Merge branches 'pm-avs', 'pm-clk', 'pm-devfreq' and 'pm-sleep'
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
300
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
303
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309
310 /*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324
325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
326
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
361
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
366
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 (pool)++)
377
378 /**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
382 *
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
389 */
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
393 else
394
395 /**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
399 *
400 * This must be called with @pool->attach_mutex.
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 else
409
410 /**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
414 *
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
421 */
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
425 else
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 /*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485 }
486
487 /*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503 }
504
505 static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
507 .debug_hint = work_debug_hint,
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511 };
512
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 debug_object_activate(work, &work_debug_descr);
516 }
517
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 debug_object_deactivate(work, &work_debug_descr);
521 }
522
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549
550 /**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 int ret;
560
561 lockdep_assert_held(&wq_pool_mutex);
562
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
565 if (ret >= 0) {
566 pool->id = ret;
567 return 0;
568 }
569 return ret;
570 }
571
572 /**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
581 *
582 * Return: The unbound pool_workqueue for @node.
583 */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586 {
587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600
601 static unsigned int work_color_to_flags(int color)
602 {
603 return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605
606 static int get_work_color(struct work_struct *work)
607 {
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611
612 static int work_next_color(int color)
613 {
614 return (color + 1) % WORK_NR_COLORS;
615 }
616
617 /*
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
620 * is cleared and the high bits contain OFFQ flags and pool ID.
621 *
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
626 *
627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628 * corresponding to a work. Pool is available once the work has been
629 * queued anywhere after initialization until it is sync canceled. pwq is
630 * available only while the work item is queued.
631 *
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
636 */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
639 {
640 WARN_ON_ONCE(!work_pending(work));
641 atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 unsigned long extra_flags)
646 {
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653 {
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656 }
657
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
660 {
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 }
670
671 static void clear_work_data(struct work_struct *work)
672 {
673 smp_wmb(); /* see set_work_pool_and_clear_pending() */
674 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
675 }
676
677 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
678 {
679 unsigned long data = atomic_long_read(&work->data);
680
681 if (data & WORK_STRUCT_PWQ)
682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 else
684 return NULL;
685 }
686
687 /**
688 * get_work_pool - return the worker_pool a given work was associated with
689 * @work: the work item of interest
690 *
691 * Pools are created and destroyed under wq_pool_mutex, and allows read
692 * access under sched-RCU read lock. As such, this function should be
693 * called under wq_pool_mutex or with preemption disabled.
694 *
695 * All fields of the returned pool are accessible as long as the above
696 * mentioned locking is in effect. If the returned pool needs to be used
697 * beyond the critical section, the caller is responsible for ensuring the
698 * returned pool is and stays online.
699 *
700 * Return: The worker_pool @work was last associated with. %NULL if none.
701 */
702 static struct worker_pool *get_work_pool(struct work_struct *work)
703 {
704 unsigned long data = atomic_long_read(&work->data);
705 int pool_id;
706
707 assert_rcu_or_pool_mutex();
708
709 if (data & WORK_STRUCT_PWQ)
710 return ((struct pool_workqueue *)
711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
712
713 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 if (pool_id == WORK_OFFQ_POOL_NONE)
715 return NULL;
716
717 return idr_find(&worker_pool_idr, pool_id);
718 }
719
720 /**
721 * get_work_pool_id - return the worker pool ID a given work is associated with
722 * @work: the work item of interest
723 *
724 * Return: The worker_pool ID @work was last associated with.
725 * %WORK_OFFQ_POOL_NONE if none.
726 */
727 static int get_work_pool_id(struct work_struct *work)
728 {
729 unsigned long data = atomic_long_read(&work->data);
730
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
734
735 return data >> WORK_OFFQ_POOL_SHIFT;
736 }
737
738 static void mark_work_canceling(struct work_struct *work)
739 {
740 unsigned long pool_id = get_work_pool_id(work);
741
742 pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
744 }
745
746 static bool work_is_canceling(struct work_struct *work)
747 {
748 unsigned long data = atomic_long_read(&work->data);
749
750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
751 }
752
753 /*
754 * Policy functions. These define the policies on how the global worker
755 * pools are managed. Unless noted otherwise, these functions assume that
756 * they're being called with pool->lock held.
757 */
758
759 static bool __need_more_worker(struct worker_pool *pool)
760 {
761 return !atomic_read(&pool->nr_running);
762 }
763
764 /*
765 * Need to wake up a worker? Called from anything but currently
766 * running workers.
767 *
768 * Note that, because unbound workers never contribute to nr_running, this
769 * function will always return %true for unbound pools as long as the
770 * worklist isn't empty.
771 */
772 static bool need_more_worker(struct worker_pool *pool)
773 {
774 return !list_empty(&pool->worklist) && __need_more_worker(pool);
775 }
776
777 /* Can I start working? Called from busy but !running workers. */
778 static bool may_start_working(struct worker_pool *pool)
779 {
780 return pool->nr_idle;
781 }
782
783 /* Do I need to keep working? Called from currently running workers. */
784 static bool keep_working(struct worker_pool *pool)
785 {
786 return !list_empty(&pool->worklist) &&
787 atomic_read(&pool->nr_running) <= 1;
788 }
789
790 /* Do we need a new worker? Called from manager. */
791 static bool need_to_create_worker(struct worker_pool *pool)
792 {
793 return need_more_worker(pool) && !may_start_working(pool);
794 }
795
796 /* Do we have too many workers and should some go away? */
797 static bool too_many_workers(struct worker_pool *pool)
798 {
799 bool managing = mutex_is_locked(&pool->manager_arb);
800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 int nr_busy = pool->nr_workers - nr_idle;
802
803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
804 }
805
806 /*
807 * Wake up functions.
808 */
809
810 /* Return the first idle worker. Safe with preemption disabled */
811 static struct worker *first_idle_worker(struct worker_pool *pool)
812 {
813 if (unlikely(list_empty(&pool->idle_list)))
814 return NULL;
815
816 return list_first_entry(&pool->idle_list, struct worker, entry);
817 }
818
819 /**
820 * wake_up_worker - wake up an idle worker
821 * @pool: worker pool to wake worker from
822 *
823 * Wake up the first idle worker of @pool.
824 *
825 * CONTEXT:
826 * spin_lock_irq(pool->lock).
827 */
828 static void wake_up_worker(struct worker_pool *pool)
829 {
830 struct worker *worker = first_idle_worker(pool);
831
832 if (likely(worker))
833 wake_up_process(worker->task);
834 }
835
836 /**
837 * wq_worker_waking_up - a worker is waking up
838 * @task: task waking up
839 * @cpu: CPU @task is waking up to
840 *
841 * This function is called during try_to_wake_up() when a worker is
842 * being awoken.
843 *
844 * CONTEXT:
845 * spin_lock_irq(rq->lock)
846 */
847 void wq_worker_waking_up(struct task_struct *task, int cpu)
848 {
849 struct worker *worker = kthread_data(task);
850
851 if (!(worker->flags & WORKER_NOT_RUNNING)) {
852 WARN_ON_ONCE(worker->pool->cpu != cpu);
853 atomic_inc(&worker->pool->nr_running);
854 }
855 }
856
857 /**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 * @cpu: CPU in question, must be the current CPU number
861 *
862 * This function is called during schedule() when a busy worker is
863 * going to sleep. Worker on the same cpu can be woken up by
864 * returning pointer to its task.
865 *
866 * CONTEXT:
867 * spin_lock_irq(rq->lock)
868 *
869 * Return:
870 * Worker task on @cpu to wake up, %NULL if none.
871 */
872 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
873 {
874 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
875 struct worker_pool *pool;
876
877 /*
878 * Rescuers, which may not have all the fields set up like normal
879 * workers, also reach here, let's not access anything before
880 * checking NOT_RUNNING.
881 */
882 if (worker->flags & WORKER_NOT_RUNNING)
883 return NULL;
884
885 pool = worker->pool;
886
887 /* this can only happen on the local cpu */
888 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
889 return NULL;
890
891 /*
892 * The counterpart of the following dec_and_test, implied mb,
893 * worklist not empty test sequence is in insert_work().
894 * Please read comment there.
895 *
896 * NOT_RUNNING is clear. This means that we're bound to and
897 * running on the local cpu w/ rq lock held and preemption
898 * disabled, which in turn means that none else could be
899 * manipulating idle_list, so dereferencing idle_list without pool
900 * lock is safe.
901 */
902 if (atomic_dec_and_test(&pool->nr_running) &&
903 !list_empty(&pool->worklist))
904 to_wakeup = first_idle_worker(pool);
905 return to_wakeup ? to_wakeup->task : NULL;
906 }
907
908 /**
909 * worker_set_flags - set worker flags and adjust nr_running accordingly
910 * @worker: self
911 * @flags: flags to set
912 *
913 * Set @flags in @worker->flags and adjust nr_running accordingly.
914 *
915 * CONTEXT:
916 * spin_lock_irq(pool->lock)
917 */
918 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
919 {
920 struct worker_pool *pool = worker->pool;
921
922 WARN_ON_ONCE(worker->task != current);
923
924 /* If transitioning into NOT_RUNNING, adjust nr_running. */
925 if ((flags & WORKER_NOT_RUNNING) &&
926 !(worker->flags & WORKER_NOT_RUNNING)) {
927 atomic_dec(&pool->nr_running);
928 }
929
930 worker->flags |= flags;
931 }
932
933 /**
934 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
935 * @worker: self
936 * @flags: flags to clear
937 *
938 * Clear @flags in @worker->flags and adjust nr_running accordingly.
939 *
940 * CONTEXT:
941 * spin_lock_irq(pool->lock)
942 */
943 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
944 {
945 struct worker_pool *pool = worker->pool;
946 unsigned int oflags = worker->flags;
947
948 WARN_ON_ONCE(worker->task != current);
949
950 worker->flags &= ~flags;
951
952 /*
953 * If transitioning out of NOT_RUNNING, increment nr_running. Note
954 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
955 * of multiple flags, not a single flag.
956 */
957 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
958 if (!(worker->flags & WORKER_NOT_RUNNING))
959 atomic_inc(&pool->nr_running);
960 }
961
962 /**
963 * find_worker_executing_work - find worker which is executing a work
964 * @pool: pool of interest
965 * @work: work to find worker for
966 *
967 * Find a worker which is executing @work on @pool by searching
968 * @pool->busy_hash which is keyed by the address of @work. For a worker
969 * to match, its current execution should match the address of @work and
970 * its work function. This is to avoid unwanted dependency between
971 * unrelated work executions through a work item being recycled while still
972 * being executed.
973 *
974 * This is a bit tricky. A work item may be freed once its execution
975 * starts and nothing prevents the freed area from being recycled for
976 * another work item. If the same work item address ends up being reused
977 * before the original execution finishes, workqueue will identify the
978 * recycled work item as currently executing and make it wait until the
979 * current execution finishes, introducing an unwanted dependency.
980 *
981 * This function checks the work item address and work function to avoid
982 * false positives. Note that this isn't complete as one may construct a
983 * work function which can introduce dependency onto itself through a
984 * recycled work item. Well, if somebody wants to shoot oneself in the
985 * foot that badly, there's only so much we can do, and if such deadlock
986 * actually occurs, it should be easy to locate the culprit work function.
987 *
988 * CONTEXT:
989 * spin_lock_irq(pool->lock).
990 *
991 * Return:
992 * Pointer to worker which is executing @work if found, %NULL
993 * otherwise.
994 */
995 static struct worker *find_worker_executing_work(struct worker_pool *pool,
996 struct work_struct *work)
997 {
998 struct worker *worker;
999
1000 hash_for_each_possible(pool->busy_hash, worker, hentry,
1001 (unsigned long)work)
1002 if (worker->current_work == work &&
1003 worker->current_func == work->func)
1004 return worker;
1005
1006 return NULL;
1007 }
1008
1009 /**
1010 * move_linked_works - move linked works to a list
1011 * @work: start of series of works to be scheduled
1012 * @head: target list to append @work to
1013 * @nextp: out parameter for nested worklist walking
1014 *
1015 * Schedule linked works starting from @work to @head. Work series to
1016 * be scheduled starts at @work and includes any consecutive work with
1017 * WORK_STRUCT_LINKED set in its predecessor.
1018 *
1019 * If @nextp is not NULL, it's updated to point to the next work of
1020 * the last scheduled work. This allows move_linked_works() to be
1021 * nested inside outer list_for_each_entry_safe().
1022 *
1023 * CONTEXT:
1024 * spin_lock_irq(pool->lock).
1025 */
1026 static void move_linked_works(struct work_struct *work, struct list_head *head,
1027 struct work_struct **nextp)
1028 {
1029 struct work_struct *n;
1030
1031 /*
1032 * Linked worklist will always end before the end of the list,
1033 * use NULL for list head.
1034 */
1035 list_for_each_entry_safe_from(work, n, NULL, entry) {
1036 list_move_tail(&work->entry, head);
1037 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1038 break;
1039 }
1040
1041 /*
1042 * If we're already inside safe list traversal and have moved
1043 * multiple works to the scheduled queue, the next position
1044 * needs to be updated.
1045 */
1046 if (nextp)
1047 *nextp = n;
1048 }
1049
1050 /**
1051 * get_pwq - get an extra reference on the specified pool_workqueue
1052 * @pwq: pool_workqueue to get
1053 *
1054 * Obtain an extra reference on @pwq. The caller should guarantee that
1055 * @pwq has positive refcnt and be holding the matching pool->lock.
1056 */
1057 static void get_pwq(struct pool_workqueue *pwq)
1058 {
1059 lockdep_assert_held(&pwq->pool->lock);
1060 WARN_ON_ONCE(pwq->refcnt <= 0);
1061 pwq->refcnt++;
1062 }
1063
1064 /**
1065 * put_pwq - put a pool_workqueue reference
1066 * @pwq: pool_workqueue to put
1067 *
1068 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1069 * destruction. The caller should be holding the matching pool->lock.
1070 */
1071 static void put_pwq(struct pool_workqueue *pwq)
1072 {
1073 lockdep_assert_held(&pwq->pool->lock);
1074 if (likely(--pwq->refcnt))
1075 return;
1076 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1077 return;
1078 /*
1079 * @pwq can't be released under pool->lock, bounce to
1080 * pwq_unbound_release_workfn(). This never recurses on the same
1081 * pool->lock as this path is taken only for unbound workqueues and
1082 * the release work item is scheduled on a per-cpu workqueue. To
1083 * avoid lockdep warning, unbound pool->locks are given lockdep
1084 * subclass of 1 in get_unbound_pool().
1085 */
1086 schedule_work(&pwq->unbound_release_work);
1087 }
1088
1089 /**
1090 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1091 * @pwq: pool_workqueue to put (can be %NULL)
1092 *
1093 * put_pwq() with locking. This function also allows %NULL @pwq.
1094 */
1095 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1096 {
1097 if (pwq) {
1098 /*
1099 * As both pwqs and pools are sched-RCU protected, the
1100 * following lock operations are safe.
1101 */
1102 spin_lock_irq(&pwq->pool->lock);
1103 put_pwq(pwq);
1104 spin_unlock_irq(&pwq->pool->lock);
1105 }
1106 }
1107
1108 static void pwq_activate_delayed_work(struct work_struct *work)
1109 {
1110 struct pool_workqueue *pwq = get_work_pwq(work);
1111
1112 trace_workqueue_activate_work(work);
1113 if (list_empty(&pwq->pool->worklist))
1114 pwq->pool->watchdog_ts = jiffies;
1115 move_linked_works(work, &pwq->pool->worklist, NULL);
1116 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1117 pwq->nr_active++;
1118 }
1119
1120 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1121 {
1122 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1123 struct work_struct, entry);
1124
1125 pwq_activate_delayed_work(work);
1126 }
1127
1128 /**
1129 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1130 * @pwq: pwq of interest
1131 * @color: color of work which left the queue
1132 *
1133 * A work either has completed or is removed from pending queue,
1134 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1135 *
1136 * CONTEXT:
1137 * spin_lock_irq(pool->lock).
1138 */
1139 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1140 {
1141 /* uncolored work items don't participate in flushing or nr_active */
1142 if (color == WORK_NO_COLOR)
1143 goto out_put;
1144
1145 pwq->nr_in_flight[color]--;
1146
1147 pwq->nr_active--;
1148 if (!list_empty(&pwq->delayed_works)) {
1149 /* one down, submit a delayed one */
1150 if (pwq->nr_active < pwq->max_active)
1151 pwq_activate_first_delayed(pwq);
1152 }
1153
1154 /* is flush in progress and are we at the flushing tip? */
1155 if (likely(pwq->flush_color != color))
1156 goto out_put;
1157
1158 /* are there still in-flight works? */
1159 if (pwq->nr_in_flight[color])
1160 goto out_put;
1161
1162 /* this pwq is done, clear flush_color */
1163 pwq->flush_color = -1;
1164
1165 /*
1166 * If this was the last pwq, wake up the first flusher. It
1167 * will handle the rest.
1168 */
1169 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1170 complete(&pwq->wq->first_flusher->done);
1171 out_put:
1172 put_pwq(pwq);
1173 }
1174
1175 /**
1176 * try_to_grab_pending - steal work item from worklist and disable irq
1177 * @work: work item to steal
1178 * @is_dwork: @work is a delayed_work
1179 * @flags: place to store irq state
1180 *
1181 * Try to grab PENDING bit of @work. This function can handle @work in any
1182 * stable state - idle, on timer or on worklist.
1183 *
1184 * Return:
1185 * 1 if @work was pending and we successfully stole PENDING
1186 * 0 if @work was idle and we claimed PENDING
1187 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1188 * -ENOENT if someone else is canceling @work, this state may persist
1189 * for arbitrarily long
1190 *
1191 * Note:
1192 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1193 * interrupted while holding PENDING and @work off queue, irq must be
1194 * disabled on entry. This, combined with delayed_work->timer being
1195 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1196 *
1197 * On successful return, >= 0, irq is disabled and the caller is
1198 * responsible for releasing it using local_irq_restore(*@flags).
1199 *
1200 * This function is safe to call from any context including IRQ handler.
1201 */
1202 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1203 unsigned long *flags)
1204 {
1205 struct worker_pool *pool;
1206 struct pool_workqueue *pwq;
1207
1208 local_irq_save(*flags);
1209
1210 /* try to steal the timer if it exists */
1211 if (is_dwork) {
1212 struct delayed_work *dwork = to_delayed_work(work);
1213
1214 /*
1215 * dwork->timer is irqsafe. If del_timer() fails, it's
1216 * guaranteed that the timer is not queued anywhere and not
1217 * running on the local CPU.
1218 */
1219 if (likely(del_timer(&dwork->timer)))
1220 return 1;
1221 }
1222
1223 /* try to claim PENDING the normal way */
1224 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1225 return 0;
1226
1227 /*
1228 * The queueing is in progress, or it is already queued. Try to
1229 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1230 */
1231 pool = get_work_pool(work);
1232 if (!pool)
1233 goto fail;
1234
1235 spin_lock(&pool->lock);
1236 /*
1237 * work->data is guaranteed to point to pwq only while the work
1238 * item is queued on pwq->wq, and both updating work->data to point
1239 * to pwq on queueing and to pool on dequeueing are done under
1240 * pwq->pool->lock. This in turn guarantees that, if work->data
1241 * points to pwq which is associated with a locked pool, the work
1242 * item is currently queued on that pool.
1243 */
1244 pwq = get_work_pwq(work);
1245 if (pwq && pwq->pool == pool) {
1246 debug_work_deactivate(work);
1247
1248 /*
1249 * A delayed work item cannot be grabbed directly because
1250 * it might have linked NO_COLOR work items which, if left
1251 * on the delayed_list, will confuse pwq->nr_active
1252 * management later on and cause stall. Make sure the work
1253 * item is activated before grabbing.
1254 */
1255 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1256 pwq_activate_delayed_work(work);
1257
1258 list_del_init(&work->entry);
1259 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1260
1261 /* work->data points to pwq iff queued, point to pool */
1262 set_work_pool_and_keep_pending(work, pool->id);
1263
1264 spin_unlock(&pool->lock);
1265 return 1;
1266 }
1267 spin_unlock(&pool->lock);
1268 fail:
1269 local_irq_restore(*flags);
1270 if (work_is_canceling(work))
1271 return -ENOENT;
1272 cpu_relax();
1273 return -EAGAIN;
1274 }
1275
1276 /**
1277 * insert_work - insert a work into a pool
1278 * @pwq: pwq @work belongs to
1279 * @work: work to insert
1280 * @head: insertion point
1281 * @extra_flags: extra WORK_STRUCT_* flags to set
1282 *
1283 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1284 * work_struct flags.
1285 *
1286 * CONTEXT:
1287 * spin_lock_irq(pool->lock).
1288 */
1289 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1290 struct list_head *head, unsigned int extra_flags)
1291 {
1292 struct worker_pool *pool = pwq->pool;
1293
1294 /* we own @work, set data and link */
1295 set_work_pwq(work, pwq, extra_flags);
1296 list_add_tail(&work->entry, head);
1297 get_pwq(pwq);
1298
1299 /*
1300 * Ensure either wq_worker_sleeping() sees the above
1301 * list_add_tail() or we see zero nr_running to avoid workers lying
1302 * around lazily while there are works to be processed.
1303 */
1304 smp_mb();
1305
1306 if (__need_more_worker(pool))
1307 wake_up_worker(pool);
1308 }
1309
1310 /*
1311 * Test whether @work is being queued from another work executing on the
1312 * same workqueue.
1313 */
1314 static bool is_chained_work(struct workqueue_struct *wq)
1315 {
1316 struct worker *worker;
1317
1318 worker = current_wq_worker();
1319 /*
1320 * Return %true iff I'm a worker execuing a work item on @wq. If
1321 * I'm @worker, it's safe to dereference it without locking.
1322 */
1323 return worker && worker->current_pwq->wq == wq;
1324 }
1325
1326 /*
1327 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1328 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1329 * avoid perturbing sensitive tasks.
1330 */
1331 static int wq_select_unbound_cpu(int cpu)
1332 {
1333 static bool printed_dbg_warning;
1334 int new_cpu;
1335
1336 if (likely(!wq_debug_force_rr_cpu)) {
1337 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1338 return cpu;
1339 } else if (!printed_dbg_warning) {
1340 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1341 printed_dbg_warning = true;
1342 }
1343
1344 if (cpumask_empty(wq_unbound_cpumask))
1345 return cpu;
1346
1347 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1348 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1349 if (unlikely(new_cpu >= nr_cpu_ids)) {
1350 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1351 if (unlikely(new_cpu >= nr_cpu_ids))
1352 return cpu;
1353 }
1354 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1355
1356 return new_cpu;
1357 }
1358
1359 static void __queue_work(int cpu, struct workqueue_struct *wq,
1360 struct work_struct *work)
1361 {
1362 struct pool_workqueue *pwq;
1363 struct worker_pool *last_pool;
1364 struct list_head *worklist;
1365 unsigned int work_flags;
1366 unsigned int req_cpu = cpu;
1367
1368 /*
1369 * While a work item is PENDING && off queue, a task trying to
1370 * steal the PENDING will busy-loop waiting for it to either get
1371 * queued or lose PENDING. Grabbing PENDING and queueing should
1372 * happen with IRQ disabled.
1373 */
1374 WARN_ON_ONCE(!irqs_disabled());
1375
1376 debug_work_activate(work);
1377
1378 /* if draining, only works from the same workqueue are allowed */
1379 if (unlikely(wq->flags & __WQ_DRAINING) &&
1380 WARN_ON_ONCE(!is_chained_work(wq)))
1381 return;
1382 retry:
1383 if (req_cpu == WORK_CPU_UNBOUND)
1384 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1385
1386 /* pwq which will be used unless @work is executing elsewhere */
1387 if (!(wq->flags & WQ_UNBOUND))
1388 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1389 else
1390 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1391
1392 /*
1393 * If @work was previously on a different pool, it might still be
1394 * running there, in which case the work needs to be queued on that
1395 * pool to guarantee non-reentrancy.
1396 */
1397 last_pool = get_work_pool(work);
1398 if (last_pool && last_pool != pwq->pool) {
1399 struct worker *worker;
1400
1401 spin_lock(&last_pool->lock);
1402
1403 worker = find_worker_executing_work(last_pool, work);
1404
1405 if (worker && worker->current_pwq->wq == wq) {
1406 pwq = worker->current_pwq;
1407 } else {
1408 /* meh... not running there, queue here */
1409 spin_unlock(&last_pool->lock);
1410 spin_lock(&pwq->pool->lock);
1411 }
1412 } else {
1413 spin_lock(&pwq->pool->lock);
1414 }
1415
1416 /*
1417 * pwq is determined and locked. For unbound pools, we could have
1418 * raced with pwq release and it could already be dead. If its
1419 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1420 * without another pwq replacing it in the numa_pwq_tbl or while
1421 * work items are executing on it, so the retrying is guaranteed to
1422 * make forward-progress.
1423 */
1424 if (unlikely(!pwq->refcnt)) {
1425 if (wq->flags & WQ_UNBOUND) {
1426 spin_unlock(&pwq->pool->lock);
1427 cpu_relax();
1428 goto retry;
1429 }
1430 /* oops */
1431 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1432 wq->name, cpu);
1433 }
1434
1435 /* pwq determined, queue */
1436 trace_workqueue_queue_work(req_cpu, pwq, work);
1437
1438 if (WARN_ON(!list_empty(&work->entry))) {
1439 spin_unlock(&pwq->pool->lock);
1440 return;
1441 }
1442
1443 pwq->nr_in_flight[pwq->work_color]++;
1444 work_flags = work_color_to_flags(pwq->work_color);
1445
1446 if (likely(pwq->nr_active < pwq->max_active)) {
1447 trace_workqueue_activate_work(work);
1448 pwq->nr_active++;
1449 worklist = &pwq->pool->worklist;
1450 if (list_empty(worklist))
1451 pwq->pool->watchdog_ts = jiffies;
1452 } else {
1453 work_flags |= WORK_STRUCT_DELAYED;
1454 worklist = &pwq->delayed_works;
1455 }
1456
1457 insert_work(pwq, work, worklist, work_flags);
1458
1459 spin_unlock(&pwq->pool->lock);
1460 }
1461
1462 /**
1463 * queue_work_on - queue work on specific cpu
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
1466 * @work: work to queue
1467 *
1468 * We queue the work to a specific CPU, the caller must ensure it
1469 * can't go away.
1470 *
1471 * Return: %false if @work was already on a queue, %true otherwise.
1472 */
1473 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1474 struct work_struct *work)
1475 {
1476 bool ret = false;
1477 unsigned long flags;
1478
1479 local_irq_save(flags);
1480
1481 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1482 __queue_work(cpu, wq, work);
1483 ret = true;
1484 }
1485
1486 local_irq_restore(flags);
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(queue_work_on);
1490
1491 void delayed_work_timer_fn(unsigned long __data)
1492 {
1493 struct delayed_work *dwork = (struct delayed_work *)__data;
1494
1495 /* should have been called from irqsafe timer with irq already off */
1496 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1497 }
1498 EXPORT_SYMBOL(delayed_work_timer_fn);
1499
1500 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1501 struct delayed_work *dwork, unsigned long delay)
1502 {
1503 struct timer_list *timer = &dwork->timer;
1504 struct work_struct *work = &dwork->work;
1505
1506 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1507 timer->data != (unsigned long)dwork);
1508 WARN_ON_ONCE(timer_pending(timer));
1509 WARN_ON_ONCE(!list_empty(&work->entry));
1510
1511 /*
1512 * If @delay is 0, queue @dwork->work immediately. This is for
1513 * both optimization and correctness. The earliest @timer can
1514 * expire is on the closest next tick and delayed_work users depend
1515 * on that there's no such delay when @delay is 0.
1516 */
1517 if (!delay) {
1518 __queue_work(cpu, wq, &dwork->work);
1519 return;
1520 }
1521
1522 timer_stats_timer_set_start_info(&dwork->timer);
1523
1524 dwork->wq = wq;
1525 dwork->cpu = cpu;
1526 timer->expires = jiffies + delay;
1527
1528 if (unlikely(cpu != WORK_CPU_UNBOUND))
1529 add_timer_on(timer, cpu);
1530 else
1531 add_timer(timer);
1532 }
1533
1534 /**
1535 * queue_delayed_work_on - queue work on specific CPU after delay
1536 * @cpu: CPU number to execute work on
1537 * @wq: workqueue to use
1538 * @dwork: work to queue
1539 * @delay: number of jiffies to wait before queueing
1540 *
1541 * Return: %false if @work was already on a queue, %true otherwise. If
1542 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1543 * execution.
1544 */
1545 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1546 struct delayed_work *dwork, unsigned long delay)
1547 {
1548 struct work_struct *work = &dwork->work;
1549 bool ret = false;
1550 unsigned long flags;
1551
1552 /* read the comment in __queue_work() */
1553 local_irq_save(flags);
1554
1555 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1556 __queue_delayed_work(cpu, wq, dwork, delay);
1557 ret = true;
1558 }
1559
1560 local_irq_restore(flags);
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(queue_delayed_work_on);
1564
1565 /**
1566 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1567 * @cpu: CPU number to execute work on
1568 * @wq: workqueue to use
1569 * @dwork: work to queue
1570 * @delay: number of jiffies to wait before queueing
1571 *
1572 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1573 * modify @dwork's timer so that it expires after @delay. If @delay is
1574 * zero, @work is guaranteed to be scheduled immediately regardless of its
1575 * current state.
1576 *
1577 * Return: %false if @dwork was idle and queued, %true if @dwork was
1578 * pending and its timer was modified.
1579 *
1580 * This function is safe to call from any context including IRQ handler.
1581 * See try_to_grab_pending() for details.
1582 */
1583 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1584 struct delayed_work *dwork, unsigned long delay)
1585 {
1586 unsigned long flags;
1587 int ret;
1588
1589 do {
1590 ret = try_to_grab_pending(&dwork->work, true, &flags);
1591 } while (unlikely(ret == -EAGAIN));
1592
1593 if (likely(ret >= 0)) {
1594 __queue_delayed_work(cpu, wq, dwork, delay);
1595 local_irq_restore(flags);
1596 }
1597
1598 /* -ENOENT from try_to_grab_pending() becomes %true */
1599 return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1602
1603 /**
1604 * worker_enter_idle - enter idle state
1605 * @worker: worker which is entering idle state
1606 *
1607 * @worker is entering idle state. Update stats and idle timer if
1608 * necessary.
1609 *
1610 * LOCKING:
1611 * spin_lock_irq(pool->lock).
1612 */
1613 static void worker_enter_idle(struct worker *worker)
1614 {
1615 struct worker_pool *pool = worker->pool;
1616
1617 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1618 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1619 (worker->hentry.next || worker->hentry.pprev)))
1620 return;
1621
1622 /* can't use worker_set_flags(), also called from create_worker() */
1623 worker->flags |= WORKER_IDLE;
1624 pool->nr_idle++;
1625 worker->last_active = jiffies;
1626
1627 /* idle_list is LIFO */
1628 list_add(&worker->entry, &pool->idle_list);
1629
1630 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1631 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1632
1633 /*
1634 * Sanity check nr_running. Because wq_unbind_fn() releases
1635 * pool->lock between setting %WORKER_UNBOUND and zapping
1636 * nr_running, the warning may trigger spuriously. Check iff
1637 * unbind is not in progress.
1638 */
1639 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1640 pool->nr_workers == pool->nr_idle &&
1641 atomic_read(&pool->nr_running));
1642 }
1643
1644 /**
1645 * worker_leave_idle - leave idle state
1646 * @worker: worker which is leaving idle state
1647 *
1648 * @worker is leaving idle state. Update stats.
1649 *
1650 * LOCKING:
1651 * spin_lock_irq(pool->lock).
1652 */
1653 static void worker_leave_idle(struct worker *worker)
1654 {
1655 struct worker_pool *pool = worker->pool;
1656
1657 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1658 return;
1659 worker_clr_flags(worker, WORKER_IDLE);
1660 pool->nr_idle--;
1661 list_del_init(&worker->entry);
1662 }
1663
1664 static struct worker *alloc_worker(int node)
1665 {
1666 struct worker *worker;
1667
1668 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1669 if (worker) {
1670 INIT_LIST_HEAD(&worker->entry);
1671 INIT_LIST_HEAD(&worker->scheduled);
1672 INIT_LIST_HEAD(&worker->node);
1673 /* on creation a worker is in !idle && prep state */
1674 worker->flags = WORKER_PREP;
1675 }
1676 return worker;
1677 }
1678
1679 /**
1680 * worker_attach_to_pool() - attach a worker to a pool
1681 * @worker: worker to be attached
1682 * @pool: the target pool
1683 *
1684 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1685 * cpu-binding of @worker are kept coordinated with the pool across
1686 * cpu-[un]hotplugs.
1687 */
1688 static void worker_attach_to_pool(struct worker *worker,
1689 struct worker_pool *pool)
1690 {
1691 mutex_lock(&pool->attach_mutex);
1692
1693 /*
1694 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1695 * online CPUs. It'll be re-applied when any of the CPUs come up.
1696 */
1697 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1698
1699 /*
1700 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1701 * stable across this function. See the comments above the
1702 * flag definition for details.
1703 */
1704 if (pool->flags & POOL_DISASSOCIATED)
1705 worker->flags |= WORKER_UNBOUND;
1706
1707 list_add_tail(&worker->node, &pool->workers);
1708
1709 mutex_unlock(&pool->attach_mutex);
1710 }
1711
1712 /**
1713 * worker_detach_from_pool() - detach a worker from its pool
1714 * @worker: worker which is attached to its pool
1715 * @pool: the pool @worker is attached to
1716 *
1717 * Undo the attaching which had been done in worker_attach_to_pool(). The
1718 * caller worker shouldn't access to the pool after detached except it has
1719 * other reference to the pool.
1720 */
1721 static void worker_detach_from_pool(struct worker *worker,
1722 struct worker_pool *pool)
1723 {
1724 struct completion *detach_completion = NULL;
1725
1726 mutex_lock(&pool->attach_mutex);
1727 list_del(&worker->node);
1728 if (list_empty(&pool->workers))
1729 detach_completion = pool->detach_completion;
1730 mutex_unlock(&pool->attach_mutex);
1731
1732 /* clear leftover flags without pool->lock after it is detached */
1733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1734
1735 if (detach_completion)
1736 complete(detach_completion);
1737 }
1738
1739 /**
1740 * create_worker - create a new workqueue worker
1741 * @pool: pool the new worker will belong to
1742 *
1743 * Create and start a new worker which is attached to @pool.
1744 *
1745 * CONTEXT:
1746 * Might sleep. Does GFP_KERNEL allocations.
1747 *
1748 * Return:
1749 * Pointer to the newly created worker.
1750 */
1751 static struct worker *create_worker(struct worker_pool *pool)
1752 {
1753 struct worker *worker = NULL;
1754 int id = -1;
1755 char id_buf[16];
1756
1757 /* ID is needed to determine kthread name */
1758 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1759 if (id < 0)
1760 goto fail;
1761
1762 worker = alloc_worker(pool->node);
1763 if (!worker)
1764 goto fail;
1765
1766 worker->pool = pool;
1767 worker->id = id;
1768
1769 if (pool->cpu >= 0)
1770 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1771 pool->attrs->nice < 0 ? "H" : "");
1772 else
1773 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1774
1775 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1776 "kworker/%s", id_buf);
1777 if (IS_ERR(worker->task))
1778 goto fail;
1779
1780 set_user_nice(worker->task, pool->attrs->nice);
1781 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1782
1783 /* successful, attach the worker to the pool */
1784 worker_attach_to_pool(worker, pool);
1785
1786 /* start the newly created worker */
1787 spin_lock_irq(&pool->lock);
1788 worker->pool->nr_workers++;
1789 worker_enter_idle(worker);
1790 wake_up_process(worker->task);
1791 spin_unlock_irq(&pool->lock);
1792
1793 return worker;
1794
1795 fail:
1796 if (id >= 0)
1797 ida_simple_remove(&pool->worker_ida, id);
1798 kfree(worker);
1799 return NULL;
1800 }
1801
1802 /**
1803 * destroy_worker - destroy a workqueue worker
1804 * @worker: worker to be destroyed
1805 *
1806 * Destroy @worker and adjust @pool stats accordingly. The worker should
1807 * be idle.
1808 *
1809 * CONTEXT:
1810 * spin_lock_irq(pool->lock).
1811 */
1812 static void destroy_worker(struct worker *worker)
1813 {
1814 struct worker_pool *pool = worker->pool;
1815
1816 lockdep_assert_held(&pool->lock);
1817
1818 /* sanity check frenzy */
1819 if (WARN_ON(worker->current_work) ||
1820 WARN_ON(!list_empty(&worker->scheduled)) ||
1821 WARN_ON(!(worker->flags & WORKER_IDLE)))
1822 return;
1823
1824 pool->nr_workers--;
1825 pool->nr_idle--;
1826
1827 list_del_init(&worker->entry);
1828 worker->flags |= WORKER_DIE;
1829 wake_up_process(worker->task);
1830 }
1831
1832 static void idle_worker_timeout(unsigned long __pool)
1833 {
1834 struct worker_pool *pool = (void *)__pool;
1835
1836 spin_lock_irq(&pool->lock);
1837
1838 while (too_many_workers(pool)) {
1839 struct worker *worker;
1840 unsigned long expires;
1841
1842 /* idle_list is kept in LIFO order, check the last one */
1843 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1844 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1845
1846 if (time_before(jiffies, expires)) {
1847 mod_timer(&pool->idle_timer, expires);
1848 break;
1849 }
1850
1851 destroy_worker(worker);
1852 }
1853
1854 spin_unlock_irq(&pool->lock);
1855 }
1856
1857 static void send_mayday(struct work_struct *work)
1858 {
1859 struct pool_workqueue *pwq = get_work_pwq(work);
1860 struct workqueue_struct *wq = pwq->wq;
1861
1862 lockdep_assert_held(&wq_mayday_lock);
1863
1864 if (!wq->rescuer)
1865 return;
1866
1867 /* mayday mayday mayday */
1868 if (list_empty(&pwq->mayday_node)) {
1869 /*
1870 * If @pwq is for an unbound wq, its base ref may be put at
1871 * any time due to an attribute change. Pin @pwq until the
1872 * rescuer is done with it.
1873 */
1874 get_pwq(pwq);
1875 list_add_tail(&pwq->mayday_node, &wq->maydays);
1876 wake_up_process(wq->rescuer->task);
1877 }
1878 }
1879
1880 static void pool_mayday_timeout(unsigned long __pool)
1881 {
1882 struct worker_pool *pool = (void *)__pool;
1883 struct work_struct *work;
1884
1885 spin_lock_irq(&pool->lock);
1886 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1887
1888 if (need_to_create_worker(pool)) {
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
1895 list_for_each_entry(work, &pool->worklist, entry)
1896 send_mayday(work);
1897 }
1898
1899 spin_unlock(&wq_mayday_lock);
1900 spin_unlock_irq(&pool->lock);
1901
1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1903 }
1904
1905 /**
1906 * maybe_create_worker - create a new worker if necessary
1907 * @pool: pool to create a new worker for
1908 *
1909 * Create a new worker for @pool if necessary. @pool is guaranteed to
1910 * have at least one idle worker on return from this function. If
1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1912 * sent to all rescuers with works scheduled on @pool to resolve
1913 * possible allocation deadlock.
1914 *
1915 * On return, need_to_create_worker() is guaranteed to be %false and
1916 * may_start_working() %true.
1917 *
1918 * LOCKING:
1919 * spin_lock_irq(pool->lock) which may be released and regrabbed
1920 * multiple times. Does GFP_KERNEL allocations. Called only from
1921 * manager.
1922 */
1923 static void maybe_create_worker(struct worker_pool *pool)
1924 __releases(&pool->lock)
1925 __acquires(&pool->lock)
1926 {
1927 restart:
1928 spin_unlock_irq(&pool->lock);
1929
1930 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1931 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1932
1933 while (true) {
1934 if (create_worker(pool) || !need_to_create_worker(pool))
1935 break;
1936
1937 schedule_timeout_interruptible(CREATE_COOLDOWN);
1938
1939 if (!need_to_create_worker(pool))
1940 break;
1941 }
1942
1943 del_timer_sync(&pool->mayday_timer);
1944 spin_lock_irq(&pool->lock);
1945 /*
1946 * This is necessary even after a new worker was just successfully
1947 * created as @pool->lock was dropped and the new worker might have
1948 * already become busy.
1949 */
1950 if (need_to_create_worker(pool))
1951 goto restart;
1952 }
1953
1954 /**
1955 * manage_workers - manage worker pool
1956 * @worker: self
1957 *
1958 * Assume the manager role and manage the worker pool @worker belongs
1959 * to. At any given time, there can be only zero or one manager per
1960 * pool. The exclusion is handled automatically by this function.
1961 *
1962 * The caller can safely start processing works on false return. On
1963 * true return, it's guaranteed that need_to_create_worker() is false
1964 * and may_start_working() is true.
1965 *
1966 * CONTEXT:
1967 * spin_lock_irq(pool->lock) which may be released and regrabbed
1968 * multiple times. Does GFP_KERNEL allocations.
1969 *
1970 * Return:
1971 * %false if the pool doesn't need management and the caller can safely
1972 * start processing works, %true if management function was performed and
1973 * the conditions that the caller verified before calling the function may
1974 * no longer be true.
1975 */
1976 static bool manage_workers(struct worker *worker)
1977 {
1978 struct worker_pool *pool = worker->pool;
1979
1980 /*
1981 * Anyone who successfully grabs manager_arb wins the arbitration
1982 * and becomes the manager. mutex_trylock() on pool->manager_arb
1983 * failure while holding pool->lock reliably indicates that someone
1984 * else is managing the pool and the worker which failed trylock
1985 * can proceed to executing work items. This means that anyone
1986 * grabbing manager_arb is responsible for actually performing
1987 * manager duties. If manager_arb is grabbed and released without
1988 * actual management, the pool may stall indefinitely.
1989 */
1990 if (!mutex_trylock(&pool->manager_arb))
1991 return false;
1992 pool->manager = worker;
1993
1994 maybe_create_worker(pool);
1995
1996 pool->manager = NULL;
1997 mutex_unlock(&pool->manager_arb);
1998 return true;
1999 }
2000
2001 /**
2002 * process_one_work - process single work
2003 * @worker: self
2004 * @work: work to process
2005 *
2006 * Process @work. This function contains all the logics necessary to
2007 * process a single work including synchronization against and
2008 * interaction with other workers on the same cpu, queueing and
2009 * flushing. As long as context requirement is met, any worker can
2010 * call this function to process a work.
2011 *
2012 * CONTEXT:
2013 * spin_lock_irq(pool->lock) which is released and regrabbed.
2014 */
2015 static void process_one_work(struct worker *worker, struct work_struct *work)
2016 __releases(&pool->lock)
2017 __acquires(&pool->lock)
2018 {
2019 struct pool_workqueue *pwq = get_work_pwq(work);
2020 struct worker_pool *pool = worker->pool;
2021 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2022 int work_color;
2023 struct worker *collision;
2024 #ifdef CONFIG_LOCKDEP
2025 /*
2026 * It is permissible to free the struct work_struct from
2027 * inside the function that is called from it, this we need to
2028 * take into account for lockdep too. To avoid bogus "held
2029 * lock freed" warnings as well as problems when looking into
2030 * work->lockdep_map, make a copy and use that here.
2031 */
2032 struct lockdep_map lockdep_map;
2033
2034 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2035 #endif
2036 /* ensure we're on the correct CPU */
2037 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2038 raw_smp_processor_id() != pool->cpu);
2039
2040 /*
2041 * A single work shouldn't be executed concurrently by
2042 * multiple workers on a single cpu. Check whether anyone is
2043 * already processing the work. If so, defer the work to the
2044 * currently executing one.
2045 */
2046 collision = find_worker_executing_work(pool, work);
2047 if (unlikely(collision)) {
2048 move_linked_works(work, &collision->scheduled, NULL);
2049 return;
2050 }
2051
2052 /* claim and dequeue */
2053 debug_work_deactivate(work);
2054 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2055 worker->current_work = work;
2056 worker->current_func = work->func;
2057 worker->current_pwq = pwq;
2058 work_color = get_work_color(work);
2059
2060 list_del_init(&work->entry);
2061
2062 /*
2063 * CPU intensive works don't participate in concurrency management.
2064 * They're the scheduler's responsibility. This takes @worker out
2065 * of concurrency management and the next code block will chain
2066 * execution of the pending work items.
2067 */
2068 if (unlikely(cpu_intensive))
2069 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2070
2071 /*
2072 * Wake up another worker if necessary. The condition is always
2073 * false for normal per-cpu workers since nr_running would always
2074 * be >= 1 at this point. This is used to chain execution of the
2075 * pending work items for WORKER_NOT_RUNNING workers such as the
2076 * UNBOUND and CPU_INTENSIVE ones.
2077 */
2078 if (need_more_worker(pool))
2079 wake_up_worker(pool);
2080
2081 /*
2082 * Record the last pool and clear PENDING which should be the last
2083 * update to @work. Also, do this inside @pool->lock so that
2084 * PENDING and queued state changes happen together while IRQ is
2085 * disabled.
2086 */
2087 set_work_pool_and_clear_pending(work, pool->id);
2088
2089 spin_unlock_irq(&pool->lock);
2090
2091 lock_map_acquire_read(&pwq->wq->lockdep_map);
2092 lock_map_acquire(&lockdep_map);
2093 trace_workqueue_execute_start(work);
2094 worker->current_func(work);
2095 /*
2096 * While we must be careful to not use "work" after this, the trace
2097 * point will only record its address.
2098 */
2099 trace_workqueue_execute_end(work);
2100 lock_map_release(&lockdep_map);
2101 lock_map_release(&pwq->wq->lockdep_map);
2102
2103 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2104 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2105 " last function: %pf\n",
2106 current->comm, preempt_count(), task_pid_nr(current),
2107 worker->current_func);
2108 debug_show_held_locks(current);
2109 dump_stack();
2110 }
2111
2112 /*
2113 * The following prevents a kworker from hogging CPU on !PREEMPT
2114 * kernels, where a requeueing work item waiting for something to
2115 * happen could deadlock with stop_machine as such work item could
2116 * indefinitely requeue itself while all other CPUs are trapped in
2117 * stop_machine. At the same time, report a quiescent RCU state so
2118 * the same condition doesn't freeze RCU.
2119 */
2120 cond_resched_rcu_qs();
2121
2122 spin_lock_irq(&pool->lock);
2123
2124 /* clear cpu intensive status */
2125 if (unlikely(cpu_intensive))
2126 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2127
2128 /* we're done with it, release */
2129 hash_del(&worker->hentry);
2130 worker->current_work = NULL;
2131 worker->current_func = NULL;
2132 worker->current_pwq = NULL;
2133 worker->desc_valid = false;
2134 pwq_dec_nr_in_flight(pwq, work_color);
2135 }
2136
2137 /**
2138 * process_scheduled_works - process scheduled works
2139 * @worker: self
2140 *
2141 * Process all scheduled works. Please note that the scheduled list
2142 * may change while processing a work, so this function repeatedly
2143 * fetches a work from the top and executes it.
2144 *
2145 * CONTEXT:
2146 * spin_lock_irq(pool->lock) which may be released and regrabbed
2147 * multiple times.
2148 */
2149 static void process_scheduled_works(struct worker *worker)
2150 {
2151 while (!list_empty(&worker->scheduled)) {
2152 struct work_struct *work = list_first_entry(&worker->scheduled,
2153 struct work_struct, entry);
2154 process_one_work(worker, work);
2155 }
2156 }
2157
2158 /**
2159 * worker_thread - the worker thread function
2160 * @__worker: self
2161 *
2162 * The worker thread function. All workers belong to a worker_pool -
2163 * either a per-cpu one or dynamic unbound one. These workers process all
2164 * work items regardless of their specific target workqueue. The only
2165 * exception is work items which belong to workqueues with a rescuer which
2166 * will be explained in rescuer_thread().
2167 *
2168 * Return: 0
2169 */
2170 static int worker_thread(void *__worker)
2171 {
2172 struct worker *worker = __worker;
2173 struct worker_pool *pool = worker->pool;
2174
2175 /* tell the scheduler that this is a workqueue worker */
2176 worker->task->flags |= PF_WQ_WORKER;
2177 woke_up:
2178 spin_lock_irq(&pool->lock);
2179
2180 /* am I supposed to die? */
2181 if (unlikely(worker->flags & WORKER_DIE)) {
2182 spin_unlock_irq(&pool->lock);
2183 WARN_ON_ONCE(!list_empty(&worker->entry));
2184 worker->task->flags &= ~PF_WQ_WORKER;
2185
2186 set_task_comm(worker->task, "kworker/dying");
2187 ida_simple_remove(&pool->worker_ida, worker->id);
2188 worker_detach_from_pool(worker, pool);
2189 kfree(worker);
2190 return 0;
2191 }
2192
2193 worker_leave_idle(worker);
2194 recheck:
2195 /* no more worker necessary? */
2196 if (!need_more_worker(pool))
2197 goto sleep;
2198
2199 /* do we need to manage? */
2200 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2201 goto recheck;
2202
2203 /*
2204 * ->scheduled list can only be filled while a worker is
2205 * preparing to process a work or actually processing it.
2206 * Make sure nobody diddled with it while I was sleeping.
2207 */
2208 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2209
2210 /*
2211 * Finish PREP stage. We're guaranteed to have at least one idle
2212 * worker or that someone else has already assumed the manager
2213 * role. This is where @worker starts participating in concurrency
2214 * management if applicable and concurrency management is restored
2215 * after being rebound. See rebind_workers() for details.
2216 */
2217 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2218
2219 do {
2220 struct work_struct *work =
2221 list_first_entry(&pool->worklist,
2222 struct work_struct, entry);
2223
2224 pool->watchdog_ts = jiffies;
2225
2226 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2227 /* optimization path, not strictly necessary */
2228 process_one_work(worker, work);
2229 if (unlikely(!list_empty(&worker->scheduled)))
2230 process_scheduled_works(worker);
2231 } else {
2232 move_linked_works(work, &worker->scheduled, NULL);
2233 process_scheduled_works(worker);
2234 }
2235 } while (keep_working(pool));
2236
2237 worker_set_flags(worker, WORKER_PREP);
2238 sleep:
2239 /*
2240 * pool->lock is held and there's no work to process and no need to
2241 * manage, sleep. Workers are woken up only while holding
2242 * pool->lock or from local cpu, so setting the current state
2243 * before releasing pool->lock is enough to prevent losing any
2244 * event.
2245 */
2246 worker_enter_idle(worker);
2247 __set_current_state(TASK_INTERRUPTIBLE);
2248 spin_unlock_irq(&pool->lock);
2249 schedule();
2250 goto woke_up;
2251 }
2252
2253 /**
2254 * rescuer_thread - the rescuer thread function
2255 * @__rescuer: self
2256 *
2257 * Workqueue rescuer thread function. There's one rescuer for each
2258 * workqueue which has WQ_MEM_RECLAIM set.
2259 *
2260 * Regular work processing on a pool may block trying to create a new
2261 * worker which uses GFP_KERNEL allocation which has slight chance of
2262 * developing into deadlock if some works currently on the same queue
2263 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2264 * the problem rescuer solves.
2265 *
2266 * When such condition is possible, the pool summons rescuers of all
2267 * workqueues which have works queued on the pool and let them process
2268 * those works so that forward progress can be guaranteed.
2269 *
2270 * This should happen rarely.
2271 *
2272 * Return: 0
2273 */
2274 static int rescuer_thread(void *__rescuer)
2275 {
2276 struct worker *rescuer = __rescuer;
2277 struct workqueue_struct *wq = rescuer->rescue_wq;
2278 struct list_head *scheduled = &rescuer->scheduled;
2279 bool should_stop;
2280
2281 set_user_nice(current, RESCUER_NICE_LEVEL);
2282
2283 /*
2284 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2285 * doesn't participate in concurrency management.
2286 */
2287 rescuer->task->flags |= PF_WQ_WORKER;
2288 repeat:
2289 set_current_state(TASK_INTERRUPTIBLE);
2290
2291 /*
2292 * By the time the rescuer is requested to stop, the workqueue
2293 * shouldn't have any work pending, but @wq->maydays may still have
2294 * pwq(s) queued. This can happen by non-rescuer workers consuming
2295 * all the work items before the rescuer got to them. Go through
2296 * @wq->maydays processing before acting on should_stop so that the
2297 * list is always empty on exit.
2298 */
2299 should_stop = kthread_should_stop();
2300
2301 /* see whether any pwq is asking for help */
2302 spin_lock_irq(&wq_mayday_lock);
2303
2304 while (!list_empty(&wq->maydays)) {
2305 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2306 struct pool_workqueue, mayday_node);
2307 struct worker_pool *pool = pwq->pool;
2308 struct work_struct *work, *n;
2309 bool first = true;
2310
2311 __set_current_state(TASK_RUNNING);
2312 list_del_init(&pwq->mayday_node);
2313
2314 spin_unlock_irq(&wq_mayday_lock);
2315
2316 worker_attach_to_pool(rescuer, pool);
2317
2318 spin_lock_irq(&pool->lock);
2319 rescuer->pool = pool;
2320
2321 /*
2322 * Slurp in all works issued via this workqueue and
2323 * process'em.
2324 */
2325 WARN_ON_ONCE(!list_empty(scheduled));
2326 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2327 if (get_work_pwq(work) == pwq) {
2328 if (first)
2329 pool->watchdog_ts = jiffies;
2330 move_linked_works(work, scheduled, &n);
2331 }
2332 first = false;
2333 }
2334
2335 if (!list_empty(scheduled)) {
2336 process_scheduled_works(rescuer);
2337
2338 /*
2339 * The above execution of rescued work items could
2340 * have created more to rescue through
2341 * pwq_activate_first_delayed() or chained
2342 * queueing. Let's put @pwq back on mayday list so
2343 * that such back-to-back work items, which may be
2344 * being used to relieve memory pressure, don't
2345 * incur MAYDAY_INTERVAL delay inbetween.
2346 */
2347 if (need_to_create_worker(pool)) {
2348 spin_lock(&wq_mayday_lock);
2349 get_pwq(pwq);
2350 list_move_tail(&pwq->mayday_node, &wq->maydays);
2351 spin_unlock(&wq_mayday_lock);
2352 }
2353 }
2354
2355 /*
2356 * Put the reference grabbed by send_mayday(). @pool won't
2357 * go away while we're still attached to it.
2358 */
2359 put_pwq(pwq);
2360
2361 /*
2362 * Leave this pool. If need_more_worker() is %true, notify a
2363 * regular worker; otherwise, we end up with 0 concurrency
2364 * and stalling the execution.
2365 */
2366 if (need_more_worker(pool))
2367 wake_up_worker(pool);
2368
2369 rescuer->pool = NULL;
2370 spin_unlock_irq(&pool->lock);
2371
2372 worker_detach_from_pool(rescuer, pool);
2373
2374 spin_lock_irq(&wq_mayday_lock);
2375 }
2376
2377 spin_unlock_irq(&wq_mayday_lock);
2378
2379 if (should_stop) {
2380 __set_current_state(TASK_RUNNING);
2381 rescuer->task->flags &= ~PF_WQ_WORKER;
2382 return 0;
2383 }
2384
2385 /* rescuers should never participate in concurrency management */
2386 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2387 schedule();
2388 goto repeat;
2389 }
2390
2391 /**
2392 * check_flush_dependency - check for flush dependency sanity
2393 * @target_wq: workqueue being flushed
2394 * @target_work: work item being flushed (NULL for workqueue flushes)
2395 *
2396 * %current is trying to flush the whole @target_wq or @target_work on it.
2397 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2398 * reclaiming memory or running on a workqueue which doesn't have
2399 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2400 * a deadlock.
2401 */
2402 static void check_flush_dependency(struct workqueue_struct *target_wq,
2403 struct work_struct *target_work)
2404 {
2405 work_func_t target_func = target_work ? target_work->func : NULL;
2406 struct worker *worker;
2407
2408 if (target_wq->flags & WQ_MEM_RECLAIM)
2409 return;
2410
2411 worker = current_wq_worker();
2412
2413 WARN_ONCE(current->flags & PF_MEMALLOC,
2414 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2415 current->pid, current->comm, target_wq->name, target_func);
2416 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2417 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2418 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2419 worker->current_pwq->wq->name, worker->current_func,
2420 target_wq->name, target_func);
2421 }
2422
2423 struct wq_barrier {
2424 struct work_struct work;
2425 struct completion done;
2426 struct task_struct *task; /* purely informational */
2427 };
2428
2429 static void wq_barrier_func(struct work_struct *work)
2430 {
2431 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2432 complete(&barr->done);
2433 }
2434
2435 /**
2436 * insert_wq_barrier - insert a barrier work
2437 * @pwq: pwq to insert barrier into
2438 * @barr: wq_barrier to insert
2439 * @target: target work to attach @barr to
2440 * @worker: worker currently executing @target, NULL if @target is not executing
2441 *
2442 * @barr is linked to @target such that @barr is completed only after
2443 * @target finishes execution. Please note that the ordering
2444 * guarantee is observed only with respect to @target and on the local
2445 * cpu.
2446 *
2447 * Currently, a queued barrier can't be canceled. This is because
2448 * try_to_grab_pending() can't determine whether the work to be
2449 * grabbed is at the head of the queue and thus can't clear LINKED
2450 * flag of the previous work while there must be a valid next work
2451 * after a work with LINKED flag set.
2452 *
2453 * Note that when @worker is non-NULL, @target may be modified
2454 * underneath us, so we can't reliably determine pwq from @target.
2455 *
2456 * CONTEXT:
2457 * spin_lock_irq(pool->lock).
2458 */
2459 static void insert_wq_barrier(struct pool_workqueue *pwq,
2460 struct wq_barrier *barr,
2461 struct work_struct *target, struct worker *worker)
2462 {
2463 struct list_head *head;
2464 unsigned int linked = 0;
2465
2466 /*
2467 * debugobject calls are safe here even with pool->lock locked
2468 * as we know for sure that this will not trigger any of the
2469 * checks and call back into the fixup functions where we
2470 * might deadlock.
2471 */
2472 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2473 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2474 init_completion(&barr->done);
2475 barr->task = current;
2476
2477 /*
2478 * If @target is currently being executed, schedule the
2479 * barrier to the worker; otherwise, put it after @target.
2480 */
2481 if (worker)
2482 head = worker->scheduled.next;
2483 else {
2484 unsigned long *bits = work_data_bits(target);
2485
2486 head = target->entry.next;
2487 /* there can already be other linked works, inherit and set */
2488 linked = *bits & WORK_STRUCT_LINKED;
2489 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2490 }
2491
2492 debug_work_activate(&barr->work);
2493 insert_work(pwq, &barr->work, head,
2494 work_color_to_flags(WORK_NO_COLOR) | linked);
2495 }
2496
2497 /**
2498 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2499 * @wq: workqueue being flushed
2500 * @flush_color: new flush color, < 0 for no-op
2501 * @work_color: new work color, < 0 for no-op
2502 *
2503 * Prepare pwqs for workqueue flushing.
2504 *
2505 * If @flush_color is non-negative, flush_color on all pwqs should be
2506 * -1. If no pwq has in-flight commands at the specified color, all
2507 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2508 * has in flight commands, its pwq->flush_color is set to
2509 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2510 * wakeup logic is armed and %true is returned.
2511 *
2512 * The caller should have initialized @wq->first_flusher prior to
2513 * calling this function with non-negative @flush_color. If
2514 * @flush_color is negative, no flush color update is done and %false
2515 * is returned.
2516 *
2517 * If @work_color is non-negative, all pwqs should have the same
2518 * work_color which is previous to @work_color and all will be
2519 * advanced to @work_color.
2520 *
2521 * CONTEXT:
2522 * mutex_lock(wq->mutex).
2523 *
2524 * Return:
2525 * %true if @flush_color >= 0 and there's something to flush. %false
2526 * otherwise.
2527 */
2528 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2529 int flush_color, int work_color)
2530 {
2531 bool wait = false;
2532 struct pool_workqueue *pwq;
2533
2534 if (flush_color >= 0) {
2535 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2536 atomic_set(&wq->nr_pwqs_to_flush, 1);
2537 }
2538
2539 for_each_pwq(pwq, wq) {
2540 struct worker_pool *pool = pwq->pool;
2541
2542 spin_lock_irq(&pool->lock);
2543
2544 if (flush_color >= 0) {
2545 WARN_ON_ONCE(pwq->flush_color != -1);
2546
2547 if (pwq->nr_in_flight[flush_color]) {
2548 pwq->flush_color = flush_color;
2549 atomic_inc(&wq->nr_pwqs_to_flush);
2550 wait = true;
2551 }
2552 }
2553
2554 if (work_color >= 0) {
2555 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2556 pwq->work_color = work_color;
2557 }
2558
2559 spin_unlock_irq(&pool->lock);
2560 }
2561
2562 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2563 complete(&wq->first_flusher->done);
2564
2565 return wait;
2566 }
2567
2568 /**
2569 * flush_workqueue - ensure that any scheduled work has run to completion.
2570 * @wq: workqueue to flush
2571 *
2572 * This function sleeps until all work items which were queued on entry
2573 * have finished execution, but it is not livelocked by new incoming ones.
2574 */
2575 void flush_workqueue(struct workqueue_struct *wq)
2576 {
2577 struct wq_flusher this_flusher = {
2578 .list = LIST_HEAD_INIT(this_flusher.list),
2579 .flush_color = -1,
2580 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2581 };
2582 int next_color;
2583
2584 lock_map_acquire(&wq->lockdep_map);
2585 lock_map_release(&wq->lockdep_map);
2586
2587 mutex_lock(&wq->mutex);
2588
2589 /*
2590 * Start-to-wait phase
2591 */
2592 next_color = work_next_color(wq->work_color);
2593
2594 if (next_color != wq->flush_color) {
2595 /*
2596 * Color space is not full. The current work_color
2597 * becomes our flush_color and work_color is advanced
2598 * by one.
2599 */
2600 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2601 this_flusher.flush_color = wq->work_color;
2602 wq->work_color = next_color;
2603
2604 if (!wq->first_flusher) {
2605 /* no flush in progress, become the first flusher */
2606 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2607
2608 wq->first_flusher = &this_flusher;
2609
2610 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2611 wq->work_color)) {
2612 /* nothing to flush, done */
2613 wq->flush_color = next_color;
2614 wq->first_flusher = NULL;
2615 goto out_unlock;
2616 }
2617 } else {
2618 /* wait in queue */
2619 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2620 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2621 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2622 }
2623 } else {
2624 /*
2625 * Oops, color space is full, wait on overflow queue.
2626 * The next flush completion will assign us
2627 * flush_color and transfer to flusher_queue.
2628 */
2629 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2630 }
2631
2632 check_flush_dependency(wq, NULL);
2633
2634 mutex_unlock(&wq->mutex);
2635
2636 wait_for_completion(&this_flusher.done);
2637
2638 /*
2639 * Wake-up-and-cascade phase
2640 *
2641 * First flushers are responsible for cascading flushes and
2642 * handling overflow. Non-first flushers can simply return.
2643 */
2644 if (wq->first_flusher != &this_flusher)
2645 return;
2646
2647 mutex_lock(&wq->mutex);
2648
2649 /* we might have raced, check again with mutex held */
2650 if (wq->first_flusher != &this_flusher)
2651 goto out_unlock;
2652
2653 wq->first_flusher = NULL;
2654
2655 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2656 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2657
2658 while (true) {
2659 struct wq_flusher *next, *tmp;
2660
2661 /* complete all the flushers sharing the current flush color */
2662 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2663 if (next->flush_color != wq->flush_color)
2664 break;
2665 list_del_init(&next->list);
2666 complete(&next->done);
2667 }
2668
2669 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2670 wq->flush_color != work_next_color(wq->work_color));
2671
2672 /* this flush_color is finished, advance by one */
2673 wq->flush_color = work_next_color(wq->flush_color);
2674
2675 /* one color has been freed, handle overflow queue */
2676 if (!list_empty(&wq->flusher_overflow)) {
2677 /*
2678 * Assign the same color to all overflowed
2679 * flushers, advance work_color and append to
2680 * flusher_queue. This is the start-to-wait
2681 * phase for these overflowed flushers.
2682 */
2683 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2684 tmp->flush_color = wq->work_color;
2685
2686 wq->work_color = work_next_color(wq->work_color);
2687
2688 list_splice_tail_init(&wq->flusher_overflow,
2689 &wq->flusher_queue);
2690 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2691 }
2692
2693 if (list_empty(&wq->flusher_queue)) {
2694 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2695 break;
2696 }
2697
2698 /*
2699 * Need to flush more colors. Make the next flusher
2700 * the new first flusher and arm pwqs.
2701 */
2702 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2703 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2704
2705 list_del_init(&next->list);
2706 wq->first_flusher = next;
2707
2708 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2709 break;
2710
2711 /*
2712 * Meh... this color is already done, clear first
2713 * flusher and repeat cascading.
2714 */
2715 wq->first_flusher = NULL;
2716 }
2717
2718 out_unlock:
2719 mutex_unlock(&wq->mutex);
2720 }
2721 EXPORT_SYMBOL(flush_workqueue);
2722
2723 /**
2724 * drain_workqueue - drain a workqueue
2725 * @wq: workqueue to drain
2726 *
2727 * Wait until the workqueue becomes empty. While draining is in progress,
2728 * only chain queueing is allowed. IOW, only currently pending or running
2729 * work items on @wq can queue further work items on it. @wq is flushed
2730 * repeatedly until it becomes empty. The number of flushing is determined
2731 * by the depth of chaining and should be relatively short. Whine if it
2732 * takes too long.
2733 */
2734 void drain_workqueue(struct workqueue_struct *wq)
2735 {
2736 unsigned int flush_cnt = 0;
2737 struct pool_workqueue *pwq;
2738
2739 /*
2740 * __queue_work() needs to test whether there are drainers, is much
2741 * hotter than drain_workqueue() and already looks at @wq->flags.
2742 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2743 */
2744 mutex_lock(&wq->mutex);
2745 if (!wq->nr_drainers++)
2746 wq->flags |= __WQ_DRAINING;
2747 mutex_unlock(&wq->mutex);
2748 reflush:
2749 flush_workqueue(wq);
2750
2751 mutex_lock(&wq->mutex);
2752
2753 for_each_pwq(pwq, wq) {
2754 bool drained;
2755
2756 spin_lock_irq(&pwq->pool->lock);
2757 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2758 spin_unlock_irq(&pwq->pool->lock);
2759
2760 if (drained)
2761 continue;
2762
2763 if (++flush_cnt == 10 ||
2764 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2765 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2766 wq->name, flush_cnt);
2767
2768 mutex_unlock(&wq->mutex);
2769 goto reflush;
2770 }
2771
2772 if (!--wq->nr_drainers)
2773 wq->flags &= ~__WQ_DRAINING;
2774 mutex_unlock(&wq->mutex);
2775 }
2776 EXPORT_SYMBOL_GPL(drain_workqueue);
2777
2778 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2779 {
2780 struct worker *worker = NULL;
2781 struct worker_pool *pool;
2782 struct pool_workqueue *pwq;
2783
2784 might_sleep();
2785
2786 local_irq_disable();
2787 pool = get_work_pool(work);
2788 if (!pool) {
2789 local_irq_enable();
2790 return false;
2791 }
2792
2793 spin_lock(&pool->lock);
2794 /* see the comment in try_to_grab_pending() with the same code */
2795 pwq = get_work_pwq(work);
2796 if (pwq) {
2797 if (unlikely(pwq->pool != pool))
2798 goto already_gone;
2799 } else {
2800 worker = find_worker_executing_work(pool, work);
2801 if (!worker)
2802 goto already_gone;
2803 pwq = worker->current_pwq;
2804 }
2805
2806 check_flush_dependency(pwq->wq, work);
2807
2808 insert_wq_barrier(pwq, barr, work, worker);
2809 spin_unlock_irq(&pool->lock);
2810
2811 /*
2812 * If @max_active is 1 or rescuer is in use, flushing another work
2813 * item on the same workqueue may lead to deadlock. Make sure the
2814 * flusher is not running on the same workqueue by verifying write
2815 * access.
2816 */
2817 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2818 lock_map_acquire(&pwq->wq->lockdep_map);
2819 else
2820 lock_map_acquire_read(&pwq->wq->lockdep_map);
2821 lock_map_release(&pwq->wq->lockdep_map);
2822
2823 return true;
2824 already_gone:
2825 spin_unlock_irq(&pool->lock);
2826 return false;
2827 }
2828
2829 /**
2830 * flush_work - wait for a work to finish executing the last queueing instance
2831 * @work: the work to flush
2832 *
2833 * Wait until @work has finished execution. @work is guaranteed to be idle
2834 * on return if it hasn't been requeued since flush started.
2835 *
2836 * Return:
2837 * %true if flush_work() waited for the work to finish execution,
2838 * %false if it was already idle.
2839 */
2840 bool flush_work(struct work_struct *work)
2841 {
2842 struct wq_barrier barr;
2843
2844 lock_map_acquire(&work->lockdep_map);
2845 lock_map_release(&work->lockdep_map);
2846
2847 if (start_flush_work(work, &barr)) {
2848 wait_for_completion(&barr.done);
2849 destroy_work_on_stack(&barr.work);
2850 return true;
2851 } else {
2852 return false;
2853 }
2854 }
2855 EXPORT_SYMBOL_GPL(flush_work);
2856
2857 struct cwt_wait {
2858 wait_queue_t wait;
2859 struct work_struct *work;
2860 };
2861
2862 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2863 {
2864 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2865
2866 if (cwait->work != key)
2867 return 0;
2868 return autoremove_wake_function(wait, mode, sync, key);
2869 }
2870
2871 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2872 {
2873 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2874 unsigned long flags;
2875 int ret;
2876
2877 do {
2878 ret = try_to_grab_pending(work, is_dwork, &flags);
2879 /*
2880 * If someone else is already canceling, wait for it to
2881 * finish. flush_work() doesn't work for PREEMPT_NONE
2882 * because we may get scheduled between @work's completion
2883 * and the other canceling task resuming and clearing
2884 * CANCELING - flush_work() will return false immediately
2885 * as @work is no longer busy, try_to_grab_pending() will
2886 * return -ENOENT as @work is still being canceled and the
2887 * other canceling task won't be able to clear CANCELING as
2888 * we're hogging the CPU.
2889 *
2890 * Let's wait for completion using a waitqueue. As this
2891 * may lead to the thundering herd problem, use a custom
2892 * wake function which matches @work along with exclusive
2893 * wait and wakeup.
2894 */
2895 if (unlikely(ret == -ENOENT)) {
2896 struct cwt_wait cwait;
2897
2898 init_wait(&cwait.wait);
2899 cwait.wait.func = cwt_wakefn;
2900 cwait.work = work;
2901
2902 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2903 TASK_UNINTERRUPTIBLE);
2904 if (work_is_canceling(work))
2905 schedule();
2906 finish_wait(&cancel_waitq, &cwait.wait);
2907 }
2908 } while (unlikely(ret < 0));
2909
2910 /* tell other tasks trying to grab @work to back off */
2911 mark_work_canceling(work);
2912 local_irq_restore(flags);
2913
2914 flush_work(work);
2915 clear_work_data(work);
2916
2917 /*
2918 * Paired with prepare_to_wait() above so that either
2919 * waitqueue_active() is visible here or !work_is_canceling() is
2920 * visible there.
2921 */
2922 smp_mb();
2923 if (waitqueue_active(&cancel_waitq))
2924 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2925
2926 return ret;
2927 }
2928
2929 /**
2930 * cancel_work_sync - cancel a work and wait for it to finish
2931 * @work: the work to cancel
2932 *
2933 * Cancel @work and wait for its execution to finish. This function
2934 * can be used even if the work re-queues itself or migrates to
2935 * another workqueue. On return from this function, @work is
2936 * guaranteed to be not pending or executing on any CPU.
2937 *
2938 * cancel_work_sync(&delayed_work->work) must not be used for
2939 * delayed_work's. Use cancel_delayed_work_sync() instead.
2940 *
2941 * The caller must ensure that the workqueue on which @work was last
2942 * queued can't be destroyed before this function returns.
2943 *
2944 * Return:
2945 * %true if @work was pending, %false otherwise.
2946 */
2947 bool cancel_work_sync(struct work_struct *work)
2948 {
2949 return __cancel_work_timer(work, false);
2950 }
2951 EXPORT_SYMBOL_GPL(cancel_work_sync);
2952
2953 /**
2954 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2955 * @dwork: the delayed work to flush
2956 *
2957 * Delayed timer is cancelled and the pending work is queued for
2958 * immediate execution. Like flush_work(), this function only
2959 * considers the last queueing instance of @dwork.
2960 *
2961 * Return:
2962 * %true if flush_work() waited for the work to finish execution,
2963 * %false if it was already idle.
2964 */
2965 bool flush_delayed_work(struct delayed_work *dwork)
2966 {
2967 local_irq_disable();
2968 if (del_timer_sync(&dwork->timer))
2969 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2970 local_irq_enable();
2971 return flush_work(&dwork->work);
2972 }
2973 EXPORT_SYMBOL(flush_delayed_work);
2974
2975 /**
2976 * cancel_delayed_work - cancel a delayed work
2977 * @dwork: delayed_work to cancel
2978 *
2979 * Kill off a pending delayed_work.
2980 *
2981 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2982 * pending.
2983 *
2984 * Note:
2985 * The work callback function may still be running on return, unless
2986 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2987 * use cancel_delayed_work_sync() to wait on it.
2988 *
2989 * This function is safe to call from any context including IRQ handler.
2990 */
2991 bool cancel_delayed_work(struct delayed_work *dwork)
2992 {
2993 unsigned long flags;
2994 int ret;
2995
2996 do {
2997 ret = try_to_grab_pending(&dwork->work, true, &flags);
2998 } while (unlikely(ret == -EAGAIN));
2999
3000 if (unlikely(ret < 0))
3001 return false;
3002
3003 set_work_pool_and_clear_pending(&dwork->work,
3004 get_work_pool_id(&dwork->work));
3005 local_irq_restore(flags);
3006 return ret;
3007 }
3008 EXPORT_SYMBOL(cancel_delayed_work);
3009
3010 /**
3011 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3012 * @dwork: the delayed work cancel
3013 *
3014 * This is cancel_work_sync() for delayed works.
3015 *
3016 * Return:
3017 * %true if @dwork was pending, %false otherwise.
3018 */
3019 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3020 {
3021 return __cancel_work_timer(&dwork->work, true);
3022 }
3023 EXPORT_SYMBOL(cancel_delayed_work_sync);
3024
3025 /**
3026 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3027 * @func: the function to call
3028 *
3029 * schedule_on_each_cpu() executes @func on each online CPU using the
3030 * system workqueue and blocks until all CPUs have completed.
3031 * schedule_on_each_cpu() is very slow.
3032 *
3033 * Return:
3034 * 0 on success, -errno on failure.
3035 */
3036 int schedule_on_each_cpu(work_func_t func)
3037 {
3038 int cpu;
3039 struct work_struct __percpu *works;
3040
3041 works = alloc_percpu(struct work_struct);
3042 if (!works)
3043 return -ENOMEM;
3044
3045 get_online_cpus();
3046
3047 for_each_online_cpu(cpu) {
3048 struct work_struct *work = per_cpu_ptr(works, cpu);
3049
3050 INIT_WORK(work, func);
3051 schedule_work_on(cpu, work);
3052 }
3053
3054 for_each_online_cpu(cpu)
3055 flush_work(per_cpu_ptr(works, cpu));
3056
3057 put_online_cpus();
3058 free_percpu(works);
3059 return 0;
3060 }
3061
3062 /**
3063 * execute_in_process_context - reliably execute the routine with user context
3064 * @fn: the function to execute
3065 * @ew: guaranteed storage for the execute work structure (must
3066 * be available when the work executes)
3067 *
3068 * Executes the function immediately if process context is available,
3069 * otherwise schedules the function for delayed execution.
3070 *
3071 * Return: 0 - function was executed
3072 * 1 - function was scheduled for execution
3073 */
3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3075 {
3076 if (!in_interrupt()) {
3077 fn(&ew->work);
3078 return 0;
3079 }
3080
3081 INIT_WORK(&ew->work, fn);
3082 schedule_work(&ew->work);
3083
3084 return 1;
3085 }
3086 EXPORT_SYMBOL_GPL(execute_in_process_context);
3087
3088 /**
3089 * free_workqueue_attrs - free a workqueue_attrs
3090 * @attrs: workqueue_attrs to free
3091 *
3092 * Undo alloc_workqueue_attrs().
3093 */
3094 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3095 {
3096 if (attrs) {
3097 free_cpumask_var(attrs->cpumask);
3098 kfree(attrs);
3099 }
3100 }
3101
3102 /**
3103 * alloc_workqueue_attrs - allocate a workqueue_attrs
3104 * @gfp_mask: allocation mask to use
3105 *
3106 * Allocate a new workqueue_attrs, initialize with default settings and
3107 * return it.
3108 *
3109 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3110 */
3111 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3112 {
3113 struct workqueue_attrs *attrs;
3114
3115 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3116 if (!attrs)
3117 goto fail;
3118 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3119 goto fail;
3120
3121 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3122 return attrs;
3123 fail:
3124 free_workqueue_attrs(attrs);
3125 return NULL;
3126 }
3127
3128 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3129 const struct workqueue_attrs *from)
3130 {
3131 to->nice = from->nice;
3132 cpumask_copy(to->cpumask, from->cpumask);
3133 /*
3134 * Unlike hash and equality test, this function doesn't ignore
3135 * ->no_numa as it is used for both pool and wq attrs. Instead,
3136 * get_unbound_pool() explicitly clears ->no_numa after copying.
3137 */
3138 to->no_numa = from->no_numa;
3139 }
3140
3141 /* hash value of the content of @attr */
3142 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3143 {
3144 u32 hash = 0;
3145
3146 hash = jhash_1word(attrs->nice, hash);
3147 hash = jhash(cpumask_bits(attrs->cpumask),
3148 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3149 return hash;
3150 }
3151
3152 /* content equality test */
3153 static bool wqattrs_equal(const struct workqueue_attrs *a,
3154 const struct workqueue_attrs *b)
3155 {
3156 if (a->nice != b->nice)
3157 return false;
3158 if (!cpumask_equal(a->cpumask, b->cpumask))
3159 return false;
3160 return true;
3161 }
3162
3163 /**
3164 * init_worker_pool - initialize a newly zalloc'd worker_pool
3165 * @pool: worker_pool to initialize
3166 *
3167 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3168 *
3169 * Return: 0 on success, -errno on failure. Even on failure, all fields
3170 * inside @pool proper are initialized and put_unbound_pool() can be called
3171 * on @pool safely to release it.
3172 */
3173 static int init_worker_pool(struct worker_pool *pool)
3174 {
3175 spin_lock_init(&pool->lock);
3176 pool->id = -1;
3177 pool->cpu = -1;
3178 pool->node = NUMA_NO_NODE;
3179 pool->flags |= POOL_DISASSOCIATED;
3180 pool->watchdog_ts = jiffies;
3181 INIT_LIST_HEAD(&pool->worklist);
3182 INIT_LIST_HEAD(&pool->idle_list);
3183 hash_init(pool->busy_hash);
3184
3185 init_timer_deferrable(&pool->idle_timer);
3186 pool->idle_timer.function = idle_worker_timeout;
3187 pool->idle_timer.data = (unsigned long)pool;
3188
3189 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3190 (unsigned long)pool);
3191
3192 mutex_init(&pool->manager_arb);
3193 mutex_init(&pool->attach_mutex);
3194 INIT_LIST_HEAD(&pool->workers);
3195
3196 ida_init(&pool->worker_ida);
3197 INIT_HLIST_NODE(&pool->hash_node);
3198 pool->refcnt = 1;
3199
3200 /* shouldn't fail above this point */
3201 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3202 if (!pool->attrs)
3203 return -ENOMEM;
3204 return 0;
3205 }
3206
3207 static void rcu_free_wq(struct rcu_head *rcu)
3208 {
3209 struct workqueue_struct *wq =
3210 container_of(rcu, struct workqueue_struct, rcu);
3211
3212 if (!(wq->flags & WQ_UNBOUND))
3213 free_percpu(wq->cpu_pwqs);
3214 else
3215 free_workqueue_attrs(wq->unbound_attrs);
3216
3217 kfree(wq->rescuer);
3218 kfree(wq);
3219 }
3220
3221 static void rcu_free_pool(struct rcu_head *rcu)
3222 {
3223 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3224
3225 ida_destroy(&pool->worker_ida);
3226 free_workqueue_attrs(pool->attrs);
3227 kfree(pool);
3228 }
3229
3230 /**
3231 * put_unbound_pool - put a worker_pool
3232 * @pool: worker_pool to put
3233 *
3234 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3235 * safe manner. get_unbound_pool() calls this function on its failure path
3236 * and this function should be able to release pools which went through,
3237 * successfully or not, init_worker_pool().
3238 *
3239 * Should be called with wq_pool_mutex held.
3240 */
3241 static void put_unbound_pool(struct worker_pool *pool)
3242 {
3243 DECLARE_COMPLETION_ONSTACK(detach_completion);
3244 struct worker *worker;
3245
3246 lockdep_assert_held(&wq_pool_mutex);
3247
3248 if (--pool->refcnt)
3249 return;
3250
3251 /* sanity checks */
3252 if (WARN_ON(!(pool->cpu < 0)) ||
3253 WARN_ON(!list_empty(&pool->worklist)))
3254 return;
3255
3256 /* release id and unhash */
3257 if (pool->id >= 0)
3258 idr_remove(&worker_pool_idr, pool->id);
3259 hash_del(&pool->hash_node);
3260
3261 /*
3262 * Become the manager and destroy all workers. Grabbing
3263 * manager_arb prevents @pool's workers from blocking on
3264 * attach_mutex.
3265 */
3266 mutex_lock(&pool->manager_arb);
3267
3268 spin_lock_irq(&pool->lock);
3269 while ((worker = first_idle_worker(pool)))
3270 destroy_worker(worker);
3271 WARN_ON(pool->nr_workers || pool->nr_idle);
3272 spin_unlock_irq(&pool->lock);
3273
3274 mutex_lock(&pool->attach_mutex);
3275 if (!list_empty(&pool->workers))
3276 pool->detach_completion = &detach_completion;
3277 mutex_unlock(&pool->attach_mutex);
3278
3279 if (pool->detach_completion)
3280 wait_for_completion(pool->detach_completion);
3281
3282 mutex_unlock(&pool->manager_arb);
3283
3284 /* shut down the timers */
3285 del_timer_sync(&pool->idle_timer);
3286 del_timer_sync(&pool->mayday_timer);
3287
3288 /* sched-RCU protected to allow dereferences from get_work_pool() */
3289 call_rcu_sched(&pool->rcu, rcu_free_pool);
3290 }
3291
3292 /**
3293 * get_unbound_pool - get a worker_pool with the specified attributes
3294 * @attrs: the attributes of the worker_pool to get
3295 *
3296 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3297 * reference count and return it. If there already is a matching
3298 * worker_pool, it will be used; otherwise, this function attempts to
3299 * create a new one.
3300 *
3301 * Should be called with wq_pool_mutex held.
3302 *
3303 * Return: On success, a worker_pool with the same attributes as @attrs.
3304 * On failure, %NULL.
3305 */
3306 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3307 {
3308 u32 hash = wqattrs_hash(attrs);
3309 struct worker_pool *pool;
3310 int node;
3311 int target_node = NUMA_NO_NODE;
3312
3313 lockdep_assert_held(&wq_pool_mutex);
3314
3315 /* do we already have a matching pool? */
3316 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3317 if (wqattrs_equal(pool->attrs, attrs)) {
3318 pool->refcnt++;
3319 return pool;
3320 }
3321 }
3322
3323 /* if cpumask is contained inside a NUMA node, we belong to that node */
3324 if (wq_numa_enabled) {
3325 for_each_node(node) {
3326 if (cpumask_subset(attrs->cpumask,
3327 wq_numa_possible_cpumask[node])) {
3328 target_node = node;
3329 break;
3330 }
3331 }
3332 }
3333
3334 /* nope, create a new one */
3335 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3336 if (!pool || init_worker_pool(pool) < 0)
3337 goto fail;
3338
3339 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3340 copy_workqueue_attrs(pool->attrs, attrs);
3341 pool->node = target_node;
3342
3343 /*
3344 * no_numa isn't a worker_pool attribute, always clear it. See
3345 * 'struct workqueue_attrs' comments for detail.
3346 */
3347 pool->attrs->no_numa = false;
3348
3349 if (worker_pool_assign_id(pool) < 0)
3350 goto fail;
3351
3352 /* create and start the initial worker */
3353 if (!create_worker(pool))
3354 goto fail;
3355
3356 /* install */
3357 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3358
3359 return pool;
3360 fail:
3361 if (pool)
3362 put_unbound_pool(pool);
3363 return NULL;
3364 }
3365
3366 static void rcu_free_pwq(struct rcu_head *rcu)
3367 {
3368 kmem_cache_free(pwq_cache,
3369 container_of(rcu, struct pool_workqueue, rcu));
3370 }
3371
3372 /*
3373 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3374 * and needs to be destroyed.
3375 */
3376 static void pwq_unbound_release_workfn(struct work_struct *work)
3377 {
3378 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3379 unbound_release_work);
3380 struct workqueue_struct *wq = pwq->wq;
3381 struct worker_pool *pool = pwq->pool;
3382 bool is_last;
3383
3384 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3385 return;
3386
3387 mutex_lock(&wq->mutex);
3388 list_del_rcu(&pwq->pwqs_node);
3389 is_last = list_empty(&wq->pwqs);
3390 mutex_unlock(&wq->mutex);
3391
3392 mutex_lock(&wq_pool_mutex);
3393 put_unbound_pool(pool);
3394 mutex_unlock(&wq_pool_mutex);
3395
3396 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3397
3398 /*
3399 * If we're the last pwq going away, @wq is already dead and no one
3400 * is gonna access it anymore. Schedule RCU free.
3401 */
3402 if (is_last)
3403 call_rcu_sched(&wq->rcu, rcu_free_wq);
3404 }
3405
3406 /**
3407 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3408 * @pwq: target pool_workqueue
3409 *
3410 * If @pwq isn't freezing, set @pwq->max_active to the associated
3411 * workqueue's saved_max_active and activate delayed work items
3412 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3413 */
3414 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3415 {
3416 struct workqueue_struct *wq = pwq->wq;
3417 bool freezable = wq->flags & WQ_FREEZABLE;
3418
3419 /* for @wq->saved_max_active */
3420 lockdep_assert_held(&wq->mutex);
3421
3422 /* fast exit for non-freezable wqs */
3423 if (!freezable && pwq->max_active == wq->saved_max_active)
3424 return;
3425
3426 spin_lock_irq(&pwq->pool->lock);
3427
3428 /*
3429 * During [un]freezing, the caller is responsible for ensuring that
3430 * this function is called at least once after @workqueue_freezing
3431 * is updated and visible.
3432 */
3433 if (!freezable || !workqueue_freezing) {
3434 pwq->max_active = wq->saved_max_active;
3435
3436 while (!list_empty(&pwq->delayed_works) &&
3437 pwq->nr_active < pwq->max_active)
3438 pwq_activate_first_delayed(pwq);
3439
3440 /*
3441 * Need to kick a worker after thawed or an unbound wq's
3442 * max_active is bumped. It's a slow path. Do it always.
3443 */
3444 wake_up_worker(pwq->pool);
3445 } else {
3446 pwq->max_active = 0;
3447 }
3448
3449 spin_unlock_irq(&pwq->pool->lock);
3450 }
3451
3452 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3453 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3454 struct worker_pool *pool)
3455 {
3456 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3457
3458 memset(pwq, 0, sizeof(*pwq));
3459
3460 pwq->pool = pool;
3461 pwq->wq = wq;
3462 pwq->flush_color = -1;
3463 pwq->refcnt = 1;
3464 INIT_LIST_HEAD(&pwq->delayed_works);
3465 INIT_LIST_HEAD(&pwq->pwqs_node);
3466 INIT_LIST_HEAD(&pwq->mayday_node);
3467 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3468 }
3469
3470 /* sync @pwq with the current state of its associated wq and link it */
3471 static void link_pwq(struct pool_workqueue *pwq)
3472 {
3473 struct workqueue_struct *wq = pwq->wq;
3474
3475 lockdep_assert_held(&wq->mutex);
3476
3477 /* may be called multiple times, ignore if already linked */
3478 if (!list_empty(&pwq->pwqs_node))
3479 return;
3480
3481 /* set the matching work_color */
3482 pwq->work_color = wq->work_color;
3483
3484 /* sync max_active to the current setting */
3485 pwq_adjust_max_active(pwq);
3486
3487 /* link in @pwq */
3488 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3489 }
3490
3491 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3492 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3493 const struct workqueue_attrs *attrs)
3494 {
3495 struct worker_pool *pool;
3496 struct pool_workqueue *pwq;
3497
3498 lockdep_assert_held(&wq_pool_mutex);
3499
3500 pool = get_unbound_pool(attrs);
3501 if (!pool)
3502 return NULL;
3503
3504 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3505 if (!pwq) {
3506 put_unbound_pool(pool);
3507 return NULL;
3508 }
3509
3510 init_pwq(pwq, wq, pool);
3511 return pwq;
3512 }
3513
3514 /**
3515 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3516 * @attrs: the wq_attrs of the default pwq of the target workqueue
3517 * @node: the target NUMA node
3518 * @cpu_going_down: if >= 0, the CPU to consider as offline
3519 * @cpumask: outarg, the resulting cpumask
3520 *
3521 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3522 * @cpu_going_down is >= 0, that cpu is considered offline during
3523 * calculation. The result is stored in @cpumask.
3524 *
3525 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3526 * enabled and @node has online CPUs requested by @attrs, the returned
3527 * cpumask is the intersection of the possible CPUs of @node and
3528 * @attrs->cpumask.
3529 *
3530 * The caller is responsible for ensuring that the cpumask of @node stays
3531 * stable.
3532 *
3533 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3534 * %false if equal.
3535 */
3536 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3537 int cpu_going_down, cpumask_t *cpumask)
3538 {
3539 if (!wq_numa_enabled || attrs->no_numa)
3540 goto use_dfl;
3541
3542 /* does @node have any online CPUs @attrs wants? */
3543 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3544 if (cpu_going_down >= 0)
3545 cpumask_clear_cpu(cpu_going_down, cpumask);
3546
3547 if (cpumask_empty(cpumask))
3548 goto use_dfl;
3549
3550 /* yeap, return possible CPUs in @node that @attrs wants */
3551 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3552 return !cpumask_equal(cpumask, attrs->cpumask);
3553
3554 use_dfl:
3555 cpumask_copy(cpumask, attrs->cpumask);
3556 return false;
3557 }
3558
3559 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3560 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3561 int node,
3562 struct pool_workqueue *pwq)
3563 {
3564 struct pool_workqueue *old_pwq;
3565
3566 lockdep_assert_held(&wq_pool_mutex);
3567 lockdep_assert_held(&wq->mutex);
3568
3569 /* link_pwq() can handle duplicate calls */
3570 link_pwq(pwq);
3571
3572 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3573 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3574 return old_pwq;
3575 }
3576
3577 /* context to store the prepared attrs & pwqs before applying */
3578 struct apply_wqattrs_ctx {
3579 struct workqueue_struct *wq; /* target workqueue */
3580 struct workqueue_attrs *attrs; /* attrs to apply */
3581 struct list_head list; /* queued for batching commit */
3582 struct pool_workqueue *dfl_pwq;
3583 struct pool_workqueue *pwq_tbl[];
3584 };
3585
3586 /* free the resources after success or abort */
3587 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3588 {
3589 if (ctx) {
3590 int node;
3591
3592 for_each_node(node)
3593 put_pwq_unlocked(ctx->pwq_tbl[node]);
3594 put_pwq_unlocked(ctx->dfl_pwq);
3595
3596 free_workqueue_attrs(ctx->attrs);
3597
3598 kfree(ctx);
3599 }
3600 }
3601
3602 /* allocate the attrs and pwqs for later installation */
3603 static struct apply_wqattrs_ctx *
3604 apply_wqattrs_prepare(struct workqueue_struct *wq,
3605 const struct workqueue_attrs *attrs)
3606 {
3607 struct apply_wqattrs_ctx *ctx;
3608 struct workqueue_attrs *new_attrs, *tmp_attrs;
3609 int node;
3610
3611 lockdep_assert_held(&wq_pool_mutex);
3612
3613 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3614 GFP_KERNEL);
3615
3616 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3617 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3618 if (!ctx || !new_attrs || !tmp_attrs)
3619 goto out_free;
3620
3621 /*
3622 * Calculate the attrs of the default pwq.
3623 * If the user configured cpumask doesn't overlap with the
3624 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3625 */
3626 copy_workqueue_attrs(new_attrs, attrs);
3627 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3628 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3629 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3630
3631 /*
3632 * We may create multiple pwqs with differing cpumasks. Make a
3633 * copy of @new_attrs which will be modified and used to obtain
3634 * pools.
3635 */
3636 copy_workqueue_attrs(tmp_attrs, new_attrs);
3637
3638 /*
3639 * If something goes wrong during CPU up/down, we'll fall back to
3640 * the default pwq covering whole @attrs->cpumask. Always create
3641 * it even if we don't use it immediately.
3642 */
3643 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3644 if (!ctx->dfl_pwq)
3645 goto out_free;
3646
3647 for_each_node(node) {
3648 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3649 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3650 if (!ctx->pwq_tbl[node])
3651 goto out_free;
3652 } else {
3653 ctx->dfl_pwq->refcnt++;
3654 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3655 }
3656 }
3657
3658 /* save the user configured attrs and sanitize it. */
3659 copy_workqueue_attrs(new_attrs, attrs);
3660 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3661 ctx->attrs = new_attrs;
3662
3663 ctx->wq = wq;
3664 free_workqueue_attrs(tmp_attrs);
3665 return ctx;
3666
3667 out_free:
3668 free_workqueue_attrs(tmp_attrs);
3669 free_workqueue_attrs(new_attrs);
3670 apply_wqattrs_cleanup(ctx);
3671 return NULL;
3672 }
3673
3674 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3675 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3676 {
3677 int node;
3678
3679 /* all pwqs have been created successfully, let's install'em */
3680 mutex_lock(&ctx->wq->mutex);
3681
3682 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3683
3684 /* save the previous pwq and install the new one */
3685 for_each_node(node)
3686 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3687 ctx->pwq_tbl[node]);
3688
3689 /* @dfl_pwq might not have been used, ensure it's linked */
3690 link_pwq(ctx->dfl_pwq);
3691 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3692
3693 mutex_unlock(&ctx->wq->mutex);
3694 }
3695
3696 static void apply_wqattrs_lock(void)
3697 {
3698 /* CPUs should stay stable across pwq creations and installations */
3699 get_online_cpus();
3700 mutex_lock(&wq_pool_mutex);
3701 }
3702
3703 static void apply_wqattrs_unlock(void)
3704 {
3705 mutex_unlock(&wq_pool_mutex);
3706 put_online_cpus();
3707 }
3708
3709 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3710 const struct workqueue_attrs *attrs)
3711 {
3712 struct apply_wqattrs_ctx *ctx;
3713
3714 /* only unbound workqueues can change attributes */
3715 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3716 return -EINVAL;
3717
3718 /* creating multiple pwqs breaks ordering guarantee */
3719 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3720 return -EINVAL;
3721
3722 ctx = apply_wqattrs_prepare(wq, attrs);
3723 if (!ctx)
3724 return -ENOMEM;
3725
3726 /* the ctx has been prepared successfully, let's commit it */
3727 apply_wqattrs_commit(ctx);
3728 apply_wqattrs_cleanup(ctx);
3729
3730 return 0;
3731 }
3732
3733 /**
3734 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3735 * @wq: the target workqueue
3736 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3737 *
3738 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3739 * machines, this function maps a separate pwq to each NUMA node with
3740 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3741 * NUMA node it was issued on. Older pwqs are released as in-flight work
3742 * items finish. Note that a work item which repeatedly requeues itself
3743 * back-to-back will stay on its current pwq.
3744 *
3745 * Performs GFP_KERNEL allocations.
3746 *
3747 * Return: 0 on success and -errno on failure.
3748 */
3749 int apply_workqueue_attrs(struct workqueue_struct *wq,
3750 const struct workqueue_attrs *attrs)
3751 {
3752 int ret;
3753
3754 apply_wqattrs_lock();
3755 ret = apply_workqueue_attrs_locked(wq, attrs);
3756 apply_wqattrs_unlock();
3757
3758 return ret;
3759 }
3760
3761 /**
3762 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3763 * @wq: the target workqueue
3764 * @cpu: the CPU coming up or going down
3765 * @online: whether @cpu is coming up or going down
3766 *
3767 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3768 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3769 * @wq accordingly.
3770 *
3771 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3772 * falls back to @wq->dfl_pwq which may not be optimal but is always
3773 * correct.
3774 *
3775 * Note that when the last allowed CPU of a NUMA node goes offline for a
3776 * workqueue with a cpumask spanning multiple nodes, the workers which were
3777 * already executing the work items for the workqueue will lose their CPU
3778 * affinity and may execute on any CPU. This is similar to how per-cpu
3779 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3780 * affinity, it's the user's responsibility to flush the work item from
3781 * CPU_DOWN_PREPARE.
3782 */
3783 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3784 bool online)
3785 {
3786 int node = cpu_to_node(cpu);
3787 int cpu_off = online ? -1 : cpu;
3788 struct pool_workqueue *old_pwq = NULL, *pwq;
3789 struct workqueue_attrs *target_attrs;
3790 cpumask_t *cpumask;
3791
3792 lockdep_assert_held(&wq_pool_mutex);
3793
3794 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3795 wq->unbound_attrs->no_numa)
3796 return;
3797
3798 /*
3799 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3800 * Let's use a preallocated one. The following buf is protected by
3801 * CPU hotplug exclusion.
3802 */
3803 target_attrs = wq_update_unbound_numa_attrs_buf;
3804 cpumask = target_attrs->cpumask;
3805
3806 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3807 pwq = unbound_pwq_by_node(wq, node);
3808
3809 /*
3810 * Let's determine what needs to be done. If the target cpumask is
3811 * different from the default pwq's, we need to compare it to @pwq's
3812 * and create a new one if they don't match. If the target cpumask
3813 * equals the default pwq's, the default pwq should be used.
3814 */
3815 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3816 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3817 return;
3818 } else {
3819 goto use_dfl_pwq;
3820 }
3821
3822 /* create a new pwq */
3823 pwq = alloc_unbound_pwq(wq, target_attrs);
3824 if (!pwq) {
3825 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3826 wq->name);
3827 goto use_dfl_pwq;
3828 }
3829
3830 /* Install the new pwq. */
3831 mutex_lock(&wq->mutex);
3832 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3833 goto out_unlock;
3834
3835 use_dfl_pwq:
3836 mutex_lock(&wq->mutex);
3837 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3838 get_pwq(wq->dfl_pwq);
3839 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3840 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3841 out_unlock:
3842 mutex_unlock(&wq->mutex);
3843 put_pwq_unlocked(old_pwq);
3844 }
3845
3846 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3847 {
3848 bool highpri = wq->flags & WQ_HIGHPRI;
3849 int cpu, ret;
3850
3851 if (!(wq->flags & WQ_UNBOUND)) {
3852 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3853 if (!wq->cpu_pwqs)
3854 return -ENOMEM;
3855
3856 for_each_possible_cpu(cpu) {
3857 struct pool_workqueue *pwq =
3858 per_cpu_ptr(wq->cpu_pwqs, cpu);
3859 struct worker_pool *cpu_pools =
3860 per_cpu(cpu_worker_pools, cpu);
3861
3862 init_pwq(pwq, wq, &cpu_pools[highpri]);
3863
3864 mutex_lock(&wq->mutex);
3865 link_pwq(pwq);
3866 mutex_unlock(&wq->mutex);
3867 }
3868 return 0;
3869 } else if (wq->flags & __WQ_ORDERED) {
3870 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3871 /* there should only be single pwq for ordering guarantee */
3872 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3873 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3874 "ordering guarantee broken for workqueue %s\n", wq->name);
3875 return ret;
3876 } else {
3877 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3878 }
3879 }
3880
3881 static int wq_clamp_max_active(int max_active, unsigned int flags,
3882 const char *name)
3883 {
3884 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3885
3886 if (max_active < 1 || max_active > lim)
3887 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3888 max_active, name, 1, lim);
3889
3890 return clamp_val(max_active, 1, lim);
3891 }
3892
3893 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3894 unsigned int flags,
3895 int max_active,
3896 struct lock_class_key *key,
3897 const char *lock_name, ...)
3898 {
3899 size_t tbl_size = 0;
3900 va_list args;
3901 struct workqueue_struct *wq;
3902 struct pool_workqueue *pwq;
3903
3904 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3905 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3906 flags |= WQ_UNBOUND;
3907
3908 /* allocate wq and format name */
3909 if (flags & WQ_UNBOUND)
3910 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3911
3912 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3913 if (!wq)
3914 return NULL;
3915
3916 if (flags & WQ_UNBOUND) {
3917 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3918 if (!wq->unbound_attrs)
3919 goto err_free_wq;
3920 }
3921
3922 va_start(args, lock_name);
3923 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3924 va_end(args);
3925
3926 max_active = max_active ?: WQ_DFL_ACTIVE;
3927 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3928
3929 /* init wq */
3930 wq->flags = flags;
3931 wq->saved_max_active = max_active;
3932 mutex_init(&wq->mutex);
3933 atomic_set(&wq->nr_pwqs_to_flush, 0);
3934 INIT_LIST_HEAD(&wq->pwqs);
3935 INIT_LIST_HEAD(&wq->flusher_queue);
3936 INIT_LIST_HEAD(&wq->flusher_overflow);
3937 INIT_LIST_HEAD(&wq->maydays);
3938
3939 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3940 INIT_LIST_HEAD(&wq->list);
3941
3942 if (alloc_and_link_pwqs(wq) < 0)
3943 goto err_free_wq;
3944
3945 /*
3946 * Workqueues which may be used during memory reclaim should
3947 * have a rescuer to guarantee forward progress.
3948 */
3949 if (flags & WQ_MEM_RECLAIM) {
3950 struct worker *rescuer;
3951
3952 rescuer = alloc_worker(NUMA_NO_NODE);
3953 if (!rescuer)
3954 goto err_destroy;
3955
3956 rescuer->rescue_wq = wq;
3957 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3958 wq->name);
3959 if (IS_ERR(rescuer->task)) {
3960 kfree(rescuer);
3961 goto err_destroy;
3962 }
3963
3964 wq->rescuer = rescuer;
3965 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3966 wake_up_process(rescuer->task);
3967 }
3968
3969 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3970 goto err_destroy;
3971
3972 /*
3973 * wq_pool_mutex protects global freeze state and workqueues list.
3974 * Grab it, adjust max_active and add the new @wq to workqueues
3975 * list.
3976 */
3977 mutex_lock(&wq_pool_mutex);
3978
3979 mutex_lock(&wq->mutex);
3980 for_each_pwq(pwq, wq)
3981 pwq_adjust_max_active(pwq);
3982 mutex_unlock(&wq->mutex);
3983
3984 list_add_tail_rcu(&wq->list, &workqueues);
3985
3986 mutex_unlock(&wq_pool_mutex);
3987
3988 return wq;
3989
3990 err_free_wq:
3991 free_workqueue_attrs(wq->unbound_attrs);
3992 kfree(wq);
3993 return NULL;
3994 err_destroy:
3995 destroy_workqueue(wq);
3996 return NULL;
3997 }
3998 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3999
4000 /**
4001 * destroy_workqueue - safely terminate a workqueue
4002 * @wq: target workqueue
4003 *
4004 * Safely destroy a workqueue. All work currently pending will be done first.
4005 */
4006 void destroy_workqueue(struct workqueue_struct *wq)
4007 {
4008 struct pool_workqueue *pwq;
4009 int node;
4010
4011 /* drain it before proceeding with destruction */
4012 drain_workqueue(wq);
4013
4014 /* sanity checks */
4015 mutex_lock(&wq->mutex);
4016 for_each_pwq(pwq, wq) {
4017 int i;
4018
4019 for (i = 0; i < WORK_NR_COLORS; i++) {
4020 if (WARN_ON(pwq->nr_in_flight[i])) {
4021 mutex_unlock(&wq->mutex);
4022 return;
4023 }
4024 }
4025
4026 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4027 WARN_ON(pwq->nr_active) ||
4028 WARN_ON(!list_empty(&pwq->delayed_works))) {
4029 mutex_unlock(&wq->mutex);
4030 return;
4031 }
4032 }
4033 mutex_unlock(&wq->mutex);
4034
4035 /*
4036 * wq list is used to freeze wq, remove from list after
4037 * flushing is complete in case freeze races us.
4038 */
4039 mutex_lock(&wq_pool_mutex);
4040 list_del_rcu(&wq->list);
4041 mutex_unlock(&wq_pool_mutex);
4042
4043 workqueue_sysfs_unregister(wq);
4044
4045 if (wq->rescuer)
4046 kthread_stop(wq->rescuer->task);
4047
4048 if (!(wq->flags & WQ_UNBOUND)) {
4049 /*
4050 * The base ref is never dropped on per-cpu pwqs. Directly
4051 * schedule RCU free.
4052 */
4053 call_rcu_sched(&wq->rcu, rcu_free_wq);
4054 } else {
4055 /*
4056 * We're the sole accessor of @wq at this point. Directly
4057 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4058 * @wq will be freed when the last pwq is released.
4059 */
4060 for_each_node(node) {
4061 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4062 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4063 put_pwq_unlocked(pwq);
4064 }
4065
4066 /*
4067 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4068 * put. Don't access it afterwards.
4069 */
4070 pwq = wq->dfl_pwq;
4071 wq->dfl_pwq = NULL;
4072 put_pwq_unlocked(pwq);
4073 }
4074 }
4075 EXPORT_SYMBOL_GPL(destroy_workqueue);
4076
4077 /**
4078 * workqueue_set_max_active - adjust max_active of a workqueue
4079 * @wq: target workqueue
4080 * @max_active: new max_active value.
4081 *
4082 * Set max_active of @wq to @max_active.
4083 *
4084 * CONTEXT:
4085 * Don't call from IRQ context.
4086 */
4087 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4088 {
4089 struct pool_workqueue *pwq;
4090
4091 /* disallow meddling with max_active for ordered workqueues */
4092 if (WARN_ON(wq->flags & __WQ_ORDERED))
4093 return;
4094
4095 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4096
4097 mutex_lock(&wq->mutex);
4098
4099 wq->saved_max_active = max_active;
4100
4101 for_each_pwq(pwq, wq)
4102 pwq_adjust_max_active(pwq);
4103
4104 mutex_unlock(&wq->mutex);
4105 }
4106 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4107
4108 /**
4109 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4110 *
4111 * Determine whether %current is a workqueue rescuer. Can be used from
4112 * work functions to determine whether it's being run off the rescuer task.
4113 *
4114 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4115 */
4116 bool current_is_workqueue_rescuer(void)
4117 {
4118 struct worker *worker = current_wq_worker();
4119
4120 return worker && worker->rescue_wq;
4121 }
4122
4123 /**
4124 * workqueue_congested - test whether a workqueue is congested
4125 * @cpu: CPU in question
4126 * @wq: target workqueue
4127 *
4128 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4129 * no synchronization around this function and the test result is
4130 * unreliable and only useful as advisory hints or for debugging.
4131 *
4132 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4133 * Note that both per-cpu and unbound workqueues may be associated with
4134 * multiple pool_workqueues which have separate congested states. A
4135 * workqueue being congested on one CPU doesn't mean the workqueue is also
4136 * contested on other CPUs / NUMA nodes.
4137 *
4138 * Return:
4139 * %true if congested, %false otherwise.
4140 */
4141 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4142 {
4143 struct pool_workqueue *pwq;
4144 bool ret;
4145
4146 rcu_read_lock_sched();
4147
4148 if (cpu == WORK_CPU_UNBOUND)
4149 cpu = smp_processor_id();
4150
4151 if (!(wq->flags & WQ_UNBOUND))
4152 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4153 else
4154 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4155
4156 ret = !list_empty(&pwq->delayed_works);
4157 rcu_read_unlock_sched();
4158
4159 return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(workqueue_congested);
4162
4163 /**
4164 * work_busy - test whether a work is currently pending or running
4165 * @work: the work to be tested
4166 *
4167 * Test whether @work is currently pending or running. There is no
4168 * synchronization around this function and the test result is
4169 * unreliable and only useful as advisory hints or for debugging.
4170 *
4171 * Return:
4172 * OR'd bitmask of WORK_BUSY_* bits.
4173 */
4174 unsigned int work_busy(struct work_struct *work)
4175 {
4176 struct worker_pool *pool;
4177 unsigned long flags;
4178 unsigned int ret = 0;
4179
4180 if (work_pending(work))
4181 ret |= WORK_BUSY_PENDING;
4182
4183 local_irq_save(flags);
4184 pool = get_work_pool(work);
4185 if (pool) {
4186 spin_lock(&pool->lock);
4187 if (find_worker_executing_work(pool, work))
4188 ret |= WORK_BUSY_RUNNING;
4189 spin_unlock(&pool->lock);
4190 }
4191 local_irq_restore(flags);
4192
4193 return ret;
4194 }
4195 EXPORT_SYMBOL_GPL(work_busy);
4196
4197 /**
4198 * set_worker_desc - set description for the current work item
4199 * @fmt: printf-style format string
4200 * @...: arguments for the format string
4201 *
4202 * This function can be called by a running work function to describe what
4203 * the work item is about. If the worker task gets dumped, this
4204 * information will be printed out together to help debugging. The
4205 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4206 */
4207 void set_worker_desc(const char *fmt, ...)
4208 {
4209 struct worker *worker = current_wq_worker();
4210 va_list args;
4211
4212 if (worker) {
4213 va_start(args, fmt);
4214 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4215 va_end(args);
4216 worker->desc_valid = true;
4217 }
4218 }
4219
4220 /**
4221 * print_worker_info - print out worker information and description
4222 * @log_lvl: the log level to use when printing
4223 * @task: target task
4224 *
4225 * If @task is a worker and currently executing a work item, print out the
4226 * name of the workqueue being serviced and worker description set with
4227 * set_worker_desc() by the currently executing work item.
4228 *
4229 * This function can be safely called on any task as long as the
4230 * task_struct itself is accessible. While safe, this function isn't
4231 * synchronized and may print out mixups or garbages of limited length.
4232 */
4233 void print_worker_info(const char *log_lvl, struct task_struct *task)
4234 {
4235 work_func_t *fn = NULL;
4236 char name[WQ_NAME_LEN] = { };
4237 char desc[WORKER_DESC_LEN] = { };
4238 struct pool_workqueue *pwq = NULL;
4239 struct workqueue_struct *wq = NULL;
4240 bool desc_valid = false;
4241 struct worker *worker;
4242
4243 if (!(task->flags & PF_WQ_WORKER))
4244 return;
4245
4246 /*
4247 * This function is called without any synchronization and @task
4248 * could be in any state. Be careful with dereferences.
4249 */
4250 worker = probe_kthread_data(task);
4251
4252 /*
4253 * Carefully copy the associated workqueue's workfn and name. Keep
4254 * the original last '\0' in case the original contains garbage.
4255 */
4256 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4257 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4258 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4259 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4260
4261 /* copy worker description */
4262 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4263 if (desc_valid)
4264 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4265
4266 if (fn || name[0] || desc[0]) {
4267 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4268 if (desc[0])
4269 pr_cont(" (%s)", desc);
4270 pr_cont("\n");
4271 }
4272 }
4273
4274 static void pr_cont_pool_info(struct worker_pool *pool)
4275 {
4276 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4277 if (pool->node != NUMA_NO_NODE)
4278 pr_cont(" node=%d", pool->node);
4279 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4280 }
4281
4282 static void pr_cont_work(bool comma, struct work_struct *work)
4283 {
4284 if (work->func == wq_barrier_func) {
4285 struct wq_barrier *barr;
4286
4287 barr = container_of(work, struct wq_barrier, work);
4288
4289 pr_cont("%s BAR(%d)", comma ? "," : "",
4290 task_pid_nr(barr->task));
4291 } else {
4292 pr_cont("%s %pf", comma ? "," : "", work->func);
4293 }
4294 }
4295
4296 static void show_pwq(struct pool_workqueue *pwq)
4297 {
4298 struct worker_pool *pool = pwq->pool;
4299 struct work_struct *work;
4300 struct worker *worker;
4301 bool has_in_flight = false, has_pending = false;
4302 int bkt;
4303
4304 pr_info(" pwq %d:", pool->id);
4305 pr_cont_pool_info(pool);
4306
4307 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4308 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4309
4310 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4311 if (worker->current_pwq == pwq) {
4312 has_in_flight = true;
4313 break;
4314 }
4315 }
4316 if (has_in_flight) {
4317 bool comma = false;
4318
4319 pr_info(" in-flight:");
4320 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4321 if (worker->current_pwq != pwq)
4322 continue;
4323
4324 pr_cont("%s %d%s:%pf", comma ? "," : "",
4325 task_pid_nr(worker->task),
4326 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4327 worker->current_func);
4328 list_for_each_entry(work, &worker->scheduled, entry)
4329 pr_cont_work(false, work);
4330 comma = true;
4331 }
4332 pr_cont("\n");
4333 }
4334
4335 list_for_each_entry(work, &pool->worklist, entry) {
4336 if (get_work_pwq(work) == pwq) {
4337 has_pending = true;
4338 break;
4339 }
4340 }
4341 if (has_pending) {
4342 bool comma = false;
4343
4344 pr_info(" pending:");
4345 list_for_each_entry(work, &pool->worklist, entry) {
4346 if (get_work_pwq(work) != pwq)
4347 continue;
4348
4349 pr_cont_work(comma, work);
4350 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4351 }
4352 pr_cont("\n");
4353 }
4354
4355 if (!list_empty(&pwq->delayed_works)) {
4356 bool comma = false;
4357
4358 pr_info(" delayed:");
4359 list_for_each_entry(work, &pwq->delayed_works, entry) {
4360 pr_cont_work(comma, work);
4361 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4362 }
4363 pr_cont("\n");
4364 }
4365 }
4366
4367 /**
4368 * show_workqueue_state - dump workqueue state
4369 *
4370 * Called from a sysrq handler and prints out all busy workqueues and
4371 * pools.
4372 */
4373 void show_workqueue_state(void)
4374 {
4375 struct workqueue_struct *wq;
4376 struct worker_pool *pool;
4377 unsigned long flags;
4378 int pi;
4379
4380 rcu_read_lock_sched();
4381
4382 pr_info("Showing busy workqueues and worker pools:\n");
4383
4384 list_for_each_entry_rcu(wq, &workqueues, list) {
4385 struct pool_workqueue *pwq;
4386 bool idle = true;
4387
4388 for_each_pwq(pwq, wq) {
4389 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4390 idle = false;
4391 break;
4392 }
4393 }
4394 if (idle)
4395 continue;
4396
4397 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4398
4399 for_each_pwq(pwq, wq) {
4400 spin_lock_irqsave(&pwq->pool->lock, flags);
4401 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4402 show_pwq(pwq);
4403 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4404 }
4405 }
4406
4407 for_each_pool(pool, pi) {
4408 struct worker *worker;
4409 bool first = true;
4410
4411 spin_lock_irqsave(&pool->lock, flags);
4412 if (pool->nr_workers == pool->nr_idle)
4413 goto next_pool;
4414
4415 pr_info("pool %d:", pool->id);
4416 pr_cont_pool_info(pool);
4417 pr_cont(" hung=%us workers=%d",
4418 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4419 pool->nr_workers);
4420 if (pool->manager)
4421 pr_cont(" manager: %d",
4422 task_pid_nr(pool->manager->task));
4423 list_for_each_entry(worker, &pool->idle_list, entry) {
4424 pr_cont(" %s%d", first ? "idle: " : "",
4425 task_pid_nr(worker->task));
4426 first = false;
4427 }
4428 pr_cont("\n");
4429 next_pool:
4430 spin_unlock_irqrestore(&pool->lock, flags);
4431 }
4432
4433 rcu_read_unlock_sched();
4434 }
4435
4436 /*
4437 * CPU hotplug.
4438 *
4439 * There are two challenges in supporting CPU hotplug. Firstly, there
4440 * are a lot of assumptions on strong associations among work, pwq and
4441 * pool which make migrating pending and scheduled works very
4442 * difficult to implement without impacting hot paths. Secondly,
4443 * worker pools serve mix of short, long and very long running works making
4444 * blocked draining impractical.
4445 *
4446 * This is solved by allowing the pools to be disassociated from the CPU
4447 * running as an unbound one and allowing it to be reattached later if the
4448 * cpu comes back online.
4449 */
4450
4451 static void wq_unbind_fn(struct work_struct *work)
4452 {
4453 int cpu = smp_processor_id();
4454 struct worker_pool *pool;
4455 struct worker *worker;
4456
4457 for_each_cpu_worker_pool(pool, cpu) {
4458 mutex_lock(&pool->attach_mutex);
4459 spin_lock_irq(&pool->lock);
4460
4461 /*
4462 * We've blocked all attach/detach operations. Make all workers
4463 * unbound and set DISASSOCIATED. Before this, all workers
4464 * except for the ones which are still executing works from
4465 * before the last CPU down must be on the cpu. After
4466 * this, they may become diasporas.
4467 */
4468 for_each_pool_worker(worker, pool)
4469 worker->flags |= WORKER_UNBOUND;
4470
4471 pool->flags |= POOL_DISASSOCIATED;
4472
4473 spin_unlock_irq(&pool->lock);
4474 mutex_unlock(&pool->attach_mutex);
4475
4476 /*
4477 * Call schedule() so that we cross rq->lock and thus can
4478 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4479 * This is necessary as scheduler callbacks may be invoked
4480 * from other cpus.
4481 */
4482 schedule();
4483
4484 /*
4485 * Sched callbacks are disabled now. Zap nr_running.
4486 * After this, nr_running stays zero and need_more_worker()
4487 * and keep_working() are always true as long as the
4488 * worklist is not empty. This pool now behaves as an
4489 * unbound (in terms of concurrency management) pool which
4490 * are served by workers tied to the pool.
4491 */
4492 atomic_set(&pool->nr_running, 0);
4493
4494 /*
4495 * With concurrency management just turned off, a busy
4496 * worker blocking could lead to lengthy stalls. Kick off
4497 * unbound chain execution of currently pending work items.
4498 */
4499 spin_lock_irq(&pool->lock);
4500 wake_up_worker(pool);
4501 spin_unlock_irq(&pool->lock);
4502 }
4503 }
4504
4505 /**
4506 * rebind_workers - rebind all workers of a pool to the associated CPU
4507 * @pool: pool of interest
4508 *
4509 * @pool->cpu is coming online. Rebind all workers to the CPU.
4510 */
4511 static void rebind_workers(struct worker_pool *pool)
4512 {
4513 struct worker *worker;
4514
4515 lockdep_assert_held(&pool->attach_mutex);
4516
4517 /*
4518 * Restore CPU affinity of all workers. As all idle workers should
4519 * be on the run-queue of the associated CPU before any local
4520 * wake-ups for concurrency management happen, restore CPU affinity
4521 * of all workers first and then clear UNBOUND. As we're called
4522 * from CPU_ONLINE, the following shouldn't fail.
4523 */
4524 for_each_pool_worker(worker, pool)
4525 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4526 pool->attrs->cpumask) < 0);
4527
4528 spin_lock_irq(&pool->lock);
4529 pool->flags &= ~POOL_DISASSOCIATED;
4530
4531 for_each_pool_worker(worker, pool) {
4532 unsigned int worker_flags = worker->flags;
4533
4534 /*
4535 * A bound idle worker should actually be on the runqueue
4536 * of the associated CPU for local wake-ups targeting it to
4537 * work. Kick all idle workers so that they migrate to the
4538 * associated CPU. Doing this in the same loop as
4539 * replacing UNBOUND with REBOUND is safe as no worker will
4540 * be bound before @pool->lock is released.
4541 */
4542 if (worker_flags & WORKER_IDLE)
4543 wake_up_process(worker->task);
4544
4545 /*
4546 * We want to clear UNBOUND but can't directly call
4547 * worker_clr_flags() or adjust nr_running. Atomically
4548 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4549 * @worker will clear REBOUND using worker_clr_flags() when
4550 * it initiates the next execution cycle thus restoring
4551 * concurrency management. Note that when or whether
4552 * @worker clears REBOUND doesn't affect correctness.
4553 *
4554 * ACCESS_ONCE() is necessary because @worker->flags may be
4555 * tested without holding any lock in
4556 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4557 * fail incorrectly leading to premature concurrency
4558 * management operations.
4559 */
4560 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4561 worker_flags |= WORKER_REBOUND;
4562 worker_flags &= ~WORKER_UNBOUND;
4563 ACCESS_ONCE(worker->flags) = worker_flags;
4564 }
4565
4566 spin_unlock_irq(&pool->lock);
4567 }
4568
4569 /**
4570 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4571 * @pool: unbound pool of interest
4572 * @cpu: the CPU which is coming up
4573 *
4574 * An unbound pool may end up with a cpumask which doesn't have any online
4575 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4576 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4577 * online CPU before, cpus_allowed of all its workers should be restored.
4578 */
4579 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4580 {
4581 static cpumask_t cpumask;
4582 struct worker *worker;
4583
4584 lockdep_assert_held(&pool->attach_mutex);
4585
4586 /* is @cpu allowed for @pool? */
4587 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4588 return;
4589
4590 /* is @cpu the only online CPU? */
4591 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4592 if (cpumask_weight(&cpumask) != 1)
4593 return;
4594
4595 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4596 for_each_pool_worker(worker, pool)
4597 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4598 pool->attrs->cpumask) < 0);
4599 }
4600
4601 /*
4602 * Workqueues should be brought up before normal priority CPU notifiers.
4603 * This will be registered high priority CPU notifier.
4604 */
4605 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4606 unsigned long action,
4607 void *hcpu)
4608 {
4609 int cpu = (unsigned long)hcpu;
4610 struct worker_pool *pool;
4611 struct workqueue_struct *wq;
4612 int pi;
4613
4614 switch (action & ~CPU_TASKS_FROZEN) {
4615 case CPU_UP_PREPARE:
4616 for_each_cpu_worker_pool(pool, cpu) {
4617 if (pool->nr_workers)
4618 continue;
4619 if (!create_worker(pool))
4620 return NOTIFY_BAD;
4621 }
4622 break;
4623
4624 case CPU_DOWN_FAILED:
4625 case CPU_ONLINE:
4626 mutex_lock(&wq_pool_mutex);
4627
4628 for_each_pool(pool, pi) {
4629 mutex_lock(&pool->attach_mutex);
4630
4631 if (pool->cpu == cpu)
4632 rebind_workers(pool);
4633 else if (pool->cpu < 0)
4634 restore_unbound_workers_cpumask(pool, cpu);
4635
4636 mutex_unlock(&pool->attach_mutex);
4637 }
4638
4639 /* update NUMA affinity of unbound workqueues */
4640 list_for_each_entry(wq, &workqueues, list)
4641 wq_update_unbound_numa(wq, cpu, true);
4642
4643 mutex_unlock(&wq_pool_mutex);
4644 break;
4645 }
4646 return NOTIFY_OK;
4647 }
4648
4649 /*
4650 * Workqueues should be brought down after normal priority CPU notifiers.
4651 * This will be registered as low priority CPU notifier.
4652 */
4653 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4654 unsigned long action,
4655 void *hcpu)
4656 {
4657 int cpu = (unsigned long)hcpu;
4658 struct work_struct unbind_work;
4659 struct workqueue_struct *wq;
4660
4661 switch (action & ~CPU_TASKS_FROZEN) {
4662 case CPU_DOWN_PREPARE:
4663 /* unbinding per-cpu workers should happen on the local CPU */
4664 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4665 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4666
4667 /* update NUMA affinity of unbound workqueues */
4668 mutex_lock(&wq_pool_mutex);
4669 list_for_each_entry(wq, &workqueues, list)
4670 wq_update_unbound_numa(wq, cpu, false);
4671 mutex_unlock(&wq_pool_mutex);
4672
4673 /* wait for per-cpu unbinding to finish */
4674 flush_work(&unbind_work);
4675 destroy_work_on_stack(&unbind_work);
4676 break;
4677 }
4678 return NOTIFY_OK;
4679 }
4680
4681 #ifdef CONFIG_SMP
4682
4683 struct work_for_cpu {
4684 struct work_struct work;
4685 long (*fn)(void *);
4686 void *arg;
4687 long ret;
4688 };
4689
4690 static void work_for_cpu_fn(struct work_struct *work)
4691 {
4692 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4693
4694 wfc->ret = wfc->fn(wfc->arg);
4695 }
4696
4697 /**
4698 * work_on_cpu - run a function in user context on a particular cpu
4699 * @cpu: the cpu to run on
4700 * @fn: the function to run
4701 * @arg: the function arg
4702 *
4703 * It is up to the caller to ensure that the cpu doesn't go offline.
4704 * The caller must not hold any locks which would prevent @fn from completing.
4705 *
4706 * Return: The value @fn returns.
4707 */
4708 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4709 {
4710 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4711
4712 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4713 schedule_work_on(cpu, &wfc.work);
4714 flush_work(&wfc.work);
4715 destroy_work_on_stack(&wfc.work);
4716 return wfc.ret;
4717 }
4718 EXPORT_SYMBOL_GPL(work_on_cpu);
4719 #endif /* CONFIG_SMP */
4720
4721 #ifdef CONFIG_FREEZER
4722
4723 /**
4724 * freeze_workqueues_begin - begin freezing workqueues
4725 *
4726 * Start freezing workqueues. After this function returns, all freezable
4727 * workqueues will queue new works to their delayed_works list instead of
4728 * pool->worklist.
4729 *
4730 * CONTEXT:
4731 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4732 */
4733 void freeze_workqueues_begin(void)
4734 {
4735 struct workqueue_struct *wq;
4736 struct pool_workqueue *pwq;
4737
4738 mutex_lock(&wq_pool_mutex);
4739
4740 WARN_ON_ONCE(workqueue_freezing);
4741 workqueue_freezing = true;
4742
4743 list_for_each_entry(wq, &workqueues, list) {
4744 mutex_lock(&wq->mutex);
4745 for_each_pwq(pwq, wq)
4746 pwq_adjust_max_active(pwq);
4747 mutex_unlock(&wq->mutex);
4748 }
4749
4750 mutex_unlock(&wq_pool_mutex);
4751 }
4752
4753 /**
4754 * freeze_workqueues_busy - are freezable workqueues still busy?
4755 *
4756 * Check whether freezing is complete. This function must be called
4757 * between freeze_workqueues_begin() and thaw_workqueues().
4758 *
4759 * CONTEXT:
4760 * Grabs and releases wq_pool_mutex.
4761 *
4762 * Return:
4763 * %true if some freezable workqueues are still busy. %false if freezing
4764 * is complete.
4765 */
4766 bool freeze_workqueues_busy(void)
4767 {
4768 bool busy = false;
4769 struct workqueue_struct *wq;
4770 struct pool_workqueue *pwq;
4771
4772 mutex_lock(&wq_pool_mutex);
4773
4774 WARN_ON_ONCE(!workqueue_freezing);
4775
4776 list_for_each_entry(wq, &workqueues, list) {
4777 if (!(wq->flags & WQ_FREEZABLE))
4778 continue;
4779 /*
4780 * nr_active is monotonically decreasing. It's safe
4781 * to peek without lock.
4782 */
4783 rcu_read_lock_sched();
4784 for_each_pwq(pwq, wq) {
4785 WARN_ON_ONCE(pwq->nr_active < 0);
4786 if (pwq->nr_active) {
4787 busy = true;
4788 rcu_read_unlock_sched();
4789 goto out_unlock;
4790 }
4791 }
4792 rcu_read_unlock_sched();
4793 }
4794 out_unlock:
4795 mutex_unlock(&wq_pool_mutex);
4796 return busy;
4797 }
4798
4799 /**
4800 * thaw_workqueues - thaw workqueues
4801 *
4802 * Thaw workqueues. Normal queueing is restored and all collected
4803 * frozen works are transferred to their respective pool worklists.
4804 *
4805 * CONTEXT:
4806 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4807 */
4808 void thaw_workqueues(void)
4809 {
4810 struct workqueue_struct *wq;
4811 struct pool_workqueue *pwq;
4812
4813 mutex_lock(&wq_pool_mutex);
4814
4815 if (!workqueue_freezing)
4816 goto out_unlock;
4817
4818 workqueue_freezing = false;
4819
4820 /* restore max_active and repopulate worklist */
4821 list_for_each_entry(wq, &workqueues, list) {
4822 mutex_lock(&wq->mutex);
4823 for_each_pwq(pwq, wq)
4824 pwq_adjust_max_active(pwq);
4825 mutex_unlock(&wq->mutex);
4826 }
4827
4828 out_unlock:
4829 mutex_unlock(&wq_pool_mutex);
4830 }
4831 #endif /* CONFIG_FREEZER */
4832
4833 static int workqueue_apply_unbound_cpumask(void)
4834 {
4835 LIST_HEAD(ctxs);
4836 int ret = 0;
4837 struct workqueue_struct *wq;
4838 struct apply_wqattrs_ctx *ctx, *n;
4839
4840 lockdep_assert_held(&wq_pool_mutex);
4841
4842 list_for_each_entry(wq, &workqueues, list) {
4843 if (!(wq->flags & WQ_UNBOUND))
4844 continue;
4845 /* creating multiple pwqs breaks ordering guarantee */
4846 if (wq->flags & __WQ_ORDERED)
4847 continue;
4848
4849 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4850 if (!ctx) {
4851 ret = -ENOMEM;
4852 break;
4853 }
4854
4855 list_add_tail(&ctx->list, &ctxs);
4856 }
4857
4858 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4859 if (!ret)
4860 apply_wqattrs_commit(ctx);
4861 apply_wqattrs_cleanup(ctx);
4862 }
4863
4864 return ret;
4865 }
4866
4867 /**
4868 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4869 * @cpumask: the cpumask to set
4870 *
4871 * The low-level workqueues cpumask is a global cpumask that limits
4872 * the affinity of all unbound workqueues. This function check the @cpumask
4873 * and apply it to all unbound workqueues and updates all pwqs of them.
4874 *
4875 * Retun: 0 - Success
4876 * -EINVAL - Invalid @cpumask
4877 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4878 */
4879 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4880 {
4881 int ret = -EINVAL;
4882 cpumask_var_t saved_cpumask;
4883
4884 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4885 return -ENOMEM;
4886
4887 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4888 if (!cpumask_empty(cpumask)) {
4889 apply_wqattrs_lock();
4890
4891 /* save the old wq_unbound_cpumask. */
4892 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4893
4894 /* update wq_unbound_cpumask at first and apply it to wqs. */
4895 cpumask_copy(wq_unbound_cpumask, cpumask);
4896 ret = workqueue_apply_unbound_cpumask();
4897
4898 /* restore the wq_unbound_cpumask when failed. */
4899 if (ret < 0)
4900 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4901
4902 apply_wqattrs_unlock();
4903 }
4904
4905 free_cpumask_var(saved_cpumask);
4906 return ret;
4907 }
4908
4909 #ifdef CONFIG_SYSFS
4910 /*
4911 * Workqueues with WQ_SYSFS flag set is visible to userland via
4912 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4913 * following attributes.
4914 *
4915 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4916 * max_active RW int : maximum number of in-flight work items
4917 *
4918 * Unbound workqueues have the following extra attributes.
4919 *
4920 * id RO int : the associated pool ID
4921 * nice RW int : nice value of the workers
4922 * cpumask RW mask : bitmask of allowed CPUs for the workers
4923 */
4924 struct wq_device {
4925 struct workqueue_struct *wq;
4926 struct device dev;
4927 };
4928
4929 static struct workqueue_struct *dev_to_wq(struct device *dev)
4930 {
4931 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4932
4933 return wq_dev->wq;
4934 }
4935
4936 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4937 char *buf)
4938 {
4939 struct workqueue_struct *wq = dev_to_wq(dev);
4940
4941 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4942 }
4943 static DEVICE_ATTR_RO(per_cpu);
4944
4945 static ssize_t max_active_show(struct device *dev,
4946 struct device_attribute *attr, char *buf)
4947 {
4948 struct workqueue_struct *wq = dev_to_wq(dev);
4949
4950 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4951 }
4952
4953 static ssize_t max_active_store(struct device *dev,
4954 struct device_attribute *attr, const char *buf,
4955 size_t count)
4956 {
4957 struct workqueue_struct *wq = dev_to_wq(dev);
4958 int val;
4959
4960 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4961 return -EINVAL;
4962
4963 workqueue_set_max_active(wq, val);
4964 return count;
4965 }
4966 static DEVICE_ATTR_RW(max_active);
4967
4968 static struct attribute *wq_sysfs_attrs[] = {
4969 &dev_attr_per_cpu.attr,
4970 &dev_attr_max_active.attr,
4971 NULL,
4972 };
4973 ATTRIBUTE_GROUPS(wq_sysfs);
4974
4975 static ssize_t wq_pool_ids_show(struct device *dev,
4976 struct device_attribute *attr, char *buf)
4977 {
4978 struct workqueue_struct *wq = dev_to_wq(dev);
4979 const char *delim = "";
4980 int node, written = 0;
4981
4982 rcu_read_lock_sched();
4983 for_each_node(node) {
4984 written += scnprintf(buf + written, PAGE_SIZE - written,
4985 "%s%d:%d", delim, node,
4986 unbound_pwq_by_node(wq, node)->pool->id);
4987 delim = " ";
4988 }
4989 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4990 rcu_read_unlock_sched();
4991
4992 return written;
4993 }
4994
4995 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4996 char *buf)
4997 {
4998 struct workqueue_struct *wq = dev_to_wq(dev);
4999 int written;
5000
5001 mutex_lock(&wq->mutex);
5002 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5003 mutex_unlock(&wq->mutex);
5004
5005 return written;
5006 }
5007
5008 /* prepare workqueue_attrs for sysfs store operations */
5009 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5010 {
5011 struct workqueue_attrs *attrs;
5012
5013 lockdep_assert_held(&wq_pool_mutex);
5014
5015 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5016 if (!attrs)
5017 return NULL;
5018
5019 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5020 return attrs;
5021 }
5022
5023 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5024 const char *buf, size_t count)
5025 {
5026 struct workqueue_struct *wq = dev_to_wq(dev);
5027 struct workqueue_attrs *attrs;
5028 int ret = -ENOMEM;
5029
5030 apply_wqattrs_lock();
5031
5032 attrs = wq_sysfs_prep_attrs(wq);
5033 if (!attrs)
5034 goto out_unlock;
5035
5036 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5037 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5038 ret = apply_workqueue_attrs_locked(wq, attrs);
5039 else
5040 ret = -EINVAL;
5041
5042 out_unlock:
5043 apply_wqattrs_unlock();
5044 free_workqueue_attrs(attrs);
5045 return ret ?: count;
5046 }
5047
5048 static ssize_t wq_cpumask_show(struct device *dev,
5049 struct device_attribute *attr, char *buf)
5050 {
5051 struct workqueue_struct *wq = dev_to_wq(dev);
5052 int written;
5053
5054 mutex_lock(&wq->mutex);
5055 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5056 cpumask_pr_args(wq->unbound_attrs->cpumask));
5057 mutex_unlock(&wq->mutex);
5058 return written;
5059 }
5060
5061 static ssize_t wq_cpumask_store(struct device *dev,
5062 struct device_attribute *attr,
5063 const char *buf, size_t count)
5064 {
5065 struct workqueue_struct *wq = dev_to_wq(dev);
5066 struct workqueue_attrs *attrs;
5067 int ret = -ENOMEM;
5068
5069 apply_wqattrs_lock();
5070
5071 attrs = wq_sysfs_prep_attrs(wq);
5072 if (!attrs)
5073 goto out_unlock;
5074
5075 ret = cpumask_parse(buf, attrs->cpumask);
5076 if (!ret)
5077 ret = apply_workqueue_attrs_locked(wq, attrs);
5078
5079 out_unlock:
5080 apply_wqattrs_unlock();
5081 free_workqueue_attrs(attrs);
5082 return ret ?: count;
5083 }
5084
5085 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5086 char *buf)
5087 {
5088 struct workqueue_struct *wq = dev_to_wq(dev);
5089 int written;
5090
5091 mutex_lock(&wq->mutex);
5092 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5093 !wq->unbound_attrs->no_numa);
5094 mutex_unlock(&wq->mutex);
5095
5096 return written;
5097 }
5098
5099 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5100 const char *buf, size_t count)
5101 {
5102 struct workqueue_struct *wq = dev_to_wq(dev);
5103 struct workqueue_attrs *attrs;
5104 int v, ret = -ENOMEM;
5105
5106 apply_wqattrs_lock();
5107
5108 attrs = wq_sysfs_prep_attrs(wq);
5109 if (!attrs)
5110 goto out_unlock;
5111
5112 ret = -EINVAL;
5113 if (sscanf(buf, "%d", &v) == 1) {
5114 attrs->no_numa = !v;
5115 ret = apply_workqueue_attrs_locked(wq, attrs);
5116 }
5117
5118 out_unlock:
5119 apply_wqattrs_unlock();
5120 free_workqueue_attrs(attrs);
5121 return ret ?: count;
5122 }
5123
5124 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5125 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5126 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5127 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5128 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5129 __ATTR_NULL,
5130 };
5131
5132 static struct bus_type wq_subsys = {
5133 .name = "workqueue",
5134 .dev_groups = wq_sysfs_groups,
5135 };
5136
5137 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5138 struct device_attribute *attr, char *buf)
5139 {
5140 int written;
5141
5142 mutex_lock(&wq_pool_mutex);
5143 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5144 cpumask_pr_args(wq_unbound_cpumask));
5145 mutex_unlock(&wq_pool_mutex);
5146
5147 return written;
5148 }
5149
5150 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5151 struct device_attribute *attr, const char *buf, size_t count)
5152 {
5153 cpumask_var_t cpumask;
5154 int ret;
5155
5156 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5157 return -ENOMEM;
5158
5159 ret = cpumask_parse(buf, cpumask);
5160 if (!ret)
5161 ret = workqueue_set_unbound_cpumask(cpumask);
5162
5163 free_cpumask_var(cpumask);
5164 return ret ? ret : count;
5165 }
5166
5167 static struct device_attribute wq_sysfs_cpumask_attr =
5168 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5169 wq_unbound_cpumask_store);
5170
5171 static int __init wq_sysfs_init(void)
5172 {
5173 int err;
5174
5175 err = subsys_virtual_register(&wq_subsys, NULL);
5176 if (err)
5177 return err;
5178
5179 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5180 }
5181 core_initcall(wq_sysfs_init);
5182
5183 static void wq_device_release(struct device *dev)
5184 {
5185 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5186
5187 kfree(wq_dev);
5188 }
5189
5190 /**
5191 * workqueue_sysfs_register - make a workqueue visible in sysfs
5192 * @wq: the workqueue to register
5193 *
5194 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5195 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5196 * which is the preferred method.
5197 *
5198 * Workqueue user should use this function directly iff it wants to apply
5199 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5200 * apply_workqueue_attrs() may race against userland updating the
5201 * attributes.
5202 *
5203 * Return: 0 on success, -errno on failure.
5204 */
5205 int workqueue_sysfs_register(struct workqueue_struct *wq)
5206 {
5207 struct wq_device *wq_dev;
5208 int ret;
5209
5210 /*
5211 * Adjusting max_active or creating new pwqs by applying
5212 * attributes breaks ordering guarantee. Disallow exposing ordered
5213 * workqueues.
5214 */
5215 if (WARN_ON(wq->flags & __WQ_ORDERED))
5216 return -EINVAL;
5217
5218 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5219 if (!wq_dev)
5220 return -ENOMEM;
5221
5222 wq_dev->wq = wq;
5223 wq_dev->dev.bus = &wq_subsys;
5224 wq_dev->dev.init_name = wq->name;
5225 wq_dev->dev.release = wq_device_release;
5226
5227 /*
5228 * unbound_attrs are created separately. Suppress uevent until
5229 * everything is ready.
5230 */
5231 dev_set_uevent_suppress(&wq_dev->dev, true);
5232
5233 ret = device_register(&wq_dev->dev);
5234 if (ret) {
5235 kfree(wq_dev);
5236 wq->wq_dev = NULL;
5237 return ret;
5238 }
5239
5240 if (wq->flags & WQ_UNBOUND) {
5241 struct device_attribute *attr;
5242
5243 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5244 ret = device_create_file(&wq_dev->dev, attr);
5245 if (ret) {
5246 device_unregister(&wq_dev->dev);
5247 wq->wq_dev = NULL;
5248 return ret;
5249 }
5250 }
5251 }
5252
5253 dev_set_uevent_suppress(&wq_dev->dev, false);
5254 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5255 return 0;
5256 }
5257
5258 /**
5259 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5260 * @wq: the workqueue to unregister
5261 *
5262 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5263 */
5264 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5265 {
5266 struct wq_device *wq_dev = wq->wq_dev;
5267
5268 if (!wq->wq_dev)
5269 return;
5270
5271 wq->wq_dev = NULL;
5272 device_unregister(&wq_dev->dev);
5273 }
5274 #else /* CONFIG_SYSFS */
5275 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5276 #endif /* CONFIG_SYSFS */
5277
5278 /*
5279 * Workqueue watchdog.
5280 *
5281 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5282 * flush dependency, a concurrency managed work item which stays RUNNING
5283 * indefinitely. Workqueue stalls can be very difficult to debug as the
5284 * usual warning mechanisms don't trigger and internal workqueue state is
5285 * largely opaque.
5286 *
5287 * Workqueue watchdog monitors all worker pools periodically and dumps
5288 * state if some pools failed to make forward progress for a while where
5289 * forward progress is defined as the first item on ->worklist changing.
5290 *
5291 * This mechanism is controlled through the kernel parameter
5292 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5293 * corresponding sysfs parameter file.
5294 */
5295 #ifdef CONFIG_WQ_WATCHDOG
5296
5297 static void wq_watchdog_timer_fn(unsigned long data);
5298
5299 static unsigned long wq_watchdog_thresh = 30;
5300 static struct timer_list wq_watchdog_timer =
5301 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5302
5303 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5304 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5305
5306 static void wq_watchdog_reset_touched(void)
5307 {
5308 int cpu;
5309
5310 wq_watchdog_touched = jiffies;
5311 for_each_possible_cpu(cpu)
5312 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5313 }
5314
5315 static void wq_watchdog_timer_fn(unsigned long data)
5316 {
5317 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5318 bool lockup_detected = false;
5319 struct worker_pool *pool;
5320 int pi;
5321
5322 if (!thresh)
5323 return;
5324
5325 rcu_read_lock();
5326
5327 for_each_pool(pool, pi) {
5328 unsigned long pool_ts, touched, ts;
5329
5330 if (list_empty(&pool->worklist))
5331 continue;
5332
5333 /* get the latest of pool and touched timestamps */
5334 pool_ts = READ_ONCE(pool->watchdog_ts);
5335 touched = READ_ONCE(wq_watchdog_touched);
5336
5337 if (time_after(pool_ts, touched))
5338 ts = pool_ts;
5339 else
5340 ts = touched;
5341
5342 if (pool->cpu >= 0) {
5343 unsigned long cpu_touched =
5344 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5345 pool->cpu));
5346 if (time_after(cpu_touched, ts))
5347 ts = cpu_touched;
5348 }
5349
5350 /* did we stall? */
5351 if (time_after(jiffies, ts + thresh)) {
5352 lockup_detected = true;
5353 pr_emerg("BUG: workqueue lockup - pool");
5354 pr_cont_pool_info(pool);
5355 pr_cont(" stuck for %us!\n",
5356 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5357 }
5358 }
5359
5360 rcu_read_unlock();
5361
5362 if (lockup_detected)
5363 show_workqueue_state();
5364
5365 wq_watchdog_reset_touched();
5366 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5367 }
5368
5369 void wq_watchdog_touch(int cpu)
5370 {
5371 if (cpu >= 0)
5372 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5373 else
5374 wq_watchdog_touched = jiffies;
5375 }
5376
5377 static void wq_watchdog_set_thresh(unsigned long thresh)
5378 {
5379 wq_watchdog_thresh = 0;
5380 del_timer_sync(&wq_watchdog_timer);
5381
5382 if (thresh) {
5383 wq_watchdog_thresh = thresh;
5384 wq_watchdog_reset_touched();
5385 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5386 }
5387 }
5388
5389 static int wq_watchdog_param_set_thresh(const char *val,
5390 const struct kernel_param *kp)
5391 {
5392 unsigned long thresh;
5393 int ret;
5394
5395 ret = kstrtoul(val, 0, &thresh);
5396 if (ret)
5397 return ret;
5398
5399 if (system_wq)
5400 wq_watchdog_set_thresh(thresh);
5401 else
5402 wq_watchdog_thresh = thresh;
5403
5404 return 0;
5405 }
5406
5407 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5408 .set = wq_watchdog_param_set_thresh,
5409 .get = param_get_ulong,
5410 };
5411
5412 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5413 0644);
5414
5415 static void wq_watchdog_init(void)
5416 {
5417 wq_watchdog_set_thresh(wq_watchdog_thresh);
5418 }
5419
5420 #else /* CONFIG_WQ_WATCHDOG */
5421
5422 static inline void wq_watchdog_init(void) { }
5423
5424 #endif /* CONFIG_WQ_WATCHDOG */
5425
5426 static void __init wq_numa_init(void)
5427 {
5428 cpumask_var_t *tbl;
5429 int node, cpu;
5430
5431 if (num_possible_nodes() <= 1)
5432 return;
5433
5434 if (wq_disable_numa) {
5435 pr_info("workqueue: NUMA affinity support disabled\n");
5436 return;
5437 }
5438
5439 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5440 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5441
5442 /*
5443 * We want masks of possible CPUs of each node which isn't readily
5444 * available. Build one from cpu_to_node() which should have been
5445 * fully initialized by now.
5446 */
5447 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5448 BUG_ON(!tbl);
5449
5450 for_each_node(node)
5451 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5452 node_online(node) ? node : NUMA_NO_NODE));
5453
5454 for_each_possible_cpu(cpu) {
5455 node = cpu_to_node(cpu);
5456 if (WARN_ON(node == NUMA_NO_NODE)) {
5457 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5458 /* happens iff arch is bonkers, let's just proceed */
5459 return;
5460 }
5461 cpumask_set_cpu(cpu, tbl[node]);
5462 }
5463
5464 wq_numa_possible_cpumask = tbl;
5465 wq_numa_enabled = true;
5466 }
5467
5468 static int __init init_workqueues(void)
5469 {
5470 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5471 int i, cpu;
5472
5473 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5474
5475 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5476 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5477
5478 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5479
5480 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5481 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5482
5483 wq_numa_init();
5484
5485 /* initialize CPU pools */
5486 for_each_possible_cpu(cpu) {
5487 struct worker_pool *pool;
5488
5489 i = 0;
5490 for_each_cpu_worker_pool(pool, cpu) {
5491 BUG_ON(init_worker_pool(pool));
5492 pool->cpu = cpu;
5493 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5494 pool->attrs->nice = std_nice[i++];
5495 pool->node = cpu_to_node(cpu);
5496
5497 /* alloc pool ID */
5498 mutex_lock(&wq_pool_mutex);
5499 BUG_ON(worker_pool_assign_id(pool));
5500 mutex_unlock(&wq_pool_mutex);
5501 }
5502 }
5503
5504 /* create the initial worker */
5505 for_each_online_cpu(cpu) {
5506 struct worker_pool *pool;
5507
5508 for_each_cpu_worker_pool(pool, cpu) {
5509 pool->flags &= ~POOL_DISASSOCIATED;
5510 BUG_ON(!create_worker(pool));
5511 }
5512 }
5513
5514 /* create default unbound and ordered wq attrs */
5515 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5516 struct workqueue_attrs *attrs;
5517
5518 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5519 attrs->nice = std_nice[i];
5520 unbound_std_wq_attrs[i] = attrs;
5521
5522 /*
5523 * An ordered wq should have only one pwq as ordering is
5524 * guaranteed by max_active which is enforced by pwqs.
5525 * Turn off NUMA so that dfl_pwq is used for all nodes.
5526 */
5527 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5528 attrs->nice = std_nice[i];
5529 attrs->no_numa = true;
5530 ordered_wq_attrs[i] = attrs;
5531 }
5532
5533 system_wq = alloc_workqueue("events", 0, 0);
5534 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5535 system_long_wq = alloc_workqueue("events_long", 0, 0);
5536 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5537 WQ_UNBOUND_MAX_ACTIVE);
5538 system_freezable_wq = alloc_workqueue("events_freezable",
5539 WQ_FREEZABLE, 0);
5540 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5541 WQ_POWER_EFFICIENT, 0);
5542 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5543 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5544 0);
5545 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5546 !system_unbound_wq || !system_freezable_wq ||
5547 !system_power_efficient_wq ||
5548 !system_freezable_power_efficient_wq);
5549
5550 wq_watchdog_init();
5551
5552 return 0;
5553 }
5554 early_initcall(init_workqueues);
This page took 0.135273 seconds and 6 git commands to generate.