megaraid_sas: add missing curly braces in ioctl handler
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
300
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
303
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309
310 /*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
324 cpu_worker_pools);
325
326 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
327
328 /* PL: hash of all unbound pools keyed by pool->attrs */
329 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
330
331 /* I: attributes used when instantiating standard unbound pools on demand */
332 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
333
334 /* I: attributes used when instantiating ordered pools on demand */
335 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
336
337 struct workqueue_struct *system_wq __read_mostly;
338 EXPORT_SYMBOL(system_wq);
339 struct workqueue_struct *system_highpri_wq __read_mostly;
340 EXPORT_SYMBOL_GPL(system_highpri_wq);
341 struct workqueue_struct *system_long_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_long_wq);
343 struct workqueue_struct *system_unbound_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_unbound_wq);
345 struct workqueue_struct *system_freezable_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_freezable_wq);
347 struct workqueue_struct *system_power_efficient_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
349 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
351
352 static int worker_thread(void *__worker);
353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
354
355 #define CREATE_TRACE_POINTS
356 #include <trace/events/workqueue.h>
357
358 #define assert_rcu_or_pool_mutex() \
359 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
360 !lockdep_is_held(&wq_pool_mutex), \
361 "sched RCU or wq_pool_mutex should be held")
362
363 #define assert_rcu_or_wq_mutex(wq) \
364 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
365 !lockdep_is_held(&wq->mutex), \
366 "sched RCU or wq->mutex should be held")
367
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
369 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "sched RCU, wq->mutex or wq_pool_mutex should be held")
373
374 #define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 (pool)++)
378
379 /**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
382 * @pi: integer used for iteration
383 *
384 * This must be called either with wq_pool_mutex held or sched RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
394 else
395
396 /**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
399 * @pool: worker_pool to iterate workers of
400 *
401 * This must be called with @pool->attach_mutex.
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
406 #define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
408 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
409 else
410
411 /**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
415 *
416 * This must be called either with wq->mutex held or sched RCU read locked.
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
422 */
423 #define for_each_pwq(pwq, wq) \
424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
425 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
426 else
427
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430 static struct debug_obj_descr work_debug_descr;
431
432 static void *work_debug_hint(void *addr)
433 {
434 return ((struct work_struct *) addr)->func;
435 }
436
437 /*
438 * fixup_init is called when:
439 * - an active object is initialized
440 */
441 static int work_fixup_init(void *addr, enum debug_obj_state state)
442 {
443 struct work_struct *work = addr;
444
445 switch (state) {
446 case ODEBUG_STATE_ACTIVE:
447 cancel_work_sync(work);
448 debug_object_init(work, &work_debug_descr);
449 return 1;
450 default:
451 return 0;
452 }
453 }
454
455 /*
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
459 */
460 static int work_fixup_activate(void *addr, enum debug_obj_state state)
461 {
462 struct work_struct *work = addr;
463
464 switch (state) {
465
466 case ODEBUG_STATE_NOTAVAILABLE:
467 /*
468 * This is not really a fixup. The work struct was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
471 */
472 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
473 debug_object_init(work, &work_debug_descr);
474 debug_object_activate(work, &work_debug_descr);
475 return 0;
476 }
477 WARN_ON_ONCE(1);
478 return 0;
479
480 case ODEBUG_STATE_ACTIVE:
481 WARN_ON(1);
482
483 default:
484 return 0;
485 }
486 }
487
488 /*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
492 static int work_fixup_free(void *addr, enum debug_obj_state state)
493 {
494 struct work_struct *work = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 cancel_work_sync(work);
499 debug_object_free(work, &work_debug_descr);
500 return 1;
501 default:
502 return 0;
503 }
504 }
505
506 static struct debug_obj_descr work_debug_descr = {
507 .name = "work_struct",
508 .debug_hint = work_debug_hint,
509 .fixup_init = work_fixup_init,
510 .fixup_activate = work_fixup_activate,
511 .fixup_free = work_fixup_free,
512 };
513
514 static inline void debug_work_activate(struct work_struct *work)
515 {
516 debug_object_activate(work, &work_debug_descr);
517 }
518
519 static inline void debug_work_deactivate(struct work_struct *work)
520 {
521 debug_object_deactivate(work, &work_debug_descr);
522 }
523
524 void __init_work(struct work_struct *work, int onstack)
525 {
526 if (onstack)
527 debug_object_init_on_stack(work, &work_debug_descr);
528 else
529 debug_object_init(work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(__init_work);
532
533 void destroy_work_on_stack(struct work_struct *work)
534 {
535 debug_object_free(work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538
539 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 {
541 destroy_timer_on_stack(&work->timer);
542 debug_object_free(&work->work, &work_debug_descr);
543 }
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545
546 #else
547 static inline void debug_work_activate(struct work_struct *work) { }
548 static inline void debug_work_deactivate(struct work_struct *work) { }
549 #endif
550
551 /**
552 * worker_pool_assign_id - allocate ID and assing it to @pool
553 * @pool: the pool pointer of interest
554 *
555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556 * successfully, -errno on failure.
557 */
558 static int worker_pool_assign_id(struct worker_pool *pool)
559 {
560 int ret;
561
562 lockdep_assert_held(&wq_pool_mutex);
563
564 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 GFP_KERNEL);
566 if (ret >= 0) {
567 pool->id = ret;
568 return 0;
569 }
570 return ret;
571 }
572
573 /**
574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575 * @wq: the target workqueue
576 * @node: the node ID
577 *
578 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
579 * read locked.
580 * If the pwq needs to be used beyond the locking in effect, the caller is
581 * responsible for guaranteeing that the pwq stays online.
582 *
583 * Return: The unbound pool_workqueue for @node.
584 */
585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 int node)
587 {
588 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589
590 /*
591 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 * delayed item is pending. The plan is to keep CPU -> NODE
593 * mapping valid and stable across CPU on/offlines. Once that
594 * happens, this workaround can be removed.
595 */
596 if (unlikely(node == NUMA_NO_NODE))
597 return wq->dfl_pwq;
598
599 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600 }
601
602 static unsigned int work_color_to_flags(int color)
603 {
604 return color << WORK_STRUCT_COLOR_SHIFT;
605 }
606
607 static int get_work_color(struct work_struct *work)
608 {
609 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
610 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
611 }
612
613 static int work_next_color(int color)
614 {
615 return (color + 1) % WORK_NR_COLORS;
616 }
617
618 /*
619 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620 * contain the pointer to the queued pwq. Once execution starts, the flag
621 * is cleared and the high bits contain OFFQ flags and pool ID.
622 *
623 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624 * and clear_work_data() can be used to set the pwq, pool or clear
625 * work->data. These functions should only be called while the work is
626 * owned - ie. while the PENDING bit is set.
627 *
628 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629 * corresponding to a work. Pool is available once the work has been
630 * queued anywhere after initialization until it is sync canceled. pwq is
631 * available only while the work item is queued.
632 *
633 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634 * canceled. While being canceled, a work item may have its PENDING set
635 * but stay off timer and worklist for arbitrarily long and nobody should
636 * try to steal the PENDING bit.
637 */
638 static inline void set_work_data(struct work_struct *work, unsigned long data,
639 unsigned long flags)
640 {
641 WARN_ON_ONCE(!work_pending(work));
642 atomic_long_set(&work->data, data | flags | work_static(work));
643 }
644
645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 unsigned long extra_flags)
647 {
648 set_work_data(work, (unsigned long)pwq,
649 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 }
651
652 static void set_work_pool_and_keep_pending(struct work_struct *work,
653 int pool_id)
654 {
655 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 WORK_STRUCT_PENDING);
657 }
658
659 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 int pool_id)
661 {
662 /*
663 * The following wmb is paired with the implied mb in
664 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 * here are visible to and precede any updates by the next PENDING
666 * owner.
667 */
668 smp_wmb();
669 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 }
671
672 static void clear_work_data(struct work_struct *work)
673 {
674 smp_wmb(); /* see set_work_pool_and_clear_pending() */
675 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
676 }
677
678 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
679 {
680 unsigned long data = atomic_long_read(&work->data);
681
682 if (data & WORK_STRUCT_PWQ)
683 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
684 else
685 return NULL;
686 }
687
688 /**
689 * get_work_pool - return the worker_pool a given work was associated with
690 * @work: the work item of interest
691 *
692 * Pools are created and destroyed under wq_pool_mutex, and allows read
693 * access under sched-RCU read lock. As such, this function should be
694 * called under wq_pool_mutex or with preemption disabled.
695 *
696 * All fields of the returned pool are accessible as long as the above
697 * mentioned locking is in effect. If the returned pool needs to be used
698 * beyond the critical section, the caller is responsible for ensuring the
699 * returned pool is and stays online.
700 *
701 * Return: The worker_pool @work was last associated with. %NULL if none.
702 */
703 static struct worker_pool *get_work_pool(struct work_struct *work)
704 {
705 unsigned long data = atomic_long_read(&work->data);
706 int pool_id;
707
708 assert_rcu_or_pool_mutex();
709
710 if (data & WORK_STRUCT_PWQ)
711 return ((struct pool_workqueue *)
712 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
713
714 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
715 if (pool_id == WORK_OFFQ_POOL_NONE)
716 return NULL;
717
718 return idr_find(&worker_pool_idr, pool_id);
719 }
720
721 /**
722 * get_work_pool_id - return the worker pool ID a given work is associated with
723 * @work: the work item of interest
724 *
725 * Return: The worker_pool ID @work was last associated with.
726 * %WORK_OFFQ_POOL_NONE if none.
727 */
728 static int get_work_pool_id(struct work_struct *work)
729 {
730 unsigned long data = atomic_long_read(&work->data);
731
732 if (data & WORK_STRUCT_PWQ)
733 return ((struct pool_workqueue *)
734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
735
736 return data >> WORK_OFFQ_POOL_SHIFT;
737 }
738
739 static void mark_work_canceling(struct work_struct *work)
740 {
741 unsigned long pool_id = get_work_pool_id(work);
742
743 pool_id <<= WORK_OFFQ_POOL_SHIFT;
744 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
745 }
746
747 static bool work_is_canceling(struct work_struct *work)
748 {
749 unsigned long data = atomic_long_read(&work->data);
750
751 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
752 }
753
754 /*
755 * Policy functions. These define the policies on how the global worker
756 * pools are managed. Unless noted otherwise, these functions assume that
757 * they're being called with pool->lock held.
758 */
759
760 static bool __need_more_worker(struct worker_pool *pool)
761 {
762 return !atomic_read(&pool->nr_running);
763 }
764
765 /*
766 * Need to wake up a worker? Called from anything but currently
767 * running workers.
768 *
769 * Note that, because unbound workers never contribute to nr_running, this
770 * function will always return %true for unbound pools as long as the
771 * worklist isn't empty.
772 */
773 static bool need_more_worker(struct worker_pool *pool)
774 {
775 return !list_empty(&pool->worklist) && __need_more_worker(pool);
776 }
777
778 /* Can I start working? Called from busy but !running workers. */
779 static bool may_start_working(struct worker_pool *pool)
780 {
781 return pool->nr_idle;
782 }
783
784 /* Do I need to keep working? Called from currently running workers. */
785 static bool keep_working(struct worker_pool *pool)
786 {
787 return !list_empty(&pool->worklist) &&
788 atomic_read(&pool->nr_running) <= 1;
789 }
790
791 /* Do we need a new worker? Called from manager. */
792 static bool need_to_create_worker(struct worker_pool *pool)
793 {
794 return need_more_worker(pool) && !may_start_working(pool);
795 }
796
797 /* Do we have too many workers and should some go away? */
798 static bool too_many_workers(struct worker_pool *pool)
799 {
800 bool managing = mutex_is_locked(&pool->manager_arb);
801 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
802 int nr_busy = pool->nr_workers - nr_idle;
803
804 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
805 }
806
807 /*
808 * Wake up functions.
809 */
810
811 /* Return the first idle worker. Safe with preemption disabled */
812 static struct worker *first_idle_worker(struct worker_pool *pool)
813 {
814 if (unlikely(list_empty(&pool->idle_list)))
815 return NULL;
816
817 return list_first_entry(&pool->idle_list, struct worker, entry);
818 }
819
820 /**
821 * wake_up_worker - wake up an idle worker
822 * @pool: worker pool to wake worker from
823 *
824 * Wake up the first idle worker of @pool.
825 *
826 * CONTEXT:
827 * spin_lock_irq(pool->lock).
828 */
829 static void wake_up_worker(struct worker_pool *pool)
830 {
831 struct worker *worker = first_idle_worker(pool);
832
833 if (likely(worker))
834 wake_up_process(worker->task);
835 }
836
837 /**
838 * wq_worker_waking_up - a worker is waking up
839 * @task: task waking up
840 * @cpu: CPU @task is waking up to
841 *
842 * This function is called during try_to_wake_up() when a worker is
843 * being awoken.
844 *
845 * CONTEXT:
846 * spin_lock_irq(rq->lock)
847 */
848 void wq_worker_waking_up(struct task_struct *task, int cpu)
849 {
850 struct worker *worker = kthread_data(task);
851
852 if (!(worker->flags & WORKER_NOT_RUNNING)) {
853 WARN_ON_ONCE(worker->pool->cpu != cpu);
854 atomic_inc(&worker->pool->nr_running);
855 }
856 }
857
858 /**
859 * wq_worker_sleeping - a worker is going to sleep
860 * @task: task going to sleep
861 * @cpu: CPU in question, must be the current CPU number
862 *
863 * This function is called during schedule() when a busy worker is
864 * going to sleep. Worker on the same cpu can be woken up by
865 * returning pointer to its task.
866 *
867 * CONTEXT:
868 * spin_lock_irq(rq->lock)
869 *
870 * Return:
871 * Worker task on @cpu to wake up, %NULL if none.
872 */
873 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
874 {
875 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
876 struct worker_pool *pool;
877
878 /*
879 * Rescuers, which may not have all the fields set up like normal
880 * workers, also reach here, let's not access anything before
881 * checking NOT_RUNNING.
882 */
883 if (worker->flags & WORKER_NOT_RUNNING)
884 return NULL;
885
886 pool = worker->pool;
887
888 /* this can only happen on the local cpu */
889 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
890 return NULL;
891
892 /*
893 * The counterpart of the following dec_and_test, implied mb,
894 * worklist not empty test sequence is in insert_work().
895 * Please read comment there.
896 *
897 * NOT_RUNNING is clear. This means that we're bound to and
898 * running on the local cpu w/ rq lock held and preemption
899 * disabled, which in turn means that none else could be
900 * manipulating idle_list, so dereferencing idle_list without pool
901 * lock is safe.
902 */
903 if (atomic_dec_and_test(&pool->nr_running) &&
904 !list_empty(&pool->worklist))
905 to_wakeup = first_idle_worker(pool);
906 return to_wakeup ? to_wakeup->task : NULL;
907 }
908
909 /**
910 * worker_set_flags - set worker flags and adjust nr_running accordingly
911 * @worker: self
912 * @flags: flags to set
913 *
914 * Set @flags in @worker->flags and adjust nr_running accordingly.
915 *
916 * CONTEXT:
917 * spin_lock_irq(pool->lock)
918 */
919 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
920 {
921 struct worker_pool *pool = worker->pool;
922
923 WARN_ON_ONCE(worker->task != current);
924
925 /* If transitioning into NOT_RUNNING, adjust nr_running. */
926 if ((flags & WORKER_NOT_RUNNING) &&
927 !(worker->flags & WORKER_NOT_RUNNING)) {
928 atomic_dec(&pool->nr_running);
929 }
930
931 worker->flags |= flags;
932 }
933
934 /**
935 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
936 * @worker: self
937 * @flags: flags to clear
938 *
939 * Clear @flags in @worker->flags and adjust nr_running accordingly.
940 *
941 * CONTEXT:
942 * spin_lock_irq(pool->lock)
943 */
944 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
945 {
946 struct worker_pool *pool = worker->pool;
947 unsigned int oflags = worker->flags;
948
949 WARN_ON_ONCE(worker->task != current);
950
951 worker->flags &= ~flags;
952
953 /*
954 * If transitioning out of NOT_RUNNING, increment nr_running. Note
955 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
956 * of multiple flags, not a single flag.
957 */
958 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
959 if (!(worker->flags & WORKER_NOT_RUNNING))
960 atomic_inc(&pool->nr_running);
961 }
962
963 /**
964 * find_worker_executing_work - find worker which is executing a work
965 * @pool: pool of interest
966 * @work: work to find worker for
967 *
968 * Find a worker which is executing @work on @pool by searching
969 * @pool->busy_hash which is keyed by the address of @work. For a worker
970 * to match, its current execution should match the address of @work and
971 * its work function. This is to avoid unwanted dependency between
972 * unrelated work executions through a work item being recycled while still
973 * being executed.
974 *
975 * This is a bit tricky. A work item may be freed once its execution
976 * starts and nothing prevents the freed area from being recycled for
977 * another work item. If the same work item address ends up being reused
978 * before the original execution finishes, workqueue will identify the
979 * recycled work item as currently executing and make it wait until the
980 * current execution finishes, introducing an unwanted dependency.
981 *
982 * This function checks the work item address and work function to avoid
983 * false positives. Note that this isn't complete as one may construct a
984 * work function which can introduce dependency onto itself through a
985 * recycled work item. Well, if somebody wants to shoot oneself in the
986 * foot that badly, there's only so much we can do, and if such deadlock
987 * actually occurs, it should be easy to locate the culprit work function.
988 *
989 * CONTEXT:
990 * spin_lock_irq(pool->lock).
991 *
992 * Return:
993 * Pointer to worker which is executing @work if found, %NULL
994 * otherwise.
995 */
996 static struct worker *find_worker_executing_work(struct worker_pool *pool,
997 struct work_struct *work)
998 {
999 struct worker *worker;
1000
1001 hash_for_each_possible(pool->busy_hash, worker, hentry,
1002 (unsigned long)work)
1003 if (worker->current_work == work &&
1004 worker->current_func == work->func)
1005 return worker;
1006
1007 return NULL;
1008 }
1009
1010 /**
1011 * move_linked_works - move linked works to a list
1012 * @work: start of series of works to be scheduled
1013 * @head: target list to append @work to
1014 * @nextp: out parameter for nested worklist walking
1015 *
1016 * Schedule linked works starting from @work to @head. Work series to
1017 * be scheduled starts at @work and includes any consecutive work with
1018 * WORK_STRUCT_LINKED set in its predecessor.
1019 *
1020 * If @nextp is not NULL, it's updated to point to the next work of
1021 * the last scheduled work. This allows move_linked_works() to be
1022 * nested inside outer list_for_each_entry_safe().
1023 *
1024 * CONTEXT:
1025 * spin_lock_irq(pool->lock).
1026 */
1027 static void move_linked_works(struct work_struct *work, struct list_head *head,
1028 struct work_struct **nextp)
1029 {
1030 struct work_struct *n;
1031
1032 /*
1033 * Linked worklist will always end before the end of the list,
1034 * use NULL for list head.
1035 */
1036 list_for_each_entry_safe_from(work, n, NULL, entry) {
1037 list_move_tail(&work->entry, head);
1038 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1039 break;
1040 }
1041
1042 /*
1043 * If we're already inside safe list traversal and have moved
1044 * multiple works to the scheduled queue, the next position
1045 * needs to be updated.
1046 */
1047 if (nextp)
1048 *nextp = n;
1049 }
1050
1051 /**
1052 * get_pwq - get an extra reference on the specified pool_workqueue
1053 * @pwq: pool_workqueue to get
1054 *
1055 * Obtain an extra reference on @pwq. The caller should guarantee that
1056 * @pwq has positive refcnt and be holding the matching pool->lock.
1057 */
1058 static void get_pwq(struct pool_workqueue *pwq)
1059 {
1060 lockdep_assert_held(&pwq->pool->lock);
1061 WARN_ON_ONCE(pwq->refcnt <= 0);
1062 pwq->refcnt++;
1063 }
1064
1065 /**
1066 * put_pwq - put a pool_workqueue reference
1067 * @pwq: pool_workqueue to put
1068 *
1069 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1070 * destruction. The caller should be holding the matching pool->lock.
1071 */
1072 static void put_pwq(struct pool_workqueue *pwq)
1073 {
1074 lockdep_assert_held(&pwq->pool->lock);
1075 if (likely(--pwq->refcnt))
1076 return;
1077 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1078 return;
1079 /*
1080 * @pwq can't be released under pool->lock, bounce to
1081 * pwq_unbound_release_workfn(). This never recurses on the same
1082 * pool->lock as this path is taken only for unbound workqueues and
1083 * the release work item is scheduled on a per-cpu workqueue. To
1084 * avoid lockdep warning, unbound pool->locks are given lockdep
1085 * subclass of 1 in get_unbound_pool().
1086 */
1087 schedule_work(&pwq->unbound_release_work);
1088 }
1089
1090 /**
1091 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1092 * @pwq: pool_workqueue to put (can be %NULL)
1093 *
1094 * put_pwq() with locking. This function also allows %NULL @pwq.
1095 */
1096 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1097 {
1098 if (pwq) {
1099 /*
1100 * As both pwqs and pools are sched-RCU protected, the
1101 * following lock operations are safe.
1102 */
1103 spin_lock_irq(&pwq->pool->lock);
1104 put_pwq(pwq);
1105 spin_unlock_irq(&pwq->pool->lock);
1106 }
1107 }
1108
1109 static void pwq_activate_delayed_work(struct work_struct *work)
1110 {
1111 struct pool_workqueue *pwq = get_work_pwq(work);
1112
1113 trace_workqueue_activate_work(work);
1114 if (list_empty(&pwq->pool->worklist))
1115 pwq->pool->watchdog_ts = jiffies;
1116 move_linked_works(work, &pwq->pool->worklist, NULL);
1117 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1118 pwq->nr_active++;
1119 }
1120
1121 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1122 {
1123 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1124 struct work_struct, entry);
1125
1126 pwq_activate_delayed_work(work);
1127 }
1128
1129 /**
1130 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1131 * @pwq: pwq of interest
1132 * @color: color of work which left the queue
1133 *
1134 * A work either has completed or is removed from pending queue,
1135 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1136 *
1137 * CONTEXT:
1138 * spin_lock_irq(pool->lock).
1139 */
1140 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1141 {
1142 /* uncolored work items don't participate in flushing or nr_active */
1143 if (color == WORK_NO_COLOR)
1144 goto out_put;
1145
1146 pwq->nr_in_flight[color]--;
1147
1148 pwq->nr_active--;
1149 if (!list_empty(&pwq->delayed_works)) {
1150 /* one down, submit a delayed one */
1151 if (pwq->nr_active < pwq->max_active)
1152 pwq_activate_first_delayed(pwq);
1153 }
1154
1155 /* is flush in progress and are we at the flushing tip? */
1156 if (likely(pwq->flush_color != color))
1157 goto out_put;
1158
1159 /* are there still in-flight works? */
1160 if (pwq->nr_in_flight[color])
1161 goto out_put;
1162
1163 /* this pwq is done, clear flush_color */
1164 pwq->flush_color = -1;
1165
1166 /*
1167 * If this was the last pwq, wake up the first flusher. It
1168 * will handle the rest.
1169 */
1170 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1171 complete(&pwq->wq->first_flusher->done);
1172 out_put:
1173 put_pwq(pwq);
1174 }
1175
1176 /**
1177 * try_to_grab_pending - steal work item from worklist and disable irq
1178 * @work: work item to steal
1179 * @is_dwork: @work is a delayed_work
1180 * @flags: place to store irq state
1181 *
1182 * Try to grab PENDING bit of @work. This function can handle @work in any
1183 * stable state - idle, on timer or on worklist.
1184 *
1185 * Return:
1186 * 1 if @work was pending and we successfully stole PENDING
1187 * 0 if @work was idle and we claimed PENDING
1188 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1189 * -ENOENT if someone else is canceling @work, this state may persist
1190 * for arbitrarily long
1191 *
1192 * Note:
1193 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1194 * interrupted while holding PENDING and @work off queue, irq must be
1195 * disabled on entry. This, combined with delayed_work->timer being
1196 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1197 *
1198 * On successful return, >= 0, irq is disabled and the caller is
1199 * responsible for releasing it using local_irq_restore(*@flags).
1200 *
1201 * This function is safe to call from any context including IRQ handler.
1202 */
1203 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1204 unsigned long *flags)
1205 {
1206 struct worker_pool *pool;
1207 struct pool_workqueue *pwq;
1208
1209 local_irq_save(*flags);
1210
1211 /* try to steal the timer if it exists */
1212 if (is_dwork) {
1213 struct delayed_work *dwork = to_delayed_work(work);
1214
1215 /*
1216 * dwork->timer is irqsafe. If del_timer() fails, it's
1217 * guaranteed that the timer is not queued anywhere and not
1218 * running on the local CPU.
1219 */
1220 if (likely(del_timer(&dwork->timer)))
1221 return 1;
1222 }
1223
1224 /* try to claim PENDING the normal way */
1225 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1226 return 0;
1227
1228 /*
1229 * The queueing is in progress, or it is already queued. Try to
1230 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1231 */
1232 pool = get_work_pool(work);
1233 if (!pool)
1234 goto fail;
1235
1236 spin_lock(&pool->lock);
1237 /*
1238 * work->data is guaranteed to point to pwq only while the work
1239 * item is queued on pwq->wq, and both updating work->data to point
1240 * to pwq on queueing and to pool on dequeueing are done under
1241 * pwq->pool->lock. This in turn guarantees that, if work->data
1242 * points to pwq which is associated with a locked pool, the work
1243 * item is currently queued on that pool.
1244 */
1245 pwq = get_work_pwq(work);
1246 if (pwq && pwq->pool == pool) {
1247 debug_work_deactivate(work);
1248
1249 /*
1250 * A delayed work item cannot be grabbed directly because
1251 * it might have linked NO_COLOR work items which, if left
1252 * on the delayed_list, will confuse pwq->nr_active
1253 * management later on and cause stall. Make sure the work
1254 * item is activated before grabbing.
1255 */
1256 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1257 pwq_activate_delayed_work(work);
1258
1259 list_del_init(&work->entry);
1260 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1261
1262 /* work->data points to pwq iff queued, point to pool */
1263 set_work_pool_and_keep_pending(work, pool->id);
1264
1265 spin_unlock(&pool->lock);
1266 return 1;
1267 }
1268 spin_unlock(&pool->lock);
1269 fail:
1270 local_irq_restore(*flags);
1271 if (work_is_canceling(work))
1272 return -ENOENT;
1273 cpu_relax();
1274 return -EAGAIN;
1275 }
1276
1277 /**
1278 * insert_work - insert a work into a pool
1279 * @pwq: pwq @work belongs to
1280 * @work: work to insert
1281 * @head: insertion point
1282 * @extra_flags: extra WORK_STRUCT_* flags to set
1283 *
1284 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1285 * work_struct flags.
1286 *
1287 * CONTEXT:
1288 * spin_lock_irq(pool->lock).
1289 */
1290 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1291 struct list_head *head, unsigned int extra_flags)
1292 {
1293 struct worker_pool *pool = pwq->pool;
1294
1295 /* we own @work, set data and link */
1296 set_work_pwq(work, pwq, extra_flags);
1297 list_add_tail(&work->entry, head);
1298 get_pwq(pwq);
1299
1300 /*
1301 * Ensure either wq_worker_sleeping() sees the above
1302 * list_add_tail() or we see zero nr_running to avoid workers lying
1303 * around lazily while there are works to be processed.
1304 */
1305 smp_mb();
1306
1307 if (__need_more_worker(pool))
1308 wake_up_worker(pool);
1309 }
1310
1311 /*
1312 * Test whether @work is being queued from another work executing on the
1313 * same workqueue.
1314 */
1315 static bool is_chained_work(struct workqueue_struct *wq)
1316 {
1317 struct worker *worker;
1318
1319 worker = current_wq_worker();
1320 /*
1321 * Return %true iff I'm a worker execuing a work item on @wq. If
1322 * I'm @worker, it's safe to dereference it without locking.
1323 */
1324 return worker && worker->current_pwq->wq == wq;
1325 }
1326
1327 /*
1328 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1329 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1330 * avoid perturbing sensitive tasks.
1331 */
1332 static int wq_select_unbound_cpu(int cpu)
1333 {
1334 static bool printed_dbg_warning;
1335 int new_cpu;
1336
1337 if (likely(!wq_debug_force_rr_cpu)) {
1338 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1339 return cpu;
1340 } else if (!printed_dbg_warning) {
1341 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1342 printed_dbg_warning = true;
1343 }
1344
1345 if (cpumask_empty(wq_unbound_cpumask))
1346 return cpu;
1347
1348 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1349 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1350 if (unlikely(new_cpu >= nr_cpu_ids)) {
1351 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1352 if (unlikely(new_cpu >= nr_cpu_ids))
1353 return cpu;
1354 }
1355 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1356
1357 return new_cpu;
1358 }
1359
1360 static void __queue_work(int cpu, struct workqueue_struct *wq,
1361 struct work_struct *work)
1362 {
1363 struct pool_workqueue *pwq;
1364 struct worker_pool *last_pool;
1365 struct list_head *worklist;
1366 unsigned int work_flags;
1367 unsigned int req_cpu = cpu;
1368
1369 /*
1370 * While a work item is PENDING && off queue, a task trying to
1371 * steal the PENDING will busy-loop waiting for it to either get
1372 * queued or lose PENDING. Grabbing PENDING and queueing should
1373 * happen with IRQ disabled.
1374 */
1375 WARN_ON_ONCE(!irqs_disabled());
1376
1377 debug_work_activate(work);
1378
1379 /* if draining, only works from the same workqueue are allowed */
1380 if (unlikely(wq->flags & __WQ_DRAINING) &&
1381 WARN_ON_ONCE(!is_chained_work(wq)))
1382 return;
1383 retry:
1384 if (req_cpu == WORK_CPU_UNBOUND)
1385 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1386
1387 /* pwq which will be used unless @work is executing elsewhere */
1388 if (!(wq->flags & WQ_UNBOUND))
1389 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1390 else
1391 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1392
1393 /*
1394 * If @work was previously on a different pool, it might still be
1395 * running there, in which case the work needs to be queued on that
1396 * pool to guarantee non-reentrancy.
1397 */
1398 last_pool = get_work_pool(work);
1399 if (last_pool && last_pool != pwq->pool) {
1400 struct worker *worker;
1401
1402 spin_lock(&last_pool->lock);
1403
1404 worker = find_worker_executing_work(last_pool, work);
1405
1406 if (worker && worker->current_pwq->wq == wq) {
1407 pwq = worker->current_pwq;
1408 } else {
1409 /* meh... not running there, queue here */
1410 spin_unlock(&last_pool->lock);
1411 spin_lock(&pwq->pool->lock);
1412 }
1413 } else {
1414 spin_lock(&pwq->pool->lock);
1415 }
1416
1417 /*
1418 * pwq is determined and locked. For unbound pools, we could have
1419 * raced with pwq release and it could already be dead. If its
1420 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1421 * without another pwq replacing it in the numa_pwq_tbl or while
1422 * work items are executing on it, so the retrying is guaranteed to
1423 * make forward-progress.
1424 */
1425 if (unlikely(!pwq->refcnt)) {
1426 if (wq->flags & WQ_UNBOUND) {
1427 spin_unlock(&pwq->pool->lock);
1428 cpu_relax();
1429 goto retry;
1430 }
1431 /* oops */
1432 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1433 wq->name, cpu);
1434 }
1435
1436 /* pwq determined, queue */
1437 trace_workqueue_queue_work(req_cpu, pwq, work);
1438
1439 if (WARN_ON(!list_empty(&work->entry))) {
1440 spin_unlock(&pwq->pool->lock);
1441 return;
1442 }
1443
1444 pwq->nr_in_flight[pwq->work_color]++;
1445 work_flags = work_color_to_flags(pwq->work_color);
1446
1447 if (likely(pwq->nr_active < pwq->max_active)) {
1448 trace_workqueue_activate_work(work);
1449 pwq->nr_active++;
1450 worklist = &pwq->pool->worklist;
1451 if (list_empty(worklist))
1452 pwq->pool->watchdog_ts = jiffies;
1453 } else {
1454 work_flags |= WORK_STRUCT_DELAYED;
1455 worklist = &pwq->delayed_works;
1456 }
1457
1458 insert_work(pwq, work, worklist, work_flags);
1459
1460 spin_unlock(&pwq->pool->lock);
1461 }
1462
1463 /**
1464 * queue_work_on - queue work on specific cpu
1465 * @cpu: CPU number to execute work on
1466 * @wq: workqueue to use
1467 * @work: work to queue
1468 *
1469 * We queue the work to a specific CPU, the caller must ensure it
1470 * can't go away.
1471 *
1472 * Return: %false if @work was already on a queue, %true otherwise.
1473 */
1474 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1475 struct work_struct *work)
1476 {
1477 bool ret = false;
1478 unsigned long flags;
1479
1480 local_irq_save(flags);
1481
1482 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1483 __queue_work(cpu, wq, work);
1484 ret = true;
1485 }
1486
1487 local_irq_restore(flags);
1488 return ret;
1489 }
1490 EXPORT_SYMBOL(queue_work_on);
1491
1492 void delayed_work_timer_fn(unsigned long __data)
1493 {
1494 struct delayed_work *dwork = (struct delayed_work *)__data;
1495
1496 /* should have been called from irqsafe timer with irq already off */
1497 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1498 }
1499 EXPORT_SYMBOL(delayed_work_timer_fn);
1500
1501 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1502 struct delayed_work *dwork, unsigned long delay)
1503 {
1504 struct timer_list *timer = &dwork->timer;
1505 struct work_struct *work = &dwork->work;
1506
1507 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1508 timer->data != (unsigned long)dwork);
1509 WARN_ON_ONCE(timer_pending(timer));
1510 WARN_ON_ONCE(!list_empty(&work->entry));
1511
1512 /*
1513 * If @delay is 0, queue @dwork->work immediately. This is for
1514 * both optimization and correctness. The earliest @timer can
1515 * expire is on the closest next tick and delayed_work users depend
1516 * on that there's no such delay when @delay is 0.
1517 */
1518 if (!delay) {
1519 __queue_work(cpu, wq, &dwork->work);
1520 return;
1521 }
1522
1523 timer_stats_timer_set_start_info(&dwork->timer);
1524
1525 dwork->wq = wq;
1526 dwork->cpu = cpu;
1527 timer->expires = jiffies + delay;
1528
1529 if (unlikely(cpu != WORK_CPU_UNBOUND))
1530 add_timer_on(timer, cpu);
1531 else
1532 add_timer(timer);
1533 }
1534
1535 /**
1536 * queue_delayed_work_on - queue work on specific CPU after delay
1537 * @cpu: CPU number to execute work on
1538 * @wq: workqueue to use
1539 * @dwork: work to queue
1540 * @delay: number of jiffies to wait before queueing
1541 *
1542 * Return: %false if @work was already on a queue, %true otherwise. If
1543 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1544 * execution.
1545 */
1546 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1547 struct delayed_work *dwork, unsigned long delay)
1548 {
1549 struct work_struct *work = &dwork->work;
1550 bool ret = false;
1551 unsigned long flags;
1552
1553 /* read the comment in __queue_work() */
1554 local_irq_save(flags);
1555
1556 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1557 __queue_delayed_work(cpu, wq, dwork, delay);
1558 ret = true;
1559 }
1560
1561 local_irq_restore(flags);
1562 return ret;
1563 }
1564 EXPORT_SYMBOL(queue_delayed_work_on);
1565
1566 /**
1567 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1568 * @cpu: CPU number to execute work on
1569 * @wq: workqueue to use
1570 * @dwork: work to queue
1571 * @delay: number of jiffies to wait before queueing
1572 *
1573 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1574 * modify @dwork's timer so that it expires after @delay. If @delay is
1575 * zero, @work is guaranteed to be scheduled immediately regardless of its
1576 * current state.
1577 *
1578 * Return: %false if @dwork was idle and queued, %true if @dwork was
1579 * pending and its timer was modified.
1580 *
1581 * This function is safe to call from any context including IRQ handler.
1582 * See try_to_grab_pending() for details.
1583 */
1584 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1585 struct delayed_work *dwork, unsigned long delay)
1586 {
1587 unsigned long flags;
1588 int ret;
1589
1590 do {
1591 ret = try_to_grab_pending(&dwork->work, true, &flags);
1592 } while (unlikely(ret == -EAGAIN));
1593
1594 if (likely(ret >= 0)) {
1595 __queue_delayed_work(cpu, wq, dwork, delay);
1596 local_irq_restore(flags);
1597 }
1598
1599 /* -ENOENT from try_to_grab_pending() becomes %true */
1600 return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1603
1604 /**
1605 * worker_enter_idle - enter idle state
1606 * @worker: worker which is entering idle state
1607 *
1608 * @worker is entering idle state. Update stats and idle timer if
1609 * necessary.
1610 *
1611 * LOCKING:
1612 * spin_lock_irq(pool->lock).
1613 */
1614 static void worker_enter_idle(struct worker *worker)
1615 {
1616 struct worker_pool *pool = worker->pool;
1617
1618 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1619 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1620 (worker->hentry.next || worker->hentry.pprev)))
1621 return;
1622
1623 /* can't use worker_set_flags(), also called from create_worker() */
1624 worker->flags |= WORKER_IDLE;
1625 pool->nr_idle++;
1626 worker->last_active = jiffies;
1627
1628 /* idle_list is LIFO */
1629 list_add(&worker->entry, &pool->idle_list);
1630
1631 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1632 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1633
1634 /*
1635 * Sanity check nr_running. Because wq_unbind_fn() releases
1636 * pool->lock between setting %WORKER_UNBOUND and zapping
1637 * nr_running, the warning may trigger spuriously. Check iff
1638 * unbind is not in progress.
1639 */
1640 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1641 pool->nr_workers == pool->nr_idle &&
1642 atomic_read(&pool->nr_running));
1643 }
1644
1645 /**
1646 * worker_leave_idle - leave idle state
1647 * @worker: worker which is leaving idle state
1648 *
1649 * @worker is leaving idle state. Update stats.
1650 *
1651 * LOCKING:
1652 * spin_lock_irq(pool->lock).
1653 */
1654 static void worker_leave_idle(struct worker *worker)
1655 {
1656 struct worker_pool *pool = worker->pool;
1657
1658 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1659 return;
1660 worker_clr_flags(worker, WORKER_IDLE);
1661 pool->nr_idle--;
1662 list_del_init(&worker->entry);
1663 }
1664
1665 static struct worker *alloc_worker(int node)
1666 {
1667 struct worker *worker;
1668
1669 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1670 if (worker) {
1671 INIT_LIST_HEAD(&worker->entry);
1672 INIT_LIST_HEAD(&worker->scheduled);
1673 INIT_LIST_HEAD(&worker->node);
1674 /* on creation a worker is in !idle && prep state */
1675 worker->flags = WORKER_PREP;
1676 }
1677 return worker;
1678 }
1679
1680 /**
1681 * worker_attach_to_pool() - attach a worker to a pool
1682 * @worker: worker to be attached
1683 * @pool: the target pool
1684 *
1685 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1686 * cpu-binding of @worker are kept coordinated with the pool across
1687 * cpu-[un]hotplugs.
1688 */
1689 static void worker_attach_to_pool(struct worker *worker,
1690 struct worker_pool *pool)
1691 {
1692 mutex_lock(&pool->attach_mutex);
1693
1694 /*
1695 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1696 * online CPUs. It'll be re-applied when any of the CPUs come up.
1697 */
1698 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1699
1700 /*
1701 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1702 * stable across this function. See the comments above the
1703 * flag definition for details.
1704 */
1705 if (pool->flags & POOL_DISASSOCIATED)
1706 worker->flags |= WORKER_UNBOUND;
1707
1708 list_add_tail(&worker->node, &pool->workers);
1709
1710 mutex_unlock(&pool->attach_mutex);
1711 }
1712
1713 /**
1714 * worker_detach_from_pool() - detach a worker from its pool
1715 * @worker: worker which is attached to its pool
1716 * @pool: the pool @worker is attached to
1717 *
1718 * Undo the attaching which had been done in worker_attach_to_pool(). The
1719 * caller worker shouldn't access to the pool after detached except it has
1720 * other reference to the pool.
1721 */
1722 static void worker_detach_from_pool(struct worker *worker,
1723 struct worker_pool *pool)
1724 {
1725 struct completion *detach_completion = NULL;
1726
1727 mutex_lock(&pool->attach_mutex);
1728 list_del(&worker->node);
1729 if (list_empty(&pool->workers))
1730 detach_completion = pool->detach_completion;
1731 mutex_unlock(&pool->attach_mutex);
1732
1733 /* clear leftover flags without pool->lock after it is detached */
1734 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1735
1736 if (detach_completion)
1737 complete(detach_completion);
1738 }
1739
1740 /**
1741 * create_worker - create a new workqueue worker
1742 * @pool: pool the new worker will belong to
1743 *
1744 * Create and start a new worker which is attached to @pool.
1745 *
1746 * CONTEXT:
1747 * Might sleep. Does GFP_KERNEL allocations.
1748 *
1749 * Return:
1750 * Pointer to the newly created worker.
1751 */
1752 static struct worker *create_worker(struct worker_pool *pool)
1753 {
1754 struct worker *worker = NULL;
1755 int id = -1;
1756 char id_buf[16];
1757
1758 /* ID is needed to determine kthread name */
1759 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1760 if (id < 0)
1761 goto fail;
1762
1763 worker = alloc_worker(pool->node);
1764 if (!worker)
1765 goto fail;
1766
1767 worker->pool = pool;
1768 worker->id = id;
1769
1770 if (pool->cpu >= 0)
1771 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1772 pool->attrs->nice < 0 ? "H" : "");
1773 else
1774 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1775
1776 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1777 "kworker/%s", id_buf);
1778 if (IS_ERR(worker->task))
1779 goto fail;
1780
1781 set_user_nice(worker->task, pool->attrs->nice);
1782 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1783
1784 /* successful, attach the worker to the pool */
1785 worker_attach_to_pool(worker, pool);
1786
1787 /* start the newly created worker */
1788 spin_lock_irq(&pool->lock);
1789 worker->pool->nr_workers++;
1790 worker_enter_idle(worker);
1791 wake_up_process(worker->task);
1792 spin_unlock_irq(&pool->lock);
1793
1794 return worker;
1795
1796 fail:
1797 if (id >= 0)
1798 ida_simple_remove(&pool->worker_ida, id);
1799 kfree(worker);
1800 return NULL;
1801 }
1802
1803 /**
1804 * destroy_worker - destroy a workqueue worker
1805 * @worker: worker to be destroyed
1806 *
1807 * Destroy @worker and adjust @pool stats accordingly. The worker should
1808 * be idle.
1809 *
1810 * CONTEXT:
1811 * spin_lock_irq(pool->lock).
1812 */
1813 static void destroy_worker(struct worker *worker)
1814 {
1815 struct worker_pool *pool = worker->pool;
1816
1817 lockdep_assert_held(&pool->lock);
1818
1819 /* sanity check frenzy */
1820 if (WARN_ON(worker->current_work) ||
1821 WARN_ON(!list_empty(&worker->scheduled)) ||
1822 WARN_ON(!(worker->flags & WORKER_IDLE)))
1823 return;
1824
1825 pool->nr_workers--;
1826 pool->nr_idle--;
1827
1828 list_del_init(&worker->entry);
1829 worker->flags |= WORKER_DIE;
1830 wake_up_process(worker->task);
1831 }
1832
1833 static void idle_worker_timeout(unsigned long __pool)
1834 {
1835 struct worker_pool *pool = (void *)__pool;
1836
1837 spin_lock_irq(&pool->lock);
1838
1839 while (too_many_workers(pool)) {
1840 struct worker *worker;
1841 unsigned long expires;
1842
1843 /* idle_list is kept in LIFO order, check the last one */
1844 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1845 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1846
1847 if (time_before(jiffies, expires)) {
1848 mod_timer(&pool->idle_timer, expires);
1849 break;
1850 }
1851
1852 destroy_worker(worker);
1853 }
1854
1855 spin_unlock_irq(&pool->lock);
1856 }
1857
1858 static void send_mayday(struct work_struct *work)
1859 {
1860 struct pool_workqueue *pwq = get_work_pwq(work);
1861 struct workqueue_struct *wq = pwq->wq;
1862
1863 lockdep_assert_held(&wq_mayday_lock);
1864
1865 if (!wq->rescuer)
1866 return;
1867
1868 /* mayday mayday mayday */
1869 if (list_empty(&pwq->mayday_node)) {
1870 /*
1871 * If @pwq is for an unbound wq, its base ref may be put at
1872 * any time due to an attribute change. Pin @pwq until the
1873 * rescuer is done with it.
1874 */
1875 get_pwq(pwq);
1876 list_add_tail(&pwq->mayday_node, &wq->maydays);
1877 wake_up_process(wq->rescuer->task);
1878 }
1879 }
1880
1881 static void pool_mayday_timeout(unsigned long __pool)
1882 {
1883 struct worker_pool *pool = (void *)__pool;
1884 struct work_struct *work;
1885
1886 spin_lock_irq(&pool->lock);
1887 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1888
1889 if (need_to_create_worker(pool)) {
1890 /*
1891 * We've been trying to create a new worker but
1892 * haven't been successful. We might be hitting an
1893 * allocation deadlock. Send distress signals to
1894 * rescuers.
1895 */
1896 list_for_each_entry(work, &pool->worklist, entry)
1897 send_mayday(work);
1898 }
1899
1900 spin_unlock(&wq_mayday_lock);
1901 spin_unlock_irq(&pool->lock);
1902
1903 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1904 }
1905
1906 /**
1907 * maybe_create_worker - create a new worker if necessary
1908 * @pool: pool to create a new worker for
1909 *
1910 * Create a new worker for @pool if necessary. @pool is guaranteed to
1911 * have at least one idle worker on return from this function. If
1912 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1913 * sent to all rescuers with works scheduled on @pool to resolve
1914 * possible allocation deadlock.
1915 *
1916 * On return, need_to_create_worker() is guaranteed to be %false and
1917 * may_start_working() %true.
1918 *
1919 * LOCKING:
1920 * spin_lock_irq(pool->lock) which may be released and regrabbed
1921 * multiple times. Does GFP_KERNEL allocations. Called only from
1922 * manager.
1923 */
1924 static void maybe_create_worker(struct worker_pool *pool)
1925 __releases(&pool->lock)
1926 __acquires(&pool->lock)
1927 {
1928 restart:
1929 spin_unlock_irq(&pool->lock);
1930
1931 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1933
1934 while (true) {
1935 if (create_worker(pool) || !need_to_create_worker(pool))
1936 break;
1937
1938 schedule_timeout_interruptible(CREATE_COOLDOWN);
1939
1940 if (!need_to_create_worker(pool))
1941 break;
1942 }
1943
1944 del_timer_sync(&pool->mayday_timer);
1945 spin_lock_irq(&pool->lock);
1946 /*
1947 * This is necessary even after a new worker was just successfully
1948 * created as @pool->lock was dropped and the new worker might have
1949 * already become busy.
1950 */
1951 if (need_to_create_worker(pool))
1952 goto restart;
1953 }
1954
1955 /**
1956 * manage_workers - manage worker pool
1957 * @worker: self
1958 *
1959 * Assume the manager role and manage the worker pool @worker belongs
1960 * to. At any given time, there can be only zero or one manager per
1961 * pool. The exclusion is handled automatically by this function.
1962 *
1963 * The caller can safely start processing works on false return. On
1964 * true return, it's guaranteed that need_to_create_worker() is false
1965 * and may_start_working() is true.
1966 *
1967 * CONTEXT:
1968 * spin_lock_irq(pool->lock) which may be released and regrabbed
1969 * multiple times. Does GFP_KERNEL allocations.
1970 *
1971 * Return:
1972 * %false if the pool doesn't need management and the caller can safely
1973 * start processing works, %true if management function was performed and
1974 * the conditions that the caller verified before calling the function may
1975 * no longer be true.
1976 */
1977 static bool manage_workers(struct worker *worker)
1978 {
1979 struct worker_pool *pool = worker->pool;
1980
1981 /*
1982 * Anyone who successfully grabs manager_arb wins the arbitration
1983 * and becomes the manager. mutex_trylock() on pool->manager_arb
1984 * failure while holding pool->lock reliably indicates that someone
1985 * else is managing the pool and the worker which failed trylock
1986 * can proceed to executing work items. This means that anyone
1987 * grabbing manager_arb is responsible for actually performing
1988 * manager duties. If manager_arb is grabbed and released without
1989 * actual management, the pool may stall indefinitely.
1990 */
1991 if (!mutex_trylock(&pool->manager_arb))
1992 return false;
1993 pool->manager = worker;
1994
1995 maybe_create_worker(pool);
1996
1997 pool->manager = NULL;
1998 mutex_unlock(&pool->manager_arb);
1999 return true;
2000 }
2001
2002 /**
2003 * process_one_work - process single work
2004 * @worker: self
2005 * @work: work to process
2006 *
2007 * Process @work. This function contains all the logics necessary to
2008 * process a single work including synchronization against and
2009 * interaction with other workers on the same cpu, queueing and
2010 * flushing. As long as context requirement is met, any worker can
2011 * call this function to process a work.
2012 *
2013 * CONTEXT:
2014 * spin_lock_irq(pool->lock) which is released and regrabbed.
2015 */
2016 static void process_one_work(struct worker *worker, struct work_struct *work)
2017 __releases(&pool->lock)
2018 __acquires(&pool->lock)
2019 {
2020 struct pool_workqueue *pwq = get_work_pwq(work);
2021 struct worker_pool *pool = worker->pool;
2022 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2023 int work_color;
2024 struct worker *collision;
2025 #ifdef CONFIG_LOCKDEP
2026 /*
2027 * It is permissible to free the struct work_struct from
2028 * inside the function that is called from it, this we need to
2029 * take into account for lockdep too. To avoid bogus "held
2030 * lock freed" warnings as well as problems when looking into
2031 * work->lockdep_map, make a copy and use that here.
2032 */
2033 struct lockdep_map lockdep_map;
2034
2035 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2036 #endif
2037 /* ensure we're on the correct CPU */
2038 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2039 raw_smp_processor_id() != pool->cpu);
2040
2041 /*
2042 * A single work shouldn't be executed concurrently by
2043 * multiple workers on a single cpu. Check whether anyone is
2044 * already processing the work. If so, defer the work to the
2045 * currently executing one.
2046 */
2047 collision = find_worker_executing_work(pool, work);
2048 if (unlikely(collision)) {
2049 move_linked_works(work, &collision->scheduled, NULL);
2050 return;
2051 }
2052
2053 /* claim and dequeue */
2054 debug_work_deactivate(work);
2055 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2056 worker->current_work = work;
2057 worker->current_func = work->func;
2058 worker->current_pwq = pwq;
2059 work_color = get_work_color(work);
2060
2061 list_del_init(&work->entry);
2062
2063 /*
2064 * CPU intensive works don't participate in concurrency management.
2065 * They're the scheduler's responsibility. This takes @worker out
2066 * of concurrency management and the next code block will chain
2067 * execution of the pending work items.
2068 */
2069 if (unlikely(cpu_intensive))
2070 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2071
2072 /*
2073 * Wake up another worker if necessary. The condition is always
2074 * false for normal per-cpu workers since nr_running would always
2075 * be >= 1 at this point. This is used to chain execution of the
2076 * pending work items for WORKER_NOT_RUNNING workers such as the
2077 * UNBOUND and CPU_INTENSIVE ones.
2078 */
2079 if (need_more_worker(pool))
2080 wake_up_worker(pool);
2081
2082 /*
2083 * Record the last pool and clear PENDING which should be the last
2084 * update to @work. Also, do this inside @pool->lock so that
2085 * PENDING and queued state changes happen together while IRQ is
2086 * disabled.
2087 */
2088 set_work_pool_and_clear_pending(work, pool->id);
2089
2090 spin_unlock_irq(&pool->lock);
2091
2092 lock_map_acquire_read(&pwq->wq->lockdep_map);
2093 lock_map_acquire(&lockdep_map);
2094 trace_workqueue_execute_start(work);
2095 worker->current_func(work);
2096 /*
2097 * While we must be careful to not use "work" after this, the trace
2098 * point will only record its address.
2099 */
2100 trace_workqueue_execute_end(work);
2101 lock_map_release(&lockdep_map);
2102 lock_map_release(&pwq->wq->lockdep_map);
2103
2104 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2105 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2106 " last function: %pf\n",
2107 current->comm, preempt_count(), task_pid_nr(current),
2108 worker->current_func);
2109 debug_show_held_locks(current);
2110 dump_stack();
2111 }
2112
2113 /*
2114 * The following prevents a kworker from hogging CPU on !PREEMPT
2115 * kernels, where a requeueing work item waiting for something to
2116 * happen could deadlock with stop_machine as such work item could
2117 * indefinitely requeue itself while all other CPUs are trapped in
2118 * stop_machine. At the same time, report a quiescent RCU state so
2119 * the same condition doesn't freeze RCU.
2120 */
2121 cond_resched_rcu_qs();
2122
2123 spin_lock_irq(&pool->lock);
2124
2125 /* clear cpu intensive status */
2126 if (unlikely(cpu_intensive))
2127 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2128
2129 /* we're done with it, release */
2130 hash_del(&worker->hentry);
2131 worker->current_work = NULL;
2132 worker->current_func = NULL;
2133 worker->current_pwq = NULL;
2134 worker->desc_valid = false;
2135 pwq_dec_nr_in_flight(pwq, work_color);
2136 }
2137
2138 /**
2139 * process_scheduled_works - process scheduled works
2140 * @worker: self
2141 *
2142 * Process all scheduled works. Please note that the scheduled list
2143 * may change while processing a work, so this function repeatedly
2144 * fetches a work from the top and executes it.
2145 *
2146 * CONTEXT:
2147 * spin_lock_irq(pool->lock) which may be released and regrabbed
2148 * multiple times.
2149 */
2150 static void process_scheduled_works(struct worker *worker)
2151 {
2152 while (!list_empty(&worker->scheduled)) {
2153 struct work_struct *work = list_first_entry(&worker->scheduled,
2154 struct work_struct, entry);
2155 process_one_work(worker, work);
2156 }
2157 }
2158
2159 /**
2160 * worker_thread - the worker thread function
2161 * @__worker: self
2162 *
2163 * The worker thread function. All workers belong to a worker_pool -
2164 * either a per-cpu one or dynamic unbound one. These workers process all
2165 * work items regardless of their specific target workqueue. The only
2166 * exception is work items which belong to workqueues with a rescuer which
2167 * will be explained in rescuer_thread().
2168 *
2169 * Return: 0
2170 */
2171 static int worker_thread(void *__worker)
2172 {
2173 struct worker *worker = __worker;
2174 struct worker_pool *pool = worker->pool;
2175
2176 /* tell the scheduler that this is a workqueue worker */
2177 worker->task->flags |= PF_WQ_WORKER;
2178 woke_up:
2179 spin_lock_irq(&pool->lock);
2180
2181 /* am I supposed to die? */
2182 if (unlikely(worker->flags & WORKER_DIE)) {
2183 spin_unlock_irq(&pool->lock);
2184 WARN_ON_ONCE(!list_empty(&worker->entry));
2185 worker->task->flags &= ~PF_WQ_WORKER;
2186
2187 set_task_comm(worker->task, "kworker/dying");
2188 ida_simple_remove(&pool->worker_ida, worker->id);
2189 worker_detach_from_pool(worker, pool);
2190 kfree(worker);
2191 return 0;
2192 }
2193
2194 worker_leave_idle(worker);
2195 recheck:
2196 /* no more worker necessary? */
2197 if (!need_more_worker(pool))
2198 goto sleep;
2199
2200 /* do we need to manage? */
2201 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2202 goto recheck;
2203
2204 /*
2205 * ->scheduled list can only be filled while a worker is
2206 * preparing to process a work or actually processing it.
2207 * Make sure nobody diddled with it while I was sleeping.
2208 */
2209 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2210
2211 /*
2212 * Finish PREP stage. We're guaranteed to have at least one idle
2213 * worker or that someone else has already assumed the manager
2214 * role. This is where @worker starts participating in concurrency
2215 * management if applicable and concurrency management is restored
2216 * after being rebound. See rebind_workers() for details.
2217 */
2218 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2219
2220 do {
2221 struct work_struct *work =
2222 list_first_entry(&pool->worklist,
2223 struct work_struct, entry);
2224
2225 pool->watchdog_ts = jiffies;
2226
2227 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2228 /* optimization path, not strictly necessary */
2229 process_one_work(worker, work);
2230 if (unlikely(!list_empty(&worker->scheduled)))
2231 process_scheduled_works(worker);
2232 } else {
2233 move_linked_works(work, &worker->scheduled, NULL);
2234 process_scheduled_works(worker);
2235 }
2236 } while (keep_working(pool));
2237
2238 worker_set_flags(worker, WORKER_PREP);
2239 sleep:
2240 /*
2241 * pool->lock is held and there's no work to process and no need to
2242 * manage, sleep. Workers are woken up only while holding
2243 * pool->lock or from local cpu, so setting the current state
2244 * before releasing pool->lock is enough to prevent losing any
2245 * event.
2246 */
2247 worker_enter_idle(worker);
2248 __set_current_state(TASK_INTERRUPTIBLE);
2249 spin_unlock_irq(&pool->lock);
2250 schedule();
2251 goto woke_up;
2252 }
2253
2254 /**
2255 * rescuer_thread - the rescuer thread function
2256 * @__rescuer: self
2257 *
2258 * Workqueue rescuer thread function. There's one rescuer for each
2259 * workqueue which has WQ_MEM_RECLAIM set.
2260 *
2261 * Regular work processing on a pool may block trying to create a new
2262 * worker which uses GFP_KERNEL allocation which has slight chance of
2263 * developing into deadlock if some works currently on the same queue
2264 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2265 * the problem rescuer solves.
2266 *
2267 * When such condition is possible, the pool summons rescuers of all
2268 * workqueues which have works queued on the pool and let them process
2269 * those works so that forward progress can be guaranteed.
2270 *
2271 * This should happen rarely.
2272 *
2273 * Return: 0
2274 */
2275 static int rescuer_thread(void *__rescuer)
2276 {
2277 struct worker *rescuer = __rescuer;
2278 struct workqueue_struct *wq = rescuer->rescue_wq;
2279 struct list_head *scheduled = &rescuer->scheduled;
2280 bool should_stop;
2281
2282 set_user_nice(current, RESCUER_NICE_LEVEL);
2283
2284 /*
2285 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2286 * doesn't participate in concurrency management.
2287 */
2288 rescuer->task->flags |= PF_WQ_WORKER;
2289 repeat:
2290 set_current_state(TASK_INTERRUPTIBLE);
2291
2292 /*
2293 * By the time the rescuer is requested to stop, the workqueue
2294 * shouldn't have any work pending, but @wq->maydays may still have
2295 * pwq(s) queued. This can happen by non-rescuer workers consuming
2296 * all the work items before the rescuer got to them. Go through
2297 * @wq->maydays processing before acting on should_stop so that the
2298 * list is always empty on exit.
2299 */
2300 should_stop = kthread_should_stop();
2301
2302 /* see whether any pwq is asking for help */
2303 spin_lock_irq(&wq_mayday_lock);
2304
2305 while (!list_empty(&wq->maydays)) {
2306 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2307 struct pool_workqueue, mayday_node);
2308 struct worker_pool *pool = pwq->pool;
2309 struct work_struct *work, *n;
2310 bool first = true;
2311
2312 __set_current_state(TASK_RUNNING);
2313 list_del_init(&pwq->mayday_node);
2314
2315 spin_unlock_irq(&wq_mayday_lock);
2316
2317 worker_attach_to_pool(rescuer, pool);
2318
2319 spin_lock_irq(&pool->lock);
2320 rescuer->pool = pool;
2321
2322 /*
2323 * Slurp in all works issued via this workqueue and
2324 * process'em.
2325 */
2326 WARN_ON_ONCE(!list_empty(scheduled));
2327 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2328 if (get_work_pwq(work) == pwq) {
2329 if (first)
2330 pool->watchdog_ts = jiffies;
2331 move_linked_works(work, scheduled, &n);
2332 }
2333 first = false;
2334 }
2335
2336 if (!list_empty(scheduled)) {
2337 process_scheduled_works(rescuer);
2338
2339 /*
2340 * The above execution of rescued work items could
2341 * have created more to rescue through
2342 * pwq_activate_first_delayed() or chained
2343 * queueing. Let's put @pwq back on mayday list so
2344 * that such back-to-back work items, which may be
2345 * being used to relieve memory pressure, don't
2346 * incur MAYDAY_INTERVAL delay inbetween.
2347 */
2348 if (need_to_create_worker(pool)) {
2349 spin_lock(&wq_mayday_lock);
2350 get_pwq(pwq);
2351 list_move_tail(&pwq->mayday_node, &wq->maydays);
2352 spin_unlock(&wq_mayday_lock);
2353 }
2354 }
2355
2356 /*
2357 * Put the reference grabbed by send_mayday(). @pool won't
2358 * go away while we're still attached to it.
2359 */
2360 put_pwq(pwq);
2361
2362 /*
2363 * Leave this pool. If need_more_worker() is %true, notify a
2364 * regular worker; otherwise, we end up with 0 concurrency
2365 * and stalling the execution.
2366 */
2367 if (need_more_worker(pool))
2368 wake_up_worker(pool);
2369
2370 rescuer->pool = NULL;
2371 spin_unlock_irq(&pool->lock);
2372
2373 worker_detach_from_pool(rescuer, pool);
2374
2375 spin_lock_irq(&wq_mayday_lock);
2376 }
2377
2378 spin_unlock_irq(&wq_mayday_lock);
2379
2380 if (should_stop) {
2381 __set_current_state(TASK_RUNNING);
2382 rescuer->task->flags &= ~PF_WQ_WORKER;
2383 return 0;
2384 }
2385
2386 /* rescuers should never participate in concurrency management */
2387 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2388 schedule();
2389 goto repeat;
2390 }
2391
2392 /**
2393 * check_flush_dependency - check for flush dependency sanity
2394 * @target_wq: workqueue being flushed
2395 * @target_work: work item being flushed (NULL for workqueue flushes)
2396 *
2397 * %current is trying to flush the whole @target_wq or @target_work on it.
2398 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2399 * reclaiming memory or running on a workqueue which doesn't have
2400 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2401 * a deadlock.
2402 */
2403 static void check_flush_dependency(struct workqueue_struct *target_wq,
2404 struct work_struct *target_work)
2405 {
2406 work_func_t target_func = target_work ? target_work->func : NULL;
2407 struct worker *worker;
2408
2409 if (target_wq->flags & WQ_MEM_RECLAIM)
2410 return;
2411
2412 worker = current_wq_worker();
2413
2414 WARN_ONCE(current->flags & PF_MEMALLOC,
2415 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2416 current->pid, current->comm, target_wq->name, target_func);
2417 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2418 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2419 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2420 worker->current_pwq->wq->name, worker->current_func,
2421 target_wq->name, target_func);
2422 }
2423
2424 struct wq_barrier {
2425 struct work_struct work;
2426 struct completion done;
2427 struct task_struct *task; /* purely informational */
2428 };
2429
2430 static void wq_barrier_func(struct work_struct *work)
2431 {
2432 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2433 complete(&barr->done);
2434 }
2435
2436 /**
2437 * insert_wq_barrier - insert a barrier work
2438 * @pwq: pwq to insert barrier into
2439 * @barr: wq_barrier to insert
2440 * @target: target work to attach @barr to
2441 * @worker: worker currently executing @target, NULL if @target is not executing
2442 *
2443 * @barr is linked to @target such that @barr is completed only after
2444 * @target finishes execution. Please note that the ordering
2445 * guarantee is observed only with respect to @target and on the local
2446 * cpu.
2447 *
2448 * Currently, a queued barrier can't be canceled. This is because
2449 * try_to_grab_pending() can't determine whether the work to be
2450 * grabbed is at the head of the queue and thus can't clear LINKED
2451 * flag of the previous work while there must be a valid next work
2452 * after a work with LINKED flag set.
2453 *
2454 * Note that when @worker is non-NULL, @target may be modified
2455 * underneath us, so we can't reliably determine pwq from @target.
2456 *
2457 * CONTEXT:
2458 * spin_lock_irq(pool->lock).
2459 */
2460 static void insert_wq_barrier(struct pool_workqueue *pwq,
2461 struct wq_barrier *barr,
2462 struct work_struct *target, struct worker *worker)
2463 {
2464 struct list_head *head;
2465 unsigned int linked = 0;
2466
2467 /*
2468 * debugobject calls are safe here even with pool->lock locked
2469 * as we know for sure that this will not trigger any of the
2470 * checks and call back into the fixup functions where we
2471 * might deadlock.
2472 */
2473 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2474 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2475 init_completion(&barr->done);
2476 barr->task = current;
2477
2478 /*
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2481 */
2482 if (worker)
2483 head = worker->scheduled.next;
2484 else {
2485 unsigned long *bits = work_data_bits(target);
2486
2487 head = target->entry.next;
2488 /* there can already be other linked works, inherit and set */
2489 linked = *bits & WORK_STRUCT_LINKED;
2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 }
2492
2493 debug_work_activate(&barr->work);
2494 insert_work(pwq, &barr->work, head,
2495 work_color_to_flags(WORK_NO_COLOR) | linked);
2496 }
2497
2498 /**
2499 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2503 *
2504 * Prepare pwqs for workqueue flushing.
2505 *
2506 * If @flush_color is non-negative, flush_color on all pwqs should be
2507 * -1. If no pwq has in-flight commands at the specified color, all
2508 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2509 * has in flight commands, its pwq->flush_color is set to
2510 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511 * wakeup logic is armed and %true is returned.
2512 *
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2516 * is returned.
2517 *
2518 * If @work_color is non-negative, all pwqs should have the same
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2521 *
2522 * CONTEXT:
2523 * mutex_lock(wq->mutex).
2524 *
2525 * Return:
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2527 * otherwise.
2528 */
2529 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2530 int flush_color, int work_color)
2531 {
2532 bool wait = false;
2533 struct pool_workqueue *pwq;
2534
2535 if (flush_color >= 0) {
2536 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2537 atomic_set(&wq->nr_pwqs_to_flush, 1);
2538 }
2539
2540 for_each_pwq(pwq, wq) {
2541 struct worker_pool *pool = pwq->pool;
2542
2543 spin_lock_irq(&pool->lock);
2544
2545 if (flush_color >= 0) {
2546 WARN_ON_ONCE(pwq->flush_color != -1);
2547
2548 if (pwq->nr_in_flight[flush_color]) {
2549 pwq->flush_color = flush_color;
2550 atomic_inc(&wq->nr_pwqs_to_flush);
2551 wait = true;
2552 }
2553 }
2554
2555 if (work_color >= 0) {
2556 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2557 pwq->work_color = work_color;
2558 }
2559
2560 spin_unlock_irq(&pool->lock);
2561 }
2562
2563 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2564 complete(&wq->first_flusher->done);
2565
2566 return wait;
2567 }
2568
2569 /**
2570 * flush_workqueue - ensure that any scheduled work has run to completion.
2571 * @wq: workqueue to flush
2572 *
2573 * This function sleeps until all work items which were queued on entry
2574 * have finished execution, but it is not livelocked by new incoming ones.
2575 */
2576 void flush_workqueue(struct workqueue_struct *wq)
2577 {
2578 struct wq_flusher this_flusher = {
2579 .list = LIST_HEAD_INIT(this_flusher.list),
2580 .flush_color = -1,
2581 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2582 };
2583 int next_color;
2584
2585 lock_map_acquire(&wq->lockdep_map);
2586 lock_map_release(&wq->lockdep_map);
2587
2588 mutex_lock(&wq->mutex);
2589
2590 /*
2591 * Start-to-wait phase
2592 */
2593 next_color = work_next_color(wq->work_color);
2594
2595 if (next_color != wq->flush_color) {
2596 /*
2597 * Color space is not full. The current work_color
2598 * becomes our flush_color and work_color is advanced
2599 * by one.
2600 */
2601 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2602 this_flusher.flush_color = wq->work_color;
2603 wq->work_color = next_color;
2604
2605 if (!wq->first_flusher) {
2606 /* no flush in progress, become the first flusher */
2607 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2608
2609 wq->first_flusher = &this_flusher;
2610
2611 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2612 wq->work_color)) {
2613 /* nothing to flush, done */
2614 wq->flush_color = next_color;
2615 wq->first_flusher = NULL;
2616 goto out_unlock;
2617 }
2618 } else {
2619 /* wait in queue */
2620 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2621 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2622 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2623 }
2624 } else {
2625 /*
2626 * Oops, color space is full, wait on overflow queue.
2627 * The next flush completion will assign us
2628 * flush_color and transfer to flusher_queue.
2629 */
2630 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2631 }
2632
2633 check_flush_dependency(wq, NULL);
2634
2635 mutex_unlock(&wq->mutex);
2636
2637 wait_for_completion(&this_flusher.done);
2638
2639 /*
2640 * Wake-up-and-cascade phase
2641 *
2642 * First flushers are responsible for cascading flushes and
2643 * handling overflow. Non-first flushers can simply return.
2644 */
2645 if (wq->first_flusher != &this_flusher)
2646 return;
2647
2648 mutex_lock(&wq->mutex);
2649
2650 /* we might have raced, check again with mutex held */
2651 if (wq->first_flusher != &this_flusher)
2652 goto out_unlock;
2653
2654 wq->first_flusher = NULL;
2655
2656 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2657 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2658
2659 while (true) {
2660 struct wq_flusher *next, *tmp;
2661
2662 /* complete all the flushers sharing the current flush color */
2663 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2664 if (next->flush_color != wq->flush_color)
2665 break;
2666 list_del_init(&next->list);
2667 complete(&next->done);
2668 }
2669
2670 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2671 wq->flush_color != work_next_color(wq->work_color));
2672
2673 /* this flush_color is finished, advance by one */
2674 wq->flush_color = work_next_color(wq->flush_color);
2675
2676 /* one color has been freed, handle overflow queue */
2677 if (!list_empty(&wq->flusher_overflow)) {
2678 /*
2679 * Assign the same color to all overflowed
2680 * flushers, advance work_color and append to
2681 * flusher_queue. This is the start-to-wait
2682 * phase for these overflowed flushers.
2683 */
2684 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2685 tmp->flush_color = wq->work_color;
2686
2687 wq->work_color = work_next_color(wq->work_color);
2688
2689 list_splice_tail_init(&wq->flusher_overflow,
2690 &wq->flusher_queue);
2691 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2692 }
2693
2694 if (list_empty(&wq->flusher_queue)) {
2695 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2696 break;
2697 }
2698
2699 /*
2700 * Need to flush more colors. Make the next flusher
2701 * the new first flusher and arm pwqs.
2702 */
2703 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2704 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2705
2706 list_del_init(&next->list);
2707 wq->first_flusher = next;
2708
2709 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2710 break;
2711
2712 /*
2713 * Meh... this color is already done, clear first
2714 * flusher and repeat cascading.
2715 */
2716 wq->first_flusher = NULL;
2717 }
2718
2719 out_unlock:
2720 mutex_unlock(&wq->mutex);
2721 }
2722 EXPORT_SYMBOL(flush_workqueue);
2723
2724 /**
2725 * drain_workqueue - drain a workqueue
2726 * @wq: workqueue to drain
2727 *
2728 * Wait until the workqueue becomes empty. While draining is in progress,
2729 * only chain queueing is allowed. IOW, only currently pending or running
2730 * work items on @wq can queue further work items on it. @wq is flushed
2731 * repeatedly until it becomes empty. The number of flushing is determined
2732 * by the depth of chaining and should be relatively short. Whine if it
2733 * takes too long.
2734 */
2735 void drain_workqueue(struct workqueue_struct *wq)
2736 {
2737 unsigned int flush_cnt = 0;
2738 struct pool_workqueue *pwq;
2739
2740 /*
2741 * __queue_work() needs to test whether there are drainers, is much
2742 * hotter than drain_workqueue() and already looks at @wq->flags.
2743 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2744 */
2745 mutex_lock(&wq->mutex);
2746 if (!wq->nr_drainers++)
2747 wq->flags |= __WQ_DRAINING;
2748 mutex_unlock(&wq->mutex);
2749 reflush:
2750 flush_workqueue(wq);
2751
2752 mutex_lock(&wq->mutex);
2753
2754 for_each_pwq(pwq, wq) {
2755 bool drained;
2756
2757 spin_lock_irq(&pwq->pool->lock);
2758 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2759 spin_unlock_irq(&pwq->pool->lock);
2760
2761 if (drained)
2762 continue;
2763
2764 if (++flush_cnt == 10 ||
2765 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2766 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2767 wq->name, flush_cnt);
2768
2769 mutex_unlock(&wq->mutex);
2770 goto reflush;
2771 }
2772
2773 if (!--wq->nr_drainers)
2774 wq->flags &= ~__WQ_DRAINING;
2775 mutex_unlock(&wq->mutex);
2776 }
2777 EXPORT_SYMBOL_GPL(drain_workqueue);
2778
2779 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2780 {
2781 struct worker *worker = NULL;
2782 struct worker_pool *pool;
2783 struct pool_workqueue *pwq;
2784
2785 might_sleep();
2786
2787 local_irq_disable();
2788 pool = get_work_pool(work);
2789 if (!pool) {
2790 local_irq_enable();
2791 return false;
2792 }
2793
2794 spin_lock(&pool->lock);
2795 /* see the comment in try_to_grab_pending() with the same code */
2796 pwq = get_work_pwq(work);
2797 if (pwq) {
2798 if (unlikely(pwq->pool != pool))
2799 goto already_gone;
2800 } else {
2801 worker = find_worker_executing_work(pool, work);
2802 if (!worker)
2803 goto already_gone;
2804 pwq = worker->current_pwq;
2805 }
2806
2807 check_flush_dependency(pwq->wq, work);
2808
2809 insert_wq_barrier(pwq, barr, work, worker);
2810 spin_unlock_irq(&pool->lock);
2811
2812 /*
2813 * If @max_active is 1 or rescuer is in use, flushing another work
2814 * item on the same workqueue may lead to deadlock. Make sure the
2815 * flusher is not running on the same workqueue by verifying write
2816 * access.
2817 */
2818 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2819 lock_map_acquire(&pwq->wq->lockdep_map);
2820 else
2821 lock_map_acquire_read(&pwq->wq->lockdep_map);
2822 lock_map_release(&pwq->wq->lockdep_map);
2823
2824 return true;
2825 already_gone:
2826 spin_unlock_irq(&pool->lock);
2827 return false;
2828 }
2829
2830 /**
2831 * flush_work - wait for a work to finish executing the last queueing instance
2832 * @work: the work to flush
2833 *
2834 * Wait until @work has finished execution. @work is guaranteed to be idle
2835 * on return if it hasn't been requeued since flush started.
2836 *
2837 * Return:
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2840 */
2841 bool flush_work(struct work_struct *work)
2842 {
2843 struct wq_barrier barr;
2844
2845 lock_map_acquire(&work->lockdep_map);
2846 lock_map_release(&work->lockdep_map);
2847
2848 if (start_flush_work(work, &barr)) {
2849 wait_for_completion(&barr.done);
2850 destroy_work_on_stack(&barr.work);
2851 return true;
2852 } else {
2853 return false;
2854 }
2855 }
2856 EXPORT_SYMBOL_GPL(flush_work);
2857
2858 struct cwt_wait {
2859 wait_queue_t wait;
2860 struct work_struct *work;
2861 };
2862
2863 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2864 {
2865 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2866
2867 if (cwait->work != key)
2868 return 0;
2869 return autoremove_wake_function(wait, mode, sync, key);
2870 }
2871
2872 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2873 {
2874 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2875 unsigned long flags;
2876 int ret;
2877
2878 do {
2879 ret = try_to_grab_pending(work, is_dwork, &flags);
2880 /*
2881 * If someone else is already canceling, wait for it to
2882 * finish. flush_work() doesn't work for PREEMPT_NONE
2883 * because we may get scheduled between @work's completion
2884 * and the other canceling task resuming and clearing
2885 * CANCELING - flush_work() will return false immediately
2886 * as @work is no longer busy, try_to_grab_pending() will
2887 * return -ENOENT as @work is still being canceled and the
2888 * other canceling task won't be able to clear CANCELING as
2889 * we're hogging the CPU.
2890 *
2891 * Let's wait for completion using a waitqueue. As this
2892 * may lead to the thundering herd problem, use a custom
2893 * wake function which matches @work along with exclusive
2894 * wait and wakeup.
2895 */
2896 if (unlikely(ret == -ENOENT)) {
2897 struct cwt_wait cwait;
2898
2899 init_wait(&cwait.wait);
2900 cwait.wait.func = cwt_wakefn;
2901 cwait.work = work;
2902
2903 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2904 TASK_UNINTERRUPTIBLE);
2905 if (work_is_canceling(work))
2906 schedule();
2907 finish_wait(&cancel_waitq, &cwait.wait);
2908 }
2909 } while (unlikely(ret < 0));
2910
2911 /* tell other tasks trying to grab @work to back off */
2912 mark_work_canceling(work);
2913 local_irq_restore(flags);
2914
2915 flush_work(work);
2916 clear_work_data(work);
2917
2918 /*
2919 * Paired with prepare_to_wait() above so that either
2920 * waitqueue_active() is visible here or !work_is_canceling() is
2921 * visible there.
2922 */
2923 smp_mb();
2924 if (waitqueue_active(&cancel_waitq))
2925 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2926
2927 return ret;
2928 }
2929
2930 /**
2931 * cancel_work_sync - cancel a work and wait for it to finish
2932 * @work: the work to cancel
2933 *
2934 * Cancel @work and wait for its execution to finish. This function
2935 * can be used even if the work re-queues itself or migrates to
2936 * another workqueue. On return from this function, @work is
2937 * guaranteed to be not pending or executing on any CPU.
2938 *
2939 * cancel_work_sync(&delayed_work->work) must not be used for
2940 * delayed_work's. Use cancel_delayed_work_sync() instead.
2941 *
2942 * The caller must ensure that the workqueue on which @work was last
2943 * queued can't be destroyed before this function returns.
2944 *
2945 * Return:
2946 * %true if @work was pending, %false otherwise.
2947 */
2948 bool cancel_work_sync(struct work_struct *work)
2949 {
2950 return __cancel_work_timer(work, false);
2951 }
2952 EXPORT_SYMBOL_GPL(cancel_work_sync);
2953
2954 /**
2955 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2956 * @dwork: the delayed work to flush
2957 *
2958 * Delayed timer is cancelled and the pending work is queued for
2959 * immediate execution. Like flush_work(), this function only
2960 * considers the last queueing instance of @dwork.
2961 *
2962 * Return:
2963 * %true if flush_work() waited for the work to finish execution,
2964 * %false if it was already idle.
2965 */
2966 bool flush_delayed_work(struct delayed_work *dwork)
2967 {
2968 local_irq_disable();
2969 if (del_timer_sync(&dwork->timer))
2970 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2971 local_irq_enable();
2972 return flush_work(&dwork->work);
2973 }
2974 EXPORT_SYMBOL(flush_delayed_work);
2975
2976 /**
2977 * cancel_delayed_work - cancel a delayed work
2978 * @dwork: delayed_work to cancel
2979 *
2980 * Kill off a pending delayed_work.
2981 *
2982 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2983 * pending.
2984 *
2985 * Note:
2986 * The work callback function may still be running on return, unless
2987 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2988 * use cancel_delayed_work_sync() to wait on it.
2989 *
2990 * This function is safe to call from any context including IRQ handler.
2991 */
2992 bool cancel_delayed_work(struct delayed_work *dwork)
2993 {
2994 unsigned long flags;
2995 int ret;
2996
2997 do {
2998 ret = try_to_grab_pending(&dwork->work, true, &flags);
2999 } while (unlikely(ret == -EAGAIN));
3000
3001 if (unlikely(ret < 0))
3002 return false;
3003
3004 set_work_pool_and_clear_pending(&dwork->work,
3005 get_work_pool_id(&dwork->work));
3006 local_irq_restore(flags);
3007 return ret;
3008 }
3009 EXPORT_SYMBOL(cancel_delayed_work);
3010
3011 /**
3012 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3013 * @dwork: the delayed work cancel
3014 *
3015 * This is cancel_work_sync() for delayed works.
3016 *
3017 * Return:
3018 * %true if @dwork was pending, %false otherwise.
3019 */
3020 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3021 {
3022 return __cancel_work_timer(&dwork->work, true);
3023 }
3024 EXPORT_SYMBOL(cancel_delayed_work_sync);
3025
3026 /**
3027 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3028 * @func: the function to call
3029 *
3030 * schedule_on_each_cpu() executes @func on each online CPU using the
3031 * system workqueue and blocks until all CPUs have completed.
3032 * schedule_on_each_cpu() is very slow.
3033 *
3034 * Return:
3035 * 0 on success, -errno on failure.
3036 */
3037 int schedule_on_each_cpu(work_func_t func)
3038 {
3039 int cpu;
3040 struct work_struct __percpu *works;
3041
3042 works = alloc_percpu(struct work_struct);
3043 if (!works)
3044 return -ENOMEM;
3045
3046 get_online_cpus();
3047
3048 for_each_online_cpu(cpu) {
3049 struct work_struct *work = per_cpu_ptr(works, cpu);
3050
3051 INIT_WORK(work, func);
3052 schedule_work_on(cpu, work);
3053 }
3054
3055 for_each_online_cpu(cpu)
3056 flush_work(per_cpu_ptr(works, cpu));
3057
3058 put_online_cpus();
3059 free_percpu(works);
3060 return 0;
3061 }
3062
3063 /**
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3068 *
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3071 *
3072 * Return: 0 - function was executed
3073 * 1 - function was scheduled for execution
3074 */
3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 {
3077 if (!in_interrupt()) {
3078 fn(&ew->work);
3079 return 0;
3080 }
3081
3082 INIT_WORK(&ew->work, fn);
3083 schedule_work(&ew->work);
3084
3085 return 1;
3086 }
3087 EXPORT_SYMBOL_GPL(execute_in_process_context);
3088
3089 /**
3090 * free_workqueue_attrs - free a workqueue_attrs
3091 * @attrs: workqueue_attrs to free
3092 *
3093 * Undo alloc_workqueue_attrs().
3094 */
3095 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3096 {
3097 if (attrs) {
3098 free_cpumask_var(attrs->cpumask);
3099 kfree(attrs);
3100 }
3101 }
3102
3103 /**
3104 * alloc_workqueue_attrs - allocate a workqueue_attrs
3105 * @gfp_mask: allocation mask to use
3106 *
3107 * Allocate a new workqueue_attrs, initialize with default settings and
3108 * return it.
3109 *
3110 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3111 */
3112 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3113 {
3114 struct workqueue_attrs *attrs;
3115
3116 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3117 if (!attrs)
3118 goto fail;
3119 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3120 goto fail;
3121
3122 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3123 return attrs;
3124 fail:
3125 free_workqueue_attrs(attrs);
3126 return NULL;
3127 }
3128
3129 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3130 const struct workqueue_attrs *from)
3131 {
3132 to->nice = from->nice;
3133 cpumask_copy(to->cpumask, from->cpumask);
3134 /*
3135 * Unlike hash and equality test, this function doesn't ignore
3136 * ->no_numa as it is used for both pool and wq attrs. Instead,
3137 * get_unbound_pool() explicitly clears ->no_numa after copying.
3138 */
3139 to->no_numa = from->no_numa;
3140 }
3141
3142 /* hash value of the content of @attr */
3143 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3144 {
3145 u32 hash = 0;
3146
3147 hash = jhash_1word(attrs->nice, hash);
3148 hash = jhash(cpumask_bits(attrs->cpumask),
3149 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3150 return hash;
3151 }
3152
3153 /* content equality test */
3154 static bool wqattrs_equal(const struct workqueue_attrs *a,
3155 const struct workqueue_attrs *b)
3156 {
3157 if (a->nice != b->nice)
3158 return false;
3159 if (!cpumask_equal(a->cpumask, b->cpumask))
3160 return false;
3161 return true;
3162 }
3163
3164 /**
3165 * init_worker_pool - initialize a newly zalloc'd worker_pool
3166 * @pool: worker_pool to initialize
3167 *
3168 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3169 *
3170 * Return: 0 on success, -errno on failure. Even on failure, all fields
3171 * inside @pool proper are initialized and put_unbound_pool() can be called
3172 * on @pool safely to release it.
3173 */
3174 static int init_worker_pool(struct worker_pool *pool)
3175 {
3176 spin_lock_init(&pool->lock);
3177 pool->id = -1;
3178 pool->cpu = -1;
3179 pool->node = NUMA_NO_NODE;
3180 pool->flags |= POOL_DISASSOCIATED;
3181 pool->watchdog_ts = jiffies;
3182 INIT_LIST_HEAD(&pool->worklist);
3183 INIT_LIST_HEAD(&pool->idle_list);
3184 hash_init(pool->busy_hash);
3185
3186 init_timer_deferrable(&pool->idle_timer);
3187 pool->idle_timer.function = idle_worker_timeout;
3188 pool->idle_timer.data = (unsigned long)pool;
3189
3190 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3191 (unsigned long)pool);
3192
3193 mutex_init(&pool->manager_arb);
3194 mutex_init(&pool->attach_mutex);
3195 INIT_LIST_HEAD(&pool->workers);
3196
3197 ida_init(&pool->worker_ida);
3198 INIT_HLIST_NODE(&pool->hash_node);
3199 pool->refcnt = 1;
3200
3201 /* shouldn't fail above this point */
3202 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3203 if (!pool->attrs)
3204 return -ENOMEM;
3205 return 0;
3206 }
3207
3208 static void rcu_free_wq(struct rcu_head *rcu)
3209 {
3210 struct workqueue_struct *wq =
3211 container_of(rcu, struct workqueue_struct, rcu);
3212
3213 if (!(wq->flags & WQ_UNBOUND))
3214 free_percpu(wq->cpu_pwqs);
3215 else
3216 free_workqueue_attrs(wq->unbound_attrs);
3217
3218 kfree(wq->rescuer);
3219 kfree(wq);
3220 }
3221
3222 static void rcu_free_pool(struct rcu_head *rcu)
3223 {
3224 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3225
3226 ida_destroy(&pool->worker_ida);
3227 free_workqueue_attrs(pool->attrs);
3228 kfree(pool);
3229 }
3230
3231 /**
3232 * put_unbound_pool - put a worker_pool
3233 * @pool: worker_pool to put
3234 *
3235 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3236 * safe manner. get_unbound_pool() calls this function on its failure path
3237 * and this function should be able to release pools which went through,
3238 * successfully or not, init_worker_pool().
3239 *
3240 * Should be called with wq_pool_mutex held.
3241 */
3242 static void put_unbound_pool(struct worker_pool *pool)
3243 {
3244 DECLARE_COMPLETION_ONSTACK(detach_completion);
3245 struct worker *worker;
3246
3247 lockdep_assert_held(&wq_pool_mutex);
3248
3249 if (--pool->refcnt)
3250 return;
3251
3252 /* sanity checks */
3253 if (WARN_ON(!(pool->cpu < 0)) ||
3254 WARN_ON(!list_empty(&pool->worklist)))
3255 return;
3256
3257 /* release id and unhash */
3258 if (pool->id >= 0)
3259 idr_remove(&worker_pool_idr, pool->id);
3260 hash_del(&pool->hash_node);
3261
3262 /*
3263 * Become the manager and destroy all workers. Grabbing
3264 * manager_arb prevents @pool's workers from blocking on
3265 * attach_mutex.
3266 */
3267 mutex_lock(&pool->manager_arb);
3268
3269 spin_lock_irq(&pool->lock);
3270 while ((worker = first_idle_worker(pool)))
3271 destroy_worker(worker);
3272 WARN_ON(pool->nr_workers || pool->nr_idle);
3273 spin_unlock_irq(&pool->lock);
3274
3275 mutex_lock(&pool->attach_mutex);
3276 if (!list_empty(&pool->workers))
3277 pool->detach_completion = &detach_completion;
3278 mutex_unlock(&pool->attach_mutex);
3279
3280 if (pool->detach_completion)
3281 wait_for_completion(pool->detach_completion);
3282
3283 mutex_unlock(&pool->manager_arb);
3284
3285 /* shut down the timers */
3286 del_timer_sync(&pool->idle_timer);
3287 del_timer_sync(&pool->mayday_timer);
3288
3289 /* sched-RCU protected to allow dereferences from get_work_pool() */
3290 call_rcu_sched(&pool->rcu, rcu_free_pool);
3291 }
3292
3293 /**
3294 * get_unbound_pool - get a worker_pool with the specified attributes
3295 * @attrs: the attributes of the worker_pool to get
3296 *
3297 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3298 * reference count and return it. If there already is a matching
3299 * worker_pool, it will be used; otherwise, this function attempts to
3300 * create a new one.
3301 *
3302 * Should be called with wq_pool_mutex held.
3303 *
3304 * Return: On success, a worker_pool with the same attributes as @attrs.
3305 * On failure, %NULL.
3306 */
3307 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3308 {
3309 u32 hash = wqattrs_hash(attrs);
3310 struct worker_pool *pool;
3311 int node;
3312 int target_node = NUMA_NO_NODE;
3313
3314 lockdep_assert_held(&wq_pool_mutex);
3315
3316 /* do we already have a matching pool? */
3317 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3318 if (wqattrs_equal(pool->attrs, attrs)) {
3319 pool->refcnt++;
3320 return pool;
3321 }
3322 }
3323
3324 /* if cpumask is contained inside a NUMA node, we belong to that node */
3325 if (wq_numa_enabled) {
3326 for_each_node(node) {
3327 if (cpumask_subset(attrs->cpumask,
3328 wq_numa_possible_cpumask[node])) {
3329 target_node = node;
3330 break;
3331 }
3332 }
3333 }
3334
3335 /* nope, create a new one */
3336 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3337 if (!pool || init_worker_pool(pool) < 0)
3338 goto fail;
3339
3340 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3341 copy_workqueue_attrs(pool->attrs, attrs);
3342 pool->node = target_node;
3343
3344 /*
3345 * no_numa isn't a worker_pool attribute, always clear it. See
3346 * 'struct workqueue_attrs' comments for detail.
3347 */
3348 pool->attrs->no_numa = false;
3349
3350 if (worker_pool_assign_id(pool) < 0)
3351 goto fail;
3352
3353 /* create and start the initial worker */
3354 if (!create_worker(pool))
3355 goto fail;
3356
3357 /* install */
3358 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3359
3360 return pool;
3361 fail:
3362 if (pool)
3363 put_unbound_pool(pool);
3364 return NULL;
3365 }
3366
3367 static void rcu_free_pwq(struct rcu_head *rcu)
3368 {
3369 kmem_cache_free(pwq_cache,
3370 container_of(rcu, struct pool_workqueue, rcu));
3371 }
3372
3373 /*
3374 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3375 * and needs to be destroyed.
3376 */
3377 static void pwq_unbound_release_workfn(struct work_struct *work)
3378 {
3379 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3380 unbound_release_work);
3381 struct workqueue_struct *wq = pwq->wq;
3382 struct worker_pool *pool = pwq->pool;
3383 bool is_last;
3384
3385 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3386 return;
3387
3388 mutex_lock(&wq->mutex);
3389 list_del_rcu(&pwq->pwqs_node);
3390 is_last = list_empty(&wq->pwqs);
3391 mutex_unlock(&wq->mutex);
3392
3393 mutex_lock(&wq_pool_mutex);
3394 put_unbound_pool(pool);
3395 mutex_unlock(&wq_pool_mutex);
3396
3397 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3398
3399 /*
3400 * If we're the last pwq going away, @wq is already dead and no one
3401 * is gonna access it anymore. Schedule RCU free.
3402 */
3403 if (is_last)
3404 call_rcu_sched(&wq->rcu, rcu_free_wq);
3405 }
3406
3407 /**
3408 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3409 * @pwq: target pool_workqueue
3410 *
3411 * If @pwq isn't freezing, set @pwq->max_active to the associated
3412 * workqueue's saved_max_active and activate delayed work items
3413 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3414 */
3415 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3416 {
3417 struct workqueue_struct *wq = pwq->wq;
3418 bool freezable = wq->flags & WQ_FREEZABLE;
3419
3420 /* for @wq->saved_max_active */
3421 lockdep_assert_held(&wq->mutex);
3422
3423 /* fast exit for non-freezable wqs */
3424 if (!freezable && pwq->max_active == wq->saved_max_active)
3425 return;
3426
3427 spin_lock_irq(&pwq->pool->lock);
3428
3429 /*
3430 * During [un]freezing, the caller is responsible for ensuring that
3431 * this function is called at least once after @workqueue_freezing
3432 * is updated and visible.
3433 */
3434 if (!freezable || !workqueue_freezing) {
3435 pwq->max_active = wq->saved_max_active;
3436
3437 while (!list_empty(&pwq->delayed_works) &&
3438 pwq->nr_active < pwq->max_active)
3439 pwq_activate_first_delayed(pwq);
3440
3441 /*
3442 * Need to kick a worker after thawed or an unbound wq's
3443 * max_active is bumped. It's a slow path. Do it always.
3444 */
3445 wake_up_worker(pwq->pool);
3446 } else {
3447 pwq->max_active = 0;
3448 }
3449
3450 spin_unlock_irq(&pwq->pool->lock);
3451 }
3452
3453 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3454 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3455 struct worker_pool *pool)
3456 {
3457 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3458
3459 memset(pwq, 0, sizeof(*pwq));
3460
3461 pwq->pool = pool;
3462 pwq->wq = wq;
3463 pwq->flush_color = -1;
3464 pwq->refcnt = 1;
3465 INIT_LIST_HEAD(&pwq->delayed_works);
3466 INIT_LIST_HEAD(&pwq->pwqs_node);
3467 INIT_LIST_HEAD(&pwq->mayday_node);
3468 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3469 }
3470
3471 /* sync @pwq with the current state of its associated wq and link it */
3472 static void link_pwq(struct pool_workqueue *pwq)
3473 {
3474 struct workqueue_struct *wq = pwq->wq;
3475
3476 lockdep_assert_held(&wq->mutex);
3477
3478 /* may be called multiple times, ignore if already linked */
3479 if (!list_empty(&pwq->pwqs_node))
3480 return;
3481
3482 /* set the matching work_color */
3483 pwq->work_color = wq->work_color;
3484
3485 /* sync max_active to the current setting */
3486 pwq_adjust_max_active(pwq);
3487
3488 /* link in @pwq */
3489 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3490 }
3491
3492 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3493 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3494 const struct workqueue_attrs *attrs)
3495 {
3496 struct worker_pool *pool;
3497 struct pool_workqueue *pwq;
3498
3499 lockdep_assert_held(&wq_pool_mutex);
3500
3501 pool = get_unbound_pool(attrs);
3502 if (!pool)
3503 return NULL;
3504
3505 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3506 if (!pwq) {
3507 put_unbound_pool(pool);
3508 return NULL;
3509 }
3510
3511 init_pwq(pwq, wq, pool);
3512 return pwq;
3513 }
3514
3515 /**
3516 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3517 * @attrs: the wq_attrs of the default pwq of the target workqueue
3518 * @node: the target NUMA node
3519 * @cpu_going_down: if >= 0, the CPU to consider as offline
3520 * @cpumask: outarg, the resulting cpumask
3521 *
3522 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3523 * @cpu_going_down is >= 0, that cpu is considered offline during
3524 * calculation. The result is stored in @cpumask.
3525 *
3526 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3527 * enabled and @node has online CPUs requested by @attrs, the returned
3528 * cpumask is the intersection of the possible CPUs of @node and
3529 * @attrs->cpumask.
3530 *
3531 * The caller is responsible for ensuring that the cpumask of @node stays
3532 * stable.
3533 *
3534 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3535 * %false if equal.
3536 */
3537 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3538 int cpu_going_down, cpumask_t *cpumask)
3539 {
3540 if (!wq_numa_enabled || attrs->no_numa)
3541 goto use_dfl;
3542
3543 /* does @node have any online CPUs @attrs wants? */
3544 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3545 if (cpu_going_down >= 0)
3546 cpumask_clear_cpu(cpu_going_down, cpumask);
3547
3548 if (cpumask_empty(cpumask))
3549 goto use_dfl;
3550
3551 /* yeap, return possible CPUs in @node that @attrs wants */
3552 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3553 return !cpumask_equal(cpumask, attrs->cpumask);
3554
3555 use_dfl:
3556 cpumask_copy(cpumask, attrs->cpumask);
3557 return false;
3558 }
3559
3560 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3561 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3562 int node,
3563 struct pool_workqueue *pwq)
3564 {
3565 struct pool_workqueue *old_pwq;
3566
3567 lockdep_assert_held(&wq_pool_mutex);
3568 lockdep_assert_held(&wq->mutex);
3569
3570 /* link_pwq() can handle duplicate calls */
3571 link_pwq(pwq);
3572
3573 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3574 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3575 return old_pwq;
3576 }
3577
3578 /* context to store the prepared attrs & pwqs before applying */
3579 struct apply_wqattrs_ctx {
3580 struct workqueue_struct *wq; /* target workqueue */
3581 struct workqueue_attrs *attrs; /* attrs to apply */
3582 struct list_head list; /* queued for batching commit */
3583 struct pool_workqueue *dfl_pwq;
3584 struct pool_workqueue *pwq_tbl[];
3585 };
3586
3587 /* free the resources after success or abort */
3588 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3589 {
3590 if (ctx) {
3591 int node;
3592
3593 for_each_node(node)
3594 put_pwq_unlocked(ctx->pwq_tbl[node]);
3595 put_pwq_unlocked(ctx->dfl_pwq);
3596
3597 free_workqueue_attrs(ctx->attrs);
3598
3599 kfree(ctx);
3600 }
3601 }
3602
3603 /* allocate the attrs and pwqs for later installation */
3604 static struct apply_wqattrs_ctx *
3605 apply_wqattrs_prepare(struct workqueue_struct *wq,
3606 const struct workqueue_attrs *attrs)
3607 {
3608 struct apply_wqattrs_ctx *ctx;
3609 struct workqueue_attrs *new_attrs, *tmp_attrs;
3610 int node;
3611
3612 lockdep_assert_held(&wq_pool_mutex);
3613
3614 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3615 GFP_KERNEL);
3616
3617 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3618 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3619 if (!ctx || !new_attrs || !tmp_attrs)
3620 goto out_free;
3621
3622 /*
3623 * Calculate the attrs of the default pwq.
3624 * If the user configured cpumask doesn't overlap with the
3625 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3626 */
3627 copy_workqueue_attrs(new_attrs, attrs);
3628 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3629 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3630 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3631
3632 /*
3633 * We may create multiple pwqs with differing cpumasks. Make a
3634 * copy of @new_attrs which will be modified and used to obtain
3635 * pools.
3636 */
3637 copy_workqueue_attrs(tmp_attrs, new_attrs);
3638
3639 /*
3640 * If something goes wrong during CPU up/down, we'll fall back to
3641 * the default pwq covering whole @attrs->cpumask. Always create
3642 * it even if we don't use it immediately.
3643 */
3644 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3645 if (!ctx->dfl_pwq)
3646 goto out_free;
3647
3648 for_each_node(node) {
3649 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3650 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3651 if (!ctx->pwq_tbl[node])
3652 goto out_free;
3653 } else {
3654 ctx->dfl_pwq->refcnt++;
3655 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3656 }
3657 }
3658
3659 /* save the user configured attrs and sanitize it. */
3660 copy_workqueue_attrs(new_attrs, attrs);
3661 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3662 ctx->attrs = new_attrs;
3663
3664 ctx->wq = wq;
3665 free_workqueue_attrs(tmp_attrs);
3666 return ctx;
3667
3668 out_free:
3669 free_workqueue_attrs(tmp_attrs);
3670 free_workqueue_attrs(new_attrs);
3671 apply_wqattrs_cleanup(ctx);
3672 return NULL;
3673 }
3674
3675 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3676 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3677 {
3678 int node;
3679
3680 /* all pwqs have been created successfully, let's install'em */
3681 mutex_lock(&ctx->wq->mutex);
3682
3683 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3684
3685 /* save the previous pwq and install the new one */
3686 for_each_node(node)
3687 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3688 ctx->pwq_tbl[node]);
3689
3690 /* @dfl_pwq might not have been used, ensure it's linked */
3691 link_pwq(ctx->dfl_pwq);
3692 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3693
3694 mutex_unlock(&ctx->wq->mutex);
3695 }
3696
3697 static void apply_wqattrs_lock(void)
3698 {
3699 /* CPUs should stay stable across pwq creations and installations */
3700 get_online_cpus();
3701 mutex_lock(&wq_pool_mutex);
3702 }
3703
3704 static void apply_wqattrs_unlock(void)
3705 {
3706 mutex_unlock(&wq_pool_mutex);
3707 put_online_cpus();
3708 }
3709
3710 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3711 const struct workqueue_attrs *attrs)
3712 {
3713 struct apply_wqattrs_ctx *ctx;
3714
3715 /* only unbound workqueues can change attributes */
3716 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3717 return -EINVAL;
3718
3719 /* creating multiple pwqs breaks ordering guarantee */
3720 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3721 return -EINVAL;
3722
3723 ctx = apply_wqattrs_prepare(wq, attrs);
3724 if (!ctx)
3725 return -ENOMEM;
3726
3727 /* the ctx has been prepared successfully, let's commit it */
3728 apply_wqattrs_commit(ctx);
3729 apply_wqattrs_cleanup(ctx);
3730
3731 return 0;
3732 }
3733
3734 /**
3735 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3736 * @wq: the target workqueue
3737 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3738 *
3739 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3740 * machines, this function maps a separate pwq to each NUMA node with
3741 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3742 * NUMA node it was issued on. Older pwqs are released as in-flight work
3743 * items finish. Note that a work item which repeatedly requeues itself
3744 * back-to-back will stay on its current pwq.
3745 *
3746 * Performs GFP_KERNEL allocations.
3747 *
3748 * Return: 0 on success and -errno on failure.
3749 */
3750 int apply_workqueue_attrs(struct workqueue_struct *wq,
3751 const struct workqueue_attrs *attrs)
3752 {
3753 int ret;
3754
3755 apply_wqattrs_lock();
3756 ret = apply_workqueue_attrs_locked(wq, attrs);
3757 apply_wqattrs_unlock();
3758
3759 return ret;
3760 }
3761
3762 /**
3763 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3764 * @wq: the target workqueue
3765 * @cpu: the CPU coming up or going down
3766 * @online: whether @cpu is coming up or going down
3767 *
3768 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3769 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3770 * @wq accordingly.
3771 *
3772 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3773 * falls back to @wq->dfl_pwq which may not be optimal but is always
3774 * correct.
3775 *
3776 * Note that when the last allowed CPU of a NUMA node goes offline for a
3777 * workqueue with a cpumask spanning multiple nodes, the workers which were
3778 * already executing the work items for the workqueue will lose their CPU
3779 * affinity and may execute on any CPU. This is similar to how per-cpu
3780 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3781 * affinity, it's the user's responsibility to flush the work item from
3782 * CPU_DOWN_PREPARE.
3783 */
3784 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3785 bool online)
3786 {
3787 int node = cpu_to_node(cpu);
3788 int cpu_off = online ? -1 : cpu;
3789 struct pool_workqueue *old_pwq = NULL, *pwq;
3790 struct workqueue_attrs *target_attrs;
3791 cpumask_t *cpumask;
3792
3793 lockdep_assert_held(&wq_pool_mutex);
3794
3795 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3796 wq->unbound_attrs->no_numa)
3797 return;
3798
3799 /*
3800 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3801 * Let's use a preallocated one. The following buf is protected by
3802 * CPU hotplug exclusion.
3803 */
3804 target_attrs = wq_update_unbound_numa_attrs_buf;
3805 cpumask = target_attrs->cpumask;
3806
3807 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3808 pwq = unbound_pwq_by_node(wq, node);
3809
3810 /*
3811 * Let's determine what needs to be done. If the target cpumask is
3812 * different from the default pwq's, we need to compare it to @pwq's
3813 * and create a new one if they don't match. If the target cpumask
3814 * equals the default pwq's, the default pwq should be used.
3815 */
3816 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3817 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3818 return;
3819 } else {
3820 goto use_dfl_pwq;
3821 }
3822
3823 /* create a new pwq */
3824 pwq = alloc_unbound_pwq(wq, target_attrs);
3825 if (!pwq) {
3826 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3827 wq->name);
3828 goto use_dfl_pwq;
3829 }
3830
3831 /* Install the new pwq. */
3832 mutex_lock(&wq->mutex);
3833 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3834 goto out_unlock;
3835
3836 use_dfl_pwq:
3837 mutex_lock(&wq->mutex);
3838 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3839 get_pwq(wq->dfl_pwq);
3840 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3841 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3842 out_unlock:
3843 mutex_unlock(&wq->mutex);
3844 put_pwq_unlocked(old_pwq);
3845 }
3846
3847 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3848 {
3849 bool highpri = wq->flags & WQ_HIGHPRI;
3850 int cpu, ret;
3851
3852 if (!(wq->flags & WQ_UNBOUND)) {
3853 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3854 if (!wq->cpu_pwqs)
3855 return -ENOMEM;
3856
3857 for_each_possible_cpu(cpu) {
3858 struct pool_workqueue *pwq =
3859 per_cpu_ptr(wq->cpu_pwqs, cpu);
3860 struct worker_pool *cpu_pools =
3861 per_cpu(cpu_worker_pools, cpu);
3862
3863 init_pwq(pwq, wq, &cpu_pools[highpri]);
3864
3865 mutex_lock(&wq->mutex);
3866 link_pwq(pwq);
3867 mutex_unlock(&wq->mutex);
3868 }
3869 return 0;
3870 } else if (wq->flags & __WQ_ORDERED) {
3871 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3872 /* there should only be single pwq for ordering guarantee */
3873 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3874 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3875 "ordering guarantee broken for workqueue %s\n", wq->name);
3876 return ret;
3877 } else {
3878 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3879 }
3880 }
3881
3882 static int wq_clamp_max_active(int max_active, unsigned int flags,
3883 const char *name)
3884 {
3885 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3886
3887 if (max_active < 1 || max_active > lim)
3888 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3889 max_active, name, 1, lim);
3890
3891 return clamp_val(max_active, 1, lim);
3892 }
3893
3894 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3895 unsigned int flags,
3896 int max_active,
3897 struct lock_class_key *key,
3898 const char *lock_name, ...)
3899 {
3900 size_t tbl_size = 0;
3901 va_list args;
3902 struct workqueue_struct *wq;
3903 struct pool_workqueue *pwq;
3904
3905 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3906 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3907 flags |= WQ_UNBOUND;
3908
3909 /* allocate wq and format name */
3910 if (flags & WQ_UNBOUND)
3911 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3912
3913 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3914 if (!wq)
3915 return NULL;
3916
3917 if (flags & WQ_UNBOUND) {
3918 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3919 if (!wq->unbound_attrs)
3920 goto err_free_wq;
3921 }
3922
3923 va_start(args, lock_name);
3924 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3925 va_end(args);
3926
3927 max_active = max_active ?: WQ_DFL_ACTIVE;
3928 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3929
3930 /* init wq */
3931 wq->flags = flags;
3932 wq->saved_max_active = max_active;
3933 mutex_init(&wq->mutex);
3934 atomic_set(&wq->nr_pwqs_to_flush, 0);
3935 INIT_LIST_HEAD(&wq->pwqs);
3936 INIT_LIST_HEAD(&wq->flusher_queue);
3937 INIT_LIST_HEAD(&wq->flusher_overflow);
3938 INIT_LIST_HEAD(&wq->maydays);
3939
3940 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3941 INIT_LIST_HEAD(&wq->list);
3942
3943 if (alloc_and_link_pwqs(wq) < 0)
3944 goto err_free_wq;
3945
3946 /*
3947 * Workqueues which may be used during memory reclaim should
3948 * have a rescuer to guarantee forward progress.
3949 */
3950 if (flags & WQ_MEM_RECLAIM) {
3951 struct worker *rescuer;
3952
3953 rescuer = alloc_worker(NUMA_NO_NODE);
3954 if (!rescuer)
3955 goto err_destroy;
3956
3957 rescuer->rescue_wq = wq;
3958 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3959 wq->name);
3960 if (IS_ERR(rescuer->task)) {
3961 kfree(rescuer);
3962 goto err_destroy;
3963 }
3964
3965 wq->rescuer = rescuer;
3966 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3967 wake_up_process(rescuer->task);
3968 }
3969
3970 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3971 goto err_destroy;
3972
3973 /*
3974 * wq_pool_mutex protects global freeze state and workqueues list.
3975 * Grab it, adjust max_active and add the new @wq to workqueues
3976 * list.
3977 */
3978 mutex_lock(&wq_pool_mutex);
3979
3980 mutex_lock(&wq->mutex);
3981 for_each_pwq(pwq, wq)
3982 pwq_adjust_max_active(pwq);
3983 mutex_unlock(&wq->mutex);
3984
3985 list_add_tail_rcu(&wq->list, &workqueues);
3986
3987 mutex_unlock(&wq_pool_mutex);
3988
3989 return wq;
3990
3991 err_free_wq:
3992 free_workqueue_attrs(wq->unbound_attrs);
3993 kfree(wq);
3994 return NULL;
3995 err_destroy:
3996 destroy_workqueue(wq);
3997 return NULL;
3998 }
3999 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4000
4001 /**
4002 * destroy_workqueue - safely terminate a workqueue
4003 * @wq: target workqueue
4004 *
4005 * Safely destroy a workqueue. All work currently pending will be done first.
4006 */
4007 void destroy_workqueue(struct workqueue_struct *wq)
4008 {
4009 struct pool_workqueue *pwq;
4010 int node;
4011
4012 /* drain it before proceeding with destruction */
4013 drain_workqueue(wq);
4014
4015 /* sanity checks */
4016 mutex_lock(&wq->mutex);
4017 for_each_pwq(pwq, wq) {
4018 int i;
4019
4020 for (i = 0; i < WORK_NR_COLORS; i++) {
4021 if (WARN_ON(pwq->nr_in_flight[i])) {
4022 mutex_unlock(&wq->mutex);
4023 return;
4024 }
4025 }
4026
4027 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4028 WARN_ON(pwq->nr_active) ||
4029 WARN_ON(!list_empty(&pwq->delayed_works))) {
4030 mutex_unlock(&wq->mutex);
4031 return;
4032 }
4033 }
4034 mutex_unlock(&wq->mutex);
4035
4036 /*
4037 * wq list is used to freeze wq, remove from list after
4038 * flushing is complete in case freeze races us.
4039 */
4040 mutex_lock(&wq_pool_mutex);
4041 list_del_rcu(&wq->list);
4042 mutex_unlock(&wq_pool_mutex);
4043
4044 workqueue_sysfs_unregister(wq);
4045
4046 if (wq->rescuer)
4047 kthread_stop(wq->rescuer->task);
4048
4049 if (!(wq->flags & WQ_UNBOUND)) {
4050 /*
4051 * The base ref is never dropped on per-cpu pwqs. Directly
4052 * schedule RCU free.
4053 */
4054 call_rcu_sched(&wq->rcu, rcu_free_wq);
4055 } else {
4056 /*
4057 * We're the sole accessor of @wq at this point. Directly
4058 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4059 * @wq will be freed when the last pwq is released.
4060 */
4061 for_each_node(node) {
4062 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4063 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4064 put_pwq_unlocked(pwq);
4065 }
4066
4067 /*
4068 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4069 * put. Don't access it afterwards.
4070 */
4071 pwq = wq->dfl_pwq;
4072 wq->dfl_pwq = NULL;
4073 put_pwq_unlocked(pwq);
4074 }
4075 }
4076 EXPORT_SYMBOL_GPL(destroy_workqueue);
4077
4078 /**
4079 * workqueue_set_max_active - adjust max_active of a workqueue
4080 * @wq: target workqueue
4081 * @max_active: new max_active value.
4082 *
4083 * Set max_active of @wq to @max_active.
4084 *
4085 * CONTEXT:
4086 * Don't call from IRQ context.
4087 */
4088 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4089 {
4090 struct pool_workqueue *pwq;
4091
4092 /* disallow meddling with max_active for ordered workqueues */
4093 if (WARN_ON(wq->flags & __WQ_ORDERED))
4094 return;
4095
4096 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4097
4098 mutex_lock(&wq->mutex);
4099
4100 wq->saved_max_active = max_active;
4101
4102 for_each_pwq(pwq, wq)
4103 pwq_adjust_max_active(pwq);
4104
4105 mutex_unlock(&wq->mutex);
4106 }
4107 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4108
4109 /**
4110 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4111 *
4112 * Determine whether %current is a workqueue rescuer. Can be used from
4113 * work functions to determine whether it's being run off the rescuer task.
4114 *
4115 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4116 */
4117 bool current_is_workqueue_rescuer(void)
4118 {
4119 struct worker *worker = current_wq_worker();
4120
4121 return worker && worker->rescue_wq;
4122 }
4123
4124 /**
4125 * workqueue_congested - test whether a workqueue is congested
4126 * @cpu: CPU in question
4127 * @wq: target workqueue
4128 *
4129 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4130 * no synchronization around this function and the test result is
4131 * unreliable and only useful as advisory hints or for debugging.
4132 *
4133 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4134 * Note that both per-cpu and unbound workqueues may be associated with
4135 * multiple pool_workqueues which have separate congested states. A
4136 * workqueue being congested on one CPU doesn't mean the workqueue is also
4137 * contested on other CPUs / NUMA nodes.
4138 *
4139 * Return:
4140 * %true if congested, %false otherwise.
4141 */
4142 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4143 {
4144 struct pool_workqueue *pwq;
4145 bool ret;
4146
4147 rcu_read_lock_sched();
4148
4149 if (cpu == WORK_CPU_UNBOUND)
4150 cpu = smp_processor_id();
4151
4152 if (!(wq->flags & WQ_UNBOUND))
4153 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4154 else
4155 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4156
4157 ret = !list_empty(&pwq->delayed_works);
4158 rcu_read_unlock_sched();
4159
4160 return ret;
4161 }
4162 EXPORT_SYMBOL_GPL(workqueue_congested);
4163
4164 /**
4165 * work_busy - test whether a work is currently pending or running
4166 * @work: the work to be tested
4167 *
4168 * Test whether @work is currently pending or running. There is no
4169 * synchronization around this function and the test result is
4170 * unreliable and only useful as advisory hints or for debugging.
4171 *
4172 * Return:
4173 * OR'd bitmask of WORK_BUSY_* bits.
4174 */
4175 unsigned int work_busy(struct work_struct *work)
4176 {
4177 struct worker_pool *pool;
4178 unsigned long flags;
4179 unsigned int ret = 0;
4180
4181 if (work_pending(work))
4182 ret |= WORK_BUSY_PENDING;
4183
4184 local_irq_save(flags);
4185 pool = get_work_pool(work);
4186 if (pool) {
4187 spin_lock(&pool->lock);
4188 if (find_worker_executing_work(pool, work))
4189 ret |= WORK_BUSY_RUNNING;
4190 spin_unlock(&pool->lock);
4191 }
4192 local_irq_restore(flags);
4193
4194 return ret;
4195 }
4196 EXPORT_SYMBOL_GPL(work_busy);
4197
4198 /**
4199 * set_worker_desc - set description for the current work item
4200 * @fmt: printf-style format string
4201 * @...: arguments for the format string
4202 *
4203 * This function can be called by a running work function to describe what
4204 * the work item is about. If the worker task gets dumped, this
4205 * information will be printed out together to help debugging. The
4206 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4207 */
4208 void set_worker_desc(const char *fmt, ...)
4209 {
4210 struct worker *worker = current_wq_worker();
4211 va_list args;
4212
4213 if (worker) {
4214 va_start(args, fmt);
4215 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4216 va_end(args);
4217 worker->desc_valid = true;
4218 }
4219 }
4220
4221 /**
4222 * print_worker_info - print out worker information and description
4223 * @log_lvl: the log level to use when printing
4224 * @task: target task
4225 *
4226 * If @task is a worker and currently executing a work item, print out the
4227 * name of the workqueue being serviced and worker description set with
4228 * set_worker_desc() by the currently executing work item.
4229 *
4230 * This function can be safely called on any task as long as the
4231 * task_struct itself is accessible. While safe, this function isn't
4232 * synchronized and may print out mixups or garbages of limited length.
4233 */
4234 void print_worker_info(const char *log_lvl, struct task_struct *task)
4235 {
4236 work_func_t *fn = NULL;
4237 char name[WQ_NAME_LEN] = { };
4238 char desc[WORKER_DESC_LEN] = { };
4239 struct pool_workqueue *pwq = NULL;
4240 struct workqueue_struct *wq = NULL;
4241 bool desc_valid = false;
4242 struct worker *worker;
4243
4244 if (!(task->flags & PF_WQ_WORKER))
4245 return;
4246
4247 /*
4248 * This function is called without any synchronization and @task
4249 * could be in any state. Be careful with dereferences.
4250 */
4251 worker = probe_kthread_data(task);
4252
4253 /*
4254 * Carefully copy the associated workqueue's workfn and name. Keep
4255 * the original last '\0' in case the original contains garbage.
4256 */
4257 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4258 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4259 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4260 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4261
4262 /* copy worker description */
4263 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4264 if (desc_valid)
4265 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4266
4267 if (fn || name[0] || desc[0]) {
4268 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4269 if (desc[0])
4270 pr_cont(" (%s)", desc);
4271 pr_cont("\n");
4272 }
4273 }
4274
4275 static void pr_cont_pool_info(struct worker_pool *pool)
4276 {
4277 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4278 if (pool->node != NUMA_NO_NODE)
4279 pr_cont(" node=%d", pool->node);
4280 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4281 }
4282
4283 static void pr_cont_work(bool comma, struct work_struct *work)
4284 {
4285 if (work->func == wq_barrier_func) {
4286 struct wq_barrier *barr;
4287
4288 barr = container_of(work, struct wq_barrier, work);
4289
4290 pr_cont("%s BAR(%d)", comma ? "," : "",
4291 task_pid_nr(barr->task));
4292 } else {
4293 pr_cont("%s %pf", comma ? "," : "", work->func);
4294 }
4295 }
4296
4297 static void show_pwq(struct pool_workqueue *pwq)
4298 {
4299 struct worker_pool *pool = pwq->pool;
4300 struct work_struct *work;
4301 struct worker *worker;
4302 bool has_in_flight = false, has_pending = false;
4303 int bkt;
4304
4305 pr_info(" pwq %d:", pool->id);
4306 pr_cont_pool_info(pool);
4307
4308 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4309 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4310
4311 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4312 if (worker->current_pwq == pwq) {
4313 has_in_flight = true;
4314 break;
4315 }
4316 }
4317 if (has_in_flight) {
4318 bool comma = false;
4319
4320 pr_info(" in-flight:");
4321 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4322 if (worker->current_pwq != pwq)
4323 continue;
4324
4325 pr_cont("%s %d%s:%pf", comma ? "," : "",
4326 task_pid_nr(worker->task),
4327 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4328 worker->current_func);
4329 list_for_each_entry(work, &worker->scheduled, entry)
4330 pr_cont_work(false, work);
4331 comma = true;
4332 }
4333 pr_cont("\n");
4334 }
4335
4336 list_for_each_entry(work, &pool->worklist, entry) {
4337 if (get_work_pwq(work) == pwq) {
4338 has_pending = true;
4339 break;
4340 }
4341 }
4342 if (has_pending) {
4343 bool comma = false;
4344
4345 pr_info(" pending:");
4346 list_for_each_entry(work, &pool->worklist, entry) {
4347 if (get_work_pwq(work) != pwq)
4348 continue;
4349
4350 pr_cont_work(comma, work);
4351 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4352 }
4353 pr_cont("\n");
4354 }
4355
4356 if (!list_empty(&pwq->delayed_works)) {
4357 bool comma = false;
4358
4359 pr_info(" delayed:");
4360 list_for_each_entry(work, &pwq->delayed_works, entry) {
4361 pr_cont_work(comma, work);
4362 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4363 }
4364 pr_cont("\n");
4365 }
4366 }
4367
4368 /**
4369 * show_workqueue_state - dump workqueue state
4370 *
4371 * Called from a sysrq handler and prints out all busy workqueues and
4372 * pools.
4373 */
4374 void show_workqueue_state(void)
4375 {
4376 struct workqueue_struct *wq;
4377 struct worker_pool *pool;
4378 unsigned long flags;
4379 int pi;
4380
4381 rcu_read_lock_sched();
4382
4383 pr_info("Showing busy workqueues and worker pools:\n");
4384
4385 list_for_each_entry_rcu(wq, &workqueues, list) {
4386 struct pool_workqueue *pwq;
4387 bool idle = true;
4388
4389 for_each_pwq(pwq, wq) {
4390 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4391 idle = false;
4392 break;
4393 }
4394 }
4395 if (idle)
4396 continue;
4397
4398 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4399
4400 for_each_pwq(pwq, wq) {
4401 spin_lock_irqsave(&pwq->pool->lock, flags);
4402 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4403 show_pwq(pwq);
4404 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4405 }
4406 }
4407
4408 for_each_pool(pool, pi) {
4409 struct worker *worker;
4410 bool first = true;
4411
4412 spin_lock_irqsave(&pool->lock, flags);
4413 if (pool->nr_workers == pool->nr_idle)
4414 goto next_pool;
4415
4416 pr_info("pool %d:", pool->id);
4417 pr_cont_pool_info(pool);
4418 pr_cont(" hung=%us workers=%d",
4419 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4420 pool->nr_workers);
4421 if (pool->manager)
4422 pr_cont(" manager: %d",
4423 task_pid_nr(pool->manager->task));
4424 list_for_each_entry(worker, &pool->idle_list, entry) {
4425 pr_cont(" %s%d", first ? "idle: " : "",
4426 task_pid_nr(worker->task));
4427 first = false;
4428 }
4429 pr_cont("\n");
4430 next_pool:
4431 spin_unlock_irqrestore(&pool->lock, flags);
4432 }
4433
4434 rcu_read_unlock_sched();
4435 }
4436
4437 /*
4438 * CPU hotplug.
4439 *
4440 * There are two challenges in supporting CPU hotplug. Firstly, there
4441 * are a lot of assumptions on strong associations among work, pwq and
4442 * pool which make migrating pending and scheduled works very
4443 * difficult to implement without impacting hot paths. Secondly,
4444 * worker pools serve mix of short, long and very long running works making
4445 * blocked draining impractical.
4446 *
4447 * This is solved by allowing the pools to be disassociated from the CPU
4448 * running as an unbound one and allowing it to be reattached later if the
4449 * cpu comes back online.
4450 */
4451
4452 static void wq_unbind_fn(struct work_struct *work)
4453 {
4454 int cpu = smp_processor_id();
4455 struct worker_pool *pool;
4456 struct worker *worker;
4457
4458 for_each_cpu_worker_pool(pool, cpu) {
4459 mutex_lock(&pool->attach_mutex);
4460 spin_lock_irq(&pool->lock);
4461
4462 /*
4463 * We've blocked all attach/detach operations. Make all workers
4464 * unbound and set DISASSOCIATED. Before this, all workers
4465 * except for the ones which are still executing works from
4466 * before the last CPU down must be on the cpu. After
4467 * this, they may become diasporas.
4468 */
4469 for_each_pool_worker(worker, pool)
4470 worker->flags |= WORKER_UNBOUND;
4471
4472 pool->flags |= POOL_DISASSOCIATED;
4473
4474 spin_unlock_irq(&pool->lock);
4475 mutex_unlock(&pool->attach_mutex);
4476
4477 /*
4478 * Call schedule() so that we cross rq->lock and thus can
4479 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4480 * This is necessary as scheduler callbacks may be invoked
4481 * from other cpus.
4482 */
4483 schedule();
4484
4485 /*
4486 * Sched callbacks are disabled now. Zap nr_running.
4487 * After this, nr_running stays zero and need_more_worker()
4488 * and keep_working() are always true as long as the
4489 * worklist is not empty. This pool now behaves as an
4490 * unbound (in terms of concurrency management) pool which
4491 * are served by workers tied to the pool.
4492 */
4493 atomic_set(&pool->nr_running, 0);
4494
4495 /*
4496 * With concurrency management just turned off, a busy
4497 * worker blocking could lead to lengthy stalls. Kick off
4498 * unbound chain execution of currently pending work items.
4499 */
4500 spin_lock_irq(&pool->lock);
4501 wake_up_worker(pool);
4502 spin_unlock_irq(&pool->lock);
4503 }
4504 }
4505
4506 /**
4507 * rebind_workers - rebind all workers of a pool to the associated CPU
4508 * @pool: pool of interest
4509 *
4510 * @pool->cpu is coming online. Rebind all workers to the CPU.
4511 */
4512 static void rebind_workers(struct worker_pool *pool)
4513 {
4514 struct worker *worker;
4515
4516 lockdep_assert_held(&pool->attach_mutex);
4517
4518 /*
4519 * Restore CPU affinity of all workers. As all idle workers should
4520 * be on the run-queue of the associated CPU before any local
4521 * wake-ups for concurrency management happen, restore CPU affinity
4522 * of all workers first and then clear UNBOUND. As we're called
4523 * from CPU_ONLINE, the following shouldn't fail.
4524 */
4525 for_each_pool_worker(worker, pool)
4526 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4527 pool->attrs->cpumask) < 0);
4528
4529 spin_lock_irq(&pool->lock);
4530 pool->flags &= ~POOL_DISASSOCIATED;
4531
4532 for_each_pool_worker(worker, pool) {
4533 unsigned int worker_flags = worker->flags;
4534
4535 /*
4536 * A bound idle worker should actually be on the runqueue
4537 * of the associated CPU for local wake-ups targeting it to
4538 * work. Kick all idle workers so that they migrate to the
4539 * associated CPU. Doing this in the same loop as
4540 * replacing UNBOUND with REBOUND is safe as no worker will
4541 * be bound before @pool->lock is released.
4542 */
4543 if (worker_flags & WORKER_IDLE)
4544 wake_up_process(worker->task);
4545
4546 /*
4547 * We want to clear UNBOUND but can't directly call
4548 * worker_clr_flags() or adjust nr_running. Atomically
4549 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4550 * @worker will clear REBOUND using worker_clr_flags() when
4551 * it initiates the next execution cycle thus restoring
4552 * concurrency management. Note that when or whether
4553 * @worker clears REBOUND doesn't affect correctness.
4554 *
4555 * ACCESS_ONCE() is necessary because @worker->flags may be
4556 * tested without holding any lock in
4557 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4558 * fail incorrectly leading to premature concurrency
4559 * management operations.
4560 */
4561 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4562 worker_flags |= WORKER_REBOUND;
4563 worker_flags &= ~WORKER_UNBOUND;
4564 ACCESS_ONCE(worker->flags) = worker_flags;
4565 }
4566
4567 spin_unlock_irq(&pool->lock);
4568 }
4569
4570 /**
4571 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4572 * @pool: unbound pool of interest
4573 * @cpu: the CPU which is coming up
4574 *
4575 * An unbound pool may end up with a cpumask which doesn't have any online
4576 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4577 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4578 * online CPU before, cpus_allowed of all its workers should be restored.
4579 */
4580 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4581 {
4582 static cpumask_t cpumask;
4583 struct worker *worker;
4584
4585 lockdep_assert_held(&pool->attach_mutex);
4586
4587 /* is @cpu allowed for @pool? */
4588 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4589 return;
4590
4591 /* is @cpu the only online CPU? */
4592 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4593 if (cpumask_weight(&cpumask) != 1)
4594 return;
4595
4596 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4597 for_each_pool_worker(worker, pool)
4598 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4599 pool->attrs->cpumask) < 0);
4600 }
4601
4602 /*
4603 * Workqueues should be brought up before normal priority CPU notifiers.
4604 * This will be registered high priority CPU notifier.
4605 */
4606 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4607 unsigned long action,
4608 void *hcpu)
4609 {
4610 int cpu = (unsigned long)hcpu;
4611 struct worker_pool *pool;
4612 struct workqueue_struct *wq;
4613 int pi;
4614
4615 switch (action & ~CPU_TASKS_FROZEN) {
4616 case CPU_UP_PREPARE:
4617 for_each_cpu_worker_pool(pool, cpu) {
4618 if (pool->nr_workers)
4619 continue;
4620 if (!create_worker(pool))
4621 return NOTIFY_BAD;
4622 }
4623 break;
4624
4625 case CPU_DOWN_FAILED:
4626 case CPU_ONLINE:
4627 mutex_lock(&wq_pool_mutex);
4628
4629 for_each_pool(pool, pi) {
4630 mutex_lock(&pool->attach_mutex);
4631
4632 if (pool->cpu == cpu)
4633 rebind_workers(pool);
4634 else if (pool->cpu < 0)
4635 restore_unbound_workers_cpumask(pool, cpu);
4636
4637 mutex_unlock(&pool->attach_mutex);
4638 }
4639
4640 /* update NUMA affinity of unbound workqueues */
4641 list_for_each_entry(wq, &workqueues, list)
4642 wq_update_unbound_numa(wq, cpu, true);
4643
4644 mutex_unlock(&wq_pool_mutex);
4645 break;
4646 }
4647 return NOTIFY_OK;
4648 }
4649
4650 /*
4651 * Workqueues should be brought down after normal priority CPU notifiers.
4652 * This will be registered as low priority CPU notifier.
4653 */
4654 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4655 unsigned long action,
4656 void *hcpu)
4657 {
4658 int cpu = (unsigned long)hcpu;
4659 struct work_struct unbind_work;
4660 struct workqueue_struct *wq;
4661
4662 switch (action & ~CPU_TASKS_FROZEN) {
4663 case CPU_DOWN_PREPARE:
4664 /* unbinding per-cpu workers should happen on the local CPU */
4665 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4666 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4667
4668 /* update NUMA affinity of unbound workqueues */
4669 mutex_lock(&wq_pool_mutex);
4670 list_for_each_entry(wq, &workqueues, list)
4671 wq_update_unbound_numa(wq, cpu, false);
4672 mutex_unlock(&wq_pool_mutex);
4673
4674 /* wait for per-cpu unbinding to finish */
4675 flush_work(&unbind_work);
4676 destroy_work_on_stack(&unbind_work);
4677 break;
4678 }
4679 return NOTIFY_OK;
4680 }
4681
4682 #ifdef CONFIG_SMP
4683
4684 struct work_for_cpu {
4685 struct work_struct work;
4686 long (*fn)(void *);
4687 void *arg;
4688 long ret;
4689 };
4690
4691 static void work_for_cpu_fn(struct work_struct *work)
4692 {
4693 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4694
4695 wfc->ret = wfc->fn(wfc->arg);
4696 }
4697
4698 /**
4699 * work_on_cpu - run a function in user context on a particular cpu
4700 * @cpu: the cpu to run on
4701 * @fn: the function to run
4702 * @arg: the function arg
4703 *
4704 * It is up to the caller to ensure that the cpu doesn't go offline.
4705 * The caller must not hold any locks which would prevent @fn from completing.
4706 *
4707 * Return: The value @fn returns.
4708 */
4709 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4710 {
4711 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4712
4713 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4714 schedule_work_on(cpu, &wfc.work);
4715 flush_work(&wfc.work);
4716 destroy_work_on_stack(&wfc.work);
4717 return wfc.ret;
4718 }
4719 EXPORT_SYMBOL_GPL(work_on_cpu);
4720 #endif /* CONFIG_SMP */
4721
4722 #ifdef CONFIG_FREEZER
4723
4724 /**
4725 * freeze_workqueues_begin - begin freezing workqueues
4726 *
4727 * Start freezing workqueues. After this function returns, all freezable
4728 * workqueues will queue new works to their delayed_works list instead of
4729 * pool->worklist.
4730 *
4731 * CONTEXT:
4732 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4733 */
4734 void freeze_workqueues_begin(void)
4735 {
4736 struct workqueue_struct *wq;
4737 struct pool_workqueue *pwq;
4738
4739 mutex_lock(&wq_pool_mutex);
4740
4741 WARN_ON_ONCE(workqueue_freezing);
4742 workqueue_freezing = true;
4743
4744 list_for_each_entry(wq, &workqueues, list) {
4745 mutex_lock(&wq->mutex);
4746 for_each_pwq(pwq, wq)
4747 pwq_adjust_max_active(pwq);
4748 mutex_unlock(&wq->mutex);
4749 }
4750
4751 mutex_unlock(&wq_pool_mutex);
4752 }
4753
4754 /**
4755 * freeze_workqueues_busy - are freezable workqueues still busy?
4756 *
4757 * Check whether freezing is complete. This function must be called
4758 * between freeze_workqueues_begin() and thaw_workqueues().
4759 *
4760 * CONTEXT:
4761 * Grabs and releases wq_pool_mutex.
4762 *
4763 * Return:
4764 * %true if some freezable workqueues are still busy. %false if freezing
4765 * is complete.
4766 */
4767 bool freeze_workqueues_busy(void)
4768 {
4769 bool busy = false;
4770 struct workqueue_struct *wq;
4771 struct pool_workqueue *pwq;
4772
4773 mutex_lock(&wq_pool_mutex);
4774
4775 WARN_ON_ONCE(!workqueue_freezing);
4776
4777 list_for_each_entry(wq, &workqueues, list) {
4778 if (!(wq->flags & WQ_FREEZABLE))
4779 continue;
4780 /*
4781 * nr_active is monotonically decreasing. It's safe
4782 * to peek without lock.
4783 */
4784 rcu_read_lock_sched();
4785 for_each_pwq(pwq, wq) {
4786 WARN_ON_ONCE(pwq->nr_active < 0);
4787 if (pwq->nr_active) {
4788 busy = true;
4789 rcu_read_unlock_sched();
4790 goto out_unlock;
4791 }
4792 }
4793 rcu_read_unlock_sched();
4794 }
4795 out_unlock:
4796 mutex_unlock(&wq_pool_mutex);
4797 return busy;
4798 }
4799
4800 /**
4801 * thaw_workqueues - thaw workqueues
4802 *
4803 * Thaw workqueues. Normal queueing is restored and all collected
4804 * frozen works are transferred to their respective pool worklists.
4805 *
4806 * CONTEXT:
4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4808 */
4809 void thaw_workqueues(void)
4810 {
4811 struct workqueue_struct *wq;
4812 struct pool_workqueue *pwq;
4813
4814 mutex_lock(&wq_pool_mutex);
4815
4816 if (!workqueue_freezing)
4817 goto out_unlock;
4818
4819 workqueue_freezing = false;
4820
4821 /* restore max_active and repopulate worklist */
4822 list_for_each_entry(wq, &workqueues, list) {
4823 mutex_lock(&wq->mutex);
4824 for_each_pwq(pwq, wq)
4825 pwq_adjust_max_active(pwq);
4826 mutex_unlock(&wq->mutex);
4827 }
4828
4829 out_unlock:
4830 mutex_unlock(&wq_pool_mutex);
4831 }
4832 #endif /* CONFIG_FREEZER */
4833
4834 static int workqueue_apply_unbound_cpumask(void)
4835 {
4836 LIST_HEAD(ctxs);
4837 int ret = 0;
4838 struct workqueue_struct *wq;
4839 struct apply_wqattrs_ctx *ctx, *n;
4840
4841 lockdep_assert_held(&wq_pool_mutex);
4842
4843 list_for_each_entry(wq, &workqueues, list) {
4844 if (!(wq->flags & WQ_UNBOUND))
4845 continue;
4846 /* creating multiple pwqs breaks ordering guarantee */
4847 if (wq->flags & __WQ_ORDERED)
4848 continue;
4849
4850 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4851 if (!ctx) {
4852 ret = -ENOMEM;
4853 break;
4854 }
4855
4856 list_add_tail(&ctx->list, &ctxs);
4857 }
4858
4859 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4860 if (!ret)
4861 apply_wqattrs_commit(ctx);
4862 apply_wqattrs_cleanup(ctx);
4863 }
4864
4865 return ret;
4866 }
4867
4868 /**
4869 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4870 * @cpumask: the cpumask to set
4871 *
4872 * The low-level workqueues cpumask is a global cpumask that limits
4873 * the affinity of all unbound workqueues. This function check the @cpumask
4874 * and apply it to all unbound workqueues and updates all pwqs of them.
4875 *
4876 * Retun: 0 - Success
4877 * -EINVAL - Invalid @cpumask
4878 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4879 */
4880 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4881 {
4882 int ret = -EINVAL;
4883 cpumask_var_t saved_cpumask;
4884
4885 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4886 return -ENOMEM;
4887
4888 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4889 if (!cpumask_empty(cpumask)) {
4890 apply_wqattrs_lock();
4891
4892 /* save the old wq_unbound_cpumask. */
4893 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4894
4895 /* update wq_unbound_cpumask at first and apply it to wqs. */
4896 cpumask_copy(wq_unbound_cpumask, cpumask);
4897 ret = workqueue_apply_unbound_cpumask();
4898
4899 /* restore the wq_unbound_cpumask when failed. */
4900 if (ret < 0)
4901 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4902
4903 apply_wqattrs_unlock();
4904 }
4905
4906 free_cpumask_var(saved_cpumask);
4907 return ret;
4908 }
4909
4910 #ifdef CONFIG_SYSFS
4911 /*
4912 * Workqueues with WQ_SYSFS flag set is visible to userland via
4913 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4914 * following attributes.
4915 *
4916 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4917 * max_active RW int : maximum number of in-flight work items
4918 *
4919 * Unbound workqueues have the following extra attributes.
4920 *
4921 * id RO int : the associated pool ID
4922 * nice RW int : nice value of the workers
4923 * cpumask RW mask : bitmask of allowed CPUs for the workers
4924 */
4925 struct wq_device {
4926 struct workqueue_struct *wq;
4927 struct device dev;
4928 };
4929
4930 static struct workqueue_struct *dev_to_wq(struct device *dev)
4931 {
4932 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4933
4934 return wq_dev->wq;
4935 }
4936
4937 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4938 char *buf)
4939 {
4940 struct workqueue_struct *wq = dev_to_wq(dev);
4941
4942 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4943 }
4944 static DEVICE_ATTR_RO(per_cpu);
4945
4946 static ssize_t max_active_show(struct device *dev,
4947 struct device_attribute *attr, char *buf)
4948 {
4949 struct workqueue_struct *wq = dev_to_wq(dev);
4950
4951 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4952 }
4953
4954 static ssize_t max_active_store(struct device *dev,
4955 struct device_attribute *attr, const char *buf,
4956 size_t count)
4957 {
4958 struct workqueue_struct *wq = dev_to_wq(dev);
4959 int val;
4960
4961 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4962 return -EINVAL;
4963
4964 workqueue_set_max_active(wq, val);
4965 return count;
4966 }
4967 static DEVICE_ATTR_RW(max_active);
4968
4969 static struct attribute *wq_sysfs_attrs[] = {
4970 &dev_attr_per_cpu.attr,
4971 &dev_attr_max_active.attr,
4972 NULL,
4973 };
4974 ATTRIBUTE_GROUPS(wq_sysfs);
4975
4976 static ssize_t wq_pool_ids_show(struct device *dev,
4977 struct device_attribute *attr, char *buf)
4978 {
4979 struct workqueue_struct *wq = dev_to_wq(dev);
4980 const char *delim = "";
4981 int node, written = 0;
4982
4983 rcu_read_lock_sched();
4984 for_each_node(node) {
4985 written += scnprintf(buf + written, PAGE_SIZE - written,
4986 "%s%d:%d", delim, node,
4987 unbound_pwq_by_node(wq, node)->pool->id);
4988 delim = " ";
4989 }
4990 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4991 rcu_read_unlock_sched();
4992
4993 return written;
4994 }
4995
4996 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4997 char *buf)
4998 {
4999 struct workqueue_struct *wq = dev_to_wq(dev);
5000 int written;
5001
5002 mutex_lock(&wq->mutex);
5003 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5004 mutex_unlock(&wq->mutex);
5005
5006 return written;
5007 }
5008
5009 /* prepare workqueue_attrs for sysfs store operations */
5010 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5011 {
5012 struct workqueue_attrs *attrs;
5013
5014 lockdep_assert_held(&wq_pool_mutex);
5015
5016 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5017 if (!attrs)
5018 return NULL;
5019
5020 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5021 return attrs;
5022 }
5023
5024 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5025 const char *buf, size_t count)
5026 {
5027 struct workqueue_struct *wq = dev_to_wq(dev);
5028 struct workqueue_attrs *attrs;
5029 int ret = -ENOMEM;
5030
5031 apply_wqattrs_lock();
5032
5033 attrs = wq_sysfs_prep_attrs(wq);
5034 if (!attrs)
5035 goto out_unlock;
5036
5037 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5038 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5039 ret = apply_workqueue_attrs_locked(wq, attrs);
5040 else
5041 ret = -EINVAL;
5042
5043 out_unlock:
5044 apply_wqattrs_unlock();
5045 free_workqueue_attrs(attrs);
5046 return ret ?: count;
5047 }
5048
5049 static ssize_t wq_cpumask_show(struct device *dev,
5050 struct device_attribute *attr, char *buf)
5051 {
5052 struct workqueue_struct *wq = dev_to_wq(dev);
5053 int written;
5054
5055 mutex_lock(&wq->mutex);
5056 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5057 cpumask_pr_args(wq->unbound_attrs->cpumask));
5058 mutex_unlock(&wq->mutex);
5059 return written;
5060 }
5061
5062 static ssize_t wq_cpumask_store(struct device *dev,
5063 struct device_attribute *attr,
5064 const char *buf, size_t count)
5065 {
5066 struct workqueue_struct *wq = dev_to_wq(dev);
5067 struct workqueue_attrs *attrs;
5068 int ret = -ENOMEM;
5069
5070 apply_wqattrs_lock();
5071
5072 attrs = wq_sysfs_prep_attrs(wq);
5073 if (!attrs)
5074 goto out_unlock;
5075
5076 ret = cpumask_parse(buf, attrs->cpumask);
5077 if (!ret)
5078 ret = apply_workqueue_attrs_locked(wq, attrs);
5079
5080 out_unlock:
5081 apply_wqattrs_unlock();
5082 free_workqueue_attrs(attrs);
5083 return ret ?: count;
5084 }
5085
5086 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5087 char *buf)
5088 {
5089 struct workqueue_struct *wq = dev_to_wq(dev);
5090 int written;
5091
5092 mutex_lock(&wq->mutex);
5093 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5094 !wq->unbound_attrs->no_numa);
5095 mutex_unlock(&wq->mutex);
5096
5097 return written;
5098 }
5099
5100 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5101 const char *buf, size_t count)
5102 {
5103 struct workqueue_struct *wq = dev_to_wq(dev);
5104 struct workqueue_attrs *attrs;
5105 int v, ret = -ENOMEM;
5106
5107 apply_wqattrs_lock();
5108
5109 attrs = wq_sysfs_prep_attrs(wq);
5110 if (!attrs)
5111 goto out_unlock;
5112
5113 ret = -EINVAL;
5114 if (sscanf(buf, "%d", &v) == 1) {
5115 attrs->no_numa = !v;
5116 ret = apply_workqueue_attrs_locked(wq, attrs);
5117 }
5118
5119 out_unlock:
5120 apply_wqattrs_unlock();
5121 free_workqueue_attrs(attrs);
5122 return ret ?: count;
5123 }
5124
5125 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5126 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5127 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5128 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5129 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5130 __ATTR_NULL,
5131 };
5132
5133 static struct bus_type wq_subsys = {
5134 .name = "workqueue",
5135 .dev_groups = wq_sysfs_groups,
5136 };
5137
5138 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5139 struct device_attribute *attr, char *buf)
5140 {
5141 int written;
5142
5143 mutex_lock(&wq_pool_mutex);
5144 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5145 cpumask_pr_args(wq_unbound_cpumask));
5146 mutex_unlock(&wq_pool_mutex);
5147
5148 return written;
5149 }
5150
5151 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5152 struct device_attribute *attr, const char *buf, size_t count)
5153 {
5154 cpumask_var_t cpumask;
5155 int ret;
5156
5157 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5158 return -ENOMEM;
5159
5160 ret = cpumask_parse(buf, cpumask);
5161 if (!ret)
5162 ret = workqueue_set_unbound_cpumask(cpumask);
5163
5164 free_cpumask_var(cpumask);
5165 return ret ? ret : count;
5166 }
5167
5168 static struct device_attribute wq_sysfs_cpumask_attr =
5169 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5170 wq_unbound_cpumask_store);
5171
5172 static int __init wq_sysfs_init(void)
5173 {
5174 int err;
5175
5176 err = subsys_virtual_register(&wq_subsys, NULL);
5177 if (err)
5178 return err;
5179
5180 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5181 }
5182 core_initcall(wq_sysfs_init);
5183
5184 static void wq_device_release(struct device *dev)
5185 {
5186 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5187
5188 kfree(wq_dev);
5189 }
5190
5191 /**
5192 * workqueue_sysfs_register - make a workqueue visible in sysfs
5193 * @wq: the workqueue to register
5194 *
5195 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5196 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5197 * which is the preferred method.
5198 *
5199 * Workqueue user should use this function directly iff it wants to apply
5200 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5201 * apply_workqueue_attrs() may race against userland updating the
5202 * attributes.
5203 *
5204 * Return: 0 on success, -errno on failure.
5205 */
5206 int workqueue_sysfs_register(struct workqueue_struct *wq)
5207 {
5208 struct wq_device *wq_dev;
5209 int ret;
5210
5211 /*
5212 * Adjusting max_active or creating new pwqs by applying
5213 * attributes breaks ordering guarantee. Disallow exposing ordered
5214 * workqueues.
5215 */
5216 if (WARN_ON(wq->flags & __WQ_ORDERED))
5217 return -EINVAL;
5218
5219 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5220 if (!wq_dev)
5221 return -ENOMEM;
5222
5223 wq_dev->wq = wq;
5224 wq_dev->dev.bus = &wq_subsys;
5225 wq_dev->dev.init_name = wq->name;
5226 wq_dev->dev.release = wq_device_release;
5227
5228 /*
5229 * unbound_attrs are created separately. Suppress uevent until
5230 * everything is ready.
5231 */
5232 dev_set_uevent_suppress(&wq_dev->dev, true);
5233
5234 ret = device_register(&wq_dev->dev);
5235 if (ret) {
5236 kfree(wq_dev);
5237 wq->wq_dev = NULL;
5238 return ret;
5239 }
5240
5241 if (wq->flags & WQ_UNBOUND) {
5242 struct device_attribute *attr;
5243
5244 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5245 ret = device_create_file(&wq_dev->dev, attr);
5246 if (ret) {
5247 device_unregister(&wq_dev->dev);
5248 wq->wq_dev = NULL;
5249 return ret;
5250 }
5251 }
5252 }
5253
5254 dev_set_uevent_suppress(&wq_dev->dev, false);
5255 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5256 return 0;
5257 }
5258
5259 /**
5260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5261 * @wq: the workqueue to unregister
5262 *
5263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5264 */
5265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5266 {
5267 struct wq_device *wq_dev = wq->wq_dev;
5268
5269 if (!wq->wq_dev)
5270 return;
5271
5272 wq->wq_dev = NULL;
5273 device_unregister(&wq_dev->dev);
5274 }
5275 #else /* CONFIG_SYSFS */
5276 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5277 #endif /* CONFIG_SYSFS */
5278
5279 /*
5280 * Workqueue watchdog.
5281 *
5282 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5283 * flush dependency, a concurrency managed work item which stays RUNNING
5284 * indefinitely. Workqueue stalls can be very difficult to debug as the
5285 * usual warning mechanisms don't trigger and internal workqueue state is
5286 * largely opaque.
5287 *
5288 * Workqueue watchdog monitors all worker pools periodically and dumps
5289 * state if some pools failed to make forward progress for a while where
5290 * forward progress is defined as the first item on ->worklist changing.
5291 *
5292 * This mechanism is controlled through the kernel parameter
5293 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5294 * corresponding sysfs parameter file.
5295 */
5296 #ifdef CONFIG_WQ_WATCHDOG
5297
5298 static void wq_watchdog_timer_fn(unsigned long data);
5299
5300 static unsigned long wq_watchdog_thresh = 30;
5301 static struct timer_list wq_watchdog_timer =
5302 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5303
5304 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5305 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5306
5307 static void wq_watchdog_reset_touched(void)
5308 {
5309 int cpu;
5310
5311 wq_watchdog_touched = jiffies;
5312 for_each_possible_cpu(cpu)
5313 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5314 }
5315
5316 static void wq_watchdog_timer_fn(unsigned long data)
5317 {
5318 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5319 bool lockup_detected = false;
5320 struct worker_pool *pool;
5321 int pi;
5322
5323 if (!thresh)
5324 return;
5325
5326 rcu_read_lock();
5327
5328 for_each_pool(pool, pi) {
5329 unsigned long pool_ts, touched, ts;
5330
5331 if (list_empty(&pool->worklist))
5332 continue;
5333
5334 /* get the latest of pool and touched timestamps */
5335 pool_ts = READ_ONCE(pool->watchdog_ts);
5336 touched = READ_ONCE(wq_watchdog_touched);
5337
5338 if (time_after(pool_ts, touched))
5339 ts = pool_ts;
5340 else
5341 ts = touched;
5342
5343 if (pool->cpu >= 0) {
5344 unsigned long cpu_touched =
5345 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5346 pool->cpu));
5347 if (time_after(cpu_touched, ts))
5348 ts = cpu_touched;
5349 }
5350
5351 /* did we stall? */
5352 if (time_after(jiffies, ts + thresh)) {
5353 lockup_detected = true;
5354 pr_emerg("BUG: workqueue lockup - pool");
5355 pr_cont_pool_info(pool);
5356 pr_cont(" stuck for %us!\n",
5357 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5358 }
5359 }
5360
5361 rcu_read_unlock();
5362
5363 if (lockup_detected)
5364 show_workqueue_state();
5365
5366 wq_watchdog_reset_touched();
5367 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5368 }
5369
5370 void wq_watchdog_touch(int cpu)
5371 {
5372 if (cpu >= 0)
5373 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5374 else
5375 wq_watchdog_touched = jiffies;
5376 }
5377
5378 static void wq_watchdog_set_thresh(unsigned long thresh)
5379 {
5380 wq_watchdog_thresh = 0;
5381 del_timer_sync(&wq_watchdog_timer);
5382
5383 if (thresh) {
5384 wq_watchdog_thresh = thresh;
5385 wq_watchdog_reset_touched();
5386 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5387 }
5388 }
5389
5390 static int wq_watchdog_param_set_thresh(const char *val,
5391 const struct kernel_param *kp)
5392 {
5393 unsigned long thresh;
5394 int ret;
5395
5396 ret = kstrtoul(val, 0, &thresh);
5397 if (ret)
5398 return ret;
5399
5400 if (system_wq)
5401 wq_watchdog_set_thresh(thresh);
5402 else
5403 wq_watchdog_thresh = thresh;
5404
5405 return 0;
5406 }
5407
5408 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5409 .set = wq_watchdog_param_set_thresh,
5410 .get = param_get_ulong,
5411 };
5412
5413 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5414 0644);
5415
5416 static void wq_watchdog_init(void)
5417 {
5418 wq_watchdog_set_thresh(wq_watchdog_thresh);
5419 }
5420
5421 #else /* CONFIG_WQ_WATCHDOG */
5422
5423 static inline void wq_watchdog_init(void) { }
5424
5425 #endif /* CONFIG_WQ_WATCHDOG */
5426
5427 static void __init wq_numa_init(void)
5428 {
5429 cpumask_var_t *tbl;
5430 int node, cpu;
5431
5432 if (num_possible_nodes() <= 1)
5433 return;
5434
5435 if (wq_disable_numa) {
5436 pr_info("workqueue: NUMA affinity support disabled\n");
5437 return;
5438 }
5439
5440 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5441 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5442
5443 /*
5444 * We want masks of possible CPUs of each node which isn't readily
5445 * available. Build one from cpu_to_node() which should have been
5446 * fully initialized by now.
5447 */
5448 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5449 BUG_ON(!tbl);
5450
5451 for_each_node(node)
5452 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5453 node_online(node) ? node : NUMA_NO_NODE));
5454
5455 for_each_possible_cpu(cpu) {
5456 node = cpu_to_node(cpu);
5457 if (WARN_ON(node == NUMA_NO_NODE)) {
5458 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5459 /* happens iff arch is bonkers, let's just proceed */
5460 return;
5461 }
5462 cpumask_set_cpu(cpu, tbl[node]);
5463 }
5464
5465 wq_numa_possible_cpumask = tbl;
5466 wq_numa_enabled = true;
5467 }
5468
5469 static int __init init_workqueues(void)
5470 {
5471 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5472 int i, cpu;
5473
5474 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5475
5476 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5477 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5478
5479 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5480
5481 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5482 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5483
5484 wq_numa_init();
5485
5486 /* initialize CPU pools */
5487 for_each_possible_cpu(cpu) {
5488 struct worker_pool *pool;
5489
5490 i = 0;
5491 for_each_cpu_worker_pool(pool, cpu) {
5492 BUG_ON(init_worker_pool(pool));
5493 pool->cpu = cpu;
5494 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5495 pool->attrs->nice = std_nice[i++];
5496 pool->node = cpu_to_node(cpu);
5497
5498 /* alloc pool ID */
5499 mutex_lock(&wq_pool_mutex);
5500 BUG_ON(worker_pool_assign_id(pool));
5501 mutex_unlock(&wq_pool_mutex);
5502 }
5503 }
5504
5505 /* create the initial worker */
5506 for_each_online_cpu(cpu) {
5507 struct worker_pool *pool;
5508
5509 for_each_cpu_worker_pool(pool, cpu) {
5510 pool->flags &= ~POOL_DISASSOCIATED;
5511 BUG_ON(!create_worker(pool));
5512 }
5513 }
5514
5515 /* create default unbound and ordered wq attrs */
5516 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5517 struct workqueue_attrs *attrs;
5518
5519 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5520 attrs->nice = std_nice[i];
5521 unbound_std_wq_attrs[i] = attrs;
5522
5523 /*
5524 * An ordered wq should have only one pwq as ordering is
5525 * guaranteed by max_active which is enforced by pwqs.
5526 * Turn off NUMA so that dfl_pwq is used for all nodes.
5527 */
5528 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5529 attrs->nice = std_nice[i];
5530 attrs->no_numa = true;
5531 ordered_wq_attrs[i] = attrs;
5532 }
5533
5534 system_wq = alloc_workqueue("events", 0, 0);
5535 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5536 system_long_wq = alloc_workqueue("events_long", 0, 0);
5537 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5538 WQ_UNBOUND_MAX_ACTIVE);
5539 system_freezable_wq = alloc_workqueue("events_freezable",
5540 WQ_FREEZABLE, 0);
5541 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5542 WQ_POWER_EFFICIENT, 0);
5543 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5544 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5545 0);
5546 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5547 !system_unbound_wq || !system_freezable_wq ||
5548 !system_power_efficient_wq ||
5549 !system_freezable_power_efficient_wq);
5550
5551 wq_watchdog_init();
5552
5553 return 0;
5554 }
5555 early_initcall(init_workqueues);
This page took 0.150381 seconds and 5 git commands to generate.