Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
300
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
303
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309
310 /*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324
325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
326
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
361
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
366
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 (pool)++)
377
378 /**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
382 *
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
389 */
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
393 else
394
395 /**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
399 *
400 * This must be called with @pool->attach_mutex.
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 else
409
410 /**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
414 *
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
421 */
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
425 else
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 static bool work_is_static_object(void *addr)
437 {
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442
443 /*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
455 return true;
456 default:
457 return false;
458 }
459 }
460
461 /*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
473 return true;
474 default:
475 return false;
476 }
477 }
478
479 static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
481 .debug_hint = work_debug_hint,
482 .is_static_object = work_is_static_object,
483 .fixup_init = work_fixup_init,
484 .fixup_free = work_fixup_free,
485 };
486
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 debug_object_activate(work, &work_debug_descr);
490 }
491
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 debug_object_deactivate(work, &work_debug_descr);
495 }
496
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 int ret;
534
535 lockdep_assert_held(&wq_pool_mutex);
536
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
539 if (ret >= 0) {
540 pool->id = ret;
541 return 0;
542 }
543 return ret;
544 }
545
546 /**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
551 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
552 * read locked.
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
555 *
556 * Return: The unbound pool_workqueue for @node.
557 */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560 {
561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574
575 static unsigned int work_color_to_flags(int color)
576 {
577 return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579
580 static int get_work_color(struct work_struct *work)
581 {
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585
586 static int work_next_color(int color)
587 {
588 return (color + 1) % WORK_NR_COLORS;
589 }
590
591 /*
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
594 * is cleared and the high bits contain OFFQ flags and pool ID.
595 *
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
600 *
601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602 * corresponding to a work. Pool is available once the work has been
603 * queued anywhere after initialization until it is sync canceled. pwq is
604 * available only while the work item is queued.
605 *
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
610 */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
613 {
614 WARN_ON_ONCE(!work_pending(work));
615 atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 unsigned long extra_flags)
620 {
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627 {
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630 }
631
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
634 {
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
647 * reordering can lead to a missed execution on attempt to qeueue
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
672 }
673
674 static void clear_work_data(struct work_struct *work)
675 {
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 unsigned long data = atomic_long_read(&work->data);
683
684 if (data & WORK_STRUCT_PWQ)
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
688 }
689
690 /**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
694 * Pools are created and destroyed under wq_pool_mutex, and allows read
695 * access under sched-RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or with preemption disabled.
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
704 */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 unsigned long data = atomic_long_read(&work->data);
708 int pool_id;
709
710 assert_rcu_or_pool_mutex();
711
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
718 return NULL;
719
720 return idr_find(&worker_pool_idr, pool_id);
721 }
722
723 /**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
727 * Return: The worker_pool ID @work was last associated with.
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 unsigned long data = atomic_long_read(&work->data);
733
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737
738 return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 unsigned long pool_id = get_work_pool_id(work);
744
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 unsigned long data = atomic_long_read(&work->data);
752
753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755
756 /*
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
759 * they're being called with pool->lock held.
760 */
761
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 return !atomic_read(&pool->nr_running);
765 }
766
767 /*
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
772 * function will always return %true for unbound pools as long as the
773 * worklist isn't empty.
774 */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779
780 /* Can I start working? Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 return pool->nr_idle;
784 }
785
786 /* Do I need to keep working? Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
791 }
792
793 /* Do we need a new worker? Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 return need_more_worker(pool) && !may_start_working(pool);
797 }
798
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 bool managing = mutex_is_locked(&pool->manager_arb);
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808
809 /*
810 * Wake up functions.
811 */
812
813 /* Return the first idle worker. Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 if (unlikely(list_empty(&pool->idle_list)))
817 return NULL;
818
819 return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821
822 /**
823 * wake_up_worker - wake up an idle worker
824 * @pool: worker pool to wake worker from
825 *
826 * Wake up the first idle worker of @pool.
827 *
828 * CONTEXT:
829 * spin_lock_irq(pool->lock).
830 */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 struct worker *worker = first_idle_worker(pool);
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837 }
838
839 /**
840 * wq_worker_waking_up - a worker is waking up
841 * @task: task waking up
842 * @cpu: CPU @task is waking up to
843 *
844 * This function is called during try_to_wake_up() when a worker is
845 * being awoken.
846 *
847 * CONTEXT:
848 * spin_lock_irq(rq->lock)
849 */
850 void wq_worker_waking_up(struct task_struct *task, int cpu)
851 {
852 struct worker *worker = kthread_data(task);
853
854 if (!(worker->flags & WORKER_NOT_RUNNING)) {
855 WARN_ON_ONCE(worker->pool->cpu != cpu);
856 atomic_inc(&worker->pool->nr_running);
857 }
858 }
859
860 /**
861 * wq_worker_sleeping - a worker is going to sleep
862 * @task: task going to sleep
863 *
864 * This function is called during schedule() when a busy worker is
865 * going to sleep. Worker on the same cpu can be woken up by
866 * returning pointer to its task.
867 *
868 * CONTEXT:
869 * spin_lock_irq(rq->lock)
870 *
871 * Return:
872 * Worker task on @cpu to wake up, %NULL if none.
873 */
874 struct task_struct *wq_worker_sleeping(struct task_struct *task)
875 {
876 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
877 struct worker_pool *pool;
878
879 /*
880 * Rescuers, which may not have all the fields set up like normal
881 * workers, also reach here, let's not access anything before
882 * checking NOT_RUNNING.
883 */
884 if (worker->flags & WORKER_NOT_RUNNING)
885 return NULL;
886
887 pool = worker->pool;
888
889 /* this can only happen on the local cpu */
890 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
891 return NULL;
892
893 /*
894 * The counterpart of the following dec_and_test, implied mb,
895 * worklist not empty test sequence is in insert_work().
896 * Please read comment there.
897 *
898 * NOT_RUNNING is clear. This means that we're bound to and
899 * running on the local cpu w/ rq lock held and preemption
900 * disabled, which in turn means that none else could be
901 * manipulating idle_list, so dereferencing idle_list without pool
902 * lock is safe.
903 */
904 if (atomic_dec_and_test(&pool->nr_running) &&
905 !list_empty(&pool->worklist))
906 to_wakeup = first_idle_worker(pool);
907 return to_wakeup ? to_wakeup->task : NULL;
908 }
909
910 /**
911 * worker_set_flags - set worker flags and adjust nr_running accordingly
912 * @worker: self
913 * @flags: flags to set
914 *
915 * Set @flags in @worker->flags and adjust nr_running accordingly.
916 *
917 * CONTEXT:
918 * spin_lock_irq(pool->lock)
919 */
920 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
921 {
922 struct worker_pool *pool = worker->pool;
923
924 WARN_ON_ONCE(worker->task != current);
925
926 /* If transitioning into NOT_RUNNING, adjust nr_running. */
927 if ((flags & WORKER_NOT_RUNNING) &&
928 !(worker->flags & WORKER_NOT_RUNNING)) {
929 atomic_dec(&pool->nr_running);
930 }
931
932 worker->flags |= flags;
933 }
934
935 /**
936 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
937 * @worker: self
938 * @flags: flags to clear
939 *
940 * Clear @flags in @worker->flags and adjust nr_running accordingly.
941 *
942 * CONTEXT:
943 * spin_lock_irq(pool->lock)
944 */
945 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
946 {
947 struct worker_pool *pool = worker->pool;
948 unsigned int oflags = worker->flags;
949
950 WARN_ON_ONCE(worker->task != current);
951
952 worker->flags &= ~flags;
953
954 /*
955 * If transitioning out of NOT_RUNNING, increment nr_running. Note
956 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
957 * of multiple flags, not a single flag.
958 */
959 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
960 if (!(worker->flags & WORKER_NOT_RUNNING))
961 atomic_inc(&pool->nr_running);
962 }
963
964 /**
965 * find_worker_executing_work - find worker which is executing a work
966 * @pool: pool of interest
967 * @work: work to find worker for
968 *
969 * Find a worker which is executing @work on @pool by searching
970 * @pool->busy_hash which is keyed by the address of @work. For a worker
971 * to match, its current execution should match the address of @work and
972 * its work function. This is to avoid unwanted dependency between
973 * unrelated work executions through a work item being recycled while still
974 * being executed.
975 *
976 * This is a bit tricky. A work item may be freed once its execution
977 * starts and nothing prevents the freed area from being recycled for
978 * another work item. If the same work item address ends up being reused
979 * before the original execution finishes, workqueue will identify the
980 * recycled work item as currently executing and make it wait until the
981 * current execution finishes, introducing an unwanted dependency.
982 *
983 * This function checks the work item address and work function to avoid
984 * false positives. Note that this isn't complete as one may construct a
985 * work function which can introduce dependency onto itself through a
986 * recycled work item. Well, if somebody wants to shoot oneself in the
987 * foot that badly, there's only so much we can do, and if such deadlock
988 * actually occurs, it should be easy to locate the culprit work function.
989 *
990 * CONTEXT:
991 * spin_lock_irq(pool->lock).
992 *
993 * Return:
994 * Pointer to worker which is executing @work if found, %NULL
995 * otherwise.
996 */
997 static struct worker *find_worker_executing_work(struct worker_pool *pool,
998 struct work_struct *work)
999 {
1000 struct worker *worker;
1001
1002 hash_for_each_possible(pool->busy_hash, worker, hentry,
1003 (unsigned long)work)
1004 if (worker->current_work == work &&
1005 worker->current_func == work->func)
1006 return worker;
1007
1008 return NULL;
1009 }
1010
1011 /**
1012 * move_linked_works - move linked works to a list
1013 * @work: start of series of works to be scheduled
1014 * @head: target list to append @work to
1015 * @nextp: out parameter for nested worklist walking
1016 *
1017 * Schedule linked works starting from @work to @head. Work series to
1018 * be scheduled starts at @work and includes any consecutive work with
1019 * WORK_STRUCT_LINKED set in its predecessor.
1020 *
1021 * If @nextp is not NULL, it's updated to point to the next work of
1022 * the last scheduled work. This allows move_linked_works() to be
1023 * nested inside outer list_for_each_entry_safe().
1024 *
1025 * CONTEXT:
1026 * spin_lock_irq(pool->lock).
1027 */
1028 static void move_linked_works(struct work_struct *work, struct list_head *head,
1029 struct work_struct **nextp)
1030 {
1031 struct work_struct *n;
1032
1033 /*
1034 * Linked worklist will always end before the end of the list,
1035 * use NULL for list head.
1036 */
1037 list_for_each_entry_safe_from(work, n, NULL, entry) {
1038 list_move_tail(&work->entry, head);
1039 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1040 break;
1041 }
1042
1043 /*
1044 * If we're already inside safe list traversal and have moved
1045 * multiple works to the scheduled queue, the next position
1046 * needs to be updated.
1047 */
1048 if (nextp)
1049 *nextp = n;
1050 }
1051
1052 /**
1053 * get_pwq - get an extra reference on the specified pool_workqueue
1054 * @pwq: pool_workqueue to get
1055 *
1056 * Obtain an extra reference on @pwq. The caller should guarantee that
1057 * @pwq has positive refcnt and be holding the matching pool->lock.
1058 */
1059 static void get_pwq(struct pool_workqueue *pwq)
1060 {
1061 lockdep_assert_held(&pwq->pool->lock);
1062 WARN_ON_ONCE(pwq->refcnt <= 0);
1063 pwq->refcnt++;
1064 }
1065
1066 /**
1067 * put_pwq - put a pool_workqueue reference
1068 * @pwq: pool_workqueue to put
1069 *
1070 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1071 * destruction. The caller should be holding the matching pool->lock.
1072 */
1073 static void put_pwq(struct pool_workqueue *pwq)
1074 {
1075 lockdep_assert_held(&pwq->pool->lock);
1076 if (likely(--pwq->refcnt))
1077 return;
1078 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1079 return;
1080 /*
1081 * @pwq can't be released under pool->lock, bounce to
1082 * pwq_unbound_release_workfn(). This never recurses on the same
1083 * pool->lock as this path is taken only for unbound workqueues and
1084 * the release work item is scheduled on a per-cpu workqueue. To
1085 * avoid lockdep warning, unbound pool->locks are given lockdep
1086 * subclass of 1 in get_unbound_pool().
1087 */
1088 schedule_work(&pwq->unbound_release_work);
1089 }
1090
1091 /**
1092 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1093 * @pwq: pool_workqueue to put (can be %NULL)
1094 *
1095 * put_pwq() with locking. This function also allows %NULL @pwq.
1096 */
1097 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1098 {
1099 if (pwq) {
1100 /*
1101 * As both pwqs and pools are sched-RCU protected, the
1102 * following lock operations are safe.
1103 */
1104 spin_lock_irq(&pwq->pool->lock);
1105 put_pwq(pwq);
1106 spin_unlock_irq(&pwq->pool->lock);
1107 }
1108 }
1109
1110 static void pwq_activate_delayed_work(struct work_struct *work)
1111 {
1112 struct pool_workqueue *pwq = get_work_pwq(work);
1113
1114 trace_workqueue_activate_work(work);
1115 if (list_empty(&pwq->pool->worklist))
1116 pwq->pool->watchdog_ts = jiffies;
1117 move_linked_works(work, &pwq->pool->worklist, NULL);
1118 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1119 pwq->nr_active++;
1120 }
1121
1122 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1123 {
1124 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1125 struct work_struct, entry);
1126
1127 pwq_activate_delayed_work(work);
1128 }
1129
1130 /**
1131 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1132 * @pwq: pwq of interest
1133 * @color: color of work which left the queue
1134 *
1135 * A work either has completed or is removed from pending queue,
1136 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1137 *
1138 * CONTEXT:
1139 * spin_lock_irq(pool->lock).
1140 */
1141 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1142 {
1143 /* uncolored work items don't participate in flushing or nr_active */
1144 if (color == WORK_NO_COLOR)
1145 goto out_put;
1146
1147 pwq->nr_in_flight[color]--;
1148
1149 pwq->nr_active--;
1150 if (!list_empty(&pwq->delayed_works)) {
1151 /* one down, submit a delayed one */
1152 if (pwq->nr_active < pwq->max_active)
1153 pwq_activate_first_delayed(pwq);
1154 }
1155
1156 /* is flush in progress and are we at the flushing tip? */
1157 if (likely(pwq->flush_color != color))
1158 goto out_put;
1159
1160 /* are there still in-flight works? */
1161 if (pwq->nr_in_flight[color])
1162 goto out_put;
1163
1164 /* this pwq is done, clear flush_color */
1165 pwq->flush_color = -1;
1166
1167 /*
1168 * If this was the last pwq, wake up the first flusher. It
1169 * will handle the rest.
1170 */
1171 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1172 complete(&pwq->wq->first_flusher->done);
1173 out_put:
1174 put_pwq(pwq);
1175 }
1176
1177 /**
1178 * try_to_grab_pending - steal work item from worklist and disable irq
1179 * @work: work item to steal
1180 * @is_dwork: @work is a delayed_work
1181 * @flags: place to store irq state
1182 *
1183 * Try to grab PENDING bit of @work. This function can handle @work in any
1184 * stable state - idle, on timer or on worklist.
1185 *
1186 * Return:
1187 * 1 if @work was pending and we successfully stole PENDING
1188 * 0 if @work was idle and we claimed PENDING
1189 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1190 * -ENOENT if someone else is canceling @work, this state may persist
1191 * for arbitrarily long
1192 *
1193 * Note:
1194 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1195 * interrupted while holding PENDING and @work off queue, irq must be
1196 * disabled on entry. This, combined with delayed_work->timer being
1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198 *
1199 * On successful return, >= 0, irq is disabled and the caller is
1200 * responsible for releasing it using local_irq_restore(*@flags).
1201 *
1202 * This function is safe to call from any context including IRQ handler.
1203 */
1204 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1205 unsigned long *flags)
1206 {
1207 struct worker_pool *pool;
1208 struct pool_workqueue *pwq;
1209
1210 local_irq_save(*flags);
1211
1212 /* try to steal the timer if it exists */
1213 if (is_dwork) {
1214 struct delayed_work *dwork = to_delayed_work(work);
1215
1216 /*
1217 * dwork->timer is irqsafe. If del_timer() fails, it's
1218 * guaranteed that the timer is not queued anywhere and not
1219 * running on the local CPU.
1220 */
1221 if (likely(del_timer(&dwork->timer)))
1222 return 1;
1223 }
1224
1225 /* try to claim PENDING the normal way */
1226 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1227 return 0;
1228
1229 /*
1230 * The queueing is in progress, or it is already queued. Try to
1231 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232 */
1233 pool = get_work_pool(work);
1234 if (!pool)
1235 goto fail;
1236
1237 spin_lock(&pool->lock);
1238 /*
1239 * work->data is guaranteed to point to pwq only while the work
1240 * item is queued on pwq->wq, and both updating work->data to point
1241 * to pwq on queueing and to pool on dequeueing are done under
1242 * pwq->pool->lock. This in turn guarantees that, if work->data
1243 * points to pwq which is associated with a locked pool, the work
1244 * item is currently queued on that pool.
1245 */
1246 pwq = get_work_pwq(work);
1247 if (pwq && pwq->pool == pool) {
1248 debug_work_deactivate(work);
1249
1250 /*
1251 * A delayed work item cannot be grabbed directly because
1252 * it might have linked NO_COLOR work items which, if left
1253 * on the delayed_list, will confuse pwq->nr_active
1254 * management later on and cause stall. Make sure the work
1255 * item is activated before grabbing.
1256 */
1257 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1258 pwq_activate_delayed_work(work);
1259
1260 list_del_init(&work->entry);
1261 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1262
1263 /* work->data points to pwq iff queued, point to pool */
1264 set_work_pool_and_keep_pending(work, pool->id);
1265
1266 spin_unlock(&pool->lock);
1267 return 1;
1268 }
1269 spin_unlock(&pool->lock);
1270 fail:
1271 local_irq_restore(*flags);
1272 if (work_is_canceling(work))
1273 return -ENOENT;
1274 cpu_relax();
1275 return -EAGAIN;
1276 }
1277
1278 /**
1279 * insert_work - insert a work into a pool
1280 * @pwq: pwq @work belongs to
1281 * @work: work to insert
1282 * @head: insertion point
1283 * @extra_flags: extra WORK_STRUCT_* flags to set
1284 *
1285 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1286 * work_struct flags.
1287 *
1288 * CONTEXT:
1289 * spin_lock_irq(pool->lock).
1290 */
1291 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1292 struct list_head *head, unsigned int extra_flags)
1293 {
1294 struct worker_pool *pool = pwq->pool;
1295
1296 /* we own @work, set data and link */
1297 set_work_pwq(work, pwq, extra_flags);
1298 list_add_tail(&work->entry, head);
1299 get_pwq(pwq);
1300
1301 /*
1302 * Ensure either wq_worker_sleeping() sees the above
1303 * list_add_tail() or we see zero nr_running to avoid workers lying
1304 * around lazily while there are works to be processed.
1305 */
1306 smp_mb();
1307
1308 if (__need_more_worker(pool))
1309 wake_up_worker(pool);
1310 }
1311
1312 /*
1313 * Test whether @work is being queued from another work executing on the
1314 * same workqueue.
1315 */
1316 static bool is_chained_work(struct workqueue_struct *wq)
1317 {
1318 struct worker *worker;
1319
1320 worker = current_wq_worker();
1321 /*
1322 * Return %true iff I'm a worker execuing a work item on @wq. If
1323 * I'm @worker, it's safe to dereference it without locking.
1324 */
1325 return worker && worker->current_pwq->wq == wq;
1326 }
1327
1328 /*
1329 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1330 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1331 * avoid perturbing sensitive tasks.
1332 */
1333 static int wq_select_unbound_cpu(int cpu)
1334 {
1335 static bool printed_dbg_warning;
1336 int new_cpu;
1337
1338 if (likely(!wq_debug_force_rr_cpu)) {
1339 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1340 return cpu;
1341 } else if (!printed_dbg_warning) {
1342 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1343 printed_dbg_warning = true;
1344 }
1345
1346 if (cpumask_empty(wq_unbound_cpumask))
1347 return cpu;
1348
1349 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1350 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1351 if (unlikely(new_cpu >= nr_cpu_ids)) {
1352 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids))
1354 return cpu;
1355 }
1356 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1357
1358 return new_cpu;
1359 }
1360
1361 static void __queue_work(int cpu, struct workqueue_struct *wq,
1362 struct work_struct *work)
1363 {
1364 struct pool_workqueue *pwq;
1365 struct worker_pool *last_pool;
1366 struct list_head *worklist;
1367 unsigned int work_flags;
1368 unsigned int req_cpu = cpu;
1369
1370 /*
1371 * While a work item is PENDING && off queue, a task trying to
1372 * steal the PENDING will busy-loop waiting for it to either get
1373 * queued or lose PENDING. Grabbing PENDING and queueing should
1374 * happen with IRQ disabled.
1375 */
1376 WARN_ON_ONCE(!irqs_disabled());
1377
1378 debug_work_activate(work);
1379
1380 /* if draining, only works from the same workqueue are allowed */
1381 if (unlikely(wq->flags & __WQ_DRAINING) &&
1382 WARN_ON_ONCE(!is_chained_work(wq)))
1383 return;
1384 retry:
1385 if (req_cpu == WORK_CPU_UNBOUND)
1386 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1387
1388 /* pwq which will be used unless @work is executing elsewhere */
1389 if (!(wq->flags & WQ_UNBOUND))
1390 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1391 else
1392 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1393
1394 /*
1395 * If @work was previously on a different pool, it might still be
1396 * running there, in which case the work needs to be queued on that
1397 * pool to guarantee non-reentrancy.
1398 */
1399 last_pool = get_work_pool(work);
1400 if (last_pool && last_pool != pwq->pool) {
1401 struct worker *worker;
1402
1403 spin_lock(&last_pool->lock);
1404
1405 worker = find_worker_executing_work(last_pool, work);
1406
1407 if (worker && worker->current_pwq->wq == wq) {
1408 pwq = worker->current_pwq;
1409 } else {
1410 /* meh... not running there, queue here */
1411 spin_unlock(&last_pool->lock);
1412 spin_lock(&pwq->pool->lock);
1413 }
1414 } else {
1415 spin_lock(&pwq->pool->lock);
1416 }
1417
1418 /*
1419 * pwq is determined and locked. For unbound pools, we could have
1420 * raced with pwq release and it could already be dead. If its
1421 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1422 * without another pwq replacing it in the numa_pwq_tbl or while
1423 * work items are executing on it, so the retrying is guaranteed to
1424 * make forward-progress.
1425 */
1426 if (unlikely(!pwq->refcnt)) {
1427 if (wq->flags & WQ_UNBOUND) {
1428 spin_unlock(&pwq->pool->lock);
1429 cpu_relax();
1430 goto retry;
1431 }
1432 /* oops */
1433 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1434 wq->name, cpu);
1435 }
1436
1437 /* pwq determined, queue */
1438 trace_workqueue_queue_work(req_cpu, pwq, work);
1439
1440 if (WARN_ON(!list_empty(&work->entry))) {
1441 spin_unlock(&pwq->pool->lock);
1442 return;
1443 }
1444
1445 pwq->nr_in_flight[pwq->work_color]++;
1446 work_flags = work_color_to_flags(pwq->work_color);
1447
1448 if (likely(pwq->nr_active < pwq->max_active)) {
1449 trace_workqueue_activate_work(work);
1450 pwq->nr_active++;
1451 worklist = &pwq->pool->worklist;
1452 if (list_empty(worklist))
1453 pwq->pool->watchdog_ts = jiffies;
1454 } else {
1455 work_flags |= WORK_STRUCT_DELAYED;
1456 worklist = &pwq->delayed_works;
1457 }
1458
1459 insert_work(pwq, work, worklist, work_flags);
1460
1461 spin_unlock(&pwq->pool->lock);
1462 }
1463
1464 /**
1465 * queue_work_on - queue work on specific cpu
1466 * @cpu: CPU number to execute work on
1467 * @wq: workqueue to use
1468 * @work: work to queue
1469 *
1470 * We queue the work to a specific CPU, the caller must ensure it
1471 * can't go away.
1472 *
1473 * Return: %false if @work was already on a queue, %true otherwise.
1474 */
1475 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1476 struct work_struct *work)
1477 {
1478 bool ret = false;
1479 unsigned long flags;
1480
1481 local_irq_save(flags);
1482
1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484 __queue_work(cpu, wq, work);
1485 ret = true;
1486 }
1487
1488 local_irq_restore(flags);
1489 return ret;
1490 }
1491 EXPORT_SYMBOL(queue_work_on);
1492
1493 void delayed_work_timer_fn(unsigned long __data)
1494 {
1495 struct delayed_work *dwork = (struct delayed_work *)__data;
1496
1497 /* should have been called from irqsafe timer with irq already off */
1498 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1499 }
1500 EXPORT_SYMBOL(delayed_work_timer_fn);
1501
1502 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1503 struct delayed_work *dwork, unsigned long delay)
1504 {
1505 struct timer_list *timer = &dwork->timer;
1506 struct work_struct *work = &dwork->work;
1507
1508 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1509 timer->data != (unsigned long)dwork);
1510 WARN_ON_ONCE(timer_pending(timer));
1511 WARN_ON_ONCE(!list_empty(&work->entry));
1512
1513 /*
1514 * If @delay is 0, queue @dwork->work immediately. This is for
1515 * both optimization and correctness. The earliest @timer can
1516 * expire is on the closest next tick and delayed_work users depend
1517 * on that there's no such delay when @delay is 0.
1518 */
1519 if (!delay) {
1520 __queue_work(cpu, wq, &dwork->work);
1521 return;
1522 }
1523
1524 timer_stats_timer_set_start_info(&dwork->timer);
1525
1526 dwork->wq = wq;
1527 dwork->cpu = cpu;
1528 timer->expires = jiffies + delay;
1529
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1534 }
1535
1536 /**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * Return: %false if @work was already on a queue, %true otherwise. If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
1546 */
1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
1549 {
1550 struct work_struct *work = &dwork->work;
1551 bool ret = false;
1552 unsigned long flags;
1553
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
1556
1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558 __queue_delayed_work(cpu, wq, dwork, delay);
1559 ret = true;
1560 }
1561
1562 local_irq_restore(flags);
1563 return ret;
1564 }
1565 EXPORT_SYMBOL(queue_delayed_work_on);
1566
1567 /**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1581 *
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1584 */
1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587 {
1588 unsigned long flags;
1589 int ret;
1590
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
1594
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
1598 }
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
1601 return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
1605 /**
1606 * worker_enter_idle - enter idle state
1607 * @worker: worker which is entering idle state
1608 *
1609 * @worker is entering idle state. Update stats and idle timer if
1610 * necessary.
1611 *
1612 * LOCKING:
1613 * spin_lock_irq(pool->lock).
1614 */
1615 static void worker_enter_idle(struct worker *worker)
1616 {
1617 struct worker_pool *pool = worker->pool;
1618
1619 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1620 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1621 (worker->hentry.next || worker->hentry.pprev)))
1622 return;
1623
1624 /* can't use worker_set_flags(), also called from create_worker() */
1625 worker->flags |= WORKER_IDLE;
1626 pool->nr_idle++;
1627 worker->last_active = jiffies;
1628
1629 /* idle_list is LIFO */
1630 list_add(&worker->entry, &pool->idle_list);
1631
1632 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1633 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1634
1635 /*
1636 * Sanity check nr_running. Because wq_unbind_fn() releases
1637 * pool->lock between setting %WORKER_UNBOUND and zapping
1638 * nr_running, the warning may trigger spuriously. Check iff
1639 * unbind is not in progress.
1640 */
1641 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1642 pool->nr_workers == pool->nr_idle &&
1643 atomic_read(&pool->nr_running));
1644 }
1645
1646 /**
1647 * worker_leave_idle - leave idle state
1648 * @worker: worker which is leaving idle state
1649 *
1650 * @worker is leaving idle state. Update stats.
1651 *
1652 * LOCKING:
1653 * spin_lock_irq(pool->lock).
1654 */
1655 static void worker_leave_idle(struct worker *worker)
1656 {
1657 struct worker_pool *pool = worker->pool;
1658
1659 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1660 return;
1661 worker_clr_flags(worker, WORKER_IDLE);
1662 pool->nr_idle--;
1663 list_del_init(&worker->entry);
1664 }
1665
1666 static struct worker *alloc_worker(int node)
1667 {
1668 struct worker *worker;
1669
1670 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1671 if (worker) {
1672 INIT_LIST_HEAD(&worker->entry);
1673 INIT_LIST_HEAD(&worker->scheduled);
1674 INIT_LIST_HEAD(&worker->node);
1675 /* on creation a worker is in !idle && prep state */
1676 worker->flags = WORKER_PREP;
1677 }
1678 return worker;
1679 }
1680
1681 /**
1682 * worker_attach_to_pool() - attach a worker to a pool
1683 * @worker: worker to be attached
1684 * @pool: the target pool
1685 *
1686 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1687 * cpu-binding of @worker are kept coordinated with the pool across
1688 * cpu-[un]hotplugs.
1689 */
1690 static void worker_attach_to_pool(struct worker *worker,
1691 struct worker_pool *pool)
1692 {
1693 mutex_lock(&pool->attach_mutex);
1694
1695 /*
1696 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697 * online CPUs. It'll be re-applied when any of the CPUs come up.
1698 */
1699 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1700
1701 /*
1702 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703 * stable across this function. See the comments above the
1704 * flag definition for details.
1705 */
1706 if (pool->flags & POOL_DISASSOCIATED)
1707 worker->flags |= WORKER_UNBOUND;
1708
1709 list_add_tail(&worker->node, &pool->workers);
1710
1711 mutex_unlock(&pool->attach_mutex);
1712 }
1713
1714 /**
1715 * worker_detach_from_pool() - detach a worker from its pool
1716 * @worker: worker which is attached to its pool
1717 * @pool: the pool @worker is attached to
1718 *
1719 * Undo the attaching which had been done in worker_attach_to_pool(). The
1720 * caller worker shouldn't access to the pool after detached except it has
1721 * other reference to the pool.
1722 */
1723 static void worker_detach_from_pool(struct worker *worker,
1724 struct worker_pool *pool)
1725 {
1726 struct completion *detach_completion = NULL;
1727
1728 mutex_lock(&pool->attach_mutex);
1729 list_del(&worker->node);
1730 if (list_empty(&pool->workers))
1731 detach_completion = pool->detach_completion;
1732 mutex_unlock(&pool->attach_mutex);
1733
1734 /* clear leftover flags without pool->lock after it is detached */
1735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1736
1737 if (detach_completion)
1738 complete(detach_completion);
1739 }
1740
1741 /**
1742 * create_worker - create a new workqueue worker
1743 * @pool: pool the new worker will belong to
1744 *
1745 * Create and start a new worker which is attached to @pool.
1746 *
1747 * CONTEXT:
1748 * Might sleep. Does GFP_KERNEL allocations.
1749 *
1750 * Return:
1751 * Pointer to the newly created worker.
1752 */
1753 static struct worker *create_worker(struct worker_pool *pool)
1754 {
1755 struct worker *worker = NULL;
1756 int id = -1;
1757 char id_buf[16];
1758
1759 /* ID is needed to determine kthread name */
1760 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1761 if (id < 0)
1762 goto fail;
1763
1764 worker = alloc_worker(pool->node);
1765 if (!worker)
1766 goto fail;
1767
1768 worker->pool = pool;
1769 worker->id = id;
1770
1771 if (pool->cpu >= 0)
1772 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1773 pool->attrs->nice < 0 ? "H" : "");
1774 else
1775 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1776
1777 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1778 "kworker/%s", id_buf);
1779 if (IS_ERR(worker->task))
1780 goto fail;
1781
1782 set_user_nice(worker->task, pool->attrs->nice);
1783 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1784
1785 /* successful, attach the worker to the pool */
1786 worker_attach_to_pool(worker, pool);
1787
1788 /* start the newly created worker */
1789 spin_lock_irq(&pool->lock);
1790 worker->pool->nr_workers++;
1791 worker_enter_idle(worker);
1792 wake_up_process(worker->task);
1793 spin_unlock_irq(&pool->lock);
1794
1795 return worker;
1796
1797 fail:
1798 if (id >= 0)
1799 ida_simple_remove(&pool->worker_ida, id);
1800 kfree(worker);
1801 return NULL;
1802 }
1803
1804 /**
1805 * destroy_worker - destroy a workqueue worker
1806 * @worker: worker to be destroyed
1807 *
1808 * Destroy @worker and adjust @pool stats accordingly. The worker should
1809 * be idle.
1810 *
1811 * CONTEXT:
1812 * spin_lock_irq(pool->lock).
1813 */
1814 static void destroy_worker(struct worker *worker)
1815 {
1816 struct worker_pool *pool = worker->pool;
1817
1818 lockdep_assert_held(&pool->lock);
1819
1820 /* sanity check frenzy */
1821 if (WARN_ON(worker->current_work) ||
1822 WARN_ON(!list_empty(&worker->scheduled)) ||
1823 WARN_ON(!(worker->flags & WORKER_IDLE)))
1824 return;
1825
1826 pool->nr_workers--;
1827 pool->nr_idle--;
1828
1829 list_del_init(&worker->entry);
1830 worker->flags |= WORKER_DIE;
1831 wake_up_process(worker->task);
1832 }
1833
1834 static void idle_worker_timeout(unsigned long __pool)
1835 {
1836 struct worker_pool *pool = (void *)__pool;
1837
1838 spin_lock_irq(&pool->lock);
1839
1840 while (too_many_workers(pool)) {
1841 struct worker *worker;
1842 unsigned long expires;
1843
1844 /* idle_list is kept in LIFO order, check the last one */
1845 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1846 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1847
1848 if (time_before(jiffies, expires)) {
1849 mod_timer(&pool->idle_timer, expires);
1850 break;
1851 }
1852
1853 destroy_worker(worker);
1854 }
1855
1856 spin_unlock_irq(&pool->lock);
1857 }
1858
1859 static void send_mayday(struct work_struct *work)
1860 {
1861 struct pool_workqueue *pwq = get_work_pwq(work);
1862 struct workqueue_struct *wq = pwq->wq;
1863
1864 lockdep_assert_held(&wq_mayday_lock);
1865
1866 if (!wq->rescuer)
1867 return;
1868
1869 /* mayday mayday mayday */
1870 if (list_empty(&pwq->mayday_node)) {
1871 /*
1872 * If @pwq is for an unbound wq, its base ref may be put at
1873 * any time due to an attribute change. Pin @pwq until the
1874 * rescuer is done with it.
1875 */
1876 get_pwq(pwq);
1877 list_add_tail(&pwq->mayday_node, &wq->maydays);
1878 wake_up_process(wq->rescuer->task);
1879 }
1880 }
1881
1882 static void pool_mayday_timeout(unsigned long __pool)
1883 {
1884 struct worker_pool *pool = (void *)__pool;
1885 struct work_struct *work;
1886
1887 spin_lock_irq(&pool->lock);
1888 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1889
1890 if (need_to_create_worker(pool)) {
1891 /*
1892 * We've been trying to create a new worker but
1893 * haven't been successful. We might be hitting an
1894 * allocation deadlock. Send distress signals to
1895 * rescuers.
1896 */
1897 list_for_each_entry(work, &pool->worklist, entry)
1898 send_mayday(work);
1899 }
1900
1901 spin_unlock(&wq_mayday_lock);
1902 spin_unlock_irq(&pool->lock);
1903
1904 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1905 }
1906
1907 /**
1908 * maybe_create_worker - create a new worker if necessary
1909 * @pool: pool to create a new worker for
1910 *
1911 * Create a new worker for @pool if necessary. @pool is guaranteed to
1912 * have at least one idle worker on return from this function. If
1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1914 * sent to all rescuers with works scheduled on @pool to resolve
1915 * possible allocation deadlock.
1916 *
1917 * On return, need_to_create_worker() is guaranteed to be %false and
1918 * may_start_working() %true.
1919 *
1920 * LOCKING:
1921 * spin_lock_irq(pool->lock) which may be released and regrabbed
1922 * multiple times. Does GFP_KERNEL allocations. Called only from
1923 * manager.
1924 */
1925 static void maybe_create_worker(struct worker_pool *pool)
1926 __releases(&pool->lock)
1927 __acquires(&pool->lock)
1928 {
1929 restart:
1930 spin_unlock_irq(&pool->lock);
1931
1932 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1934
1935 while (true) {
1936 if (create_worker(pool) || !need_to_create_worker(pool))
1937 break;
1938
1939 schedule_timeout_interruptible(CREATE_COOLDOWN);
1940
1941 if (!need_to_create_worker(pool))
1942 break;
1943 }
1944
1945 del_timer_sync(&pool->mayday_timer);
1946 spin_lock_irq(&pool->lock);
1947 /*
1948 * This is necessary even after a new worker was just successfully
1949 * created as @pool->lock was dropped and the new worker might have
1950 * already become busy.
1951 */
1952 if (need_to_create_worker(pool))
1953 goto restart;
1954 }
1955
1956 /**
1957 * manage_workers - manage worker pool
1958 * @worker: self
1959 *
1960 * Assume the manager role and manage the worker pool @worker belongs
1961 * to. At any given time, there can be only zero or one manager per
1962 * pool. The exclusion is handled automatically by this function.
1963 *
1964 * The caller can safely start processing works on false return. On
1965 * true return, it's guaranteed that need_to_create_worker() is false
1966 * and may_start_working() is true.
1967 *
1968 * CONTEXT:
1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 * multiple times. Does GFP_KERNEL allocations.
1971 *
1972 * Return:
1973 * %false if the pool doesn't need management and the caller can safely
1974 * start processing works, %true if management function was performed and
1975 * the conditions that the caller verified before calling the function may
1976 * no longer be true.
1977 */
1978 static bool manage_workers(struct worker *worker)
1979 {
1980 struct worker_pool *pool = worker->pool;
1981
1982 /*
1983 * Anyone who successfully grabs manager_arb wins the arbitration
1984 * and becomes the manager. mutex_trylock() on pool->manager_arb
1985 * failure while holding pool->lock reliably indicates that someone
1986 * else is managing the pool and the worker which failed trylock
1987 * can proceed to executing work items. This means that anyone
1988 * grabbing manager_arb is responsible for actually performing
1989 * manager duties. If manager_arb is grabbed and released without
1990 * actual management, the pool may stall indefinitely.
1991 */
1992 if (!mutex_trylock(&pool->manager_arb))
1993 return false;
1994 pool->manager = worker;
1995
1996 maybe_create_worker(pool);
1997
1998 pool->manager = NULL;
1999 mutex_unlock(&pool->manager_arb);
2000 return true;
2001 }
2002
2003 /**
2004 * process_one_work - process single work
2005 * @worker: self
2006 * @work: work to process
2007 *
2008 * Process @work. This function contains all the logics necessary to
2009 * process a single work including synchronization against and
2010 * interaction with other workers on the same cpu, queueing and
2011 * flushing. As long as context requirement is met, any worker can
2012 * call this function to process a work.
2013 *
2014 * CONTEXT:
2015 * spin_lock_irq(pool->lock) which is released and regrabbed.
2016 */
2017 static void process_one_work(struct worker *worker, struct work_struct *work)
2018 __releases(&pool->lock)
2019 __acquires(&pool->lock)
2020 {
2021 struct pool_workqueue *pwq = get_work_pwq(work);
2022 struct worker_pool *pool = worker->pool;
2023 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2024 int work_color;
2025 struct worker *collision;
2026 #ifdef CONFIG_LOCKDEP
2027 /*
2028 * It is permissible to free the struct work_struct from
2029 * inside the function that is called from it, this we need to
2030 * take into account for lockdep too. To avoid bogus "held
2031 * lock freed" warnings as well as problems when looking into
2032 * work->lockdep_map, make a copy and use that here.
2033 */
2034 struct lockdep_map lockdep_map;
2035
2036 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2037 #endif
2038 /* ensure we're on the correct CPU */
2039 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2040 raw_smp_processor_id() != pool->cpu);
2041
2042 /*
2043 * A single work shouldn't be executed concurrently by
2044 * multiple workers on a single cpu. Check whether anyone is
2045 * already processing the work. If so, defer the work to the
2046 * currently executing one.
2047 */
2048 collision = find_worker_executing_work(pool, work);
2049 if (unlikely(collision)) {
2050 move_linked_works(work, &collision->scheduled, NULL);
2051 return;
2052 }
2053
2054 /* claim and dequeue */
2055 debug_work_deactivate(work);
2056 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2057 worker->current_work = work;
2058 worker->current_func = work->func;
2059 worker->current_pwq = pwq;
2060 work_color = get_work_color(work);
2061
2062 list_del_init(&work->entry);
2063
2064 /*
2065 * CPU intensive works don't participate in concurrency management.
2066 * They're the scheduler's responsibility. This takes @worker out
2067 * of concurrency management and the next code block will chain
2068 * execution of the pending work items.
2069 */
2070 if (unlikely(cpu_intensive))
2071 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2072
2073 /*
2074 * Wake up another worker if necessary. The condition is always
2075 * false for normal per-cpu workers since nr_running would always
2076 * be >= 1 at this point. This is used to chain execution of the
2077 * pending work items for WORKER_NOT_RUNNING workers such as the
2078 * UNBOUND and CPU_INTENSIVE ones.
2079 */
2080 if (need_more_worker(pool))
2081 wake_up_worker(pool);
2082
2083 /*
2084 * Record the last pool and clear PENDING which should be the last
2085 * update to @work. Also, do this inside @pool->lock so that
2086 * PENDING and queued state changes happen together while IRQ is
2087 * disabled.
2088 */
2089 set_work_pool_and_clear_pending(work, pool->id);
2090
2091 spin_unlock_irq(&pool->lock);
2092
2093 lock_map_acquire_read(&pwq->wq->lockdep_map);
2094 lock_map_acquire(&lockdep_map);
2095 trace_workqueue_execute_start(work);
2096 worker->current_func(work);
2097 /*
2098 * While we must be careful to not use "work" after this, the trace
2099 * point will only record its address.
2100 */
2101 trace_workqueue_execute_end(work);
2102 lock_map_release(&lockdep_map);
2103 lock_map_release(&pwq->wq->lockdep_map);
2104
2105 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2106 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2107 " last function: %pf\n",
2108 current->comm, preempt_count(), task_pid_nr(current),
2109 worker->current_func);
2110 debug_show_held_locks(current);
2111 dump_stack();
2112 }
2113
2114 /*
2115 * The following prevents a kworker from hogging CPU on !PREEMPT
2116 * kernels, where a requeueing work item waiting for something to
2117 * happen could deadlock with stop_machine as such work item could
2118 * indefinitely requeue itself while all other CPUs are trapped in
2119 * stop_machine. At the same time, report a quiescent RCU state so
2120 * the same condition doesn't freeze RCU.
2121 */
2122 cond_resched_rcu_qs();
2123
2124 spin_lock_irq(&pool->lock);
2125
2126 /* clear cpu intensive status */
2127 if (unlikely(cpu_intensive))
2128 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2129
2130 /* we're done with it, release */
2131 hash_del(&worker->hentry);
2132 worker->current_work = NULL;
2133 worker->current_func = NULL;
2134 worker->current_pwq = NULL;
2135 worker->desc_valid = false;
2136 pwq_dec_nr_in_flight(pwq, work_color);
2137 }
2138
2139 /**
2140 * process_scheduled_works - process scheduled works
2141 * @worker: self
2142 *
2143 * Process all scheduled works. Please note that the scheduled list
2144 * may change while processing a work, so this function repeatedly
2145 * fetches a work from the top and executes it.
2146 *
2147 * CONTEXT:
2148 * spin_lock_irq(pool->lock) which may be released and regrabbed
2149 * multiple times.
2150 */
2151 static void process_scheduled_works(struct worker *worker)
2152 {
2153 while (!list_empty(&worker->scheduled)) {
2154 struct work_struct *work = list_first_entry(&worker->scheduled,
2155 struct work_struct, entry);
2156 process_one_work(worker, work);
2157 }
2158 }
2159
2160 /**
2161 * worker_thread - the worker thread function
2162 * @__worker: self
2163 *
2164 * The worker thread function. All workers belong to a worker_pool -
2165 * either a per-cpu one or dynamic unbound one. These workers process all
2166 * work items regardless of their specific target workqueue. The only
2167 * exception is work items which belong to workqueues with a rescuer which
2168 * will be explained in rescuer_thread().
2169 *
2170 * Return: 0
2171 */
2172 static int worker_thread(void *__worker)
2173 {
2174 struct worker *worker = __worker;
2175 struct worker_pool *pool = worker->pool;
2176
2177 /* tell the scheduler that this is a workqueue worker */
2178 worker->task->flags |= PF_WQ_WORKER;
2179 woke_up:
2180 spin_lock_irq(&pool->lock);
2181
2182 /* am I supposed to die? */
2183 if (unlikely(worker->flags & WORKER_DIE)) {
2184 spin_unlock_irq(&pool->lock);
2185 WARN_ON_ONCE(!list_empty(&worker->entry));
2186 worker->task->flags &= ~PF_WQ_WORKER;
2187
2188 set_task_comm(worker->task, "kworker/dying");
2189 ida_simple_remove(&pool->worker_ida, worker->id);
2190 worker_detach_from_pool(worker, pool);
2191 kfree(worker);
2192 return 0;
2193 }
2194
2195 worker_leave_idle(worker);
2196 recheck:
2197 /* no more worker necessary? */
2198 if (!need_more_worker(pool))
2199 goto sleep;
2200
2201 /* do we need to manage? */
2202 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2203 goto recheck;
2204
2205 /*
2206 * ->scheduled list can only be filled while a worker is
2207 * preparing to process a work or actually processing it.
2208 * Make sure nobody diddled with it while I was sleeping.
2209 */
2210 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2211
2212 /*
2213 * Finish PREP stage. We're guaranteed to have at least one idle
2214 * worker or that someone else has already assumed the manager
2215 * role. This is where @worker starts participating in concurrency
2216 * management if applicable and concurrency management is restored
2217 * after being rebound. See rebind_workers() for details.
2218 */
2219 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2220
2221 do {
2222 struct work_struct *work =
2223 list_first_entry(&pool->worklist,
2224 struct work_struct, entry);
2225
2226 pool->watchdog_ts = jiffies;
2227
2228 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2229 /* optimization path, not strictly necessary */
2230 process_one_work(worker, work);
2231 if (unlikely(!list_empty(&worker->scheduled)))
2232 process_scheduled_works(worker);
2233 } else {
2234 move_linked_works(work, &worker->scheduled, NULL);
2235 process_scheduled_works(worker);
2236 }
2237 } while (keep_working(pool));
2238
2239 worker_set_flags(worker, WORKER_PREP);
2240 sleep:
2241 /*
2242 * pool->lock is held and there's no work to process and no need to
2243 * manage, sleep. Workers are woken up only while holding
2244 * pool->lock or from local cpu, so setting the current state
2245 * before releasing pool->lock is enough to prevent losing any
2246 * event.
2247 */
2248 worker_enter_idle(worker);
2249 __set_current_state(TASK_INTERRUPTIBLE);
2250 spin_unlock_irq(&pool->lock);
2251 schedule();
2252 goto woke_up;
2253 }
2254
2255 /**
2256 * rescuer_thread - the rescuer thread function
2257 * @__rescuer: self
2258 *
2259 * Workqueue rescuer thread function. There's one rescuer for each
2260 * workqueue which has WQ_MEM_RECLAIM set.
2261 *
2262 * Regular work processing on a pool may block trying to create a new
2263 * worker which uses GFP_KERNEL allocation which has slight chance of
2264 * developing into deadlock if some works currently on the same queue
2265 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2266 * the problem rescuer solves.
2267 *
2268 * When such condition is possible, the pool summons rescuers of all
2269 * workqueues which have works queued on the pool and let them process
2270 * those works so that forward progress can be guaranteed.
2271 *
2272 * This should happen rarely.
2273 *
2274 * Return: 0
2275 */
2276 static int rescuer_thread(void *__rescuer)
2277 {
2278 struct worker *rescuer = __rescuer;
2279 struct workqueue_struct *wq = rescuer->rescue_wq;
2280 struct list_head *scheduled = &rescuer->scheduled;
2281 bool should_stop;
2282
2283 set_user_nice(current, RESCUER_NICE_LEVEL);
2284
2285 /*
2286 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2287 * doesn't participate in concurrency management.
2288 */
2289 rescuer->task->flags |= PF_WQ_WORKER;
2290 repeat:
2291 set_current_state(TASK_INTERRUPTIBLE);
2292
2293 /*
2294 * By the time the rescuer is requested to stop, the workqueue
2295 * shouldn't have any work pending, but @wq->maydays may still have
2296 * pwq(s) queued. This can happen by non-rescuer workers consuming
2297 * all the work items before the rescuer got to them. Go through
2298 * @wq->maydays processing before acting on should_stop so that the
2299 * list is always empty on exit.
2300 */
2301 should_stop = kthread_should_stop();
2302
2303 /* see whether any pwq is asking for help */
2304 spin_lock_irq(&wq_mayday_lock);
2305
2306 while (!list_empty(&wq->maydays)) {
2307 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2308 struct pool_workqueue, mayday_node);
2309 struct worker_pool *pool = pwq->pool;
2310 struct work_struct *work, *n;
2311 bool first = true;
2312
2313 __set_current_state(TASK_RUNNING);
2314 list_del_init(&pwq->mayday_node);
2315
2316 spin_unlock_irq(&wq_mayday_lock);
2317
2318 worker_attach_to_pool(rescuer, pool);
2319
2320 spin_lock_irq(&pool->lock);
2321 rescuer->pool = pool;
2322
2323 /*
2324 * Slurp in all works issued via this workqueue and
2325 * process'em.
2326 */
2327 WARN_ON_ONCE(!list_empty(scheduled));
2328 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2329 if (get_work_pwq(work) == pwq) {
2330 if (first)
2331 pool->watchdog_ts = jiffies;
2332 move_linked_works(work, scheduled, &n);
2333 }
2334 first = false;
2335 }
2336
2337 if (!list_empty(scheduled)) {
2338 process_scheduled_works(rescuer);
2339
2340 /*
2341 * The above execution of rescued work items could
2342 * have created more to rescue through
2343 * pwq_activate_first_delayed() or chained
2344 * queueing. Let's put @pwq back on mayday list so
2345 * that such back-to-back work items, which may be
2346 * being used to relieve memory pressure, don't
2347 * incur MAYDAY_INTERVAL delay inbetween.
2348 */
2349 if (need_to_create_worker(pool)) {
2350 spin_lock(&wq_mayday_lock);
2351 get_pwq(pwq);
2352 list_move_tail(&pwq->mayday_node, &wq->maydays);
2353 spin_unlock(&wq_mayday_lock);
2354 }
2355 }
2356
2357 /*
2358 * Put the reference grabbed by send_mayday(). @pool won't
2359 * go away while we're still attached to it.
2360 */
2361 put_pwq(pwq);
2362
2363 /*
2364 * Leave this pool. If need_more_worker() is %true, notify a
2365 * regular worker; otherwise, we end up with 0 concurrency
2366 * and stalling the execution.
2367 */
2368 if (need_more_worker(pool))
2369 wake_up_worker(pool);
2370
2371 rescuer->pool = NULL;
2372 spin_unlock_irq(&pool->lock);
2373
2374 worker_detach_from_pool(rescuer, pool);
2375
2376 spin_lock_irq(&wq_mayday_lock);
2377 }
2378
2379 spin_unlock_irq(&wq_mayday_lock);
2380
2381 if (should_stop) {
2382 __set_current_state(TASK_RUNNING);
2383 rescuer->task->flags &= ~PF_WQ_WORKER;
2384 return 0;
2385 }
2386
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389 schedule();
2390 goto repeat;
2391 }
2392
2393 /**
2394 * check_flush_dependency - check for flush dependency sanity
2395 * @target_wq: workqueue being flushed
2396 * @target_work: work item being flushed (NULL for workqueue flushes)
2397 *
2398 * %current is trying to flush the whole @target_wq or @target_work on it.
2399 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2400 * reclaiming memory or running on a workqueue which doesn't have
2401 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2402 * a deadlock.
2403 */
2404 static void check_flush_dependency(struct workqueue_struct *target_wq,
2405 struct work_struct *target_work)
2406 {
2407 work_func_t target_func = target_work ? target_work->func : NULL;
2408 struct worker *worker;
2409
2410 if (target_wq->flags & WQ_MEM_RECLAIM)
2411 return;
2412
2413 worker = current_wq_worker();
2414
2415 WARN_ONCE(current->flags & PF_MEMALLOC,
2416 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2417 current->pid, current->comm, target_wq->name, target_func);
2418 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2419 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2420 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2421 worker->current_pwq->wq->name, worker->current_func,
2422 target_wq->name, target_func);
2423 }
2424
2425 struct wq_barrier {
2426 struct work_struct work;
2427 struct completion done;
2428 struct task_struct *task; /* purely informational */
2429 };
2430
2431 static void wq_barrier_func(struct work_struct *work)
2432 {
2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 complete(&barr->done);
2435 }
2436
2437 /**
2438 * insert_wq_barrier - insert a barrier work
2439 * @pwq: pwq to insert barrier into
2440 * @barr: wq_barrier to insert
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
2443 *
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
2456 * underneath us, so we can't reliably determine pwq from @target.
2457 *
2458 * CONTEXT:
2459 * spin_lock_irq(pool->lock).
2460 */
2461 static void insert_wq_barrier(struct pool_workqueue *pwq,
2462 struct wq_barrier *barr,
2463 struct work_struct *target, struct worker *worker)
2464 {
2465 struct list_head *head;
2466 unsigned int linked = 0;
2467
2468 /*
2469 * debugobject calls are safe here even with pool->lock locked
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2472 * might deadlock.
2473 */
2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2476 init_completion(&barr->done);
2477 barr->task = current;
2478
2479 /*
2480 * If @target is currently being executed, schedule the
2481 * barrier to the worker; otherwise, put it after @target.
2482 */
2483 if (worker)
2484 head = worker->scheduled.next;
2485 else {
2486 unsigned long *bits = work_data_bits(target);
2487
2488 head = target->entry.next;
2489 /* there can already be other linked works, inherit and set */
2490 linked = *bits & WORK_STRUCT_LINKED;
2491 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2492 }
2493
2494 debug_work_activate(&barr->work);
2495 insert_work(pwq, &barr->work, head,
2496 work_color_to_flags(WORK_NO_COLOR) | linked);
2497 }
2498
2499 /**
2500 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2501 * @wq: workqueue being flushed
2502 * @flush_color: new flush color, < 0 for no-op
2503 * @work_color: new work color, < 0 for no-op
2504 *
2505 * Prepare pwqs for workqueue flushing.
2506 *
2507 * If @flush_color is non-negative, flush_color on all pwqs should be
2508 * -1. If no pwq has in-flight commands at the specified color, all
2509 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2510 * has in flight commands, its pwq->flush_color is set to
2511 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2512 * wakeup logic is armed and %true is returned.
2513 *
2514 * The caller should have initialized @wq->first_flusher prior to
2515 * calling this function with non-negative @flush_color. If
2516 * @flush_color is negative, no flush color update is done and %false
2517 * is returned.
2518 *
2519 * If @work_color is non-negative, all pwqs should have the same
2520 * work_color which is previous to @work_color and all will be
2521 * advanced to @work_color.
2522 *
2523 * CONTEXT:
2524 * mutex_lock(wq->mutex).
2525 *
2526 * Return:
2527 * %true if @flush_color >= 0 and there's something to flush. %false
2528 * otherwise.
2529 */
2530 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2531 int flush_color, int work_color)
2532 {
2533 bool wait = false;
2534 struct pool_workqueue *pwq;
2535
2536 if (flush_color >= 0) {
2537 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2538 atomic_set(&wq->nr_pwqs_to_flush, 1);
2539 }
2540
2541 for_each_pwq(pwq, wq) {
2542 struct worker_pool *pool = pwq->pool;
2543
2544 spin_lock_irq(&pool->lock);
2545
2546 if (flush_color >= 0) {
2547 WARN_ON_ONCE(pwq->flush_color != -1);
2548
2549 if (pwq->nr_in_flight[flush_color]) {
2550 pwq->flush_color = flush_color;
2551 atomic_inc(&wq->nr_pwqs_to_flush);
2552 wait = true;
2553 }
2554 }
2555
2556 if (work_color >= 0) {
2557 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2558 pwq->work_color = work_color;
2559 }
2560
2561 spin_unlock_irq(&pool->lock);
2562 }
2563
2564 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2565 complete(&wq->first_flusher->done);
2566
2567 return wait;
2568 }
2569
2570 /**
2571 * flush_workqueue - ensure that any scheduled work has run to completion.
2572 * @wq: workqueue to flush
2573 *
2574 * This function sleeps until all work items which were queued on entry
2575 * have finished execution, but it is not livelocked by new incoming ones.
2576 */
2577 void flush_workqueue(struct workqueue_struct *wq)
2578 {
2579 struct wq_flusher this_flusher = {
2580 .list = LIST_HEAD_INIT(this_flusher.list),
2581 .flush_color = -1,
2582 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2583 };
2584 int next_color;
2585
2586 lock_map_acquire(&wq->lockdep_map);
2587 lock_map_release(&wq->lockdep_map);
2588
2589 mutex_lock(&wq->mutex);
2590
2591 /*
2592 * Start-to-wait phase
2593 */
2594 next_color = work_next_color(wq->work_color);
2595
2596 if (next_color != wq->flush_color) {
2597 /*
2598 * Color space is not full. The current work_color
2599 * becomes our flush_color and work_color is advanced
2600 * by one.
2601 */
2602 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2603 this_flusher.flush_color = wq->work_color;
2604 wq->work_color = next_color;
2605
2606 if (!wq->first_flusher) {
2607 /* no flush in progress, become the first flusher */
2608 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2609
2610 wq->first_flusher = &this_flusher;
2611
2612 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2613 wq->work_color)) {
2614 /* nothing to flush, done */
2615 wq->flush_color = next_color;
2616 wq->first_flusher = NULL;
2617 goto out_unlock;
2618 }
2619 } else {
2620 /* wait in queue */
2621 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2622 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2623 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2624 }
2625 } else {
2626 /*
2627 * Oops, color space is full, wait on overflow queue.
2628 * The next flush completion will assign us
2629 * flush_color and transfer to flusher_queue.
2630 */
2631 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2632 }
2633
2634 check_flush_dependency(wq, NULL);
2635
2636 mutex_unlock(&wq->mutex);
2637
2638 wait_for_completion(&this_flusher.done);
2639
2640 /*
2641 * Wake-up-and-cascade phase
2642 *
2643 * First flushers are responsible for cascading flushes and
2644 * handling overflow. Non-first flushers can simply return.
2645 */
2646 if (wq->first_flusher != &this_flusher)
2647 return;
2648
2649 mutex_lock(&wq->mutex);
2650
2651 /* we might have raced, check again with mutex held */
2652 if (wq->first_flusher != &this_flusher)
2653 goto out_unlock;
2654
2655 wq->first_flusher = NULL;
2656
2657 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659
2660 while (true) {
2661 struct wq_flusher *next, *tmp;
2662
2663 /* complete all the flushers sharing the current flush color */
2664 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665 if (next->flush_color != wq->flush_color)
2666 break;
2667 list_del_init(&next->list);
2668 complete(&next->done);
2669 }
2670
2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672 wq->flush_color != work_next_color(wq->work_color));
2673
2674 /* this flush_color is finished, advance by one */
2675 wq->flush_color = work_next_color(wq->flush_color);
2676
2677 /* one color has been freed, handle overflow queue */
2678 if (!list_empty(&wq->flusher_overflow)) {
2679 /*
2680 * Assign the same color to all overflowed
2681 * flushers, advance work_color and append to
2682 * flusher_queue. This is the start-to-wait
2683 * phase for these overflowed flushers.
2684 */
2685 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686 tmp->flush_color = wq->work_color;
2687
2688 wq->work_color = work_next_color(wq->work_color);
2689
2690 list_splice_tail_init(&wq->flusher_overflow,
2691 &wq->flusher_queue);
2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 }
2694
2695 if (list_empty(&wq->flusher_queue)) {
2696 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 break;
2698 }
2699
2700 /*
2701 * Need to flush more colors. Make the next flusher
2702 * the new first flusher and arm pwqs.
2703 */
2704 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706
2707 list_del_init(&next->list);
2708 wq->first_flusher = next;
2709
2710 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 break;
2712
2713 /*
2714 * Meh... this color is already done, clear first
2715 * flusher and repeat cascading.
2716 */
2717 wq->first_flusher = NULL;
2718 }
2719
2720 out_unlock:
2721 mutex_unlock(&wq->mutex);
2722 }
2723 EXPORT_SYMBOL(flush_workqueue);
2724
2725 /**
2726 * drain_workqueue - drain a workqueue
2727 * @wq: workqueue to drain
2728 *
2729 * Wait until the workqueue becomes empty. While draining is in progress,
2730 * only chain queueing is allowed. IOW, only currently pending or running
2731 * work items on @wq can queue further work items on it. @wq is flushed
2732 * repeatedly until it becomes empty. The number of flushing is determined
2733 * by the depth of chaining and should be relatively short. Whine if it
2734 * takes too long.
2735 */
2736 void drain_workqueue(struct workqueue_struct *wq)
2737 {
2738 unsigned int flush_cnt = 0;
2739 struct pool_workqueue *pwq;
2740
2741 /*
2742 * __queue_work() needs to test whether there are drainers, is much
2743 * hotter than drain_workqueue() and already looks at @wq->flags.
2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745 */
2746 mutex_lock(&wq->mutex);
2747 if (!wq->nr_drainers++)
2748 wq->flags |= __WQ_DRAINING;
2749 mutex_unlock(&wq->mutex);
2750 reflush:
2751 flush_workqueue(wq);
2752
2753 mutex_lock(&wq->mutex);
2754
2755 for_each_pwq(pwq, wq) {
2756 bool drained;
2757
2758 spin_lock_irq(&pwq->pool->lock);
2759 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760 spin_unlock_irq(&pwq->pool->lock);
2761
2762 if (drained)
2763 continue;
2764
2765 if (++flush_cnt == 10 ||
2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768 wq->name, flush_cnt);
2769
2770 mutex_unlock(&wq->mutex);
2771 goto reflush;
2772 }
2773
2774 if (!--wq->nr_drainers)
2775 wq->flags &= ~__WQ_DRAINING;
2776 mutex_unlock(&wq->mutex);
2777 }
2778 EXPORT_SYMBOL_GPL(drain_workqueue);
2779
2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781 {
2782 struct worker *worker = NULL;
2783 struct worker_pool *pool;
2784 struct pool_workqueue *pwq;
2785
2786 might_sleep();
2787
2788 local_irq_disable();
2789 pool = get_work_pool(work);
2790 if (!pool) {
2791 local_irq_enable();
2792 return false;
2793 }
2794
2795 spin_lock(&pool->lock);
2796 /* see the comment in try_to_grab_pending() with the same code */
2797 pwq = get_work_pwq(work);
2798 if (pwq) {
2799 if (unlikely(pwq->pool != pool))
2800 goto already_gone;
2801 } else {
2802 worker = find_worker_executing_work(pool, work);
2803 if (!worker)
2804 goto already_gone;
2805 pwq = worker->current_pwq;
2806 }
2807
2808 check_flush_dependency(pwq->wq, work);
2809
2810 insert_wq_barrier(pwq, barr, work, worker);
2811 spin_unlock_irq(&pool->lock);
2812
2813 /*
2814 * If @max_active is 1 or rescuer is in use, flushing another work
2815 * item on the same workqueue may lead to deadlock. Make sure the
2816 * flusher is not running on the same workqueue by verifying write
2817 * access.
2818 */
2819 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2820 lock_map_acquire(&pwq->wq->lockdep_map);
2821 else
2822 lock_map_acquire_read(&pwq->wq->lockdep_map);
2823 lock_map_release(&pwq->wq->lockdep_map);
2824
2825 return true;
2826 already_gone:
2827 spin_unlock_irq(&pool->lock);
2828 return false;
2829 }
2830
2831 /**
2832 * flush_work - wait for a work to finish executing the last queueing instance
2833 * @work: the work to flush
2834 *
2835 * Wait until @work has finished execution. @work is guaranteed to be idle
2836 * on return if it hasn't been requeued since flush started.
2837 *
2838 * Return:
2839 * %true if flush_work() waited for the work to finish execution,
2840 * %false if it was already idle.
2841 */
2842 bool flush_work(struct work_struct *work)
2843 {
2844 struct wq_barrier barr;
2845
2846 lock_map_acquire(&work->lockdep_map);
2847 lock_map_release(&work->lockdep_map);
2848
2849 if (start_flush_work(work, &barr)) {
2850 wait_for_completion(&barr.done);
2851 destroy_work_on_stack(&barr.work);
2852 return true;
2853 } else {
2854 return false;
2855 }
2856 }
2857 EXPORT_SYMBOL_GPL(flush_work);
2858
2859 struct cwt_wait {
2860 wait_queue_t wait;
2861 struct work_struct *work;
2862 };
2863
2864 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2865 {
2866 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2867
2868 if (cwait->work != key)
2869 return 0;
2870 return autoremove_wake_function(wait, mode, sync, key);
2871 }
2872
2873 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2874 {
2875 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2876 unsigned long flags;
2877 int ret;
2878
2879 do {
2880 ret = try_to_grab_pending(work, is_dwork, &flags);
2881 /*
2882 * If someone else is already canceling, wait for it to
2883 * finish. flush_work() doesn't work for PREEMPT_NONE
2884 * because we may get scheduled between @work's completion
2885 * and the other canceling task resuming and clearing
2886 * CANCELING - flush_work() will return false immediately
2887 * as @work is no longer busy, try_to_grab_pending() will
2888 * return -ENOENT as @work is still being canceled and the
2889 * other canceling task won't be able to clear CANCELING as
2890 * we're hogging the CPU.
2891 *
2892 * Let's wait for completion using a waitqueue. As this
2893 * may lead to the thundering herd problem, use a custom
2894 * wake function which matches @work along with exclusive
2895 * wait and wakeup.
2896 */
2897 if (unlikely(ret == -ENOENT)) {
2898 struct cwt_wait cwait;
2899
2900 init_wait(&cwait.wait);
2901 cwait.wait.func = cwt_wakefn;
2902 cwait.work = work;
2903
2904 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2905 TASK_UNINTERRUPTIBLE);
2906 if (work_is_canceling(work))
2907 schedule();
2908 finish_wait(&cancel_waitq, &cwait.wait);
2909 }
2910 } while (unlikely(ret < 0));
2911
2912 /* tell other tasks trying to grab @work to back off */
2913 mark_work_canceling(work);
2914 local_irq_restore(flags);
2915
2916 flush_work(work);
2917 clear_work_data(work);
2918
2919 /*
2920 * Paired with prepare_to_wait() above so that either
2921 * waitqueue_active() is visible here or !work_is_canceling() is
2922 * visible there.
2923 */
2924 smp_mb();
2925 if (waitqueue_active(&cancel_waitq))
2926 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2927
2928 return ret;
2929 }
2930
2931 /**
2932 * cancel_work_sync - cancel a work and wait for it to finish
2933 * @work: the work to cancel
2934 *
2935 * Cancel @work and wait for its execution to finish. This function
2936 * can be used even if the work re-queues itself or migrates to
2937 * another workqueue. On return from this function, @work is
2938 * guaranteed to be not pending or executing on any CPU.
2939 *
2940 * cancel_work_sync(&delayed_work->work) must not be used for
2941 * delayed_work's. Use cancel_delayed_work_sync() instead.
2942 *
2943 * The caller must ensure that the workqueue on which @work was last
2944 * queued can't be destroyed before this function returns.
2945 *
2946 * Return:
2947 * %true if @work was pending, %false otherwise.
2948 */
2949 bool cancel_work_sync(struct work_struct *work)
2950 {
2951 return __cancel_work_timer(work, false);
2952 }
2953 EXPORT_SYMBOL_GPL(cancel_work_sync);
2954
2955 /**
2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957 * @dwork: the delayed work to flush
2958 *
2959 * Delayed timer is cancelled and the pending work is queued for
2960 * immediate execution. Like flush_work(), this function only
2961 * considers the last queueing instance of @dwork.
2962 *
2963 * Return:
2964 * %true if flush_work() waited for the work to finish execution,
2965 * %false if it was already idle.
2966 */
2967 bool flush_delayed_work(struct delayed_work *dwork)
2968 {
2969 local_irq_disable();
2970 if (del_timer_sync(&dwork->timer))
2971 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2972 local_irq_enable();
2973 return flush_work(&dwork->work);
2974 }
2975 EXPORT_SYMBOL(flush_delayed_work);
2976
2977 /**
2978 * cancel_delayed_work - cancel a delayed work
2979 * @dwork: delayed_work to cancel
2980 *
2981 * Kill off a pending delayed_work.
2982 *
2983 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2984 * pending.
2985 *
2986 * Note:
2987 * The work callback function may still be running on return, unless
2988 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2989 * use cancel_delayed_work_sync() to wait on it.
2990 *
2991 * This function is safe to call from any context including IRQ handler.
2992 */
2993 bool cancel_delayed_work(struct delayed_work *dwork)
2994 {
2995 unsigned long flags;
2996 int ret;
2997
2998 do {
2999 ret = try_to_grab_pending(&dwork->work, true, &flags);
3000 } while (unlikely(ret == -EAGAIN));
3001
3002 if (unlikely(ret < 0))
3003 return false;
3004
3005 set_work_pool_and_clear_pending(&dwork->work,
3006 get_work_pool_id(&dwork->work));
3007 local_irq_restore(flags);
3008 return ret;
3009 }
3010 EXPORT_SYMBOL(cancel_delayed_work);
3011
3012 /**
3013 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3014 * @dwork: the delayed work cancel
3015 *
3016 * This is cancel_work_sync() for delayed works.
3017 *
3018 * Return:
3019 * %true if @dwork was pending, %false otherwise.
3020 */
3021 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3022 {
3023 return __cancel_work_timer(&dwork->work, true);
3024 }
3025 EXPORT_SYMBOL(cancel_delayed_work_sync);
3026
3027 /**
3028 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3029 * @func: the function to call
3030 *
3031 * schedule_on_each_cpu() executes @func on each online CPU using the
3032 * system workqueue and blocks until all CPUs have completed.
3033 * schedule_on_each_cpu() is very slow.
3034 *
3035 * Return:
3036 * 0 on success, -errno on failure.
3037 */
3038 int schedule_on_each_cpu(work_func_t func)
3039 {
3040 int cpu;
3041 struct work_struct __percpu *works;
3042
3043 works = alloc_percpu(struct work_struct);
3044 if (!works)
3045 return -ENOMEM;
3046
3047 get_online_cpus();
3048
3049 for_each_online_cpu(cpu) {
3050 struct work_struct *work = per_cpu_ptr(works, cpu);
3051
3052 INIT_WORK(work, func);
3053 schedule_work_on(cpu, work);
3054 }
3055
3056 for_each_online_cpu(cpu)
3057 flush_work(per_cpu_ptr(works, cpu));
3058
3059 put_online_cpus();
3060 free_percpu(works);
3061 return 0;
3062 }
3063
3064 /**
3065 * execute_in_process_context - reliably execute the routine with user context
3066 * @fn: the function to execute
3067 * @ew: guaranteed storage for the execute work structure (must
3068 * be available when the work executes)
3069 *
3070 * Executes the function immediately if process context is available,
3071 * otherwise schedules the function for delayed execution.
3072 *
3073 * Return: 0 - function was executed
3074 * 1 - function was scheduled for execution
3075 */
3076 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3077 {
3078 if (!in_interrupt()) {
3079 fn(&ew->work);
3080 return 0;
3081 }
3082
3083 INIT_WORK(&ew->work, fn);
3084 schedule_work(&ew->work);
3085
3086 return 1;
3087 }
3088 EXPORT_SYMBOL_GPL(execute_in_process_context);
3089
3090 /**
3091 * free_workqueue_attrs - free a workqueue_attrs
3092 * @attrs: workqueue_attrs to free
3093 *
3094 * Undo alloc_workqueue_attrs().
3095 */
3096 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3097 {
3098 if (attrs) {
3099 free_cpumask_var(attrs->cpumask);
3100 kfree(attrs);
3101 }
3102 }
3103
3104 /**
3105 * alloc_workqueue_attrs - allocate a workqueue_attrs
3106 * @gfp_mask: allocation mask to use
3107 *
3108 * Allocate a new workqueue_attrs, initialize with default settings and
3109 * return it.
3110 *
3111 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3112 */
3113 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3114 {
3115 struct workqueue_attrs *attrs;
3116
3117 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3118 if (!attrs)
3119 goto fail;
3120 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3121 goto fail;
3122
3123 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3124 return attrs;
3125 fail:
3126 free_workqueue_attrs(attrs);
3127 return NULL;
3128 }
3129
3130 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3131 const struct workqueue_attrs *from)
3132 {
3133 to->nice = from->nice;
3134 cpumask_copy(to->cpumask, from->cpumask);
3135 /*
3136 * Unlike hash and equality test, this function doesn't ignore
3137 * ->no_numa as it is used for both pool and wq attrs. Instead,
3138 * get_unbound_pool() explicitly clears ->no_numa after copying.
3139 */
3140 to->no_numa = from->no_numa;
3141 }
3142
3143 /* hash value of the content of @attr */
3144 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3145 {
3146 u32 hash = 0;
3147
3148 hash = jhash_1word(attrs->nice, hash);
3149 hash = jhash(cpumask_bits(attrs->cpumask),
3150 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3151 return hash;
3152 }
3153
3154 /* content equality test */
3155 static bool wqattrs_equal(const struct workqueue_attrs *a,
3156 const struct workqueue_attrs *b)
3157 {
3158 if (a->nice != b->nice)
3159 return false;
3160 if (!cpumask_equal(a->cpumask, b->cpumask))
3161 return false;
3162 return true;
3163 }
3164
3165 /**
3166 * init_worker_pool - initialize a newly zalloc'd worker_pool
3167 * @pool: worker_pool to initialize
3168 *
3169 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3170 *
3171 * Return: 0 on success, -errno on failure. Even on failure, all fields
3172 * inside @pool proper are initialized and put_unbound_pool() can be called
3173 * on @pool safely to release it.
3174 */
3175 static int init_worker_pool(struct worker_pool *pool)
3176 {
3177 spin_lock_init(&pool->lock);
3178 pool->id = -1;
3179 pool->cpu = -1;
3180 pool->node = NUMA_NO_NODE;
3181 pool->flags |= POOL_DISASSOCIATED;
3182 pool->watchdog_ts = jiffies;
3183 INIT_LIST_HEAD(&pool->worklist);
3184 INIT_LIST_HEAD(&pool->idle_list);
3185 hash_init(pool->busy_hash);
3186
3187 init_timer_deferrable(&pool->idle_timer);
3188 pool->idle_timer.function = idle_worker_timeout;
3189 pool->idle_timer.data = (unsigned long)pool;
3190
3191 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3192 (unsigned long)pool);
3193
3194 mutex_init(&pool->manager_arb);
3195 mutex_init(&pool->attach_mutex);
3196 INIT_LIST_HEAD(&pool->workers);
3197
3198 ida_init(&pool->worker_ida);
3199 INIT_HLIST_NODE(&pool->hash_node);
3200 pool->refcnt = 1;
3201
3202 /* shouldn't fail above this point */
3203 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3204 if (!pool->attrs)
3205 return -ENOMEM;
3206 return 0;
3207 }
3208
3209 static void rcu_free_wq(struct rcu_head *rcu)
3210 {
3211 struct workqueue_struct *wq =
3212 container_of(rcu, struct workqueue_struct, rcu);
3213
3214 if (!(wq->flags & WQ_UNBOUND))
3215 free_percpu(wq->cpu_pwqs);
3216 else
3217 free_workqueue_attrs(wq->unbound_attrs);
3218
3219 kfree(wq->rescuer);
3220 kfree(wq);
3221 }
3222
3223 static void rcu_free_pool(struct rcu_head *rcu)
3224 {
3225 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3226
3227 ida_destroy(&pool->worker_ida);
3228 free_workqueue_attrs(pool->attrs);
3229 kfree(pool);
3230 }
3231
3232 /**
3233 * put_unbound_pool - put a worker_pool
3234 * @pool: worker_pool to put
3235 *
3236 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3237 * safe manner. get_unbound_pool() calls this function on its failure path
3238 * and this function should be able to release pools which went through,
3239 * successfully or not, init_worker_pool().
3240 *
3241 * Should be called with wq_pool_mutex held.
3242 */
3243 static void put_unbound_pool(struct worker_pool *pool)
3244 {
3245 DECLARE_COMPLETION_ONSTACK(detach_completion);
3246 struct worker *worker;
3247
3248 lockdep_assert_held(&wq_pool_mutex);
3249
3250 if (--pool->refcnt)
3251 return;
3252
3253 /* sanity checks */
3254 if (WARN_ON(!(pool->cpu < 0)) ||
3255 WARN_ON(!list_empty(&pool->worklist)))
3256 return;
3257
3258 /* release id and unhash */
3259 if (pool->id >= 0)
3260 idr_remove(&worker_pool_idr, pool->id);
3261 hash_del(&pool->hash_node);
3262
3263 /*
3264 * Become the manager and destroy all workers. Grabbing
3265 * manager_arb prevents @pool's workers from blocking on
3266 * attach_mutex.
3267 */
3268 mutex_lock(&pool->manager_arb);
3269
3270 spin_lock_irq(&pool->lock);
3271 while ((worker = first_idle_worker(pool)))
3272 destroy_worker(worker);
3273 WARN_ON(pool->nr_workers || pool->nr_idle);
3274 spin_unlock_irq(&pool->lock);
3275
3276 mutex_lock(&pool->attach_mutex);
3277 if (!list_empty(&pool->workers))
3278 pool->detach_completion = &detach_completion;
3279 mutex_unlock(&pool->attach_mutex);
3280
3281 if (pool->detach_completion)
3282 wait_for_completion(pool->detach_completion);
3283
3284 mutex_unlock(&pool->manager_arb);
3285
3286 /* shut down the timers */
3287 del_timer_sync(&pool->idle_timer);
3288 del_timer_sync(&pool->mayday_timer);
3289
3290 /* sched-RCU protected to allow dereferences from get_work_pool() */
3291 call_rcu_sched(&pool->rcu, rcu_free_pool);
3292 }
3293
3294 /**
3295 * get_unbound_pool - get a worker_pool with the specified attributes
3296 * @attrs: the attributes of the worker_pool to get
3297 *
3298 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3299 * reference count and return it. If there already is a matching
3300 * worker_pool, it will be used; otherwise, this function attempts to
3301 * create a new one.
3302 *
3303 * Should be called with wq_pool_mutex held.
3304 *
3305 * Return: On success, a worker_pool with the same attributes as @attrs.
3306 * On failure, %NULL.
3307 */
3308 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3309 {
3310 u32 hash = wqattrs_hash(attrs);
3311 struct worker_pool *pool;
3312 int node;
3313 int target_node = NUMA_NO_NODE;
3314
3315 lockdep_assert_held(&wq_pool_mutex);
3316
3317 /* do we already have a matching pool? */
3318 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3319 if (wqattrs_equal(pool->attrs, attrs)) {
3320 pool->refcnt++;
3321 return pool;
3322 }
3323 }
3324
3325 /* if cpumask is contained inside a NUMA node, we belong to that node */
3326 if (wq_numa_enabled) {
3327 for_each_node(node) {
3328 if (cpumask_subset(attrs->cpumask,
3329 wq_numa_possible_cpumask[node])) {
3330 target_node = node;
3331 break;
3332 }
3333 }
3334 }
3335
3336 /* nope, create a new one */
3337 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3338 if (!pool || init_worker_pool(pool) < 0)
3339 goto fail;
3340
3341 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3342 copy_workqueue_attrs(pool->attrs, attrs);
3343 pool->node = target_node;
3344
3345 /*
3346 * no_numa isn't a worker_pool attribute, always clear it. See
3347 * 'struct workqueue_attrs' comments for detail.
3348 */
3349 pool->attrs->no_numa = false;
3350
3351 if (worker_pool_assign_id(pool) < 0)
3352 goto fail;
3353
3354 /* create and start the initial worker */
3355 if (!create_worker(pool))
3356 goto fail;
3357
3358 /* install */
3359 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3360
3361 return pool;
3362 fail:
3363 if (pool)
3364 put_unbound_pool(pool);
3365 return NULL;
3366 }
3367
3368 static void rcu_free_pwq(struct rcu_head *rcu)
3369 {
3370 kmem_cache_free(pwq_cache,
3371 container_of(rcu, struct pool_workqueue, rcu));
3372 }
3373
3374 /*
3375 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3376 * and needs to be destroyed.
3377 */
3378 static void pwq_unbound_release_workfn(struct work_struct *work)
3379 {
3380 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3381 unbound_release_work);
3382 struct workqueue_struct *wq = pwq->wq;
3383 struct worker_pool *pool = pwq->pool;
3384 bool is_last;
3385
3386 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3387 return;
3388
3389 mutex_lock(&wq->mutex);
3390 list_del_rcu(&pwq->pwqs_node);
3391 is_last = list_empty(&wq->pwqs);
3392 mutex_unlock(&wq->mutex);
3393
3394 mutex_lock(&wq_pool_mutex);
3395 put_unbound_pool(pool);
3396 mutex_unlock(&wq_pool_mutex);
3397
3398 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3399
3400 /*
3401 * If we're the last pwq going away, @wq is already dead and no one
3402 * is gonna access it anymore. Schedule RCU free.
3403 */
3404 if (is_last)
3405 call_rcu_sched(&wq->rcu, rcu_free_wq);
3406 }
3407
3408 /**
3409 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3410 * @pwq: target pool_workqueue
3411 *
3412 * If @pwq isn't freezing, set @pwq->max_active to the associated
3413 * workqueue's saved_max_active and activate delayed work items
3414 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3415 */
3416 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3417 {
3418 struct workqueue_struct *wq = pwq->wq;
3419 bool freezable = wq->flags & WQ_FREEZABLE;
3420
3421 /* for @wq->saved_max_active */
3422 lockdep_assert_held(&wq->mutex);
3423
3424 /* fast exit for non-freezable wqs */
3425 if (!freezable && pwq->max_active == wq->saved_max_active)
3426 return;
3427
3428 spin_lock_irq(&pwq->pool->lock);
3429
3430 /*
3431 * During [un]freezing, the caller is responsible for ensuring that
3432 * this function is called at least once after @workqueue_freezing
3433 * is updated and visible.
3434 */
3435 if (!freezable || !workqueue_freezing) {
3436 pwq->max_active = wq->saved_max_active;
3437
3438 while (!list_empty(&pwq->delayed_works) &&
3439 pwq->nr_active < pwq->max_active)
3440 pwq_activate_first_delayed(pwq);
3441
3442 /*
3443 * Need to kick a worker after thawed or an unbound wq's
3444 * max_active is bumped. It's a slow path. Do it always.
3445 */
3446 wake_up_worker(pwq->pool);
3447 } else {
3448 pwq->max_active = 0;
3449 }
3450
3451 spin_unlock_irq(&pwq->pool->lock);
3452 }
3453
3454 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3455 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3456 struct worker_pool *pool)
3457 {
3458 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3459
3460 memset(pwq, 0, sizeof(*pwq));
3461
3462 pwq->pool = pool;
3463 pwq->wq = wq;
3464 pwq->flush_color = -1;
3465 pwq->refcnt = 1;
3466 INIT_LIST_HEAD(&pwq->delayed_works);
3467 INIT_LIST_HEAD(&pwq->pwqs_node);
3468 INIT_LIST_HEAD(&pwq->mayday_node);
3469 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3470 }
3471
3472 /* sync @pwq with the current state of its associated wq and link it */
3473 static void link_pwq(struct pool_workqueue *pwq)
3474 {
3475 struct workqueue_struct *wq = pwq->wq;
3476
3477 lockdep_assert_held(&wq->mutex);
3478
3479 /* may be called multiple times, ignore if already linked */
3480 if (!list_empty(&pwq->pwqs_node))
3481 return;
3482
3483 /* set the matching work_color */
3484 pwq->work_color = wq->work_color;
3485
3486 /* sync max_active to the current setting */
3487 pwq_adjust_max_active(pwq);
3488
3489 /* link in @pwq */
3490 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3491 }
3492
3493 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3494 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3495 const struct workqueue_attrs *attrs)
3496 {
3497 struct worker_pool *pool;
3498 struct pool_workqueue *pwq;
3499
3500 lockdep_assert_held(&wq_pool_mutex);
3501
3502 pool = get_unbound_pool(attrs);
3503 if (!pool)
3504 return NULL;
3505
3506 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3507 if (!pwq) {
3508 put_unbound_pool(pool);
3509 return NULL;
3510 }
3511
3512 init_pwq(pwq, wq, pool);
3513 return pwq;
3514 }
3515
3516 /**
3517 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3518 * @attrs: the wq_attrs of the default pwq of the target workqueue
3519 * @node: the target NUMA node
3520 * @cpu_going_down: if >= 0, the CPU to consider as offline
3521 * @cpumask: outarg, the resulting cpumask
3522 *
3523 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3524 * @cpu_going_down is >= 0, that cpu is considered offline during
3525 * calculation. The result is stored in @cpumask.
3526 *
3527 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3528 * enabled and @node has online CPUs requested by @attrs, the returned
3529 * cpumask is the intersection of the possible CPUs of @node and
3530 * @attrs->cpumask.
3531 *
3532 * The caller is responsible for ensuring that the cpumask of @node stays
3533 * stable.
3534 *
3535 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3536 * %false if equal.
3537 */
3538 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3539 int cpu_going_down, cpumask_t *cpumask)
3540 {
3541 if (!wq_numa_enabled || attrs->no_numa)
3542 goto use_dfl;
3543
3544 /* does @node have any online CPUs @attrs wants? */
3545 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3546 if (cpu_going_down >= 0)
3547 cpumask_clear_cpu(cpu_going_down, cpumask);
3548
3549 if (cpumask_empty(cpumask))
3550 goto use_dfl;
3551
3552 /* yeap, return possible CPUs in @node that @attrs wants */
3553 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3554 return !cpumask_equal(cpumask, attrs->cpumask);
3555
3556 use_dfl:
3557 cpumask_copy(cpumask, attrs->cpumask);
3558 return false;
3559 }
3560
3561 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3562 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3563 int node,
3564 struct pool_workqueue *pwq)
3565 {
3566 struct pool_workqueue *old_pwq;
3567
3568 lockdep_assert_held(&wq_pool_mutex);
3569 lockdep_assert_held(&wq->mutex);
3570
3571 /* link_pwq() can handle duplicate calls */
3572 link_pwq(pwq);
3573
3574 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3575 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3576 return old_pwq;
3577 }
3578
3579 /* context to store the prepared attrs & pwqs before applying */
3580 struct apply_wqattrs_ctx {
3581 struct workqueue_struct *wq; /* target workqueue */
3582 struct workqueue_attrs *attrs; /* attrs to apply */
3583 struct list_head list; /* queued for batching commit */
3584 struct pool_workqueue *dfl_pwq;
3585 struct pool_workqueue *pwq_tbl[];
3586 };
3587
3588 /* free the resources after success or abort */
3589 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3590 {
3591 if (ctx) {
3592 int node;
3593
3594 for_each_node(node)
3595 put_pwq_unlocked(ctx->pwq_tbl[node]);
3596 put_pwq_unlocked(ctx->dfl_pwq);
3597
3598 free_workqueue_attrs(ctx->attrs);
3599
3600 kfree(ctx);
3601 }
3602 }
3603
3604 /* allocate the attrs and pwqs for later installation */
3605 static struct apply_wqattrs_ctx *
3606 apply_wqattrs_prepare(struct workqueue_struct *wq,
3607 const struct workqueue_attrs *attrs)
3608 {
3609 struct apply_wqattrs_ctx *ctx;
3610 struct workqueue_attrs *new_attrs, *tmp_attrs;
3611 int node;
3612
3613 lockdep_assert_held(&wq_pool_mutex);
3614
3615 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3616 GFP_KERNEL);
3617
3618 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3619 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3620 if (!ctx || !new_attrs || !tmp_attrs)
3621 goto out_free;
3622
3623 /*
3624 * Calculate the attrs of the default pwq.
3625 * If the user configured cpumask doesn't overlap with the
3626 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3627 */
3628 copy_workqueue_attrs(new_attrs, attrs);
3629 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3630 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3631 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3632
3633 /*
3634 * We may create multiple pwqs with differing cpumasks. Make a
3635 * copy of @new_attrs which will be modified and used to obtain
3636 * pools.
3637 */
3638 copy_workqueue_attrs(tmp_attrs, new_attrs);
3639
3640 /*
3641 * If something goes wrong during CPU up/down, we'll fall back to
3642 * the default pwq covering whole @attrs->cpumask. Always create
3643 * it even if we don't use it immediately.
3644 */
3645 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3646 if (!ctx->dfl_pwq)
3647 goto out_free;
3648
3649 for_each_node(node) {
3650 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3651 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3652 if (!ctx->pwq_tbl[node])
3653 goto out_free;
3654 } else {
3655 ctx->dfl_pwq->refcnt++;
3656 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3657 }
3658 }
3659
3660 /* save the user configured attrs and sanitize it. */
3661 copy_workqueue_attrs(new_attrs, attrs);
3662 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3663 ctx->attrs = new_attrs;
3664
3665 ctx->wq = wq;
3666 free_workqueue_attrs(tmp_attrs);
3667 return ctx;
3668
3669 out_free:
3670 free_workqueue_attrs(tmp_attrs);
3671 free_workqueue_attrs(new_attrs);
3672 apply_wqattrs_cleanup(ctx);
3673 return NULL;
3674 }
3675
3676 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3677 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3678 {
3679 int node;
3680
3681 /* all pwqs have been created successfully, let's install'em */
3682 mutex_lock(&ctx->wq->mutex);
3683
3684 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3685
3686 /* save the previous pwq and install the new one */
3687 for_each_node(node)
3688 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3689 ctx->pwq_tbl[node]);
3690
3691 /* @dfl_pwq might not have been used, ensure it's linked */
3692 link_pwq(ctx->dfl_pwq);
3693 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3694
3695 mutex_unlock(&ctx->wq->mutex);
3696 }
3697
3698 static void apply_wqattrs_lock(void)
3699 {
3700 /* CPUs should stay stable across pwq creations and installations */
3701 get_online_cpus();
3702 mutex_lock(&wq_pool_mutex);
3703 }
3704
3705 static void apply_wqattrs_unlock(void)
3706 {
3707 mutex_unlock(&wq_pool_mutex);
3708 put_online_cpus();
3709 }
3710
3711 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3712 const struct workqueue_attrs *attrs)
3713 {
3714 struct apply_wqattrs_ctx *ctx;
3715
3716 /* only unbound workqueues can change attributes */
3717 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3718 return -EINVAL;
3719
3720 /* creating multiple pwqs breaks ordering guarantee */
3721 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3722 return -EINVAL;
3723
3724 ctx = apply_wqattrs_prepare(wq, attrs);
3725 if (!ctx)
3726 return -ENOMEM;
3727
3728 /* the ctx has been prepared successfully, let's commit it */
3729 apply_wqattrs_commit(ctx);
3730 apply_wqattrs_cleanup(ctx);
3731
3732 return 0;
3733 }
3734
3735 /**
3736 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3737 * @wq: the target workqueue
3738 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3739 *
3740 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3741 * machines, this function maps a separate pwq to each NUMA node with
3742 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3743 * NUMA node it was issued on. Older pwqs are released as in-flight work
3744 * items finish. Note that a work item which repeatedly requeues itself
3745 * back-to-back will stay on its current pwq.
3746 *
3747 * Performs GFP_KERNEL allocations.
3748 *
3749 * Return: 0 on success and -errno on failure.
3750 */
3751 int apply_workqueue_attrs(struct workqueue_struct *wq,
3752 const struct workqueue_attrs *attrs)
3753 {
3754 int ret;
3755
3756 apply_wqattrs_lock();
3757 ret = apply_workqueue_attrs_locked(wq, attrs);
3758 apply_wqattrs_unlock();
3759
3760 return ret;
3761 }
3762
3763 /**
3764 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3765 * @wq: the target workqueue
3766 * @cpu: the CPU coming up or going down
3767 * @online: whether @cpu is coming up or going down
3768 *
3769 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3770 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3771 * @wq accordingly.
3772 *
3773 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3774 * falls back to @wq->dfl_pwq which may not be optimal but is always
3775 * correct.
3776 *
3777 * Note that when the last allowed CPU of a NUMA node goes offline for a
3778 * workqueue with a cpumask spanning multiple nodes, the workers which were
3779 * already executing the work items for the workqueue will lose their CPU
3780 * affinity and may execute on any CPU. This is similar to how per-cpu
3781 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3782 * affinity, it's the user's responsibility to flush the work item from
3783 * CPU_DOWN_PREPARE.
3784 */
3785 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3786 bool online)
3787 {
3788 int node = cpu_to_node(cpu);
3789 int cpu_off = online ? -1 : cpu;
3790 struct pool_workqueue *old_pwq = NULL, *pwq;
3791 struct workqueue_attrs *target_attrs;
3792 cpumask_t *cpumask;
3793
3794 lockdep_assert_held(&wq_pool_mutex);
3795
3796 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3797 wq->unbound_attrs->no_numa)
3798 return;
3799
3800 /*
3801 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3802 * Let's use a preallocated one. The following buf is protected by
3803 * CPU hotplug exclusion.
3804 */
3805 target_attrs = wq_update_unbound_numa_attrs_buf;
3806 cpumask = target_attrs->cpumask;
3807
3808 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3809 pwq = unbound_pwq_by_node(wq, node);
3810
3811 /*
3812 * Let's determine what needs to be done. If the target cpumask is
3813 * different from the default pwq's, we need to compare it to @pwq's
3814 * and create a new one if they don't match. If the target cpumask
3815 * equals the default pwq's, the default pwq should be used.
3816 */
3817 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3818 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3819 return;
3820 } else {
3821 goto use_dfl_pwq;
3822 }
3823
3824 /* create a new pwq */
3825 pwq = alloc_unbound_pwq(wq, target_attrs);
3826 if (!pwq) {
3827 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3828 wq->name);
3829 goto use_dfl_pwq;
3830 }
3831
3832 /* Install the new pwq. */
3833 mutex_lock(&wq->mutex);
3834 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3835 goto out_unlock;
3836
3837 use_dfl_pwq:
3838 mutex_lock(&wq->mutex);
3839 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3840 get_pwq(wq->dfl_pwq);
3841 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3842 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3843 out_unlock:
3844 mutex_unlock(&wq->mutex);
3845 put_pwq_unlocked(old_pwq);
3846 }
3847
3848 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3849 {
3850 bool highpri = wq->flags & WQ_HIGHPRI;
3851 int cpu, ret;
3852
3853 if (!(wq->flags & WQ_UNBOUND)) {
3854 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3855 if (!wq->cpu_pwqs)
3856 return -ENOMEM;
3857
3858 for_each_possible_cpu(cpu) {
3859 struct pool_workqueue *pwq =
3860 per_cpu_ptr(wq->cpu_pwqs, cpu);
3861 struct worker_pool *cpu_pools =
3862 per_cpu(cpu_worker_pools, cpu);
3863
3864 init_pwq(pwq, wq, &cpu_pools[highpri]);
3865
3866 mutex_lock(&wq->mutex);
3867 link_pwq(pwq);
3868 mutex_unlock(&wq->mutex);
3869 }
3870 return 0;
3871 } else if (wq->flags & __WQ_ORDERED) {
3872 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3873 /* there should only be single pwq for ordering guarantee */
3874 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3875 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3876 "ordering guarantee broken for workqueue %s\n", wq->name);
3877 return ret;
3878 } else {
3879 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3880 }
3881 }
3882
3883 static int wq_clamp_max_active(int max_active, unsigned int flags,
3884 const char *name)
3885 {
3886 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3887
3888 if (max_active < 1 || max_active > lim)
3889 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3890 max_active, name, 1, lim);
3891
3892 return clamp_val(max_active, 1, lim);
3893 }
3894
3895 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3896 unsigned int flags,
3897 int max_active,
3898 struct lock_class_key *key,
3899 const char *lock_name, ...)
3900 {
3901 size_t tbl_size = 0;
3902 va_list args;
3903 struct workqueue_struct *wq;
3904 struct pool_workqueue *pwq;
3905
3906 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3907 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3908 flags |= WQ_UNBOUND;
3909
3910 /* allocate wq and format name */
3911 if (flags & WQ_UNBOUND)
3912 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3913
3914 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3915 if (!wq)
3916 return NULL;
3917
3918 if (flags & WQ_UNBOUND) {
3919 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3920 if (!wq->unbound_attrs)
3921 goto err_free_wq;
3922 }
3923
3924 va_start(args, lock_name);
3925 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3926 va_end(args);
3927
3928 max_active = max_active ?: WQ_DFL_ACTIVE;
3929 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3930
3931 /* init wq */
3932 wq->flags = flags;
3933 wq->saved_max_active = max_active;
3934 mutex_init(&wq->mutex);
3935 atomic_set(&wq->nr_pwqs_to_flush, 0);
3936 INIT_LIST_HEAD(&wq->pwqs);
3937 INIT_LIST_HEAD(&wq->flusher_queue);
3938 INIT_LIST_HEAD(&wq->flusher_overflow);
3939 INIT_LIST_HEAD(&wq->maydays);
3940
3941 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3942 INIT_LIST_HEAD(&wq->list);
3943
3944 if (alloc_and_link_pwqs(wq) < 0)
3945 goto err_free_wq;
3946
3947 /*
3948 * Workqueues which may be used during memory reclaim should
3949 * have a rescuer to guarantee forward progress.
3950 */
3951 if (flags & WQ_MEM_RECLAIM) {
3952 struct worker *rescuer;
3953
3954 rescuer = alloc_worker(NUMA_NO_NODE);
3955 if (!rescuer)
3956 goto err_destroy;
3957
3958 rescuer->rescue_wq = wq;
3959 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3960 wq->name);
3961 if (IS_ERR(rescuer->task)) {
3962 kfree(rescuer);
3963 goto err_destroy;
3964 }
3965
3966 wq->rescuer = rescuer;
3967 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3968 wake_up_process(rescuer->task);
3969 }
3970
3971 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3972 goto err_destroy;
3973
3974 /*
3975 * wq_pool_mutex protects global freeze state and workqueues list.
3976 * Grab it, adjust max_active and add the new @wq to workqueues
3977 * list.
3978 */
3979 mutex_lock(&wq_pool_mutex);
3980
3981 mutex_lock(&wq->mutex);
3982 for_each_pwq(pwq, wq)
3983 pwq_adjust_max_active(pwq);
3984 mutex_unlock(&wq->mutex);
3985
3986 list_add_tail_rcu(&wq->list, &workqueues);
3987
3988 mutex_unlock(&wq_pool_mutex);
3989
3990 return wq;
3991
3992 err_free_wq:
3993 free_workqueue_attrs(wq->unbound_attrs);
3994 kfree(wq);
3995 return NULL;
3996 err_destroy:
3997 destroy_workqueue(wq);
3998 return NULL;
3999 }
4000 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4001
4002 /**
4003 * destroy_workqueue - safely terminate a workqueue
4004 * @wq: target workqueue
4005 *
4006 * Safely destroy a workqueue. All work currently pending will be done first.
4007 */
4008 void destroy_workqueue(struct workqueue_struct *wq)
4009 {
4010 struct pool_workqueue *pwq;
4011 int node;
4012
4013 /* drain it before proceeding with destruction */
4014 drain_workqueue(wq);
4015
4016 /* sanity checks */
4017 mutex_lock(&wq->mutex);
4018 for_each_pwq(pwq, wq) {
4019 int i;
4020
4021 for (i = 0; i < WORK_NR_COLORS; i++) {
4022 if (WARN_ON(pwq->nr_in_flight[i])) {
4023 mutex_unlock(&wq->mutex);
4024 return;
4025 }
4026 }
4027
4028 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4029 WARN_ON(pwq->nr_active) ||
4030 WARN_ON(!list_empty(&pwq->delayed_works))) {
4031 mutex_unlock(&wq->mutex);
4032 return;
4033 }
4034 }
4035 mutex_unlock(&wq->mutex);
4036
4037 /*
4038 * wq list is used to freeze wq, remove from list after
4039 * flushing is complete in case freeze races us.
4040 */
4041 mutex_lock(&wq_pool_mutex);
4042 list_del_rcu(&wq->list);
4043 mutex_unlock(&wq_pool_mutex);
4044
4045 workqueue_sysfs_unregister(wq);
4046
4047 if (wq->rescuer)
4048 kthread_stop(wq->rescuer->task);
4049
4050 if (!(wq->flags & WQ_UNBOUND)) {
4051 /*
4052 * The base ref is never dropped on per-cpu pwqs. Directly
4053 * schedule RCU free.
4054 */
4055 call_rcu_sched(&wq->rcu, rcu_free_wq);
4056 } else {
4057 /*
4058 * We're the sole accessor of @wq at this point. Directly
4059 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4060 * @wq will be freed when the last pwq is released.
4061 */
4062 for_each_node(node) {
4063 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4064 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4065 put_pwq_unlocked(pwq);
4066 }
4067
4068 /*
4069 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4070 * put. Don't access it afterwards.
4071 */
4072 pwq = wq->dfl_pwq;
4073 wq->dfl_pwq = NULL;
4074 put_pwq_unlocked(pwq);
4075 }
4076 }
4077 EXPORT_SYMBOL_GPL(destroy_workqueue);
4078
4079 /**
4080 * workqueue_set_max_active - adjust max_active of a workqueue
4081 * @wq: target workqueue
4082 * @max_active: new max_active value.
4083 *
4084 * Set max_active of @wq to @max_active.
4085 *
4086 * CONTEXT:
4087 * Don't call from IRQ context.
4088 */
4089 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4090 {
4091 struct pool_workqueue *pwq;
4092
4093 /* disallow meddling with max_active for ordered workqueues */
4094 if (WARN_ON(wq->flags & __WQ_ORDERED))
4095 return;
4096
4097 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4098
4099 mutex_lock(&wq->mutex);
4100
4101 wq->saved_max_active = max_active;
4102
4103 for_each_pwq(pwq, wq)
4104 pwq_adjust_max_active(pwq);
4105
4106 mutex_unlock(&wq->mutex);
4107 }
4108 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4109
4110 /**
4111 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4112 *
4113 * Determine whether %current is a workqueue rescuer. Can be used from
4114 * work functions to determine whether it's being run off the rescuer task.
4115 *
4116 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4117 */
4118 bool current_is_workqueue_rescuer(void)
4119 {
4120 struct worker *worker = current_wq_worker();
4121
4122 return worker && worker->rescue_wq;
4123 }
4124
4125 /**
4126 * workqueue_congested - test whether a workqueue is congested
4127 * @cpu: CPU in question
4128 * @wq: target workqueue
4129 *
4130 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4131 * no synchronization around this function and the test result is
4132 * unreliable and only useful as advisory hints or for debugging.
4133 *
4134 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4135 * Note that both per-cpu and unbound workqueues may be associated with
4136 * multiple pool_workqueues which have separate congested states. A
4137 * workqueue being congested on one CPU doesn't mean the workqueue is also
4138 * contested on other CPUs / NUMA nodes.
4139 *
4140 * Return:
4141 * %true if congested, %false otherwise.
4142 */
4143 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4144 {
4145 struct pool_workqueue *pwq;
4146 bool ret;
4147
4148 rcu_read_lock_sched();
4149
4150 if (cpu == WORK_CPU_UNBOUND)
4151 cpu = smp_processor_id();
4152
4153 if (!(wq->flags & WQ_UNBOUND))
4154 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4155 else
4156 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4157
4158 ret = !list_empty(&pwq->delayed_works);
4159 rcu_read_unlock_sched();
4160
4161 return ret;
4162 }
4163 EXPORT_SYMBOL_GPL(workqueue_congested);
4164
4165 /**
4166 * work_busy - test whether a work is currently pending or running
4167 * @work: the work to be tested
4168 *
4169 * Test whether @work is currently pending or running. There is no
4170 * synchronization around this function and the test result is
4171 * unreliable and only useful as advisory hints or for debugging.
4172 *
4173 * Return:
4174 * OR'd bitmask of WORK_BUSY_* bits.
4175 */
4176 unsigned int work_busy(struct work_struct *work)
4177 {
4178 struct worker_pool *pool;
4179 unsigned long flags;
4180 unsigned int ret = 0;
4181
4182 if (work_pending(work))
4183 ret |= WORK_BUSY_PENDING;
4184
4185 local_irq_save(flags);
4186 pool = get_work_pool(work);
4187 if (pool) {
4188 spin_lock(&pool->lock);
4189 if (find_worker_executing_work(pool, work))
4190 ret |= WORK_BUSY_RUNNING;
4191 spin_unlock(&pool->lock);
4192 }
4193 local_irq_restore(flags);
4194
4195 return ret;
4196 }
4197 EXPORT_SYMBOL_GPL(work_busy);
4198
4199 /**
4200 * set_worker_desc - set description for the current work item
4201 * @fmt: printf-style format string
4202 * @...: arguments for the format string
4203 *
4204 * This function can be called by a running work function to describe what
4205 * the work item is about. If the worker task gets dumped, this
4206 * information will be printed out together to help debugging. The
4207 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4208 */
4209 void set_worker_desc(const char *fmt, ...)
4210 {
4211 struct worker *worker = current_wq_worker();
4212 va_list args;
4213
4214 if (worker) {
4215 va_start(args, fmt);
4216 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4217 va_end(args);
4218 worker->desc_valid = true;
4219 }
4220 }
4221
4222 /**
4223 * print_worker_info - print out worker information and description
4224 * @log_lvl: the log level to use when printing
4225 * @task: target task
4226 *
4227 * If @task is a worker and currently executing a work item, print out the
4228 * name of the workqueue being serviced and worker description set with
4229 * set_worker_desc() by the currently executing work item.
4230 *
4231 * This function can be safely called on any task as long as the
4232 * task_struct itself is accessible. While safe, this function isn't
4233 * synchronized and may print out mixups or garbages of limited length.
4234 */
4235 void print_worker_info(const char *log_lvl, struct task_struct *task)
4236 {
4237 work_func_t *fn = NULL;
4238 char name[WQ_NAME_LEN] = { };
4239 char desc[WORKER_DESC_LEN] = { };
4240 struct pool_workqueue *pwq = NULL;
4241 struct workqueue_struct *wq = NULL;
4242 bool desc_valid = false;
4243 struct worker *worker;
4244
4245 if (!(task->flags & PF_WQ_WORKER))
4246 return;
4247
4248 /*
4249 * This function is called without any synchronization and @task
4250 * could be in any state. Be careful with dereferences.
4251 */
4252 worker = probe_kthread_data(task);
4253
4254 /*
4255 * Carefully copy the associated workqueue's workfn and name. Keep
4256 * the original last '\0' in case the original contains garbage.
4257 */
4258 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4259 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4260 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4261 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4262
4263 /* copy worker description */
4264 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4265 if (desc_valid)
4266 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4267
4268 if (fn || name[0] || desc[0]) {
4269 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4270 if (desc[0])
4271 pr_cont(" (%s)", desc);
4272 pr_cont("\n");
4273 }
4274 }
4275
4276 static void pr_cont_pool_info(struct worker_pool *pool)
4277 {
4278 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4279 if (pool->node != NUMA_NO_NODE)
4280 pr_cont(" node=%d", pool->node);
4281 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4282 }
4283
4284 static void pr_cont_work(bool comma, struct work_struct *work)
4285 {
4286 if (work->func == wq_barrier_func) {
4287 struct wq_barrier *barr;
4288
4289 barr = container_of(work, struct wq_barrier, work);
4290
4291 pr_cont("%s BAR(%d)", comma ? "," : "",
4292 task_pid_nr(barr->task));
4293 } else {
4294 pr_cont("%s %pf", comma ? "," : "", work->func);
4295 }
4296 }
4297
4298 static void show_pwq(struct pool_workqueue *pwq)
4299 {
4300 struct worker_pool *pool = pwq->pool;
4301 struct work_struct *work;
4302 struct worker *worker;
4303 bool has_in_flight = false, has_pending = false;
4304 int bkt;
4305
4306 pr_info(" pwq %d:", pool->id);
4307 pr_cont_pool_info(pool);
4308
4309 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4310 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4311
4312 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4313 if (worker->current_pwq == pwq) {
4314 has_in_flight = true;
4315 break;
4316 }
4317 }
4318 if (has_in_flight) {
4319 bool comma = false;
4320
4321 pr_info(" in-flight:");
4322 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4323 if (worker->current_pwq != pwq)
4324 continue;
4325
4326 pr_cont("%s %d%s:%pf", comma ? "," : "",
4327 task_pid_nr(worker->task),
4328 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4329 worker->current_func);
4330 list_for_each_entry(work, &worker->scheduled, entry)
4331 pr_cont_work(false, work);
4332 comma = true;
4333 }
4334 pr_cont("\n");
4335 }
4336
4337 list_for_each_entry(work, &pool->worklist, entry) {
4338 if (get_work_pwq(work) == pwq) {
4339 has_pending = true;
4340 break;
4341 }
4342 }
4343 if (has_pending) {
4344 bool comma = false;
4345
4346 pr_info(" pending:");
4347 list_for_each_entry(work, &pool->worklist, entry) {
4348 if (get_work_pwq(work) != pwq)
4349 continue;
4350
4351 pr_cont_work(comma, work);
4352 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4353 }
4354 pr_cont("\n");
4355 }
4356
4357 if (!list_empty(&pwq->delayed_works)) {
4358 bool comma = false;
4359
4360 pr_info(" delayed:");
4361 list_for_each_entry(work, &pwq->delayed_works, entry) {
4362 pr_cont_work(comma, work);
4363 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4364 }
4365 pr_cont("\n");
4366 }
4367 }
4368
4369 /**
4370 * show_workqueue_state - dump workqueue state
4371 *
4372 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4373 * all busy workqueues and pools.
4374 */
4375 void show_workqueue_state(void)
4376 {
4377 struct workqueue_struct *wq;
4378 struct worker_pool *pool;
4379 unsigned long flags;
4380 int pi;
4381
4382 rcu_read_lock_sched();
4383
4384 pr_info("Showing busy workqueues and worker pools:\n");
4385
4386 list_for_each_entry_rcu(wq, &workqueues, list) {
4387 struct pool_workqueue *pwq;
4388 bool idle = true;
4389
4390 for_each_pwq(pwq, wq) {
4391 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4392 idle = false;
4393 break;
4394 }
4395 }
4396 if (idle)
4397 continue;
4398
4399 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4400
4401 for_each_pwq(pwq, wq) {
4402 spin_lock_irqsave(&pwq->pool->lock, flags);
4403 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4404 show_pwq(pwq);
4405 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4406 }
4407 }
4408
4409 for_each_pool(pool, pi) {
4410 struct worker *worker;
4411 bool first = true;
4412
4413 spin_lock_irqsave(&pool->lock, flags);
4414 if (pool->nr_workers == pool->nr_idle)
4415 goto next_pool;
4416
4417 pr_info("pool %d:", pool->id);
4418 pr_cont_pool_info(pool);
4419 pr_cont(" hung=%us workers=%d",
4420 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4421 pool->nr_workers);
4422 if (pool->manager)
4423 pr_cont(" manager: %d",
4424 task_pid_nr(pool->manager->task));
4425 list_for_each_entry(worker, &pool->idle_list, entry) {
4426 pr_cont(" %s%d", first ? "idle: " : "",
4427 task_pid_nr(worker->task));
4428 first = false;
4429 }
4430 pr_cont("\n");
4431 next_pool:
4432 spin_unlock_irqrestore(&pool->lock, flags);
4433 }
4434
4435 rcu_read_unlock_sched();
4436 }
4437
4438 /*
4439 * CPU hotplug.
4440 *
4441 * There are two challenges in supporting CPU hotplug. Firstly, there
4442 * are a lot of assumptions on strong associations among work, pwq and
4443 * pool which make migrating pending and scheduled works very
4444 * difficult to implement without impacting hot paths. Secondly,
4445 * worker pools serve mix of short, long and very long running works making
4446 * blocked draining impractical.
4447 *
4448 * This is solved by allowing the pools to be disassociated from the CPU
4449 * running as an unbound one and allowing it to be reattached later if the
4450 * cpu comes back online.
4451 */
4452
4453 static void wq_unbind_fn(struct work_struct *work)
4454 {
4455 int cpu = smp_processor_id();
4456 struct worker_pool *pool;
4457 struct worker *worker;
4458
4459 for_each_cpu_worker_pool(pool, cpu) {
4460 mutex_lock(&pool->attach_mutex);
4461 spin_lock_irq(&pool->lock);
4462
4463 /*
4464 * We've blocked all attach/detach operations. Make all workers
4465 * unbound and set DISASSOCIATED. Before this, all workers
4466 * except for the ones which are still executing works from
4467 * before the last CPU down must be on the cpu. After
4468 * this, they may become diasporas.
4469 */
4470 for_each_pool_worker(worker, pool)
4471 worker->flags |= WORKER_UNBOUND;
4472
4473 pool->flags |= POOL_DISASSOCIATED;
4474
4475 spin_unlock_irq(&pool->lock);
4476 mutex_unlock(&pool->attach_mutex);
4477
4478 /*
4479 * Call schedule() so that we cross rq->lock and thus can
4480 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4481 * This is necessary as scheduler callbacks may be invoked
4482 * from other cpus.
4483 */
4484 schedule();
4485
4486 /*
4487 * Sched callbacks are disabled now. Zap nr_running.
4488 * After this, nr_running stays zero and need_more_worker()
4489 * and keep_working() are always true as long as the
4490 * worklist is not empty. This pool now behaves as an
4491 * unbound (in terms of concurrency management) pool which
4492 * are served by workers tied to the pool.
4493 */
4494 atomic_set(&pool->nr_running, 0);
4495
4496 /*
4497 * With concurrency management just turned off, a busy
4498 * worker blocking could lead to lengthy stalls. Kick off
4499 * unbound chain execution of currently pending work items.
4500 */
4501 spin_lock_irq(&pool->lock);
4502 wake_up_worker(pool);
4503 spin_unlock_irq(&pool->lock);
4504 }
4505 }
4506
4507 /**
4508 * rebind_workers - rebind all workers of a pool to the associated CPU
4509 * @pool: pool of interest
4510 *
4511 * @pool->cpu is coming online. Rebind all workers to the CPU.
4512 */
4513 static void rebind_workers(struct worker_pool *pool)
4514 {
4515 struct worker *worker;
4516
4517 lockdep_assert_held(&pool->attach_mutex);
4518
4519 /*
4520 * Restore CPU affinity of all workers. As all idle workers should
4521 * be on the run-queue of the associated CPU before any local
4522 * wake-ups for concurrency management happen, restore CPU affinity
4523 * of all workers first and then clear UNBOUND. As we're called
4524 * from CPU_ONLINE, the following shouldn't fail.
4525 */
4526 for_each_pool_worker(worker, pool)
4527 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4528 pool->attrs->cpumask) < 0);
4529
4530 spin_lock_irq(&pool->lock);
4531
4532 /*
4533 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4534 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4535 * being reworked and this can go away in time.
4536 */
4537 if (!(pool->flags & POOL_DISASSOCIATED)) {
4538 spin_unlock_irq(&pool->lock);
4539 return;
4540 }
4541
4542 pool->flags &= ~POOL_DISASSOCIATED;
4543
4544 for_each_pool_worker(worker, pool) {
4545 unsigned int worker_flags = worker->flags;
4546
4547 /*
4548 * A bound idle worker should actually be on the runqueue
4549 * of the associated CPU for local wake-ups targeting it to
4550 * work. Kick all idle workers so that they migrate to the
4551 * associated CPU. Doing this in the same loop as
4552 * replacing UNBOUND with REBOUND is safe as no worker will
4553 * be bound before @pool->lock is released.
4554 */
4555 if (worker_flags & WORKER_IDLE)
4556 wake_up_process(worker->task);
4557
4558 /*
4559 * We want to clear UNBOUND but can't directly call
4560 * worker_clr_flags() or adjust nr_running. Atomically
4561 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4562 * @worker will clear REBOUND using worker_clr_flags() when
4563 * it initiates the next execution cycle thus restoring
4564 * concurrency management. Note that when or whether
4565 * @worker clears REBOUND doesn't affect correctness.
4566 *
4567 * ACCESS_ONCE() is necessary because @worker->flags may be
4568 * tested without holding any lock in
4569 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4570 * fail incorrectly leading to premature concurrency
4571 * management operations.
4572 */
4573 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4574 worker_flags |= WORKER_REBOUND;
4575 worker_flags &= ~WORKER_UNBOUND;
4576 ACCESS_ONCE(worker->flags) = worker_flags;
4577 }
4578
4579 spin_unlock_irq(&pool->lock);
4580 }
4581
4582 /**
4583 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4584 * @pool: unbound pool of interest
4585 * @cpu: the CPU which is coming up
4586 *
4587 * An unbound pool may end up with a cpumask which doesn't have any online
4588 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4589 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4590 * online CPU before, cpus_allowed of all its workers should be restored.
4591 */
4592 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4593 {
4594 static cpumask_t cpumask;
4595 struct worker *worker;
4596
4597 lockdep_assert_held(&pool->attach_mutex);
4598
4599 /* is @cpu allowed for @pool? */
4600 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4601 return;
4602
4603 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4604
4605 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4606 for_each_pool_worker(worker, pool)
4607 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4608 }
4609
4610 int workqueue_prepare_cpu(unsigned int cpu)
4611 {
4612 struct worker_pool *pool;
4613
4614 for_each_cpu_worker_pool(pool, cpu) {
4615 if (pool->nr_workers)
4616 continue;
4617 if (!create_worker(pool))
4618 return -ENOMEM;
4619 }
4620 return 0;
4621 }
4622
4623 int workqueue_online_cpu(unsigned int cpu)
4624 {
4625 struct worker_pool *pool;
4626 struct workqueue_struct *wq;
4627 int pi;
4628
4629 mutex_lock(&wq_pool_mutex);
4630
4631 for_each_pool(pool, pi) {
4632 mutex_lock(&pool->attach_mutex);
4633
4634 if (pool->cpu == cpu)
4635 rebind_workers(pool);
4636 else if (pool->cpu < 0)
4637 restore_unbound_workers_cpumask(pool, cpu);
4638
4639 mutex_unlock(&pool->attach_mutex);
4640 }
4641
4642 /* update NUMA affinity of unbound workqueues */
4643 list_for_each_entry(wq, &workqueues, list)
4644 wq_update_unbound_numa(wq, cpu, true);
4645
4646 mutex_unlock(&wq_pool_mutex);
4647 return 0;
4648 }
4649
4650 int workqueue_offline_cpu(unsigned int cpu)
4651 {
4652 struct work_struct unbind_work;
4653 struct workqueue_struct *wq;
4654
4655 /* unbinding per-cpu workers should happen on the local CPU */
4656 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4657 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4658
4659 /* update NUMA affinity of unbound workqueues */
4660 mutex_lock(&wq_pool_mutex);
4661 list_for_each_entry(wq, &workqueues, list)
4662 wq_update_unbound_numa(wq, cpu, false);
4663 mutex_unlock(&wq_pool_mutex);
4664
4665 /* wait for per-cpu unbinding to finish */
4666 flush_work(&unbind_work);
4667 destroy_work_on_stack(&unbind_work);
4668 return 0;
4669 }
4670
4671 #ifdef CONFIG_SMP
4672
4673 struct work_for_cpu {
4674 struct work_struct work;
4675 long (*fn)(void *);
4676 void *arg;
4677 long ret;
4678 };
4679
4680 static void work_for_cpu_fn(struct work_struct *work)
4681 {
4682 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4683
4684 wfc->ret = wfc->fn(wfc->arg);
4685 }
4686
4687 /**
4688 * work_on_cpu - run a function in thread context on a particular cpu
4689 * @cpu: the cpu to run on
4690 * @fn: the function to run
4691 * @arg: the function arg
4692 *
4693 * It is up to the caller to ensure that the cpu doesn't go offline.
4694 * The caller must not hold any locks which would prevent @fn from completing.
4695 *
4696 * Return: The value @fn returns.
4697 */
4698 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4699 {
4700 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4701
4702 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4703 schedule_work_on(cpu, &wfc.work);
4704 flush_work(&wfc.work);
4705 destroy_work_on_stack(&wfc.work);
4706 return wfc.ret;
4707 }
4708 EXPORT_SYMBOL_GPL(work_on_cpu);
4709 #endif /* CONFIG_SMP */
4710
4711 #ifdef CONFIG_FREEZER
4712
4713 /**
4714 * freeze_workqueues_begin - begin freezing workqueues
4715 *
4716 * Start freezing workqueues. After this function returns, all freezable
4717 * workqueues will queue new works to their delayed_works list instead of
4718 * pool->worklist.
4719 *
4720 * CONTEXT:
4721 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4722 */
4723 void freeze_workqueues_begin(void)
4724 {
4725 struct workqueue_struct *wq;
4726 struct pool_workqueue *pwq;
4727
4728 mutex_lock(&wq_pool_mutex);
4729
4730 WARN_ON_ONCE(workqueue_freezing);
4731 workqueue_freezing = true;
4732
4733 list_for_each_entry(wq, &workqueues, list) {
4734 mutex_lock(&wq->mutex);
4735 for_each_pwq(pwq, wq)
4736 pwq_adjust_max_active(pwq);
4737 mutex_unlock(&wq->mutex);
4738 }
4739
4740 mutex_unlock(&wq_pool_mutex);
4741 }
4742
4743 /**
4744 * freeze_workqueues_busy - are freezable workqueues still busy?
4745 *
4746 * Check whether freezing is complete. This function must be called
4747 * between freeze_workqueues_begin() and thaw_workqueues().
4748 *
4749 * CONTEXT:
4750 * Grabs and releases wq_pool_mutex.
4751 *
4752 * Return:
4753 * %true if some freezable workqueues are still busy. %false if freezing
4754 * is complete.
4755 */
4756 bool freeze_workqueues_busy(void)
4757 {
4758 bool busy = false;
4759 struct workqueue_struct *wq;
4760 struct pool_workqueue *pwq;
4761
4762 mutex_lock(&wq_pool_mutex);
4763
4764 WARN_ON_ONCE(!workqueue_freezing);
4765
4766 list_for_each_entry(wq, &workqueues, list) {
4767 if (!(wq->flags & WQ_FREEZABLE))
4768 continue;
4769 /*
4770 * nr_active is monotonically decreasing. It's safe
4771 * to peek without lock.
4772 */
4773 rcu_read_lock_sched();
4774 for_each_pwq(pwq, wq) {
4775 WARN_ON_ONCE(pwq->nr_active < 0);
4776 if (pwq->nr_active) {
4777 busy = true;
4778 rcu_read_unlock_sched();
4779 goto out_unlock;
4780 }
4781 }
4782 rcu_read_unlock_sched();
4783 }
4784 out_unlock:
4785 mutex_unlock(&wq_pool_mutex);
4786 return busy;
4787 }
4788
4789 /**
4790 * thaw_workqueues - thaw workqueues
4791 *
4792 * Thaw workqueues. Normal queueing is restored and all collected
4793 * frozen works are transferred to their respective pool worklists.
4794 *
4795 * CONTEXT:
4796 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4797 */
4798 void thaw_workqueues(void)
4799 {
4800 struct workqueue_struct *wq;
4801 struct pool_workqueue *pwq;
4802
4803 mutex_lock(&wq_pool_mutex);
4804
4805 if (!workqueue_freezing)
4806 goto out_unlock;
4807
4808 workqueue_freezing = false;
4809
4810 /* restore max_active and repopulate worklist */
4811 list_for_each_entry(wq, &workqueues, list) {
4812 mutex_lock(&wq->mutex);
4813 for_each_pwq(pwq, wq)
4814 pwq_adjust_max_active(pwq);
4815 mutex_unlock(&wq->mutex);
4816 }
4817
4818 out_unlock:
4819 mutex_unlock(&wq_pool_mutex);
4820 }
4821 #endif /* CONFIG_FREEZER */
4822
4823 static int workqueue_apply_unbound_cpumask(void)
4824 {
4825 LIST_HEAD(ctxs);
4826 int ret = 0;
4827 struct workqueue_struct *wq;
4828 struct apply_wqattrs_ctx *ctx, *n;
4829
4830 lockdep_assert_held(&wq_pool_mutex);
4831
4832 list_for_each_entry(wq, &workqueues, list) {
4833 if (!(wq->flags & WQ_UNBOUND))
4834 continue;
4835 /* creating multiple pwqs breaks ordering guarantee */
4836 if (wq->flags & __WQ_ORDERED)
4837 continue;
4838
4839 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4840 if (!ctx) {
4841 ret = -ENOMEM;
4842 break;
4843 }
4844
4845 list_add_tail(&ctx->list, &ctxs);
4846 }
4847
4848 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4849 if (!ret)
4850 apply_wqattrs_commit(ctx);
4851 apply_wqattrs_cleanup(ctx);
4852 }
4853
4854 return ret;
4855 }
4856
4857 /**
4858 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4859 * @cpumask: the cpumask to set
4860 *
4861 * The low-level workqueues cpumask is a global cpumask that limits
4862 * the affinity of all unbound workqueues. This function check the @cpumask
4863 * and apply it to all unbound workqueues and updates all pwqs of them.
4864 *
4865 * Retun: 0 - Success
4866 * -EINVAL - Invalid @cpumask
4867 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4868 */
4869 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4870 {
4871 int ret = -EINVAL;
4872 cpumask_var_t saved_cpumask;
4873
4874 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4875 return -ENOMEM;
4876
4877 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4878 if (!cpumask_empty(cpumask)) {
4879 apply_wqattrs_lock();
4880
4881 /* save the old wq_unbound_cpumask. */
4882 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4883
4884 /* update wq_unbound_cpumask at first and apply it to wqs. */
4885 cpumask_copy(wq_unbound_cpumask, cpumask);
4886 ret = workqueue_apply_unbound_cpumask();
4887
4888 /* restore the wq_unbound_cpumask when failed. */
4889 if (ret < 0)
4890 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4891
4892 apply_wqattrs_unlock();
4893 }
4894
4895 free_cpumask_var(saved_cpumask);
4896 return ret;
4897 }
4898
4899 #ifdef CONFIG_SYSFS
4900 /*
4901 * Workqueues with WQ_SYSFS flag set is visible to userland via
4902 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4903 * following attributes.
4904 *
4905 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4906 * max_active RW int : maximum number of in-flight work items
4907 *
4908 * Unbound workqueues have the following extra attributes.
4909 *
4910 * id RO int : the associated pool ID
4911 * nice RW int : nice value of the workers
4912 * cpumask RW mask : bitmask of allowed CPUs for the workers
4913 */
4914 struct wq_device {
4915 struct workqueue_struct *wq;
4916 struct device dev;
4917 };
4918
4919 static struct workqueue_struct *dev_to_wq(struct device *dev)
4920 {
4921 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4922
4923 return wq_dev->wq;
4924 }
4925
4926 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4927 char *buf)
4928 {
4929 struct workqueue_struct *wq = dev_to_wq(dev);
4930
4931 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4932 }
4933 static DEVICE_ATTR_RO(per_cpu);
4934
4935 static ssize_t max_active_show(struct device *dev,
4936 struct device_attribute *attr, char *buf)
4937 {
4938 struct workqueue_struct *wq = dev_to_wq(dev);
4939
4940 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4941 }
4942
4943 static ssize_t max_active_store(struct device *dev,
4944 struct device_attribute *attr, const char *buf,
4945 size_t count)
4946 {
4947 struct workqueue_struct *wq = dev_to_wq(dev);
4948 int val;
4949
4950 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4951 return -EINVAL;
4952
4953 workqueue_set_max_active(wq, val);
4954 return count;
4955 }
4956 static DEVICE_ATTR_RW(max_active);
4957
4958 static struct attribute *wq_sysfs_attrs[] = {
4959 &dev_attr_per_cpu.attr,
4960 &dev_attr_max_active.attr,
4961 NULL,
4962 };
4963 ATTRIBUTE_GROUPS(wq_sysfs);
4964
4965 static ssize_t wq_pool_ids_show(struct device *dev,
4966 struct device_attribute *attr, char *buf)
4967 {
4968 struct workqueue_struct *wq = dev_to_wq(dev);
4969 const char *delim = "";
4970 int node, written = 0;
4971
4972 rcu_read_lock_sched();
4973 for_each_node(node) {
4974 written += scnprintf(buf + written, PAGE_SIZE - written,
4975 "%s%d:%d", delim, node,
4976 unbound_pwq_by_node(wq, node)->pool->id);
4977 delim = " ";
4978 }
4979 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4980 rcu_read_unlock_sched();
4981
4982 return written;
4983 }
4984
4985 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4986 char *buf)
4987 {
4988 struct workqueue_struct *wq = dev_to_wq(dev);
4989 int written;
4990
4991 mutex_lock(&wq->mutex);
4992 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4993 mutex_unlock(&wq->mutex);
4994
4995 return written;
4996 }
4997
4998 /* prepare workqueue_attrs for sysfs store operations */
4999 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5000 {
5001 struct workqueue_attrs *attrs;
5002
5003 lockdep_assert_held(&wq_pool_mutex);
5004
5005 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5006 if (!attrs)
5007 return NULL;
5008
5009 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5010 return attrs;
5011 }
5012
5013 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5014 const char *buf, size_t count)
5015 {
5016 struct workqueue_struct *wq = dev_to_wq(dev);
5017 struct workqueue_attrs *attrs;
5018 int ret = -ENOMEM;
5019
5020 apply_wqattrs_lock();
5021
5022 attrs = wq_sysfs_prep_attrs(wq);
5023 if (!attrs)
5024 goto out_unlock;
5025
5026 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5027 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5028 ret = apply_workqueue_attrs_locked(wq, attrs);
5029 else
5030 ret = -EINVAL;
5031
5032 out_unlock:
5033 apply_wqattrs_unlock();
5034 free_workqueue_attrs(attrs);
5035 return ret ?: count;
5036 }
5037
5038 static ssize_t wq_cpumask_show(struct device *dev,
5039 struct device_attribute *attr, char *buf)
5040 {
5041 struct workqueue_struct *wq = dev_to_wq(dev);
5042 int written;
5043
5044 mutex_lock(&wq->mutex);
5045 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5046 cpumask_pr_args(wq->unbound_attrs->cpumask));
5047 mutex_unlock(&wq->mutex);
5048 return written;
5049 }
5050
5051 static ssize_t wq_cpumask_store(struct device *dev,
5052 struct device_attribute *attr,
5053 const char *buf, size_t count)
5054 {
5055 struct workqueue_struct *wq = dev_to_wq(dev);
5056 struct workqueue_attrs *attrs;
5057 int ret = -ENOMEM;
5058
5059 apply_wqattrs_lock();
5060
5061 attrs = wq_sysfs_prep_attrs(wq);
5062 if (!attrs)
5063 goto out_unlock;
5064
5065 ret = cpumask_parse(buf, attrs->cpumask);
5066 if (!ret)
5067 ret = apply_workqueue_attrs_locked(wq, attrs);
5068
5069 out_unlock:
5070 apply_wqattrs_unlock();
5071 free_workqueue_attrs(attrs);
5072 return ret ?: count;
5073 }
5074
5075 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5076 char *buf)
5077 {
5078 struct workqueue_struct *wq = dev_to_wq(dev);
5079 int written;
5080
5081 mutex_lock(&wq->mutex);
5082 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5083 !wq->unbound_attrs->no_numa);
5084 mutex_unlock(&wq->mutex);
5085
5086 return written;
5087 }
5088
5089 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5090 const char *buf, size_t count)
5091 {
5092 struct workqueue_struct *wq = dev_to_wq(dev);
5093 struct workqueue_attrs *attrs;
5094 int v, ret = -ENOMEM;
5095
5096 apply_wqattrs_lock();
5097
5098 attrs = wq_sysfs_prep_attrs(wq);
5099 if (!attrs)
5100 goto out_unlock;
5101
5102 ret = -EINVAL;
5103 if (sscanf(buf, "%d", &v) == 1) {
5104 attrs->no_numa = !v;
5105 ret = apply_workqueue_attrs_locked(wq, attrs);
5106 }
5107
5108 out_unlock:
5109 apply_wqattrs_unlock();
5110 free_workqueue_attrs(attrs);
5111 return ret ?: count;
5112 }
5113
5114 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5115 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5116 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5117 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5118 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5119 __ATTR_NULL,
5120 };
5121
5122 static struct bus_type wq_subsys = {
5123 .name = "workqueue",
5124 .dev_groups = wq_sysfs_groups,
5125 };
5126
5127 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5128 struct device_attribute *attr, char *buf)
5129 {
5130 int written;
5131
5132 mutex_lock(&wq_pool_mutex);
5133 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5134 cpumask_pr_args(wq_unbound_cpumask));
5135 mutex_unlock(&wq_pool_mutex);
5136
5137 return written;
5138 }
5139
5140 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5141 struct device_attribute *attr, const char *buf, size_t count)
5142 {
5143 cpumask_var_t cpumask;
5144 int ret;
5145
5146 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5147 return -ENOMEM;
5148
5149 ret = cpumask_parse(buf, cpumask);
5150 if (!ret)
5151 ret = workqueue_set_unbound_cpumask(cpumask);
5152
5153 free_cpumask_var(cpumask);
5154 return ret ? ret : count;
5155 }
5156
5157 static struct device_attribute wq_sysfs_cpumask_attr =
5158 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5159 wq_unbound_cpumask_store);
5160
5161 static int __init wq_sysfs_init(void)
5162 {
5163 int err;
5164
5165 err = subsys_virtual_register(&wq_subsys, NULL);
5166 if (err)
5167 return err;
5168
5169 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5170 }
5171 core_initcall(wq_sysfs_init);
5172
5173 static void wq_device_release(struct device *dev)
5174 {
5175 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5176
5177 kfree(wq_dev);
5178 }
5179
5180 /**
5181 * workqueue_sysfs_register - make a workqueue visible in sysfs
5182 * @wq: the workqueue to register
5183 *
5184 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5185 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5186 * which is the preferred method.
5187 *
5188 * Workqueue user should use this function directly iff it wants to apply
5189 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5190 * apply_workqueue_attrs() may race against userland updating the
5191 * attributes.
5192 *
5193 * Return: 0 on success, -errno on failure.
5194 */
5195 int workqueue_sysfs_register(struct workqueue_struct *wq)
5196 {
5197 struct wq_device *wq_dev;
5198 int ret;
5199
5200 /*
5201 * Adjusting max_active or creating new pwqs by applying
5202 * attributes breaks ordering guarantee. Disallow exposing ordered
5203 * workqueues.
5204 */
5205 if (WARN_ON(wq->flags & __WQ_ORDERED))
5206 return -EINVAL;
5207
5208 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5209 if (!wq_dev)
5210 return -ENOMEM;
5211
5212 wq_dev->wq = wq;
5213 wq_dev->dev.bus = &wq_subsys;
5214 wq_dev->dev.release = wq_device_release;
5215 dev_set_name(&wq_dev->dev, "%s", wq->name);
5216
5217 /*
5218 * unbound_attrs are created separately. Suppress uevent until
5219 * everything is ready.
5220 */
5221 dev_set_uevent_suppress(&wq_dev->dev, true);
5222
5223 ret = device_register(&wq_dev->dev);
5224 if (ret) {
5225 kfree(wq_dev);
5226 wq->wq_dev = NULL;
5227 return ret;
5228 }
5229
5230 if (wq->flags & WQ_UNBOUND) {
5231 struct device_attribute *attr;
5232
5233 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5234 ret = device_create_file(&wq_dev->dev, attr);
5235 if (ret) {
5236 device_unregister(&wq_dev->dev);
5237 wq->wq_dev = NULL;
5238 return ret;
5239 }
5240 }
5241 }
5242
5243 dev_set_uevent_suppress(&wq_dev->dev, false);
5244 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5245 return 0;
5246 }
5247
5248 /**
5249 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5250 * @wq: the workqueue to unregister
5251 *
5252 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5253 */
5254 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5255 {
5256 struct wq_device *wq_dev = wq->wq_dev;
5257
5258 if (!wq->wq_dev)
5259 return;
5260
5261 wq->wq_dev = NULL;
5262 device_unregister(&wq_dev->dev);
5263 }
5264 #else /* CONFIG_SYSFS */
5265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5266 #endif /* CONFIG_SYSFS */
5267
5268 /*
5269 * Workqueue watchdog.
5270 *
5271 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5272 * flush dependency, a concurrency managed work item which stays RUNNING
5273 * indefinitely. Workqueue stalls can be very difficult to debug as the
5274 * usual warning mechanisms don't trigger and internal workqueue state is
5275 * largely opaque.
5276 *
5277 * Workqueue watchdog monitors all worker pools periodically and dumps
5278 * state if some pools failed to make forward progress for a while where
5279 * forward progress is defined as the first item on ->worklist changing.
5280 *
5281 * This mechanism is controlled through the kernel parameter
5282 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5283 * corresponding sysfs parameter file.
5284 */
5285 #ifdef CONFIG_WQ_WATCHDOG
5286
5287 static void wq_watchdog_timer_fn(unsigned long data);
5288
5289 static unsigned long wq_watchdog_thresh = 30;
5290 static struct timer_list wq_watchdog_timer =
5291 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5292
5293 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5294 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5295
5296 static void wq_watchdog_reset_touched(void)
5297 {
5298 int cpu;
5299
5300 wq_watchdog_touched = jiffies;
5301 for_each_possible_cpu(cpu)
5302 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5303 }
5304
5305 static void wq_watchdog_timer_fn(unsigned long data)
5306 {
5307 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5308 bool lockup_detected = false;
5309 struct worker_pool *pool;
5310 int pi;
5311
5312 if (!thresh)
5313 return;
5314
5315 rcu_read_lock();
5316
5317 for_each_pool(pool, pi) {
5318 unsigned long pool_ts, touched, ts;
5319
5320 if (list_empty(&pool->worklist))
5321 continue;
5322
5323 /* get the latest of pool and touched timestamps */
5324 pool_ts = READ_ONCE(pool->watchdog_ts);
5325 touched = READ_ONCE(wq_watchdog_touched);
5326
5327 if (time_after(pool_ts, touched))
5328 ts = pool_ts;
5329 else
5330 ts = touched;
5331
5332 if (pool->cpu >= 0) {
5333 unsigned long cpu_touched =
5334 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5335 pool->cpu));
5336 if (time_after(cpu_touched, ts))
5337 ts = cpu_touched;
5338 }
5339
5340 /* did we stall? */
5341 if (time_after(jiffies, ts + thresh)) {
5342 lockup_detected = true;
5343 pr_emerg("BUG: workqueue lockup - pool");
5344 pr_cont_pool_info(pool);
5345 pr_cont(" stuck for %us!\n",
5346 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5347 }
5348 }
5349
5350 rcu_read_unlock();
5351
5352 if (lockup_detected)
5353 show_workqueue_state();
5354
5355 wq_watchdog_reset_touched();
5356 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5357 }
5358
5359 void wq_watchdog_touch(int cpu)
5360 {
5361 if (cpu >= 0)
5362 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5363 else
5364 wq_watchdog_touched = jiffies;
5365 }
5366
5367 static void wq_watchdog_set_thresh(unsigned long thresh)
5368 {
5369 wq_watchdog_thresh = 0;
5370 del_timer_sync(&wq_watchdog_timer);
5371
5372 if (thresh) {
5373 wq_watchdog_thresh = thresh;
5374 wq_watchdog_reset_touched();
5375 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5376 }
5377 }
5378
5379 static int wq_watchdog_param_set_thresh(const char *val,
5380 const struct kernel_param *kp)
5381 {
5382 unsigned long thresh;
5383 int ret;
5384
5385 ret = kstrtoul(val, 0, &thresh);
5386 if (ret)
5387 return ret;
5388
5389 if (system_wq)
5390 wq_watchdog_set_thresh(thresh);
5391 else
5392 wq_watchdog_thresh = thresh;
5393
5394 return 0;
5395 }
5396
5397 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5398 .set = wq_watchdog_param_set_thresh,
5399 .get = param_get_ulong,
5400 };
5401
5402 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5403 0644);
5404
5405 static void wq_watchdog_init(void)
5406 {
5407 wq_watchdog_set_thresh(wq_watchdog_thresh);
5408 }
5409
5410 #else /* CONFIG_WQ_WATCHDOG */
5411
5412 static inline void wq_watchdog_init(void) { }
5413
5414 #endif /* CONFIG_WQ_WATCHDOG */
5415
5416 static void __init wq_numa_init(void)
5417 {
5418 cpumask_var_t *tbl;
5419 int node, cpu;
5420
5421 if (num_possible_nodes() <= 1)
5422 return;
5423
5424 if (wq_disable_numa) {
5425 pr_info("workqueue: NUMA affinity support disabled\n");
5426 return;
5427 }
5428
5429 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5430 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5431
5432 /*
5433 * We want masks of possible CPUs of each node which isn't readily
5434 * available. Build one from cpu_to_node() which should have been
5435 * fully initialized by now.
5436 */
5437 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5438 BUG_ON(!tbl);
5439
5440 for_each_node(node)
5441 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5442 node_online(node) ? node : NUMA_NO_NODE));
5443
5444 for_each_possible_cpu(cpu) {
5445 node = cpu_to_node(cpu);
5446 if (WARN_ON(node == NUMA_NO_NODE)) {
5447 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5448 /* happens iff arch is bonkers, let's just proceed */
5449 return;
5450 }
5451 cpumask_set_cpu(cpu, tbl[node]);
5452 }
5453
5454 wq_numa_possible_cpumask = tbl;
5455 wq_numa_enabled = true;
5456 }
5457
5458 static int __init init_workqueues(void)
5459 {
5460 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5461 int i, cpu;
5462
5463 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5464
5465 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5466 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5467
5468 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5469
5470 wq_numa_init();
5471
5472 /* initialize CPU pools */
5473 for_each_possible_cpu(cpu) {
5474 struct worker_pool *pool;
5475
5476 i = 0;
5477 for_each_cpu_worker_pool(pool, cpu) {
5478 BUG_ON(init_worker_pool(pool));
5479 pool->cpu = cpu;
5480 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5481 pool->attrs->nice = std_nice[i++];
5482 pool->node = cpu_to_node(cpu);
5483
5484 /* alloc pool ID */
5485 mutex_lock(&wq_pool_mutex);
5486 BUG_ON(worker_pool_assign_id(pool));
5487 mutex_unlock(&wq_pool_mutex);
5488 }
5489 }
5490
5491 /* create the initial worker */
5492 for_each_online_cpu(cpu) {
5493 struct worker_pool *pool;
5494
5495 for_each_cpu_worker_pool(pool, cpu) {
5496 pool->flags &= ~POOL_DISASSOCIATED;
5497 BUG_ON(!create_worker(pool));
5498 }
5499 }
5500
5501 /* create default unbound and ordered wq attrs */
5502 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5503 struct workqueue_attrs *attrs;
5504
5505 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5506 attrs->nice = std_nice[i];
5507 unbound_std_wq_attrs[i] = attrs;
5508
5509 /*
5510 * An ordered wq should have only one pwq as ordering is
5511 * guaranteed by max_active which is enforced by pwqs.
5512 * Turn off NUMA so that dfl_pwq is used for all nodes.
5513 */
5514 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5515 attrs->nice = std_nice[i];
5516 attrs->no_numa = true;
5517 ordered_wq_attrs[i] = attrs;
5518 }
5519
5520 system_wq = alloc_workqueue("events", 0, 0);
5521 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5522 system_long_wq = alloc_workqueue("events_long", 0, 0);
5523 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5524 WQ_UNBOUND_MAX_ACTIVE);
5525 system_freezable_wq = alloc_workqueue("events_freezable",
5526 WQ_FREEZABLE, 0);
5527 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5528 WQ_POWER_EFFICIENT, 0);
5529 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5530 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5531 0);
5532 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5533 !system_unbound_wq || !system_freezable_wq ||
5534 !system_power_efficient_wq ||
5535 !system_freezable_power_efficient_wq);
5536
5537 wq_watchdog_init();
5538
5539 return 0;
5540 }
5541 early_initcall(init_workqueues);
This page took 0.142715 seconds and 6 git commands to generate.