced(void)
241 {
242 return !(time_status & STA_UNSYNC);
243 }
244
245
246 /*
247 * NTP methods:
248 */
249
250 /*
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
253 */
254 static void ntp_update_frequency(void)
255 {
256 u64 second_length;
257 u64 new_base;
258
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
261
262 second_length += ntp_tick_adj;
263 second_length += time_freq;
264
265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
267
268 /*
269 * Don't wait for the next second_overflow, apply
270 * the change to the tick length immediately:
271 */
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
274 }
275
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
277 {
278 time_status &= ~STA_MODE;
279
280 if (secs < MINSEC)
281 return 0;
282
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 return 0;
285
286 time_status |= STA_MODE;
287
288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
289 }
290
291 static void ntp_update_offset(long offset)
292 {
293 s64 freq_adj;
294 s64 offset64;
295 long secs;
296
297 if (!(time_status & STA_PLL))
298 return;
299
300 if (!(time_status & STA_NANO)) {
301 /* Make sure the multiplication below won't overflow */
302 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
303 offset *= NSEC_PER_USEC;
304 }
305
306 /*
307 * Scale the phase adjustment and
308 * clamp to the operating range.
309 */
310 offset = clamp(offset, -MAXPHASE, MAXPHASE);
311
312 /*
313 * Select how the frequency is to be controlled
314 * and in which mode (PLL or FLL).
315 */
316 secs = get_seconds() - time_reftime;
317 if (unlikely(time_status & STA_FREQHOLD))
318 secs = 0;
319
320 time_reftime = get_seconds();
321
322 offset64 = offset;
323 freq_adj = ntp_update_offset_fll(offset64, secs);
324
325 /*
326 * Clamp update interval to reduce PLL gain with low
327 * sampling rate (e.g. intermittent network connection)
328 * to avoid instability.
329 */
330 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 secs = 1 << (SHIFT_PLL + 1 + time_constant);
332
333 freq_adj += (offset64 * secs) <<
334 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
335
336 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
337
338 time_freq = max(freq_adj, -MAXFREQ_SCALED);
339
340 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
341 }
342
343 /**
344 * ntp_clear - Clears the NTP state variables
345 */
346 void ntp_clear(void)
347 {
348 time_adjust = 0; /* stop active adjtime() */
349 time_status |= STA_UNSYNC;
350 time_maxerror = NTP_PHASE_LIMIT;
351 time_esterror = NTP_PHASE_LIMIT;
352
353 ntp_update_frequency();
354
355 tick_length = tick_length_base;
356 time_offset = 0;
357
358 ntp_next_leap_sec = TIME64_MAX;
359 /* Clear PPS state variables */
360 pps_clear();
361 }
362
363
364 u64 ntp_tick_length(void)
365 {
366 return tick_length;
367 }
368
369 /**
370 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
371 *
372 * Provides the time of the next leapsecond against CLOCK_REALTIME in
373 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
374 */
375 ktime_t ntp_get_next_leap(void)
376 {
377 ktime_t ret;
378
379 if ((time_state == TIME_INS) && (time_status & STA_INS))
380 return ktime_set(ntp_next_leap_sec, 0);
381 ret.tv64 = KTIME_MAX;
382 return ret;
383 }
384
385 /*
386 * this routine handles the overflow of the microsecond field
387 *
388 * The tricky bits of code to handle the accurate clock support
389 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
390 * They were originally developed for SUN and DEC kernels.
391 * All the kudos should go to Dave for this stuff.
392 *
393 * Also handles leap second processing, and returns leap offset
394 */
395 int second_overflow(unsigned long secs)
396 {
397 s64 delta;
398 int leap = 0;
399
400 /*
401 * Leap second processing. If in leap-insert state at the end of the
402 * day, the system clock is set back one second; if in leap-delete
403 * state, the system clock is set ahead one second.
404 */
405 switch (time_state) {
406 case TIME_OK:
407 if (time_status & STA_INS) {
408 time_state = TIME_INS;
409 ntp_next_leap_sec = secs + SECS_PER_DAY -
410 (secs % SECS_PER_DAY);
411 } else if (time_status & STA_DEL) {
412 time_state = TIME_DEL;
413 ntp_next_leap_sec = secs + SECS_PER_DAY -
414 ((secs+1) % SECS_PER_DAY);
415 }
416 break;
417 case TIME_INS:
418 if (!(time_status & STA_INS)) {
419 ntp_next_leap_sec = TIME64_MAX;
420 time_state = TIME_OK;
421 } else if (secs % SECS_PER_DAY == 0) {
422 leap = -1;
423 time_state = TIME_OOP;
424 printk(KERN_NOTICE
425 "Clock: inserting leap second 23:59:60 UTC\n");
426 }
427 break;
428 case TIME_DEL:
429 if (!(time_status & STA_DEL)) {
430 ntp_next_leap_sec = TIME64_MAX;
431 time_state = TIME_OK;
432 } else if ((secs + 1) % SECS_PER_DAY == 0) {
433 leap = 1;
434 ntp_next_leap_sec = TIME64_MAX;
435 time_state = TIME_WAIT;
436 printk(KERN_NOTICE
437 "Clock: deleting leap second 23:59:59 UTC\n");
438 }
439 break;
440 case TIME_OOP:
441 ntp_next_leap_sec = TIME64_MAX;
442 time_state = TIME_WAIT;
443 break;
444 case TIME_WAIT:
445 if (!(time_status & (STA_INS | STA_DEL)))
446 time_state = TIME_OK;
447 break;
448 }
449
450
451 /* Bump the maxerror field */
452 time_maxerror += MAXFREQ / NSEC_PER_USEC;
453 if (time_maxerror > NTP_PHASE_LIMIT) {
454 time_maxerror = NTP_PHASE_LIMIT;
455 time_status |= STA_UNSYNC;
456 }
457
458 /* Compute the phase adjustment for the next second */
459 tick_length = tick_length_base;
460
461 delta = ntp_offset_chunk(time_offset);
462 time_offset -= delta;
463 tick_length += delta;
464
465 /* Check PPS signal */
466 pps_dec_valid();
467
468 if (!time_adjust)
469 goto out;
470
471 if (time_adjust > MAX_TICKADJ) {
472 time_adjust -= MAX_TICKADJ;
473 tick_length += MAX_TICKADJ_SCALED;
474 goto out;
475 }
476
477 if (time_adjust < -MAX_TICKADJ) {
478 time_adjust += MAX_TICKADJ;
479 tick_length -= MAX_TICKADJ_SCALED;
480 goto out;
481 }
482
483 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
484 << NTP_SCALE_SHIFT;
485 time_adjust = 0;
486
487 out:
488 return leap;
489 }
490
491 #ifdef CONFIG_GENERIC_CMOS_UPDATE
492 int __weak update_persistent_clock(struct timespec now)
493 {
494 return -ENODEV;
495 }
496
497 int __weak update_persistent_clock64(struct timespec64 now64)
498 {
499 struct timespec now;
500
501 now = timespec64_to_timespec(now64);
502 return update_persistent_clock(now);
503 }
504 #endif
505
506 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
507 static void sync_cmos_clock(struct work_struct *work);
508
509 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
510
511 static void sync_cmos_clock(struct work_struct *work)
512 {
513 struct timespec64 now;
514 struct timespec64 next;
515 int fail = 1;
516
517 /*
518 * If we have an externally synchronized Linux clock, then update
519 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
520 * called as close as possible to 500 ms before the new second starts.
521 * This code is run on a timer. If the clock is set, that timer
522 * may not expire at the correct time. Thus, we adjust...
523 * We want the clock to be within a couple of ticks from the target.
524 */
525 if (!ntp_synced()) {
526 /*
527 * Not synced, exit, do not restart a timer (if one is
528 * running, let it run out).
529 */
530 return;
531 }
532
533 getnstimeofday64(&now);
534 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
535 struct timespec64 adjust = now;
536
537 fail = -ENODEV;
538 if (persistent_clock_is_local)
539 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
540 #ifdef CONFIG_GENERIC_CMOS_UPDATE
541 fail = update_persistent_clock64(adjust);
542 #endif
543
544 #ifdef CONFIG_RTC_SYSTOHC
545 if (fail == -ENODEV)
546 fail = rtc_set_ntp_time(adjust);
547 #endif
548 }
549
550 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
551 if (next.tv_nsec <= 0)
552 next.tv_nsec += NSEC_PER_SEC;
553
554 if (!fail || fail == -ENODEV)
555 next.tv_sec = 659;
556 else
557 next.tv_sec = 0;
558
559 if (next.tv_nsec >= NSEC_PER_SEC) {
560 next.tv_sec++;
561 next.tv_nsec -= NSEC_PER_SEC;
562 }
563 queue_delayed_work(system_power_efficient_wq,
564 &sync_cmos_work, timespec64_to_jiffies(&next));
565 }
566
567 void ntp_notify_cmos_timer(void)
568 {
569 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
570 }
571
572 #else
573 void ntp_notify_cmos_timer(void) { }
574 #endif
575
576
577 /*
578 * Propagate a new txc->status value into the NTP state:
579 */
580 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
581 {
582 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
583 time_state = TIME_OK;
584 time_status = STA_UNSYNC;
585 ntp_next_leap_sec = TIME64_MAX;
586 /* restart PPS frequency calibration */
587 pps_reset_freq_interval();
588 }
589
590 /*
591 * If we turn on PLL adjustments then reset the
592 * reference time to current time.
593 */
594 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
595 time_reftime = get_seconds();
596
597 /* only set allowed bits */
598 time_status &= STA_RONLY;
599 time_status |= txc->status & ~STA_RONLY;
600 }
601
602
603 static inline void process_adjtimex_modes(struct timex *txc,
604 struct timespec64 *ts,
605 s32 *time_tai)
606 {
607 if (txc->modes & ADJ_STATUS)
608 process_adj_status(txc, ts);
609
610 if (txc->modes & ADJ_NANO)
611 time_status |= STA_NANO;
612
613 if (txc->modes & ADJ_MICRO)
614 time_status &= ~STA_NANO;
615
616 if (txc->modes & ADJ_FREQUENCY) {
617 time_freq = txc->freq * PPM_SCALE;
618 time_freq = min(time_freq, MAXFREQ_SCALED);
619 time_freq = max(time_freq, -MAXFREQ_SCALED);
620 /* update pps_freq */
621 pps_set_freq(time_freq);
622 }
623
624 if (txc->modes & ADJ_MAXERROR)
625 time_maxerror = txc->maxerror;
626
627 if (txc->modes & ADJ_ESTERROR)
628 time_esterror = txc->esterror;
629
630 if (txc->modes & ADJ_TIMECONST) {
631 time_constant = txc->constant;
632 if (!(time_status & STA_NANO))
633 time_constant += 4;
634 time_constant = min(time_constant, (long)MAXTC);
635 time_constant = max(time_constant, 0l);
636 }
637
638 if (txc->modes & ADJ_TAI && txc->constant > 0)
639 *time_tai = txc->constant;
640
641 if (txc->modes & ADJ_OFFSET)
642 ntp_update_offset(txc->offset);
643
644 if (txc->modes & ADJ_TICK)
645 tick_usec = txc->tick;
646
647 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
648 ntp_update_frequency();
649 }
650
651
652
653 /**
654 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
655 */
656 int ntp_validate_timex(struct timex *txc)
657 {
658 if (txc->modes & ADJ_ADJTIME) {
659 /* singleshot must not be used with any other mode bits */
660 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
661 return -EINVAL;
662 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
663 !capable(CAP_SYS_TIME))
664 return -EPERM;
665 } else {
666 /* In order to modify anything, you gotta be super-user! */
667 if (txc->modes && !capable(CAP_SYS_TIME))
668 return -EPERM;
669 /*
670 * if the quartz is off by more than 10% then
671 * something is VERY wrong!
672 */
673 if (txc->modes & ADJ_TICK &&
674 (txc->tick < 900000/USER_HZ ||
675 txc->tick > 1100000/USER_HZ))
676 return -EINVAL;
677 }
678
679 if (txc->modes & ADJ_SETOFFSET) {
680 /* In order to inject time, you gotta be super-user! */
681 if (!capable(CAP_SYS_TIME))
682 return -EPERM;
683
684 if (!timeval_inject_offset_valid(&txc->time))
685 return -EINVAL;
686 }
687
688 /*
689 * Check for potential multiplication overflows that can
690 * only happen on 64-bit systems:
691 */
692 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
693 if (LLONG_MIN / PPM_SCALE > txc->freq)
694 return -EINVAL;
695 if (LLONG_MAX / PPM_SCALE < txc->freq)
696 return -EINVAL;
697 }
698
699 return 0;
700 }
701
702
703 /*
704 * adjtimex mainly allows reading (and writing, if superuser) of
705 * kernel time-keeping variables. used by xntpd.
706 */
707 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
708 {
709 int result;
710
711 if (txc->modes & ADJ_ADJTIME) {
712 long save_adjust = time_adjust;
713
714 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
715 /* adjtime() is independent from ntp_adjtime() */
716 time_adjust = txc->offset;
717 ntp_update_frequency();
718 }
719 txc->offset = save_adjust;
720 } else {
721
722 /* If there are input parameters, then process them: */
723 if (txc->modes)
724 process_adjtimex_modes(txc, ts, time_tai);
725
726 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
727 NTP_SCALE_SHIFT);
728 if (!(time_status & STA_NANO))
729 txc->offset /= NSEC_PER_USEC;
730 }
731
732 result = time_state; /* mostly `TIME_OK' */
733 /* check for errors */
734 if (is_error_status(time_status))
735 result = TIME_ERROR;
736
737 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
738 PPM_SCALE_INV, NTP_SCALE_SHIFT);
739 txc->maxerror = time_maxerror;
740 txc->esterror = time_esterror;
741 txc->status = time_status;
742 txc->constant = time_constant;
743 txc->precision = 1;
744 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
745 txc->tick = tick_usec;
746 txc->tai = *time_tai;
747
748 /* fill PPS status fields */
749 pps_fill_timex(txc);
750
751 txc->time.tv_sec = (time_t)ts->tv_sec;
752 txc->time.tv_usec = ts->tv_nsec;
753 if (!(time_status & STA_NANO))
754 txc->time.tv_usec /= NSEC_PER_USEC;
755
756 /* Handle leapsec adjustments */
757 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
758 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
759 result = TIME_OOP;
760 txc->tai++;
761 txc->time.tv_sec--;
762 }
763 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
764 result = TIME_WAIT;
765 txc->tai--;
766 txc->time.tv_sec++;
767 }
768 if ((time_state == TIME_OOP) &&
769 (ts->tv_sec == ntp_next_leap_sec)) {
770 result = TIME_WAIT;
771 }
772 }
773
774 return result;
775 }
776
777 #ifdef CONFIG_NTP_PPS
778
779 /* actually struct pps_normtime is good old struct timespec, but it is
780 * semantically different (and it is the reason why it was invented):
781 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
782 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
783 struct pps_normtime {
784 s64 sec; /* seconds */
785 long nsec; /* nanoseconds */
786 };
787
788 /* normalize the timestamp so that nsec is in the
789 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
790 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
791 {
792 struct pps_normtime norm = {
793 .sec = ts.tv_sec,
794 .nsec = ts.tv_nsec
795 };
796
797 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
798 norm.nsec -= NSEC_PER_SEC;
799 norm.sec++;
800 }
801
802 return norm;
803 }
804
805 /* get current phase correction and jitter */
806 static inline long pps_phase_filter_get(long *jitter)
807 {
808 *jitter = pps_tf[0] - pps_tf[1];
809 if (*jitter < 0)
810 *jitter = -*jitter;
811
812 /* TODO: test various filters */
813 return pps_tf[0];
814 }
815
816 /* add the sample to the phase filter */
817 static inline void pps_phase_filter_add(long err)
818 {
819 pps_tf[2] = pps_tf[1];
820 pps_tf[1] = pps_tf[0];
821 pps_tf[0] = err;
822 }
823
824 /* decrease frequency calibration interval length.
825 * It is halved after four consecutive unstable intervals.
826 */
827 static inline void pps_dec_freq_interval(void)
828 {
829 if (--pps_intcnt <= -PPS_INTCOUNT) {
830 pps_intcnt = -PPS_INTCOUNT;
831 if (pps_shift > PPS_INTMIN) {
832 pps_shift--;
833 pps_intcnt = 0;
834 }
835 }
836 }
837
838 /* increase frequency calibration interval length.
839 * It is doubled after four consecutive stable intervals.
840 */
841 static inline void pps_inc_freq_interval(void)
842 {
843 if (++pps_intcnt >= PPS_INTCOUNT) {
844 pps_intcnt = PPS_INTCOUNT;
845 if (pps_shift < PPS_INTMAX) {
846 pps_shift++;
847 pps_intcnt = 0;
848 }
849 }
850 }
851
852 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
853 * timestamps
854 *
855 * At the end of the calibration interval the difference between the
856 * first and last MONOTONIC_RAW clock timestamps divided by the length
857 * of the interval becomes the frequency update. If the interval was
858 * too long, the data are discarded.
859 * Returns the difference between old and new frequency values.
860 */
861 static long hardpps_update_freq(struct pps_normtime freq_norm)
862 {
863 long delta, delta_mod;
864 s64 ftemp;
865
866 /* check if the frequency interval was too long */
867 if (freq_norm.sec > (2 << pps_shift)) {
868 time_status |= STA_PPSERROR;
869 pps_errcnt++;
870 pps_dec_freq_interval();
871 printk_deferred(KERN_ERR
872 "hardpps: PPSERROR: interval too long - %lld s\n",
873 freq_norm.sec);
874 return 0;
875 }
876
877 /* here the raw frequency offset and wander (stability) is
878 * calculated. If the wander is less than the wander threshold
879 * the interval is increased; otherwise it is decreased.
880 */
881 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
882 freq_norm.sec);
883 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
884 pps_freq = ftemp;
885 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
886 printk_deferred(KERN_WARNING
887 "hardpps: PPSWANDER: change=%ld\n", delta);
888 time_status |= STA_PPSWANDER;
889 pps_stbcnt++;
890 pps_dec_freq_interval();
891 } else { /* good sample */
892 pps_inc_freq_interval();
893 }
894
895 /* the stability metric is calculated as the average of recent
896 * frequency changes, but is used only for performance
897 * monitoring
898 */
899 delta_mod = delta;
900 if (delta_mod < 0)
901 delta_mod = -delta_mod;
902 pps_stabil += (div_s64(((s64)delta_mod) <<
903 (NTP_SCALE_SHIFT - SHIFT_USEC),
904 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
905
906 /* if enabled, the system clock frequency is updated */
907 if ((time_status & STA_PPSFREQ) != 0 &&
908 (time_status & STA_FREQHOLD) == 0) {
909 time_freq = pps_freq;
910 ntp_update_frequency();
911 }
912
913 return delta;
914 }
915
916 /* correct REALTIME clock phase error against PPS signal */
917 static void hardpps_update_phase(long error)
918 {
919 long correction = -error;
920 long jitter;
921
922 /* add the sample to the median filter */
923 pps_phase_filter_add(correction);
924 correction = pps_phase_filter_get(&jitter);
925
926 /* Nominal jitter is due to PPS signal noise. If it exceeds the
927 * threshold, the sample is discarded; otherwise, if so enabled,
928 * the time offset is updated.
929 */
930 if (jitter > (pps_jitter << PPS_POPCORN)) {
931 printk_deferred(KERN_WARNING
932 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
933 jitter, (pps_jitter << PPS_POPCORN));
934 time_status |= STA_PPSJITTER;
935 pps_jitcnt++;
936 } else if (time_status & STA_PPSTIME) {
937 /* correct the time using the phase offset */
938 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
939 NTP_INTERVAL_FREQ);
940 /* cancel running adjtime() */
941 time_adjust = 0;
942 }
943 /* update jitter */
944 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
945 }
946
947 /*
948 * __hardpps() - discipline CPU clock oscillator to external PPS signal
949 *
950 * This routine is called at each PPS signal arrival in order to
951 * discipline the CPU clock oscillator to the PPS signal. It takes two
952 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
953 * is used to correct clock phase error and the latter is used to
954 * correct the frequency.
955 *
956 * This code is based on David Mills's reference nanokernel
957 * implementation. It was mostly rewritten but keeps the same idea.
958 */
959 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
960 {
961 struct pps_normtime pts_norm, freq_norm;
962
963 pts_norm = pps_normalize_ts(*phase_ts);
964
965 /* clear the error bits, they will be set again if needed */
966 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
967
968 /* indicate signal presence */
969 time_status |= STA_PPSSIGNAL;
970 pps_valid = PPS_VALID;
971
972 /* when called for the first time,
973 * just start the frequency interval */
974 if (unlikely(pps_fbase.tv_sec == 0)) {
975 pps_fbase = *raw_ts;
976 return;
977 }
978
979 /* ok, now we have a base for frequency calculation */
980 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
981
982 /* check that the signal is in the range
983 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
984 if ((freq_norm.sec == 0) ||
985 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
986 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
987 time_status |= STA_PPSJITTER;
988 /* restart the frequency calibration interval */
989 pps_fbase = *raw_ts;
990 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
991 return;
992 }
993
994 /* signal is ok */
995
996 /* check if the current frequency interval is finished */
997 if (freq_norm.sec >= (1 << pps_shift)) {
998 pps_calcnt++;
999 /* restart the frequency calibration interval */
1000 pps_fbase = *raw_ts;
1001 hardpps_update_freq(freq_norm);
1002 }
1003
1004 hardpps_update_phase(pts_norm.nsec);
1005
1006 }
1007 #endif /* CONFIG_NTP_PPS */
1008
1009 static int __init ntp_tick_adj_setup(char *str)
1010 {
1011 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1012
1013 if (rc)
1014 return rc;
1015 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1016
1017 return 1;
1018 }
1019
1020 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1021
1022 void __init ntp_init(void)
1023 {
1024 ntp_clear();
1025 }
This page took 0.063882 seconds and 5 git commands to generate.