Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
300
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
303
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309
310 /*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324
325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
326
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
361
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
366
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 (pool)++)
377
378 /**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
382 *
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
389 */
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
393 else
394
395 /**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
399 *
400 * This must be called with @pool->attach_mutex.
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 else
409
410 /**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
414 *
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
421 */
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
425 else
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 /*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485 }
486
487 /*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503 }
504
505 static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
507 .debug_hint = work_debug_hint,
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511 };
512
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 debug_object_activate(work, &work_debug_descr);
516 }
517
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 debug_object_deactivate(work, &work_debug_descr);
521 }
522
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549
550 /**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 int ret;
560
561 lockdep_assert_held(&wq_pool_mutex);
562
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
565 if (ret >= 0) {
566 pool->id = ret;
567 return 0;
568 }
569 return ret;
570 }
571
572 /**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
581 *
582 * Return: The unbound pool_workqueue for @node.
583 */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586 {
587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600
601 static unsigned int work_color_to_flags(int color)
602 {
603 return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605
606 static int get_work_color(struct work_struct *work)
607 {
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611
612 static int work_next_color(int color)
613 {
614 return (color + 1) % WORK_NR_COLORS;
615 }
616
617 /*
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
620 * is cleared and the high bits contain OFFQ flags and pool ID.
621 *
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
626 *
627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628 * corresponding to a work. Pool is available once the work has been
629 * queued anywhere after initialization until it is sync canceled. pwq is
630 * available only while the work item is queued.
631 *
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
636 */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
639 {
640 WARN_ON_ONCE(!work_pending(work));
641 atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 unsigned long extra_flags)
646 {
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653 {
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656 }
657
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
660 {
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 }
670
671 static void clear_work_data(struct work_struct *work)
672 {
673 smp_wmb(); /* see set_work_pool_and_clear_pending() */
674 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
675 }
676
677 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
678 {
679 unsigned long data = atomic_long_read(&work->data);
680
681 if (data & WORK_STRUCT_PWQ)
682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 else
684 return NULL;
685 }
686
687 /**
688 * get_work_pool - return the worker_pool a given work was associated with
689 * @work: the work item of interest
690 *
691 * Pools are created and destroyed under wq_pool_mutex, and allows read
692 * access under sched-RCU read lock. As such, this function should be
693 * called under wq_pool_mutex or with preemption disabled.
694 *
695 * All fields of the returned pool are accessible as long as the above
696 * mentioned locking is in effect. If the returned pool needs to be used
697 * beyond the critical section, the caller is responsible for ensuring the
698 * returned pool is and stays online.
699 *
700 * Return: The worker_pool @work was last associated with. %NULL if none.
701 */
702 static struct worker_pool *get_work_pool(struct work_struct *work)
703 {
704 unsigned long data = atomic_long_read(&work->data);
705 int pool_id;
706
707 assert_rcu_or_pool_mutex();
708
709 if (data & WORK_STRUCT_PWQ)
710 return ((struct pool_workqueue *)
711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
712
713 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 if (pool_id == WORK_OFFQ_POOL_NONE)
715 return NULL;
716
717 return idr_find(&worker_pool_idr, pool_id);
718 }
719
720 /**
721 * get_work_pool_id - return the worker pool ID a given work is associated with
722 * @work: the work item of interest
723 *
724 * Return: The worker_pool ID @work was last associated with.
725 * %WORK_OFFQ_POOL_NONE if none.
726 */
727 static int get_work_pool_id(struct work_struct *work)
728 {
729 unsigned long data = atomic_long_read(&work->data);
730
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
734
735 return data >> WORK_OFFQ_POOL_SHIFT;
736 }
737
738 static void mark_work_canceling(struct work_struct *work)
739 {
740 unsigned long pool_id = get_work_pool_id(work);
741
742 pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
744 }
745
746 static bool work_is_canceling(struct work_struct *work)
747 {
748 unsigned long data = atomic_long_read(&work->data);
749
750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
751 }
752
753 /*
754 * Policy functions. These define the policies on how the global worker
755 * pools are managed. Unless noted otherwise, these functions assume that
756 * they're being called with pool->lock held.
757 */
758
759 static bool __need_more_worker(struct worker_pool *pool)
760 {
761 return !atomic_read(&pool->nr_running);
762 }
763
764 /*
765 * Need to wake up a worker? Called from anything but currently
766 * running workers.
767 *
768 * Note that, because unbound workers never contribute to nr_running, this
769 * function will always return %true for unbound pools as long as the
770 * worklist isn't empty.
771 */
772 static bool need_more_worker(struct worker_pool *pool)
773 {
774 return !list_empty(&pool->worklist) && __need_more_worker(pool);
775 }
776
777 /* Can I start working? Called from busy but !running workers. */
778 static bool may_start_working(struct worker_pool *pool)
779 {
780 return pool->nr_idle;
781 }
782
783 /* Do I need to keep working? Called from currently running workers. */
784 static bool keep_working(struct worker_pool *pool)
785 {
786 return !list_empty(&pool->worklist) &&
787 atomic_read(&pool->nr_running) <= 1;
788 }
789
790 /* Do we need a new worker? Called from manager. */
791 static bool need_to_create_worker(struct worker_pool *pool)
792 {
793 return need_more_worker(pool) && !may_start_working(pool);
794 }
795
796 /* Do we have too many workers and should some go away? */
797 static bool too_many_workers(struct worker_pool *pool)
798 {
799 bool managing = mutex_is_locked(&pool->manager_arb);
800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 int nr_busy = pool->nr_workers - nr_idle;
802
803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
804 }
805
806 /*
807 * Wake up functions.
808 */
809
810 /* Return the first idle worker. Safe with preemption disabled */
811 static struct worker *first_idle_worker(struct worker_pool *pool)
812 {
813 if (unlikely(list_empty(&pool->idle_list)))
814 return NULL;
815
816 return list_first_entry(&pool->idle_list, struct worker, entry);
817 }
818
819 /**
820 * wake_up_worker - wake up an idle worker
821 * @pool: worker pool to wake worker from
822 *
823 * Wake up the first idle worker of @pool.
824 *
825 * CONTEXT:
826 * spin_lock_irq(pool->lock).
827 */
828 static void wake_up_worker(struct worker_pool *pool)
829 {
830 struct worker *worker = first_idle_worker(pool);
831
832 if (likely(worker))
833 wake_up_process(worker->task);
834 }
835
836 /**
837 * wq_worker_waking_up - a worker is waking up
838 * @task: task waking up
839 * @cpu: CPU @task is waking up to
840 *
841 * This function is called during try_to_wake_up() when a worker is
842 * being awoken.
843 *
844 * CONTEXT:
845 * spin_lock_irq(rq->lock)
846 */
847 void wq_worker_waking_up(struct task_struct *task, int cpu)
848 {
849 struct worker *worker = kthread_data(task);
850
851 if (!(worker->flags & WORKER_NOT_RUNNING)) {
852 WARN_ON_ONCE(worker->pool->cpu != cpu);
853 atomic_inc(&worker->pool->nr_running);
854 }
855 }
856
857 /**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 *
861 * This function is called during schedule() when a busy worker is
862 * going to sleep. Worker on the same cpu can be woken up by
863 * returning pointer to its task.
864 *
865 * CONTEXT:
866 * spin_lock_irq(rq->lock)
867 *
868 * Return:
869 * Worker task on @cpu to wake up, %NULL if none.
870 */
871 struct task_struct *wq_worker_sleeping(struct task_struct *task)
872 {
873 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
874 struct worker_pool *pool;
875
876 /*
877 * Rescuers, which may not have all the fields set up like normal
878 * workers, also reach here, let's not access anything before
879 * checking NOT_RUNNING.
880 */
881 if (worker->flags & WORKER_NOT_RUNNING)
882 return NULL;
883
884 pool = worker->pool;
885
886 /* this can only happen on the local cpu */
887 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
888 return NULL;
889
890 /*
891 * The counterpart of the following dec_and_test, implied mb,
892 * worklist not empty test sequence is in insert_work().
893 * Please read comment there.
894 *
895 * NOT_RUNNING is clear. This means that we're bound to and
896 * running on the local cpu w/ rq lock held and preemption
897 * disabled, which in turn means that none else could be
898 * manipulating idle_list, so dereferencing idle_list without pool
899 * lock is safe.
900 */
901 if (atomic_dec_and_test(&pool->nr_running) &&
902 !list_empty(&pool->worklist))
903 to_wakeup = first_idle_worker(pool);
904 return to_wakeup ? to_wakeup->task : NULL;
905 }
906
907 /**
908 * worker_set_flags - set worker flags and adjust nr_running accordingly
909 * @worker: self
910 * @flags: flags to set
911 *
912 * Set @flags in @worker->flags and adjust nr_running accordingly.
913 *
914 * CONTEXT:
915 * spin_lock_irq(pool->lock)
916 */
917 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
918 {
919 struct worker_pool *pool = worker->pool;
920
921 WARN_ON_ONCE(worker->task != current);
922
923 /* If transitioning into NOT_RUNNING, adjust nr_running. */
924 if ((flags & WORKER_NOT_RUNNING) &&
925 !(worker->flags & WORKER_NOT_RUNNING)) {
926 atomic_dec(&pool->nr_running);
927 }
928
929 worker->flags |= flags;
930 }
931
932 /**
933 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
934 * @worker: self
935 * @flags: flags to clear
936 *
937 * Clear @flags in @worker->flags and adjust nr_running accordingly.
938 *
939 * CONTEXT:
940 * spin_lock_irq(pool->lock)
941 */
942 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
943 {
944 struct worker_pool *pool = worker->pool;
945 unsigned int oflags = worker->flags;
946
947 WARN_ON_ONCE(worker->task != current);
948
949 worker->flags &= ~flags;
950
951 /*
952 * If transitioning out of NOT_RUNNING, increment nr_running. Note
953 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
954 * of multiple flags, not a single flag.
955 */
956 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
957 if (!(worker->flags & WORKER_NOT_RUNNING))
958 atomic_inc(&pool->nr_running);
959 }
960
961 /**
962 * find_worker_executing_work - find worker which is executing a work
963 * @pool: pool of interest
964 * @work: work to find worker for
965 *
966 * Find a worker which is executing @work on @pool by searching
967 * @pool->busy_hash which is keyed by the address of @work. For a worker
968 * to match, its current execution should match the address of @work and
969 * its work function. This is to avoid unwanted dependency between
970 * unrelated work executions through a work item being recycled while still
971 * being executed.
972 *
973 * This is a bit tricky. A work item may be freed once its execution
974 * starts and nothing prevents the freed area from being recycled for
975 * another work item. If the same work item address ends up being reused
976 * before the original execution finishes, workqueue will identify the
977 * recycled work item as currently executing and make it wait until the
978 * current execution finishes, introducing an unwanted dependency.
979 *
980 * This function checks the work item address and work function to avoid
981 * false positives. Note that this isn't complete as one may construct a
982 * work function which can introduce dependency onto itself through a
983 * recycled work item. Well, if somebody wants to shoot oneself in the
984 * foot that badly, there's only so much we can do, and if such deadlock
985 * actually occurs, it should be easy to locate the culprit work function.
986 *
987 * CONTEXT:
988 * spin_lock_irq(pool->lock).
989 *
990 * Return:
991 * Pointer to worker which is executing @work if found, %NULL
992 * otherwise.
993 */
994 static struct worker *find_worker_executing_work(struct worker_pool *pool,
995 struct work_struct *work)
996 {
997 struct worker *worker;
998
999 hash_for_each_possible(pool->busy_hash, worker, hentry,
1000 (unsigned long)work)
1001 if (worker->current_work == work &&
1002 worker->current_func == work->func)
1003 return worker;
1004
1005 return NULL;
1006 }
1007
1008 /**
1009 * move_linked_works - move linked works to a list
1010 * @work: start of series of works to be scheduled
1011 * @head: target list to append @work to
1012 * @nextp: out parameter for nested worklist walking
1013 *
1014 * Schedule linked works starting from @work to @head. Work series to
1015 * be scheduled starts at @work and includes any consecutive work with
1016 * WORK_STRUCT_LINKED set in its predecessor.
1017 *
1018 * If @nextp is not NULL, it's updated to point to the next work of
1019 * the last scheduled work. This allows move_linked_works() to be
1020 * nested inside outer list_for_each_entry_safe().
1021 *
1022 * CONTEXT:
1023 * spin_lock_irq(pool->lock).
1024 */
1025 static void move_linked_works(struct work_struct *work, struct list_head *head,
1026 struct work_struct **nextp)
1027 {
1028 struct work_struct *n;
1029
1030 /*
1031 * Linked worklist will always end before the end of the list,
1032 * use NULL for list head.
1033 */
1034 list_for_each_entry_safe_from(work, n, NULL, entry) {
1035 list_move_tail(&work->entry, head);
1036 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1037 break;
1038 }
1039
1040 /*
1041 * If we're already inside safe list traversal and have moved
1042 * multiple works to the scheduled queue, the next position
1043 * needs to be updated.
1044 */
1045 if (nextp)
1046 *nextp = n;
1047 }
1048
1049 /**
1050 * get_pwq - get an extra reference on the specified pool_workqueue
1051 * @pwq: pool_workqueue to get
1052 *
1053 * Obtain an extra reference on @pwq. The caller should guarantee that
1054 * @pwq has positive refcnt and be holding the matching pool->lock.
1055 */
1056 static void get_pwq(struct pool_workqueue *pwq)
1057 {
1058 lockdep_assert_held(&pwq->pool->lock);
1059 WARN_ON_ONCE(pwq->refcnt <= 0);
1060 pwq->refcnt++;
1061 }
1062
1063 /**
1064 * put_pwq - put a pool_workqueue reference
1065 * @pwq: pool_workqueue to put
1066 *
1067 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1068 * destruction. The caller should be holding the matching pool->lock.
1069 */
1070 static void put_pwq(struct pool_workqueue *pwq)
1071 {
1072 lockdep_assert_held(&pwq->pool->lock);
1073 if (likely(--pwq->refcnt))
1074 return;
1075 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1076 return;
1077 /*
1078 * @pwq can't be released under pool->lock, bounce to
1079 * pwq_unbound_release_workfn(). This never recurses on the same
1080 * pool->lock as this path is taken only for unbound workqueues and
1081 * the release work item is scheduled on a per-cpu workqueue. To
1082 * avoid lockdep warning, unbound pool->locks are given lockdep
1083 * subclass of 1 in get_unbound_pool().
1084 */
1085 schedule_work(&pwq->unbound_release_work);
1086 }
1087
1088 /**
1089 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1090 * @pwq: pool_workqueue to put (can be %NULL)
1091 *
1092 * put_pwq() with locking. This function also allows %NULL @pwq.
1093 */
1094 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1095 {
1096 if (pwq) {
1097 /*
1098 * As both pwqs and pools are sched-RCU protected, the
1099 * following lock operations are safe.
1100 */
1101 spin_lock_irq(&pwq->pool->lock);
1102 put_pwq(pwq);
1103 spin_unlock_irq(&pwq->pool->lock);
1104 }
1105 }
1106
1107 static void pwq_activate_delayed_work(struct work_struct *work)
1108 {
1109 struct pool_workqueue *pwq = get_work_pwq(work);
1110
1111 trace_workqueue_activate_work(work);
1112 if (list_empty(&pwq->pool->worklist))
1113 pwq->pool->watchdog_ts = jiffies;
1114 move_linked_works(work, &pwq->pool->worklist, NULL);
1115 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1116 pwq->nr_active++;
1117 }
1118
1119 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1120 {
1121 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1122 struct work_struct, entry);
1123
1124 pwq_activate_delayed_work(work);
1125 }
1126
1127 /**
1128 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1129 * @pwq: pwq of interest
1130 * @color: color of work which left the queue
1131 *
1132 * A work either has completed or is removed from pending queue,
1133 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1134 *
1135 * CONTEXT:
1136 * spin_lock_irq(pool->lock).
1137 */
1138 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1139 {
1140 /* uncolored work items don't participate in flushing or nr_active */
1141 if (color == WORK_NO_COLOR)
1142 goto out_put;
1143
1144 pwq->nr_in_flight[color]--;
1145
1146 pwq->nr_active--;
1147 if (!list_empty(&pwq->delayed_works)) {
1148 /* one down, submit a delayed one */
1149 if (pwq->nr_active < pwq->max_active)
1150 pwq_activate_first_delayed(pwq);
1151 }
1152
1153 /* is flush in progress and are we at the flushing tip? */
1154 if (likely(pwq->flush_color != color))
1155 goto out_put;
1156
1157 /* are there still in-flight works? */
1158 if (pwq->nr_in_flight[color])
1159 goto out_put;
1160
1161 /* this pwq is done, clear flush_color */
1162 pwq->flush_color = -1;
1163
1164 /*
1165 * If this was the last pwq, wake up the first flusher. It
1166 * will handle the rest.
1167 */
1168 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1169 complete(&pwq->wq->first_flusher->done);
1170 out_put:
1171 put_pwq(pwq);
1172 }
1173
1174 /**
1175 * try_to_grab_pending - steal work item from worklist and disable irq
1176 * @work: work item to steal
1177 * @is_dwork: @work is a delayed_work
1178 * @flags: place to store irq state
1179 *
1180 * Try to grab PENDING bit of @work. This function can handle @work in any
1181 * stable state - idle, on timer or on worklist.
1182 *
1183 * Return:
1184 * 1 if @work was pending and we successfully stole PENDING
1185 * 0 if @work was idle and we claimed PENDING
1186 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1187 * -ENOENT if someone else is canceling @work, this state may persist
1188 * for arbitrarily long
1189 *
1190 * Note:
1191 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1192 * interrupted while holding PENDING and @work off queue, irq must be
1193 * disabled on entry. This, combined with delayed_work->timer being
1194 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1195 *
1196 * On successful return, >= 0, irq is disabled and the caller is
1197 * responsible for releasing it using local_irq_restore(*@flags).
1198 *
1199 * This function is safe to call from any context including IRQ handler.
1200 */
1201 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1202 unsigned long *flags)
1203 {
1204 struct worker_pool *pool;
1205 struct pool_workqueue *pwq;
1206
1207 local_irq_save(*flags);
1208
1209 /* try to steal the timer if it exists */
1210 if (is_dwork) {
1211 struct delayed_work *dwork = to_delayed_work(work);
1212
1213 /*
1214 * dwork->timer is irqsafe. If del_timer() fails, it's
1215 * guaranteed that the timer is not queued anywhere and not
1216 * running on the local CPU.
1217 */
1218 if (likely(del_timer(&dwork->timer)))
1219 return 1;
1220 }
1221
1222 /* try to claim PENDING the normal way */
1223 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1224 return 0;
1225
1226 /*
1227 * The queueing is in progress, or it is already queued. Try to
1228 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1229 */
1230 pool = get_work_pool(work);
1231 if (!pool)
1232 goto fail;
1233
1234 spin_lock(&pool->lock);
1235 /*
1236 * work->data is guaranteed to point to pwq only while the work
1237 * item is queued on pwq->wq, and both updating work->data to point
1238 * to pwq on queueing and to pool on dequeueing are done under
1239 * pwq->pool->lock. This in turn guarantees that, if work->data
1240 * points to pwq which is associated with a locked pool, the work
1241 * item is currently queued on that pool.
1242 */
1243 pwq = get_work_pwq(work);
1244 if (pwq && pwq->pool == pool) {
1245 debug_work_deactivate(work);
1246
1247 /*
1248 * A delayed work item cannot be grabbed directly because
1249 * it might have linked NO_COLOR work items which, if left
1250 * on the delayed_list, will confuse pwq->nr_active
1251 * management later on and cause stall. Make sure the work
1252 * item is activated before grabbing.
1253 */
1254 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1255 pwq_activate_delayed_work(work);
1256
1257 list_del_init(&work->entry);
1258 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1259
1260 /* work->data points to pwq iff queued, point to pool */
1261 set_work_pool_and_keep_pending(work, pool->id);
1262
1263 spin_unlock(&pool->lock);
1264 return 1;
1265 }
1266 spin_unlock(&pool->lock);
1267 fail:
1268 local_irq_restore(*flags);
1269 if (work_is_canceling(work))
1270 return -ENOENT;
1271 cpu_relax();
1272 return -EAGAIN;
1273 }
1274
1275 /**
1276 * insert_work - insert a work into a pool
1277 * @pwq: pwq @work belongs to
1278 * @work: work to insert
1279 * @head: insertion point
1280 * @extra_flags: extra WORK_STRUCT_* flags to set
1281 *
1282 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1283 * work_struct flags.
1284 *
1285 * CONTEXT:
1286 * spin_lock_irq(pool->lock).
1287 */
1288 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1289 struct list_head *head, unsigned int extra_flags)
1290 {
1291 struct worker_pool *pool = pwq->pool;
1292
1293 /* we own @work, set data and link */
1294 set_work_pwq(work, pwq, extra_flags);
1295 list_add_tail(&work->entry, head);
1296 get_pwq(pwq);
1297
1298 /*
1299 * Ensure either wq_worker_sleeping() sees the above
1300 * list_add_tail() or we see zero nr_running to avoid workers lying
1301 * around lazily while there are works to be processed.
1302 */
1303 smp_mb();
1304
1305 if (__need_more_worker(pool))
1306 wake_up_worker(pool);
1307 }
1308
1309 /*
1310 * Test whether @work is being queued from another work executing on the
1311 * same workqueue.
1312 */
1313 static bool is_chained_work(struct workqueue_struct *wq)
1314 {
1315 struct worker *worker;
1316
1317 worker = current_wq_worker();
1318 /*
1319 * Return %true iff I'm a worker execuing a work item on @wq. If
1320 * I'm @worker, it's safe to dereference it without locking.
1321 */
1322 return worker && worker->current_pwq->wq == wq;
1323 }
1324
1325 /*
1326 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1327 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1328 * avoid perturbing sensitive tasks.
1329 */
1330 static int wq_select_unbound_cpu(int cpu)
1331 {
1332 static bool printed_dbg_warning;
1333 int new_cpu;
1334
1335 if (likely(!wq_debug_force_rr_cpu)) {
1336 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1337 return cpu;
1338 } else if (!printed_dbg_warning) {
1339 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1340 printed_dbg_warning = true;
1341 }
1342
1343 if (cpumask_empty(wq_unbound_cpumask))
1344 return cpu;
1345
1346 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1347 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1348 if (unlikely(new_cpu >= nr_cpu_ids)) {
1349 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1350 if (unlikely(new_cpu >= nr_cpu_ids))
1351 return cpu;
1352 }
1353 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1354
1355 return new_cpu;
1356 }
1357
1358 static void __queue_work(int cpu, struct workqueue_struct *wq,
1359 struct work_struct *work)
1360 {
1361 struct pool_workqueue *pwq;
1362 struct worker_pool *last_pool;
1363 struct list_head *worklist;
1364 unsigned int work_flags;
1365 unsigned int req_cpu = cpu;
1366
1367 /*
1368 * While a work item is PENDING && off queue, a task trying to
1369 * steal the PENDING will busy-loop waiting for it to either get
1370 * queued or lose PENDING. Grabbing PENDING and queueing should
1371 * happen with IRQ disabled.
1372 */
1373 WARN_ON_ONCE(!irqs_disabled());
1374
1375 debug_work_activate(work);
1376
1377 /* if draining, only works from the same workqueue are allowed */
1378 if (unlikely(wq->flags & __WQ_DRAINING) &&
1379 WARN_ON_ONCE(!is_chained_work(wq)))
1380 return;
1381 retry:
1382 if (req_cpu == WORK_CPU_UNBOUND)
1383 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1384
1385 /* pwq which will be used unless @work is executing elsewhere */
1386 if (!(wq->flags & WQ_UNBOUND))
1387 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1388 else
1389 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1390
1391 /*
1392 * If @work was previously on a different pool, it might still be
1393 * running there, in which case the work needs to be queued on that
1394 * pool to guarantee non-reentrancy.
1395 */
1396 last_pool = get_work_pool(work);
1397 if (last_pool && last_pool != pwq->pool) {
1398 struct worker *worker;
1399
1400 spin_lock(&last_pool->lock);
1401
1402 worker = find_worker_executing_work(last_pool, work);
1403
1404 if (worker && worker->current_pwq->wq == wq) {
1405 pwq = worker->current_pwq;
1406 } else {
1407 /* meh... not running there, queue here */
1408 spin_unlock(&last_pool->lock);
1409 spin_lock(&pwq->pool->lock);
1410 }
1411 } else {
1412 spin_lock(&pwq->pool->lock);
1413 }
1414
1415 /*
1416 * pwq is determined and locked. For unbound pools, we could have
1417 * raced with pwq release and it could already be dead. If its
1418 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1419 * without another pwq replacing it in the numa_pwq_tbl or while
1420 * work items are executing on it, so the retrying is guaranteed to
1421 * make forward-progress.
1422 */
1423 if (unlikely(!pwq->refcnt)) {
1424 if (wq->flags & WQ_UNBOUND) {
1425 spin_unlock(&pwq->pool->lock);
1426 cpu_relax();
1427 goto retry;
1428 }
1429 /* oops */
1430 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1431 wq->name, cpu);
1432 }
1433
1434 /* pwq determined, queue */
1435 trace_workqueue_queue_work(req_cpu, pwq, work);
1436
1437 if (WARN_ON(!list_empty(&work->entry))) {
1438 spin_unlock(&pwq->pool->lock);
1439 return;
1440 }
1441
1442 pwq->nr_in_flight[pwq->work_color]++;
1443 work_flags = work_color_to_flags(pwq->work_color);
1444
1445 if (likely(pwq->nr_active < pwq->max_active)) {
1446 trace_workqueue_activate_work(work);
1447 pwq->nr_active++;
1448 worklist = &pwq->pool->worklist;
1449 if (list_empty(worklist))
1450 pwq->pool->watchdog_ts = jiffies;
1451 } else {
1452 work_flags |= WORK_STRUCT_DELAYED;
1453 worklist = &pwq->delayed_works;
1454 }
1455
1456 insert_work(pwq, work, worklist, work_flags);
1457
1458 spin_unlock(&pwq->pool->lock);
1459 }
1460
1461 /**
1462 * queue_work_on - queue work on specific cpu
1463 * @cpu: CPU number to execute work on
1464 * @wq: workqueue to use
1465 * @work: work to queue
1466 *
1467 * We queue the work to a specific CPU, the caller must ensure it
1468 * can't go away.
1469 *
1470 * Return: %false if @work was already on a queue, %true otherwise.
1471 */
1472 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1473 struct work_struct *work)
1474 {
1475 bool ret = false;
1476 unsigned long flags;
1477
1478 local_irq_save(flags);
1479
1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481 __queue_work(cpu, wq, work);
1482 ret = true;
1483 }
1484
1485 local_irq_restore(flags);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(queue_work_on);
1489
1490 void delayed_work_timer_fn(unsigned long __data)
1491 {
1492 struct delayed_work *dwork = (struct delayed_work *)__data;
1493
1494 /* should have been called from irqsafe timer with irq already off */
1495 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1496 }
1497 EXPORT_SYMBOL(delayed_work_timer_fn);
1498
1499 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1500 struct delayed_work *dwork, unsigned long delay)
1501 {
1502 struct timer_list *timer = &dwork->timer;
1503 struct work_struct *work = &dwork->work;
1504
1505 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1506 timer->data != (unsigned long)dwork);
1507 WARN_ON_ONCE(timer_pending(timer));
1508 WARN_ON_ONCE(!list_empty(&work->entry));
1509
1510 /*
1511 * If @delay is 0, queue @dwork->work immediately. This is for
1512 * both optimization and correctness. The earliest @timer can
1513 * expire is on the closest next tick and delayed_work users depend
1514 * on that there's no such delay when @delay is 0.
1515 */
1516 if (!delay) {
1517 __queue_work(cpu, wq, &dwork->work);
1518 return;
1519 }
1520
1521 timer_stats_timer_set_start_info(&dwork->timer);
1522
1523 dwork->wq = wq;
1524 dwork->cpu = cpu;
1525 timer->expires = jiffies + delay;
1526
1527 if (unlikely(cpu != WORK_CPU_UNBOUND))
1528 add_timer_on(timer, cpu);
1529 else
1530 add_timer(timer);
1531 }
1532
1533 /**
1534 * queue_delayed_work_on - queue work on specific CPU after delay
1535 * @cpu: CPU number to execute work on
1536 * @wq: workqueue to use
1537 * @dwork: work to queue
1538 * @delay: number of jiffies to wait before queueing
1539 *
1540 * Return: %false if @work was already on a queue, %true otherwise. If
1541 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1542 * execution.
1543 */
1544 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1545 struct delayed_work *dwork, unsigned long delay)
1546 {
1547 struct work_struct *work = &dwork->work;
1548 bool ret = false;
1549 unsigned long flags;
1550
1551 /* read the comment in __queue_work() */
1552 local_irq_save(flags);
1553
1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555 __queue_delayed_work(cpu, wq, dwork, delay);
1556 ret = true;
1557 }
1558
1559 local_irq_restore(flags);
1560 return ret;
1561 }
1562 EXPORT_SYMBOL(queue_delayed_work_on);
1563
1564 /**
1565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1566 * @cpu: CPU number to execute work on
1567 * @wq: workqueue to use
1568 * @dwork: work to queue
1569 * @delay: number of jiffies to wait before queueing
1570 *
1571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1572 * modify @dwork's timer so that it expires after @delay. If @delay is
1573 * zero, @work is guaranteed to be scheduled immediately regardless of its
1574 * current state.
1575 *
1576 * Return: %false if @dwork was idle and queued, %true if @dwork was
1577 * pending and its timer was modified.
1578 *
1579 * This function is safe to call from any context including IRQ handler.
1580 * See try_to_grab_pending() for details.
1581 */
1582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1583 struct delayed_work *dwork, unsigned long delay)
1584 {
1585 unsigned long flags;
1586 int ret;
1587
1588 do {
1589 ret = try_to_grab_pending(&dwork->work, true, &flags);
1590 } while (unlikely(ret == -EAGAIN));
1591
1592 if (likely(ret >= 0)) {
1593 __queue_delayed_work(cpu, wq, dwork, delay);
1594 local_irq_restore(flags);
1595 }
1596
1597 /* -ENOENT from try_to_grab_pending() becomes %true */
1598 return ret;
1599 }
1600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1601
1602 /**
1603 * worker_enter_idle - enter idle state
1604 * @worker: worker which is entering idle state
1605 *
1606 * @worker is entering idle state. Update stats and idle timer if
1607 * necessary.
1608 *
1609 * LOCKING:
1610 * spin_lock_irq(pool->lock).
1611 */
1612 static void worker_enter_idle(struct worker *worker)
1613 {
1614 struct worker_pool *pool = worker->pool;
1615
1616 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1617 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1618 (worker->hentry.next || worker->hentry.pprev)))
1619 return;
1620
1621 /* can't use worker_set_flags(), also called from create_worker() */
1622 worker->flags |= WORKER_IDLE;
1623 pool->nr_idle++;
1624 worker->last_active = jiffies;
1625
1626 /* idle_list is LIFO */
1627 list_add(&worker->entry, &pool->idle_list);
1628
1629 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1630 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1631
1632 /*
1633 * Sanity check nr_running. Because wq_unbind_fn() releases
1634 * pool->lock between setting %WORKER_UNBOUND and zapping
1635 * nr_running, the warning may trigger spuriously. Check iff
1636 * unbind is not in progress.
1637 */
1638 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1639 pool->nr_workers == pool->nr_idle &&
1640 atomic_read(&pool->nr_running));
1641 }
1642
1643 /**
1644 * worker_leave_idle - leave idle state
1645 * @worker: worker which is leaving idle state
1646 *
1647 * @worker is leaving idle state. Update stats.
1648 *
1649 * LOCKING:
1650 * spin_lock_irq(pool->lock).
1651 */
1652 static void worker_leave_idle(struct worker *worker)
1653 {
1654 struct worker_pool *pool = worker->pool;
1655
1656 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1657 return;
1658 worker_clr_flags(worker, WORKER_IDLE);
1659 pool->nr_idle--;
1660 list_del_init(&worker->entry);
1661 }
1662
1663 static struct worker *alloc_worker(int node)
1664 {
1665 struct worker *worker;
1666
1667 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1668 if (worker) {
1669 INIT_LIST_HEAD(&worker->entry);
1670 INIT_LIST_HEAD(&worker->scheduled);
1671 INIT_LIST_HEAD(&worker->node);
1672 /* on creation a worker is in !idle && prep state */
1673 worker->flags = WORKER_PREP;
1674 }
1675 return worker;
1676 }
1677
1678 /**
1679 * worker_attach_to_pool() - attach a worker to a pool
1680 * @worker: worker to be attached
1681 * @pool: the target pool
1682 *
1683 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1684 * cpu-binding of @worker are kept coordinated with the pool across
1685 * cpu-[un]hotplugs.
1686 */
1687 static void worker_attach_to_pool(struct worker *worker,
1688 struct worker_pool *pool)
1689 {
1690 mutex_lock(&pool->attach_mutex);
1691
1692 /*
1693 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1694 * online CPUs. It'll be re-applied when any of the CPUs come up.
1695 */
1696 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1697
1698 /*
1699 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1700 * stable across this function. See the comments above the
1701 * flag definition for details.
1702 */
1703 if (pool->flags & POOL_DISASSOCIATED)
1704 worker->flags |= WORKER_UNBOUND;
1705
1706 list_add_tail(&worker->node, &pool->workers);
1707
1708 mutex_unlock(&pool->attach_mutex);
1709 }
1710
1711 /**
1712 * worker_detach_from_pool() - detach a worker from its pool
1713 * @worker: worker which is attached to its pool
1714 * @pool: the pool @worker is attached to
1715 *
1716 * Undo the attaching which had been done in worker_attach_to_pool(). The
1717 * caller worker shouldn't access to the pool after detached except it has
1718 * other reference to the pool.
1719 */
1720 static void worker_detach_from_pool(struct worker *worker,
1721 struct worker_pool *pool)
1722 {
1723 struct completion *detach_completion = NULL;
1724
1725 mutex_lock(&pool->attach_mutex);
1726 list_del(&worker->node);
1727 if (list_empty(&pool->workers))
1728 detach_completion = pool->detach_completion;
1729 mutex_unlock(&pool->attach_mutex);
1730
1731 /* clear leftover flags without pool->lock after it is detached */
1732 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1733
1734 if (detach_completion)
1735 complete(detach_completion);
1736 }
1737
1738 /**
1739 * create_worker - create a new workqueue worker
1740 * @pool: pool the new worker will belong to
1741 *
1742 * Create and start a new worker which is attached to @pool.
1743 *
1744 * CONTEXT:
1745 * Might sleep. Does GFP_KERNEL allocations.
1746 *
1747 * Return:
1748 * Pointer to the newly created worker.
1749 */
1750 static struct worker *create_worker(struct worker_pool *pool)
1751 {
1752 struct worker *worker = NULL;
1753 int id = -1;
1754 char id_buf[16];
1755
1756 /* ID is needed to determine kthread name */
1757 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1758 if (id < 0)
1759 goto fail;
1760
1761 worker = alloc_worker(pool->node);
1762 if (!worker)
1763 goto fail;
1764
1765 worker->pool = pool;
1766 worker->id = id;
1767
1768 if (pool->cpu >= 0)
1769 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1770 pool->attrs->nice < 0 ? "H" : "");
1771 else
1772 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1773
1774 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1775 "kworker/%s", id_buf);
1776 if (IS_ERR(worker->task))
1777 goto fail;
1778
1779 set_user_nice(worker->task, pool->attrs->nice);
1780 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1781
1782 /* successful, attach the worker to the pool */
1783 worker_attach_to_pool(worker, pool);
1784
1785 /* start the newly created worker */
1786 spin_lock_irq(&pool->lock);
1787 worker->pool->nr_workers++;
1788 worker_enter_idle(worker);
1789 wake_up_process(worker->task);
1790 spin_unlock_irq(&pool->lock);
1791
1792 return worker;
1793
1794 fail:
1795 if (id >= 0)
1796 ida_simple_remove(&pool->worker_ida, id);
1797 kfree(worker);
1798 return NULL;
1799 }
1800
1801 /**
1802 * destroy_worker - destroy a workqueue worker
1803 * @worker: worker to be destroyed
1804 *
1805 * Destroy @worker and adjust @pool stats accordingly. The worker should
1806 * be idle.
1807 *
1808 * CONTEXT:
1809 * spin_lock_irq(pool->lock).
1810 */
1811 static void destroy_worker(struct worker *worker)
1812 {
1813 struct worker_pool *pool = worker->pool;
1814
1815 lockdep_assert_held(&pool->lock);
1816
1817 /* sanity check frenzy */
1818 if (WARN_ON(worker->current_work) ||
1819 WARN_ON(!list_empty(&worker->scheduled)) ||
1820 WARN_ON(!(worker->flags & WORKER_IDLE)))
1821 return;
1822
1823 pool->nr_workers--;
1824 pool->nr_idle--;
1825
1826 list_del_init(&worker->entry);
1827 worker->flags |= WORKER_DIE;
1828 wake_up_process(worker->task);
1829 }
1830
1831 static void idle_worker_timeout(unsigned long __pool)
1832 {
1833 struct worker_pool *pool = (void *)__pool;
1834
1835 spin_lock_irq(&pool->lock);
1836
1837 while (too_many_workers(pool)) {
1838 struct worker *worker;
1839 unsigned long expires;
1840
1841 /* idle_list is kept in LIFO order, check the last one */
1842 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1843 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1844
1845 if (time_before(jiffies, expires)) {
1846 mod_timer(&pool->idle_timer, expires);
1847 break;
1848 }
1849
1850 destroy_worker(worker);
1851 }
1852
1853 spin_unlock_irq(&pool->lock);
1854 }
1855
1856 static void send_mayday(struct work_struct *work)
1857 {
1858 struct pool_workqueue *pwq = get_work_pwq(work);
1859 struct workqueue_struct *wq = pwq->wq;
1860
1861 lockdep_assert_held(&wq_mayday_lock);
1862
1863 if (!wq->rescuer)
1864 return;
1865
1866 /* mayday mayday mayday */
1867 if (list_empty(&pwq->mayday_node)) {
1868 /*
1869 * If @pwq is for an unbound wq, its base ref may be put at
1870 * any time due to an attribute change. Pin @pwq until the
1871 * rescuer is done with it.
1872 */
1873 get_pwq(pwq);
1874 list_add_tail(&pwq->mayday_node, &wq->maydays);
1875 wake_up_process(wq->rescuer->task);
1876 }
1877 }
1878
1879 static void pool_mayday_timeout(unsigned long __pool)
1880 {
1881 struct worker_pool *pool = (void *)__pool;
1882 struct work_struct *work;
1883
1884 spin_lock_irq(&pool->lock);
1885 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1886
1887 if (need_to_create_worker(pool)) {
1888 /*
1889 * We've been trying to create a new worker but
1890 * haven't been successful. We might be hitting an
1891 * allocation deadlock. Send distress signals to
1892 * rescuers.
1893 */
1894 list_for_each_entry(work, &pool->worklist, entry)
1895 send_mayday(work);
1896 }
1897
1898 spin_unlock(&wq_mayday_lock);
1899 spin_unlock_irq(&pool->lock);
1900
1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1902 }
1903
1904 /**
1905 * maybe_create_worker - create a new worker if necessary
1906 * @pool: pool to create a new worker for
1907 *
1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911 * sent to all rescuers with works scheduled on @pool to resolve
1912 * possible allocation deadlock.
1913 *
1914 * On return, need_to_create_worker() is guaranteed to be %false and
1915 * may_start_working() %true.
1916 *
1917 * LOCKING:
1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 */
1922 static void maybe_create_worker(struct worker_pool *pool)
1923 __releases(&pool->lock)
1924 __acquires(&pool->lock)
1925 {
1926 restart:
1927 spin_unlock_irq(&pool->lock);
1928
1929 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1931
1932 while (true) {
1933 if (create_worker(pool) || !need_to_create_worker(pool))
1934 break;
1935
1936 schedule_timeout_interruptible(CREATE_COOLDOWN);
1937
1938 if (!need_to_create_worker(pool))
1939 break;
1940 }
1941
1942 del_timer_sync(&pool->mayday_timer);
1943 spin_lock_irq(&pool->lock);
1944 /*
1945 * This is necessary even after a new worker was just successfully
1946 * created as @pool->lock was dropped and the new worker might have
1947 * already become busy.
1948 */
1949 if (need_to_create_worker(pool))
1950 goto restart;
1951 }
1952
1953 /**
1954 * manage_workers - manage worker pool
1955 * @worker: self
1956 *
1957 * Assume the manager role and manage the worker pool @worker belongs
1958 * to. At any given time, there can be only zero or one manager per
1959 * pool. The exclusion is handled automatically by this function.
1960 *
1961 * The caller can safely start processing works on false return. On
1962 * true return, it's guaranteed that need_to_create_worker() is false
1963 * and may_start_working() is true.
1964 *
1965 * CONTEXT:
1966 * spin_lock_irq(pool->lock) which may be released and regrabbed
1967 * multiple times. Does GFP_KERNEL allocations.
1968 *
1969 * Return:
1970 * %false if the pool doesn't need management and the caller can safely
1971 * start processing works, %true if management function was performed and
1972 * the conditions that the caller verified before calling the function may
1973 * no longer be true.
1974 */
1975 static bool manage_workers(struct worker *worker)
1976 {
1977 struct worker_pool *pool = worker->pool;
1978
1979 /*
1980 * Anyone who successfully grabs manager_arb wins the arbitration
1981 * and becomes the manager. mutex_trylock() on pool->manager_arb
1982 * failure while holding pool->lock reliably indicates that someone
1983 * else is managing the pool and the worker which failed trylock
1984 * can proceed to executing work items. This means that anyone
1985 * grabbing manager_arb is responsible for actually performing
1986 * manager duties. If manager_arb is grabbed and released without
1987 * actual management, the pool may stall indefinitely.
1988 */
1989 if (!mutex_trylock(&pool->manager_arb))
1990 return false;
1991 pool->manager = worker;
1992
1993 maybe_create_worker(pool);
1994
1995 pool->manager = NULL;
1996 mutex_unlock(&pool->manager_arb);
1997 return true;
1998 }
1999
2000 /**
2001 * process_one_work - process single work
2002 * @worker: self
2003 * @work: work to process
2004 *
2005 * Process @work. This function contains all the logics necessary to
2006 * process a single work including synchronization against and
2007 * interaction with other workers on the same cpu, queueing and
2008 * flushing. As long as context requirement is met, any worker can
2009 * call this function to process a work.
2010 *
2011 * CONTEXT:
2012 * spin_lock_irq(pool->lock) which is released and regrabbed.
2013 */
2014 static void process_one_work(struct worker *worker, struct work_struct *work)
2015 __releases(&pool->lock)
2016 __acquires(&pool->lock)
2017 {
2018 struct pool_workqueue *pwq = get_work_pwq(work);
2019 struct worker_pool *pool = worker->pool;
2020 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2021 int work_color;
2022 struct worker *collision;
2023 #ifdef CONFIG_LOCKDEP
2024 /*
2025 * It is permissible to free the struct work_struct from
2026 * inside the function that is called from it, this we need to
2027 * take into account for lockdep too. To avoid bogus "held
2028 * lock freed" warnings as well as problems when looking into
2029 * work->lockdep_map, make a copy and use that here.
2030 */
2031 struct lockdep_map lockdep_map;
2032
2033 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2034 #endif
2035 /* ensure we're on the correct CPU */
2036 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2037 raw_smp_processor_id() != pool->cpu);
2038
2039 /*
2040 * A single work shouldn't be executed concurrently by
2041 * multiple workers on a single cpu. Check whether anyone is
2042 * already processing the work. If so, defer the work to the
2043 * currently executing one.
2044 */
2045 collision = find_worker_executing_work(pool, work);
2046 if (unlikely(collision)) {
2047 move_linked_works(work, &collision->scheduled, NULL);
2048 return;
2049 }
2050
2051 /* claim and dequeue */
2052 debug_work_deactivate(work);
2053 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2054 worker->current_work = work;
2055 worker->current_func = work->func;
2056 worker->current_pwq = pwq;
2057 work_color = get_work_color(work);
2058
2059 list_del_init(&work->entry);
2060
2061 /*
2062 * CPU intensive works don't participate in concurrency management.
2063 * They're the scheduler's responsibility. This takes @worker out
2064 * of concurrency management and the next code block will chain
2065 * execution of the pending work items.
2066 */
2067 if (unlikely(cpu_intensive))
2068 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2069
2070 /*
2071 * Wake up another worker if necessary. The condition is always
2072 * false for normal per-cpu workers since nr_running would always
2073 * be >= 1 at this point. This is used to chain execution of the
2074 * pending work items for WORKER_NOT_RUNNING workers such as the
2075 * UNBOUND and CPU_INTENSIVE ones.
2076 */
2077 if (need_more_worker(pool))
2078 wake_up_worker(pool);
2079
2080 /*
2081 * Record the last pool and clear PENDING which should be the last
2082 * update to @work. Also, do this inside @pool->lock so that
2083 * PENDING and queued state changes happen together while IRQ is
2084 * disabled.
2085 */
2086 set_work_pool_and_clear_pending(work, pool->id);
2087
2088 spin_unlock_irq(&pool->lock);
2089
2090 lock_map_acquire_read(&pwq->wq->lockdep_map);
2091 lock_map_acquire(&lockdep_map);
2092 trace_workqueue_execute_start(work);
2093 worker->current_func(work);
2094 /*
2095 * While we must be careful to not use "work" after this, the trace
2096 * point will only record its address.
2097 */
2098 trace_workqueue_execute_end(work);
2099 lock_map_release(&lockdep_map);
2100 lock_map_release(&pwq->wq->lockdep_map);
2101
2102 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2103 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2104 " last function: %pf\n",
2105 current->comm, preempt_count(), task_pid_nr(current),
2106 worker->current_func);
2107 debug_show_held_locks(current);
2108 dump_stack();
2109 }
2110
2111 /*
2112 * The following prevents a kworker from hogging CPU on !PREEMPT
2113 * kernels, where a requeueing work item waiting for something to
2114 * happen could deadlock with stop_machine as such work item could
2115 * indefinitely requeue itself while all other CPUs are trapped in
2116 * stop_machine. At the same time, report a quiescent RCU state so
2117 * the same condition doesn't freeze RCU.
2118 */
2119 cond_resched_rcu_qs();
2120
2121 spin_lock_irq(&pool->lock);
2122
2123 /* clear cpu intensive status */
2124 if (unlikely(cpu_intensive))
2125 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2126
2127 /* we're done with it, release */
2128 hash_del(&worker->hentry);
2129 worker->current_work = NULL;
2130 worker->current_func = NULL;
2131 worker->current_pwq = NULL;
2132 worker->desc_valid = false;
2133 pwq_dec_nr_in_flight(pwq, work_color);
2134 }
2135
2136 /**
2137 * process_scheduled_works - process scheduled works
2138 * @worker: self
2139 *
2140 * Process all scheduled works. Please note that the scheduled list
2141 * may change while processing a work, so this function repeatedly
2142 * fetches a work from the top and executes it.
2143 *
2144 * CONTEXT:
2145 * spin_lock_irq(pool->lock) which may be released and regrabbed
2146 * multiple times.
2147 */
2148 static void process_scheduled_works(struct worker *worker)
2149 {
2150 while (!list_empty(&worker->scheduled)) {
2151 struct work_struct *work = list_first_entry(&worker->scheduled,
2152 struct work_struct, entry);
2153 process_one_work(worker, work);
2154 }
2155 }
2156
2157 /**
2158 * worker_thread - the worker thread function
2159 * @__worker: self
2160 *
2161 * The worker thread function. All workers belong to a worker_pool -
2162 * either a per-cpu one or dynamic unbound one. These workers process all
2163 * work items regardless of their specific target workqueue. The only
2164 * exception is work items which belong to workqueues with a rescuer which
2165 * will be explained in rescuer_thread().
2166 *
2167 * Return: 0
2168 */
2169 static int worker_thread(void *__worker)
2170 {
2171 struct worker *worker = __worker;
2172 struct worker_pool *pool = worker->pool;
2173
2174 /* tell the scheduler that this is a workqueue worker */
2175 worker->task->flags |= PF_WQ_WORKER;
2176 woke_up:
2177 spin_lock_irq(&pool->lock);
2178
2179 /* am I supposed to die? */
2180 if (unlikely(worker->flags & WORKER_DIE)) {
2181 spin_unlock_irq(&pool->lock);
2182 WARN_ON_ONCE(!list_empty(&worker->entry));
2183 worker->task->flags &= ~PF_WQ_WORKER;
2184
2185 set_task_comm(worker->task, "kworker/dying");
2186 ida_simple_remove(&pool->worker_ida, worker->id);
2187 worker_detach_from_pool(worker, pool);
2188 kfree(worker);
2189 return 0;
2190 }
2191
2192 worker_leave_idle(worker);
2193 recheck:
2194 /* no more worker necessary? */
2195 if (!need_more_worker(pool))
2196 goto sleep;
2197
2198 /* do we need to manage? */
2199 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2200 goto recheck;
2201
2202 /*
2203 * ->scheduled list can only be filled while a worker is
2204 * preparing to process a work or actually processing it.
2205 * Make sure nobody diddled with it while I was sleeping.
2206 */
2207 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2208
2209 /*
2210 * Finish PREP stage. We're guaranteed to have at least one idle
2211 * worker or that someone else has already assumed the manager
2212 * role. This is where @worker starts participating in concurrency
2213 * management if applicable and concurrency management is restored
2214 * after being rebound. See rebind_workers() for details.
2215 */
2216 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2217
2218 do {
2219 struct work_struct *work =
2220 list_first_entry(&pool->worklist,
2221 struct work_struct, entry);
2222
2223 pool->watchdog_ts = jiffies;
2224
2225 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2226 /* optimization path, not strictly necessary */
2227 process_one_work(worker, work);
2228 if (unlikely(!list_empty(&worker->scheduled)))
2229 process_scheduled_works(worker);
2230 } else {
2231 move_linked_works(work, &worker->scheduled, NULL);
2232 process_scheduled_works(worker);
2233 }
2234 } while (keep_working(pool));
2235
2236 worker_set_flags(worker, WORKER_PREP);
2237 sleep:
2238 /*
2239 * pool->lock is held and there's no work to process and no need to
2240 * manage, sleep. Workers are woken up only while holding
2241 * pool->lock or from local cpu, so setting the current state
2242 * before releasing pool->lock is enough to prevent losing any
2243 * event.
2244 */
2245 worker_enter_idle(worker);
2246 __set_current_state(TASK_INTERRUPTIBLE);
2247 spin_unlock_irq(&pool->lock);
2248 schedule();
2249 goto woke_up;
2250 }
2251
2252 /**
2253 * rescuer_thread - the rescuer thread function
2254 * @__rescuer: self
2255 *
2256 * Workqueue rescuer thread function. There's one rescuer for each
2257 * workqueue which has WQ_MEM_RECLAIM set.
2258 *
2259 * Regular work processing on a pool may block trying to create a new
2260 * worker which uses GFP_KERNEL allocation which has slight chance of
2261 * developing into deadlock if some works currently on the same queue
2262 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2263 * the problem rescuer solves.
2264 *
2265 * When such condition is possible, the pool summons rescuers of all
2266 * workqueues which have works queued on the pool and let them process
2267 * those works so that forward progress can be guaranteed.
2268 *
2269 * This should happen rarely.
2270 *
2271 * Return: 0
2272 */
2273 static int rescuer_thread(void *__rescuer)
2274 {
2275 struct worker *rescuer = __rescuer;
2276 struct workqueue_struct *wq = rescuer->rescue_wq;
2277 struct list_head *scheduled = &rescuer->scheduled;
2278 bool should_stop;
2279
2280 set_user_nice(current, RESCUER_NICE_LEVEL);
2281
2282 /*
2283 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2284 * doesn't participate in concurrency management.
2285 */
2286 rescuer->task->flags |= PF_WQ_WORKER;
2287 repeat:
2288 set_current_state(TASK_INTERRUPTIBLE);
2289
2290 /*
2291 * By the time the rescuer is requested to stop, the workqueue
2292 * shouldn't have any work pending, but @wq->maydays may still have
2293 * pwq(s) queued. This can happen by non-rescuer workers consuming
2294 * all the work items before the rescuer got to them. Go through
2295 * @wq->maydays processing before acting on should_stop so that the
2296 * list is always empty on exit.
2297 */
2298 should_stop = kthread_should_stop();
2299
2300 /* see whether any pwq is asking for help */
2301 spin_lock_irq(&wq_mayday_lock);
2302
2303 while (!list_empty(&wq->maydays)) {
2304 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2305 struct pool_workqueue, mayday_node);
2306 struct worker_pool *pool = pwq->pool;
2307 struct work_struct *work, *n;
2308 bool first = true;
2309
2310 __set_current_state(TASK_RUNNING);
2311 list_del_init(&pwq->mayday_node);
2312
2313 spin_unlock_irq(&wq_mayday_lock);
2314
2315 worker_attach_to_pool(rescuer, pool);
2316
2317 spin_lock_irq(&pool->lock);
2318 rescuer->pool = pool;
2319
2320 /*
2321 * Slurp in all works issued via this workqueue and
2322 * process'em.
2323 */
2324 WARN_ON_ONCE(!list_empty(scheduled));
2325 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2326 if (get_work_pwq(work) == pwq) {
2327 if (first)
2328 pool->watchdog_ts = jiffies;
2329 move_linked_works(work, scheduled, &n);
2330 }
2331 first = false;
2332 }
2333
2334 if (!list_empty(scheduled)) {
2335 process_scheduled_works(rescuer);
2336
2337 /*
2338 * The above execution of rescued work items could
2339 * have created more to rescue through
2340 * pwq_activate_first_delayed() or chained
2341 * queueing. Let's put @pwq back on mayday list so
2342 * that such back-to-back work items, which may be
2343 * being used to relieve memory pressure, don't
2344 * incur MAYDAY_INTERVAL delay inbetween.
2345 */
2346 if (need_to_create_worker(pool)) {
2347 spin_lock(&wq_mayday_lock);
2348 get_pwq(pwq);
2349 list_move_tail(&pwq->mayday_node, &wq->maydays);
2350 spin_unlock(&wq_mayday_lock);
2351 }
2352 }
2353
2354 /*
2355 * Put the reference grabbed by send_mayday(). @pool won't
2356 * go away while we're still attached to it.
2357 */
2358 put_pwq(pwq);
2359
2360 /*
2361 * Leave this pool. If need_more_worker() is %true, notify a
2362 * regular worker; otherwise, we end up with 0 concurrency
2363 * and stalling the execution.
2364 */
2365 if (need_more_worker(pool))
2366 wake_up_worker(pool);
2367
2368 rescuer->pool = NULL;
2369 spin_unlock_irq(&pool->lock);
2370
2371 worker_detach_from_pool(rescuer, pool);
2372
2373 spin_lock_irq(&wq_mayday_lock);
2374 }
2375
2376 spin_unlock_irq(&wq_mayday_lock);
2377
2378 if (should_stop) {
2379 __set_current_state(TASK_RUNNING);
2380 rescuer->task->flags &= ~PF_WQ_WORKER;
2381 return 0;
2382 }
2383
2384 /* rescuers should never participate in concurrency management */
2385 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2386 schedule();
2387 goto repeat;
2388 }
2389
2390 /**
2391 * check_flush_dependency - check for flush dependency sanity
2392 * @target_wq: workqueue being flushed
2393 * @target_work: work item being flushed (NULL for workqueue flushes)
2394 *
2395 * %current is trying to flush the whole @target_wq or @target_work on it.
2396 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2397 * reclaiming memory or running on a workqueue which doesn't have
2398 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2399 * a deadlock.
2400 */
2401 static void check_flush_dependency(struct workqueue_struct *target_wq,
2402 struct work_struct *target_work)
2403 {
2404 work_func_t target_func = target_work ? target_work->func : NULL;
2405 struct worker *worker;
2406
2407 if (target_wq->flags & WQ_MEM_RECLAIM)
2408 return;
2409
2410 worker = current_wq_worker();
2411
2412 WARN_ONCE(current->flags & PF_MEMALLOC,
2413 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2414 current->pid, current->comm, target_wq->name, target_func);
2415 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2416 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2417 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2418 worker->current_pwq->wq->name, worker->current_func,
2419 target_wq->name, target_func);
2420 }
2421
2422 struct wq_barrier {
2423 struct work_struct work;
2424 struct completion done;
2425 struct task_struct *task; /* purely informational */
2426 };
2427
2428 static void wq_barrier_func(struct work_struct *work)
2429 {
2430 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2431 complete(&barr->done);
2432 }
2433
2434 /**
2435 * insert_wq_barrier - insert a barrier work
2436 * @pwq: pwq to insert barrier into
2437 * @barr: wq_barrier to insert
2438 * @target: target work to attach @barr to
2439 * @worker: worker currently executing @target, NULL if @target is not executing
2440 *
2441 * @barr is linked to @target such that @barr is completed only after
2442 * @target finishes execution. Please note that the ordering
2443 * guarantee is observed only with respect to @target and on the local
2444 * cpu.
2445 *
2446 * Currently, a queued barrier can't be canceled. This is because
2447 * try_to_grab_pending() can't determine whether the work to be
2448 * grabbed is at the head of the queue and thus can't clear LINKED
2449 * flag of the previous work while there must be a valid next work
2450 * after a work with LINKED flag set.
2451 *
2452 * Note that when @worker is non-NULL, @target may be modified
2453 * underneath us, so we can't reliably determine pwq from @target.
2454 *
2455 * CONTEXT:
2456 * spin_lock_irq(pool->lock).
2457 */
2458 static void insert_wq_barrier(struct pool_workqueue *pwq,
2459 struct wq_barrier *barr,
2460 struct work_struct *target, struct worker *worker)
2461 {
2462 struct list_head *head;
2463 unsigned int linked = 0;
2464
2465 /*
2466 * debugobject calls are safe here even with pool->lock locked
2467 * as we know for sure that this will not trigger any of the
2468 * checks and call back into the fixup functions where we
2469 * might deadlock.
2470 */
2471 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2472 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2473 init_completion(&barr->done);
2474 barr->task = current;
2475
2476 /*
2477 * If @target is currently being executed, schedule the
2478 * barrier to the worker; otherwise, put it after @target.
2479 */
2480 if (worker)
2481 head = worker->scheduled.next;
2482 else {
2483 unsigned long *bits = work_data_bits(target);
2484
2485 head = target->entry.next;
2486 /* there can already be other linked works, inherit and set */
2487 linked = *bits & WORK_STRUCT_LINKED;
2488 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2489 }
2490
2491 debug_work_activate(&barr->work);
2492 insert_work(pwq, &barr->work, head,
2493 work_color_to_flags(WORK_NO_COLOR) | linked);
2494 }
2495
2496 /**
2497 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2498 * @wq: workqueue being flushed
2499 * @flush_color: new flush color, < 0 for no-op
2500 * @work_color: new work color, < 0 for no-op
2501 *
2502 * Prepare pwqs for workqueue flushing.
2503 *
2504 * If @flush_color is non-negative, flush_color on all pwqs should be
2505 * -1. If no pwq has in-flight commands at the specified color, all
2506 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2507 * has in flight commands, its pwq->flush_color is set to
2508 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2509 * wakeup logic is armed and %true is returned.
2510 *
2511 * The caller should have initialized @wq->first_flusher prior to
2512 * calling this function with non-negative @flush_color. If
2513 * @flush_color is negative, no flush color update is done and %false
2514 * is returned.
2515 *
2516 * If @work_color is non-negative, all pwqs should have the same
2517 * work_color which is previous to @work_color and all will be
2518 * advanced to @work_color.
2519 *
2520 * CONTEXT:
2521 * mutex_lock(wq->mutex).
2522 *
2523 * Return:
2524 * %true if @flush_color >= 0 and there's something to flush. %false
2525 * otherwise.
2526 */
2527 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2528 int flush_color, int work_color)
2529 {
2530 bool wait = false;
2531 struct pool_workqueue *pwq;
2532
2533 if (flush_color >= 0) {
2534 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2535 atomic_set(&wq->nr_pwqs_to_flush, 1);
2536 }
2537
2538 for_each_pwq(pwq, wq) {
2539 struct worker_pool *pool = pwq->pool;
2540
2541 spin_lock_irq(&pool->lock);
2542
2543 if (flush_color >= 0) {
2544 WARN_ON_ONCE(pwq->flush_color != -1);
2545
2546 if (pwq->nr_in_flight[flush_color]) {
2547 pwq->flush_color = flush_color;
2548 atomic_inc(&wq->nr_pwqs_to_flush);
2549 wait = true;
2550 }
2551 }
2552
2553 if (work_color >= 0) {
2554 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2555 pwq->work_color = work_color;
2556 }
2557
2558 spin_unlock_irq(&pool->lock);
2559 }
2560
2561 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2562 complete(&wq->first_flusher->done);
2563
2564 return wait;
2565 }
2566
2567 /**
2568 * flush_workqueue - ensure that any scheduled work has run to completion.
2569 * @wq: workqueue to flush
2570 *
2571 * This function sleeps until all work items which were queued on entry
2572 * have finished execution, but it is not livelocked by new incoming ones.
2573 */
2574 void flush_workqueue(struct workqueue_struct *wq)
2575 {
2576 struct wq_flusher this_flusher = {
2577 .list = LIST_HEAD_INIT(this_flusher.list),
2578 .flush_color = -1,
2579 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2580 };
2581 int next_color;
2582
2583 lock_map_acquire(&wq->lockdep_map);
2584 lock_map_release(&wq->lockdep_map);
2585
2586 mutex_lock(&wq->mutex);
2587
2588 /*
2589 * Start-to-wait phase
2590 */
2591 next_color = work_next_color(wq->work_color);
2592
2593 if (next_color != wq->flush_color) {
2594 /*
2595 * Color space is not full. The current work_color
2596 * becomes our flush_color and work_color is advanced
2597 * by one.
2598 */
2599 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2600 this_flusher.flush_color = wq->work_color;
2601 wq->work_color = next_color;
2602
2603 if (!wq->first_flusher) {
2604 /* no flush in progress, become the first flusher */
2605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2606
2607 wq->first_flusher = &this_flusher;
2608
2609 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2610 wq->work_color)) {
2611 /* nothing to flush, done */
2612 wq->flush_color = next_color;
2613 wq->first_flusher = NULL;
2614 goto out_unlock;
2615 }
2616 } else {
2617 /* wait in queue */
2618 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2619 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2620 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2621 }
2622 } else {
2623 /*
2624 * Oops, color space is full, wait on overflow queue.
2625 * The next flush completion will assign us
2626 * flush_color and transfer to flusher_queue.
2627 */
2628 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2629 }
2630
2631 check_flush_dependency(wq, NULL);
2632
2633 mutex_unlock(&wq->mutex);
2634
2635 wait_for_completion(&this_flusher.done);
2636
2637 /*
2638 * Wake-up-and-cascade phase
2639 *
2640 * First flushers are responsible for cascading flushes and
2641 * handling overflow. Non-first flushers can simply return.
2642 */
2643 if (wq->first_flusher != &this_flusher)
2644 return;
2645
2646 mutex_lock(&wq->mutex);
2647
2648 /* we might have raced, check again with mutex held */
2649 if (wq->first_flusher != &this_flusher)
2650 goto out_unlock;
2651
2652 wq->first_flusher = NULL;
2653
2654 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2655 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2656
2657 while (true) {
2658 struct wq_flusher *next, *tmp;
2659
2660 /* complete all the flushers sharing the current flush color */
2661 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2662 if (next->flush_color != wq->flush_color)
2663 break;
2664 list_del_init(&next->list);
2665 complete(&next->done);
2666 }
2667
2668 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2669 wq->flush_color != work_next_color(wq->work_color));
2670
2671 /* this flush_color is finished, advance by one */
2672 wq->flush_color = work_next_color(wq->flush_color);
2673
2674 /* one color has been freed, handle overflow queue */
2675 if (!list_empty(&wq->flusher_overflow)) {
2676 /*
2677 * Assign the same color to all overflowed
2678 * flushers, advance work_color and append to
2679 * flusher_queue. This is the start-to-wait
2680 * phase for these overflowed flushers.
2681 */
2682 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2683 tmp->flush_color = wq->work_color;
2684
2685 wq->work_color = work_next_color(wq->work_color);
2686
2687 list_splice_tail_init(&wq->flusher_overflow,
2688 &wq->flusher_queue);
2689 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2690 }
2691
2692 if (list_empty(&wq->flusher_queue)) {
2693 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2694 break;
2695 }
2696
2697 /*
2698 * Need to flush more colors. Make the next flusher
2699 * the new first flusher and arm pwqs.
2700 */
2701 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2702 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2703
2704 list_del_init(&next->list);
2705 wq->first_flusher = next;
2706
2707 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2708 break;
2709
2710 /*
2711 * Meh... this color is already done, clear first
2712 * flusher and repeat cascading.
2713 */
2714 wq->first_flusher = NULL;
2715 }
2716
2717 out_unlock:
2718 mutex_unlock(&wq->mutex);
2719 }
2720 EXPORT_SYMBOL(flush_workqueue);
2721
2722 /**
2723 * drain_workqueue - drain a workqueue
2724 * @wq: workqueue to drain
2725 *
2726 * Wait until the workqueue becomes empty. While draining is in progress,
2727 * only chain queueing is allowed. IOW, only currently pending or running
2728 * work items on @wq can queue further work items on it. @wq is flushed
2729 * repeatedly until it becomes empty. The number of flushing is determined
2730 * by the depth of chaining and should be relatively short. Whine if it
2731 * takes too long.
2732 */
2733 void drain_workqueue(struct workqueue_struct *wq)
2734 {
2735 unsigned int flush_cnt = 0;
2736 struct pool_workqueue *pwq;
2737
2738 /*
2739 * __queue_work() needs to test whether there are drainers, is much
2740 * hotter than drain_workqueue() and already looks at @wq->flags.
2741 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2742 */
2743 mutex_lock(&wq->mutex);
2744 if (!wq->nr_drainers++)
2745 wq->flags |= __WQ_DRAINING;
2746 mutex_unlock(&wq->mutex);
2747 reflush:
2748 flush_workqueue(wq);
2749
2750 mutex_lock(&wq->mutex);
2751
2752 for_each_pwq(pwq, wq) {
2753 bool drained;
2754
2755 spin_lock_irq(&pwq->pool->lock);
2756 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2757 spin_unlock_irq(&pwq->pool->lock);
2758
2759 if (drained)
2760 continue;
2761
2762 if (++flush_cnt == 10 ||
2763 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2764 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2765 wq->name, flush_cnt);
2766
2767 mutex_unlock(&wq->mutex);
2768 goto reflush;
2769 }
2770
2771 if (!--wq->nr_drainers)
2772 wq->flags &= ~__WQ_DRAINING;
2773 mutex_unlock(&wq->mutex);
2774 }
2775 EXPORT_SYMBOL_GPL(drain_workqueue);
2776
2777 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2778 {
2779 struct worker *worker = NULL;
2780 struct worker_pool *pool;
2781 struct pool_workqueue *pwq;
2782
2783 might_sleep();
2784
2785 local_irq_disable();
2786 pool = get_work_pool(work);
2787 if (!pool) {
2788 local_irq_enable();
2789 return false;
2790 }
2791
2792 spin_lock(&pool->lock);
2793 /* see the comment in try_to_grab_pending() with the same code */
2794 pwq = get_work_pwq(work);
2795 if (pwq) {
2796 if (unlikely(pwq->pool != pool))
2797 goto already_gone;
2798 } else {
2799 worker = find_worker_executing_work(pool, work);
2800 if (!worker)
2801 goto already_gone;
2802 pwq = worker->current_pwq;
2803 }
2804
2805 check_flush_dependency(pwq->wq, work);
2806
2807 insert_wq_barrier(pwq, barr, work, worker);
2808 spin_unlock_irq(&pool->lock);
2809
2810 /*
2811 * If @max_active is 1 or rescuer is in use, flushing another work
2812 * item on the same workqueue may lead to deadlock. Make sure the
2813 * flusher is not running on the same workqueue by verifying write
2814 * access.
2815 */
2816 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2817 lock_map_acquire(&pwq->wq->lockdep_map);
2818 else
2819 lock_map_acquire_read(&pwq->wq->lockdep_map);
2820 lock_map_release(&pwq->wq->lockdep_map);
2821
2822 return true;
2823 already_gone:
2824 spin_unlock_irq(&pool->lock);
2825 return false;
2826 }
2827
2828 /**
2829 * flush_work - wait for a work to finish executing the last queueing instance
2830 * @work: the work to flush
2831 *
2832 * Wait until @work has finished execution. @work is guaranteed to be idle
2833 * on return if it hasn't been requeued since flush started.
2834 *
2835 * Return:
2836 * %true if flush_work() waited for the work to finish execution,
2837 * %false if it was already idle.
2838 */
2839 bool flush_work(struct work_struct *work)
2840 {
2841 struct wq_barrier barr;
2842
2843 lock_map_acquire(&work->lockdep_map);
2844 lock_map_release(&work->lockdep_map);
2845
2846 if (start_flush_work(work, &barr)) {
2847 wait_for_completion(&barr.done);
2848 destroy_work_on_stack(&barr.work);
2849 return true;
2850 } else {
2851 return false;
2852 }
2853 }
2854 EXPORT_SYMBOL_GPL(flush_work);
2855
2856 struct cwt_wait {
2857 wait_queue_t wait;
2858 struct work_struct *work;
2859 };
2860
2861 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2862 {
2863 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2864
2865 if (cwait->work != key)
2866 return 0;
2867 return autoremove_wake_function(wait, mode, sync, key);
2868 }
2869
2870 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2871 {
2872 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2873 unsigned long flags;
2874 int ret;
2875
2876 do {
2877 ret = try_to_grab_pending(work, is_dwork, &flags);
2878 /*
2879 * If someone else is already canceling, wait for it to
2880 * finish. flush_work() doesn't work for PREEMPT_NONE
2881 * because we may get scheduled between @work's completion
2882 * and the other canceling task resuming and clearing
2883 * CANCELING - flush_work() will return false immediately
2884 * as @work is no longer busy, try_to_grab_pending() will
2885 * return -ENOENT as @work is still being canceled and the
2886 * other canceling task won't be able to clear CANCELING as
2887 * we're hogging the CPU.
2888 *
2889 * Let's wait for completion using a waitqueue. As this
2890 * may lead to the thundering herd problem, use a custom
2891 * wake function which matches @work along with exclusive
2892 * wait and wakeup.
2893 */
2894 if (unlikely(ret == -ENOENT)) {
2895 struct cwt_wait cwait;
2896
2897 init_wait(&cwait.wait);
2898 cwait.wait.func = cwt_wakefn;
2899 cwait.work = work;
2900
2901 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2902 TASK_UNINTERRUPTIBLE);
2903 if (work_is_canceling(work))
2904 schedule();
2905 finish_wait(&cancel_waitq, &cwait.wait);
2906 }
2907 } while (unlikely(ret < 0));
2908
2909 /* tell other tasks trying to grab @work to back off */
2910 mark_work_canceling(work);
2911 local_irq_restore(flags);
2912
2913 flush_work(work);
2914 clear_work_data(work);
2915
2916 /*
2917 * Paired with prepare_to_wait() above so that either
2918 * waitqueue_active() is visible here or !work_is_canceling() is
2919 * visible there.
2920 */
2921 smp_mb();
2922 if (waitqueue_active(&cancel_waitq))
2923 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2924
2925 return ret;
2926 }
2927
2928 /**
2929 * cancel_work_sync - cancel a work and wait for it to finish
2930 * @work: the work to cancel
2931 *
2932 * Cancel @work and wait for its execution to finish. This function
2933 * can be used even if the work re-queues itself or migrates to
2934 * another workqueue. On return from this function, @work is
2935 * guaranteed to be not pending or executing on any CPU.
2936 *
2937 * cancel_work_sync(&delayed_work->work) must not be used for
2938 * delayed_work's. Use cancel_delayed_work_sync() instead.
2939 *
2940 * The caller must ensure that the workqueue on which @work was last
2941 * queued can't be destroyed before this function returns.
2942 *
2943 * Return:
2944 * %true if @work was pending, %false otherwise.
2945 */
2946 bool cancel_work_sync(struct work_struct *work)
2947 {
2948 return __cancel_work_timer(work, false);
2949 }
2950 EXPORT_SYMBOL_GPL(cancel_work_sync);
2951
2952 /**
2953 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2954 * @dwork: the delayed work to flush
2955 *
2956 * Delayed timer is cancelled and the pending work is queued for
2957 * immediate execution. Like flush_work(), this function only
2958 * considers the last queueing instance of @dwork.
2959 *
2960 * Return:
2961 * %true if flush_work() waited for the work to finish execution,
2962 * %false if it was already idle.
2963 */
2964 bool flush_delayed_work(struct delayed_work *dwork)
2965 {
2966 local_irq_disable();
2967 if (del_timer_sync(&dwork->timer))
2968 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2969 local_irq_enable();
2970 return flush_work(&dwork->work);
2971 }
2972 EXPORT_SYMBOL(flush_delayed_work);
2973
2974 /**
2975 * cancel_delayed_work - cancel a delayed work
2976 * @dwork: delayed_work to cancel
2977 *
2978 * Kill off a pending delayed_work.
2979 *
2980 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2981 * pending.
2982 *
2983 * Note:
2984 * The work callback function may still be running on return, unless
2985 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2986 * use cancel_delayed_work_sync() to wait on it.
2987 *
2988 * This function is safe to call from any context including IRQ handler.
2989 */
2990 bool cancel_delayed_work(struct delayed_work *dwork)
2991 {
2992 unsigned long flags;
2993 int ret;
2994
2995 do {
2996 ret = try_to_grab_pending(&dwork->work, true, &flags);
2997 } while (unlikely(ret == -EAGAIN));
2998
2999 if (unlikely(ret < 0))
3000 return false;
3001
3002 set_work_pool_and_clear_pending(&dwork->work,
3003 get_work_pool_id(&dwork->work));
3004 local_irq_restore(flags);
3005 return ret;
3006 }
3007 EXPORT_SYMBOL(cancel_delayed_work);
3008
3009 /**
3010 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3011 * @dwork: the delayed work cancel
3012 *
3013 * This is cancel_work_sync() for delayed works.
3014 *
3015 * Return:
3016 * %true if @dwork was pending, %false otherwise.
3017 */
3018 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3019 {
3020 return __cancel_work_timer(&dwork->work, true);
3021 }
3022 EXPORT_SYMBOL(cancel_delayed_work_sync);
3023
3024 /**
3025 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3026 * @func: the function to call
3027 *
3028 * schedule_on_each_cpu() executes @func on each online CPU using the
3029 * system workqueue and blocks until all CPUs have completed.
3030 * schedule_on_each_cpu() is very slow.
3031 *
3032 * Return:
3033 * 0 on success, -errno on failure.
3034 */
3035 int schedule_on_each_cpu(work_func_t func)
3036 {
3037 int cpu;
3038 struct work_struct __percpu *works;
3039
3040 works = alloc_percpu(struct work_struct);
3041 if (!works)
3042 return -ENOMEM;
3043
3044 get_online_cpus();
3045
3046 for_each_online_cpu(cpu) {
3047 struct work_struct *work = per_cpu_ptr(works, cpu);
3048
3049 INIT_WORK(work, func);
3050 schedule_work_on(cpu, work);
3051 }
3052
3053 for_each_online_cpu(cpu)
3054 flush_work(per_cpu_ptr(works, cpu));
3055
3056 put_online_cpus();
3057 free_percpu(works);
3058 return 0;
3059 }
3060
3061 /**
3062 * execute_in_process_context - reliably execute the routine with user context
3063 * @fn: the function to execute
3064 * @ew: guaranteed storage for the execute work structure (must
3065 * be available when the work executes)
3066 *
3067 * Executes the function immediately if process context is available,
3068 * otherwise schedules the function for delayed execution.
3069 *
3070 * Return: 0 - function was executed
3071 * 1 - function was scheduled for execution
3072 */
3073 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3074 {
3075 if (!in_interrupt()) {
3076 fn(&ew->work);
3077 return 0;
3078 }
3079
3080 INIT_WORK(&ew->work, fn);
3081 schedule_work(&ew->work);
3082
3083 return 1;
3084 }
3085 EXPORT_SYMBOL_GPL(execute_in_process_context);
3086
3087 /**
3088 * free_workqueue_attrs - free a workqueue_attrs
3089 * @attrs: workqueue_attrs to free
3090 *
3091 * Undo alloc_workqueue_attrs().
3092 */
3093 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3094 {
3095 if (attrs) {
3096 free_cpumask_var(attrs->cpumask);
3097 kfree(attrs);
3098 }
3099 }
3100
3101 /**
3102 * alloc_workqueue_attrs - allocate a workqueue_attrs
3103 * @gfp_mask: allocation mask to use
3104 *
3105 * Allocate a new workqueue_attrs, initialize with default settings and
3106 * return it.
3107 *
3108 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3109 */
3110 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3111 {
3112 struct workqueue_attrs *attrs;
3113
3114 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3115 if (!attrs)
3116 goto fail;
3117 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3118 goto fail;
3119
3120 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3121 return attrs;
3122 fail:
3123 free_workqueue_attrs(attrs);
3124 return NULL;
3125 }
3126
3127 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3128 const struct workqueue_attrs *from)
3129 {
3130 to->nice = from->nice;
3131 cpumask_copy(to->cpumask, from->cpumask);
3132 /*
3133 * Unlike hash and equality test, this function doesn't ignore
3134 * ->no_numa as it is used for both pool and wq attrs. Instead,
3135 * get_unbound_pool() explicitly clears ->no_numa after copying.
3136 */
3137 to->no_numa = from->no_numa;
3138 }
3139
3140 /* hash value of the content of @attr */
3141 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3142 {
3143 u32 hash = 0;
3144
3145 hash = jhash_1word(attrs->nice, hash);
3146 hash = jhash(cpumask_bits(attrs->cpumask),
3147 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3148 return hash;
3149 }
3150
3151 /* content equality test */
3152 static bool wqattrs_equal(const struct workqueue_attrs *a,
3153 const struct workqueue_attrs *b)
3154 {
3155 if (a->nice != b->nice)
3156 return false;
3157 if (!cpumask_equal(a->cpumask, b->cpumask))
3158 return false;
3159 return true;
3160 }
3161
3162 /**
3163 * init_worker_pool - initialize a newly zalloc'd worker_pool
3164 * @pool: worker_pool to initialize
3165 *
3166 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3167 *
3168 * Return: 0 on success, -errno on failure. Even on failure, all fields
3169 * inside @pool proper are initialized and put_unbound_pool() can be called
3170 * on @pool safely to release it.
3171 */
3172 static int init_worker_pool(struct worker_pool *pool)
3173 {
3174 spin_lock_init(&pool->lock);
3175 pool->id = -1;
3176 pool->cpu = -1;
3177 pool->node = NUMA_NO_NODE;
3178 pool->flags |= POOL_DISASSOCIATED;
3179 pool->watchdog_ts = jiffies;
3180 INIT_LIST_HEAD(&pool->worklist);
3181 INIT_LIST_HEAD(&pool->idle_list);
3182 hash_init(pool->busy_hash);
3183
3184 init_timer_deferrable(&pool->idle_timer);
3185 pool->idle_timer.function = idle_worker_timeout;
3186 pool->idle_timer.data = (unsigned long)pool;
3187
3188 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3189 (unsigned long)pool);
3190
3191 mutex_init(&pool->manager_arb);
3192 mutex_init(&pool->attach_mutex);
3193 INIT_LIST_HEAD(&pool->workers);
3194
3195 ida_init(&pool->worker_ida);
3196 INIT_HLIST_NODE(&pool->hash_node);
3197 pool->refcnt = 1;
3198
3199 /* shouldn't fail above this point */
3200 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3201 if (!pool->attrs)
3202 return -ENOMEM;
3203 return 0;
3204 }
3205
3206 static void rcu_free_wq(struct rcu_head *rcu)
3207 {
3208 struct workqueue_struct *wq =
3209 container_of(rcu, struct workqueue_struct, rcu);
3210
3211 if (!(wq->flags & WQ_UNBOUND))
3212 free_percpu(wq->cpu_pwqs);
3213 else
3214 free_workqueue_attrs(wq->unbound_attrs);
3215
3216 kfree(wq->rescuer);
3217 kfree(wq);
3218 }
3219
3220 static void rcu_free_pool(struct rcu_head *rcu)
3221 {
3222 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3223
3224 ida_destroy(&pool->worker_ida);
3225 free_workqueue_attrs(pool->attrs);
3226 kfree(pool);
3227 }
3228
3229 /**
3230 * put_unbound_pool - put a worker_pool
3231 * @pool: worker_pool to put
3232 *
3233 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3234 * safe manner. get_unbound_pool() calls this function on its failure path
3235 * and this function should be able to release pools which went through,
3236 * successfully or not, init_worker_pool().
3237 *
3238 * Should be called with wq_pool_mutex held.
3239 */
3240 static void put_unbound_pool(struct worker_pool *pool)
3241 {
3242 DECLARE_COMPLETION_ONSTACK(detach_completion);
3243 struct worker *worker;
3244
3245 lockdep_assert_held(&wq_pool_mutex);
3246
3247 if (--pool->refcnt)
3248 return;
3249
3250 /* sanity checks */
3251 if (WARN_ON(!(pool->cpu < 0)) ||
3252 WARN_ON(!list_empty(&pool->worklist)))
3253 return;
3254
3255 /* release id and unhash */
3256 if (pool->id >= 0)
3257 idr_remove(&worker_pool_idr, pool->id);
3258 hash_del(&pool->hash_node);
3259
3260 /*
3261 * Become the manager and destroy all workers. Grabbing
3262 * manager_arb prevents @pool's workers from blocking on
3263 * attach_mutex.
3264 */
3265 mutex_lock(&pool->manager_arb);
3266
3267 spin_lock_irq(&pool->lock);
3268 while ((worker = first_idle_worker(pool)))
3269 destroy_worker(worker);
3270 WARN_ON(pool->nr_workers || pool->nr_idle);
3271 spin_unlock_irq(&pool->lock);
3272
3273 mutex_lock(&pool->attach_mutex);
3274 if (!list_empty(&pool->workers))
3275 pool->detach_completion = &detach_completion;
3276 mutex_unlock(&pool->attach_mutex);
3277
3278 if (pool->detach_completion)
3279 wait_for_completion(pool->detach_completion);
3280
3281 mutex_unlock(&pool->manager_arb);
3282
3283 /* shut down the timers */
3284 del_timer_sync(&pool->idle_timer);
3285 del_timer_sync(&pool->mayday_timer);
3286
3287 /* sched-RCU protected to allow dereferences from get_work_pool() */
3288 call_rcu_sched(&pool->rcu, rcu_free_pool);
3289 }
3290
3291 /**
3292 * get_unbound_pool - get a worker_pool with the specified attributes
3293 * @attrs: the attributes of the worker_pool to get
3294 *
3295 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3296 * reference count and return it. If there already is a matching
3297 * worker_pool, it will be used; otherwise, this function attempts to
3298 * create a new one.
3299 *
3300 * Should be called with wq_pool_mutex held.
3301 *
3302 * Return: On success, a worker_pool with the same attributes as @attrs.
3303 * On failure, %NULL.
3304 */
3305 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3306 {
3307 u32 hash = wqattrs_hash(attrs);
3308 struct worker_pool *pool;
3309 int node;
3310 int target_node = NUMA_NO_NODE;
3311
3312 lockdep_assert_held(&wq_pool_mutex);
3313
3314 /* do we already have a matching pool? */
3315 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3316 if (wqattrs_equal(pool->attrs, attrs)) {
3317 pool->refcnt++;
3318 return pool;
3319 }
3320 }
3321
3322 /* if cpumask is contained inside a NUMA node, we belong to that node */
3323 if (wq_numa_enabled) {
3324 for_each_node(node) {
3325 if (cpumask_subset(attrs->cpumask,
3326 wq_numa_possible_cpumask[node])) {
3327 target_node = node;
3328 break;
3329 }
3330 }
3331 }
3332
3333 /* nope, create a new one */
3334 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3335 if (!pool || init_worker_pool(pool) < 0)
3336 goto fail;
3337
3338 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3339 copy_workqueue_attrs(pool->attrs, attrs);
3340 pool->node = target_node;
3341
3342 /*
3343 * no_numa isn't a worker_pool attribute, always clear it. See
3344 * 'struct workqueue_attrs' comments for detail.
3345 */
3346 pool->attrs->no_numa = false;
3347
3348 if (worker_pool_assign_id(pool) < 0)
3349 goto fail;
3350
3351 /* create and start the initial worker */
3352 if (!create_worker(pool))
3353 goto fail;
3354
3355 /* install */
3356 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3357
3358 return pool;
3359 fail:
3360 if (pool)
3361 put_unbound_pool(pool);
3362 return NULL;
3363 }
3364
3365 static void rcu_free_pwq(struct rcu_head *rcu)
3366 {
3367 kmem_cache_free(pwq_cache,
3368 container_of(rcu, struct pool_workqueue, rcu));
3369 }
3370
3371 /*
3372 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3373 * and needs to be destroyed.
3374 */
3375 static void pwq_unbound_release_workfn(struct work_struct *work)
3376 {
3377 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3378 unbound_release_work);
3379 struct workqueue_struct *wq = pwq->wq;
3380 struct worker_pool *pool = pwq->pool;
3381 bool is_last;
3382
3383 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3384 return;
3385
3386 mutex_lock(&wq->mutex);
3387 list_del_rcu(&pwq->pwqs_node);
3388 is_last = list_empty(&wq->pwqs);
3389 mutex_unlock(&wq->mutex);
3390
3391 mutex_lock(&wq_pool_mutex);
3392 put_unbound_pool(pool);
3393 mutex_unlock(&wq_pool_mutex);
3394
3395 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3396
3397 /*
3398 * If we're the last pwq going away, @wq is already dead and no one
3399 * is gonna access it anymore. Schedule RCU free.
3400 */
3401 if (is_last)
3402 call_rcu_sched(&wq->rcu, rcu_free_wq);
3403 }
3404
3405 /**
3406 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3407 * @pwq: target pool_workqueue
3408 *
3409 * If @pwq isn't freezing, set @pwq->max_active to the associated
3410 * workqueue's saved_max_active and activate delayed work items
3411 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3412 */
3413 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3414 {
3415 struct workqueue_struct *wq = pwq->wq;
3416 bool freezable = wq->flags & WQ_FREEZABLE;
3417
3418 /* for @wq->saved_max_active */
3419 lockdep_assert_held(&wq->mutex);
3420
3421 /* fast exit for non-freezable wqs */
3422 if (!freezable && pwq->max_active == wq->saved_max_active)
3423 return;
3424
3425 spin_lock_irq(&pwq->pool->lock);
3426
3427 /*
3428 * During [un]freezing, the caller is responsible for ensuring that
3429 * this function is called at least once after @workqueue_freezing
3430 * is updated and visible.
3431 */
3432 if (!freezable || !workqueue_freezing) {
3433 pwq->max_active = wq->saved_max_active;
3434
3435 while (!list_empty(&pwq->delayed_works) &&
3436 pwq->nr_active < pwq->max_active)
3437 pwq_activate_first_delayed(pwq);
3438
3439 /*
3440 * Need to kick a worker after thawed or an unbound wq's
3441 * max_active is bumped. It's a slow path. Do it always.
3442 */
3443 wake_up_worker(pwq->pool);
3444 } else {
3445 pwq->max_active = 0;
3446 }
3447
3448 spin_unlock_irq(&pwq->pool->lock);
3449 }
3450
3451 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3452 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3453 struct worker_pool *pool)
3454 {
3455 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3456
3457 memset(pwq, 0, sizeof(*pwq));
3458
3459 pwq->pool = pool;
3460 pwq->wq = wq;
3461 pwq->flush_color = -1;
3462 pwq->refcnt = 1;
3463 INIT_LIST_HEAD(&pwq->delayed_works);
3464 INIT_LIST_HEAD(&pwq->pwqs_node);
3465 INIT_LIST_HEAD(&pwq->mayday_node);
3466 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3467 }
3468
3469 /* sync @pwq with the current state of its associated wq and link it */
3470 static void link_pwq(struct pool_workqueue *pwq)
3471 {
3472 struct workqueue_struct *wq = pwq->wq;
3473
3474 lockdep_assert_held(&wq->mutex);
3475
3476 /* may be called multiple times, ignore if already linked */
3477 if (!list_empty(&pwq->pwqs_node))
3478 return;
3479
3480 /* set the matching work_color */
3481 pwq->work_color = wq->work_color;
3482
3483 /* sync max_active to the current setting */
3484 pwq_adjust_max_active(pwq);
3485
3486 /* link in @pwq */
3487 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3488 }
3489
3490 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3491 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3492 const struct workqueue_attrs *attrs)
3493 {
3494 struct worker_pool *pool;
3495 struct pool_workqueue *pwq;
3496
3497 lockdep_assert_held(&wq_pool_mutex);
3498
3499 pool = get_unbound_pool(attrs);
3500 if (!pool)
3501 return NULL;
3502
3503 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3504 if (!pwq) {
3505 put_unbound_pool(pool);
3506 return NULL;
3507 }
3508
3509 init_pwq(pwq, wq, pool);
3510 return pwq;
3511 }
3512
3513 /**
3514 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3515 * @attrs: the wq_attrs of the default pwq of the target workqueue
3516 * @node: the target NUMA node
3517 * @cpu_going_down: if >= 0, the CPU to consider as offline
3518 * @cpumask: outarg, the resulting cpumask
3519 *
3520 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3521 * @cpu_going_down is >= 0, that cpu is considered offline during
3522 * calculation. The result is stored in @cpumask.
3523 *
3524 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3525 * enabled and @node has online CPUs requested by @attrs, the returned
3526 * cpumask is the intersection of the possible CPUs of @node and
3527 * @attrs->cpumask.
3528 *
3529 * The caller is responsible for ensuring that the cpumask of @node stays
3530 * stable.
3531 *
3532 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3533 * %false if equal.
3534 */
3535 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3536 int cpu_going_down, cpumask_t *cpumask)
3537 {
3538 if (!wq_numa_enabled || attrs->no_numa)
3539 goto use_dfl;
3540
3541 /* does @node have any online CPUs @attrs wants? */
3542 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3543 if (cpu_going_down >= 0)
3544 cpumask_clear_cpu(cpu_going_down, cpumask);
3545
3546 if (cpumask_empty(cpumask))
3547 goto use_dfl;
3548
3549 /* yeap, return possible CPUs in @node that @attrs wants */
3550 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3551 return !cpumask_equal(cpumask, attrs->cpumask);
3552
3553 use_dfl:
3554 cpumask_copy(cpumask, attrs->cpumask);
3555 return false;
3556 }
3557
3558 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3559 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3560 int node,
3561 struct pool_workqueue *pwq)
3562 {
3563 struct pool_workqueue *old_pwq;
3564
3565 lockdep_assert_held(&wq_pool_mutex);
3566 lockdep_assert_held(&wq->mutex);
3567
3568 /* link_pwq() can handle duplicate calls */
3569 link_pwq(pwq);
3570
3571 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3572 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3573 return old_pwq;
3574 }
3575
3576 /* context to store the prepared attrs & pwqs before applying */
3577 struct apply_wqattrs_ctx {
3578 struct workqueue_struct *wq; /* target workqueue */
3579 struct workqueue_attrs *attrs; /* attrs to apply */
3580 struct list_head list; /* queued for batching commit */
3581 struct pool_workqueue *dfl_pwq;
3582 struct pool_workqueue *pwq_tbl[];
3583 };
3584
3585 /* free the resources after success or abort */
3586 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3587 {
3588 if (ctx) {
3589 int node;
3590
3591 for_each_node(node)
3592 put_pwq_unlocked(ctx->pwq_tbl[node]);
3593 put_pwq_unlocked(ctx->dfl_pwq);
3594
3595 free_workqueue_attrs(ctx->attrs);
3596
3597 kfree(ctx);
3598 }
3599 }
3600
3601 /* allocate the attrs and pwqs for later installation */
3602 static struct apply_wqattrs_ctx *
3603 apply_wqattrs_prepare(struct workqueue_struct *wq,
3604 const struct workqueue_attrs *attrs)
3605 {
3606 struct apply_wqattrs_ctx *ctx;
3607 struct workqueue_attrs *new_attrs, *tmp_attrs;
3608 int node;
3609
3610 lockdep_assert_held(&wq_pool_mutex);
3611
3612 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3613 GFP_KERNEL);
3614
3615 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3616 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3617 if (!ctx || !new_attrs || !tmp_attrs)
3618 goto out_free;
3619
3620 /*
3621 * Calculate the attrs of the default pwq.
3622 * If the user configured cpumask doesn't overlap with the
3623 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3624 */
3625 copy_workqueue_attrs(new_attrs, attrs);
3626 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3627 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3628 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3629
3630 /*
3631 * We may create multiple pwqs with differing cpumasks. Make a
3632 * copy of @new_attrs which will be modified and used to obtain
3633 * pools.
3634 */
3635 copy_workqueue_attrs(tmp_attrs, new_attrs);
3636
3637 /*
3638 * If something goes wrong during CPU up/down, we'll fall back to
3639 * the default pwq covering whole @attrs->cpumask. Always create
3640 * it even if we don't use it immediately.
3641 */
3642 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3643 if (!ctx->dfl_pwq)
3644 goto out_free;
3645
3646 for_each_node(node) {
3647 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3648 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3649 if (!ctx->pwq_tbl[node])
3650 goto out_free;
3651 } else {
3652 ctx->dfl_pwq->refcnt++;
3653 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3654 }
3655 }
3656
3657 /* save the user configured attrs and sanitize it. */
3658 copy_workqueue_attrs(new_attrs, attrs);
3659 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3660 ctx->attrs = new_attrs;
3661
3662 ctx->wq = wq;
3663 free_workqueue_attrs(tmp_attrs);
3664 return ctx;
3665
3666 out_free:
3667 free_workqueue_attrs(tmp_attrs);
3668 free_workqueue_attrs(new_attrs);
3669 apply_wqattrs_cleanup(ctx);
3670 return NULL;
3671 }
3672
3673 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3674 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3675 {
3676 int node;
3677
3678 /* all pwqs have been created successfully, let's install'em */
3679 mutex_lock(&ctx->wq->mutex);
3680
3681 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3682
3683 /* save the previous pwq and install the new one */
3684 for_each_node(node)
3685 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3686 ctx->pwq_tbl[node]);
3687
3688 /* @dfl_pwq might not have been used, ensure it's linked */
3689 link_pwq(ctx->dfl_pwq);
3690 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3691
3692 mutex_unlock(&ctx->wq->mutex);
3693 }
3694
3695 static void apply_wqattrs_lock(void)
3696 {
3697 /* CPUs should stay stable across pwq creations and installations */
3698 get_online_cpus();
3699 mutex_lock(&wq_pool_mutex);
3700 }
3701
3702 static void apply_wqattrs_unlock(void)
3703 {
3704 mutex_unlock(&wq_pool_mutex);
3705 put_online_cpus();
3706 }
3707
3708 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3709 const struct workqueue_attrs *attrs)
3710 {
3711 struct apply_wqattrs_ctx *ctx;
3712
3713 /* only unbound workqueues can change attributes */
3714 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3715 return -EINVAL;
3716
3717 /* creating multiple pwqs breaks ordering guarantee */
3718 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3719 return -EINVAL;
3720
3721 ctx = apply_wqattrs_prepare(wq, attrs);
3722 if (!ctx)
3723 return -ENOMEM;
3724
3725 /* the ctx has been prepared successfully, let's commit it */
3726 apply_wqattrs_commit(ctx);
3727 apply_wqattrs_cleanup(ctx);
3728
3729 return 0;
3730 }
3731
3732 /**
3733 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3734 * @wq: the target workqueue
3735 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3736 *
3737 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3738 * machines, this function maps a separate pwq to each NUMA node with
3739 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3740 * NUMA node it was issued on. Older pwqs are released as in-flight work
3741 * items finish. Note that a work item which repeatedly requeues itself
3742 * back-to-back will stay on its current pwq.
3743 *
3744 * Performs GFP_KERNEL allocations.
3745 *
3746 * Return: 0 on success and -errno on failure.
3747 */
3748 int apply_workqueue_attrs(struct workqueue_struct *wq,
3749 const struct workqueue_attrs *attrs)
3750 {
3751 int ret;
3752
3753 apply_wqattrs_lock();
3754 ret = apply_workqueue_attrs_locked(wq, attrs);
3755 apply_wqattrs_unlock();
3756
3757 return ret;
3758 }
3759
3760 /**
3761 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3762 * @wq: the target workqueue
3763 * @cpu: the CPU coming up or going down
3764 * @online: whether @cpu is coming up or going down
3765 *
3766 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3767 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3768 * @wq accordingly.
3769 *
3770 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3771 * falls back to @wq->dfl_pwq which may not be optimal but is always
3772 * correct.
3773 *
3774 * Note that when the last allowed CPU of a NUMA node goes offline for a
3775 * workqueue with a cpumask spanning multiple nodes, the workers which were
3776 * already executing the work items for the workqueue will lose their CPU
3777 * affinity and may execute on any CPU. This is similar to how per-cpu
3778 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3779 * affinity, it's the user's responsibility to flush the work item from
3780 * CPU_DOWN_PREPARE.
3781 */
3782 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3783 bool online)
3784 {
3785 int node = cpu_to_node(cpu);
3786 int cpu_off = online ? -1 : cpu;
3787 struct pool_workqueue *old_pwq = NULL, *pwq;
3788 struct workqueue_attrs *target_attrs;
3789 cpumask_t *cpumask;
3790
3791 lockdep_assert_held(&wq_pool_mutex);
3792
3793 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3794 wq->unbound_attrs->no_numa)
3795 return;
3796
3797 /*
3798 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3799 * Let's use a preallocated one. The following buf is protected by
3800 * CPU hotplug exclusion.
3801 */
3802 target_attrs = wq_update_unbound_numa_attrs_buf;
3803 cpumask = target_attrs->cpumask;
3804
3805 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3806 pwq = unbound_pwq_by_node(wq, node);
3807
3808 /*
3809 * Let's determine what needs to be done. If the target cpumask is
3810 * different from the default pwq's, we need to compare it to @pwq's
3811 * and create a new one if they don't match. If the target cpumask
3812 * equals the default pwq's, the default pwq should be used.
3813 */
3814 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3815 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3816 return;
3817 } else {
3818 goto use_dfl_pwq;
3819 }
3820
3821 /* create a new pwq */
3822 pwq = alloc_unbound_pwq(wq, target_attrs);
3823 if (!pwq) {
3824 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3825 wq->name);
3826 goto use_dfl_pwq;
3827 }
3828
3829 /* Install the new pwq. */
3830 mutex_lock(&wq->mutex);
3831 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3832 goto out_unlock;
3833
3834 use_dfl_pwq:
3835 mutex_lock(&wq->mutex);
3836 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3837 get_pwq(wq->dfl_pwq);
3838 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3839 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3840 out_unlock:
3841 mutex_unlock(&wq->mutex);
3842 put_pwq_unlocked(old_pwq);
3843 }
3844
3845 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3846 {
3847 bool highpri = wq->flags & WQ_HIGHPRI;
3848 int cpu, ret;
3849
3850 if (!(wq->flags & WQ_UNBOUND)) {
3851 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3852 if (!wq->cpu_pwqs)
3853 return -ENOMEM;
3854
3855 for_each_possible_cpu(cpu) {
3856 struct pool_workqueue *pwq =
3857 per_cpu_ptr(wq->cpu_pwqs, cpu);
3858 struct worker_pool *cpu_pools =
3859 per_cpu(cpu_worker_pools, cpu);
3860
3861 init_pwq(pwq, wq, &cpu_pools[highpri]);
3862
3863 mutex_lock(&wq->mutex);
3864 link_pwq(pwq);
3865 mutex_unlock(&wq->mutex);
3866 }
3867 return 0;
3868 } else if (wq->flags & __WQ_ORDERED) {
3869 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3870 /* there should only be single pwq for ordering guarantee */
3871 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3872 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3873 "ordering guarantee broken for workqueue %s\n", wq->name);
3874 return ret;
3875 } else {
3876 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3877 }
3878 }
3879
3880 static int wq_clamp_max_active(int max_active, unsigned int flags,
3881 const char *name)
3882 {
3883 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3884
3885 if (max_active < 1 || max_active > lim)
3886 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3887 max_active, name, 1, lim);
3888
3889 return clamp_val(max_active, 1, lim);
3890 }
3891
3892 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3893 unsigned int flags,
3894 int max_active,
3895 struct lock_class_key *key,
3896 const char *lock_name, ...)
3897 {
3898 size_t tbl_size = 0;
3899 va_list args;
3900 struct workqueue_struct *wq;
3901 struct pool_workqueue *pwq;
3902
3903 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3904 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3905 flags |= WQ_UNBOUND;
3906
3907 /* allocate wq and format name */
3908 if (flags & WQ_UNBOUND)
3909 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3910
3911 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3912 if (!wq)
3913 return NULL;
3914
3915 if (flags & WQ_UNBOUND) {
3916 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3917 if (!wq->unbound_attrs)
3918 goto err_free_wq;
3919 }
3920
3921 va_start(args, lock_name);
3922 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3923 va_end(args);
3924
3925 max_active = max_active ?: WQ_DFL_ACTIVE;
3926 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3927
3928 /* init wq */
3929 wq->flags = flags;
3930 wq->saved_max_active = max_active;
3931 mutex_init(&wq->mutex);
3932 atomic_set(&wq->nr_pwqs_to_flush, 0);
3933 INIT_LIST_HEAD(&wq->pwqs);
3934 INIT_LIST_HEAD(&wq->flusher_queue);
3935 INIT_LIST_HEAD(&wq->flusher_overflow);
3936 INIT_LIST_HEAD(&wq->maydays);
3937
3938 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3939 INIT_LIST_HEAD(&wq->list);
3940
3941 if (alloc_and_link_pwqs(wq) < 0)
3942 goto err_free_wq;
3943
3944 /*
3945 * Workqueues which may be used during memory reclaim should
3946 * have a rescuer to guarantee forward progress.
3947 */
3948 if (flags & WQ_MEM_RECLAIM) {
3949 struct worker *rescuer;
3950
3951 rescuer = alloc_worker(NUMA_NO_NODE);
3952 if (!rescuer)
3953 goto err_destroy;
3954
3955 rescuer->rescue_wq = wq;
3956 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3957 wq->name);
3958 if (IS_ERR(rescuer->task)) {
3959 kfree(rescuer);
3960 goto err_destroy;
3961 }
3962
3963 wq->rescuer = rescuer;
3964 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3965 wake_up_process(rescuer->task);
3966 }
3967
3968 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3969 goto err_destroy;
3970
3971 /*
3972 * wq_pool_mutex protects global freeze state and workqueues list.
3973 * Grab it, adjust max_active and add the new @wq to workqueues
3974 * list.
3975 */
3976 mutex_lock(&wq_pool_mutex);
3977
3978 mutex_lock(&wq->mutex);
3979 for_each_pwq(pwq, wq)
3980 pwq_adjust_max_active(pwq);
3981 mutex_unlock(&wq->mutex);
3982
3983 list_add_tail_rcu(&wq->list, &workqueues);
3984
3985 mutex_unlock(&wq_pool_mutex);
3986
3987 return wq;
3988
3989 err_free_wq:
3990 free_workqueue_attrs(wq->unbound_attrs);
3991 kfree(wq);
3992 return NULL;
3993 err_destroy:
3994 destroy_workqueue(wq);
3995 return NULL;
3996 }
3997 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3998
3999 /**
4000 * destroy_workqueue - safely terminate a workqueue
4001 * @wq: target workqueue
4002 *
4003 * Safely destroy a workqueue. All work currently pending will be done first.
4004 */
4005 void destroy_workqueue(struct workqueue_struct *wq)
4006 {
4007 struct pool_workqueue *pwq;
4008 int node;
4009
4010 /* drain it before proceeding with destruction */
4011 drain_workqueue(wq);
4012
4013 /* sanity checks */
4014 mutex_lock(&wq->mutex);
4015 for_each_pwq(pwq, wq) {
4016 int i;
4017
4018 for (i = 0; i < WORK_NR_COLORS; i++) {
4019 if (WARN_ON(pwq->nr_in_flight[i])) {
4020 mutex_unlock(&wq->mutex);
4021 return;
4022 }
4023 }
4024
4025 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4026 WARN_ON(pwq->nr_active) ||
4027 WARN_ON(!list_empty(&pwq->delayed_works))) {
4028 mutex_unlock(&wq->mutex);
4029 return;
4030 }
4031 }
4032 mutex_unlock(&wq->mutex);
4033
4034 /*
4035 * wq list is used to freeze wq, remove from list after
4036 * flushing is complete in case freeze races us.
4037 */
4038 mutex_lock(&wq_pool_mutex);
4039 list_del_rcu(&wq->list);
4040 mutex_unlock(&wq_pool_mutex);
4041
4042 workqueue_sysfs_unregister(wq);
4043
4044 if (wq->rescuer)
4045 kthread_stop(wq->rescuer->task);
4046
4047 if (!(wq->flags & WQ_UNBOUND)) {
4048 /*
4049 * The base ref is never dropped on per-cpu pwqs. Directly
4050 * schedule RCU free.
4051 */
4052 call_rcu_sched(&wq->rcu, rcu_free_wq);
4053 } else {
4054 /*
4055 * We're the sole accessor of @wq at this point. Directly
4056 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4057 * @wq will be freed when the last pwq is released.
4058 */
4059 for_each_node(node) {
4060 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4061 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4062 put_pwq_unlocked(pwq);
4063 }
4064
4065 /*
4066 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4067 * put. Don't access it afterwards.
4068 */
4069 pwq = wq->dfl_pwq;
4070 wq->dfl_pwq = NULL;
4071 put_pwq_unlocked(pwq);
4072 }
4073 }
4074 EXPORT_SYMBOL_GPL(destroy_workqueue);
4075
4076 /**
4077 * workqueue_set_max_active - adjust max_active of a workqueue
4078 * @wq: target workqueue
4079 * @max_active: new max_active value.
4080 *
4081 * Set max_active of @wq to @max_active.
4082 *
4083 * CONTEXT:
4084 * Don't call from IRQ context.
4085 */
4086 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4087 {
4088 struct pool_workqueue *pwq;
4089
4090 /* disallow meddling with max_active for ordered workqueues */
4091 if (WARN_ON(wq->flags & __WQ_ORDERED))
4092 return;
4093
4094 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4095
4096 mutex_lock(&wq->mutex);
4097
4098 wq->saved_max_active = max_active;
4099
4100 for_each_pwq(pwq, wq)
4101 pwq_adjust_max_active(pwq);
4102
4103 mutex_unlock(&wq->mutex);
4104 }
4105 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4106
4107 /**
4108 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4109 *
4110 * Determine whether %current is a workqueue rescuer. Can be used from
4111 * work functions to determine whether it's being run off the rescuer task.
4112 *
4113 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4114 */
4115 bool current_is_workqueue_rescuer(void)
4116 {
4117 struct worker *worker = current_wq_worker();
4118
4119 return worker && worker->rescue_wq;
4120 }
4121
4122 /**
4123 * workqueue_congested - test whether a workqueue is congested
4124 * @cpu: CPU in question
4125 * @wq: target workqueue
4126 *
4127 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4128 * no synchronization around this function and the test result is
4129 * unreliable and only useful as advisory hints or for debugging.
4130 *
4131 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4132 * Note that both per-cpu and unbound workqueues may be associated with
4133 * multiple pool_workqueues which have separate congested states. A
4134 * workqueue being congested on one CPU doesn't mean the workqueue is also
4135 * contested on other CPUs / NUMA nodes.
4136 *
4137 * Return:
4138 * %true if congested, %false otherwise.
4139 */
4140 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4141 {
4142 struct pool_workqueue *pwq;
4143 bool ret;
4144
4145 rcu_read_lock_sched();
4146
4147 if (cpu == WORK_CPU_UNBOUND)
4148 cpu = smp_processor_id();
4149
4150 if (!(wq->flags & WQ_UNBOUND))
4151 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4152 else
4153 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4154
4155 ret = !list_empty(&pwq->delayed_works);
4156 rcu_read_unlock_sched();
4157
4158 return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(workqueue_congested);
4161
4162 /**
4163 * work_busy - test whether a work is currently pending or running
4164 * @work: the work to be tested
4165 *
4166 * Test whether @work is currently pending or running. There is no
4167 * synchronization around this function and the test result is
4168 * unreliable and only useful as advisory hints or for debugging.
4169 *
4170 * Return:
4171 * OR'd bitmask of WORK_BUSY_* bits.
4172 */
4173 unsigned int work_busy(struct work_struct *work)
4174 {
4175 struct worker_pool *pool;
4176 unsigned long flags;
4177 unsigned int ret = 0;
4178
4179 if (work_pending(work))
4180 ret |= WORK_BUSY_PENDING;
4181
4182 local_irq_save(flags);
4183 pool = get_work_pool(work);
4184 if (pool) {
4185 spin_lock(&pool->lock);
4186 if (find_worker_executing_work(pool, work))
4187 ret |= WORK_BUSY_RUNNING;
4188 spin_unlock(&pool->lock);
4189 }
4190 local_irq_restore(flags);
4191
4192 return ret;
4193 }
4194 EXPORT_SYMBOL_GPL(work_busy);
4195
4196 /**
4197 * set_worker_desc - set description for the current work item
4198 * @fmt: printf-style format string
4199 * @...: arguments for the format string
4200 *
4201 * This function can be called by a running work function to describe what
4202 * the work item is about. If the worker task gets dumped, this
4203 * information will be printed out together to help debugging. The
4204 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4205 */
4206 void set_worker_desc(const char *fmt, ...)
4207 {
4208 struct worker *worker = current_wq_worker();
4209 va_list args;
4210
4211 if (worker) {
4212 va_start(args, fmt);
4213 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4214 va_end(args);
4215 worker->desc_valid = true;
4216 }
4217 }
4218
4219 /**
4220 * print_worker_info - print out worker information and description
4221 * @log_lvl: the log level to use when printing
4222 * @task: target task
4223 *
4224 * If @task is a worker and currently executing a work item, print out the
4225 * name of the workqueue being serviced and worker description set with
4226 * set_worker_desc() by the currently executing work item.
4227 *
4228 * This function can be safely called on any task as long as the
4229 * task_struct itself is accessible. While safe, this function isn't
4230 * synchronized and may print out mixups or garbages of limited length.
4231 */
4232 void print_worker_info(const char *log_lvl, struct task_struct *task)
4233 {
4234 work_func_t *fn = NULL;
4235 char name[WQ_NAME_LEN] = { };
4236 char desc[WORKER_DESC_LEN] = { };
4237 struct pool_workqueue *pwq = NULL;
4238 struct workqueue_struct *wq = NULL;
4239 bool desc_valid = false;
4240 struct worker *worker;
4241
4242 if (!(task->flags & PF_WQ_WORKER))
4243 return;
4244
4245 /*
4246 * This function is called without any synchronization and @task
4247 * could be in any state. Be careful with dereferences.
4248 */
4249 worker = probe_kthread_data(task);
4250
4251 /*
4252 * Carefully copy the associated workqueue's workfn and name. Keep
4253 * the original last '\0' in case the original contains garbage.
4254 */
4255 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4256 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4257 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4258 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4259
4260 /* copy worker description */
4261 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4262 if (desc_valid)
4263 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4264
4265 if (fn || name[0] || desc[0]) {
4266 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4267 if (desc[0])
4268 pr_cont(" (%s)", desc);
4269 pr_cont("\n");
4270 }
4271 }
4272
4273 static void pr_cont_pool_info(struct worker_pool *pool)
4274 {
4275 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4276 if (pool->node != NUMA_NO_NODE)
4277 pr_cont(" node=%d", pool->node);
4278 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4279 }
4280
4281 static void pr_cont_work(bool comma, struct work_struct *work)
4282 {
4283 if (work->func == wq_barrier_func) {
4284 struct wq_barrier *barr;
4285
4286 barr = container_of(work, struct wq_barrier, work);
4287
4288 pr_cont("%s BAR(%d)", comma ? "," : "",
4289 task_pid_nr(barr->task));
4290 } else {
4291 pr_cont("%s %pf", comma ? "," : "", work->func);
4292 }
4293 }
4294
4295 static void show_pwq(struct pool_workqueue *pwq)
4296 {
4297 struct worker_pool *pool = pwq->pool;
4298 struct work_struct *work;
4299 struct worker *worker;
4300 bool has_in_flight = false, has_pending = false;
4301 int bkt;
4302
4303 pr_info(" pwq %d:", pool->id);
4304 pr_cont_pool_info(pool);
4305
4306 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4307 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4308
4309 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4310 if (worker->current_pwq == pwq) {
4311 has_in_flight = true;
4312 break;
4313 }
4314 }
4315 if (has_in_flight) {
4316 bool comma = false;
4317
4318 pr_info(" in-flight:");
4319 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4320 if (worker->current_pwq != pwq)
4321 continue;
4322
4323 pr_cont("%s %d%s:%pf", comma ? "," : "",
4324 task_pid_nr(worker->task),
4325 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4326 worker->current_func);
4327 list_for_each_entry(work, &worker->scheduled, entry)
4328 pr_cont_work(false, work);
4329 comma = true;
4330 }
4331 pr_cont("\n");
4332 }
4333
4334 list_for_each_entry(work, &pool->worklist, entry) {
4335 if (get_work_pwq(work) == pwq) {
4336 has_pending = true;
4337 break;
4338 }
4339 }
4340 if (has_pending) {
4341 bool comma = false;
4342
4343 pr_info(" pending:");
4344 list_for_each_entry(work, &pool->worklist, entry) {
4345 if (get_work_pwq(work) != pwq)
4346 continue;
4347
4348 pr_cont_work(comma, work);
4349 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4350 }
4351 pr_cont("\n");
4352 }
4353
4354 if (!list_empty(&pwq->delayed_works)) {
4355 bool comma = false;
4356
4357 pr_info(" delayed:");
4358 list_for_each_entry(work, &pwq->delayed_works, entry) {
4359 pr_cont_work(comma, work);
4360 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4361 }
4362 pr_cont("\n");
4363 }
4364 }
4365
4366 /**
4367 * show_workqueue_state - dump workqueue state
4368 *
4369 * Called from a sysrq handler and prints out all busy workqueues and
4370 * pools.
4371 */
4372 void show_workqueue_state(void)
4373 {
4374 struct workqueue_struct *wq;
4375 struct worker_pool *pool;
4376 unsigned long flags;
4377 int pi;
4378
4379 rcu_read_lock_sched();
4380
4381 pr_info("Showing busy workqueues and worker pools:\n");
4382
4383 list_for_each_entry_rcu(wq, &workqueues, list) {
4384 struct pool_workqueue *pwq;
4385 bool idle = true;
4386
4387 for_each_pwq(pwq, wq) {
4388 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4389 idle = false;
4390 break;
4391 }
4392 }
4393 if (idle)
4394 continue;
4395
4396 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4397
4398 for_each_pwq(pwq, wq) {
4399 spin_lock_irqsave(&pwq->pool->lock, flags);
4400 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4401 show_pwq(pwq);
4402 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4403 }
4404 }
4405
4406 for_each_pool(pool, pi) {
4407 struct worker *worker;
4408 bool first = true;
4409
4410 spin_lock_irqsave(&pool->lock, flags);
4411 if (pool->nr_workers == pool->nr_idle)
4412 goto next_pool;
4413
4414 pr_info("pool %d:", pool->id);
4415 pr_cont_pool_info(pool);
4416 pr_cont(" hung=%us workers=%d",
4417 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4418 pool->nr_workers);
4419 if (pool->manager)
4420 pr_cont(" manager: %d",
4421 task_pid_nr(pool->manager->task));
4422 list_for_each_entry(worker, &pool->idle_list, entry) {
4423 pr_cont(" %s%d", first ? "idle: " : "",
4424 task_pid_nr(worker->task));
4425 first = false;
4426 }
4427 pr_cont("\n");
4428 next_pool:
4429 spin_unlock_irqrestore(&pool->lock, flags);
4430 }
4431
4432 rcu_read_unlock_sched();
4433 }
4434
4435 /*
4436 * CPU hotplug.
4437 *
4438 * There are two challenges in supporting CPU hotplug. Firstly, there
4439 * are a lot of assumptions on strong associations among work, pwq and
4440 * pool which make migrating pending and scheduled works very
4441 * difficult to implement without impacting hot paths. Secondly,
4442 * worker pools serve mix of short, long and very long running works making
4443 * blocked draining impractical.
4444 *
4445 * This is solved by allowing the pools to be disassociated from the CPU
4446 * running as an unbound one and allowing it to be reattached later if the
4447 * cpu comes back online.
4448 */
4449
4450 static void wq_unbind_fn(struct work_struct *work)
4451 {
4452 int cpu = smp_processor_id();
4453 struct worker_pool *pool;
4454 struct worker *worker;
4455
4456 for_each_cpu_worker_pool(pool, cpu) {
4457 mutex_lock(&pool->attach_mutex);
4458 spin_lock_irq(&pool->lock);
4459
4460 /*
4461 * We've blocked all attach/detach operations. Make all workers
4462 * unbound and set DISASSOCIATED. Before this, all workers
4463 * except for the ones which are still executing works from
4464 * before the last CPU down must be on the cpu. After
4465 * this, they may become diasporas.
4466 */
4467 for_each_pool_worker(worker, pool)
4468 worker->flags |= WORKER_UNBOUND;
4469
4470 pool->flags |= POOL_DISASSOCIATED;
4471
4472 spin_unlock_irq(&pool->lock);
4473 mutex_unlock(&pool->attach_mutex);
4474
4475 /*
4476 * Call schedule() so that we cross rq->lock and thus can
4477 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4478 * This is necessary as scheduler callbacks may be invoked
4479 * from other cpus.
4480 */
4481 schedule();
4482
4483 /*
4484 * Sched callbacks are disabled now. Zap nr_running.
4485 * After this, nr_running stays zero and need_more_worker()
4486 * and keep_working() are always true as long as the
4487 * worklist is not empty. This pool now behaves as an
4488 * unbound (in terms of concurrency management) pool which
4489 * are served by workers tied to the pool.
4490 */
4491 atomic_set(&pool->nr_running, 0);
4492
4493 /*
4494 * With concurrency management just turned off, a busy
4495 * worker blocking could lead to lengthy stalls. Kick off
4496 * unbound chain execution of currently pending work items.
4497 */
4498 spin_lock_irq(&pool->lock);
4499 wake_up_worker(pool);
4500 spin_unlock_irq(&pool->lock);
4501 }
4502 }
4503
4504 /**
4505 * rebind_workers - rebind all workers of a pool to the associated CPU
4506 * @pool: pool of interest
4507 *
4508 * @pool->cpu is coming online. Rebind all workers to the CPU.
4509 */
4510 static void rebind_workers(struct worker_pool *pool)
4511 {
4512 struct worker *worker;
4513
4514 lockdep_assert_held(&pool->attach_mutex);
4515
4516 /*
4517 * Restore CPU affinity of all workers. As all idle workers should
4518 * be on the run-queue of the associated CPU before any local
4519 * wake-ups for concurrency management happen, restore CPU affinity
4520 * of all workers first and then clear UNBOUND. As we're called
4521 * from CPU_ONLINE, the following shouldn't fail.
4522 */
4523 for_each_pool_worker(worker, pool)
4524 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4525 pool->attrs->cpumask) < 0);
4526
4527 spin_lock_irq(&pool->lock);
4528 pool->flags &= ~POOL_DISASSOCIATED;
4529
4530 for_each_pool_worker(worker, pool) {
4531 unsigned int worker_flags = worker->flags;
4532
4533 /*
4534 * A bound idle worker should actually be on the runqueue
4535 * of the associated CPU for local wake-ups targeting it to
4536 * work. Kick all idle workers so that they migrate to the
4537 * associated CPU. Doing this in the same loop as
4538 * replacing UNBOUND with REBOUND is safe as no worker will
4539 * be bound before @pool->lock is released.
4540 */
4541 if (worker_flags & WORKER_IDLE)
4542 wake_up_process(worker->task);
4543
4544 /*
4545 * We want to clear UNBOUND but can't directly call
4546 * worker_clr_flags() or adjust nr_running. Atomically
4547 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4548 * @worker will clear REBOUND using worker_clr_flags() when
4549 * it initiates the next execution cycle thus restoring
4550 * concurrency management. Note that when or whether
4551 * @worker clears REBOUND doesn't affect correctness.
4552 *
4553 * ACCESS_ONCE() is necessary because @worker->flags may be
4554 * tested without holding any lock in
4555 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4556 * fail incorrectly leading to premature concurrency
4557 * management operations.
4558 */
4559 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4560 worker_flags |= WORKER_REBOUND;
4561 worker_flags &= ~WORKER_UNBOUND;
4562 ACCESS_ONCE(worker->flags) = worker_flags;
4563 }
4564
4565 spin_unlock_irq(&pool->lock);
4566 }
4567
4568 /**
4569 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4570 * @pool: unbound pool of interest
4571 * @cpu: the CPU which is coming up
4572 *
4573 * An unbound pool may end up with a cpumask which doesn't have any online
4574 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4575 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4576 * online CPU before, cpus_allowed of all its workers should be restored.
4577 */
4578 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4579 {
4580 static cpumask_t cpumask;
4581 struct worker *worker;
4582
4583 lockdep_assert_held(&pool->attach_mutex);
4584
4585 /* is @cpu allowed for @pool? */
4586 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4587 return;
4588
4589 /* is @cpu the only online CPU? */
4590 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4591 if (cpumask_weight(&cpumask) != 1)
4592 return;
4593
4594 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4595 for_each_pool_worker(worker, pool)
4596 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4597 pool->attrs->cpumask) < 0);
4598 }
4599
4600 /*
4601 * Workqueues should be brought up before normal priority CPU notifiers.
4602 * This will be registered high priority CPU notifier.
4603 */
4604 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4605 unsigned long action,
4606 void *hcpu)
4607 {
4608 int cpu = (unsigned long)hcpu;
4609 struct worker_pool *pool;
4610 struct workqueue_struct *wq;
4611 int pi;
4612
4613 switch (action & ~CPU_TASKS_FROZEN) {
4614 case CPU_UP_PREPARE:
4615 for_each_cpu_worker_pool(pool, cpu) {
4616 if (pool->nr_workers)
4617 continue;
4618 if (!create_worker(pool))
4619 return NOTIFY_BAD;
4620 }
4621 break;
4622
4623 case CPU_DOWN_FAILED:
4624 case CPU_ONLINE:
4625 mutex_lock(&wq_pool_mutex);
4626
4627 for_each_pool(pool, pi) {
4628 mutex_lock(&pool->attach_mutex);
4629
4630 if (pool->cpu == cpu)
4631 rebind_workers(pool);
4632 else if (pool->cpu < 0)
4633 restore_unbound_workers_cpumask(pool, cpu);
4634
4635 mutex_unlock(&pool->attach_mutex);
4636 }
4637
4638 /* update NUMA affinity of unbound workqueues */
4639 list_for_each_entry(wq, &workqueues, list)
4640 wq_update_unbound_numa(wq, cpu, true);
4641
4642 mutex_unlock(&wq_pool_mutex);
4643 break;
4644 }
4645 return NOTIFY_OK;
4646 }
4647
4648 /*
4649 * Workqueues should be brought down after normal priority CPU notifiers.
4650 * This will be registered as low priority CPU notifier.
4651 */
4652 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4653 unsigned long action,
4654 void *hcpu)
4655 {
4656 int cpu = (unsigned long)hcpu;
4657 struct work_struct unbind_work;
4658 struct workqueue_struct *wq;
4659
4660 switch (action & ~CPU_TASKS_FROZEN) {
4661 case CPU_DOWN_PREPARE:
4662 /* unbinding per-cpu workers should happen on the local CPU */
4663 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4664 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4665
4666 /* update NUMA affinity of unbound workqueues */
4667 mutex_lock(&wq_pool_mutex);
4668 list_for_each_entry(wq, &workqueues, list)
4669 wq_update_unbound_numa(wq, cpu, false);
4670 mutex_unlock(&wq_pool_mutex);
4671
4672 /* wait for per-cpu unbinding to finish */
4673 flush_work(&unbind_work);
4674 destroy_work_on_stack(&unbind_work);
4675 break;
4676 }
4677 return NOTIFY_OK;
4678 }
4679
4680 #ifdef CONFIG_SMP
4681
4682 struct work_for_cpu {
4683 struct work_struct work;
4684 long (*fn)(void *);
4685 void *arg;
4686 long ret;
4687 };
4688
4689 static void work_for_cpu_fn(struct work_struct *work)
4690 {
4691 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4692
4693 wfc->ret = wfc->fn(wfc->arg);
4694 }
4695
4696 /**
4697 * work_on_cpu - run a function in thread context on a particular cpu
4698 * @cpu: the cpu to run on
4699 * @fn: the function to run
4700 * @arg: the function arg
4701 *
4702 * It is up to the caller to ensure that the cpu doesn't go offline.
4703 * The caller must not hold any locks which would prevent @fn from completing.
4704 *
4705 * Return: The value @fn returns.
4706 */
4707 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4708 {
4709 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4710
4711 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4712 schedule_work_on(cpu, &wfc.work);
4713 flush_work(&wfc.work);
4714 destroy_work_on_stack(&wfc.work);
4715 return wfc.ret;
4716 }
4717 EXPORT_SYMBOL_GPL(work_on_cpu);
4718 #endif /* CONFIG_SMP */
4719
4720 #ifdef CONFIG_FREEZER
4721
4722 /**
4723 * freeze_workqueues_begin - begin freezing workqueues
4724 *
4725 * Start freezing workqueues. After this function returns, all freezable
4726 * workqueues will queue new works to their delayed_works list instead of
4727 * pool->worklist.
4728 *
4729 * CONTEXT:
4730 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4731 */
4732 void freeze_workqueues_begin(void)
4733 {
4734 struct workqueue_struct *wq;
4735 struct pool_workqueue *pwq;
4736
4737 mutex_lock(&wq_pool_mutex);
4738
4739 WARN_ON_ONCE(workqueue_freezing);
4740 workqueue_freezing = true;
4741
4742 list_for_each_entry(wq, &workqueues, list) {
4743 mutex_lock(&wq->mutex);
4744 for_each_pwq(pwq, wq)
4745 pwq_adjust_max_active(pwq);
4746 mutex_unlock(&wq->mutex);
4747 }
4748
4749 mutex_unlock(&wq_pool_mutex);
4750 }
4751
4752 /**
4753 * freeze_workqueues_busy - are freezable workqueues still busy?
4754 *
4755 * Check whether freezing is complete. This function must be called
4756 * between freeze_workqueues_begin() and thaw_workqueues().
4757 *
4758 * CONTEXT:
4759 * Grabs and releases wq_pool_mutex.
4760 *
4761 * Return:
4762 * %true if some freezable workqueues are still busy. %false if freezing
4763 * is complete.
4764 */
4765 bool freeze_workqueues_busy(void)
4766 {
4767 bool busy = false;
4768 struct workqueue_struct *wq;
4769 struct pool_workqueue *pwq;
4770
4771 mutex_lock(&wq_pool_mutex);
4772
4773 WARN_ON_ONCE(!workqueue_freezing);
4774
4775 list_for_each_entry(wq, &workqueues, list) {
4776 if (!(wq->flags & WQ_FREEZABLE))
4777 continue;
4778 /*
4779 * nr_active is monotonically decreasing. It's safe
4780 * to peek without lock.
4781 */
4782 rcu_read_lock_sched();
4783 for_each_pwq(pwq, wq) {
4784 WARN_ON_ONCE(pwq->nr_active < 0);
4785 if (pwq->nr_active) {
4786 busy = true;
4787 rcu_read_unlock_sched();
4788 goto out_unlock;
4789 }
4790 }
4791 rcu_read_unlock_sched();
4792 }
4793 out_unlock:
4794 mutex_unlock(&wq_pool_mutex);
4795 return busy;
4796 }
4797
4798 /**
4799 * thaw_workqueues - thaw workqueues
4800 *
4801 * Thaw workqueues. Normal queueing is restored and all collected
4802 * frozen works are transferred to their respective pool worklists.
4803 *
4804 * CONTEXT:
4805 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4806 */
4807 void thaw_workqueues(void)
4808 {
4809 struct workqueue_struct *wq;
4810 struct pool_workqueue *pwq;
4811
4812 mutex_lock(&wq_pool_mutex);
4813
4814 if (!workqueue_freezing)
4815 goto out_unlock;
4816
4817 workqueue_freezing = false;
4818
4819 /* restore max_active and repopulate worklist */
4820 list_for_each_entry(wq, &workqueues, list) {
4821 mutex_lock(&wq->mutex);
4822 for_each_pwq(pwq, wq)
4823 pwq_adjust_max_active(pwq);
4824 mutex_unlock(&wq->mutex);
4825 }
4826
4827 out_unlock:
4828 mutex_unlock(&wq_pool_mutex);
4829 }
4830 #endif /* CONFIG_FREEZER */
4831
4832 static int workqueue_apply_unbound_cpumask(void)
4833 {
4834 LIST_HEAD(ctxs);
4835 int ret = 0;
4836 struct workqueue_struct *wq;
4837 struct apply_wqattrs_ctx *ctx, *n;
4838
4839 lockdep_assert_held(&wq_pool_mutex);
4840
4841 list_for_each_entry(wq, &workqueues, list) {
4842 if (!(wq->flags & WQ_UNBOUND))
4843 continue;
4844 /* creating multiple pwqs breaks ordering guarantee */
4845 if (wq->flags & __WQ_ORDERED)
4846 continue;
4847
4848 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4849 if (!ctx) {
4850 ret = -ENOMEM;
4851 break;
4852 }
4853
4854 list_add_tail(&ctx->list, &ctxs);
4855 }
4856
4857 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4858 if (!ret)
4859 apply_wqattrs_commit(ctx);
4860 apply_wqattrs_cleanup(ctx);
4861 }
4862
4863 return ret;
4864 }
4865
4866 /**
4867 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4868 * @cpumask: the cpumask to set
4869 *
4870 * The low-level workqueues cpumask is a global cpumask that limits
4871 * the affinity of all unbound workqueues. This function check the @cpumask
4872 * and apply it to all unbound workqueues and updates all pwqs of them.
4873 *
4874 * Retun: 0 - Success
4875 * -EINVAL - Invalid @cpumask
4876 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4877 */
4878 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4879 {
4880 int ret = -EINVAL;
4881 cpumask_var_t saved_cpumask;
4882
4883 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4884 return -ENOMEM;
4885
4886 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4887 if (!cpumask_empty(cpumask)) {
4888 apply_wqattrs_lock();
4889
4890 /* save the old wq_unbound_cpumask. */
4891 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4892
4893 /* update wq_unbound_cpumask at first and apply it to wqs. */
4894 cpumask_copy(wq_unbound_cpumask, cpumask);
4895 ret = workqueue_apply_unbound_cpumask();
4896
4897 /* restore the wq_unbound_cpumask when failed. */
4898 if (ret < 0)
4899 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4900
4901 apply_wqattrs_unlock();
4902 }
4903
4904 free_cpumask_var(saved_cpumask);
4905 return ret;
4906 }
4907
4908 #ifdef CONFIG_SYSFS
4909 /*
4910 * Workqueues with WQ_SYSFS flag set is visible to userland via
4911 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4912 * following attributes.
4913 *
4914 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4915 * max_active RW int : maximum number of in-flight work items
4916 *
4917 * Unbound workqueues have the following extra attributes.
4918 *
4919 * id RO int : the associated pool ID
4920 * nice RW int : nice value of the workers
4921 * cpumask RW mask : bitmask of allowed CPUs for the workers
4922 */
4923 struct wq_device {
4924 struct workqueue_struct *wq;
4925 struct device dev;
4926 };
4927
4928 static struct workqueue_struct *dev_to_wq(struct device *dev)
4929 {
4930 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4931
4932 return wq_dev->wq;
4933 }
4934
4935 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4936 char *buf)
4937 {
4938 struct workqueue_struct *wq = dev_to_wq(dev);
4939
4940 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4941 }
4942 static DEVICE_ATTR_RO(per_cpu);
4943
4944 static ssize_t max_active_show(struct device *dev,
4945 struct device_attribute *attr, char *buf)
4946 {
4947 struct workqueue_struct *wq = dev_to_wq(dev);
4948
4949 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4950 }
4951
4952 static ssize_t max_active_store(struct device *dev,
4953 struct device_attribute *attr, const char *buf,
4954 size_t count)
4955 {
4956 struct workqueue_struct *wq = dev_to_wq(dev);
4957 int val;
4958
4959 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4960 return -EINVAL;
4961
4962 workqueue_set_max_active(wq, val);
4963 return count;
4964 }
4965 static DEVICE_ATTR_RW(max_active);
4966
4967 static struct attribute *wq_sysfs_attrs[] = {
4968 &dev_attr_per_cpu.attr,
4969 &dev_attr_max_active.attr,
4970 NULL,
4971 };
4972 ATTRIBUTE_GROUPS(wq_sysfs);
4973
4974 static ssize_t wq_pool_ids_show(struct device *dev,
4975 struct device_attribute *attr, char *buf)
4976 {
4977 struct workqueue_struct *wq = dev_to_wq(dev);
4978 const char *delim = "";
4979 int node, written = 0;
4980
4981 rcu_read_lock_sched();
4982 for_each_node(node) {
4983 written += scnprintf(buf + written, PAGE_SIZE - written,
4984 "%s%d:%d", delim, node,
4985 unbound_pwq_by_node(wq, node)->pool->id);
4986 delim = " ";
4987 }
4988 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4989 rcu_read_unlock_sched();
4990
4991 return written;
4992 }
4993
4994 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4995 char *buf)
4996 {
4997 struct workqueue_struct *wq = dev_to_wq(dev);
4998 int written;
4999
5000 mutex_lock(&wq->mutex);
5001 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5002 mutex_unlock(&wq->mutex);
5003
5004 return written;
5005 }
5006
5007 /* prepare workqueue_attrs for sysfs store operations */
5008 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5009 {
5010 struct workqueue_attrs *attrs;
5011
5012 lockdep_assert_held(&wq_pool_mutex);
5013
5014 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5015 if (!attrs)
5016 return NULL;
5017
5018 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5019 return attrs;
5020 }
5021
5022 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5023 const char *buf, size_t count)
5024 {
5025 struct workqueue_struct *wq = dev_to_wq(dev);
5026 struct workqueue_attrs *attrs;
5027 int ret = -ENOMEM;
5028
5029 apply_wqattrs_lock();
5030
5031 attrs = wq_sysfs_prep_attrs(wq);
5032 if (!attrs)
5033 goto out_unlock;
5034
5035 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5036 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5037 ret = apply_workqueue_attrs_locked(wq, attrs);
5038 else
5039 ret = -EINVAL;
5040
5041 out_unlock:
5042 apply_wqattrs_unlock();
5043 free_workqueue_attrs(attrs);
5044 return ret ?: count;
5045 }
5046
5047 static ssize_t wq_cpumask_show(struct device *dev,
5048 struct device_attribute *attr, char *buf)
5049 {
5050 struct workqueue_struct *wq = dev_to_wq(dev);
5051 int written;
5052
5053 mutex_lock(&wq->mutex);
5054 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5055 cpumask_pr_args(wq->unbound_attrs->cpumask));
5056 mutex_unlock(&wq->mutex);
5057 return written;
5058 }
5059
5060 static ssize_t wq_cpumask_store(struct device *dev,
5061 struct device_attribute *attr,
5062 const char *buf, size_t count)
5063 {
5064 struct workqueue_struct *wq = dev_to_wq(dev);
5065 struct workqueue_attrs *attrs;
5066 int ret = -ENOMEM;
5067
5068 apply_wqattrs_lock();
5069
5070 attrs = wq_sysfs_prep_attrs(wq);
5071 if (!attrs)
5072 goto out_unlock;
5073
5074 ret = cpumask_parse(buf, attrs->cpumask);
5075 if (!ret)
5076 ret = apply_workqueue_attrs_locked(wq, attrs);
5077
5078 out_unlock:
5079 apply_wqattrs_unlock();
5080 free_workqueue_attrs(attrs);
5081 return ret ?: count;
5082 }
5083
5084 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5085 char *buf)
5086 {
5087 struct workqueue_struct *wq = dev_to_wq(dev);
5088 int written;
5089
5090 mutex_lock(&wq->mutex);
5091 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5092 !wq->unbound_attrs->no_numa);
5093 mutex_unlock(&wq->mutex);
5094
5095 return written;
5096 }
5097
5098 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5099 const char *buf, size_t count)
5100 {
5101 struct workqueue_struct *wq = dev_to_wq(dev);
5102 struct workqueue_attrs *attrs;
5103 int v, ret = -ENOMEM;
5104
5105 apply_wqattrs_lock();
5106
5107 attrs = wq_sysfs_prep_attrs(wq);
5108 if (!attrs)
5109 goto out_unlock;
5110
5111 ret = -EINVAL;
5112 if (sscanf(buf, "%d", &v) == 1) {
5113 attrs->no_numa = !v;
5114 ret = apply_workqueue_attrs_locked(wq, attrs);
5115 }
5116
5117 out_unlock:
5118 apply_wqattrs_unlock();
5119 free_workqueue_attrs(attrs);
5120 return ret ?: count;
5121 }
5122
5123 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5124 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5125 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5126 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5127 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5128 __ATTR_NULL,
5129 };
5130
5131 static struct bus_type wq_subsys = {
5132 .name = "workqueue",
5133 .dev_groups = wq_sysfs_groups,
5134 };
5135
5136 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5137 struct device_attribute *attr, char *buf)
5138 {
5139 int written;
5140
5141 mutex_lock(&wq_pool_mutex);
5142 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5143 cpumask_pr_args(wq_unbound_cpumask));
5144 mutex_unlock(&wq_pool_mutex);
5145
5146 return written;
5147 }
5148
5149 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5150 struct device_attribute *attr, const char *buf, size_t count)
5151 {
5152 cpumask_var_t cpumask;
5153 int ret;
5154
5155 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5156 return -ENOMEM;
5157
5158 ret = cpumask_parse(buf, cpumask);
5159 if (!ret)
5160 ret = workqueue_set_unbound_cpumask(cpumask);
5161
5162 free_cpumask_var(cpumask);
5163 return ret ? ret : count;
5164 }
5165
5166 static struct device_attribute wq_sysfs_cpumask_attr =
5167 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5168 wq_unbound_cpumask_store);
5169
5170 static int __init wq_sysfs_init(void)
5171 {
5172 int err;
5173
5174 err = subsys_virtual_register(&wq_subsys, NULL);
5175 if (err)
5176 return err;
5177
5178 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5179 }
5180 core_initcall(wq_sysfs_init);
5181
5182 static void wq_device_release(struct device *dev)
5183 {
5184 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5185
5186 kfree(wq_dev);
5187 }
5188
5189 /**
5190 * workqueue_sysfs_register - make a workqueue visible in sysfs
5191 * @wq: the workqueue to register
5192 *
5193 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5194 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5195 * which is the preferred method.
5196 *
5197 * Workqueue user should use this function directly iff it wants to apply
5198 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5199 * apply_workqueue_attrs() may race against userland updating the
5200 * attributes.
5201 *
5202 * Return: 0 on success, -errno on failure.
5203 */
5204 int workqueue_sysfs_register(struct workqueue_struct *wq)
5205 {
5206 struct wq_device *wq_dev;
5207 int ret;
5208
5209 /*
5210 * Adjusting max_active or creating new pwqs by applying
5211 * attributes breaks ordering guarantee. Disallow exposing ordered
5212 * workqueues.
5213 */
5214 if (WARN_ON(wq->flags & __WQ_ORDERED))
5215 return -EINVAL;
5216
5217 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5218 if (!wq_dev)
5219 return -ENOMEM;
5220
5221 wq_dev->wq = wq;
5222 wq_dev->dev.bus = &wq_subsys;
5223 wq_dev->dev.release = wq_device_release;
5224 dev_set_name(&wq_dev->dev, "%s", wq->name);
5225
5226 /*
5227 * unbound_attrs are created separately. Suppress uevent until
5228 * everything is ready.
5229 */
5230 dev_set_uevent_suppress(&wq_dev->dev, true);
5231
5232 ret = device_register(&wq_dev->dev);
5233 if (ret) {
5234 kfree(wq_dev);
5235 wq->wq_dev = NULL;
5236 return ret;
5237 }
5238
5239 if (wq->flags & WQ_UNBOUND) {
5240 struct device_attribute *attr;
5241
5242 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5243 ret = device_create_file(&wq_dev->dev, attr);
5244 if (ret) {
5245 device_unregister(&wq_dev->dev);
5246 wq->wq_dev = NULL;
5247 return ret;
5248 }
5249 }
5250 }
5251
5252 dev_set_uevent_suppress(&wq_dev->dev, false);
5253 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5254 return 0;
5255 }
5256
5257 /**
5258 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5259 * @wq: the workqueue to unregister
5260 *
5261 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5262 */
5263 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5264 {
5265 struct wq_device *wq_dev = wq->wq_dev;
5266
5267 if (!wq->wq_dev)
5268 return;
5269
5270 wq->wq_dev = NULL;
5271 device_unregister(&wq_dev->dev);
5272 }
5273 #else /* CONFIG_SYSFS */
5274 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5275 #endif /* CONFIG_SYSFS */
5276
5277 /*
5278 * Workqueue watchdog.
5279 *
5280 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5281 * flush dependency, a concurrency managed work item which stays RUNNING
5282 * indefinitely. Workqueue stalls can be very difficult to debug as the
5283 * usual warning mechanisms don't trigger and internal workqueue state is
5284 * largely opaque.
5285 *
5286 * Workqueue watchdog monitors all worker pools periodically and dumps
5287 * state if some pools failed to make forward progress for a while where
5288 * forward progress is defined as the first item on ->worklist changing.
5289 *
5290 * This mechanism is controlled through the kernel parameter
5291 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5292 * corresponding sysfs parameter file.
5293 */
5294 #ifdef CONFIG_WQ_WATCHDOG
5295
5296 static void wq_watchdog_timer_fn(unsigned long data);
5297
5298 static unsigned long wq_watchdog_thresh = 30;
5299 static struct timer_list wq_watchdog_timer =
5300 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5301
5302 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5303 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5304
5305 static void wq_watchdog_reset_touched(void)
5306 {
5307 int cpu;
5308
5309 wq_watchdog_touched = jiffies;
5310 for_each_possible_cpu(cpu)
5311 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5312 }
5313
5314 static void wq_watchdog_timer_fn(unsigned long data)
5315 {
5316 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5317 bool lockup_detected = false;
5318 struct worker_pool *pool;
5319 int pi;
5320
5321 if (!thresh)
5322 return;
5323
5324 rcu_read_lock();
5325
5326 for_each_pool(pool, pi) {
5327 unsigned long pool_ts, touched, ts;
5328
5329 if (list_empty(&pool->worklist))
5330 continue;
5331
5332 /* get the latest of pool and touched timestamps */
5333 pool_ts = READ_ONCE(pool->watchdog_ts);
5334 touched = READ_ONCE(wq_watchdog_touched);
5335
5336 if (time_after(pool_ts, touched))
5337 ts = pool_ts;
5338 else
5339 ts = touched;
5340
5341 if (pool->cpu >= 0) {
5342 unsigned long cpu_touched =
5343 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5344 pool->cpu));
5345 if (time_after(cpu_touched, ts))
5346 ts = cpu_touched;
5347 }
5348
5349 /* did we stall? */
5350 if (time_after(jiffies, ts + thresh)) {
5351 lockup_detected = true;
5352 pr_emerg("BUG: workqueue lockup - pool");
5353 pr_cont_pool_info(pool);
5354 pr_cont(" stuck for %us!\n",
5355 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5356 }
5357 }
5358
5359 rcu_read_unlock();
5360
5361 if (lockup_detected)
5362 show_workqueue_state();
5363
5364 wq_watchdog_reset_touched();
5365 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5366 }
5367
5368 void wq_watchdog_touch(int cpu)
5369 {
5370 if (cpu >= 0)
5371 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5372 else
5373 wq_watchdog_touched = jiffies;
5374 }
5375
5376 static void wq_watchdog_set_thresh(unsigned long thresh)
5377 {
5378 wq_watchdog_thresh = 0;
5379 del_timer_sync(&wq_watchdog_timer);
5380
5381 if (thresh) {
5382 wq_watchdog_thresh = thresh;
5383 wq_watchdog_reset_touched();
5384 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5385 }
5386 }
5387
5388 static int wq_watchdog_param_set_thresh(const char *val,
5389 const struct kernel_param *kp)
5390 {
5391 unsigned long thresh;
5392 int ret;
5393
5394 ret = kstrtoul(val, 0, &thresh);
5395 if (ret)
5396 return ret;
5397
5398 if (system_wq)
5399 wq_watchdog_set_thresh(thresh);
5400 else
5401 wq_watchdog_thresh = thresh;
5402
5403 return 0;
5404 }
5405
5406 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5407 .set = wq_watchdog_param_set_thresh,
5408 .get = param_get_ulong,
5409 };
5410
5411 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5412 0644);
5413
5414 static void wq_watchdog_init(void)
5415 {
5416 wq_watchdog_set_thresh(wq_watchdog_thresh);
5417 }
5418
5419 #else /* CONFIG_WQ_WATCHDOG */
5420
5421 static inline void wq_watchdog_init(void) { }
5422
5423 #endif /* CONFIG_WQ_WATCHDOG */
5424
5425 static void __init wq_numa_init(void)
5426 {
5427 cpumask_var_t *tbl;
5428 int node, cpu;
5429
5430 if (num_possible_nodes() <= 1)
5431 return;
5432
5433 if (wq_disable_numa) {
5434 pr_info("workqueue: NUMA affinity support disabled\n");
5435 return;
5436 }
5437
5438 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5439 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5440
5441 /*
5442 * We want masks of possible CPUs of each node which isn't readily
5443 * available. Build one from cpu_to_node() which should have been
5444 * fully initialized by now.
5445 */
5446 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5447 BUG_ON(!tbl);
5448
5449 for_each_node(node)
5450 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5451 node_online(node) ? node : NUMA_NO_NODE));
5452
5453 for_each_possible_cpu(cpu) {
5454 node = cpu_to_node(cpu);
5455 if (WARN_ON(node == NUMA_NO_NODE)) {
5456 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5457 /* happens iff arch is bonkers, let's just proceed */
5458 return;
5459 }
5460 cpumask_set_cpu(cpu, tbl[node]);
5461 }
5462
5463 wq_numa_possible_cpumask = tbl;
5464 wq_numa_enabled = true;
5465 }
5466
5467 static int __init init_workqueues(void)
5468 {
5469 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5470 int i, cpu;
5471
5472 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5473
5474 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5475 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5476
5477 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5478
5479 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5480 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5481
5482 wq_numa_init();
5483
5484 /* initialize CPU pools */
5485 for_each_possible_cpu(cpu) {
5486 struct worker_pool *pool;
5487
5488 i = 0;
5489 for_each_cpu_worker_pool(pool, cpu) {
5490 BUG_ON(init_worker_pool(pool));
5491 pool->cpu = cpu;
5492 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5493 pool->attrs->nice = std_nice[i++];
5494 pool->node = cpu_to_node(cpu);
5495
5496 /* alloc pool ID */
5497 mutex_lock(&wq_pool_mutex);
5498 BUG_ON(worker_pool_assign_id(pool));
5499 mutex_unlock(&wq_pool_mutex);
5500 }
5501 }
5502
5503 /* create the initial worker */
5504 for_each_online_cpu(cpu) {
5505 struct worker_pool *pool;
5506
5507 for_each_cpu_worker_pool(pool, cpu) {
5508 pool->flags &= ~POOL_DISASSOCIATED;
5509 BUG_ON(!create_worker(pool));
5510 }
5511 }
5512
5513 /* create default unbound and ordered wq attrs */
5514 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5515 struct workqueue_attrs *attrs;
5516
5517 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5518 attrs->nice = std_nice[i];
5519 unbound_std_wq_attrs[i] = attrs;
5520
5521 /*
5522 * An ordered wq should have only one pwq as ordering is
5523 * guaranteed by max_active which is enforced by pwqs.
5524 * Turn off NUMA so that dfl_pwq is used for all nodes.
5525 */
5526 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5527 attrs->nice = std_nice[i];
5528 attrs->no_numa = true;
5529 ordered_wq_attrs[i] = attrs;
5530 }
5531
5532 system_wq = alloc_workqueue("events", 0, 0);
5533 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5534 system_long_wq = alloc_workqueue("events_long", 0, 0);
5535 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5536 WQ_UNBOUND_MAX_ACTIVE);
5537 system_freezable_wq = alloc_workqueue("events_freezable",
5538 WQ_FREEZABLE, 0);
5539 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5540 WQ_POWER_EFFICIENT, 0);
5541 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5542 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5543 0);
5544 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5545 !system_unbound_wq || !system_freezable_wq ||
5546 !system_power_efficient_wq ||
5547 !system_freezable_power_efficient_wq);
5548
5549 wq_watchdog_init();
5550
5551 return 0;
5552 }
5553 early_initcall(init_workqueues);
This page took 0.143633 seconds and 6 git commands to generate.