Fix leaks on /proc/{*/sched,sched_debug,timer_list,timer_stats}
[deliverable/linux.git] / kernel / time / timer_stats.c
1 /*
2 * kernel/time/timer_stats.c
3 *
4 * Collect timer usage statistics.
5 *
6 * Copyright(C) 2006, Red Hat, Inc., Ingo Molnar
7 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * timer_stats is based on timer_top, a similar functionality which was part of
10 * Con Kolivas dyntick patch set. It was developed by Daniel Petrini at the
11 * Instituto Nokia de Tecnologia - INdT - Manaus. timer_top's design was based
12 * on dynamic allocation of the statistics entries and linear search based
13 * lookup combined with a global lock, rather than the static array, hash
14 * and per-CPU locking which is used by timer_stats. It was written for the
15 * pre hrtimer kernel code and therefore did not take hrtimers into account.
16 * Nevertheless it provided the base for the timer_stats implementation and
17 * was a helpful source of inspiration. Kudos to Daniel and the Nokia folks
18 * for this effort.
19 *
20 * timer_top.c is
21 * Copyright (C) 2005 Instituto Nokia de Tecnologia - INdT - Manaus
22 * Written by Daniel Petrini <d.pensator@gmail.com>
23 * timer_top.c was released under the GNU General Public License version 2
24 *
25 * We export the addresses and counting of timer functions being called,
26 * the pid and cmdline from the owner process if applicable.
27 *
28 * Start/stop data collection:
29 * # echo 1[0] >/proc/timer_stats
30 *
31 * Display the information collected so far:
32 * # cat /proc/timer_stats
33 *
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License version 2 as
36 * published by the Free Software Foundation.
37 */
38
39 #include <linux/proc_fs.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/kallsyms.h>
45
46 #include <asm/uaccess.h>
47
48 /*
49 * This is our basic unit of interest: a timer expiry event identified
50 * by the timer, its start/expire functions and the PID of the task that
51 * started the timer. We count the number of times an event happens:
52 */
53 struct entry {
54 /*
55 * Hash list:
56 */
57 struct entry *next;
58
59 /*
60 * Hash keys:
61 */
62 void *timer;
63 void *start_func;
64 void *expire_func;
65 pid_t pid;
66
67 /*
68 * Number of timeout events:
69 */
70 unsigned long count;
71 unsigned int timer_flag;
72
73 /*
74 * We save the command-line string to preserve
75 * this information past task exit:
76 */
77 char comm[TASK_COMM_LEN + 1];
78
79 } ____cacheline_aligned_in_smp;
80
81 /*
82 * Spinlock protecting the tables - not taken during lookup:
83 */
84 static DEFINE_SPINLOCK(table_lock);
85
86 /*
87 * Per-CPU lookup locks for fast hash lookup:
88 */
89 static DEFINE_PER_CPU(spinlock_t, lookup_lock);
90
91 /*
92 * Mutex to serialize state changes with show-stats activities:
93 */
94 static DEFINE_MUTEX(show_mutex);
95
96 /*
97 * Collection status, active/inactive:
98 */
99 static int __read_mostly active;
100
101 /*
102 * Beginning/end timestamps of measurement:
103 */
104 static ktime_t time_start, time_stop;
105
106 /*
107 * tstat entry structs only get allocated while collection is
108 * active and never freed during that time - this simplifies
109 * things quite a bit.
110 *
111 * They get freed when a new collection period is started.
112 */
113 #define MAX_ENTRIES_BITS 10
114 #define MAX_ENTRIES (1UL << MAX_ENTRIES_BITS)
115
116 static unsigned long nr_entries;
117 static struct entry entries[MAX_ENTRIES];
118
119 static atomic_t overflow_count;
120
121 /*
122 * The entries are in a hash-table, for fast lookup:
123 */
124 #define TSTAT_HASH_BITS (MAX_ENTRIES_BITS - 1)
125 #define TSTAT_HASH_SIZE (1UL << TSTAT_HASH_BITS)
126 #define TSTAT_HASH_MASK (TSTAT_HASH_SIZE - 1)
127
128 #define __tstat_hashfn(entry) \
129 (((unsigned long)(entry)->timer ^ \
130 (unsigned long)(entry)->start_func ^ \
131 (unsigned long)(entry)->expire_func ^ \
132 (unsigned long)(entry)->pid ) & TSTAT_HASH_MASK)
133
134 #define tstat_hashentry(entry) (tstat_hash_table + __tstat_hashfn(entry))
135
136 static struct entry *tstat_hash_table[TSTAT_HASH_SIZE] __read_mostly;
137
138 static void reset_entries(void)
139 {
140 nr_entries = 0;
141 memset(entries, 0, sizeof(entries));
142 memset(tstat_hash_table, 0, sizeof(tstat_hash_table));
143 atomic_set(&overflow_count, 0);
144 }
145
146 static struct entry *alloc_entry(void)
147 {
148 if (nr_entries >= MAX_ENTRIES)
149 return NULL;
150
151 return entries + nr_entries++;
152 }
153
154 static int match_entries(struct entry *entry1, struct entry *entry2)
155 {
156 return entry1->timer == entry2->timer &&
157 entry1->start_func == entry2->start_func &&
158 entry1->expire_func == entry2->expire_func &&
159 entry1->pid == entry2->pid;
160 }
161
162 /*
163 * Look up whether an entry matching this item is present
164 * in the hash already. Must be called with irqs off and the
165 * lookup lock held:
166 */
167 static struct entry *tstat_lookup(struct entry *entry, char *comm)
168 {
169 struct entry **head, *curr, *prev;
170
171 head = tstat_hashentry(entry);
172 curr = *head;
173
174 /*
175 * The fastpath is when the entry is already hashed,
176 * we do this with the lookup lock held, but with the
177 * table lock not held:
178 */
179 while (curr) {
180 if (match_entries(curr, entry))
181 return curr;
182
183 curr = curr->next;
184 }
185 /*
186 * Slowpath: allocate, set up and link a new hash entry:
187 */
188 prev = NULL;
189 curr = *head;
190
191 spin_lock(&table_lock);
192 /*
193 * Make sure we have not raced with another CPU:
194 */
195 while (curr) {
196 if (match_entries(curr, entry))
197 goto out_unlock;
198
199 prev = curr;
200 curr = curr->next;
201 }
202
203 curr = alloc_entry();
204 if (curr) {
205 *curr = *entry;
206 curr->count = 0;
207 curr->next = NULL;
208 memcpy(curr->comm, comm, TASK_COMM_LEN);
209
210 smp_mb(); /* Ensure that curr is initialized before insert */
211
212 if (prev)
213 prev->next = curr;
214 else
215 *head = curr;
216 }
217 out_unlock:
218 spin_unlock(&table_lock);
219
220 return curr;
221 }
222
223 /**
224 * timer_stats_update_stats - Update the statistics for a timer.
225 * @timer: pointer to either a timer_list or a hrtimer
226 * @pid: the pid of the task which set up the timer
227 * @startf: pointer to the function which did the timer setup
228 * @timerf: pointer to the timer callback function of the timer
229 * @comm: name of the process which set up the timer
230 *
231 * When the timer is already registered, then the event counter is
232 * incremented. Otherwise the timer is registered in a free slot.
233 */
234 void timer_stats_update_stats(void *timer, pid_t pid, void *startf,
235 void *timerf, char *comm,
236 unsigned int timer_flag)
237 {
238 /*
239 * It doesnt matter which lock we take:
240 */
241 spinlock_t *lock;
242 struct entry *entry, input;
243 unsigned long flags;
244
245 if (likely(!active))
246 return;
247
248 lock = &per_cpu(lookup_lock, raw_smp_processor_id());
249
250 input.timer = timer;
251 input.start_func = startf;
252 input.expire_func = timerf;
253 input.pid = pid;
254 input.timer_flag = timer_flag;
255
256 spin_lock_irqsave(lock, flags);
257 if (!active)
258 goto out_unlock;
259
260 entry = tstat_lookup(&input, comm);
261 if (likely(entry))
262 entry->count++;
263 else
264 atomic_inc(&overflow_count);
265
266 out_unlock:
267 spin_unlock_irqrestore(lock, flags);
268 }
269
270 static void print_name_offset(struct seq_file *m, unsigned long addr)
271 {
272 char symname[KSYM_NAME_LEN];
273
274 if (lookup_symbol_name(addr, symname) < 0)
275 seq_printf(m, "<%p>", (void *)addr);
276 else
277 seq_printf(m, "%s", symname);
278 }
279
280 static int tstats_show(struct seq_file *m, void *v)
281 {
282 struct timespec period;
283 struct entry *entry;
284 unsigned long ms;
285 long events = 0;
286 ktime_t time;
287 int i;
288
289 mutex_lock(&show_mutex);
290 /*
291 * If still active then calculate up to now:
292 */
293 if (active)
294 time_stop = ktime_get();
295
296 time = ktime_sub(time_stop, time_start);
297
298 period = ktime_to_timespec(time);
299 ms = period.tv_nsec / 1000000;
300
301 seq_puts(m, "Timer Stats Version: v0.2\n");
302 seq_printf(m, "Sample period: %ld.%03ld s\n", period.tv_sec, ms);
303 if (atomic_read(&overflow_count))
304 seq_printf(m, "Overflow: %d entries\n",
305 atomic_read(&overflow_count));
306
307 for (i = 0; i < nr_entries; i++) {
308 entry = entries + i;
309 if (entry->timer_flag & TIMER_STATS_FLAG_DEFERRABLE) {
310 seq_printf(m, "%4luD, %5d %-16s ",
311 entry->count, entry->pid, entry->comm);
312 } else {
313 seq_printf(m, " %4lu, %5d %-16s ",
314 entry->count, entry->pid, entry->comm);
315 }
316
317 print_name_offset(m, (unsigned long)entry->start_func);
318 seq_puts(m, " (");
319 print_name_offset(m, (unsigned long)entry->expire_func);
320 seq_puts(m, ")\n");
321
322 events += entry->count;
323 }
324
325 ms += period.tv_sec * 1000;
326 if (!ms)
327 ms = 1;
328
329 if (events && period.tv_sec)
330 seq_printf(m, "%ld total events, %ld.%ld events/sec\n", events,
331 events / period.tv_sec, events * 1000 / ms);
332 else
333 seq_printf(m, "%ld total events\n", events);
334
335 mutex_unlock(&show_mutex);
336
337 return 0;
338 }
339
340 /*
341 * After a state change, make sure all concurrent lookup/update
342 * activities have stopped:
343 */
344 static void sync_access(void)
345 {
346 unsigned long flags;
347 int cpu;
348
349 for_each_online_cpu(cpu) {
350 spin_lock_irqsave(&per_cpu(lookup_lock, cpu), flags);
351 /* nothing */
352 spin_unlock_irqrestore(&per_cpu(lookup_lock, cpu), flags);
353 }
354 }
355
356 static ssize_t tstats_write(struct file *file, const char __user *buf,
357 size_t count, loff_t *offs)
358 {
359 char ctl[2];
360
361 if (count != 2 || *offs)
362 return -EINVAL;
363
364 if (copy_from_user(ctl, buf, count))
365 return -EFAULT;
366
367 mutex_lock(&show_mutex);
368 switch (ctl[0]) {
369 case '0':
370 if (active) {
371 active = 0;
372 time_stop = ktime_get();
373 sync_access();
374 }
375 break;
376 case '1':
377 if (!active) {
378 reset_entries();
379 time_start = ktime_get();
380 smp_mb();
381 active = 1;
382 }
383 break;
384 default:
385 count = -EINVAL;
386 }
387 mutex_unlock(&show_mutex);
388
389 return count;
390 }
391
392 static int tstats_open(struct inode *inode, struct file *filp)
393 {
394 return single_open(filp, tstats_show, NULL);
395 }
396
397 static struct file_operations tstats_fops = {
398 .open = tstats_open,
399 .read = seq_read,
400 .write = tstats_write,
401 .llseek = seq_lseek,
402 .release = single_release,
403 };
404
405 void __init init_timer_stats(void)
406 {
407 int cpu;
408
409 for_each_possible_cpu(cpu)
410 spin_lock_init(&per_cpu(lookup_lock, cpu));
411 }
412
413 static int __init init_tstats_procfs(void)
414 {
415 struct proc_dir_entry *pe;
416
417 pe = create_proc_entry("timer_stats", 0644, NULL);
418 if (!pe)
419 return -ENOMEM;
420
421 pe->proc_fops = &tstats_fops;
422
423 return 0;
424 }
425 __initcall(init_tstats_procfs);
This page took 0.11023 seconds and 5 git commands to generate.