or1k: Support large plt_relocs when generating plt entries
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2021 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bool map_head_is_link_order = false;
67 static lang_output_section_statement_type *default_common_section;
68 static bool map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bool);
89 static bool lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (bool);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 /* Header for list of statements corresponding to any files involved in the
100 link, either specified from the command-line or added implicitely (eg.
101 archive member used to resolved undefined symbol, wildcard statement from
102 linker script, etc.). Next pointer is in next field of a
103 lang_statement_header_type (reached via header field in a
104 lang_statement_union). */
105 lang_statement_list_type statement_list;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bool entry_from_cmdline;
126 bool lang_has_input_file = false;
127 bool had_output_filename = false;
128 bool lang_float_flag = false;
129 bool delete_output_file_on_failure = false;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_dict_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bool
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bool match = false;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = true;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bool
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return true;
263
264 return false;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bool
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return true;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return true;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return true;
301 }
302
303 return false;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, file, data);
343
344 while (sec != NULL)
345 {
346 bool skip = false;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bool multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bool
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = true;
380 return true;
381 }
382
383 d->found_section = s;
384 return false;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bool *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, false };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bool
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bool
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return false;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return false;
427
428 return true;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 lang_input_statement_type *file,
570 void *output)
571 {
572 lang_section_bst_type *node;
573 lang_section_bst_type **tree;
574 lang_output_section_statement_type *os;
575
576 os = (lang_output_section_statement_type *) output;
577
578 if (unique_section_p (section, os))
579 return;
580
581 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
582 node->left = 0;
583 node->right = 0;
584 node->section = section;
585 node->pattern = ptr->section_list;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, tree->pattern, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bool multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bool skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bool multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bool multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bool multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bool skip = !match_simple_wild (wildsec2->spec.name, sname);
772
773 if (!skip)
774 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
775 data);
776 else
777 {
778 skip = !match_simple_wild (wildsec3->spec.name, sname);
779 if (!skip)
780 walk_wild_consider_section (ptr, file, s, wildsec3,
781 callback, data);
782 }
783 }
784 }
785 }
786
787 static void
788 walk_wild_section (lang_wild_statement_type *ptr,
789 lang_input_statement_type *file,
790 callback_t callback,
791 void *data)
792 {
793 if (file->flags.just_syms)
794 return;
795
796 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
797 }
798
799 /* Returns TRUE when name1 is a wildcard spec that might match
800 something name2 can match. We're conservative: we return FALSE
801 only if the prefixes of name1 and name2 are different up to the
802 first wildcard character. */
803
804 static bool
805 wild_spec_can_overlap (const char *name1, const char *name2)
806 {
807 size_t prefix1_len = strcspn (name1, "?*[");
808 size_t prefix2_len = strcspn (name2, "?*[");
809 size_t min_prefix_len;
810
811 /* Note that if there is no wildcard character, then we treat the
812 terminating 0 as part of the prefix. Thus ".text" won't match
813 ".text." or ".text.*", for example. */
814 if (name1[prefix1_len] == '\0')
815 prefix1_len++;
816 if (name2[prefix2_len] == '\0')
817 prefix2_len++;
818
819 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
820
821 return memcmp (name1, name2, min_prefix_len) == 0;
822 }
823
824 /* Select specialized code to handle various kinds of wildcard
825 statements. */
826
827 static void
828 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
829 {
830 int sec_count = 0;
831 int wild_name_count = 0;
832 struct wildcard_list *sec;
833 int signature;
834 int data_counter;
835
836 ptr->walk_wild_section_handler = walk_wild_section_general;
837 ptr->handler_data[0] = NULL;
838 ptr->handler_data[1] = NULL;
839 ptr->handler_data[2] = NULL;
840 ptr->handler_data[3] = NULL;
841 ptr->tree = NULL;
842
843 /* Count how many wildcard_specs there are, and how many of those
844 actually use wildcards in the name. Also, bail out if any of the
845 wildcard names are NULL. (Can this actually happen?
846 walk_wild_section used to test for it.) And bail out if any
847 of the wildcards are more complex than a simple string
848 ending in a single '*'. */
849 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
850 {
851 ++sec_count;
852 if (sec->spec.name == NULL)
853 return;
854 if (wildcardp (sec->spec.name))
855 {
856 ++wild_name_count;
857 if (!is_simple_wild (sec->spec.name))
858 return;
859 }
860 }
861
862 /* The zero-spec case would be easy to optimize but it doesn't
863 happen in practice. Likewise, more than 4 specs doesn't
864 happen in practice. */
865 if (sec_count == 0 || sec_count > 4)
866 return;
867
868 /* Check that no two specs can match the same section. */
869 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
870 {
871 struct wildcard_list *sec2;
872 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
873 {
874 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
875 return;
876 }
877 }
878
879 signature = (sec_count << 8) + wild_name_count;
880 switch (signature)
881 {
882 case 0x0100:
883 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
884 break;
885 case 0x0101:
886 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
887 break;
888 case 0x0201:
889 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
890 break;
891 case 0x0302:
892 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
893 break;
894 case 0x0402:
895 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
896 break;
897 default:
898 return;
899 }
900
901 /* Now fill the data array with pointers to the specs, first the
902 specs with non-wildcard names, then the specs with wildcard
903 names. It's OK to process the specs in different order from the
904 given order, because we've already determined that no section
905 will match more than one spec. */
906 data_counter = 0;
907 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
908 if (!wildcardp (sec->spec.name))
909 ptr->handler_data[data_counter++] = sec;
910 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
911 if (wildcardp (sec->spec.name))
912 ptr->handler_data[data_counter++] = sec;
913 }
914
915 /* Handle a wild statement for a single file F. */
916
917 static void
918 walk_wild_file (lang_wild_statement_type *s,
919 lang_input_statement_type *f,
920 callback_t callback,
921 void *data)
922 {
923 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
924 return;
925
926 if (f->the_bfd == NULL
927 || !bfd_check_format (f->the_bfd, bfd_archive))
928 walk_wild_section (s, f, callback, data);
929 else
930 {
931 bfd *member;
932
933 /* This is an archive file. We must map each member of the
934 archive separately. */
935 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
936 while (member != NULL)
937 {
938 /* When lookup_name is called, it will call the add_symbols
939 entry point for the archive. For each element of the
940 archive which is included, BFD will call ldlang_add_file,
941 which will set the usrdata field of the member to the
942 lang_input_statement. */
943 if (bfd_usrdata (member) != NULL)
944 walk_wild_section (s, bfd_usrdata (member), callback, data);
945
946 member = bfd_openr_next_archived_file (f->the_bfd, member);
947 }
948 }
949 }
950
951 static void
952 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
953 {
954 const char *file_spec = s->filename;
955 char *p;
956
957 if (file_spec == NULL)
958 {
959 /* Perform the iteration over all files in the list. */
960 LANG_FOR_EACH_INPUT_STATEMENT (f)
961 {
962 walk_wild_file (s, f, callback, data);
963 }
964 }
965 else if ((p = archive_path (file_spec)) != NULL)
966 {
967 LANG_FOR_EACH_INPUT_STATEMENT (f)
968 {
969 if (input_statement_is_archive_path (file_spec, p, f))
970 walk_wild_file (s, f, callback, data);
971 }
972 }
973 else if (wildcardp (file_spec))
974 {
975 LANG_FOR_EACH_INPUT_STATEMENT (f)
976 {
977 if (fnmatch (file_spec, f->filename, 0) == 0)
978 walk_wild_file (s, f, callback, data);
979 }
980 }
981 else
982 {
983 lang_input_statement_type *f;
984
985 /* Perform the iteration over a single file. */
986 f = lookup_name (file_spec);
987 if (f)
988 walk_wild_file (s, f, callback, data);
989 }
990 }
991
992 /* lang_for_each_statement walks the parse tree and calls the provided
993 function for each node, except those inside output section statements
994 with constraint set to -1. */
995
996 void
997 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
998 lang_statement_union_type *s)
999 {
1000 for (; s != NULL; s = s->header.next)
1001 {
1002 func (s);
1003
1004 switch (s->header.type)
1005 {
1006 case lang_constructors_statement_enum:
1007 lang_for_each_statement_worker (func, constructor_list.head);
1008 break;
1009 case lang_output_section_statement_enum:
1010 if (s->output_section_statement.constraint != -1)
1011 lang_for_each_statement_worker
1012 (func, s->output_section_statement.children.head);
1013 break;
1014 case lang_wild_statement_enum:
1015 lang_for_each_statement_worker (func,
1016 s->wild_statement.children.head);
1017 break;
1018 case lang_group_statement_enum:
1019 lang_for_each_statement_worker (func,
1020 s->group_statement.children.head);
1021 break;
1022 case lang_data_statement_enum:
1023 case lang_reloc_statement_enum:
1024 case lang_object_symbols_statement_enum:
1025 case lang_output_statement_enum:
1026 case lang_target_statement_enum:
1027 case lang_input_section_enum:
1028 case lang_input_statement_enum:
1029 case lang_assignment_statement_enum:
1030 case lang_padding_statement_enum:
1031 case lang_address_statement_enum:
1032 case lang_fill_statement_enum:
1033 case lang_insert_statement_enum:
1034 break;
1035 default:
1036 FAIL ();
1037 break;
1038 }
1039 }
1040 }
1041
1042 void
1043 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1044 {
1045 lang_for_each_statement_worker (func, statement_list.head);
1046 }
1047
1048 /*----------------------------------------------------------------------*/
1049
1050 void
1051 lang_list_init (lang_statement_list_type *list)
1052 {
1053 list->head = NULL;
1054 list->tail = &list->head;
1055 }
1056
1057 static void
1058 lang_statement_append (lang_statement_list_type *list,
1059 void *element,
1060 void *field)
1061 {
1062 *(list->tail) = element;
1063 list->tail = field;
1064 }
1065
1066 void
1067 push_stat_ptr (lang_statement_list_type *new_ptr)
1068 {
1069 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1070 abort ();
1071 *stat_save_ptr++ = stat_ptr;
1072 stat_ptr = new_ptr;
1073 }
1074
1075 void
1076 pop_stat_ptr (void)
1077 {
1078 if (stat_save_ptr <= stat_save)
1079 abort ();
1080 stat_ptr = *--stat_save_ptr;
1081 }
1082
1083 /* Build a new statement node for the parse tree. */
1084
1085 static lang_statement_union_type *
1086 new_statement (enum statement_enum type,
1087 size_t size,
1088 lang_statement_list_type *list)
1089 {
1090 lang_statement_union_type *new_stmt;
1091
1092 new_stmt = stat_alloc (size);
1093 new_stmt->header.type = type;
1094 new_stmt->header.next = NULL;
1095 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1096 return new_stmt;
1097 }
1098
1099 /* Build a new input file node for the language. There are several
1100 ways in which we treat an input file, eg, we only look at symbols,
1101 or prefix it with a -l etc.
1102
1103 We can be supplied with requests for input files more than once;
1104 they may, for example be split over several lines like foo.o(.text)
1105 foo.o(.data) etc, so when asked for a file we check that we haven't
1106 got it already so we don't duplicate the bfd. */
1107
1108 static lang_input_statement_type *
1109 new_afile (const char *name,
1110 lang_input_file_enum_type file_type,
1111 const char *target,
1112 const char *from_filename)
1113 {
1114 lang_input_statement_type *p;
1115
1116 lang_has_input_file = true;
1117
1118 p = new_stat (lang_input_statement, stat_ptr);
1119 memset (&p->the_bfd, 0,
1120 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1121 p->extra_search_path = NULL;
1122 p->target = target;
1123 p->flags.dynamic = input_flags.dynamic;
1124 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1125 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1126 p->flags.whole_archive = input_flags.whole_archive;
1127 p->flags.sysrooted = input_flags.sysrooted;
1128
1129 switch (file_type)
1130 {
1131 case lang_input_file_is_symbols_only_enum:
1132 p->filename = name;
1133 p->local_sym_name = name;
1134 p->flags.real = true;
1135 p->flags.just_syms = true;
1136 break;
1137 case lang_input_file_is_fake_enum:
1138 p->filename = name;
1139 p->local_sym_name = name;
1140 break;
1141 case lang_input_file_is_l_enum:
1142 if (name[0] == ':' && name[1] != '\0')
1143 {
1144 p->filename = name + 1;
1145 p->flags.full_name_provided = true;
1146 }
1147 else
1148 p->filename = name;
1149 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1150 p->flags.maybe_archive = true;
1151 p->flags.real = true;
1152 p->flags.search_dirs = true;
1153 break;
1154 case lang_input_file_is_marker_enum:
1155 p->filename = name;
1156 p->local_sym_name = name;
1157 p->flags.search_dirs = true;
1158 break;
1159 case lang_input_file_is_search_file_enum:
1160 p->filename = name;
1161 p->local_sym_name = name;
1162 /* If name is a relative path, search the directory of the current linker
1163 script first. */
1164 if (from_filename && !IS_ABSOLUTE_PATH (name))
1165 p->extra_search_path = ldirname (from_filename);
1166 p->flags.real = true;
1167 p->flags.search_dirs = true;
1168 break;
1169 case lang_input_file_is_file_enum:
1170 p->filename = name;
1171 p->local_sym_name = name;
1172 p->flags.real = true;
1173 break;
1174 default:
1175 FAIL ();
1176 }
1177
1178 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1179 return p;
1180 }
1181
1182 lang_input_statement_type *
1183 lang_add_input_file (const char *name,
1184 lang_input_file_enum_type file_type,
1185 const char *target)
1186 {
1187 if (name != NULL
1188 && (*name == '=' || startswith (name, "$SYSROOT")))
1189 {
1190 lang_input_statement_type *ret;
1191 char *sysrooted_name
1192 = concat (ld_sysroot,
1193 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1194 (const char *) NULL);
1195
1196 /* We've now forcibly prepended the sysroot, making the input
1197 file independent of the context. Therefore, temporarily
1198 force a non-sysrooted context for this statement, so it won't
1199 get the sysroot prepended again when opened. (N.B. if it's a
1200 script, any child nodes with input files starting with "/"
1201 will be handled as "sysrooted" as they'll be found to be
1202 within the sysroot subdirectory.) */
1203 unsigned int outer_sysrooted = input_flags.sysrooted;
1204 input_flags.sysrooted = 0;
1205 ret = new_afile (sysrooted_name, file_type, target, NULL);
1206 input_flags.sysrooted = outer_sysrooted;
1207 return ret;
1208 }
1209
1210 return new_afile (name, file_type, target, current_input_file);
1211 }
1212
1213 struct out_section_hash_entry
1214 {
1215 struct bfd_hash_entry root;
1216 lang_statement_union_type s;
1217 };
1218
1219 /* The hash table. */
1220
1221 static struct bfd_hash_table output_section_statement_table;
1222
1223 /* Support routines for the hash table used by lang_output_section_find,
1224 initialize the table, fill in an entry and remove the table. */
1225
1226 static struct bfd_hash_entry *
1227 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1228 struct bfd_hash_table *table,
1229 const char *string)
1230 {
1231 lang_output_section_statement_type **nextp;
1232 struct out_section_hash_entry *ret;
1233
1234 if (entry == NULL)
1235 {
1236 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1237 sizeof (*ret));
1238 if (entry == NULL)
1239 return entry;
1240 }
1241
1242 entry = bfd_hash_newfunc (entry, table, string);
1243 if (entry == NULL)
1244 return entry;
1245
1246 ret = (struct out_section_hash_entry *) entry;
1247 memset (&ret->s, 0, sizeof (ret->s));
1248 ret->s.header.type = lang_output_section_statement_enum;
1249 ret->s.output_section_statement.subsection_alignment = NULL;
1250 ret->s.output_section_statement.section_alignment = NULL;
1251 ret->s.output_section_statement.block_value = 1;
1252 lang_list_init (&ret->s.output_section_statement.children);
1253 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1254
1255 /* For every output section statement added to the list, except the
1256 first one, lang_os_list.tail points to the "next"
1257 field of the last element of the list. */
1258 if (lang_os_list.head != NULL)
1259 ret->s.output_section_statement.prev
1260 = ((lang_output_section_statement_type *)
1261 ((char *) lang_os_list.tail
1262 - offsetof (lang_output_section_statement_type, next)));
1263
1264 /* GCC's strict aliasing rules prevent us from just casting the
1265 address, so we store the pointer in a variable and cast that
1266 instead. */
1267 nextp = &ret->s.output_section_statement.next;
1268 lang_statement_append (&lang_os_list, &ret->s, nextp);
1269 return &ret->root;
1270 }
1271
1272 static void
1273 output_section_statement_table_init (void)
1274 {
1275 if (!bfd_hash_table_init_n (&output_section_statement_table,
1276 output_section_statement_newfunc,
1277 sizeof (struct out_section_hash_entry),
1278 61))
1279 einfo (_("%F%P: can not create hash table: %E\n"));
1280 }
1281
1282 static void
1283 output_section_statement_table_free (void)
1284 {
1285 bfd_hash_table_free (&output_section_statement_table);
1286 }
1287
1288 /* Build enough state so that the parser can build its tree. */
1289
1290 void
1291 lang_init (void)
1292 {
1293 obstack_begin (&stat_obstack, 1000);
1294
1295 stat_ptr = &statement_list;
1296
1297 output_section_statement_table_init ();
1298
1299 lang_list_init (stat_ptr);
1300
1301 lang_list_init (&input_file_chain);
1302 lang_list_init (&lang_os_list);
1303 lang_list_init (&file_chain);
1304 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1305 NULL);
1306 abs_output_section =
1307 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1308
1309 abs_output_section->bfd_section = bfd_abs_section_ptr;
1310
1311 asneeded_list_head = NULL;
1312 asneeded_list_tail = &asneeded_list_head;
1313 }
1314
1315 void
1316 lang_finish (void)
1317 {
1318 output_section_statement_table_free ();
1319 }
1320
1321 /*----------------------------------------------------------------------
1322 A region is an area of memory declared with the
1323 MEMORY { name:org=exp, len=exp ... }
1324 syntax.
1325
1326 We maintain a list of all the regions here.
1327
1328 If no regions are specified in the script, then the default is used
1329 which is created when looked up to be the entire data space.
1330
1331 If create is true we are creating a region inside a MEMORY block.
1332 In this case it is probably an error to create a region that has
1333 already been created. If we are not inside a MEMORY block it is
1334 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1335 and so we issue a warning.
1336
1337 Each region has at least one name. The first name is either
1338 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1339 alias names to an existing region within a script with
1340 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1341 region. */
1342
1343 static lang_memory_region_type *lang_memory_region_list;
1344 static lang_memory_region_type **lang_memory_region_list_tail
1345 = &lang_memory_region_list;
1346
1347 lang_memory_region_type *
1348 lang_memory_region_lookup (const char *const name, bool create)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *new_region;
1353
1354 /* NAME is NULL for LMA memspecs if no region was specified. */
1355 if (name == NULL)
1356 return NULL;
1357
1358 for (r = lang_memory_region_list; r != NULL; r = r->next)
1359 for (n = &r->name_list; n != NULL; n = n->next)
1360 if (strcmp (n->name, name) == 0)
1361 {
1362 if (create)
1363 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1364 NULL, name);
1365 return r;
1366 }
1367
1368 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1369 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1370 NULL, name);
1371
1372 new_region = stat_alloc (sizeof (lang_memory_region_type));
1373
1374 new_region->name_list.name = xstrdup (name);
1375 new_region->name_list.next = NULL;
1376 new_region->next = NULL;
1377 new_region->origin_exp = NULL;
1378 new_region->origin = 0;
1379 new_region->length_exp = NULL;
1380 new_region->length = ~(bfd_size_type) 0;
1381 new_region->current = 0;
1382 new_region->last_os = NULL;
1383 new_region->flags = 0;
1384 new_region->not_flags = 0;
1385 new_region->had_full_message = false;
1386
1387 *lang_memory_region_list_tail = new_region;
1388 lang_memory_region_list_tail = &new_region->next;
1389
1390 return new_region;
1391 }
1392
1393 void
1394 lang_memory_region_alias (const char *alias, const char *region_name)
1395 {
1396 lang_memory_region_name *n;
1397 lang_memory_region_type *r;
1398 lang_memory_region_type *region;
1399
1400 /* The default region must be unique. This ensures that it is not necessary
1401 to iterate through the name list if someone wants the check if a region is
1402 the default memory region. */
1403 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1404 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1405 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1406
1407 /* Look for the target region and check if the alias is not already
1408 in use. */
1409 region = NULL;
1410 for (r = lang_memory_region_list; r != NULL; r = r->next)
1411 for (n = &r->name_list; n != NULL; n = n->next)
1412 {
1413 if (region == NULL && strcmp (n->name, region_name) == 0)
1414 region = r;
1415 if (strcmp (n->name, alias) == 0)
1416 einfo (_("%F%P:%pS: error: redefinition of memory region "
1417 "alias `%s'\n"),
1418 NULL, alias);
1419 }
1420
1421 /* Check if the target region exists. */
1422 if (region == NULL)
1423 einfo (_("%F%P:%pS: error: memory region `%s' "
1424 "for alias `%s' does not exist\n"),
1425 NULL, region_name, alias);
1426
1427 /* Add alias to region name list. */
1428 n = stat_alloc (sizeof (lang_memory_region_name));
1429 n->name = xstrdup (alias);
1430 n->next = region->name_list.next;
1431 region->name_list.next = n;
1432 }
1433
1434 static lang_memory_region_type *
1435 lang_memory_default (asection *section)
1436 {
1437 lang_memory_region_type *p;
1438
1439 flagword sec_flags = section->flags;
1440
1441 /* Override SEC_DATA to mean a writable section. */
1442 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1443 sec_flags |= SEC_DATA;
1444
1445 for (p = lang_memory_region_list; p != NULL; p = p->next)
1446 {
1447 if ((p->flags & sec_flags) != 0
1448 && (p->not_flags & sec_flags) == 0)
1449 {
1450 return p;
1451 }
1452 }
1453 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
1454 }
1455
1456 /* Get the output section statement directly from the userdata. */
1457
1458 lang_output_section_statement_type *
1459 lang_output_section_get (const asection *output_section)
1460 {
1461 return bfd_section_userdata (output_section);
1462 }
1463
1464 /* Find or create an output_section_statement with the given NAME.
1465 If CONSTRAINT is non-zero match one with that constraint, otherwise
1466 match any non-negative constraint. If CREATE is 0 return NULL when
1467 no match exists. If CREATE is 1, create an output_section_statement
1468 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1469 always make a new output_section_statement. */
1470
1471 lang_output_section_statement_type *
1472 lang_output_section_statement_lookup (const char *name,
1473 int constraint,
1474 int create)
1475 {
1476 struct out_section_hash_entry *entry;
1477
1478 entry = ((struct out_section_hash_entry *)
1479 bfd_hash_lookup (&output_section_statement_table, name,
1480 create != 0, false));
1481 if (entry == NULL)
1482 {
1483 if (create)
1484 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1485 return NULL;
1486 }
1487
1488 if (entry->s.output_section_statement.name != NULL)
1489 {
1490 /* We have a section of this name, but it might not have the correct
1491 constraint. */
1492 struct out_section_hash_entry *last_ent;
1493
1494 name = entry->s.output_section_statement.name;
1495 do
1496 {
1497 if (create != 2
1498 && !(create && constraint == SPECIAL)
1499 && (constraint == entry->s.output_section_statement.constraint
1500 || (constraint == 0
1501 && entry->s.output_section_statement.constraint >= 0)))
1502 return &entry->s.output_section_statement;
1503 last_ent = entry;
1504 entry = (struct out_section_hash_entry *) entry->root.next;
1505 }
1506 while (entry != NULL
1507 && name == entry->s.output_section_statement.name);
1508
1509 if (!create)
1510 return NULL;
1511
1512 entry
1513 = ((struct out_section_hash_entry *)
1514 output_section_statement_newfunc (NULL,
1515 &output_section_statement_table,
1516 name));
1517 if (entry == NULL)
1518 {
1519 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1520 return NULL;
1521 }
1522 entry->root = last_ent->root;
1523 last_ent->root.next = &entry->root;
1524 }
1525
1526 entry->s.output_section_statement.name = name;
1527 entry->s.output_section_statement.constraint = constraint;
1528 entry->s.output_section_statement.dup_output = (create == 2
1529 || constraint == SPECIAL);
1530 return &entry->s.output_section_statement;
1531 }
1532
1533 /* Find the next output_section_statement with the same name as OS.
1534 If CONSTRAINT is non-zero, find one with that constraint otherwise
1535 match any non-negative constraint. */
1536
1537 lang_output_section_statement_type *
1538 next_matching_output_section_statement (lang_output_section_statement_type *os,
1539 int constraint)
1540 {
1541 /* All output_section_statements are actually part of a
1542 struct out_section_hash_entry. */
1543 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1544 ((char *) os
1545 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1546 const char *name = os->name;
1547
1548 ASSERT (name == entry->root.string);
1549 do
1550 {
1551 entry = (struct out_section_hash_entry *) entry->root.next;
1552 if (entry == NULL
1553 || name != entry->s.output_section_statement.name)
1554 return NULL;
1555 }
1556 while (constraint != entry->s.output_section_statement.constraint
1557 && (constraint != 0
1558 || entry->s.output_section_statement.constraint < 0));
1559
1560 return &entry->s.output_section_statement;
1561 }
1562
1563 /* A variant of lang_output_section_find used by place_orphan.
1564 Returns the output statement that should precede a new output
1565 statement for SEC. If an exact match is found on certain flags,
1566 sets *EXACT too. */
1567
1568 lang_output_section_statement_type *
1569 lang_output_section_find_by_flags (const asection *sec,
1570 flagword sec_flags,
1571 lang_output_section_statement_type **exact,
1572 lang_match_sec_type_func match_type)
1573 {
1574 lang_output_section_statement_type *first, *look, *found;
1575 flagword look_flags, differ;
1576
1577 /* We know the first statement on this list is *ABS*. May as well
1578 skip it. */
1579 first = (void *) lang_os_list.head;
1580 first = first->next;
1581
1582 /* First try for an exact match. */
1583 found = NULL;
1584 for (look = first; look; look = look->next)
1585 {
1586 look_flags = look->flags;
1587 if (look->bfd_section != NULL)
1588 {
1589 look_flags = look->bfd_section->flags;
1590 if (match_type && !match_type (link_info.output_bfd,
1591 look->bfd_section,
1592 sec->owner, sec))
1593 continue;
1594 }
1595 differ = look_flags ^ sec_flags;
1596 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1597 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1598 found = look;
1599 }
1600 if (found != NULL)
1601 {
1602 if (exact != NULL)
1603 *exact = found;
1604 return found;
1605 }
1606
1607 if ((sec_flags & SEC_CODE) != 0
1608 && (sec_flags & SEC_ALLOC) != 0)
1609 {
1610 /* Try for a rw code section. */
1611 for (look = first; look; look = look->next)
1612 {
1613 look_flags = look->flags;
1614 if (look->bfd_section != NULL)
1615 {
1616 look_flags = look->bfd_section->flags;
1617 if (match_type && !match_type (link_info.output_bfd,
1618 look->bfd_section,
1619 sec->owner, sec))
1620 continue;
1621 }
1622 differ = look_flags ^ sec_flags;
1623 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1624 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1625 found = look;
1626 }
1627 }
1628 else if ((sec_flags & SEC_READONLY) != 0
1629 && (sec_flags & SEC_ALLOC) != 0)
1630 {
1631 /* .rodata can go after .text, .sdata2 after .rodata. */
1632 for (look = first; look; look = look->next)
1633 {
1634 look_flags = look->flags;
1635 if (look->bfd_section != NULL)
1636 {
1637 look_flags = look->bfd_section->flags;
1638 if (match_type && !match_type (link_info.output_bfd,
1639 look->bfd_section,
1640 sec->owner, sec))
1641 continue;
1642 }
1643 differ = look_flags ^ sec_flags;
1644 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1645 | SEC_READONLY | SEC_SMALL_DATA))
1646 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1647 | SEC_READONLY))
1648 && !(look_flags & SEC_SMALL_DATA)))
1649 found = look;
1650 }
1651 }
1652 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1653 && (sec_flags & SEC_ALLOC) != 0)
1654 {
1655 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1656 as if it were a loaded section, and don't use match_type. */
1657 bool seen_thread_local = false;
1658
1659 match_type = NULL;
1660 for (look = first; look; look = look->next)
1661 {
1662 look_flags = look->flags;
1663 if (look->bfd_section != NULL)
1664 look_flags = look->bfd_section->flags;
1665
1666 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1667 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1668 {
1669 /* .tdata and .tbss must be adjacent and in that order. */
1670 if (!(look_flags & SEC_LOAD)
1671 && (sec_flags & SEC_LOAD))
1672 /* ..so if we're at a .tbss section and we're placing
1673 a .tdata section stop looking and return the
1674 previous section. */
1675 break;
1676 found = look;
1677 seen_thread_local = true;
1678 }
1679 else if (seen_thread_local)
1680 break;
1681 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_SMALL_DATA) != 0
1686 && (sec_flags & SEC_ALLOC) != 0)
1687 {
1688 /* .sdata goes after .data, .sbss after .sdata. */
1689 for (look = first; look; look = look->next)
1690 {
1691 look_flags = look->flags;
1692 if (look->bfd_section != NULL)
1693 {
1694 look_flags = look->bfd_section->flags;
1695 if (match_type && !match_type (link_info.output_bfd,
1696 look->bfd_section,
1697 sec->owner, sec))
1698 continue;
1699 }
1700 differ = look_flags ^ sec_flags;
1701 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1702 | SEC_THREAD_LOCAL))
1703 || ((look_flags & SEC_SMALL_DATA)
1704 && !(sec_flags & SEC_HAS_CONTENTS)))
1705 found = look;
1706 }
1707 }
1708 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1709 && (sec_flags & SEC_ALLOC) != 0)
1710 {
1711 /* .data goes after .rodata. */
1712 for (look = first; look; look = look->next)
1713 {
1714 look_flags = look->flags;
1715 if (look->bfd_section != NULL)
1716 {
1717 look_flags = look->bfd_section->flags;
1718 if (match_type && !match_type (link_info.output_bfd,
1719 look->bfd_section,
1720 sec->owner, sec))
1721 continue;
1722 }
1723 differ = look_flags ^ sec_flags;
1724 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1725 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1726 found = look;
1727 }
1728 }
1729 else if ((sec_flags & SEC_ALLOC) != 0)
1730 {
1731 /* .bss goes after any other alloc section. */
1732 for (look = first; look; look = look->next)
1733 {
1734 look_flags = look->flags;
1735 if (look->bfd_section != NULL)
1736 {
1737 look_flags = look->bfd_section->flags;
1738 if (match_type && !match_type (link_info.output_bfd,
1739 look->bfd_section,
1740 sec->owner, sec))
1741 continue;
1742 }
1743 differ = look_flags ^ sec_flags;
1744 if (!(differ & SEC_ALLOC))
1745 found = look;
1746 }
1747 }
1748 else
1749 {
1750 /* non-alloc go last. */
1751 for (look = first; look; look = look->next)
1752 {
1753 look_flags = look->flags;
1754 if (look->bfd_section != NULL)
1755 look_flags = look->bfd_section->flags;
1756 differ = look_flags ^ sec_flags;
1757 if (!(differ & SEC_DEBUGGING))
1758 found = look;
1759 }
1760 return found;
1761 }
1762
1763 if (found || !match_type)
1764 return found;
1765
1766 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1767 }
1768
1769 /* Find the last output section before given output statement.
1770 Used by place_orphan. */
1771
1772 static asection *
1773 output_prev_sec_find (lang_output_section_statement_type *os)
1774 {
1775 lang_output_section_statement_type *lookup;
1776
1777 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1778 {
1779 if (lookup->constraint < 0)
1780 continue;
1781
1782 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1783 return lookup->bfd_section;
1784 }
1785
1786 return NULL;
1787 }
1788
1789 /* Look for a suitable place for a new output section statement. The
1790 idea is to skip over anything that might be inside a SECTIONS {}
1791 statement in a script, before we find another output section
1792 statement. Assignments to "dot" before an output section statement
1793 are assumed to belong to it, except in two cases; The first
1794 assignment to dot, and assignments before non-alloc sections.
1795 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1796 similar assignments that set the initial address, or we might
1797 insert non-alloc note sections among assignments setting end of
1798 image symbols. */
1799
1800 static lang_statement_union_type **
1801 insert_os_after (lang_output_section_statement_type *after)
1802 {
1803 lang_statement_union_type **where;
1804 lang_statement_union_type **assign = NULL;
1805 bool ignore_first;
1806
1807 ignore_first = after == (void *) lang_os_list.head;
1808
1809 for (where = &after->header.next;
1810 *where != NULL;
1811 where = &(*where)->header.next)
1812 {
1813 switch ((*where)->header.type)
1814 {
1815 case lang_assignment_statement_enum:
1816 if (assign == NULL)
1817 {
1818 lang_assignment_statement_type *ass;
1819
1820 ass = &(*where)->assignment_statement;
1821 if (ass->exp->type.node_class != etree_assert
1822 && ass->exp->assign.dst[0] == '.'
1823 && ass->exp->assign.dst[1] == 0)
1824 {
1825 if (!ignore_first)
1826 assign = where;
1827 ignore_first = false;
1828 }
1829 }
1830 continue;
1831 case lang_wild_statement_enum:
1832 case lang_input_section_enum:
1833 case lang_object_symbols_statement_enum:
1834 case lang_fill_statement_enum:
1835 case lang_data_statement_enum:
1836 case lang_reloc_statement_enum:
1837 case lang_padding_statement_enum:
1838 case lang_constructors_statement_enum:
1839 assign = NULL;
1840 ignore_first = false;
1841 continue;
1842 case lang_output_section_statement_enum:
1843 if (assign != NULL)
1844 {
1845 asection *s = (*where)->output_section_statement.bfd_section;
1846
1847 if (s == NULL
1848 || s->map_head.s == NULL
1849 || (s->flags & SEC_ALLOC) != 0)
1850 where = assign;
1851 }
1852 break;
1853 case lang_input_statement_enum:
1854 case lang_address_statement_enum:
1855 case lang_target_statement_enum:
1856 case lang_output_statement_enum:
1857 case lang_group_statement_enum:
1858 case lang_insert_statement_enum:
1859 continue;
1860 }
1861 break;
1862 }
1863
1864 return where;
1865 }
1866
1867 lang_output_section_statement_type *
1868 lang_insert_orphan (asection *s,
1869 const char *secname,
1870 int constraint,
1871 lang_output_section_statement_type *after,
1872 struct orphan_save *place,
1873 etree_type *address,
1874 lang_statement_list_type *add_child)
1875 {
1876 lang_statement_list_type add;
1877 lang_output_section_statement_type *os;
1878 lang_output_section_statement_type **os_tail;
1879
1880 /* If we have found an appropriate place for the output section
1881 statements for this orphan, add them to our own private list,
1882 inserting them later into the global statement list. */
1883 if (after != NULL)
1884 {
1885 lang_list_init (&add);
1886 push_stat_ptr (&add);
1887 }
1888
1889 if (bfd_link_relocatable (&link_info)
1890 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1891 address = exp_intop (0);
1892
1893 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1894 os = lang_enter_output_section_statement (secname, address, normal_section,
1895 NULL, NULL, NULL, constraint, 0);
1896
1897 if (add_child == NULL)
1898 add_child = &os->children;
1899 lang_add_section (add_child, s, NULL, NULL, os);
1900
1901 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1902 {
1903 const char *region = (after->region
1904 ? after->region->name_list.name
1905 : DEFAULT_MEMORY_REGION);
1906 const char *lma_region = (after->lma_region
1907 ? after->lma_region->name_list.name
1908 : NULL);
1909 lang_leave_output_section_statement (NULL, region, after->phdrs,
1910 lma_region);
1911 }
1912 else
1913 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1914 NULL);
1915
1916 /* Restore the global list pointer. */
1917 if (after != NULL)
1918 pop_stat_ptr ();
1919
1920 if (after != NULL && os->bfd_section != NULL)
1921 {
1922 asection *snew, *as;
1923 bool place_after = place->stmt == NULL;
1924 bool insert_after = true;
1925
1926 snew = os->bfd_section;
1927
1928 /* Shuffle the bfd section list to make the output file look
1929 neater. This is really only cosmetic. */
1930 if (place->section == NULL
1931 && after != (void *) lang_os_list.head)
1932 {
1933 asection *bfd_section = after->bfd_section;
1934
1935 /* If the output statement hasn't been used to place any input
1936 sections (and thus doesn't have an output bfd_section),
1937 look for the closest prior output statement having an
1938 output section. */
1939 if (bfd_section == NULL)
1940 bfd_section = output_prev_sec_find (after);
1941
1942 if (bfd_section != NULL && bfd_section != snew)
1943 place->section = &bfd_section->next;
1944 }
1945
1946 if (place->section == NULL)
1947 place->section = &link_info.output_bfd->sections;
1948
1949 as = *place->section;
1950
1951 if (!as)
1952 {
1953 /* Put the section at the end of the list. */
1954
1955 /* Unlink the section. */
1956 bfd_section_list_remove (link_info.output_bfd, snew);
1957
1958 /* Now tack it back on in the right place. */
1959 bfd_section_list_append (link_info.output_bfd, snew);
1960 }
1961 else if ((bfd_get_flavour (link_info.output_bfd)
1962 == bfd_target_elf_flavour)
1963 && (bfd_get_flavour (s->owner)
1964 == bfd_target_elf_flavour)
1965 && ((elf_section_type (s) == SHT_NOTE
1966 && (s->flags & SEC_LOAD) != 0)
1967 || (elf_section_type (as) == SHT_NOTE
1968 && (as->flags & SEC_LOAD) != 0)))
1969 {
1970 /* Make sure that output note sections are grouped and sorted
1971 by alignments when inserting a note section or insert a
1972 section after a note section, */
1973 asection *sec;
1974 /* A specific section after which the output note section
1975 should be placed. */
1976 asection *after_sec;
1977 /* True if we need to insert the orphan section after a
1978 specific section to maintain output note section order. */
1979 bool after_sec_note = false;
1980
1981 static asection *first_orphan_note = NULL;
1982
1983 /* Group and sort output note section by alignments in
1984 ascending order. */
1985 after_sec = NULL;
1986 if (elf_section_type (s) == SHT_NOTE
1987 && (s->flags & SEC_LOAD) != 0)
1988 {
1989 /* Search from the beginning for the last output note
1990 section with equal or larger alignments. NB: Don't
1991 place orphan note section after non-note sections. */
1992
1993 first_orphan_note = NULL;
1994 for (sec = link_info.output_bfd->sections;
1995 (sec != NULL
1996 && !bfd_is_abs_section (sec));
1997 sec = sec->next)
1998 if (sec != snew
1999 && elf_section_type (sec) == SHT_NOTE
2000 && (sec->flags & SEC_LOAD) != 0)
2001 {
2002 if (!first_orphan_note)
2003 first_orphan_note = sec;
2004 if (sec->alignment_power >= s->alignment_power)
2005 after_sec = sec;
2006 }
2007 else if (first_orphan_note)
2008 {
2009 /* Stop if there is non-note section after the first
2010 orphan note section. */
2011 break;
2012 }
2013
2014 /* If this will be the first orphan note section, it can
2015 be placed at the default location. */
2016 after_sec_note = first_orphan_note != NULL;
2017 if (after_sec == NULL && after_sec_note)
2018 {
2019 /* If all output note sections have smaller
2020 alignments, place the section before all
2021 output orphan note sections. */
2022 after_sec = first_orphan_note;
2023 insert_after = false;
2024 }
2025 }
2026 else if (first_orphan_note)
2027 {
2028 /* Don't place non-note sections in the middle of orphan
2029 note sections. */
2030 after_sec_note = true;
2031 after_sec = as;
2032 for (sec = as->next;
2033 (sec != NULL
2034 && !bfd_is_abs_section (sec));
2035 sec = sec->next)
2036 if (elf_section_type (sec) == SHT_NOTE
2037 && (sec->flags & SEC_LOAD) != 0)
2038 after_sec = sec;
2039 }
2040
2041 if (after_sec_note)
2042 {
2043 if (after_sec)
2044 {
2045 /* Search forward to insert OS after AFTER_SEC output
2046 statement. */
2047 lang_output_section_statement_type *stmt, *next;
2048 bool found = false;
2049 for (stmt = after; stmt != NULL; stmt = next)
2050 {
2051 next = stmt->next;
2052 if (insert_after)
2053 {
2054 if (stmt->bfd_section == after_sec)
2055 {
2056 place_after = true;
2057 found = true;
2058 after = stmt;
2059 break;
2060 }
2061 }
2062 else
2063 {
2064 /* If INSERT_AFTER is FALSE, place OS before
2065 AFTER_SEC output statement. */
2066 if (next && next->bfd_section == after_sec)
2067 {
2068 place_after = true;
2069 found = true;
2070 after = stmt;
2071 break;
2072 }
2073 }
2074 }
2075
2076 /* Search backward to insert OS after AFTER_SEC output
2077 statement. */
2078 if (!found)
2079 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2080 {
2081 if (insert_after)
2082 {
2083 if (stmt->bfd_section == after_sec)
2084 {
2085 place_after = true;
2086 after = stmt;
2087 break;
2088 }
2089 }
2090 else
2091 {
2092 /* If INSERT_AFTER is FALSE, place OS before
2093 AFTER_SEC output statement. */
2094 if (stmt->next->bfd_section == after_sec)
2095 {
2096 place_after = true;
2097 after = stmt;
2098 break;
2099 }
2100 }
2101 }
2102 }
2103
2104 if (after_sec == NULL
2105 || (insert_after && after_sec->next != snew)
2106 || (!insert_after && after_sec->prev != snew))
2107 {
2108 /* Unlink the section. */
2109 bfd_section_list_remove (link_info.output_bfd, snew);
2110
2111 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2112 prepend SNEW. */
2113 if (after_sec)
2114 {
2115 if (insert_after)
2116 bfd_section_list_insert_after (link_info.output_bfd,
2117 after_sec, snew);
2118 else
2119 bfd_section_list_insert_before (link_info.output_bfd,
2120 after_sec, snew);
2121 }
2122 else
2123 bfd_section_list_prepend (link_info.output_bfd, snew);
2124 }
2125 }
2126 else if (as != snew && as->prev != snew)
2127 {
2128 /* Unlink the section. */
2129 bfd_section_list_remove (link_info.output_bfd, snew);
2130
2131 /* Now tack it back on in the right place. */
2132 bfd_section_list_insert_before (link_info.output_bfd,
2133 as, snew);
2134 }
2135 }
2136 else if (as != snew && as->prev != snew)
2137 {
2138 /* Unlink the section. */
2139 bfd_section_list_remove (link_info.output_bfd, snew);
2140
2141 /* Now tack it back on in the right place. */
2142 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2143 }
2144
2145 /* Save the end of this list. Further ophans of this type will
2146 follow the one we've just added. */
2147 place->section = &snew->next;
2148
2149 /* The following is non-cosmetic. We try to put the output
2150 statements in some sort of reasonable order here, because they
2151 determine the final load addresses of the orphan sections.
2152 In addition, placing output statements in the wrong order may
2153 require extra segments. For instance, given a typical
2154 situation of all read-only sections placed in one segment and
2155 following that a segment containing all the read-write
2156 sections, we wouldn't want to place an orphan read/write
2157 section before or amongst the read-only ones. */
2158 if (add.head != NULL)
2159 {
2160 lang_output_section_statement_type *newly_added_os;
2161
2162 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2163 if (place_after)
2164 {
2165 lang_statement_union_type **where = insert_os_after (after);
2166
2167 *add.tail = *where;
2168 *where = add.head;
2169
2170 place->os_tail = &after->next;
2171 }
2172 else
2173 {
2174 /* Put it after the last orphan statement we added. */
2175 *add.tail = *place->stmt;
2176 *place->stmt = add.head;
2177 }
2178
2179 /* Fix the global list pointer if we happened to tack our
2180 new list at the tail. */
2181 if (*stat_ptr->tail == add.head)
2182 stat_ptr->tail = add.tail;
2183
2184 /* Save the end of this list. */
2185 place->stmt = add.tail;
2186
2187 /* Do the same for the list of output section statements. */
2188 newly_added_os = *os_tail;
2189 *os_tail = NULL;
2190 newly_added_os->prev = (lang_output_section_statement_type *)
2191 ((char *) place->os_tail
2192 - offsetof (lang_output_section_statement_type, next));
2193 newly_added_os->next = *place->os_tail;
2194 if (newly_added_os->next != NULL)
2195 newly_added_os->next->prev = newly_added_os;
2196 *place->os_tail = newly_added_os;
2197 place->os_tail = &newly_added_os->next;
2198
2199 /* Fixing the global list pointer here is a little different.
2200 We added to the list in lang_enter_output_section_statement,
2201 trimmed off the new output_section_statment above when
2202 assigning *os_tail = NULL, but possibly added it back in
2203 the same place when assigning *place->os_tail. */
2204 if (*os_tail == NULL)
2205 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2206 }
2207 }
2208 return os;
2209 }
2210
2211 static void
2212 lang_print_asneeded (void)
2213 {
2214 struct asneeded_minfo *m;
2215
2216 if (asneeded_list_head == NULL)
2217 return;
2218
2219 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2220
2221 for (m = asneeded_list_head; m != NULL; m = m->next)
2222 {
2223 size_t len;
2224
2225 minfo ("%s", m->soname);
2226 len = strlen (m->soname);
2227
2228 if (len >= 29)
2229 {
2230 print_nl ();
2231 len = 0;
2232 }
2233 while (len < 30)
2234 {
2235 print_space ();
2236 ++len;
2237 }
2238
2239 if (m->ref != NULL)
2240 minfo ("%pB ", m->ref);
2241 minfo ("(%pT)\n", m->name);
2242 }
2243 }
2244
2245 static void
2246 lang_map_flags (flagword flag)
2247 {
2248 if (flag & SEC_ALLOC)
2249 minfo ("a");
2250
2251 if (flag & SEC_CODE)
2252 minfo ("x");
2253
2254 if (flag & SEC_READONLY)
2255 minfo ("r");
2256
2257 if (flag & SEC_DATA)
2258 minfo ("w");
2259
2260 if (flag & SEC_LOAD)
2261 minfo ("l");
2262 }
2263
2264 void
2265 lang_map (void)
2266 {
2267 lang_memory_region_type *m;
2268 bool dis_header_printed = false;
2269
2270 LANG_FOR_EACH_INPUT_STATEMENT (file)
2271 {
2272 asection *s;
2273
2274 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2275 || file->flags.just_syms)
2276 continue;
2277
2278 if (config.print_map_discarded)
2279 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2280 if ((s->output_section == NULL
2281 || s->output_section->owner != link_info.output_bfd)
2282 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2283 {
2284 if (! dis_header_printed)
2285 {
2286 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2287 dis_header_printed = true;
2288 }
2289
2290 print_input_section (s, true);
2291 }
2292 }
2293
2294 minfo (_("\nMemory Configuration\n\n"));
2295 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2296 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2297
2298 for (m = lang_memory_region_list; m != NULL; m = m->next)
2299 {
2300 char buf[100];
2301 int len;
2302
2303 fprintf (config.map_file, "%-16s ", m->name_list.name);
2304
2305 sprintf_vma (buf, m->origin);
2306 minfo ("0x%s ", buf);
2307 len = strlen (buf);
2308 while (len < 16)
2309 {
2310 print_space ();
2311 ++len;
2312 }
2313
2314 minfo ("0x%V", m->length);
2315 if (m->flags || m->not_flags)
2316 {
2317 #ifndef BFD64
2318 minfo (" ");
2319 #endif
2320 if (m->flags)
2321 {
2322 print_space ();
2323 lang_map_flags (m->flags);
2324 }
2325
2326 if (m->not_flags)
2327 {
2328 minfo (" !");
2329 lang_map_flags (m->not_flags);
2330 }
2331 }
2332
2333 print_nl ();
2334 }
2335
2336 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2337
2338 if (!link_info.reduce_memory_overheads)
2339 {
2340 obstack_begin (&map_obstack, 1000);
2341 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2342 }
2343 expld.phase = lang_fixed_phase_enum;
2344 lang_statement_iteration++;
2345 print_statements ();
2346
2347 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2348 config.map_file);
2349 }
2350
2351 static bool
2352 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2353 void *info ATTRIBUTE_UNUSED)
2354 {
2355 if ((hash_entry->type == bfd_link_hash_defined
2356 || hash_entry->type == bfd_link_hash_defweak)
2357 && hash_entry->u.def.section->owner != link_info.output_bfd
2358 && hash_entry->u.def.section->owner != NULL)
2359 {
2360 input_section_userdata_type *ud;
2361 struct map_symbol_def *def;
2362
2363 ud = bfd_section_userdata (hash_entry->u.def.section);
2364 if (!ud)
2365 {
2366 ud = stat_alloc (sizeof (*ud));
2367 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2368 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2369 ud->map_symbol_def_count = 0;
2370 }
2371 else if (!ud->map_symbol_def_tail)
2372 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2373
2374 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2375 def->entry = hash_entry;
2376 *(ud->map_symbol_def_tail) = def;
2377 ud->map_symbol_def_tail = &def->next;
2378 ud->map_symbol_def_count++;
2379 }
2380 return true;
2381 }
2382
2383 /* Initialize an output section. */
2384
2385 static void
2386 init_os (lang_output_section_statement_type *s, flagword flags)
2387 {
2388 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2389 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2390
2391 if (!s->dup_output)
2392 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2393 if (s->bfd_section == NULL)
2394 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2395 s->name, flags);
2396 if (s->bfd_section == NULL)
2397 {
2398 einfo (_("%F%P: output format %s cannot represent section"
2399 " called %s: %E\n"),
2400 link_info.output_bfd->xvec->name, s->name);
2401 }
2402 s->bfd_section->output_section = s->bfd_section;
2403 s->bfd_section->output_offset = 0;
2404
2405 /* Set the userdata of the output section to the output section
2406 statement to avoid lookup. */
2407 bfd_set_section_userdata (s->bfd_section, s);
2408
2409 /* If there is a base address, make sure that any sections it might
2410 mention are initialized. */
2411 if (s->addr_tree != NULL)
2412 exp_init_os (s->addr_tree);
2413
2414 if (s->load_base != NULL)
2415 exp_init_os (s->load_base);
2416
2417 /* If supplied an alignment, set it. */
2418 if (s->section_alignment != NULL)
2419 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2420 "section alignment");
2421 }
2422
2423 /* Make sure that all output sections mentioned in an expression are
2424 initialized. */
2425
2426 static void
2427 exp_init_os (etree_type *exp)
2428 {
2429 switch (exp->type.node_class)
2430 {
2431 case etree_assign:
2432 case etree_provide:
2433 case etree_provided:
2434 exp_init_os (exp->assign.src);
2435 break;
2436
2437 case etree_binary:
2438 exp_init_os (exp->binary.lhs);
2439 exp_init_os (exp->binary.rhs);
2440 break;
2441
2442 case etree_trinary:
2443 exp_init_os (exp->trinary.cond);
2444 exp_init_os (exp->trinary.lhs);
2445 exp_init_os (exp->trinary.rhs);
2446 break;
2447
2448 case etree_assert:
2449 exp_init_os (exp->assert_s.child);
2450 break;
2451
2452 case etree_unary:
2453 exp_init_os (exp->unary.child);
2454 break;
2455
2456 case etree_name:
2457 switch (exp->type.node_code)
2458 {
2459 case ADDR:
2460 case LOADADDR:
2461 case SIZEOF:
2462 {
2463 lang_output_section_statement_type *os;
2464
2465 os = lang_output_section_find (exp->name.name);
2466 if (os != NULL && os->bfd_section == NULL)
2467 init_os (os, 0);
2468 }
2469 }
2470 break;
2471
2472 default:
2473 break;
2474 }
2475 }
2476 \f
2477 static void
2478 section_already_linked (bfd *abfd, asection *sec, void *data)
2479 {
2480 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2481
2482 /* If we are only reading symbols from this object, then we want to
2483 discard all sections. */
2484 if (entry->flags.just_syms)
2485 {
2486 bfd_link_just_syms (abfd, sec, &link_info);
2487 return;
2488 }
2489
2490 /* Deal with SHF_EXCLUDE ELF sections. */
2491 if (!bfd_link_relocatable (&link_info)
2492 && (abfd->flags & BFD_PLUGIN) == 0
2493 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2494 sec->output_section = bfd_abs_section_ptr;
2495
2496 if (!(abfd->flags & DYNAMIC))
2497 bfd_section_already_linked (abfd, sec, &link_info);
2498 }
2499 \f
2500
2501 /* Returns true if SECTION is one we know will be discarded based on its
2502 section flags, otherwise returns false. */
2503
2504 static bool
2505 lang_discard_section_p (asection *section)
2506 {
2507 bool discard;
2508 flagword flags = section->flags;
2509
2510 /* Discard sections marked with SEC_EXCLUDE. */
2511 discard = (flags & SEC_EXCLUDE) != 0;
2512
2513 /* Discard the group descriptor sections when we're finally placing the
2514 sections from within the group. */
2515 if ((flags & SEC_GROUP) != 0
2516 && link_info.resolve_section_groups)
2517 discard = true;
2518
2519 /* Discard debugging sections if we are stripping debugging
2520 information. */
2521 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2522 && (flags & SEC_DEBUGGING) != 0)
2523 discard = true;
2524
2525 return discard;
2526 }
2527
2528 /* The wild routines.
2529
2530 These expand statements like *(.text) and foo.o to a list of
2531 explicit actions, like foo.o(.text), bar.o(.text) and
2532 foo.o(.text, .data). */
2533
2534 /* Add SECTION to the output section OUTPUT. Do this by creating a
2535 lang_input_section statement which is placed at PTR. */
2536
2537 void
2538 lang_add_section (lang_statement_list_type *ptr,
2539 asection *section,
2540 struct wildcard_list *pattern,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bool discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = true;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bool keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 new_section->pattern = pattern;
2722 }
2723
2724 /* Handle wildcard sorting. This returns the lang_input_section which
2725 should follow the one we are going to create for SECTION and FILE,
2726 based on the sorting requirements of WILD. It returns NULL if the
2727 new section should just go at the end of the current list. */
2728
2729 static lang_statement_union_type *
2730 wild_sort (lang_wild_statement_type *wild,
2731 struct wildcard_list *sec,
2732 lang_input_statement_type *file,
2733 asection *section)
2734 {
2735 lang_statement_union_type *l;
2736
2737 if (!wild->filenames_sorted
2738 && (sec == NULL || sec->spec.sorted == none))
2739 return NULL;
2740
2741 for (l = wild->children.head; l != NULL; l = l->header.next)
2742 {
2743 lang_input_section_type *ls;
2744
2745 if (l->header.type != lang_input_section_enum)
2746 continue;
2747 ls = &l->input_section;
2748
2749 /* Sorting by filename takes precedence over sorting by section
2750 name. */
2751
2752 if (wild->filenames_sorted)
2753 {
2754 const char *fn, *ln;
2755 bool fa, la;
2756 int i;
2757
2758 /* The PE support for the .idata section as generated by
2759 dlltool assumes that files will be sorted by the name of
2760 the archive and then the name of the file within the
2761 archive. */
2762
2763 if (file->the_bfd != NULL
2764 && file->the_bfd->my_archive != NULL)
2765 {
2766 fn = bfd_get_filename (file->the_bfd->my_archive);
2767 fa = true;
2768 }
2769 else
2770 {
2771 fn = file->filename;
2772 fa = false;
2773 }
2774
2775 if (ls->section->owner->my_archive != NULL)
2776 {
2777 ln = bfd_get_filename (ls->section->owner->my_archive);
2778 la = true;
2779 }
2780 else
2781 {
2782 ln = bfd_get_filename (ls->section->owner);
2783 la = false;
2784 }
2785
2786 i = filename_cmp (fn, ln);
2787 if (i > 0)
2788 continue;
2789 else if (i < 0)
2790 break;
2791
2792 if (fa || la)
2793 {
2794 if (fa)
2795 fn = file->filename;
2796 if (la)
2797 ln = bfd_get_filename (ls->section->owner);
2798
2799 i = filename_cmp (fn, ln);
2800 if (i > 0)
2801 continue;
2802 else if (i < 0)
2803 break;
2804 }
2805 }
2806
2807 /* Here either the files are not sorted by name, or we are
2808 looking at the sections for this file. */
2809
2810 if (sec != NULL
2811 && sec->spec.sorted != none
2812 && sec->spec.sorted != by_none)
2813 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2814 break;
2815 }
2816
2817 return l;
2818 }
2819
2820 /* Expand a wild statement for a particular FILE. SECTION may be
2821 NULL, in which case it is a wild card. */
2822
2823 static void
2824 output_section_callback (lang_wild_statement_type *ptr,
2825 struct wildcard_list *sec,
2826 asection *section,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, ptr->section_list,
2848 ptr->section_flag_list, os);
2849 else
2850 {
2851 lang_statement_list_type list;
2852 lang_statement_union_type **pp;
2853
2854 lang_list_init (&list);
2855 lang_add_section (&list, section, ptr->section_list,
2856 ptr->section_flag_list, os);
2857
2858 /* If we are discarding the section, LIST.HEAD will
2859 be NULL. */
2860 if (list.head != NULL)
2861 {
2862 ASSERT (list.head->header.next == NULL);
2863
2864 for (pp = &ptr->children.head;
2865 *pp != before;
2866 pp = &(*pp)->header.next)
2867 ASSERT (*pp != NULL);
2868
2869 list.head->header.next = *pp;
2870 *pp = list.head;
2871 }
2872 }
2873 }
2874
2875 /* Check if all sections in a wild statement for a particular FILE
2876 are readonly. */
2877
2878 static void
2879 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2880 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2881 asection *section,
2882 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2883 void *output)
2884 {
2885 lang_output_section_statement_type *os;
2886
2887 os = (lang_output_section_statement_type *) output;
2888
2889 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2890 if (unique_section_p (section, os))
2891 return;
2892
2893 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2894 os->all_input_readonly = false;
2895 }
2896
2897 /* This is passed a file name which must have been seen already and
2898 added to the statement tree. We will see if it has been opened
2899 already and had its symbols read. If not then we'll read it. */
2900
2901 static lang_input_statement_type *
2902 lookup_name (const char *name)
2903 {
2904 lang_input_statement_type *search;
2905
2906 for (search = (void *) input_file_chain.head;
2907 search != NULL;
2908 search = search->next_real_file)
2909 {
2910 /* Use the local_sym_name as the name of the file that has
2911 already been loaded as filename might have been transformed
2912 via the search directory lookup mechanism. */
2913 const char *filename = search->local_sym_name;
2914
2915 if (filename != NULL
2916 && filename_cmp (filename, name) == 0)
2917 break;
2918 }
2919
2920 if (search == NULL)
2921 {
2922 /* Arrange to splice the input statement added by new_afile into
2923 statement_list after the current input_file_chain tail.
2924 We know input_file_chain is not an empty list, and that
2925 lookup_name was called via open_input_bfds. Later calls to
2926 lookup_name should always match an existing input_statement. */
2927 lang_statement_union_type **tail = stat_ptr->tail;
2928 lang_statement_union_type **after
2929 = (void *) ((char *) input_file_chain.tail
2930 - offsetof (lang_input_statement_type, next_real_file)
2931 + offsetof (lang_input_statement_type, header.next));
2932 lang_statement_union_type *rest = *after;
2933 stat_ptr->tail = after;
2934 search = new_afile (name, lang_input_file_is_search_file_enum,
2935 default_target, NULL);
2936 *stat_ptr->tail = rest;
2937 if (*tail == NULL)
2938 stat_ptr->tail = tail;
2939 }
2940
2941 /* If we have already added this file, or this file is not real
2942 don't add this file. */
2943 if (search->flags.loaded || !search->flags.real)
2944 return search;
2945
2946 if (!load_symbols (search, NULL))
2947 return NULL;
2948
2949 return search;
2950 }
2951
2952 /* Save LIST as a list of libraries whose symbols should not be exported. */
2953
2954 struct excluded_lib
2955 {
2956 char *name;
2957 struct excluded_lib *next;
2958 };
2959 static struct excluded_lib *excluded_libs;
2960
2961 void
2962 add_excluded_libs (const char *list)
2963 {
2964 const char *p = list, *end;
2965
2966 while (*p != '\0')
2967 {
2968 struct excluded_lib *entry;
2969 end = strpbrk (p, ",:");
2970 if (end == NULL)
2971 end = p + strlen (p);
2972 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2973 entry->next = excluded_libs;
2974 entry->name = (char *) xmalloc (end - p + 1);
2975 memcpy (entry->name, p, end - p);
2976 entry->name[end - p] = '\0';
2977 excluded_libs = entry;
2978 if (*end == '\0')
2979 break;
2980 p = end + 1;
2981 }
2982 }
2983
2984 static void
2985 check_excluded_libs (bfd *abfd)
2986 {
2987 struct excluded_lib *lib = excluded_libs;
2988
2989 while (lib)
2990 {
2991 int len = strlen (lib->name);
2992 const char *filename = lbasename (bfd_get_filename (abfd));
2993
2994 if (strcmp (lib->name, "ALL") == 0)
2995 {
2996 abfd->no_export = true;
2997 return;
2998 }
2999
3000 if (filename_ncmp (lib->name, filename, len) == 0
3001 && (filename[len] == '\0'
3002 || (filename[len] == '.' && filename[len + 1] == 'a'
3003 && filename[len + 2] == '\0')))
3004 {
3005 abfd->no_export = true;
3006 return;
3007 }
3008
3009 lib = lib->next;
3010 }
3011 }
3012
3013 /* Get the symbols for an input file. */
3014
3015 bool
3016 load_symbols (lang_input_statement_type *entry,
3017 lang_statement_list_type *place)
3018 {
3019 char **matching;
3020
3021 if (entry->flags.loaded)
3022 return true;
3023
3024 ldfile_open_file (entry);
3025
3026 /* Do not process further if the file was missing. */
3027 if (entry->flags.missing_file)
3028 return true;
3029
3030 if (trace_files || verbose)
3031 info_msg ("%pI\n", entry);
3032
3033 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3034 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3035 {
3036 bfd_error_type err;
3037 struct lang_input_statement_flags save_flags;
3038 extern FILE *yyin;
3039
3040 err = bfd_get_error ();
3041
3042 /* See if the emulation has some special knowledge. */
3043 if (ldemul_unrecognized_file (entry))
3044 return true;
3045
3046 if (err == bfd_error_file_ambiguously_recognized)
3047 {
3048 char **p;
3049
3050 einfo (_("%P: %pB: file not recognized: %E;"
3051 " matching formats:"), entry->the_bfd);
3052 for (p = matching; *p != NULL; p++)
3053 einfo (" %s", *p);
3054 einfo ("%F\n");
3055 }
3056 else if (err != bfd_error_file_not_recognized
3057 || place == NULL)
3058 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3059
3060 bfd_close (entry->the_bfd);
3061 entry->the_bfd = NULL;
3062
3063 /* Try to interpret the file as a linker script. */
3064 save_flags = input_flags;
3065 ldfile_open_command_file (entry->filename);
3066
3067 push_stat_ptr (place);
3068 input_flags.add_DT_NEEDED_for_regular
3069 = entry->flags.add_DT_NEEDED_for_regular;
3070 input_flags.add_DT_NEEDED_for_dynamic
3071 = entry->flags.add_DT_NEEDED_for_dynamic;
3072 input_flags.whole_archive = entry->flags.whole_archive;
3073 input_flags.dynamic = entry->flags.dynamic;
3074
3075 ldfile_assumed_script = true;
3076 parser_input = input_script;
3077 current_input_file = entry->filename;
3078 yyparse ();
3079 current_input_file = NULL;
3080 ldfile_assumed_script = false;
3081
3082 /* missing_file is sticky. sysrooted will already have been
3083 restored when seeing EOF in yyparse, but no harm to restore
3084 again. */
3085 save_flags.missing_file |= input_flags.missing_file;
3086 input_flags = save_flags;
3087 pop_stat_ptr ();
3088 fclose (yyin);
3089 yyin = NULL;
3090 entry->flags.loaded = true;
3091
3092 return true;
3093 }
3094
3095 if (ldemul_recognized_file (entry))
3096 return true;
3097
3098 /* We don't call ldlang_add_file for an archive. Instead, the
3099 add_symbols entry point will call ldlang_add_file, via the
3100 add_archive_element callback, for each element of the archive
3101 which is used. */
3102 switch (bfd_get_format (entry->the_bfd))
3103 {
3104 default:
3105 break;
3106
3107 case bfd_object:
3108 if (!entry->flags.reload)
3109 ldlang_add_file (entry);
3110 break;
3111
3112 case bfd_archive:
3113 check_excluded_libs (entry->the_bfd);
3114
3115 bfd_set_usrdata (entry->the_bfd, entry);
3116 if (entry->flags.whole_archive)
3117 {
3118 bfd *member = NULL;
3119 bool loaded = true;
3120
3121 for (;;)
3122 {
3123 bfd *subsbfd;
3124 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3125
3126 if (member == NULL)
3127 break;
3128
3129 if (!bfd_check_format (member, bfd_object))
3130 {
3131 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3132 entry->the_bfd, member);
3133 loaded = false;
3134 }
3135
3136 subsbfd = member;
3137 if (!(*link_info.callbacks
3138 ->add_archive_element) (&link_info, member,
3139 "--whole-archive", &subsbfd))
3140 abort ();
3141
3142 /* Potentially, the add_archive_element hook may have set a
3143 substitute BFD for us. */
3144 if (!bfd_link_add_symbols (subsbfd, &link_info))
3145 {
3146 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3147 loaded = false;
3148 }
3149 }
3150
3151 entry->flags.loaded = loaded;
3152 return loaded;
3153 }
3154 break;
3155 }
3156
3157 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3158 entry->flags.loaded = true;
3159 else
3160 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3161
3162 return entry->flags.loaded;
3163 }
3164
3165 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3166 may be NULL, indicating that it is a wildcard. Separate
3167 lang_input_section statements are created for each part of the
3168 expansion; they are added after the wild statement S. OUTPUT is
3169 the output section. */
3170
3171 static void
3172 wild (lang_wild_statement_type *s,
3173 const char *target ATTRIBUTE_UNUSED,
3174 lang_output_section_statement_type *output)
3175 {
3176 struct wildcard_list *sec;
3177
3178 if (s->handler_data[0]
3179 && s->handler_data[0]->spec.sorted == by_name
3180 && !s->filenames_sorted)
3181 {
3182 lang_section_bst_type *tree;
3183
3184 walk_wild (s, output_section_callback_fast, output);
3185
3186 tree = s->tree;
3187 if (tree)
3188 {
3189 output_section_callback_tree_to_list (s, tree, output);
3190 s->tree = NULL;
3191 }
3192 }
3193 else
3194 walk_wild (s, output_section_callback, output);
3195
3196 if (default_common_section == NULL)
3197 for (sec = s->section_list; sec != NULL; sec = sec->next)
3198 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3199 {
3200 /* Remember the section that common is going to in case we
3201 later get something which doesn't know where to put it. */
3202 default_common_section = output;
3203 break;
3204 }
3205 }
3206
3207 /* Return TRUE iff target is the sought target. */
3208
3209 static int
3210 get_target (const bfd_target *target, void *data)
3211 {
3212 const char *sought = (const char *) data;
3213
3214 return strcmp (target->name, sought) == 0;
3215 }
3216
3217 /* Like strcpy() but convert to lower case as well. */
3218
3219 static void
3220 stricpy (char *dest, const char *src)
3221 {
3222 char c;
3223
3224 while ((c = *src++) != 0)
3225 *dest++ = TOLOWER (c);
3226
3227 *dest = 0;
3228 }
3229
3230 /* Remove the first occurrence of needle (if any) in haystack
3231 from haystack. */
3232
3233 static void
3234 strcut (char *haystack, const char *needle)
3235 {
3236 haystack = strstr (haystack, needle);
3237
3238 if (haystack)
3239 {
3240 char *src;
3241
3242 for (src = haystack + strlen (needle); *src;)
3243 *haystack++ = *src++;
3244
3245 *haystack = 0;
3246 }
3247 }
3248
3249 /* Compare two target format name strings.
3250 Return a value indicating how "similar" they are. */
3251
3252 static int
3253 name_compare (const char *first, const char *second)
3254 {
3255 char *copy1;
3256 char *copy2;
3257 int result;
3258
3259 copy1 = (char *) xmalloc (strlen (first) + 1);
3260 copy2 = (char *) xmalloc (strlen (second) + 1);
3261
3262 /* Convert the names to lower case. */
3263 stricpy (copy1, first);
3264 stricpy (copy2, second);
3265
3266 /* Remove size and endian strings from the name. */
3267 strcut (copy1, "big");
3268 strcut (copy1, "little");
3269 strcut (copy2, "big");
3270 strcut (copy2, "little");
3271
3272 /* Return a value based on how many characters match,
3273 starting from the beginning. If both strings are
3274 the same then return 10 * their length. */
3275 for (result = 0; copy1[result] == copy2[result]; result++)
3276 if (copy1[result] == 0)
3277 {
3278 result *= 10;
3279 break;
3280 }
3281
3282 free (copy1);
3283 free (copy2);
3284
3285 return result;
3286 }
3287
3288 /* Set by closest_target_match() below. */
3289 static const bfd_target *winner;
3290
3291 /* Scan all the valid bfd targets looking for one that has the endianness
3292 requirement that was specified on the command line, and is the nearest
3293 match to the original output target. */
3294
3295 static int
3296 closest_target_match (const bfd_target *target, void *data)
3297 {
3298 const bfd_target *original = (const bfd_target *) data;
3299
3300 if (command_line.endian == ENDIAN_BIG
3301 && target->byteorder != BFD_ENDIAN_BIG)
3302 return 0;
3303
3304 if (command_line.endian == ENDIAN_LITTLE
3305 && target->byteorder != BFD_ENDIAN_LITTLE)
3306 return 0;
3307
3308 /* Must be the same flavour. */
3309 if (target->flavour != original->flavour)
3310 return 0;
3311
3312 /* Ignore generic big and little endian elf vectors. */
3313 if (strcmp (target->name, "elf32-big") == 0
3314 || strcmp (target->name, "elf64-big") == 0
3315 || strcmp (target->name, "elf32-little") == 0
3316 || strcmp (target->name, "elf64-little") == 0)
3317 return 0;
3318
3319 /* If we have not found a potential winner yet, then record this one. */
3320 if (winner == NULL)
3321 {
3322 winner = target;
3323 return 0;
3324 }
3325
3326 /* Oh dear, we now have two potential candidates for a successful match.
3327 Compare their names and choose the better one. */
3328 if (name_compare (target->name, original->name)
3329 > name_compare (winner->name, original->name))
3330 winner = target;
3331
3332 /* Keep on searching until wqe have checked them all. */
3333 return 0;
3334 }
3335
3336 /* Return the BFD target format of the first input file. */
3337
3338 static const char *
3339 get_first_input_target (void)
3340 {
3341 const char *target = NULL;
3342
3343 LANG_FOR_EACH_INPUT_STATEMENT (s)
3344 {
3345 if (s->header.type == lang_input_statement_enum
3346 && s->flags.real)
3347 {
3348 ldfile_open_file (s);
3349
3350 if (s->the_bfd != NULL
3351 && bfd_check_format (s->the_bfd, bfd_object))
3352 {
3353 target = bfd_get_target (s->the_bfd);
3354
3355 if (target != NULL)
3356 break;
3357 }
3358 }
3359 }
3360
3361 return target;
3362 }
3363
3364 const char *
3365 lang_get_output_target (void)
3366 {
3367 const char *target;
3368
3369 /* Has the user told us which output format to use? */
3370 if (output_target != NULL)
3371 return output_target;
3372
3373 /* No - has the current target been set to something other than
3374 the default? */
3375 if (current_target != default_target && current_target != NULL)
3376 return current_target;
3377
3378 /* No - can we determine the format of the first input file? */
3379 target = get_first_input_target ();
3380 if (target != NULL)
3381 return target;
3382
3383 /* Failed - use the default output target. */
3384 return default_target;
3385 }
3386
3387 /* Open the output file. */
3388
3389 static void
3390 open_output (const char *name)
3391 {
3392 output_target = lang_get_output_target ();
3393
3394 /* Has the user requested a particular endianness on the command
3395 line? */
3396 if (command_line.endian != ENDIAN_UNSET)
3397 {
3398 /* Get the chosen target. */
3399 const bfd_target *target
3400 = bfd_iterate_over_targets (get_target, (void *) output_target);
3401
3402 /* If the target is not supported, we cannot do anything. */
3403 if (target != NULL)
3404 {
3405 enum bfd_endian desired_endian;
3406
3407 if (command_line.endian == ENDIAN_BIG)
3408 desired_endian = BFD_ENDIAN_BIG;
3409 else
3410 desired_endian = BFD_ENDIAN_LITTLE;
3411
3412 /* See if the target has the wrong endianness. This should
3413 not happen if the linker script has provided big and
3414 little endian alternatives, but some scrips don't do
3415 this. */
3416 if (target->byteorder != desired_endian)
3417 {
3418 /* If it does, then see if the target provides
3419 an alternative with the correct endianness. */
3420 if (target->alternative_target != NULL
3421 && (target->alternative_target->byteorder == desired_endian))
3422 output_target = target->alternative_target->name;
3423 else
3424 {
3425 /* Try to find a target as similar as possible to
3426 the default target, but which has the desired
3427 endian characteristic. */
3428 bfd_iterate_over_targets (closest_target_match,
3429 (void *) target);
3430
3431 /* Oh dear - we could not find any targets that
3432 satisfy our requirements. */
3433 if (winner == NULL)
3434 einfo (_("%P: warning: could not find any targets"
3435 " that match endianness requirement\n"));
3436 else
3437 output_target = winner->name;
3438 }
3439 }
3440 }
3441 }
3442
3443 link_info.output_bfd = bfd_openw (name, output_target);
3444
3445 if (link_info.output_bfd == NULL)
3446 {
3447 if (bfd_get_error () == bfd_error_invalid_target)
3448 einfo (_("%F%P: target %s not found\n"), output_target);
3449
3450 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3451 }
3452
3453 delete_output_file_on_failure = true;
3454
3455 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3456 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3457 if (!bfd_set_arch_mach (link_info.output_bfd,
3458 ldfile_output_architecture,
3459 ldfile_output_machine))
3460 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3461
3462 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3463 if (link_info.hash == NULL)
3464 einfo (_("%F%P: can not create hash table: %E\n"));
3465
3466 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3467 }
3468
3469 static void
3470 ldlang_open_output (lang_statement_union_type *statement)
3471 {
3472 switch (statement->header.type)
3473 {
3474 case lang_output_statement_enum:
3475 ASSERT (link_info.output_bfd == NULL);
3476 open_output (statement->output_statement.name);
3477 ldemul_set_output_arch ();
3478 if (config.magic_demand_paged
3479 && !bfd_link_relocatable (&link_info))
3480 link_info.output_bfd->flags |= D_PAGED;
3481 else
3482 link_info.output_bfd->flags &= ~D_PAGED;
3483 if (config.text_read_only)
3484 link_info.output_bfd->flags |= WP_TEXT;
3485 else
3486 link_info.output_bfd->flags &= ~WP_TEXT;
3487 if (link_info.traditional_format)
3488 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3489 else
3490 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3491 break;
3492
3493 case lang_target_statement_enum:
3494 current_target = statement->target_statement.target;
3495 break;
3496 default:
3497 break;
3498 }
3499 }
3500
3501 static void
3502 init_opb (asection *s)
3503 {
3504 unsigned int x;
3505
3506 opb_shift = 0;
3507 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3508 && s != NULL
3509 && (s->flags & SEC_ELF_OCTETS) != 0)
3510 return;
3511
3512 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3513 ldfile_output_machine);
3514 if (x > 1)
3515 while ((x & 1) == 0)
3516 {
3517 x >>= 1;
3518 ++opb_shift;
3519 }
3520 ASSERT (x == 1);
3521 }
3522
3523 /* Open all the input files. */
3524
3525 enum open_bfd_mode
3526 {
3527 OPEN_BFD_NORMAL = 0,
3528 OPEN_BFD_FORCE = 1,
3529 OPEN_BFD_RESCAN = 2
3530 };
3531 #if BFD_SUPPORTS_PLUGINS
3532 static lang_input_statement_type *plugin_insert = NULL;
3533 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3534 #endif
3535
3536 static void
3537 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3538 {
3539 for (; s != NULL; s = s->header.next)
3540 {
3541 switch (s->header.type)
3542 {
3543 case lang_constructors_statement_enum:
3544 open_input_bfds (constructor_list.head, mode);
3545 break;
3546 case lang_output_section_statement_enum:
3547 open_input_bfds (s->output_section_statement.children.head, mode);
3548 break;
3549 case lang_wild_statement_enum:
3550 /* Maybe we should load the file's symbols. */
3551 if ((mode & OPEN_BFD_RESCAN) == 0
3552 && s->wild_statement.filename
3553 && !wildcardp (s->wild_statement.filename)
3554 && !archive_path (s->wild_statement.filename))
3555 lookup_name (s->wild_statement.filename);
3556 open_input_bfds (s->wild_statement.children.head, mode);
3557 break;
3558 case lang_group_statement_enum:
3559 {
3560 struct bfd_link_hash_entry *undefs;
3561 #if BFD_SUPPORTS_PLUGINS
3562 lang_input_statement_type *plugin_insert_save;
3563 #endif
3564
3565 /* We must continually search the entries in the group
3566 until no new symbols are added to the list of undefined
3567 symbols. */
3568
3569 do
3570 {
3571 #if BFD_SUPPORTS_PLUGINS
3572 plugin_insert_save = plugin_insert;
3573 #endif
3574 undefs = link_info.hash->undefs_tail;
3575 open_input_bfds (s->group_statement.children.head,
3576 mode | OPEN_BFD_FORCE);
3577 }
3578 while (undefs != link_info.hash->undefs_tail
3579 #if BFD_SUPPORTS_PLUGINS
3580 /* Objects inserted by a plugin, which are loaded
3581 before we hit this loop, may have added new
3582 undefs. */
3583 || (plugin_insert != plugin_insert_save && plugin_undefs)
3584 #endif
3585 );
3586 }
3587 break;
3588 case lang_target_statement_enum:
3589 current_target = s->target_statement.target;
3590 break;
3591 case lang_input_statement_enum:
3592 if (s->input_statement.flags.real)
3593 {
3594 lang_statement_union_type **os_tail;
3595 lang_statement_list_type add;
3596 bfd *abfd;
3597
3598 s->input_statement.target = current_target;
3599
3600 /* If we are being called from within a group, and this
3601 is an archive which has already been searched, then
3602 force it to be researched unless the whole archive
3603 has been loaded already. Do the same for a rescan.
3604 Likewise reload --as-needed shared libs. */
3605 if (mode != OPEN_BFD_NORMAL
3606 #if BFD_SUPPORTS_PLUGINS
3607 && ((mode & OPEN_BFD_RESCAN) == 0
3608 || plugin_insert == NULL)
3609 #endif
3610 && s->input_statement.flags.loaded
3611 && (abfd = s->input_statement.the_bfd) != NULL
3612 && ((bfd_get_format (abfd) == bfd_archive
3613 && !s->input_statement.flags.whole_archive)
3614 || (bfd_get_format (abfd) == bfd_object
3615 && ((abfd->flags) & DYNAMIC) != 0
3616 && s->input_statement.flags.add_DT_NEEDED_for_regular
3617 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3618 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3619 {
3620 s->input_statement.flags.loaded = false;
3621 s->input_statement.flags.reload = true;
3622 }
3623
3624 os_tail = lang_os_list.tail;
3625 lang_list_init (&add);
3626
3627 if (!load_symbols (&s->input_statement, &add))
3628 config.make_executable = false;
3629
3630 if (add.head != NULL)
3631 {
3632 /* If this was a script with output sections then
3633 tack any added statements on to the end of the
3634 list. This avoids having to reorder the output
3635 section statement list. Very likely the user
3636 forgot -T, and whatever we do here will not meet
3637 naive user expectations. */
3638 if (os_tail != lang_os_list.tail)
3639 {
3640 einfo (_("%P: warning: %s contains output sections;"
3641 " did you forget -T?\n"),
3642 s->input_statement.filename);
3643 *stat_ptr->tail = add.head;
3644 stat_ptr->tail = add.tail;
3645 }
3646 else
3647 {
3648 *add.tail = s->header.next;
3649 s->header.next = add.head;
3650 }
3651 }
3652 }
3653 #if BFD_SUPPORTS_PLUGINS
3654 /* If we have found the point at which a plugin added new
3655 files, clear plugin_insert to enable archive rescan. */
3656 if (&s->input_statement == plugin_insert)
3657 plugin_insert = NULL;
3658 #endif
3659 break;
3660 case lang_assignment_statement_enum:
3661 if (s->assignment_statement.exp->type.node_class != etree_assert)
3662 exp_fold_tree_no_dot (s->assignment_statement.exp);
3663 break;
3664 default:
3665 break;
3666 }
3667 }
3668
3669 /* Exit if any of the files were missing. */
3670 if (input_flags.missing_file)
3671 einfo ("%F");
3672 }
3673
3674 #ifdef ENABLE_LIBCTF
3675 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3676 that happened specifically at CTF open time. */
3677 static void
3678 lang_ctf_errs_warnings (ctf_dict_t *fp)
3679 {
3680 ctf_next_t *i = NULL;
3681 char *text;
3682 int is_warning;
3683 int err;
3684
3685 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3686 {
3687 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3688 text);
3689 free (text);
3690 }
3691 if (err != ECTF_NEXT_END)
3692 {
3693 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3694 ctf_errmsg (err));
3695 }
3696
3697 /* `err' returns errors from the error/warning iterator in particular.
3698 These never assert. But if we have an fp, that could have recorded
3699 an assertion failure: assert if it has done so. */
3700 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3701 }
3702
3703 /* Open the CTF sections in the input files with libctf: if any were opened,
3704 create a fake input file that we'll write the merged CTF data to later
3705 on. */
3706
3707 static void
3708 ldlang_open_ctf (void)
3709 {
3710 int any_ctf = 0;
3711 int err;
3712
3713 LANG_FOR_EACH_INPUT_STATEMENT (file)
3714 {
3715 asection *sect;
3716
3717 /* Incoming files from the compiler have a single ctf_dict_t in them
3718 (which is presented to us by the libctf API in a ctf_archive_t
3719 wrapper): files derived from a previous relocatable link have a CTF
3720 archive containing possibly many CTF files. */
3721
3722 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3723 {
3724 if (err != ECTF_NOCTFDATA)
3725 {
3726 lang_ctf_errs_warnings (NULL);
3727 einfo (_("%P: warning: CTF section in %pB not loaded; "
3728 "its types will be discarded: %s\n"), file->the_bfd,
3729 ctf_errmsg (err));
3730 }
3731 continue;
3732 }
3733
3734 /* Prevent the contents of this section from being written, while
3735 requiring the section itself to be duplicated in the output, but only
3736 once. */
3737 /* This section must exist if ctf_bfdopen() succeeded. */
3738 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3739 sect->size = 0;
3740 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3741
3742 if (any_ctf)
3743 sect->flags |= SEC_EXCLUDE;
3744 any_ctf = 1;
3745 }
3746
3747 if (!any_ctf)
3748 {
3749 ctf_output = NULL;
3750 return;
3751 }
3752
3753 if ((ctf_output = ctf_create (&err)) != NULL)
3754 return;
3755
3756 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3757 ctf_errmsg (err));
3758
3759 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3760 ctf_close (errfile->the_ctf);
3761 }
3762
3763 /* Merge together CTF sections. After this, only the symtab-dependent
3764 function and data object sections need adjustment. */
3765
3766 static void
3767 lang_merge_ctf (void)
3768 {
3769 asection *output_sect;
3770 int flags = 0;
3771
3772 if (!ctf_output)
3773 return;
3774
3775 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3776
3777 /* If the section was discarded, don't waste time merging. */
3778 if (output_sect == NULL)
3779 {
3780 ctf_dict_close (ctf_output);
3781 ctf_output = NULL;
3782
3783 LANG_FOR_EACH_INPUT_STATEMENT (file)
3784 {
3785 ctf_close (file->the_ctf);
3786 file->the_ctf = NULL;
3787 }
3788 return;
3789 }
3790
3791 LANG_FOR_EACH_INPUT_STATEMENT (file)
3792 {
3793 if (!file->the_ctf)
3794 continue;
3795
3796 /* Takes ownership of file->the_ctf. */
3797 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3798 {
3799 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3800 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3801 ctf_close (file->the_ctf);
3802 file->the_ctf = NULL;
3803 continue;
3804 }
3805 }
3806
3807 if (!config.ctf_share_duplicated)
3808 flags = CTF_LINK_SHARE_UNCONFLICTED;
3809 else
3810 flags = CTF_LINK_SHARE_DUPLICATED;
3811 if (!config.ctf_variables)
3812 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3813 if (bfd_link_relocatable (&link_info))
3814 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3815
3816 if (ctf_link (ctf_output, flags) < 0)
3817 {
3818 lang_ctf_errs_warnings (ctf_output);
3819 einfo (_("%P: warning: CTF linking failed; "
3820 "output will have no CTF section: %s\n"),
3821 ctf_errmsg (ctf_errno (ctf_output)));
3822 if (output_sect)
3823 {
3824 output_sect->size = 0;
3825 output_sect->flags |= SEC_EXCLUDE;
3826 }
3827 }
3828 /* Output any lingering errors that didn't come from ctf_link. */
3829 lang_ctf_errs_warnings (ctf_output);
3830 }
3831
3832 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3833 the CTF, if supported. */
3834
3835 void
3836 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3837 {
3838 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3839 }
3840
3841 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3842 internal format. */
3843 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3844 {
3845 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3846 }
3847
3848 /* Write out the CTF section. Called early, if the emulation isn't going to
3849 need to dedup against the strtab and symtab, then possibly called from the
3850 target linker code if the dedup has happened. */
3851 static void
3852 lang_write_ctf (int late)
3853 {
3854 size_t output_size;
3855 asection *output_sect;
3856
3857 if (!ctf_output)
3858 return;
3859
3860 if (late)
3861 {
3862 /* Emit CTF late if this emulation says it can do so. */
3863 if (ldemul_emit_ctf_early ())
3864 return;
3865 }
3866 else
3867 {
3868 if (!ldemul_emit_ctf_early ())
3869 return;
3870 }
3871
3872 /* Inform the emulation that all the symbols that will be received have
3873 been. */
3874
3875 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3876
3877 /* Emit CTF. */
3878
3879 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3880 if (output_sect)
3881 {
3882 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3883 CTF_COMPRESSION_THRESHOLD);
3884 output_sect->size = output_size;
3885 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3886
3887 lang_ctf_errs_warnings (ctf_output);
3888 if (!output_sect->contents)
3889 {
3890 einfo (_("%P: warning: CTF section emission failed; "
3891 "output will have no CTF section: %s\n"),
3892 ctf_errmsg (ctf_errno (ctf_output)));
3893 output_sect->size = 0;
3894 output_sect->flags |= SEC_EXCLUDE;
3895 }
3896 }
3897
3898 /* This also closes every CTF input file used in the link. */
3899 ctf_dict_close (ctf_output);
3900 ctf_output = NULL;
3901
3902 LANG_FOR_EACH_INPUT_STATEMENT (file)
3903 file->the_ctf = NULL;
3904 }
3905
3906 /* Write out the CTF section late, if the emulation needs that. */
3907
3908 void
3909 ldlang_write_ctf_late (void)
3910 {
3911 /* Trigger a "late call", if the emulation needs one. */
3912
3913 lang_write_ctf (1);
3914 }
3915 #else
3916 static void
3917 ldlang_open_ctf (void)
3918 {
3919 LANG_FOR_EACH_INPUT_STATEMENT (file)
3920 {
3921 asection *sect;
3922
3923 /* If built without CTF, warn and delete all CTF sections from the output.
3924 (The alternative would be to simply concatenate them, which does not
3925 yield a valid CTF section.) */
3926
3927 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3928 {
3929 einfo (_("%P: warning: CTF section in %pB not linkable: "
3930 "%P was built without support for CTF\n"), file->the_bfd);
3931 sect->size = 0;
3932 sect->flags |= SEC_EXCLUDE;
3933 }
3934 }
3935 }
3936
3937 static void lang_merge_ctf (void) {}
3938 void
3939 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3940 ATTRIBUTE_UNUSED) {}
3941 void
3942 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3943 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3944 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3945 void ldlang_write_ctf_late (void) {}
3946 #endif
3947
3948 /* Add the supplied name to the symbol table as an undefined reference.
3949 This is a two step process as the symbol table doesn't even exist at
3950 the time the ld command line is processed. First we put the name
3951 on a list, then, once the output file has been opened, transfer the
3952 name to the symbol table. */
3953
3954 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3955
3956 #define ldlang_undef_chain_list_head entry_symbol.next
3957
3958 void
3959 ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
3960 {
3961 ldlang_undef_chain_list_type *new_undef;
3962
3963 new_undef = stat_alloc (sizeof (*new_undef));
3964 new_undef->next = ldlang_undef_chain_list_head;
3965 ldlang_undef_chain_list_head = new_undef;
3966
3967 new_undef->name = xstrdup (name);
3968
3969 if (link_info.output_bfd != NULL)
3970 insert_undefined (new_undef->name);
3971 }
3972
3973 /* Insert NAME as undefined in the symbol table. */
3974
3975 static void
3976 insert_undefined (const char *name)
3977 {
3978 struct bfd_link_hash_entry *h;
3979
3980 h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
3981 if (h == NULL)
3982 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3983 if (h->type == bfd_link_hash_new)
3984 {
3985 h->type = bfd_link_hash_undefined;
3986 h->u.undef.abfd = NULL;
3987 h->non_ir_ref_regular = true;
3988 bfd_link_add_undef (link_info.hash, h);
3989 }
3990 }
3991
3992 /* Run through the list of undefineds created above and place them
3993 into the linker hash table as undefined symbols belonging to the
3994 script file. */
3995
3996 static void
3997 lang_place_undefineds (void)
3998 {
3999 ldlang_undef_chain_list_type *ptr;
4000
4001 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4002 insert_undefined (ptr->name);
4003 }
4004
4005 /* Mark -u symbols against garbage collection. */
4006
4007 static void
4008 lang_mark_undefineds (void)
4009 {
4010 ldlang_undef_chain_list_type *ptr;
4011
4012 if (is_elf_hash_table (link_info.hash))
4013 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4014 {
4015 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
4016 bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
4017 if (h != NULL)
4018 h->mark = 1;
4019 }
4020 }
4021
4022 /* Structure used to build the list of symbols that the user has required
4023 be defined. */
4024
4025 struct require_defined_symbol
4026 {
4027 const char *name;
4028 struct require_defined_symbol *next;
4029 };
4030
4031 /* The list of symbols that the user has required be defined. */
4032
4033 static struct require_defined_symbol *require_defined_symbol_list;
4034
4035 /* Add a new symbol NAME to the list of symbols that are required to be
4036 defined. */
4037
4038 void
4039 ldlang_add_require_defined (const char *const name)
4040 {
4041 struct require_defined_symbol *ptr;
4042
4043 ldlang_add_undef (name, true);
4044 ptr = stat_alloc (sizeof (*ptr));
4045 ptr->next = require_defined_symbol_list;
4046 ptr->name = strdup (name);
4047 require_defined_symbol_list = ptr;
4048 }
4049
4050 /* Check that all symbols the user required to be defined, are defined,
4051 raise an error if we find a symbol that is not defined. */
4052
4053 static void
4054 ldlang_check_require_defined_symbols (void)
4055 {
4056 struct require_defined_symbol *ptr;
4057
4058 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4059 {
4060 struct bfd_link_hash_entry *h;
4061
4062 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4063 false, false, true);
4064 if (h == NULL
4065 || (h->type != bfd_link_hash_defined
4066 && h->type != bfd_link_hash_defweak))
4067 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4068 }
4069 }
4070
4071 /* Check for all readonly or some readwrite sections. */
4072
4073 static void
4074 check_input_sections
4075 (lang_statement_union_type *s,
4076 lang_output_section_statement_type *output_section_statement)
4077 {
4078 for (; s != NULL; s = s->header.next)
4079 {
4080 switch (s->header.type)
4081 {
4082 case lang_wild_statement_enum:
4083 walk_wild (&s->wild_statement, check_section_callback,
4084 output_section_statement);
4085 if (!output_section_statement->all_input_readonly)
4086 return;
4087 break;
4088 case lang_constructors_statement_enum:
4089 check_input_sections (constructor_list.head,
4090 output_section_statement);
4091 if (!output_section_statement->all_input_readonly)
4092 return;
4093 break;
4094 case lang_group_statement_enum:
4095 check_input_sections (s->group_statement.children.head,
4096 output_section_statement);
4097 if (!output_section_statement->all_input_readonly)
4098 return;
4099 break;
4100 default:
4101 break;
4102 }
4103 }
4104 }
4105
4106 /* Update wildcard statements if needed. */
4107
4108 static void
4109 update_wild_statements (lang_statement_union_type *s)
4110 {
4111 struct wildcard_list *sec;
4112
4113 switch (sort_section)
4114 {
4115 default:
4116 FAIL ();
4117
4118 case none:
4119 break;
4120
4121 case by_name:
4122 case by_alignment:
4123 for (; s != NULL; s = s->header.next)
4124 {
4125 switch (s->header.type)
4126 {
4127 default:
4128 break;
4129
4130 case lang_wild_statement_enum:
4131 for (sec = s->wild_statement.section_list; sec != NULL;
4132 sec = sec->next)
4133 /* Don't sort .init/.fini sections. */
4134 if (strcmp (sec->spec.name, ".init") != 0
4135 && strcmp (sec->spec.name, ".fini") != 0)
4136 switch (sec->spec.sorted)
4137 {
4138 case none:
4139 sec->spec.sorted = sort_section;
4140 break;
4141 case by_name:
4142 if (sort_section == by_alignment)
4143 sec->spec.sorted = by_name_alignment;
4144 break;
4145 case by_alignment:
4146 if (sort_section == by_name)
4147 sec->spec.sorted = by_alignment_name;
4148 break;
4149 default:
4150 break;
4151 }
4152 break;
4153
4154 case lang_constructors_statement_enum:
4155 update_wild_statements (constructor_list.head);
4156 break;
4157
4158 case lang_output_section_statement_enum:
4159 update_wild_statements
4160 (s->output_section_statement.children.head);
4161 break;
4162
4163 case lang_group_statement_enum:
4164 update_wild_statements (s->group_statement.children.head);
4165 break;
4166 }
4167 }
4168 break;
4169 }
4170 }
4171
4172 /* Open input files and attach to output sections. */
4173
4174 static void
4175 map_input_to_output_sections
4176 (lang_statement_union_type *s, const char *target,
4177 lang_output_section_statement_type *os)
4178 {
4179 for (; s != NULL; s = s->header.next)
4180 {
4181 lang_output_section_statement_type *tos;
4182 flagword flags;
4183
4184 switch (s->header.type)
4185 {
4186 case lang_wild_statement_enum:
4187 wild (&s->wild_statement, target, os);
4188 break;
4189 case lang_constructors_statement_enum:
4190 map_input_to_output_sections (constructor_list.head,
4191 target,
4192 os);
4193 break;
4194 case lang_output_section_statement_enum:
4195 tos = &s->output_section_statement;
4196 if (tos->constraint == ONLY_IF_RW
4197 || tos->constraint == ONLY_IF_RO)
4198 {
4199 tos->all_input_readonly = true;
4200 check_input_sections (tos->children.head, tos);
4201 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4202 tos->constraint = -1;
4203 }
4204 if (tos->constraint >= 0)
4205 map_input_to_output_sections (tos->children.head,
4206 target,
4207 tos);
4208 break;
4209 case lang_output_statement_enum:
4210 break;
4211 case lang_target_statement_enum:
4212 target = s->target_statement.target;
4213 break;
4214 case lang_group_statement_enum:
4215 map_input_to_output_sections (s->group_statement.children.head,
4216 target,
4217 os);
4218 break;
4219 case lang_data_statement_enum:
4220 /* Make sure that any sections mentioned in the expression
4221 are initialized. */
4222 exp_init_os (s->data_statement.exp);
4223 /* The output section gets CONTENTS, ALLOC and LOAD, but
4224 these may be overridden by the script. */
4225 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4226 switch (os->sectype)
4227 {
4228 case normal_section:
4229 case overlay_section:
4230 case first_overlay_section:
4231 break;
4232 case noalloc_section:
4233 flags = SEC_HAS_CONTENTS;
4234 break;
4235 case noload_section:
4236 if (bfd_get_flavour (link_info.output_bfd)
4237 == bfd_target_elf_flavour)
4238 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4239 else
4240 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4241 break;
4242 }
4243 if (os->bfd_section == NULL)
4244 init_os (os, flags | SEC_READONLY);
4245 else
4246 os->bfd_section->flags |= flags;
4247 break;
4248 case lang_input_section_enum:
4249 break;
4250 case lang_fill_statement_enum:
4251 case lang_object_symbols_statement_enum:
4252 case lang_reloc_statement_enum:
4253 case lang_padding_statement_enum:
4254 case lang_input_statement_enum:
4255 if (os != NULL && os->bfd_section == NULL)
4256 init_os (os, 0);
4257 break;
4258 case lang_assignment_statement_enum:
4259 if (os != NULL && os->bfd_section == NULL)
4260 init_os (os, 0);
4261
4262 /* Make sure that any sections mentioned in the assignment
4263 are initialized. */
4264 exp_init_os (s->assignment_statement.exp);
4265 break;
4266 case lang_address_statement_enum:
4267 /* Mark the specified section with the supplied address.
4268 If this section was actually a segment marker, then the
4269 directive is ignored if the linker script explicitly
4270 processed the segment marker. Originally, the linker
4271 treated segment directives (like -Ttext on the
4272 command-line) as section directives. We honor the
4273 section directive semantics for backwards compatibility;
4274 linker scripts that do not specifically check for
4275 SEGMENT_START automatically get the old semantics. */
4276 if (!s->address_statement.segment
4277 || !s->address_statement.segment->used)
4278 {
4279 const char *name = s->address_statement.section_name;
4280
4281 /* Create the output section statement here so that
4282 orphans with a set address will be placed after other
4283 script sections. If we let the orphan placement code
4284 place them in amongst other sections then the address
4285 will affect following script sections, which is
4286 likely to surprise naive users. */
4287 tos = lang_output_section_statement_lookup (name, 0, 1);
4288 tos->addr_tree = s->address_statement.address;
4289 if (tos->bfd_section == NULL)
4290 init_os (tos, 0);
4291 }
4292 break;
4293 case lang_insert_statement_enum:
4294 break;
4295 }
4296 }
4297 }
4298
4299 /* An insert statement snips out all the linker statements from the
4300 start of the list and places them after the output section
4301 statement specified by the insert. This operation is complicated
4302 by the fact that we keep a doubly linked list of output section
4303 statements as well as the singly linked list of all statements.
4304 FIXME someday: Twiddling with the list not only moves statements
4305 from the user's script but also input and group statements that are
4306 built from command line object files and --start-group. We only
4307 get away with this because the list pointers used by file_chain
4308 and input_file_chain are not reordered, and processing via
4309 statement_list after this point mostly ignores input statements.
4310 One exception is the map file, where LOAD and START GROUP/END GROUP
4311 can end up looking odd. */
4312
4313 static void
4314 process_insert_statements (lang_statement_union_type **start)
4315 {
4316 lang_statement_union_type **s;
4317 lang_output_section_statement_type *first_os = NULL;
4318 lang_output_section_statement_type *last_os = NULL;
4319 lang_output_section_statement_type *os;
4320
4321 s = start;
4322 while (*s != NULL)
4323 {
4324 if ((*s)->header.type == lang_output_section_statement_enum)
4325 {
4326 /* Keep pointers to the first and last output section
4327 statement in the sequence we may be about to move. */
4328 os = &(*s)->output_section_statement;
4329
4330 ASSERT (last_os == NULL || last_os->next == os);
4331 last_os = os;
4332
4333 /* Set constraint negative so that lang_output_section_find
4334 won't match this output section statement. At this
4335 stage in linking constraint has values in the range
4336 [-1, ONLY_IN_RW]. */
4337 last_os->constraint = -2 - last_os->constraint;
4338 if (first_os == NULL)
4339 first_os = last_os;
4340 }
4341 else if ((*s)->header.type == lang_group_statement_enum)
4342 {
4343 /* A user might put -T between --start-group and
4344 --end-group. One way this odd construct might arise is
4345 from a wrapper around ld to change library search
4346 behaviour. For example:
4347 #! /bin/sh
4348 exec real_ld --start-group "$@" --end-group
4349 This isn't completely unreasonable so go looking inside a
4350 group statement for insert statements. */
4351 process_insert_statements (&(*s)->group_statement.children.head);
4352 }
4353 else if ((*s)->header.type == lang_insert_statement_enum)
4354 {
4355 lang_insert_statement_type *i = &(*s)->insert_statement;
4356 lang_output_section_statement_type *where;
4357 lang_statement_union_type **ptr;
4358 lang_statement_union_type *first;
4359
4360 if (link_info.non_contiguous_regions)
4361 {
4362 einfo (_("warning: INSERT statement in linker script is "
4363 "incompatible with --enable-non-contiguous-regions.\n"));
4364 }
4365
4366 where = lang_output_section_find (i->where);
4367 if (where != NULL && i->is_before)
4368 {
4369 do
4370 where = where->prev;
4371 while (where != NULL && where->constraint < 0);
4372 }
4373 if (where == NULL)
4374 {
4375 einfo (_("%F%P: %s not found for insert\n"), i->where);
4376 return;
4377 }
4378
4379 /* Deal with reordering the output section statement list. */
4380 if (last_os != NULL)
4381 {
4382 asection *first_sec, *last_sec;
4383 struct lang_output_section_statement_struct **next;
4384
4385 /* Snip out the output sections we are moving. */
4386 first_os->prev->next = last_os->next;
4387 if (last_os->next == NULL)
4388 {
4389 next = &first_os->prev->next;
4390 lang_os_list.tail = (lang_statement_union_type **) next;
4391 }
4392 else
4393 last_os->next->prev = first_os->prev;
4394 /* Add them in at the new position. */
4395 last_os->next = where->next;
4396 if (where->next == NULL)
4397 {
4398 next = &last_os->next;
4399 lang_os_list.tail = (lang_statement_union_type **) next;
4400 }
4401 else
4402 where->next->prev = last_os;
4403 first_os->prev = where;
4404 where->next = first_os;
4405
4406 /* Move the bfd sections in the same way. */
4407 first_sec = NULL;
4408 last_sec = NULL;
4409 for (os = first_os; os != NULL; os = os->next)
4410 {
4411 os->constraint = -2 - os->constraint;
4412 if (os->bfd_section != NULL
4413 && os->bfd_section->owner != NULL)
4414 {
4415 last_sec = os->bfd_section;
4416 if (first_sec == NULL)
4417 first_sec = last_sec;
4418 }
4419 if (os == last_os)
4420 break;
4421 }
4422 if (last_sec != NULL)
4423 {
4424 asection *sec = where->bfd_section;
4425 if (sec == NULL)
4426 sec = output_prev_sec_find (where);
4427
4428 /* The place we want to insert must come after the
4429 sections we are moving. So if we find no
4430 section or if the section is the same as our
4431 last section, then no move is needed. */
4432 if (sec != NULL && sec != last_sec)
4433 {
4434 /* Trim them off. */
4435 if (first_sec->prev != NULL)
4436 first_sec->prev->next = last_sec->next;
4437 else
4438 link_info.output_bfd->sections = last_sec->next;
4439 if (last_sec->next != NULL)
4440 last_sec->next->prev = first_sec->prev;
4441 else
4442 link_info.output_bfd->section_last = first_sec->prev;
4443 /* Add back. */
4444 last_sec->next = sec->next;
4445 if (sec->next != NULL)
4446 sec->next->prev = last_sec;
4447 else
4448 link_info.output_bfd->section_last = last_sec;
4449 first_sec->prev = sec;
4450 sec->next = first_sec;
4451 }
4452 }
4453
4454 first_os = NULL;
4455 last_os = NULL;
4456 }
4457
4458 ptr = insert_os_after (where);
4459 /* Snip everything from the start of the list, up to and
4460 including the insert statement we are currently processing. */
4461 first = *start;
4462 *start = (*s)->header.next;
4463 /* Add them back where they belong, minus the insert. */
4464 *s = *ptr;
4465 if (*s == NULL)
4466 statement_list.tail = s;
4467 *ptr = first;
4468 s = start;
4469 continue;
4470 }
4471 s = &(*s)->header.next;
4472 }
4473
4474 /* Undo constraint twiddling. */
4475 for (os = first_os; os != NULL; os = os->next)
4476 {
4477 os->constraint = -2 - os->constraint;
4478 if (os == last_os)
4479 break;
4480 }
4481 }
4482
4483 /* An output section might have been removed after its statement was
4484 added. For example, ldemul_before_allocation can remove dynamic
4485 sections if they turn out to be not needed. Clean them up here. */
4486
4487 void
4488 strip_excluded_output_sections (void)
4489 {
4490 lang_output_section_statement_type *os;
4491
4492 /* Run lang_size_sections (if not already done). */
4493 if (expld.phase != lang_mark_phase_enum)
4494 {
4495 expld.phase = lang_mark_phase_enum;
4496 expld.dataseg.phase = exp_seg_none;
4497 one_lang_size_sections_pass (NULL, false);
4498 lang_reset_memory_regions ();
4499 }
4500
4501 for (os = (void *) lang_os_list.head;
4502 os != NULL;
4503 os = os->next)
4504 {
4505 asection *output_section;
4506 bool exclude;
4507
4508 if (os->constraint < 0)
4509 continue;
4510
4511 output_section = os->bfd_section;
4512 if (output_section == NULL)
4513 continue;
4514
4515 exclude = (output_section->rawsize == 0
4516 && (output_section->flags & SEC_KEEP) == 0
4517 && !bfd_section_removed_from_list (link_info.output_bfd,
4518 output_section));
4519
4520 /* Some sections have not yet been sized, notably .gnu.version,
4521 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4522 input sections, so don't drop output sections that have such
4523 input sections unless they are also marked SEC_EXCLUDE. */
4524 if (exclude && output_section->map_head.s != NULL)
4525 {
4526 asection *s;
4527
4528 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4529 if ((s->flags & SEC_EXCLUDE) == 0
4530 && ((s->flags & SEC_LINKER_CREATED) != 0
4531 || link_info.emitrelocations))
4532 {
4533 exclude = false;
4534 break;
4535 }
4536 }
4537
4538 if (exclude)
4539 {
4540 /* We don't set bfd_section to NULL since bfd_section of the
4541 removed output section statement may still be used. */
4542 if (!os->update_dot)
4543 os->ignored = true;
4544 output_section->flags |= SEC_EXCLUDE;
4545 bfd_section_list_remove (link_info.output_bfd, output_section);
4546 link_info.output_bfd->section_count--;
4547 }
4548 }
4549 }
4550
4551 /* Called from ldwrite to clear out asection.map_head and
4552 asection.map_tail for use as link_orders in ldwrite. */
4553
4554 void
4555 lang_clear_os_map (void)
4556 {
4557 lang_output_section_statement_type *os;
4558
4559 if (map_head_is_link_order)
4560 return;
4561
4562 for (os = (void *) lang_os_list.head;
4563 os != NULL;
4564 os = os->next)
4565 {
4566 asection *output_section;
4567
4568 if (os->constraint < 0)
4569 continue;
4570
4571 output_section = os->bfd_section;
4572 if (output_section == NULL)
4573 continue;
4574
4575 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4576 output_section->map_head.link_order = NULL;
4577 output_section->map_tail.link_order = NULL;
4578 }
4579
4580 /* Stop future calls to lang_add_section from messing with map_head
4581 and map_tail link_order fields. */
4582 map_head_is_link_order = true;
4583 }
4584
4585 static void
4586 print_output_section_statement
4587 (lang_output_section_statement_type *output_section_statement)
4588 {
4589 asection *section = output_section_statement->bfd_section;
4590 int len;
4591
4592 if (output_section_statement != abs_output_section)
4593 {
4594 minfo ("\n%s", output_section_statement->name);
4595
4596 if (section != NULL)
4597 {
4598 print_dot = section->vma;
4599
4600 len = strlen (output_section_statement->name);
4601 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4602 {
4603 print_nl ();
4604 len = 0;
4605 }
4606 while (len < SECTION_NAME_MAP_LENGTH)
4607 {
4608 print_space ();
4609 ++len;
4610 }
4611
4612 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4613
4614 if (section->vma != section->lma)
4615 minfo (_(" load address 0x%V"), section->lma);
4616
4617 if (output_section_statement->update_dot_tree != NULL)
4618 exp_fold_tree (output_section_statement->update_dot_tree,
4619 bfd_abs_section_ptr, &print_dot);
4620 }
4621
4622 print_nl ();
4623 }
4624
4625 print_statement_list (output_section_statement->children.head,
4626 output_section_statement);
4627 }
4628
4629 static void
4630 print_assignment (lang_assignment_statement_type *assignment,
4631 lang_output_section_statement_type *output_section)
4632 {
4633 unsigned int i;
4634 bool is_dot;
4635 etree_type *tree;
4636 asection *osec;
4637
4638 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4639 print_space ();
4640
4641 if (assignment->exp->type.node_class == etree_assert)
4642 {
4643 is_dot = false;
4644 tree = assignment->exp->assert_s.child;
4645 }
4646 else
4647 {
4648 const char *dst = assignment->exp->assign.dst;
4649
4650 is_dot = (dst[0] == '.' && dst[1] == 0);
4651 tree = assignment->exp;
4652 }
4653
4654 osec = output_section->bfd_section;
4655 if (osec == NULL)
4656 osec = bfd_abs_section_ptr;
4657
4658 if (assignment->exp->type.node_class != etree_provide)
4659 exp_fold_tree (tree, osec, &print_dot);
4660 else
4661 expld.result.valid_p = false;
4662
4663 if (expld.result.valid_p)
4664 {
4665 bfd_vma value;
4666
4667 if (assignment->exp->type.node_class == etree_assert
4668 || is_dot
4669 || expld.assign_name != NULL)
4670 {
4671 value = expld.result.value;
4672
4673 if (expld.result.section != NULL)
4674 value += expld.result.section->vma;
4675
4676 minfo ("0x%V", value);
4677 if (is_dot)
4678 print_dot = value;
4679 }
4680 else
4681 {
4682 struct bfd_link_hash_entry *h;
4683
4684 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4685 false, false, true);
4686 if (h != NULL
4687 && (h->type == bfd_link_hash_defined
4688 || h->type == bfd_link_hash_defweak))
4689 {
4690 value = h->u.def.value;
4691 value += h->u.def.section->output_section->vma;
4692 value += h->u.def.section->output_offset;
4693
4694 minfo ("[0x%V]", value);
4695 }
4696 else
4697 minfo ("[unresolved]");
4698 }
4699 }
4700 else
4701 {
4702 if (assignment->exp->type.node_class == etree_provide)
4703 minfo ("[!provide]");
4704 else
4705 minfo ("*undef* ");
4706 #ifdef BFD64
4707 minfo (" ");
4708 #endif
4709 }
4710 expld.assign_name = NULL;
4711
4712 minfo (" ");
4713 exp_print_tree (assignment->exp);
4714 print_nl ();
4715 }
4716
4717 static void
4718 print_input_statement (lang_input_statement_type *statm)
4719 {
4720 if (statm->filename != NULL)
4721 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4722 }
4723
4724 /* Print all symbols defined in a particular section. This is called
4725 via bfd_link_hash_traverse, or by print_all_symbols. */
4726
4727 bool
4728 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4729 {
4730 asection *sec = (asection *) ptr;
4731
4732 if ((hash_entry->type == bfd_link_hash_defined
4733 || hash_entry->type == bfd_link_hash_defweak)
4734 && sec == hash_entry->u.def.section)
4735 {
4736 int i;
4737
4738 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4739 print_space ();
4740 minfo ("0x%V ",
4741 (hash_entry->u.def.value
4742 + hash_entry->u.def.section->output_offset
4743 + hash_entry->u.def.section->output_section->vma));
4744
4745 minfo (" %pT\n", hash_entry->root.string);
4746 }
4747
4748 return true;
4749 }
4750
4751 static int
4752 hash_entry_addr_cmp (const void *a, const void *b)
4753 {
4754 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4755 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4756
4757 if (l->u.def.value < r->u.def.value)
4758 return -1;
4759 else if (l->u.def.value > r->u.def.value)
4760 return 1;
4761 else
4762 return 0;
4763 }
4764
4765 static void
4766 print_all_symbols (asection *sec)
4767 {
4768 input_section_userdata_type *ud = bfd_section_userdata (sec);
4769 struct map_symbol_def *def;
4770 struct bfd_link_hash_entry **entries;
4771 unsigned int i;
4772
4773 if (!ud)
4774 return;
4775
4776 *ud->map_symbol_def_tail = 0;
4777
4778 /* Sort the symbols by address. */
4779 entries = (struct bfd_link_hash_entry **)
4780 obstack_alloc (&map_obstack,
4781 ud->map_symbol_def_count * sizeof (*entries));
4782
4783 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4784 entries[i] = def->entry;
4785
4786 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4787 hash_entry_addr_cmp);
4788
4789 /* Print the symbols. */
4790 for (i = 0; i < ud->map_symbol_def_count; i++)
4791 ldemul_print_symbol (entries[i], sec);
4792
4793 obstack_free (&map_obstack, entries);
4794 }
4795
4796 /* Print information about an input section to the map file. */
4797
4798 static void
4799 print_input_section (asection *i, bool is_discarded)
4800 {
4801 bfd_size_type size = i->size;
4802 int len;
4803 bfd_vma addr;
4804
4805 init_opb (i);
4806
4807 print_space ();
4808 minfo ("%s", i->name);
4809
4810 len = 1 + strlen (i->name);
4811 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4812 {
4813 print_nl ();
4814 len = 0;
4815 }
4816 while (len < SECTION_NAME_MAP_LENGTH)
4817 {
4818 print_space ();
4819 ++len;
4820 }
4821
4822 if (i->output_section != NULL
4823 && i->output_section->owner == link_info.output_bfd)
4824 addr = i->output_section->vma + i->output_offset;
4825 else
4826 {
4827 addr = print_dot;
4828 if (!is_discarded)
4829 size = 0;
4830 }
4831
4832 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4833
4834 if (size != i->rawsize && i->rawsize != 0)
4835 {
4836 len = SECTION_NAME_MAP_LENGTH + 3;
4837 #ifdef BFD64
4838 len += 16;
4839 #else
4840 len += 8;
4841 #endif
4842 while (len > 0)
4843 {
4844 print_space ();
4845 --len;
4846 }
4847
4848 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4849 }
4850
4851 if (i->output_section != NULL
4852 && i->output_section->owner == link_info.output_bfd)
4853 {
4854 if (link_info.reduce_memory_overheads)
4855 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4856 else
4857 print_all_symbols (i);
4858
4859 /* Update print_dot, but make sure that we do not move it
4860 backwards - this could happen if we have overlays and a
4861 later overlay is shorter than an earier one. */
4862 if (addr + TO_ADDR (size) > print_dot)
4863 print_dot = addr + TO_ADDR (size);
4864 }
4865 }
4866
4867 static void
4868 print_fill_statement (lang_fill_statement_type *fill)
4869 {
4870 size_t size;
4871 unsigned char *p;
4872 fputs (" FILL mask 0x", config.map_file);
4873 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4874 fprintf (config.map_file, "%02x", *p);
4875 fputs ("\n", config.map_file);
4876 }
4877
4878 static void
4879 print_data_statement (lang_data_statement_type *data)
4880 {
4881 int i;
4882 bfd_vma addr;
4883 bfd_size_type size;
4884 const char *name;
4885
4886 init_opb (data->output_section);
4887 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4888 print_space ();
4889
4890 addr = data->output_offset;
4891 if (data->output_section != NULL)
4892 addr += data->output_section->vma;
4893
4894 switch (data->type)
4895 {
4896 default:
4897 abort ();
4898 case BYTE:
4899 size = BYTE_SIZE;
4900 name = "BYTE";
4901 break;
4902 case SHORT:
4903 size = SHORT_SIZE;
4904 name = "SHORT";
4905 break;
4906 case LONG:
4907 size = LONG_SIZE;
4908 name = "LONG";
4909 break;
4910 case QUAD:
4911 size = QUAD_SIZE;
4912 name = "QUAD";
4913 break;
4914 case SQUAD:
4915 size = QUAD_SIZE;
4916 name = "SQUAD";
4917 break;
4918 }
4919
4920 if (size < TO_SIZE ((unsigned) 1))
4921 size = TO_SIZE ((unsigned) 1);
4922 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4923
4924 if (data->exp->type.node_class != etree_value)
4925 {
4926 print_space ();
4927 exp_print_tree (data->exp);
4928 }
4929
4930 print_nl ();
4931
4932 print_dot = addr + TO_ADDR (size);
4933 }
4934
4935 /* Print an address statement. These are generated by options like
4936 -Ttext. */
4937
4938 static void
4939 print_address_statement (lang_address_statement_type *address)
4940 {
4941 minfo (_("Address of section %s set to "), address->section_name);
4942 exp_print_tree (address->address);
4943 print_nl ();
4944 }
4945
4946 /* Print a reloc statement. */
4947
4948 static void
4949 print_reloc_statement (lang_reloc_statement_type *reloc)
4950 {
4951 int i;
4952 bfd_vma addr;
4953 bfd_size_type size;
4954
4955 init_opb (reloc->output_section);
4956 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4957 print_space ();
4958
4959 addr = reloc->output_offset;
4960 if (reloc->output_section != NULL)
4961 addr += reloc->output_section->vma;
4962
4963 size = bfd_get_reloc_size (reloc->howto);
4964
4965 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4966
4967 if (reloc->name != NULL)
4968 minfo ("%s+", reloc->name);
4969 else
4970 minfo ("%s+", reloc->section->name);
4971
4972 exp_print_tree (reloc->addend_exp);
4973
4974 print_nl ();
4975
4976 print_dot = addr + TO_ADDR (size);
4977 }
4978
4979 static void
4980 print_padding_statement (lang_padding_statement_type *s)
4981 {
4982 int len;
4983 bfd_vma addr;
4984
4985 init_opb (s->output_section);
4986 minfo (" *fill*");
4987
4988 len = sizeof " *fill*" - 1;
4989 while (len < SECTION_NAME_MAP_LENGTH)
4990 {
4991 print_space ();
4992 ++len;
4993 }
4994
4995 addr = s->output_offset;
4996 if (s->output_section != NULL)
4997 addr += s->output_section->vma;
4998 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4999
5000 if (s->fill->size != 0)
5001 {
5002 size_t size;
5003 unsigned char *p;
5004 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
5005 fprintf (config.map_file, "%02x", *p);
5006 }
5007
5008 print_nl ();
5009
5010 print_dot = addr + TO_ADDR (s->size);
5011 }
5012
5013 static void
5014 print_wild_statement (lang_wild_statement_type *w,
5015 lang_output_section_statement_type *os)
5016 {
5017 struct wildcard_list *sec;
5018
5019 print_space ();
5020
5021 if (w->exclude_name_list)
5022 {
5023 name_list *tmp;
5024 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5025 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5026 minfo (" %s", tmp->name);
5027 minfo (") ");
5028 }
5029
5030 if (w->filenames_sorted)
5031 minfo ("SORT_BY_NAME(");
5032 if (w->filename != NULL)
5033 minfo ("%s", w->filename);
5034 else
5035 minfo ("*");
5036 if (w->filenames_sorted)
5037 minfo (")");
5038
5039 minfo ("(");
5040 for (sec = w->section_list; sec; sec = sec->next)
5041 {
5042 int closing_paren = 0;
5043
5044 switch (sec->spec.sorted)
5045 {
5046 case none:
5047 break;
5048
5049 case by_name:
5050 minfo ("SORT_BY_NAME(");
5051 closing_paren = 1;
5052 break;
5053
5054 case by_alignment:
5055 minfo ("SORT_BY_ALIGNMENT(");
5056 closing_paren = 1;
5057 break;
5058
5059 case by_name_alignment:
5060 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5061 closing_paren = 2;
5062 break;
5063
5064 case by_alignment_name:
5065 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5066 closing_paren = 2;
5067 break;
5068
5069 case by_none:
5070 minfo ("SORT_NONE(");
5071 closing_paren = 1;
5072 break;
5073
5074 case by_init_priority:
5075 minfo ("SORT_BY_INIT_PRIORITY(");
5076 closing_paren = 1;
5077 break;
5078 }
5079
5080 if (sec->spec.exclude_name_list != NULL)
5081 {
5082 name_list *tmp;
5083 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5084 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5085 minfo (" %s", tmp->name);
5086 minfo (") ");
5087 }
5088 if (sec->spec.name != NULL)
5089 minfo ("%s", sec->spec.name);
5090 else
5091 minfo ("*");
5092 for (;closing_paren > 0; closing_paren--)
5093 minfo (")");
5094 if (sec->next)
5095 minfo (" ");
5096 }
5097 minfo (")");
5098
5099 print_nl ();
5100
5101 print_statement_list (w->children.head, os);
5102 }
5103
5104 /* Print a group statement. */
5105
5106 static void
5107 print_group (lang_group_statement_type *s,
5108 lang_output_section_statement_type *os)
5109 {
5110 fprintf (config.map_file, "START GROUP\n");
5111 print_statement_list (s->children.head, os);
5112 fprintf (config.map_file, "END GROUP\n");
5113 }
5114
5115 /* Print the list of statements in S.
5116 This can be called for any statement type. */
5117
5118 static void
5119 print_statement_list (lang_statement_union_type *s,
5120 lang_output_section_statement_type *os)
5121 {
5122 while (s != NULL)
5123 {
5124 print_statement (s, os);
5125 s = s->header.next;
5126 }
5127 }
5128
5129 /* Print the first statement in statement list S.
5130 This can be called for any statement type. */
5131
5132 static void
5133 print_statement (lang_statement_union_type *s,
5134 lang_output_section_statement_type *os)
5135 {
5136 switch (s->header.type)
5137 {
5138 default:
5139 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5140 FAIL ();
5141 break;
5142 case lang_constructors_statement_enum:
5143 if (constructor_list.head != NULL)
5144 {
5145 if (constructors_sorted)
5146 minfo (" SORT (CONSTRUCTORS)\n");
5147 else
5148 minfo (" CONSTRUCTORS\n");
5149 print_statement_list (constructor_list.head, os);
5150 }
5151 break;
5152 case lang_wild_statement_enum:
5153 print_wild_statement (&s->wild_statement, os);
5154 break;
5155 case lang_address_statement_enum:
5156 print_address_statement (&s->address_statement);
5157 break;
5158 case lang_object_symbols_statement_enum:
5159 minfo (" CREATE_OBJECT_SYMBOLS\n");
5160 break;
5161 case lang_fill_statement_enum:
5162 print_fill_statement (&s->fill_statement);
5163 break;
5164 case lang_data_statement_enum:
5165 print_data_statement (&s->data_statement);
5166 break;
5167 case lang_reloc_statement_enum:
5168 print_reloc_statement (&s->reloc_statement);
5169 break;
5170 case lang_input_section_enum:
5171 print_input_section (s->input_section.section, false);
5172 break;
5173 case lang_padding_statement_enum:
5174 print_padding_statement (&s->padding_statement);
5175 break;
5176 case lang_output_section_statement_enum:
5177 print_output_section_statement (&s->output_section_statement);
5178 break;
5179 case lang_assignment_statement_enum:
5180 print_assignment (&s->assignment_statement, os);
5181 break;
5182 case lang_target_statement_enum:
5183 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5184 break;
5185 case lang_output_statement_enum:
5186 minfo ("OUTPUT(%s", s->output_statement.name);
5187 if (output_target != NULL)
5188 minfo (" %s", output_target);
5189 minfo (")\n");
5190 break;
5191 case lang_input_statement_enum:
5192 print_input_statement (&s->input_statement);
5193 break;
5194 case lang_group_statement_enum:
5195 print_group (&s->group_statement, os);
5196 break;
5197 case lang_insert_statement_enum:
5198 minfo ("INSERT %s %s\n",
5199 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5200 s->insert_statement.where);
5201 break;
5202 }
5203 }
5204
5205 static void
5206 print_statements (void)
5207 {
5208 print_statement_list (statement_list.head, abs_output_section);
5209 }
5210
5211 /* Print the first N statements in statement list S to STDERR.
5212 If N == 0, nothing is printed.
5213 If N < 0, the entire list is printed.
5214 Intended to be called from GDB. */
5215
5216 void
5217 dprint_statement (lang_statement_union_type *s, int n)
5218 {
5219 FILE *map_save = config.map_file;
5220
5221 config.map_file = stderr;
5222
5223 if (n < 0)
5224 print_statement_list (s, abs_output_section);
5225 else
5226 {
5227 while (s && --n >= 0)
5228 {
5229 print_statement (s, abs_output_section);
5230 s = s->header.next;
5231 }
5232 }
5233
5234 config.map_file = map_save;
5235 }
5236
5237 static void
5238 insert_pad (lang_statement_union_type **ptr,
5239 fill_type *fill,
5240 bfd_size_type alignment_needed,
5241 asection *output_section,
5242 bfd_vma dot)
5243 {
5244 static fill_type zero_fill;
5245 lang_statement_union_type *pad = NULL;
5246
5247 if (ptr != &statement_list.head)
5248 pad = ((lang_statement_union_type *)
5249 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5250 if (pad != NULL
5251 && pad->header.type == lang_padding_statement_enum
5252 && pad->padding_statement.output_section == output_section)
5253 {
5254 /* Use the existing pad statement. */
5255 }
5256 else if ((pad = *ptr) != NULL
5257 && pad->header.type == lang_padding_statement_enum
5258 && pad->padding_statement.output_section == output_section)
5259 {
5260 /* Use the existing pad statement. */
5261 }
5262 else
5263 {
5264 /* Make a new padding statement, linked into existing chain. */
5265 pad = stat_alloc (sizeof (lang_padding_statement_type));
5266 pad->header.next = *ptr;
5267 *ptr = pad;
5268 pad->header.type = lang_padding_statement_enum;
5269 pad->padding_statement.output_section = output_section;
5270 if (fill == NULL)
5271 fill = &zero_fill;
5272 pad->padding_statement.fill = fill;
5273 }
5274 pad->padding_statement.output_offset = dot - output_section->vma;
5275 pad->padding_statement.size = alignment_needed;
5276 if (!(output_section->flags & SEC_FIXED_SIZE))
5277 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5278 - output_section->vma);
5279 }
5280
5281 /* Work out how much this section will move the dot point. */
5282
5283 static bfd_vma
5284 size_input_section
5285 (lang_statement_union_type **this_ptr,
5286 lang_output_section_statement_type *output_section_statement,
5287 fill_type *fill,
5288 bool *removed,
5289 bfd_vma dot)
5290 {
5291 lang_input_section_type *is = &((*this_ptr)->input_section);
5292 asection *i = is->section;
5293 asection *o = output_section_statement->bfd_section;
5294 *removed = 0;
5295
5296 if (link_info.non_contiguous_regions)
5297 {
5298 /* If the input section I has already been successfully assigned
5299 to an output section other than O, don't bother with it and
5300 let the caller remove it from the list. Keep processing in
5301 case we have already handled O, because the repeated passes
5302 have reinitialized its size. */
5303 if (i->already_assigned && i->already_assigned != o)
5304 {
5305 *removed = 1;
5306 return dot;
5307 }
5308 }
5309
5310 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5311 i->output_offset = i->vma - o->vma;
5312 else if (((i->flags & SEC_EXCLUDE) != 0)
5313 || output_section_statement->ignored)
5314 i->output_offset = dot - o->vma;
5315 else
5316 {
5317 bfd_size_type alignment_needed;
5318
5319 /* Align this section first to the input sections requirement,
5320 then to the output section's requirement. If this alignment
5321 is greater than any seen before, then record it too. Perform
5322 the alignment by inserting a magic 'padding' statement. */
5323
5324 if (output_section_statement->subsection_alignment != NULL)
5325 i->alignment_power
5326 = exp_get_power (output_section_statement->subsection_alignment,
5327 "subsection alignment");
5328
5329 if (o->alignment_power < i->alignment_power)
5330 o->alignment_power = i->alignment_power;
5331
5332 alignment_needed = align_power (dot, i->alignment_power) - dot;
5333
5334 if (alignment_needed != 0)
5335 {
5336 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5337 dot += alignment_needed;
5338 }
5339
5340 if (link_info.non_contiguous_regions)
5341 {
5342 /* If I would overflow O, let the caller remove I from the
5343 list. */
5344 if (output_section_statement->region)
5345 {
5346 bfd_vma end = output_section_statement->region->origin
5347 + output_section_statement->region->length;
5348
5349 if (dot + TO_ADDR (i->size) > end)
5350 {
5351 if (i->flags & SEC_LINKER_CREATED)
5352 einfo (_("%F%P: Output section '%s' not large enough for the "
5353 "linker-created stubs section '%s'.\n"),
5354 i->output_section->name, i->name);
5355
5356 if (i->rawsize && i->rawsize != i->size)
5357 einfo (_("%F%P: Relaxation not supported with "
5358 "--enable-non-contiguous-regions (section '%s' "
5359 "would overflow '%s' after it changed size).\n"),
5360 i->name, i->output_section->name);
5361
5362 *removed = 1;
5363 dot = end;
5364 i->output_section = NULL;
5365 return dot;
5366 }
5367 }
5368 }
5369
5370 /* Remember where in the output section this input section goes. */
5371 i->output_offset = dot - o->vma;
5372
5373 /* Mark how big the output section must be to contain this now. */
5374 dot += TO_ADDR (i->size);
5375 if (!(o->flags & SEC_FIXED_SIZE))
5376 o->size = TO_SIZE (dot - o->vma);
5377
5378 if (link_info.non_contiguous_regions)
5379 {
5380 /* Record that I was successfully assigned to O, and update
5381 its actual output section too. */
5382 i->already_assigned = o;
5383 i->output_section = o;
5384 }
5385 }
5386
5387 return dot;
5388 }
5389
5390 struct check_sec
5391 {
5392 asection *sec;
5393 bool warned;
5394 };
5395
5396 static int
5397 sort_sections_by_lma (const void *arg1, const void *arg2)
5398 {
5399 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5400 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5401
5402 if (sec1->lma < sec2->lma)
5403 return -1;
5404 else if (sec1->lma > sec2->lma)
5405 return 1;
5406 else if (sec1->id < sec2->id)
5407 return -1;
5408 else if (sec1->id > sec2->id)
5409 return 1;
5410
5411 return 0;
5412 }
5413
5414 static int
5415 sort_sections_by_vma (const void *arg1, const void *arg2)
5416 {
5417 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5418 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5419
5420 if (sec1->vma < sec2->vma)
5421 return -1;
5422 else if (sec1->vma > sec2->vma)
5423 return 1;
5424 else if (sec1->id < sec2->id)
5425 return -1;
5426 else if (sec1->id > sec2->id)
5427 return 1;
5428
5429 return 0;
5430 }
5431
5432 #define IS_TBSS(s) \
5433 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5434
5435 #define IGNORE_SECTION(s) \
5436 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5437
5438 /* Check to see if any allocated sections overlap with other allocated
5439 sections. This can happen if a linker script specifies the output
5440 section addresses of the two sections. Also check whether any memory
5441 region has overflowed. */
5442
5443 static void
5444 lang_check_section_addresses (void)
5445 {
5446 asection *s, *p;
5447 struct check_sec *sections;
5448 size_t i, count;
5449 bfd_vma addr_mask;
5450 bfd_vma s_start;
5451 bfd_vma s_end;
5452 bfd_vma p_start = 0;
5453 bfd_vma p_end = 0;
5454 lang_memory_region_type *m;
5455 bool overlays;
5456
5457 /* Detect address space overflow on allocated sections. */
5458 addr_mask = ((bfd_vma) 1 <<
5459 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5460 addr_mask = (addr_mask << 1) + 1;
5461 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5462 if ((s->flags & SEC_ALLOC) != 0)
5463 {
5464 s_end = (s->vma + s->size) & addr_mask;
5465 if (s_end != 0 && s_end < (s->vma & addr_mask))
5466 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5467 s->name);
5468 else
5469 {
5470 s_end = (s->lma + s->size) & addr_mask;
5471 if (s_end != 0 && s_end < (s->lma & addr_mask))
5472 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5473 s->name);
5474 }
5475 }
5476
5477 if (bfd_count_sections (link_info.output_bfd) <= 1)
5478 return;
5479
5480 count = bfd_count_sections (link_info.output_bfd);
5481 sections = XNEWVEC (struct check_sec, count);
5482
5483 /* Scan all sections in the output list. */
5484 count = 0;
5485 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5486 {
5487 if (IGNORE_SECTION (s)
5488 || s->size == 0)
5489 continue;
5490
5491 sections[count].sec = s;
5492 sections[count].warned = false;
5493 count++;
5494 }
5495
5496 if (count <= 1)
5497 {
5498 free (sections);
5499 return;
5500 }
5501
5502 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5503
5504 /* First check section LMAs. There should be no overlap of LMAs on
5505 loadable sections, even with overlays. */
5506 for (p = NULL, i = 0; i < count; i++)
5507 {
5508 s = sections[i].sec;
5509 init_opb (s);
5510 if ((s->flags & SEC_LOAD) != 0)
5511 {
5512 s_start = s->lma;
5513 s_end = s_start + TO_ADDR (s->size) - 1;
5514
5515 /* Look for an overlap. We have sorted sections by lma, so
5516 we know that s_start >= p_start. Besides the obvious
5517 case of overlap when the current section starts before
5518 the previous one ends, we also must have overlap if the
5519 previous section wraps around the address space. */
5520 if (p != NULL
5521 && (s_start <= p_end
5522 || p_end < p_start))
5523 {
5524 einfo (_("%X%P: section %s LMA [%V,%V]"
5525 " overlaps section %s LMA [%V,%V]\n"),
5526 s->name, s_start, s_end, p->name, p_start, p_end);
5527 sections[i].warned = true;
5528 }
5529 p = s;
5530 p_start = s_start;
5531 p_end = s_end;
5532 }
5533 }
5534
5535 /* If any non-zero size allocated section (excluding tbss) starts at
5536 exactly the same VMA as another such section, then we have
5537 overlays. Overlays generated by the OVERLAY keyword will have
5538 this property. It is possible to intentionally generate overlays
5539 that fail this test, but it would be unusual. */
5540 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5541 overlays = false;
5542 p_start = sections[0].sec->vma;
5543 for (i = 1; i < count; i++)
5544 {
5545 s_start = sections[i].sec->vma;
5546 if (p_start == s_start)
5547 {
5548 overlays = true;
5549 break;
5550 }
5551 p_start = s_start;
5552 }
5553
5554 /* Now check section VMAs if no overlays were detected. */
5555 if (!overlays)
5556 {
5557 for (p = NULL, i = 0; i < count; i++)
5558 {
5559 s = sections[i].sec;
5560 init_opb (s);
5561 s_start = s->vma;
5562 s_end = s_start + TO_ADDR (s->size) - 1;
5563
5564 if (p != NULL
5565 && !sections[i].warned
5566 && (s_start <= p_end
5567 || p_end < p_start))
5568 einfo (_("%X%P: section %s VMA [%V,%V]"
5569 " overlaps section %s VMA [%V,%V]\n"),
5570 s->name, s_start, s_end, p->name, p_start, p_end);
5571 p = s;
5572 p_start = s_start;
5573 p_end = s_end;
5574 }
5575 }
5576
5577 free (sections);
5578
5579 /* If any memory region has overflowed, report by how much.
5580 We do not issue this diagnostic for regions that had sections
5581 explicitly placed outside their bounds; os_region_check's
5582 diagnostics are adequate for that case.
5583
5584 FIXME: It is conceivable that m->current - (m->origin + m->length)
5585 might overflow a 32-bit integer. There is, alas, no way to print
5586 a bfd_vma quantity in decimal. */
5587 for (m = lang_memory_region_list; m; m = m->next)
5588 if (m->had_full_message)
5589 {
5590 unsigned long over = m->current - (m->origin + m->length);
5591 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5592 "%X%P: region `%s' overflowed by %lu bytes\n",
5593 over),
5594 m->name_list.name, over);
5595 }
5596 }
5597
5598 /* Make sure the new address is within the region. We explicitly permit the
5599 current address to be at the exact end of the region when the address is
5600 non-zero, in case the region is at the end of addressable memory and the
5601 calculation wraps around. */
5602
5603 static void
5604 os_region_check (lang_output_section_statement_type *os,
5605 lang_memory_region_type *region,
5606 etree_type *tree,
5607 bfd_vma rbase)
5608 {
5609 if ((region->current < region->origin
5610 || (region->current - region->origin > region->length))
5611 && ((region->current != region->origin + region->length)
5612 || rbase == 0))
5613 {
5614 if (tree != NULL)
5615 {
5616 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5617 " is not within region `%s'\n"),
5618 region->current,
5619 os->bfd_section->owner,
5620 os->bfd_section->name,
5621 region->name_list.name);
5622 }
5623 else if (!region->had_full_message)
5624 {
5625 region->had_full_message = true;
5626
5627 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5628 os->bfd_section->owner,
5629 os->bfd_section->name,
5630 region->name_list.name);
5631 }
5632 }
5633 }
5634
5635 static void
5636 ldlang_check_relro_region (lang_statement_union_type *s,
5637 seg_align_type *seg)
5638 {
5639 if (seg->relro == exp_seg_relro_start)
5640 {
5641 if (!seg->relro_start_stat)
5642 seg->relro_start_stat = s;
5643 else
5644 {
5645 ASSERT (seg->relro_start_stat == s);
5646 }
5647 }
5648 else if (seg->relro == exp_seg_relro_end)
5649 {
5650 if (!seg->relro_end_stat)
5651 seg->relro_end_stat = s;
5652 else
5653 {
5654 ASSERT (seg->relro_end_stat == s);
5655 }
5656 }
5657 }
5658
5659 /* Set the sizes for all the output sections. */
5660
5661 static bfd_vma
5662 lang_size_sections_1
5663 (lang_statement_union_type **prev,
5664 lang_output_section_statement_type *output_section_statement,
5665 fill_type *fill,
5666 bfd_vma dot,
5667 bool *relax,
5668 bool check_regions)
5669 {
5670 lang_statement_union_type *s;
5671 lang_statement_union_type *prev_s = NULL;
5672 bool removed_prev_s = false;
5673
5674 /* Size up the sections from their constituent parts. */
5675 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5676 {
5677 bool removed = false;
5678
5679 switch (s->header.type)
5680 {
5681 case lang_output_section_statement_enum:
5682 {
5683 bfd_vma newdot, after, dotdelta;
5684 lang_output_section_statement_type *os;
5685 lang_memory_region_type *r;
5686 int section_alignment = 0;
5687
5688 os = &s->output_section_statement;
5689 init_opb (os->bfd_section);
5690 if (os->constraint == -1)
5691 break;
5692
5693 /* FIXME: We shouldn't need to zero section vmas for ld -r
5694 here, in lang_insert_orphan, or in the default linker scripts.
5695 This is covering for coff backend linker bugs. See PR6945. */
5696 if (os->addr_tree == NULL
5697 && bfd_link_relocatable (&link_info)
5698 && (bfd_get_flavour (link_info.output_bfd)
5699 == bfd_target_coff_flavour))
5700 os->addr_tree = exp_intop (0);
5701 if (os->addr_tree != NULL)
5702 {
5703 os->processed_vma = false;
5704 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5705
5706 if (expld.result.valid_p)
5707 {
5708 dot = expld.result.value;
5709 if (expld.result.section != NULL)
5710 dot += expld.result.section->vma;
5711 }
5712 else if (expld.phase != lang_mark_phase_enum)
5713 einfo (_("%F%P:%pS: non constant or forward reference"
5714 " address expression for section %s\n"),
5715 os->addr_tree, os->name);
5716 }
5717
5718 if (os->bfd_section == NULL)
5719 /* This section was removed or never actually created. */
5720 break;
5721
5722 /* If this is a COFF shared library section, use the size and
5723 address from the input section. FIXME: This is COFF
5724 specific; it would be cleaner if there were some other way
5725 to do this, but nothing simple comes to mind. */
5726 if (((bfd_get_flavour (link_info.output_bfd)
5727 == bfd_target_ecoff_flavour)
5728 || (bfd_get_flavour (link_info.output_bfd)
5729 == bfd_target_coff_flavour))
5730 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5731 {
5732 asection *input;
5733
5734 if (os->children.head == NULL
5735 || os->children.head->header.next != NULL
5736 || (os->children.head->header.type
5737 != lang_input_section_enum))
5738 einfo (_("%X%P: internal error on COFF shared library"
5739 " section %s\n"), os->name);
5740
5741 input = os->children.head->input_section.section;
5742 bfd_set_section_vma (os->bfd_section,
5743 bfd_section_vma (input));
5744 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5745 os->bfd_section->size = input->size;
5746 break;
5747 }
5748
5749 newdot = dot;
5750 dotdelta = 0;
5751 if (bfd_is_abs_section (os->bfd_section))
5752 {
5753 /* No matter what happens, an abs section starts at zero. */
5754 ASSERT (os->bfd_section->vma == 0);
5755 }
5756 else
5757 {
5758 if (os->addr_tree == NULL)
5759 {
5760 /* No address specified for this section, get one
5761 from the region specification. */
5762 if (os->region == NULL
5763 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5764 && os->region->name_list.name[0] == '*'
5765 && strcmp (os->region->name_list.name,
5766 DEFAULT_MEMORY_REGION) == 0))
5767 {
5768 os->region = lang_memory_default (os->bfd_section);
5769 }
5770
5771 /* If a loadable section is using the default memory
5772 region, and some non default memory regions were
5773 defined, issue an error message. */
5774 if (!os->ignored
5775 && !IGNORE_SECTION (os->bfd_section)
5776 && !bfd_link_relocatable (&link_info)
5777 && check_regions
5778 && strcmp (os->region->name_list.name,
5779 DEFAULT_MEMORY_REGION) == 0
5780 && lang_memory_region_list != NULL
5781 && (strcmp (lang_memory_region_list->name_list.name,
5782 DEFAULT_MEMORY_REGION) != 0
5783 || lang_memory_region_list->next != NULL)
5784 && lang_sizing_iteration == 1)
5785 {
5786 /* By default this is an error rather than just a
5787 warning because if we allocate the section to the
5788 default memory region we can end up creating an
5789 excessively large binary, or even seg faulting when
5790 attempting to perform a negative seek. See
5791 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5792 for an example of this. This behaviour can be
5793 overridden by the using the --no-check-sections
5794 switch. */
5795 if (command_line.check_section_addresses)
5796 einfo (_("%F%P: error: no memory region specified"
5797 " for loadable section `%s'\n"),
5798 bfd_section_name (os->bfd_section));
5799 else
5800 einfo (_("%P: warning: no memory region specified"
5801 " for loadable section `%s'\n"),
5802 bfd_section_name (os->bfd_section));
5803 }
5804
5805 newdot = os->region->current;
5806 section_alignment = os->bfd_section->alignment_power;
5807 }
5808 else
5809 section_alignment = exp_get_power (os->section_alignment,
5810 "section alignment");
5811
5812 /* Align to what the section needs. */
5813 if (section_alignment > 0)
5814 {
5815 bfd_vma savedot = newdot;
5816 bfd_vma diff = 0;
5817
5818 newdot = align_power (newdot, section_alignment);
5819 dotdelta = newdot - savedot;
5820
5821 if (lang_sizing_iteration == 1)
5822 diff = dotdelta;
5823 else if (lang_sizing_iteration > 1)
5824 {
5825 /* Only report adjustments that would change
5826 alignment from what we have already reported. */
5827 diff = newdot - os->bfd_section->vma;
5828 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5829 diff = 0;
5830 }
5831 if (diff != 0
5832 && (config.warn_section_align
5833 || os->addr_tree != NULL))
5834 einfo (_("%P: warning: "
5835 "start of section %s changed by %ld\n"),
5836 os->name, (long) diff);
5837 }
5838
5839 bfd_set_section_vma (os->bfd_section, newdot);
5840
5841 os->bfd_section->output_offset = 0;
5842 }
5843
5844 lang_size_sections_1 (&os->children.head, os,
5845 os->fill, newdot, relax, check_regions);
5846
5847 os->processed_vma = true;
5848
5849 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5850 /* Except for some special linker created sections,
5851 no output section should change from zero size
5852 after strip_excluded_output_sections. A non-zero
5853 size on an ignored section indicates that some
5854 input section was not sized early enough. */
5855 ASSERT (os->bfd_section->size == 0);
5856 else
5857 {
5858 dot = os->bfd_section->vma;
5859
5860 /* Put the section within the requested block size, or
5861 align at the block boundary. */
5862 after = ((dot
5863 + TO_ADDR (os->bfd_section->size)
5864 + os->block_value - 1)
5865 & - (bfd_vma) os->block_value);
5866
5867 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5868 os->bfd_section->size = TO_SIZE (after
5869 - os->bfd_section->vma);
5870 }
5871
5872 /* Set section lma. */
5873 r = os->region;
5874 if (r == NULL)
5875 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
5876
5877 if (os->load_base)
5878 {
5879 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5880 os->bfd_section->lma = lma;
5881 }
5882 else if (os->lma_region != NULL)
5883 {
5884 bfd_vma lma = os->lma_region->current;
5885
5886 if (os->align_lma_with_input)
5887 lma += dotdelta;
5888 else
5889 {
5890 /* When LMA_REGION is the same as REGION, align the LMA
5891 as we did for the VMA, possibly including alignment
5892 from the bfd section. If a different region, then
5893 only align according to the value in the output
5894 statement. */
5895 if (os->lma_region != os->region)
5896 section_alignment = exp_get_power (os->section_alignment,
5897 "section alignment");
5898 if (section_alignment > 0)
5899 lma = align_power (lma, section_alignment);
5900 }
5901 os->bfd_section->lma = lma;
5902 }
5903 else if (r->last_os != NULL
5904 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5905 {
5906 bfd_vma lma;
5907 asection *last;
5908
5909 last = r->last_os->output_section_statement.bfd_section;
5910
5911 /* A backwards move of dot should be accompanied by
5912 an explicit assignment to the section LMA (ie.
5913 os->load_base set) because backwards moves can
5914 create overlapping LMAs. */
5915 if (dot < last->vma
5916 && os->bfd_section->size != 0
5917 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5918 {
5919 /* If dot moved backwards then leave lma equal to
5920 vma. This is the old default lma, which might
5921 just happen to work when the backwards move is
5922 sufficiently large. Nag if this changes anything,
5923 so people can fix their linker scripts. */
5924
5925 if (last->vma != last->lma)
5926 einfo (_("%P: warning: dot moved backwards "
5927 "before `%s'\n"), os->name);
5928 }
5929 else
5930 {
5931 /* If this is an overlay, set the current lma to that
5932 at the end of the previous section. */
5933 if (os->sectype == overlay_section)
5934 lma = last->lma + TO_ADDR (last->size);
5935
5936 /* Otherwise, keep the same lma to vma relationship
5937 as the previous section. */
5938 else
5939 lma = os->bfd_section->vma + last->lma - last->vma;
5940
5941 if (section_alignment > 0)
5942 lma = align_power (lma, section_alignment);
5943 os->bfd_section->lma = lma;
5944 }
5945 }
5946 os->processed_lma = true;
5947
5948 /* Keep track of normal sections using the default
5949 lma region. We use this to set the lma for
5950 following sections. Overlays or other linker
5951 script assignment to lma might mean that the
5952 default lma == vma is incorrect.
5953 To avoid warnings about dot moving backwards when using
5954 -Ttext, don't start tracking sections until we find one
5955 of non-zero size or with lma set differently to vma.
5956 Do this tracking before we short-cut the loop so that we
5957 track changes for the case where the section size is zero,
5958 but the lma is set differently to the vma. This is
5959 important, if an orphan section is placed after an
5960 otherwise empty output section that has an explicit lma
5961 set, we want that lma reflected in the orphans lma. */
5962 if (((!IGNORE_SECTION (os->bfd_section)
5963 && (os->bfd_section->size != 0
5964 || (r->last_os == NULL
5965 && os->bfd_section->vma != os->bfd_section->lma)
5966 || (r->last_os != NULL
5967 && dot >= (r->last_os->output_section_statement
5968 .bfd_section->vma))))
5969 || os->sectype == first_overlay_section)
5970 && os->lma_region == NULL
5971 && !bfd_link_relocatable (&link_info))
5972 r->last_os = s;
5973
5974 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5975 break;
5976
5977 /* .tbss sections effectively have zero size. */
5978 if (!IS_TBSS (os->bfd_section)
5979 || bfd_link_relocatable (&link_info))
5980 dotdelta = TO_ADDR (os->bfd_section->size);
5981 else
5982 dotdelta = 0;
5983 dot += dotdelta;
5984
5985 if (os->update_dot_tree != 0)
5986 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5987
5988 /* Update dot in the region ?
5989 We only do this if the section is going to be allocated,
5990 since unallocated sections do not contribute to the region's
5991 overall size in memory. */
5992 if (os->region != NULL
5993 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5994 {
5995 os->region->current = dot;
5996
5997 if (check_regions)
5998 /* Make sure the new address is within the region. */
5999 os_region_check (os, os->region, os->addr_tree,
6000 os->bfd_section->vma);
6001
6002 if (os->lma_region != NULL && os->lma_region != os->region
6003 && ((os->bfd_section->flags & SEC_LOAD)
6004 || os->align_lma_with_input))
6005 {
6006 os->lma_region->current = os->bfd_section->lma + dotdelta;
6007
6008 if (check_regions)
6009 os_region_check (os, os->lma_region, NULL,
6010 os->bfd_section->lma);
6011 }
6012 }
6013 }
6014 break;
6015
6016 case lang_constructors_statement_enum:
6017 dot = lang_size_sections_1 (&constructor_list.head,
6018 output_section_statement,
6019 fill, dot, relax, check_regions);
6020 break;
6021
6022 case lang_data_statement_enum:
6023 {
6024 unsigned int size = 0;
6025
6026 s->data_statement.output_offset =
6027 dot - output_section_statement->bfd_section->vma;
6028 s->data_statement.output_section =
6029 output_section_statement->bfd_section;
6030
6031 /* We might refer to provided symbols in the expression, and
6032 need to mark them as needed. */
6033 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6034
6035 switch (s->data_statement.type)
6036 {
6037 default:
6038 abort ();
6039 case QUAD:
6040 case SQUAD:
6041 size = QUAD_SIZE;
6042 break;
6043 case LONG:
6044 size = LONG_SIZE;
6045 break;
6046 case SHORT:
6047 size = SHORT_SIZE;
6048 break;
6049 case BYTE:
6050 size = BYTE_SIZE;
6051 break;
6052 }
6053 if (size < TO_SIZE ((unsigned) 1))
6054 size = TO_SIZE ((unsigned) 1);
6055 dot += TO_ADDR (size);
6056 if (!(output_section_statement->bfd_section->flags
6057 & SEC_FIXED_SIZE))
6058 output_section_statement->bfd_section->size
6059 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6060
6061 }
6062 break;
6063
6064 case lang_reloc_statement_enum:
6065 {
6066 int size;
6067
6068 s->reloc_statement.output_offset =
6069 dot - output_section_statement->bfd_section->vma;
6070 s->reloc_statement.output_section =
6071 output_section_statement->bfd_section;
6072 size = bfd_get_reloc_size (s->reloc_statement.howto);
6073 dot += TO_ADDR (size);
6074 if (!(output_section_statement->bfd_section->flags
6075 & SEC_FIXED_SIZE))
6076 output_section_statement->bfd_section->size
6077 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6078 }
6079 break;
6080
6081 case lang_wild_statement_enum:
6082 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6083 output_section_statement,
6084 fill, dot, relax, check_regions);
6085 break;
6086
6087 case lang_object_symbols_statement_enum:
6088 link_info.create_object_symbols_section
6089 = output_section_statement->bfd_section;
6090 output_section_statement->bfd_section->flags |= SEC_KEEP;
6091 break;
6092
6093 case lang_output_statement_enum:
6094 case lang_target_statement_enum:
6095 break;
6096
6097 case lang_input_section_enum:
6098 {
6099 asection *i;
6100
6101 i = s->input_section.section;
6102 if (relax)
6103 {
6104 bool again;
6105
6106 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6107 einfo (_("%F%P: can't relax section: %E\n"));
6108 if (again)
6109 *relax = true;
6110 }
6111 dot = size_input_section (prev, output_section_statement,
6112 fill, &removed, dot);
6113 }
6114 break;
6115
6116 case lang_input_statement_enum:
6117 break;
6118
6119 case lang_fill_statement_enum:
6120 s->fill_statement.output_section =
6121 output_section_statement->bfd_section;
6122
6123 fill = s->fill_statement.fill;
6124 break;
6125
6126 case lang_assignment_statement_enum:
6127 {
6128 bfd_vma newdot = dot;
6129 etree_type *tree = s->assignment_statement.exp;
6130
6131 expld.dataseg.relro = exp_seg_relro_none;
6132
6133 exp_fold_tree (tree,
6134 output_section_statement->bfd_section,
6135 &newdot);
6136
6137 ldlang_check_relro_region (s, &expld.dataseg);
6138
6139 expld.dataseg.relro = exp_seg_relro_none;
6140
6141 /* This symbol may be relative to this section. */
6142 if ((tree->type.node_class == etree_provided
6143 || tree->type.node_class == etree_assign)
6144 && (tree->assign.dst [0] != '.'
6145 || tree->assign.dst [1] != '\0'))
6146 output_section_statement->update_dot = 1;
6147
6148 if (!output_section_statement->ignored)
6149 {
6150 if (output_section_statement == abs_output_section)
6151 {
6152 /* If we don't have an output section, then just adjust
6153 the default memory address. */
6154 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6155 false)->current = newdot;
6156 }
6157 else if (newdot != dot)
6158 {
6159 /* Insert a pad after this statement. We can't
6160 put the pad before when relaxing, in case the
6161 assignment references dot. */
6162 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6163 output_section_statement->bfd_section, dot);
6164
6165 /* Don't neuter the pad below when relaxing. */
6166 s = s->header.next;
6167
6168 /* If dot is advanced, this implies that the section
6169 should have space allocated to it, unless the
6170 user has explicitly stated that the section
6171 should not be allocated. */
6172 if (output_section_statement->sectype != noalloc_section
6173 && (output_section_statement->sectype != noload_section
6174 || (bfd_get_flavour (link_info.output_bfd)
6175 == bfd_target_elf_flavour)))
6176 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6177 }
6178 dot = newdot;
6179 }
6180 }
6181 break;
6182
6183 case lang_padding_statement_enum:
6184 /* If this is the first time lang_size_sections is called,
6185 we won't have any padding statements. If this is the
6186 second or later passes when relaxing, we should allow
6187 padding to shrink. If padding is needed on this pass, it
6188 will be added back in. */
6189 s->padding_statement.size = 0;
6190
6191 /* Make sure output_offset is valid. If relaxation shrinks
6192 the section and this pad isn't needed, it's possible to
6193 have output_offset larger than the final size of the
6194 section. bfd_set_section_contents will complain even for
6195 a pad size of zero. */
6196 s->padding_statement.output_offset
6197 = dot - output_section_statement->bfd_section->vma;
6198 break;
6199
6200 case lang_group_statement_enum:
6201 dot = lang_size_sections_1 (&s->group_statement.children.head,
6202 output_section_statement,
6203 fill, dot, relax, check_regions);
6204 break;
6205
6206 case lang_insert_statement_enum:
6207 break;
6208
6209 /* We can only get here when relaxing is turned on. */
6210 case lang_address_statement_enum:
6211 break;
6212
6213 default:
6214 FAIL ();
6215 break;
6216 }
6217
6218 /* If an input section doesn't fit in the current output
6219 section, remove it from the list. Handle the case where we
6220 have to remove an input_section statement here: there is a
6221 special case to remove the first element of the list. */
6222 if (link_info.non_contiguous_regions && removed)
6223 {
6224 /* If we removed the first element during the previous
6225 iteration, override the loop assignment of prev_s. */
6226 if (removed_prev_s)
6227 prev_s = NULL;
6228
6229 if (prev_s)
6230 {
6231 /* If there was a real previous input section, just skip
6232 the current one. */
6233 prev_s->header.next=s->header.next;
6234 s = prev_s;
6235 removed_prev_s = false;
6236 }
6237 else
6238 {
6239 /* Remove the first input section of the list. */
6240 *prev = s->header.next;
6241 removed_prev_s = true;
6242 }
6243
6244 /* Move to next element, unless we removed the head of the
6245 list. */
6246 if (!removed_prev_s)
6247 prev = &s->header.next;
6248 }
6249 else
6250 {
6251 prev = &s->header.next;
6252 removed_prev_s = false;
6253 }
6254 }
6255 return dot;
6256 }
6257
6258 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6259 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6260 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6261 segments. We are allowed an opportunity to override this decision. */
6262
6263 bool
6264 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6265 bfd *abfd ATTRIBUTE_UNUSED,
6266 asection *current_section,
6267 asection *previous_section,
6268 bool new_segment)
6269 {
6270 lang_output_section_statement_type *cur;
6271 lang_output_section_statement_type *prev;
6272
6273 /* The checks below are only necessary when the BFD library has decided
6274 that the two sections ought to be placed into the same segment. */
6275 if (new_segment)
6276 return true;
6277
6278 /* Paranoia checks. */
6279 if (current_section == NULL || previous_section == NULL)
6280 return new_segment;
6281
6282 /* If this flag is set, the target never wants code and non-code
6283 sections comingled in the same segment. */
6284 if (config.separate_code
6285 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6286 return true;
6287
6288 /* Find the memory regions associated with the two sections.
6289 We call lang_output_section_find() here rather than scanning the list
6290 of output sections looking for a matching section pointer because if
6291 we have a large number of sections then a hash lookup is faster. */
6292 cur = lang_output_section_find (current_section->name);
6293 prev = lang_output_section_find (previous_section->name);
6294
6295 /* More paranoia. */
6296 if (cur == NULL || prev == NULL)
6297 return new_segment;
6298
6299 /* If the regions are different then force the sections to live in
6300 different segments. See the email thread starting at the following
6301 URL for the reasons why this is necessary:
6302 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6303 return cur->region != prev->region;
6304 }
6305
6306 void
6307 one_lang_size_sections_pass (bool *relax, bool check_regions)
6308 {
6309 lang_statement_iteration++;
6310 if (expld.phase != lang_mark_phase_enum)
6311 lang_sizing_iteration++;
6312 lang_size_sections_1 (&statement_list.head, abs_output_section,
6313 0, 0, relax, check_regions);
6314 }
6315
6316 static bool
6317 lang_size_segment (seg_align_type *seg)
6318 {
6319 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6320 a page could be saved in the data segment. */
6321 bfd_vma first, last;
6322
6323 first = -seg->base & (seg->pagesize - 1);
6324 last = seg->end & (seg->pagesize - 1);
6325 if (first && last
6326 && ((seg->base & ~(seg->pagesize - 1))
6327 != (seg->end & ~(seg->pagesize - 1)))
6328 && first + last <= seg->pagesize)
6329 {
6330 seg->phase = exp_seg_adjust;
6331 return true;
6332 }
6333
6334 seg->phase = exp_seg_done;
6335 return false;
6336 }
6337
6338 static bfd_vma
6339 lang_size_relro_segment_1 (seg_align_type *seg)
6340 {
6341 bfd_vma relro_end, desired_end;
6342 asection *sec;
6343
6344 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6345 relro_end = ((seg->relro_end + seg->pagesize - 1)
6346 & ~(seg->pagesize - 1));
6347
6348 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6349 desired_end = relro_end - seg->relro_offset;
6350
6351 /* For sections in the relro segment.. */
6352 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6353 if ((sec->flags & SEC_ALLOC) != 0
6354 && sec->vma >= seg->base
6355 && sec->vma < seg->relro_end - seg->relro_offset)
6356 {
6357 /* Where do we want to put this section so that it ends as
6358 desired? */
6359 bfd_vma start, end, bump;
6360
6361 end = start = sec->vma;
6362 if (!IS_TBSS (sec))
6363 end += TO_ADDR (sec->size);
6364 bump = desired_end - end;
6365 /* We'd like to increase START by BUMP, but we must heed
6366 alignment so the increase might be less than optimum. */
6367 start += bump;
6368 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6369 /* This is now the desired end for the previous section. */
6370 desired_end = start;
6371 }
6372
6373 seg->phase = exp_seg_relro_adjust;
6374 ASSERT (desired_end >= seg->base);
6375 seg->base = desired_end;
6376 return relro_end;
6377 }
6378
6379 static bool
6380 lang_size_relro_segment (bool *relax, bool check_regions)
6381 {
6382 bool do_reset = false;
6383 bool do_data_relro;
6384 bfd_vma data_initial_base, data_relro_end;
6385
6386 if (link_info.relro && expld.dataseg.relro_end)
6387 {
6388 do_data_relro = true;
6389 data_initial_base = expld.dataseg.base;
6390 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6391 }
6392 else
6393 {
6394 do_data_relro = false;
6395 data_initial_base = data_relro_end = 0;
6396 }
6397
6398 if (do_data_relro)
6399 {
6400 lang_reset_memory_regions ();
6401 one_lang_size_sections_pass (relax, check_regions);
6402
6403 /* Assignments to dot, or to output section address in a user
6404 script have increased padding over the original. Revert. */
6405 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6406 {
6407 expld.dataseg.base = data_initial_base;;
6408 do_reset = true;
6409 }
6410 }
6411
6412 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6413 do_reset = true;
6414
6415 return do_reset;
6416 }
6417
6418 void
6419 lang_size_sections (bool *relax, bool check_regions)
6420 {
6421 expld.phase = lang_allocating_phase_enum;
6422 expld.dataseg.phase = exp_seg_none;
6423
6424 one_lang_size_sections_pass (relax, check_regions);
6425
6426 if (expld.dataseg.phase != exp_seg_end_seen)
6427 expld.dataseg.phase = exp_seg_done;
6428
6429 if (expld.dataseg.phase == exp_seg_end_seen)
6430 {
6431 bool do_reset
6432 = lang_size_relro_segment (relax, check_regions);
6433
6434 if (do_reset)
6435 {
6436 lang_reset_memory_regions ();
6437 one_lang_size_sections_pass (relax, check_regions);
6438 }
6439
6440 if (link_info.relro && expld.dataseg.relro_end)
6441 {
6442 link_info.relro_start = expld.dataseg.base;
6443 link_info.relro_end = expld.dataseg.relro_end;
6444 }
6445 }
6446 }
6447
6448 static lang_output_section_statement_type *current_section;
6449 static lang_assignment_statement_type *current_assign;
6450 static bool prefer_next_section;
6451
6452 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6453
6454 static bfd_vma
6455 lang_do_assignments_1 (lang_statement_union_type *s,
6456 lang_output_section_statement_type *current_os,
6457 fill_type *fill,
6458 bfd_vma dot,
6459 bool *found_end)
6460 {
6461 for (; s != NULL; s = s->header.next)
6462 {
6463 switch (s->header.type)
6464 {
6465 case lang_constructors_statement_enum:
6466 dot = lang_do_assignments_1 (constructor_list.head,
6467 current_os, fill, dot, found_end);
6468 break;
6469
6470 case lang_output_section_statement_enum:
6471 {
6472 lang_output_section_statement_type *os;
6473 bfd_vma newdot;
6474
6475 os = &(s->output_section_statement);
6476 os->after_end = *found_end;
6477 init_opb (os->bfd_section);
6478 if (os->bfd_section != NULL && !os->ignored)
6479 {
6480 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6481 {
6482 current_section = os;
6483 prefer_next_section = false;
6484 }
6485 dot = os->bfd_section->vma;
6486 }
6487 newdot = lang_do_assignments_1 (os->children.head,
6488 os, os->fill, dot, found_end);
6489 if (!os->ignored)
6490 {
6491 if (os->bfd_section != NULL)
6492 {
6493 /* .tbss sections effectively have zero size. */
6494 if (!IS_TBSS (os->bfd_section)
6495 || bfd_link_relocatable (&link_info))
6496 dot += TO_ADDR (os->bfd_section->size);
6497
6498 if (os->update_dot_tree != NULL)
6499 exp_fold_tree (os->update_dot_tree,
6500 bfd_abs_section_ptr, &dot);
6501 }
6502 else
6503 dot = newdot;
6504 }
6505 }
6506 break;
6507
6508 case lang_wild_statement_enum:
6509
6510 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6511 current_os, fill, dot, found_end);
6512 break;
6513
6514 case lang_object_symbols_statement_enum:
6515 case lang_output_statement_enum:
6516 case lang_target_statement_enum:
6517 break;
6518
6519 case lang_data_statement_enum:
6520 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6521 if (expld.result.valid_p)
6522 {
6523 s->data_statement.value = expld.result.value;
6524 if (expld.result.section != NULL)
6525 s->data_statement.value += expld.result.section->vma;
6526 }
6527 else if (expld.phase == lang_final_phase_enum)
6528 einfo (_("%F%P: invalid data statement\n"));
6529 {
6530 unsigned int size;
6531 switch (s->data_statement.type)
6532 {
6533 default:
6534 abort ();
6535 case QUAD:
6536 case SQUAD:
6537 size = QUAD_SIZE;
6538 break;
6539 case LONG:
6540 size = LONG_SIZE;
6541 break;
6542 case SHORT:
6543 size = SHORT_SIZE;
6544 break;
6545 case BYTE:
6546 size = BYTE_SIZE;
6547 break;
6548 }
6549 if (size < TO_SIZE ((unsigned) 1))
6550 size = TO_SIZE ((unsigned) 1);
6551 dot += TO_ADDR (size);
6552 }
6553 break;
6554
6555 case lang_reloc_statement_enum:
6556 exp_fold_tree (s->reloc_statement.addend_exp,
6557 bfd_abs_section_ptr, &dot);
6558 if (expld.result.valid_p)
6559 s->reloc_statement.addend_value = expld.result.value;
6560 else if (expld.phase == lang_final_phase_enum)
6561 einfo (_("%F%P: invalid reloc statement\n"));
6562 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6563 break;
6564
6565 case lang_input_section_enum:
6566 {
6567 asection *in = s->input_section.section;
6568
6569 if ((in->flags & SEC_EXCLUDE) == 0)
6570 dot += TO_ADDR (in->size);
6571 }
6572 break;
6573
6574 case lang_input_statement_enum:
6575 break;
6576
6577 case lang_fill_statement_enum:
6578 fill = s->fill_statement.fill;
6579 break;
6580
6581 case lang_assignment_statement_enum:
6582 current_assign = &s->assignment_statement;
6583 if (current_assign->exp->type.node_class != etree_assert)
6584 {
6585 const char *p = current_assign->exp->assign.dst;
6586
6587 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6588 prefer_next_section = true;
6589
6590 while (*p == '_')
6591 ++p;
6592 if (strcmp (p, "end") == 0)
6593 *found_end = true;
6594 }
6595 exp_fold_tree (s->assignment_statement.exp,
6596 (current_os->bfd_section != NULL
6597 ? current_os->bfd_section : bfd_und_section_ptr),
6598 &dot);
6599 break;
6600
6601 case lang_padding_statement_enum:
6602 dot += TO_ADDR (s->padding_statement.size);
6603 break;
6604
6605 case lang_group_statement_enum:
6606 dot = lang_do_assignments_1 (s->group_statement.children.head,
6607 current_os, fill, dot, found_end);
6608 break;
6609
6610 case lang_insert_statement_enum:
6611 break;
6612
6613 case lang_address_statement_enum:
6614 break;
6615
6616 default:
6617 FAIL ();
6618 break;
6619 }
6620 }
6621 return dot;
6622 }
6623
6624 void
6625 lang_do_assignments (lang_phase_type phase)
6626 {
6627 bool found_end = false;
6628
6629 current_section = NULL;
6630 prefer_next_section = false;
6631 expld.phase = phase;
6632 lang_statement_iteration++;
6633 lang_do_assignments_1 (statement_list.head,
6634 abs_output_section, NULL, 0, &found_end);
6635 }
6636
6637 /* For an assignment statement outside of an output section statement,
6638 choose the best of neighbouring output sections to use for values
6639 of "dot". */
6640
6641 asection *
6642 section_for_dot (void)
6643 {
6644 asection *s;
6645
6646 /* Assignments belong to the previous output section, unless there
6647 has been an assignment to "dot", in which case following
6648 assignments belong to the next output section. (The assumption
6649 is that an assignment to "dot" is setting up the address for the
6650 next output section.) Except that past the assignment to "_end"
6651 we always associate with the previous section. This exception is
6652 for targets like SH that define an alloc .stack or other
6653 weirdness after non-alloc sections. */
6654 if (current_section == NULL || prefer_next_section)
6655 {
6656 lang_statement_union_type *stmt;
6657 lang_output_section_statement_type *os;
6658
6659 for (stmt = (lang_statement_union_type *) current_assign;
6660 stmt != NULL;
6661 stmt = stmt->header.next)
6662 if (stmt->header.type == lang_output_section_statement_enum)
6663 break;
6664
6665 os = &stmt->output_section_statement;
6666 while (os != NULL
6667 && !os->after_end
6668 && (os->bfd_section == NULL
6669 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6670 || bfd_section_removed_from_list (link_info.output_bfd,
6671 os->bfd_section)))
6672 os = os->next;
6673
6674 if (current_section == NULL || os == NULL || !os->after_end)
6675 {
6676 if (os != NULL)
6677 s = os->bfd_section;
6678 else
6679 s = link_info.output_bfd->section_last;
6680 while (s != NULL
6681 && ((s->flags & SEC_ALLOC) == 0
6682 || (s->flags & SEC_THREAD_LOCAL) != 0))
6683 s = s->prev;
6684 if (s != NULL)
6685 return s;
6686
6687 return bfd_abs_section_ptr;
6688 }
6689 }
6690
6691 s = current_section->bfd_section;
6692
6693 /* The section may have been stripped. */
6694 while (s != NULL
6695 && ((s->flags & SEC_EXCLUDE) != 0
6696 || (s->flags & SEC_ALLOC) == 0
6697 || (s->flags & SEC_THREAD_LOCAL) != 0
6698 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6699 s = s->prev;
6700 if (s == NULL)
6701 s = link_info.output_bfd->sections;
6702 while (s != NULL
6703 && ((s->flags & SEC_ALLOC) == 0
6704 || (s->flags & SEC_THREAD_LOCAL) != 0))
6705 s = s->next;
6706 if (s != NULL)
6707 return s;
6708
6709 return bfd_abs_section_ptr;
6710 }
6711
6712 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6713
6714 static struct bfd_link_hash_entry **start_stop_syms;
6715 static size_t start_stop_count = 0;
6716 static size_t start_stop_alloc = 0;
6717
6718 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6719 to start_stop_syms. */
6720
6721 static void
6722 lang_define_start_stop (const char *symbol, asection *sec)
6723 {
6724 struct bfd_link_hash_entry *h;
6725
6726 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6727 if (h != NULL)
6728 {
6729 if (start_stop_count == start_stop_alloc)
6730 {
6731 start_stop_alloc = 2 * start_stop_alloc + 10;
6732 start_stop_syms
6733 = xrealloc (start_stop_syms,
6734 start_stop_alloc * sizeof (*start_stop_syms));
6735 }
6736 start_stop_syms[start_stop_count++] = h;
6737 }
6738 }
6739
6740 /* Check for input sections whose names match references to
6741 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6742 preliminary definitions. */
6743
6744 static void
6745 lang_init_start_stop (void)
6746 {
6747 bfd *abfd;
6748 asection *s;
6749 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6750
6751 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6752 for (s = abfd->sections; s != NULL; s = s->next)
6753 {
6754 const char *ps;
6755 const char *secname = s->name;
6756
6757 for (ps = secname; *ps != '\0'; ps++)
6758 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6759 break;
6760 if (*ps == '\0')
6761 {
6762 char *symbol = (char *) xmalloc (10 + strlen (secname));
6763
6764 symbol[0] = leading_char;
6765 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6766 lang_define_start_stop (symbol, s);
6767
6768 symbol[1] = leading_char;
6769 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6770 lang_define_start_stop (symbol + 1, s);
6771
6772 free (symbol);
6773 }
6774 }
6775 }
6776
6777 /* Iterate over start_stop_syms. */
6778
6779 static void
6780 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6781 {
6782 size_t i;
6783
6784 for (i = 0; i < start_stop_count; ++i)
6785 func (start_stop_syms[i]);
6786 }
6787
6788 /* __start and __stop symbols are only supposed to be defined by the
6789 linker for orphan sections, but we now extend that to sections that
6790 map to an output section of the same name. The symbols were
6791 defined early for --gc-sections, before we mapped input to output
6792 sections, so undo those that don't satisfy this rule. */
6793
6794 static void
6795 undef_start_stop (struct bfd_link_hash_entry *h)
6796 {
6797 if (h->ldscript_def)
6798 return;
6799
6800 if (h->u.def.section->output_section == NULL
6801 || h->u.def.section->output_section->owner != link_info.output_bfd
6802 || strcmp (h->u.def.section->name,
6803 h->u.def.section->output_section->name) != 0)
6804 {
6805 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6806 h->u.def.section->name);
6807 if (sec != NULL)
6808 {
6809 /* When there are more than one input sections with the same
6810 section name, SECNAME, linker picks the first one to define
6811 __start_SECNAME and __stop_SECNAME symbols. When the first
6812 input section is removed by comdat group, we need to check
6813 if there is still an output section with section name
6814 SECNAME. */
6815 asection *i;
6816 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6817 if (strcmp (h->u.def.section->name, i->name) == 0)
6818 {
6819 h->u.def.section = i;
6820 return;
6821 }
6822 }
6823 h->type = bfd_link_hash_undefined;
6824 h->u.undef.abfd = NULL;
6825 if (is_elf_hash_table (link_info.hash))
6826 {
6827 const struct elf_backend_data *bed;
6828 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6829 unsigned int was_forced = eh->forced_local;
6830
6831 bed = get_elf_backend_data (link_info.output_bfd);
6832 (*bed->elf_backend_hide_symbol) (&link_info, eh, true);
6833 if (!eh->ref_regular_nonweak)
6834 h->type = bfd_link_hash_undefweak;
6835 eh->def_regular = 0;
6836 eh->forced_local = was_forced;
6837 }
6838 }
6839 }
6840
6841 static void
6842 lang_undef_start_stop (void)
6843 {
6844 foreach_start_stop (undef_start_stop);
6845 }
6846
6847 /* Check for output sections whose names match references to
6848 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6849 preliminary definitions. */
6850
6851 static void
6852 lang_init_startof_sizeof (void)
6853 {
6854 asection *s;
6855
6856 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6857 {
6858 const char *secname = s->name;
6859 char *symbol = (char *) xmalloc (10 + strlen (secname));
6860
6861 sprintf (symbol, ".startof.%s", secname);
6862 lang_define_start_stop (symbol, s);
6863
6864 memcpy (symbol + 1, ".size", 5);
6865 lang_define_start_stop (symbol + 1, s);
6866 free (symbol);
6867 }
6868 }
6869
6870 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6871
6872 static void
6873 set_start_stop (struct bfd_link_hash_entry *h)
6874 {
6875 if (h->ldscript_def
6876 || h->type != bfd_link_hash_defined)
6877 return;
6878
6879 if (h->root.string[0] == '.')
6880 {
6881 /* .startof. or .sizeof. symbol.
6882 .startof. already has final value. */
6883 if (h->root.string[2] == 'i')
6884 {
6885 /* .sizeof. */
6886 h->u.def.value = TO_ADDR (h->u.def.section->size);
6887 h->u.def.section = bfd_abs_section_ptr;
6888 }
6889 }
6890 else
6891 {
6892 /* __start or __stop symbol. */
6893 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6894
6895 h->u.def.section = h->u.def.section->output_section;
6896 if (h->root.string[4 + has_lead] == 'o')
6897 {
6898 /* __stop_ */
6899 h->u.def.value = TO_ADDR (h->u.def.section->size);
6900 }
6901 }
6902 }
6903
6904 static void
6905 lang_finalize_start_stop (void)
6906 {
6907 foreach_start_stop (set_start_stop);
6908 }
6909
6910 static void
6911 lang_end (void)
6912 {
6913 struct bfd_link_hash_entry *h;
6914 bool warn;
6915
6916 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6917 || bfd_link_dll (&link_info))
6918 warn = entry_from_cmdline;
6919 else
6920 warn = true;
6921
6922 /* Force the user to specify a root when generating a relocatable with
6923 --gc-sections, unless --gc-keep-exported was also given. */
6924 if (bfd_link_relocatable (&link_info)
6925 && link_info.gc_sections
6926 && !link_info.gc_keep_exported)
6927 {
6928 struct bfd_sym_chain *sym;
6929
6930 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6931 {
6932 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6933 false, false, false);
6934 if (h != NULL
6935 && (h->type == bfd_link_hash_defined
6936 || h->type == bfd_link_hash_defweak)
6937 && !bfd_is_const_section (h->u.def.section))
6938 break;
6939 }
6940 if (!sym)
6941 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6942 "specified by -e or -u\n"));
6943 }
6944
6945 if (entry_symbol.name == NULL)
6946 {
6947 /* No entry has been specified. Look for the default entry, but
6948 don't warn if we don't find it. */
6949 entry_symbol.name = entry_symbol_default;
6950 warn = false;
6951 }
6952
6953 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6954 false, false, true);
6955 if (h != NULL
6956 && (h->type == bfd_link_hash_defined
6957 || h->type == bfd_link_hash_defweak)
6958 && h->u.def.section->output_section != NULL)
6959 {
6960 bfd_vma val;
6961
6962 val = (h->u.def.value
6963 + bfd_section_vma (h->u.def.section->output_section)
6964 + h->u.def.section->output_offset);
6965 if (!bfd_set_start_address (link_info.output_bfd, val))
6966 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6967 }
6968 else
6969 {
6970 bfd_vma val;
6971 const char *send;
6972
6973 /* We couldn't find the entry symbol. Try parsing it as a
6974 number. */
6975 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6976 if (*send == '\0')
6977 {
6978 if (!bfd_set_start_address (link_info.output_bfd, val))
6979 einfo (_("%F%P: can't set start address\n"));
6980 }
6981 else
6982 {
6983 asection *ts;
6984
6985 /* Can't find the entry symbol, and it's not a number. Use
6986 the first address in the text section. */
6987 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6988 if (ts != NULL)
6989 {
6990 if (warn)
6991 einfo (_("%P: warning: cannot find entry symbol %s;"
6992 " defaulting to %V\n"),
6993 entry_symbol.name,
6994 bfd_section_vma (ts));
6995 if (!bfd_set_start_address (link_info.output_bfd,
6996 bfd_section_vma (ts)))
6997 einfo (_("%F%P: can't set start address\n"));
6998 }
6999 else
7000 {
7001 if (warn)
7002 einfo (_("%P: warning: cannot find entry symbol %s;"
7003 " not setting start address\n"),
7004 entry_symbol.name);
7005 }
7006 }
7007 }
7008 }
7009
7010 /* This is a small function used when we want to ignore errors from
7011 BFD. */
7012
7013 static void
7014 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7015 va_list ap ATTRIBUTE_UNUSED)
7016 {
7017 /* Don't do anything. */
7018 }
7019
7020 /* Check that the architecture of all the input files is compatible
7021 with the output file. Also call the backend to let it do any
7022 other checking that is needed. */
7023
7024 static void
7025 lang_check (void)
7026 {
7027 lang_input_statement_type *file;
7028 bfd *input_bfd;
7029 const bfd_arch_info_type *compatible;
7030
7031 for (file = (void *) file_chain.head;
7032 file != NULL;
7033 file = file->next)
7034 {
7035 #if BFD_SUPPORTS_PLUGINS
7036 /* Don't check format of files claimed by plugin. */
7037 if (file->flags.claimed)
7038 continue;
7039 #endif /* BFD_SUPPORTS_PLUGINS */
7040 input_bfd = file->the_bfd;
7041 compatible
7042 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7043 command_line.accept_unknown_input_arch);
7044
7045 /* In general it is not possible to perform a relocatable
7046 link between differing object formats when the input
7047 file has relocations, because the relocations in the
7048 input format may not have equivalent representations in
7049 the output format (and besides BFD does not translate
7050 relocs for other link purposes than a final link). */
7051 if (!file->flags.just_syms
7052 && (bfd_link_relocatable (&link_info)
7053 || link_info.emitrelocations)
7054 && (compatible == NULL
7055 || (bfd_get_flavour (input_bfd)
7056 != bfd_get_flavour (link_info.output_bfd)))
7057 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7058 {
7059 einfo (_("%F%P: relocatable linking with relocations from"
7060 " format %s (%pB) to format %s (%pB) is not supported\n"),
7061 bfd_get_target (input_bfd), input_bfd,
7062 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7063 /* einfo with %F exits. */
7064 }
7065
7066 if (compatible == NULL)
7067 {
7068 if (command_line.warn_mismatch)
7069 einfo (_("%X%P: %s architecture of input file `%pB'"
7070 " is incompatible with %s output\n"),
7071 bfd_printable_name (input_bfd), input_bfd,
7072 bfd_printable_name (link_info.output_bfd));
7073 }
7074
7075 /* If the input bfd has no contents, it shouldn't set the
7076 private data of the output bfd. */
7077 else if (!file->flags.just_syms
7078 && ((input_bfd->flags & DYNAMIC) != 0
7079 || bfd_count_sections (input_bfd) != 0))
7080 {
7081 bfd_error_handler_type pfn = NULL;
7082
7083 /* If we aren't supposed to warn about mismatched input
7084 files, temporarily set the BFD error handler to a
7085 function which will do nothing. We still want to call
7086 bfd_merge_private_bfd_data, since it may set up
7087 information which is needed in the output file. */
7088 if (!command_line.warn_mismatch)
7089 pfn = bfd_set_error_handler (ignore_bfd_errors);
7090 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7091 {
7092 if (command_line.warn_mismatch)
7093 einfo (_("%X%P: failed to merge target specific data"
7094 " of file %pB\n"), input_bfd);
7095 }
7096 if (!command_line.warn_mismatch)
7097 bfd_set_error_handler (pfn);
7098 }
7099 }
7100 }
7101
7102 /* Look through all the global common symbols and attach them to the
7103 correct section. The -sort-common command line switch may be used
7104 to roughly sort the entries by alignment. */
7105
7106 static void
7107 lang_common (void)
7108 {
7109 if (link_info.inhibit_common_definition)
7110 return;
7111 if (bfd_link_relocatable (&link_info)
7112 && !command_line.force_common_definition)
7113 return;
7114
7115 if (!config.sort_common)
7116 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7117 else
7118 {
7119 unsigned int power;
7120
7121 if (config.sort_common == sort_descending)
7122 {
7123 for (power = 4; power > 0; power--)
7124 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7125
7126 power = 0;
7127 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7128 }
7129 else
7130 {
7131 for (power = 0; power <= 4; power++)
7132 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7133
7134 power = (unsigned int) -1;
7135 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7136 }
7137 }
7138 }
7139
7140 /* Place one common symbol in the correct section. */
7141
7142 static bool
7143 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7144 {
7145 unsigned int power_of_two;
7146 bfd_vma size;
7147 asection *section;
7148
7149 if (h->type != bfd_link_hash_common)
7150 return true;
7151
7152 size = h->u.c.size;
7153 power_of_two = h->u.c.p->alignment_power;
7154
7155 if (config.sort_common == sort_descending
7156 && power_of_two < *(unsigned int *) info)
7157 return true;
7158 else if (config.sort_common == sort_ascending
7159 && power_of_two > *(unsigned int *) info)
7160 return true;
7161
7162 section = h->u.c.p->section;
7163 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7164 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7165 h->root.string);
7166
7167 if (config.map_file != NULL)
7168 {
7169 static bool header_printed;
7170 int len;
7171 char *name;
7172 char buf[50];
7173
7174 if (!header_printed)
7175 {
7176 minfo (_("\nAllocating common symbols\n"));
7177 minfo (_("Common symbol size file\n\n"));
7178 header_printed = true;
7179 }
7180
7181 name = bfd_demangle (link_info.output_bfd, h->root.string,
7182 DMGL_ANSI | DMGL_PARAMS);
7183 if (name == NULL)
7184 {
7185 minfo ("%s", h->root.string);
7186 len = strlen (h->root.string);
7187 }
7188 else
7189 {
7190 minfo ("%s", name);
7191 len = strlen (name);
7192 free (name);
7193 }
7194
7195 if (len >= 19)
7196 {
7197 print_nl ();
7198 len = 0;
7199 }
7200 while (len < 20)
7201 {
7202 print_space ();
7203 ++len;
7204 }
7205
7206 minfo ("0x");
7207 if (size <= 0xffffffff)
7208 sprintf (buf, "%lx", (unsigned long) size);
7209 else
7210 sprintf_vma (buf, size);
7211 minfo ("%s", buf);
7212 len = strlen (buf);
7213
7214 while (len < 16)
7215 {
7216 print_space ();
7217 ++len;
7218 }
7219
7220 minfo ("%pB\n", section->owner);
7221 }
7222
7223 return true;
7224 }
7225
7226 /* Handle a single orphan section S, placing the orphan into an appropriate
7227 output section. The effects of the --orphan-handling command line
7228 option are handled here. */
7229
7230 static void
7231 ldlang_place_orphan (asection *s)
7232 {
7233 if (config.orphan_handling == orphan_handling_discard)
7234 {
7235 lang_output_section_statement_type *os;
7236 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7237 if (os->addr_tree == NULL
7238 && (bfd_link_relocatable (&link_info)
7239 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7240 os->addr_tree = exp_intop (0);
7241 lang_add_section (&os->children, s, NULL, NULL, os);
7242 }
7243 else
7244 {
7245 lang_output_section_statement_type *os;
7246 const char *name = s->name;
7247 int constraint = 0;
7248
7249 if (config.orphan_handling == orphan_handling_error)
7250 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7251 s, s->owner);
7252
7253 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7254 constraint = SPECIAL;
7255
7256 os = ldemul_place_orphan (s, name, constraint);
7257 if (os == NULL)
7258 {
7259 os = lang_output_section_statement_lookup (name, constraint, 1);
7260 if (os->addr_tree == NULL
7261 && (bfd_link_relocatable (&link_info)
7262 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7263 os->addr_tree = exp_intop (0);
7264 lang_add_section (&os->children, s, NULL, NULL, os);
7265 }
7266
7267 if (config.orphan_handling == orphan_handling_warn)
7268 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7269 "placed in section `%s'\n"),
7270 s, s->owner, os->name);
7271 }
7272 }
7273
7274 /* Run through the input files and ensure that every input section has
7275 somewhere to go. If one is found without a destination then create
7276 an input request and place it into the statement tree. */
7277
7278 static void
7279 lang_place_orphans (void)
7280 {
7281 LANG_FOR_EACH_INPUT_STATEMENT (file)
7282 {
7283 asection *s;
7284
7285 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7286 {
7287 if (s->output_section == NULL)
7288 {
7289 /* This section of the file is not attached, root
7290 around for a sensible place for it to go. */
7291
7292 if (file->flags.just_syms)
7293 bfd_link_just_syms (file->the_bfd, s, &link_info);
7294 else if (lang_discard_section_p (s))
7295 s->output_section = bfd_abs_section_ptr;
7296 else if (strcmp (s->name, "COMMON") == 0)
7297 {
7298 /* This is a lonely common section which must have
7299 come from an archive. We attach to the section
7300 with the wildcard. */
7301 if (!bfd_link_relocatable (&link_info)
7302 || command_line.force_common_definition)
7303 {
7304 if (default_common_section == NULL)
7305 default_common_section
7306 = lang_output_section_statement_lookup (".bss", 0, 1);
7307 lang_add_section (&default_common_section->children, s,
7308 NULL, NULL, default_common_section);
7309 }
7310 }
7311 else
7312 ldlang_place_orphan (s);
7313 }
7314 }
7315 }
7316 }
7317
7318 void
7319 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7320 {
7321 flagword *ptr_flags;
7322
7323 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7324
7325 while (*flags)
7326 {
7327 switch (*flags)
7328 {
7329 /* PR 17900: An exclamation mark in the attributes reverses
7330 the sense of any of the attributes that follow. */
7331 case '!':
7332 invert = !invert;
7333 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7334 break;
7335
7336 case 'A': case 'a':
7337 *ptr_flags |= SEC_ALLOC;
7338 break;
7339
7340 case 'R': case 'r':
7341 *ptr_flags |= SEC_READONLY;
7342 break;
7343
7344 case 'W': case 'w':
7345 *ptr_flags |= SEC_DATA;
7346 break;
7347
7348 case 'X': case 'x':
7349 *ptr_flags |= SEC_CODE;
7350 break;
7351
7352 case 'L': case 'l':
7353 case 'I': case 'i':
7354 *ptr_flags |= SEC_LOAD;
7355 break;
7356
7357 default:
7358 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7359 *flags, *flags);
7360 break;
7361 }
7362 flags++;
7363 }
7364 }
7365
7366 /* Call a function on each real input file. This function will be
7367 called on an archive, but not on the elements. */
7368
7369 void
7370 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7371 {
7372 lang_input_statement_type *f;
7373
7374 for (f = (void *) input_file_chain.head;
7375 f != NULL;
7376 f = f->next_real_file)
7377 if (f->flags.real)
7378 func (f);
7379 }
7380
7381 /* Call a function on each real file. The function will be called on
7382 all the elements of an archive which are included in the link, but
7383 will not be called on the archive file itself. */
7384
7385 void
7386 lang_for_each_file (void (*func) (lang_input_statement_type *))
7387 {
7388 LANG_FOR_EACH_INPUT_STATEMENT (f)
7389 {
7390 if (f->flags.real)
7391 func (f);
7392 }
7393 }
7394
7395 void
7396 ldlang_add_file (lang_input_statement_type *entry)
7397 {
7398 lang_statement_append (&file_chain, entry, &entry->next);
7399
7400 /* The BFD linker needs to have a list of all input BFDs involved in
7401 a link. */
7402 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7403 && entry->the_bfd->link.next == NULL);
7404 ASSERT (entry->the_bfd != link_info.output_bfd);
7405
7406 *link_info.input_bfds_tail = entry->the_bfd;
7407 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7408 bfd_set_usrdata (entry->the_bfd, entry);
7409 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7410
7411 /* Look through the sections and check for any which should not be
7412 included in the link. We need to do this now, so that we can
7413 notice when the backend linker tries to report multiple
7414 definition errors for symbols which are in sections we aren't
7415 going to link. FIXME: It might be better to entirely ignore
7416 symbols which are defined in sections which are going to be
7417 discarded. This would require modifying the backend linker for
7418 each backend which might set the SEC_LINK_ONCE flag. If we do
7419 this, we should probably handle SEC_EXCLUDE in the same way. */
7420
7421 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7422 }
7423
7424 void
7425 lang_add_output (const char *name, int from_script)
7426 {
7427 /* Make -o on command line override OUTPUT in script. */
7428 if (!had_output_filename || !from_script)
7429 {
7430 output_filename = name;
7431 had_output_filename = true;
7432 }
7433 }
7434
7435 lang_output_section_statement_type *
7436 lang_enter_output_section_statement (const char *output_section_statement_name,
7437 etree_type *address_exp,
7438 enum section_type sectype,
7439 etree_type *align,
7440 etree_type *subalign,
7441 etree_type *ebase,
7442 int constraint,
7443 int align_with_input)
7444 {
7445 lang_output_section_statement_type *os;
7446
7447 os = lang_output_section_statement_lookup (output_section_statement_name,
7448 constraint, 2);
7449 current_section = os;
7450
7451 if (os->addr_tree == NULL)
7452 {
7453 os->addr_tree = address_exp;
7454 }
7455 os->sectype = sectype;
7456 if (sectype != noload_section)
7457 os->flags = SEC_NO_FLAGS;
7458 else
7459 os->flags = SEC_NEVER_LOAD;
7460 os->block_value = 1;
7461
7462 /* Make next things chain into subchain of this. */
7463 push_stat_ptr (&os->children);
7464
7465 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7466 if (os->align_lma_with_input && align != NULL)
7467 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7468 NULL);
7469
7470 os->subsection_alignment = subalign;
7471 os->section_alignment = align;
7472
7473 os->load_base = ebase;
7474 return os;
7475 }
7476
7477 void
7478 lang_final (void)
7479 {
7480 lang_output_statement_type *new_stmt;
7481
7482 new_stmt = new_stat (lang_output_statement, stat_ptr);
7483 new_stmt->name = output_filename;
7484 }
7485
7486 /* Reset the current counters in the regions. */
7487
7488 void
7489 lang_reset_memory_regions (void)
7490 {
7491 lang_memory_region_type *p = lang_memory_region_list;
7492 asection *o;
7493 lang_output_section_statement_type *os;
7494
7495 for (p = lang_memory_region_list; p != NULL; p = p->next)
7496 {
7497 p->current = p->origin;
7498 p->last_os = NULL;
7499 }
7500
7501 for (os = (void *) lang_os_list.head;
7502 os != NULL;
7503 os = os->next)
7504 {
7505 os->processed_vma = false;
7506 os->processed_lma = false;
7507 }
7508
7509 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7510 {
7511 /* Save the last size for possible use by bfd_relax_section. */
7512 o->rawsize = o->size;
7513 if (!(o->flags & SEC_FIXED_SIZE))
7514 o->size = 0;
7515 }
7516 }
7517
7518 /* Worker for lang_gc_sections_1. */
7519
7520 static void
7521 gc_section_callback (lang_wild_statement_type *ptr,
7522 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7523 asection *section,
7524 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7525 void *data ATTRIBUTE_UNUSED)
7526 {
7527 /* If the wild pattern was marked KEEP, the member sections
7528 should be as well. */
7529 if (ptr->keep_sections)
7530 section->flags |= SEC_KEEP;
7531 }
7532
7533 /* Iterate over sections marking them against GC. */
7534
7535 static void
7536 lang_gc_sections_1 (lang_statement_union_type *s)
7537 {
7538 for (; s != NULL; s = s->header.next)
7539 {
7540 switch (s->header.type)
7541 {
7542 case lang_wild_statement_enum:
7543 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7544 break;
7545 case lang_constructors_statement_enum:
7546 lang_gc_sections_1 (constructor_list.head);
7547 break;
7548 case lang_output_section_statement_enum:
7549 lang_gc_sections_1 (s->output_section_statement.children.head);
7550 break;
7551 case lang_group_statement_enum:
7552 lang_gc_sections_1 (s->group_statement.children.head);
7553 break;
7554 default:
7555 break;
7556 }
7557 }
7558 }
7559
7560 static void
7561 lang_gc_sections (void)
7562 {
7563 /* Keep all sections so marked in the link script. */
7564 lang_gc_sections_1 (statement_list.head);
7565
7566 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7567 the special case of .stabstr debug info. (See bfd/stabs.c)
7568 Twiddle the flag here, to simplify later linker code. */
7569 if (bfd_link_relocatable (&link_info))
7570 {
7571 LANG_FOR_EACH_INPUT_STATEMENT (f)
7572 {
7573 asection *sec;
7574 #if BFD_SUPPORTS_PLUGINS
7575 if (f->flags.claimed)
7576 continue;
7577 #endif
7578 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7579 if ((sec->flags & SEC_DEBUGGING) == 0
7580 || strcmp (sec->name, ".stabstr") != 0)
7581 sec->flags &= ~SEC_EXCLUDE;
7582 }
7583 }
7584
7585 if (link_info.gc_sections)
7586 bfd_gc_sections (link_info.output_bfd, &link_info);
7587 }
7588
7589 /* Worker for lang_find_relro_sections_1. */
7590
7591 static void
7592 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7593 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7594 asection *section,
7595 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7596 void *data)
7597 {
7598 /* Discarded, excluded and ignored sections effectively have zero
7599 size. */
7600 if (section->output_section != NULL
7601 && section->output_section->owner == link_info.output_bfd
7602 && (section->output_section->flags & SEC_EXCLUDE) == 0
7603 && !IGNORE_SECTION (section)
7604 && section->size != 0)
7605 {
7606 bool *has_relro_section = (bool *) data;
7607 *has_relro_section = true;
7608 }
7609 }
7610
7611 /* Iterate over sections for relro sections. */
7612
7613 static void
7614 lang_find_relro_sections_1 (lang_statement_union_type *s,
7615 seg_align_type *seg,
7616 bool *has_relro_section)
7617 {
7618 if (*has_relro_section)
7619 return;
7620
7621 for (; s != NULL; s = s->header.next)
7622 {
7623 if (s == seg->relro_end_stat)
7624 break;
7625
7626 switch (s->header.type)
7627 {
7628 case lang_wild_statement_enum:
7629 walk_wild (&s->wild_statement,
7630 find_relro_section_callback,
7631 has_relro_section);
7632 break;
7633 case lang_constructors_statement_enum:
7634 lang_find_relro_sections_1 (constructor_list.head,
7635 seg, has_relro_section);
7636 break;
7637 case lang_output_section_statement_enum:
7638 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7639 seg, has_relro_section);
7640 break;
7641 case lang_group_statement_enum:
7642 lang_find_relro_sections_1 (s->group_statement.children.head,
7643 seg, has_relro_section);
7644 break;
7645 default:
7646 break;
7647 }
7648 }
7649 }
7650
7651 static void
7652 lang_find_relro_sections (void)
7653 {
7654 bool has_relro_section = false;
7655
7656 /* Check all sections in the link script. */
7657
7658 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7659 &expld.dataseg, &has_relro_section);
7660
7661 if (!has_relro_section)
7662 link_info.relro = false;
7663 }
7664
7665 /* Relax all sections until bfd_relax_section gives up. */
7666
7667 void
7668 lang_relax_sections (bool need_layout)
7669 {
7670 if (RELAXATION_ENABLED)
7671 {
7672 /* We may need more than one relaxation pass. */
7673 int i = link_info.relax_pass;
7674
7675 /* The backend can use it to determine the current pass. */
7676 link_info.relax_pass = 0;
7677
7678 while (i--)
7679 {
7680 /* Keep relaxing until bfd_relax_section gives up. */
7681 bool relax_again;
7682
7683 link_info.relax_trip = -1;
7684 do
7685 {
7686 link_info.relax_trip++;
7687
7688 /* Note: pe-dll.c does something like this also. If you find
7689 you need to change this code, you probably need to change
7690 pe-dll.c also. DJ */
7691
7692 /* Do all the assignments with our current guesses as to
7693 section sizes. */
7694 lang_do_assignments (lang_assigning_phase_enum);
7695
7696 /* We must do this after lang_do_assignments, because it uses
7697 size. */
7698 lang_reset_memory_regions ();
7699
7700 /* Perform another relax pass - this time we know where the
7701 globals are, so can make a better guess. */
7702 relax_again = false;
7703 lang_size_sections (&relax_again, false);
7704 }
7705 while (relax_again);
7706
7707 link_info.relax_pass++;
7708 }
7709 need_layout = true;
7710 }
7711
7712 if (need_layout)
7713 {
7714 /* Final extra sizing to report errors. */
7715 lang_do_assignments (lang_assigning_phase_enum);
7716 lang_reset_memory_regions ();
7717 lang_size_sections (NULL, true);
7718 }
7719 }
7720
7721 #if BFD_SUPPORTS_PLUGINS
7722 /* Find the insert point for the plugin's replacement files. We
7723 place them after the first claimed real object file, or if the
7724 first claimed object is an archive member, after the last real
7725 object file immediately preceding the archive. In the event
7726 no objects have been claimed at all, we return the first dummy
7727 object file on the list as the insert point; that works, but
7728 the callee must be careful when relinking the file_chain as it
7729 is not actually on that chain, only the statement_list and the
7730 input_file list; in that case, the replacement files must be
7731 inserted at the head of the file_chain. */
7732
7733 static lang_input_statement_type *
7734 find_replacements_insert_point (bool *before)
7735 {
7736 lang_input_statement_type *claim1, *lastobject;
7737 lastobject = (void *) input_file_chain.head;
7738 for (claim1 = (void *) file_chain.head;
7739 claim1 != NULL;
7740 claim1 = claim1->next)
7741 {
7742 if (claim1->flags.claimed)
7743 {
7744 *before = claim1->flags.claim_archive;
7745 return claim1->flags.claim_archive ? lastobject : claim1;
7746 }
7747 /* Update lastobject if this is a real object file. */
7748 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7749 lastobject = claim1;
7750 }
7751 /* No files were claimed by the plugin. Choose the last object
7752 file found on the list (maybe the first, dummy entry) as the
7753 insert point. */
7754 *before = false;
7755 return lastobject;
7756 }
7757
7758 /* Find where to insert ADD, an archive element or shared library
7759 added during a rescan. */
7760
7761 static lang_input_statement_type **
7762 find_rescan_insertion (lang_input_statement_type *add)
7763 {
7764 bfd *add_bfd = add->the_bfd;
7765 lang_input_statement_type *f;
7766 lang_input_statement_type *last_loaded = NULL;
7767 lang_input_statement_type *before = NULL;
7768 lang_input_statement_type **iter = NULL;
7769
7770 if (add_bfd->my_archive != NULL)
7771 add_bfd = add_bfd->my_archive;
7772
7773 /* First look through the input file chain, to find an object file
7774 before the one we've rescanned. Normal object files always
7775 appear on both the input file chain and the file chain, so this
7776 lets us get quickly to somewhere near the correct place on the
7777 file chain if it is full of archive elements. Archives don't
7778 appear on the file chain, but if an element has been extracted
7779 then their input_statement->next points at it. */
7780 for (f = (void *) input_file_chain.head;
7781 f != NULL;
7782 f = f->next_real_file)
7783 {
7784 if (f->the_bfd == add_bfd)
7785 {
7786 before = last_loaded;
7787 if (f->next != NULL)
7788 return &f->next->next;
7789 }
7790 if (f->the_bfd != NULL && f->next != NULL)
7791 last_loaded = f;
7792 }
7793
7794 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7795 *iter != NULL;
7796 iter = &(*iter)->next)
7797 if (!(*iter)->flags.claim_archive
7798 && (*iter)->the_bfd->my_archive == NULL)
7799 break;
7800
7801 return iter;
7802 }
7803
7804 /* Insert SRCLIST into DESTLIST after given element by chaining
7805 on FIELD as the next-pointer. (Counterintuitively does not need
7806 a pointer to the actual after-node itself, just its chain field.) */
7807
7808 static void
7809 lang_list_insert_after (lang_statement_list_type *destlist,
7810 lang_statement_list_type *srclist,
7811 lang_statement_union_type **field)
7812 {
7813 *(srclist->tail) = *field;
7814 *field = srclist->head;
7815 if (destlist->tail == field)
7816 destlist->tail = srclist->tail;
7817 }
7818
7819 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7820 was taken as a copy of it and leave them in ORIGLIST. */
7821
7822 static void
7823 lang_list_remove_tail (lang_statement_list_type *destlist,
7824 lang_statement_list_type *origlist)
7825 {
7826 union lang_statement_union **savetail;
7827 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7828 ASSERT (origlist->head == destlist->head);
7829 savetail = origlist->tail;
7830 origlist->head = *(savetail);
7831 origlist->tail = destlist->tail;
7832 destlist->tail = savetail;
7833 *savetail = NULL;
7834 }
7835
7836 static lang_statement_union_type **
7837 find_next_input_statement (lang_statement_union_type **s)
7838 {
7839 for ( ; *s; s = &(*s)->header.next)
7840 {
7841 lang_statement_union_type **t;
7842 switch ((*s)->header.type)
7843 {
7844 case lang_input_statement_enum:
7845 return s;
7846 case lang_wild_statement_enum:
7847 t = &(*s)->wild_statement.children.head;
7848 break;
7849 case lang_group_statement_enum:
7850 t = &(*s)->group_statement.children.head;
7851 break;
7852 case lang_output_section_statement_enum:
7853 t = &(*s)->output_section_statement.children.head;
7854 break;
7855 default:
7856 continue;
7857 }
7858 t = find_next_input_statement (t);
7859 if (*t)
7860 return t;
7861 }
7862 return s;
7863 }
7864 #endif /* BFD_SUPPORTS_PLUGINS */
7865
7866 /* Add NAME to the list of garbage collection entry points. */
7867
7868 void
7869 lang_add_gc_name (const char *name)
7870 {
7871 struct bfd_sym_chain *sym;
7872
7873 if (name == NULL)
7874 return;
7875
7876 sym = stat_alloc (sizeof (*sym));
7877
7878 sym->next = link_info.gc_sym_list;
7879 sym->name = name;
7880 link_info.gc_sym_list = sym;
7881 }
7882
7883 /* Check relocations. */
7884
7885 static void
7886 lang_check_relocs (void)
7887 {
7888 if (link_info.check_relocs_after_open_input)
7889 {
7890 bfd *abfd;
7891
7892 for (abfd = link_info.input_bfds;
7893 abfd != (bfd *) NULL; abfd = abfd->link.next)
7894 if (!bfd_link_check_relocs (abfd, &link_info))
7895 {
7896 /* No object output, fail return. */
7897 config.make_executable = false;
7898 /* Note: we do not abort the loop, but rather
7899 continue the scan in case there are other
7900 bad relocations to report. */
7901 }
7902 }
7903 }
7904
7905 /* Look through all output sections looking for places where we can
7906 propagate forward the lma region. */
7907
7908 static void
7909 lang_propagate_lma_regions (void)
7910 {
7911 lang_output_section_statement_type *os;
7912
7913 for (os = (void *) lang_os_list.head;
7914 os != NULL;
7915 os = os->next)
7916 {
7917 if (os->prev != NULL
7918 && os->lma_region == NULL
7919 && os->load_base == NULL
7920 && os->addr_tree == NULL
7921 && os->region == os->prev->region)
7922 os->lma_region = os->prev->lma_region;
7923 }
7924 }
7925
7926 void
7927 lang_process (void)
7928 {
7929 /* Finalize dynamic list. */
7930 if (link_info.dynamic_list)
7931 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7932
7933 current_target = default_target;
7934
7935 /* Open the output file. */
7936 lang_for_each_statement (ldlang_open_output);
7937 init_opb (NULL);
7938
7939 ldemul_create_output_section_statements ();
7940
7941 /* Add to the hash table all undefineds on the command line. */
7942 lang_place_undefineds ();
7943
7944 if (!bfd_section_already_linked_table_init ())
7945 einfo (_("%F%P: can not create hash table: %E\n"));
7946
7947 /* A first pass through the memory regions ensures that if any region
7948 references a symbol for its origin or length then this symbol will be
7949 added to the symbol table. Having these symbols in the symbol table
7950 means that when we call open_input_bfds PROVIDE statements will
7951 trigger to provide any needed symbols. The regions origins and
7952 lengths are not assigned as a result of this call. */
7953 lang_do_memory_regions (false);
7954
7955 /* Create a bfd for each input file. */
7956 current_target = default_target;
7957 lang_statement_iteration++;
7958 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7959
7960 /* Now that open_input_bfds has processed assignments and provide
7961 statements we can give values to symbolic origin/length now. */
7962 lang_do_memory_regions (true);
7963
7964 #if BFD_SUPPORTS_PLUGINS
7965 if (link_info.lto_plugin_active)
7966 {
7967 lang_statement_list_type added;
7968 lang_statement_list_type files, inputfiles;
7969
7970 /* Now all files are read, let the plugin(s) decide if there
7971 are any more to be added to the link before we call the
7972 emulation's after_open hook. We create a private list of
7973 input statements for this purpose, which we will eventually
7974 insert into the global statement list after the first claimed
7975 file. */
7976 added = *stat_ptr;
7977 /* We need to manipulate all three chains in synchrony. */
7978 files = file_chain;
7979 inputfiles = input_file_chain;
7980 if (plugin_call_all_symbols_read ())
7981 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7982 plugin_error_plugin ());
7983 link_info.lto_all_symbols_read = true;
7984 /* Open any newly added files, updating the file chains. */
7985 plugin_undefs = link_info.hash->undefs_tail;
7986 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7987 if (plugin_undefs == link_info.hash->undefs_tail)
7988 plugin_undefs = NULL;
7989 /* Restore the global list pointer now they have all been added. */
7990 lang_list_remove_tail (stat_ptr, &added);
7991 /* And detach the fresh ends of the file lists. */
7992 lang_list_remove_tail (&file_chain, &files);
7993 lang_list_remove_tail (&input_file_chain, &inputfiles);
7994 /* Were any new files added? */
7995 if (added.head != NULL)
7996 {
7997 /* If so, we will insert them into the statement list immediately
7998 after the first input file that was claimed by the plugin,
7999 unless that file was an archive in which case it is inserted
8000 immediately before. */
8001 bool before;
8002 lang_statement_union_type **prev;
8003 plugin_insert = find_replacements_insert_point (&before);
8004 /* If a plugin adds input files without having claimed any, we
8005 don't really have a good idea where to place them. Just putting
8006 them at the start or end of the list is liable to leave them
8007 outside the crtbegin...crtend range. */
8008 ASSERT (plugin_insert != NULL);
8009 /* Splice the new statement list into the old one. */
8010 prev = &plugin_insert->header.next;
8011 if (before)
8012 {
8013 prev = find_next_input_statement (prev);
8014 if (*prev != (void *) plugin_insert->next_real_file)
8015 {
8016 /* We didn't find the expected input statement.
8017 Fall back to adding after plugin_insert. */
8018 prev = &plugin_insert->header.next;
8019 }
8020 }
8021 lang_list_insert_after (stat_ptr, &added, prev);
8022 /* Likewise for the file chains. */
8023 lang_list_insert_after (&input_file_chain, &inputfiles,
8024 (void *) &plugin_insert->next_real_file);
8025 /* We must be careful when relinking file_chain; we may need to
8026 insert the new files at the head of the list if the insert
8027 point chosen is the dummy first input file. */
8028 if (plugin_insert->filename)
8029 lang_list_insert_after (&file_chain, &files,
8030 (void *) &plugin_insert->next);
8031 else
8032 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8033
8034 /* Rescan archives in case new undefined symbols have appeared. */
8035 files = file_chain;
8036 lang_statement_iteration++;
8037 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8038 lang_list_remove_tail (&file_chain, &files);
8039 while (files.head != NULL)
8040 {
8041 lang_input_statement_type **insert;
8042 lang_input_statement_type **iter, *temp;
8043 bfd *my_arch;
8044
8045 insert = find_rescan_insertion (&files.head->input_statement);
8046 /* All elements from an archive can be added at once. */
8047 iter = &files.head->input_statement.next;
8048 my_arch = files.head->input_statement.the_bfd->my_archive;
8049 if (my_arch != NULL)
8050 for (; *iter != NULL; iter = &(*iter)->next)
8051 if ((*iter)->the_bfd->my_archive != my_arch)
8052 break;
8053 temp = *insert;
8054 *insert = &files.head->input_statement;
8055 files.head = (lang_statement_union_type *) *iter;
8056 *iter = temp;
8057 if (my_arch != NULL)
8058 {
8059 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8060 if (parent != NULL)
8061 parent->next = (lang_input_statement_type *)
8062 ((char *) iter
8063 - offsetof (lang_input_statement_type, next));
8064 }
8065 }
8066 }
8067 }
8068 #endif /* BFD_SUPPORTS_PLUGINS */
8069
8070 /* Make sure that nobody has tried to add a symbol to this list
8071 before now. */
8072 ASSERT (link_info.gc_sym_list == NULL);
8073
8074 link_info.gc_sym_list = &entry_symbol;
8075
8076 if (entry_symbol.name == NULL)
8077 {
8078 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8079
8080 /* entry_symbol is normally initialied by a ENTRY definition in the
8081 linker script or the -e command line option. But if neither of
8082 these have been used, the target specific backend may still have
8083 provided an entry symbol via a call to lang_default_entry().
8084 Unfortunately this value will not be processed until lang_end()
8085 is called, long after this function has finished. So detect this
8086 case here and add the target's entry symbol to the list of starting
8087 points for garbage collection resolution. */
8088 lang_add_gc_name (entry_symbol_default);
8089 }
8090
8091 lang_add_gc_name (link_info.init_function);
8092 lang_add_gc_name (link_info.fini_function);
8093
8094 ldemul_after_open ();
8095 if (config.map_file != NULL)
8096 lang_print_asneeded ();
8097
8098 ldlang_open_ctf ();
8099
8100 bfd_section_already_linked_table_free ();
8101
8102 /* Make sure that we're not mixing architectures. We call this
8103 after all the input files have been opened, but before we do any
8104 other processing, so that any operations merge_private_bfd_data
8105 does on the output file will be known during the rest of the
8106 link. */
8107 lang_check ();
8108
8109 /* Handle .exports instead of a version script if we're told to do so. */
8110 if (command_line.version_exports_section)
8111 lang_do_version_exports_section ();
8112
8113 /* Build all sets based on the information gathered from the input
8114 files. */
8115 ldctor_build_sets ();
8116
8117 /* Give initial values for __start and __stop symbols, so that ELF
8118 gc_sections will keep sections referenced by these symbols. Must
8119 be done before lang_do_assignments below. */
8120 if (config.build_constructors)
8121 lang_init_start_stop ();
8122
8123 /* PR 13683: We must rerun the assignments prior to running garbage
8124 collection in order to make sure that all symbol aliases are resolved. */
8125 lang_do_assignments (lang_mark_phase_enum);
8126 expld.phase = lang_first_phase_enum;
8127
8128 /* Size up the common data. */
8129 lang_common ();
8130
8131 /* Remove unreferenced sections if asked to. */
8132 lang_gc_sections ();
8133
8134 lang_mark_undefineds ();
8135
8136 /* Check relocations. */
8137 lang_check_relocs ();
8138
8139 ldemul_after_check_relocs ();
8140
8141 /* Update wild statements. */
8142 update_wild_statements (statement_list.head);
8143
8144 /* Run through the contours of the script and attach input sections
8145 to the correct output sections. */
8146 lang_statement_iteration++;
8147 map_input_to_output_sections (statement_list.head, NULL, NULL);
8148
8149 /* Start at the statement immediately after the special abs_section
8150 output statement, so that it isn't reordered. */
8151 process_insert_statements (&lang_os_list.head->header.next);
8152
8153 ldemul_before_place_orphans ();
8154
8155 /* Find any sections not attached explicitly and handle them. */
8156 lang_place_orphans ();
8157
8158 if (!bfd_link_relocatable (&link_info))
8159 {
8160 asection *found;
8161
8162 /* Merge SEC_MERGE sections. This has to be done after GC of
8163 sections, so that GCed sections are not merged, but before
8164 assigning dynamic symbols, since removing whole input sections
8165 is hard then. */
8166 bfd_merge_sections (link_info.output_bfd, &link_info);
8167
8168 /* Look for a text section and set the readonly attribute in it. */
8169 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8170
8171 if (found != NULL)
8172 {
8173 if (config.text_read_only)
8174 found->flags |= SEC_READONLY;
8175 else
8176 found->flags &= ~SEC_READONLY;
8177 }
8178 }
8179
8180 /* Merge together CTF sections. After this, only the symtab-dependent
8181 function and data object sections need adjustment. */
8182 lang_merge_ctf ();
8183
8184 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8185 examining things laid out late, like the strtab. */
8186 lang_write_ctf (0);
8187
8188 /* Copy forward lma regions for output sections in same lma region. */
8189 lang_propagate_lma_regions ();
8190
8191 /* Defining __start/__stop symbols early for --gc-sections to work
8192 around a glibc build problem can result in these symbols being
8193 defined when they should not be. Fix them now. */
8194 if (config.build_constructors)
8195 lang_undef_start_stop ();
8196
8197 /* Define .startof./.sizeof. symbols with preliminary values before
8198 dynamic symbols are created. */
8199 if (!bfd_link_relocatable (&link_info))
8200 lang_init_startof_sizeof ();
8201
8202 /* Do anything special before sizing sections. This is where ELF
8203 and other back-ends size dynamic sections. */
8204 ldemul_before_allocation ();
8205
8206 /* We must record the program headers before we try to fix the
8207 section positions, since they will affect SIZEOF_HEADERS. */
8208 lang_record_phdrs ();
8209
8210 /* Check relro sections. */
8211 if (link_info.relro && !bfd_link_relocatable (&link_info))
8212 lang_find_relro_sections ();
8213
8214 /* Size up the sections. */
8215 lang_size_sections (NULL, !RELAXATION_ENABLED);
8216
8217 /* See if anything special should be done now we know how big
8218 everything is. This is where relaxation is done. */
8219 ldemul_after_allocation ();
8220
8221 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8222 lang_finalize_start_stop ();
8223
8224 /* Do all the assignments again, to report errors. Assignment
8225 statements are processed multiple times, updating symbols; In
8226 open_input_bfds, lang_do_assignments, and lang_size_sections.
8227 Since lang_relax_sections calls lang_do_assignments, symbols are
8228 also updated in ldemul_after_allocation. */
8229 lang_do_assignments (lang_final_phase_enum);
8230
8231 ldemul_finish ();
8232
8233 /* Convert absolute symbols to section relative. */
8234 ldexp_finalize_syms ();
8235
8236 /* Make sure that the section addresses make sense. */
8237 if (command_line.check_section_addresses)
8238 lang_check_section_addresses ();
8239
8240 /* Check any required symbols are known. */
8241 ldlang_check_require_defined_symbols ();
8242
8243 lang_end ();
8244 }
8245
8246 /* EXPORTED TO YACC */
8247
8248 void
8249 lang_add_wild (struct wildcard_spec *filespec,
8250 struct wildcard_list *section_list,
8251 bool keep_sections)
8252 {
8253 struct wildcard_list *curr, *next;
8254 lang_wild_statement_type *new_stmt;
8255
8256 /* Reverse the list as the parser puts it back to front. */
8257 for (curr = section_list, section_list = NULL;
8258 curr != NULL;
8259 section_list = curr, curr = next)
8260 {
8261 next = curr->next;
8262 curr->next = section_list;
8263 }
8264
8265 if (filespec != NULL && filespec->name != NULL)
8266 {
8267 if (strcmp (filespec->name, "*") == 0)
8268 filespec->name = NULL;
8269 else if (!wildcardp (filespec->name))
8270 lang_has_input_file = true;
8271 }
8272
8273 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8274 new_stmt->filename = NULL;
8275 new_stmt->filenames_sorted = false;
8276 new_stmt->section_flag_list = NULL;
8277 new_stmt->exclude_name_list = NULL;
8278 if (filespec != NULL)
8279 {
8280 new_stmt->filename = filespec->name;
8281 new_stmt->filenames_sorted = filespec->sorted == by_name;
8282 new_stmt->section_flag_list = filespec->section_flag_list;
8283 new_stmt->exclude_name_list = filespec->exclude_name_list;
8284 }
8285 new_stmt->section_list = section_list;
8286 new_stmt->keep_sections = keep_sections;
8287 lang_list_init (&new_stmt->children);
8288 analyze_walk_wild_section_handler (new_stmt);
8289 }
8290
8291 void
8292 lang_section_start (const char *name, etree_type *address,
8293 const segment_type *segment)
8294 {
8295 lang_address_statement_type *ad;
8296
8297 ad = new_stat (lang_address_statement, stat_ptr);
8298 ad->section_name = name;
8299 ad->address = address;
8300 ad->segment = segment;
8301 }
8302
8303 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8304 because of a -e argument on the command line, or zero if this is
8305 called by ENTRY in a linker script. Command line arguments take
8306 precedence. */
8307
8308 void
8309 lang_add_entry (const char *name, bool cmdline)
8310 {
8311 if (entry_symbol.name == NULL
8312 || cmdline
8313 || !entry_from_cmdline)
8314 {
8315 entry_symbol.name = name;
8316 entry_from_cmdline = cmdline;
8317 }
8318 }
8319
8320 /* Set the default start symbol to NAME. .em files should use this,
8321 not lang_add_entry, to override the use of "start" if neither the
8322 linker script nor the command line specifies an entry point. NAME
8323 must be permanently allocated. */
8324 void
8325 lang_default_entry (const char *name)
8326 {
8327 entry_symbol_default = name;
8328 }
8329
8330 void
8331 lang_add_target (const char *name)
8332 {
8333 lang_target_statement_type *new_stmt;
8334
8335 new_stmt = new_stat (lang_target_statement, stat_ptr);
8336 new_stmt->target = name;
8337 }
8338
8339 void
8340 lang_add_map (const char *name)
8341 {
8342 while (*name)
8343 {
8344 switch (*name)
8345 {
8346 case 'F':
8347 map_option_f = true;
8348 break;
8349 }
8350 name++;
8351 }
8352 }
8353
8354 void
8355 lang_add_fill (fill_type *fill)
8356 {
8357 lang_fill_statement_type *new_stmt;
8358
8359 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8360 new_stmt->fill = fill;
8361 }
8362
8363 void
8364 lang_add_data (int type, union etree_union *exp)
8365 {
8366 lang_data_statement_type *new_stmt;
8367
8368 new_stmt = new_stat (lang_data_statement, stat_ptr);
8369 new_stmt->exp = exp;
8370 new_stmt->type = type;
8371 }
8372
8373 /* Create a new reloc statement. RELOC is the BFD relocation type to
8374 generate. HOWTO is the corresponding howto structure (we could
8375 look this up, but the caller has already done so). SECTION is the
8376 section to generate a reloc against, or NAME is the name of the
8377 symbol to generate a reloc against. Exactly one of SECTION and
8378 NAME must be NULL. ADDEND is an expression for the addend. */
8379
8380 void
8381 lang_add_reloc (bfd_reloc_code_real_type reloc,
8382 reloc_howto_type *howto,
8383 asection *section,
8384 const char *name,
8385 union etree_union *addend)
8386 {
8387 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8388
8389 p->reloc = reloc;
8390 p->howto = howto;
8391 p->section = section;
8392 p->name = name;
8393 p->addend_exp = addend;
8394
8395 p->addend_value = 0;
8396 p->output_section = NULL;
8397 p->output_offset = 0;
8398 }
8399
8400 lang_assignment_statement_type *
8401 lang_add_assignment (etree_type *exp)
8402 {
8403 lang_assignment_statement_type *new_stmt;
8404
8405 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8406 new_stmt->exp = exp;
8407 return new_stmt;
8408 }
8409
8410 void
8411 lang_add_attribute (enum statement_enum attribute)
8412 {
8413 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8414 }
8415
8416 void
8417 lang_startup (const char *name)
8418 {
8419 if (first_file->filename != NULL)
8420 {
8421 einfo (_("%F%P: multiple STARTUP files\n"));
8422 }
8423 first_file->filename = name;
8424 first_file->local_sym_name = name;
8425 first_file->flags.real = true;
8426 }
8427
8428 void
8429 lang_float (bool maybe)
8430 {
8431 lang_float_flag = maybe;
8432 }
8433
8434
8435 /* Work out the load- and run-time regions from a script statement, and
8436 store them in *LMA_REGION and *REGION respectively.
8437
8438 MEMSPEC is the name of the run-time region, or the value of
8439 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8440 LMA_MEMSPEC is the name of the load-time region, or null if the
8441 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8442 had an explicit load address.
8443
8444 It is an error to specify both a load region and a load address. */
8445
8446 static void
8447 lang_get_regions (lang_memory_region_type **region,
8448 lang_memory_region_type **lma_region,
8449 const char *memspec,
8450 const char *lma_memspec,
8451 bool have_lma,
8452 bool have_vma)
8453 {
8454 *lma_region = lang_memory_region_lookup (lma_memspec, false);
8455
8456 /* If no runtime region or VMA has been specified, but the load region
8457 has been specified, then use the load region for the runtime region
8458 as well. */
8459 if (lma_memspec != NULL
8460 && !have_vma
8461 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8462 *region = *lma_region;
8463 else
8464 *region = lang_memory_region_lookup (memspec, false);
8465
8466 if (have_lma && lma_memspec != 0)
8467 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8468 NULL);
8469 }
8470
8471 void
8472 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8473 lang_output_section_phdr_list *phdrs,
8474 const char *lma_memspec)
8475 {
8476 lang_get_regions (&current_section->region,
8477 &current_section->lma_region,
8478 memspec, lma_memspec,
8479 current_section->load_base != NULL,
8480 current_section->addr_tree != NULL);
8481
8482 current_section->fill = fill;
8483 current_section->phdrs = phdrs;
8484 pop_stat_ptr ();
8485 }
8486
8487 /* Set the output format type. -oformat overrides scripts. */
8488
8489 void
8490 lang_add_output_format (const char *format,
8491 const char *big,
8492 const char *little,
8493 int from_script)
8494 {
8495 if (output_target == NULL || !from_script)
8496 {
8497 if (command_line.endian == ENDIAN_BIG
8498 && big != NULL)
8499 format = big;
8500 else if (command_line.endian == ENDIAN_LITTLE
8501 && little != NULL)
8502 format = little;
8503
8504 output_target = format;
8505 }
8506 }
8507
8508 void
8509 lang_add_insert (const char *where, int is_before)
8510 {
8511 lang_insert_statement_type *new_stmt;
8512
8513 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8514 new_stmt->where = where;
8515 new_stmt->is_before = is_before;
8516 saved_script_handle = previous_script_handle;
8517 }
8518
8519 /* Enter a group. This creates a new lang_group_statement, and sets
8520 stat_ptr to build new statements within the group. */
8521
8522 void
8523 lang_enter_group (void)
8524 {
8525 lang_group_statement_type *g;
8526
8527 g = new_stat (lang_group_statement, stat_ptr);
8528 lang_list_init (&g->children);
8529 push_stat_ptr (&g->children);
8530 }
8531
8532 /* Leave a group. This just resets stat_ptr to start writing to the
8533 regular list of statements again. Note that this will not work if
8534 groups can occur inside anything else which can adjust stat_ptr,
8535 but currently they can't. */
8536
8537 void
8538 lang_leave_group (void)
8539 {
8540 pop_stat_ptr ();
8541 }
8542
8543 /* Add a new program header. This is called for each entry in a PHDRS
8544 command in a linker script. */
8545
8546 void
8547 lang_new_phdr (const char *name,
8548 etree_type *type,
8549 bool filehdr,
8550 bool phdrs,
8551 etree_type *at,
8552 etree_type *flags)
8553 {
8554 struct lang_phdr *n, **pp;
8555 bool hdrs;
8556
8557 n = stat_alloc (sizeof (struct lang_phdr));
8558 n->next = NULL;
8559 n->name = name;
8560 n->type = exp_get_vma (type, 0, "program header type");
8561 n->filehdr = filehdr;
8562 n->phdrs = phdrs;
8563 n->at = at;
8564 n->flags = flags;
8565
8566 hdrs = n->type == 1 && (phdrs || filehdr);
8567
8568 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8569 if (hdrs
8570 && (*pp)->type == 1
8571 && !((*pp)->filehdr || (*pp)->phdrs))
8572 {
8573 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8574 " when prior PT_LOAD headers lack them\n"), NULL);
8575 hdrs = false;
8576 }
8577
8578 *pp = n;
8579 }
8580
8581 /* Record the program header information in the output BFD. FIXME: We
8582 should not be calling an ELF specific function here. */
8583
8584 static void
8585 lang_record_phdrs (void)
8586 {
8587 unsigned int alc;
8588 asection **secs;
8589 lang_output_section_phdr_list *last;
8590 struct lang_phdr *l;
8591 lang_output_section_statement_type *os;
8592
8593 alc = 10;
8594 secs = (asection **) xmalloc (alc * sizeof (asection *));
8595 last = NULL;
8596
8597 for (l = lang_phdr_list; l != NULL; l = l->next)
8598 {
8599 unsigned int c;
8600 flagword flags;
8601 bfd_vma at;
8602
8603 c = 0;
8604 for (os = (void *) lang_os_list.head;
8605 os != NULL;
8606 os = os->next)
8607 {
8608 lang_output_section_phdr_list *pl;
8609
8610 if (os->constraint < 0)
8611 continue;
8612
8613 pl = os->phdrs;
8614 if (pl != NULL)
8615 last = pl;
8616 else
8617 {
8618 if (os->sectype == noload_section
8619 || os->bfd_section == NULL
8620 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8621 continue;
8622
8623 /* Don't add orphans to PT_INTERP header. */
8624 if (l->type == 3)
8625 continue;
8626
8627 if (last == NULL)
8628 {
8629 lang_output_section_statement_type *tmp_os;
8630
8631 /* If we have not run across a section with a program
8632 header assigned to it yet, then scan forwards to find
8633 one. This prevents inconsistencies in the linker's
8634 behaviour when a script has specified just a single
8635 header and there are sections in that script which are
8636 not assigned to it, and which occur before the first
8637 use of that header. See here for more details:
8638 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8639 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8640 if (tmp_os->phdrs)
8641 {
8642 last = tmp_os->phdrs;
8643 break;
8644 }
8645 if (last == NULL)
8646 einfo (_("%F%P: no sections assigned to phdrs\n"));
8647 }
8648 pl = last;
8649 }
8650
8651 if (os->bfd_section == NULL)
8652 continue;
8653
8654 for (; pl != NULL; pl = pl->next)
8655 {
8656 if (strcmp (pl->name, l->name) == 0)
8657 {
8658 if (c >= alc)
8659 {
8660 alc *= 2;
8661 secs = (asection **) xrealloc (secs,
8662 alc * sizeof (asection *));
8663 }
8664 secs[c] = os->bfd_section;
8665 ++c;
8666 pl->used = true;
8667 }
8668 }
8669 }
8670
8671 if (l->flags == NULL)
8672 flags = 0;
8673 else
8674 flags = exp_get_vma (l->flags, 0, "phdr flags");
8675
8676 if (l->at == NULL)
8677 at = 0;
8678 else
8679 at = exp_get_vma (l->at, 0, "phdr load address");
8680
8681 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8682 l->flags != NULL, flags, l->at != NULL,
8683 at, l->filehdr, l->phdrs, c, secs))
8684 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8685 }
8686
8687 free (secs);
8688
8689 /* Make sure all the phdr assignments succeeded. */
8690 for (os = (void *) lang_os_list.head;
8691 os != NULL;
8692 os = os->next)
8693 {
8694 lang_output_section_phdr_list *pl;
8695
8696 if (os->constraint < 0
8697 || os->bfd_section == NULL)
8698 continue;
8699
8700 for (pl = os->phdrs;
8701 pl != NULL;
8702 pl = pl->next)
8703 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8704 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8705 os->name, pl->name);
8706 }
8707 }
8708
8709 /* Record a list of sections which may not be cross referenced. */
8710
8711 void
8712 lang_add_nocrossref (lang_nocrossref_type *l)
8713 {
8714 struct lang_nocrossrefs *n;
8715
8716 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8717 n->next = nocrossref_list;
8718 n->list = l;
8719 n->onlyfirst = false;
8720 nocrossref_list = n;
8721
8722 /* Set notice_all so that we get informed about all symbols. */
8723 link_info.notice_all = true;
8724 }
8725
8726 /* Record a section that cannot be referenced from a list of sections. */
8727
8728 void
8729 lang_add_nocrossref_to (lang_nocrossref_type *l)
8730 {
8731 lang_add_nocrossref (l);
8732 nocrossref_list->onlyfirst = true;
8733 }
8734 \f
8735 /* Overlay handling. We handle overlays with some static variables. */
8736
8737 /* The overlay virtual address. */
8738 static etree_type *overlay_vma;
8739 /* And subsection alignment. */
8740 static etree_type *overlay_subalign;
8741
8742 /* An expression for the maximum section size seen so far. */
8743 static etree_type *overlay_max;
8744
8745 /* A list of all the sections in this overlay. */
8746
8747 struct overlay_list {
8748 struct overlay_list *next;
8749 lang_output_section_statement_type *os;
8750 };
8751
8752 static struct overlay_list *overlay_list;
8753
8754 /* Start handling an overlay. */
8755
8756 void
8757 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8758 {
8759 /* The grammar should prevent nested overlays from occurring. */
8760 ASSERT (overlay_vma == NULL
8761 && overlay_subalign == NULL
8762 && overlay_max == NULL);
8763
8764 overlay_vma = vma_expr;
8765 overlay_subalign = subalign;
8766 }
8767
8768 /* Start a section in an overlay. We handle this by calling
8769 lang_enter_output_section_statement with the correct VMA.
8770 lang_leave_overlay sets up the LMA and memory regions. */
8771
8772 void
8773 lang_enter_overlay_section (const char *name)
8774 {
8775 struct overlay_list *n;
8776 etree_type *size;
8777
8778 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8779 0, overlay_subalign, 0, 0, 0);
8780
8781 /* If this is the first section, then base the VMA of future
8782 sections on this one. This will work correctly even if `.' is
8783 used in the addresses. */
8784 if (overlay_list == NULL)
8785 overlay_vma = exp_nameop (ADDR, name);
8786
8787 /* Remember the section. */
8788 n = (struct overlay_list *) xmalloc (sizeof *n);
8789 n->os = current_section;
8790 n->next = overlay_list;
8791 overlay_list = n;
8792
8793 size = exp_nameop (SIZEOF, name);
8794
8795 /* Arrange to work out the maximum section end address. */
8796 if (overlay_max == NULL)
8797 overlay_max = size;
8798 else
8799 overlay_max = exp_binop (MAX_K, overlay_max, size);
8800 }
8801
8802 /* Finish a section in an overlay. There isn't any special to do
8803 here. */
8804
8805 void
8806 lang_leave_overlay_section (fill_type *fill,
8807 lang_output_section_phdr_list *phdrs)
8808 {
8809 const char *name;
8810 char *clean, *s2;
8811 const char *s1;
8812 char *buf;
8813
8814 name = current_section->name;
8815
8816 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8817 region and that no load-time region has been specified. It doesn't
8818 really matter what we say here, since lang_leave_overlay will
8819 override it. */
8820 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8821
8822 /* Define the magic symbols. */
8823
8824 clean = (char *) xmalloc (strlen (name) + 1);
8825 s2 = clean;
8826 for (s1 = name; *s1 != '\0'; s1++)
8827 if (ISALNUM (*s1) || *s1 == '_')
8828 *s2++ = *s1;
8829 *s2 = '\0';
8830
8831 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8832 sprintf (buf, "__load_start_%s", clean);
8833 lang_add_assignment (exp_provide (buf,
8834 exp_nameop (LOADADDR, name),
8835 false));
8836
8837 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8838 sprintf (buf, "__load_stop_%s", clean);
8839 lang_add_assignment (exp_provide (buf,
8840 exp_binop ('+',
8841 exp_nameop (LOADADDR, name),
8842 exp_nameop (SIZEOF, name)),
8843 false));
8844
8845 free (clean);
8846 }
8847
8848 /* Finish an overlay. If there are any overlay wide settings, this
8849 looks through all the sections in the overlay and sets them. */
8850
8851 void
8852 lang_leave_overlay (etree_type *lma_expr,
8853 int nocrossrefs,
8854 fill_type *fill,
8855 const char *memspec,
8856 lang_output_section_phdr_list *phdrs,
8857 const char *lma_memspec)
8858 {
8859 lang_memory_region_type *region;
8860 lang_memory_region_type *lma_region;
8861 struct overlay_list *l;
8862 lang_nocrossref_type *nocrossref;
8863
8864 lang_get_regions (&region, &lma_region,
8865 memspec, lma_memspec,
8866 lma_expr != NULL, false);
8867
8868 nocrossref = NULL;
8869
8870 /* After setting the size of the last section, set '.' to end of the
8871 overlay region. */
8872 if (overlay_list != NULL)
8873 {
8874 overlay_list->os->update_dot = 1;
8875 overlay_list->os->update_dot_tree
8876 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
8877 }
8878
8879 l = overlay_list;
8880 while (l != NULL)
8881 {
8882 struct overlay_list *next;
8883
8884 if (fill != NULL && l->os->fill == NULL)
8885 l->os->fill = fill;
8886
8887 l->os->region = region;
8888 l->os->lma_region = lma_region;
8889
8890 /* The first section has the load address specified in the
8891 OVERLAY statement. The rest are worked out from that.
8892 The base address is not needed (and should be null) if
8893 an LMA region was specified. */
8894 if (l->next == 0)
8895 {
8896 l->os->load_base = lma_expr;
8897 l->os->sectype = first_overlay_section;
8898 }
8899 if (phdrs != NULL && l->os->phdrs == NULL)
8900 l->os->phdrs = phdrs;
8901
8902 if (nocrossrefs)
8903 {
8904 lang_nocrossref_type *nc;
8905
8906 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8907 nc->name = l->os->name;
8908 nc->next = nocrossref;
8909 nocrossref = nc;
8910 }
8911
8912 next = l->next;
8913 free (l);
8914 l = next;
8915 }
8916
8917 if (nocrossref != NULL)
8918 lang_add_nocrossref (nocrossref);
8919
8920 overlay_vma = NULL;
8921 overlay_list = NULL;
8922 overlay_max = NULL;
8923 overlay_subalign = NULL;
8924 }
8925 \f
8926 /* Version handling. This is only useful for ELF. */
8927
8928 /* If PREV is NULL, return first version pattern matching particular symbol.
8929 If PREV is non-NULL, return first version pattern matching particular
8930 symbol after PREV (previously returned by lang_vers_match). */
8931
8932 static struct bfd_elf_version_expr *
8933 lang_vers_match (struct bfd_elf_version_expr_head *head,
8934 struct bfd_elf_version_expr *prev,
8935 const char *sym)
8936 {
8937 const char *c_sym;
8938 const char *cxx_sym = sym;
8939 const char *java_sym = sym;
8940 struct bfd_elf_version_expr *expr = NULL;
8941 enum demangling_styles curr_style;
8942
8943 curr_style = CURRENT_DEMANGLING_STYLE;
8944 cplus_demangle_set_style (no_demangling);
8945 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8946 if (!c_sym)
8947 c_sym = sym;
8948 cplus_demangle_set_style (curr_style);
8949
8950 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8951 {
8952 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8953 DMGL_PARAMS | DMGL_ANSI);
8954 if (!cxx_sym)
8955 cxx_sym = sym;
8956 }
8957 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8958 {
8959 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8960 if (!java_sym)
8961 java_sym = sym;
8962 }
8963
8964 if (head->htab && (prev == NULL || prev->literal))
8965 {
8966 struct bfd_elf_version_expr e;
8967
8968 switch (prev ? prev->mask : 0)
8969 {
8970 case 0:
8971 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8972 {
8973 e.pattern = c_sym;
8974 expr = (struct bfd_elf_version_expr *)
8975 htab_find ((htab_t) head->htab, &e);
8976 while (expr && strcmp (expr->pattern, c_sym) == 0)
8977 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8978 goto out_ret;
8979 else
8980 expr = expr->next;
8981 }
8982 /* Fallthrough */
8983 case BFD_ELF_VERSION_C_TYPE:
8984 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8985 {
8986 e.pattern = cxx_sym;
8987 expr = (struct bfd_elf_version_expr *)
8988 htab_find ((htab_t) head->htab, &e);
8989 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8990 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8991 goto out_ret;
8992 else
8993 expr = expr->next;
8994 }
8995 /* Fallthrough */
8996 case BFD_ELF_VERSION_CXX_TYPE:
8997 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8998 {
8999 e.pattern = java_sym;
9000 expr = (struct bfd_elf_version_expr *)
9001 htab_find ((htab_t) head->htab, &e);
9002 while (expr && strcmp (expr->pattern, java_sym) == 0)
9003 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9004 goto out_ret;
9005 else
9006 expr = expr->next;
9007 }
9008 /* Fallthrough */
9009 default:
9010 break;
9011 }
9012 }
9013
9014 /* Finally, try the wildcards. */
9015 if (prev == NULL || prev->literal)
9016 expr = head->remaining;
9017 else
9018 expr = prev->next;
9019 for (; expr; expr = expr->next)
9020 {
9021 const char *s;
9022
9023 if (!expr->pattern)
9024 continue;
9025
9026 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9027 break;
9028
9029 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9030 s = java_sym;
9031 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9032 s = cxx_sym;
9033 else
9034 s = c_sym;
9035 if (fnmatch (expr->pattern, s, 0) == 0)
9036 break;
9037 }
9038
9039 out_ret:
9040 if (c_sym != sym)
9041 free ((char *) c_sym);
9042 if (cxx_sym != sym)
9043 free ((char *) cxx_sym);
9044 if (java_sym != sym)
9045 free ((char *) java_sym);
9046 return expr;
9047 }
9048
9049 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9050 return a pointer to the symbol name with any backslash quotes removed. */
9051
9052 static const char *
9053 realsymbol (const char *pattern)
9054 {
9055 const char *p;
9056 bool changed = false, backslash = false;
9057 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9058
9059 for (p = pattern, s = symbol; *p != '\0'; ++p)
9060 {
9061 /* It is a glob pattern only if there is no preceding
9062 backslash. */
9063 if (backslash)
9064 {
9065 /* Remove the preceding backslash. */
9066 *(s - 1) = *p;
9067 backslash = false;
9068 changed = true;
9069 }
9070 else
9071 {
9072 if (*p == '?' || *p == '*' || *p == '[')
9073 {
9074 free (symbol);
9075 return NULL;
9076 }
9077
9078 *s++ = *p;
9079 backslash = *p == '\\';
9080 }
9081 }
9082
9083 if (changed)
9084 {
9085 *s = '\0';
9086 return symbol;
9087 }
9088 else
9089 {
9090 free (symbol);
9091 return pattern;
9092 }
9093 }
9094
9095 /* This is called for each variable name or match expression. NEW_NAME is
9096 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9097 pattern to be matched against symbol names. */
9098
9099 struct bfd_elf_version_expr *
9100 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9101 const char *new_name,
9102 const char *lang,
9103 bool literal_p)
9104 {
9105 struct bfd_elf_version_expr *ret;
9106
9107 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9108 ret->next = orig;
9109 ret->symver = 0;
9110 ret->script = 0;
9111 ret->literal = true;
9112 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9113 if (ret->pattern == NULL)
9114 {
9115 ret->pattern = new_name;
9116 ret->literal = false;
9117 }
9118
9119 if (lang == NULL || strcasecmp (lang, "C") == 0)
9120 ret->mask = BFD_ELF_VERSION_C_TYPE;
9121 else if (strcasecmp (lang, "C++") == 0)
9122 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9123 else if (strcasecmp (lang, "Java") == 0)
9124 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9125 else
9126 {
9127 einfo (_("%X%P: unknown language `%s' in version information\n"),
9128 lang);
9129 ret->mask = BFD_ELF_VERSION_C_TYPE;
9130 }
9131
9132 return ldemul_new_vers_pattern (ret);
9133 }
9134
9135 /* This is called for each set of variable names and match
9136 expressions. */
9137
9138 struct bfd_elf_version_tree *
9139 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9140 struct bfd_elf_version_expr *locals)
9141 {
9142 struct bfd_elf_version_tree *ret;
9143
9144 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9145 ret->globals.list = globals;
9146 ret->locals.list = locals;
9147 ret->match = lang_vers_match;
9148 ret->name_indx = (unsigned int) -1;
9149 return ret;
9150 }
9151
9152 /* This static variable keeps track of version indices. */
9153
9154 static int version_index;
9155
9156 static hashval_t
9157 version_expr_head_hash (const void *p)
9158 {
9159 const struct bfd_elf_version_expr *e =
9160 (const struct bfd_elf_version_expr *) p;
9161
9162 return htab_hash_string (e->pattern);
9163 }
9164
9165 static int
9166 version_expr_head_eq (const void *p1, const void *p2)
9167 {
9168 const struct bfd_elf_version_expr *e1 =
9169 (const struct bfd_elf_version_expr *) p1;
9170 const struct bfd_elf_version_expr *e2 =
9171 (const struct bfd_elf_version_expr *) p2;
9172
9173 return strcmp (e1->pattern, e2->pattern) == 0;
9174 }
9175
9176 static void
9177 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9178 {
9179 size_t count = 0;
9180 struct bfd_elf_version_expr *e, *next;
9181 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9182
9183 for (e = head->list; e; e = e->next)
9184 {
9185 if (e->literal)
9186 count++;
9187 head->mask |= e->mask;
9188 }
9189
9190 if (count)
9191 {
9192 head->htab = htab_create (count * 2, version_expr_head_hash,
9193 version_expr_head_eq, NULL);
9194 list_loc = &head->list;
9195 remaining_loc = &head->remaining;
9196 for (e = head->list; e; e = next)
9197 {
9198 next = e->next;
9199 if (!e->literal)
9200 {
9201 *remaining_loc = e;
9202 remaining_loc = &e->next;
9203 }
9204 else
9205 {
9206 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9207
9208 if (*loc)
9209 {
9210 struct bfd_elf_version_expr *e1, *last;
9211
9212 e1 = (struct bfd_elf_version_expr *) *loc;
9213 last = NULL;
9214 do
9215 {
9216 if (e1->mask == e->mask)
9217 {
9218 last = NULL;
9219 break;
9220 }
9221 last = e1;
9222 e1 = e1->next;
9223 }
9224 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9225
9226 if (last == NULL)
9227 {
9228 /* This is a duplicate. */
9229 /* FIXME: Memory leak. Sometimes pattern is not
9230 xmalloced alone, but in larger chunk of memory. */
9231 /* free (e->pattern); */
9232 free (e);
9233 }
9234 else
9235 {
9236 e->next = last->next;
9237 last->next = e;
9238 }
9239 }
9240 else
9241 {
9242 *loc = e;
9243 *list_loc = e;
9244 list_loc = &e->next;
9245 }
9246 }
9247 }
9248 *remaining_loc = NULL;
9249 *list_loc = head->remaining;
9250 }
9251 else
9252 head->remaining = head->list;
9253 }
9254
9255 /* This is called when we know the name and dependencies of the
9256 version. */
9257
9258 void
9259 lang_register_vers_node (const char *name,
9260 struct bfd_elf_version_tree *version,
9261 struct bfd_elf_version_deps *deps)
9262 {
9263 struct bfd_elf_version_tree *t, **pp;
9264 struct bfd_elf_version_expr *e1;
9265
9266 if (name == NULL)
9267 name = "";
9268
9269 if (link_info.version_info != NULL
9270 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9271 {
9272 einfo (_("%X%P: anonymous version tag cannot be combined"
9273 " with other version tags\n"));
9274 free (version);
9275 return;
9276 }
9277
9278 /* Make sure this node has a unique name. */
9279 for (t = link_info.version_info; t != NULL; t = t->next)
9280 if (strcmp (t->name, name) == 0)
9281 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9282
9283 lang_finalize_version_expr_head (&version->globals);
9284 lang_finalize_version_expr_head (&version->locals);
9285
9286 /* Check the global and local match names, and make sure there
9287 aren't any duplicates. */
9288
9289 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9290 {
9291 for (t = link_info.version_info; t != NULL; t = t->next)
9292 {
9293 struct bfd_elf_version_expr *e2;
9294
9295 if (t->locals.htab && e1->literal)
9296 {
9297 e2 = (struct bfd_elf_version_expr *)
9298 htab_find ((htab_t) t->locals.htab, e1);
9299 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9300 {
9301 if (e1->mask == e2->mask)
9302 einfo (_("%X%P: duplicate expression `%s'"
9303 " in version information\n"), e1->pattern);
9304 e2 = e2->next;
9305 }
9306 }
9307 else if (!e1->literal)
9308 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9309 if (strcmp (e1->pattern, e2->pattern) == 0
9310 && e1->mask == e2->mask)
9311 einfo (_("%X%P: duplicate expression `%s'"
9312 " in version information\n"), e1->pattern);
9313 }
9314 }
9315
9316 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9317 {
9318 for (t = link_info.version_info; t != NULL; t = t->next)
9319 {
9320 struct bfd_elf_version_expr *e2;
9321
9322 if (t->globals.htab && e1->literal)
9323 {
9324 e2 = (struct bfd_elf_version_expr *)
9325 htab_find ((htab_t) t->globals.htab, e1);
9326 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9327 {
9328 if (e1->mask == e2->mask)
9329 einfo (_("%X%P: duplicate expression `%s'"
9330 " in version information\n"),
9331 e1->pattern);
9332 e2 = e2->next;
9333 }
9334 }
9335 else if (!e1->literal)
9336 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9337 if (strcmp (e1->pattern, e2->pattern) == 0
9338 && e1->mask == e2->mask)
9339 einfo (_("%X%P: duplicate expression `%s'"
9340 " in version information\n"), e1->pattern);
9341 }
9342 }
9343
9344 version->deps = deps;
9345 version->name = name;
9346 if (name[0] != '\0')
9347 {
9348 ++version_index;
9349 version->vernum = version_index;
9350 }
9351 else
9352 version->vernum = 0;
9353
9354 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9355 ;
9356 *pp = version;
9357 }
9358
9359 /* This is called when we see a version dependency. */
9360
9361 struct bfd_elf_version_deps *
9362 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9363 {
9364 struct bfd_elf_version_deps *ret;
9365 struct bfd_elf_version_tree *t;
9366
9367 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9368 ret->next = list;
9369
9370 for (t = link_info.version_info; t != NULL; t = t->next)
9371 {
9372 if (strcmp (t->name, name) == 0)
9373 {
9374 ret->version_needed = t;
9375 return ret;
9376 }
9377 }
9378
9379 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9380
9381 ret->version_needed = NULL;
9382 return ret;
9383 }
9384
9385 static void
9386 lang_do_version_exports_section (void)
9387 {
9388 struct bfd_elf_version_expr *greg = NULL, *lreg;
9389
9390 LANG_FOR_EACH_INPUT_STATEMENT (is)
9391 {
9392 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9393 char *contents, *p;
9394 bfd_size_type len;
9395
9396 if (sec == NULL)
9397 continue;
9398
9399 len = sec->size;
9400 contents = (char *) xmalloc (len);
9401 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9402 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9403
9404 p = contents;
9405 while (p < contents + len)
9406 {
9407 greg = lang_new_vers_pattern (greg, p, NULL, false);
9408 p = strchr (p, '\0') + 1;
9409 }
9410
9411 /* Do not free the contents, as we used them creating the regex. */
9412
9413 /* Do not include this section in the link. */
9414 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9415 }
9416
9417 lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
9418 lang_register_vers_node (command_line.version_exports_section,
9419 lang_new_vers_node (greg, lreg), NULL);
9420 }
9421
9422 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9423 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9424 thrown, however, references to symbols in the origin and length fields
9425 will be pushed into the symbol table, this allows PROVIDE statements to
9426 then provide these symbols. This function is called a second time with
9427 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9428 data structures, and throw errors if missing symbols are encountered. */
9429
9430 static void
9431 lang_do_memory_regions (bool update_regions_p)
9432 {
9433 lang_memory_region_type *r = lang_memory_region_list;
9434
9435 for (; r != NULL; r = r->next)
9436 {
9437 if (r->origin_exp)
9438 {
9439 exp_fold_tree_no_dot (r->origin_exp);
9440 if (update_regions_p)
9441 {
9442 if (expld.result.valid_p)
9443 {
9444 r->origin = expld.result.value;
9445 r->current = r->origin;
9446 }
9447 else
9448 einfo (_("%P: invalid origin for memory region %s\n"),
9449 r->name_list.name);
9450 }
9451 }
9452 if (r->length_exp)
9453 {
9454 exp_fold_tree_no_dot (r->length_exp);
9455 if (update_regions_p)
9456 {
9457 if (expld.result.valid_p)
9458 r->length = expld.result.value;
9459 else
9460 einfo (_("%P: invalid length for memory region %s\n"),
9461 r->name_list.name);
9462 }
9463 }
9464 }
9465 }
9466
9467 void
9468 lang_add_unique (const char *name)
9469 {
9470 struct unique_sections *ent;
9471
9472 for (ent = unique_section_list; ent; ent = ent->next)
9473 if (strcmp (ent->name, name) == 0)
9474 return;
9475
9476 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9477 ent->name = xstrdup (name);
9478 ent->next = unique_section_list;
9479 unique_section_list = ent;
9480 }
9481
9482 /* Append the list of dynamic symbols to the existing one. */
9483
9484 void
9485 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9486 struct bfd_elf_version_expr *dynamic)
9487 {
9488 if (*list_p)
9489 {
9490 struct bfd_elf_version_expr *tail;
9491 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9492 ;
9493 tail->next = (*list_p)->head.list;
9494 (*list_p)->head.list = dynamic;
9495 }
9496 else
9497 {
9498 struct bfd_elf_dynamic_list *d;
9499
9500 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9501 d->head.list = dynamic;
9502 d->match = lang_vers_match;
9503 *list_p = d;
9504 }
9505 }
9506
9507 /* Append the list of C++ typeinfo dynamic symbols to the existing
9508 one. */
9509
9510 void
9511 lang_append_dynamic_list_cpp_typeinfo (void)
9512 {
9513 const char *symbols[] =
9514 {
9515 "typeinfo name for*",
9516 "typeinfo for*"
9517 };
9518 struct bfd_elf_version_expr *dynamic = NULL;
9519 unsigned int i;
9520
9521 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9522 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9523 false);
9524
9525 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9526 }
9527
9528 /* Append the list of C++ operator new and delete dynamic symbols to the
9529 existing one. */
9530
9531 void
9532 lang_append_dynamic_list_cpp_new (void)
9533 {
9534 const char *symbols[] =
9535 {
9536 "operator new*",
9537 "operator delete*"
9538 };
9539 struct bfd_elf_version_expr *dynamic = NULL;
9540 unsigned int i;
9541
9542 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9543 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9544 false);
9545
9546 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9547 }
9548
9549 /* Scan a space and/or comma separated string of features. */
9550
9551 void
9552 lang_ld_feature (char *str)
9553 {
9554 char *p, *q;
9555
9556 p = str;
9557 while (*p)
9558 {
9559 char sep;
9560 while (*p == ',' || ISSPACE (*p))
9561 ++p;
9562 if (!*p)
9563 break;
9564 q = p + 1;
9565 while (*q && *q != ',' && !ISSPACE (*q))
9566 ++q;
9567 sep = *q;
9568 *q = 0;
9569 if (strcasecmp (p, "SANE_EXPR") == 0)
9570 config.sane_expr = true;
9571 else
9572 einfo (_("%X%P: unknown feature `%s'\n"), p);
9573 *q = sep;
9574 p = q;
9575 }
9576 }
9577
9578 /* Pretty print memory amount. */
9579
9580 static void
9581 lang_print_memory_size (bfd_vma sz)
9582 {
9583 if ((sz & 0x3fffffff) == 0)
9584 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9585 else if ((sz & 0xfffff) == 0)
9586 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9587 else if ((sz & 0x3ff) == 0)
9588 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9589 else
9590 printf (" %10" BFD_VMA_FMT "u B", sz);
9591 }
9592
9593 /* Implement --print-memory-usage: disply per region memory usage. */
9594
9595 void
9596 lang_print_memory_usage (void)
9597 {
9598 lang_memory_region_type *r;
9599
9600 printf ("Memory region Used Size Region Size %%age Used\n");
9601 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9602 {
9603 bfd_vma used_length = r->current - r->origin;
9604
9605 printf ("%16s: ",r->name_list.name);
9606 lang_print_memory_size (used_length);
9607 lang_print_memory_size ((bfd_vma) r->length);
9608
9609 if (r->length != 0)
9610 {
9611 double percent = used_length * 100.0 / r->length;
9612 printf (" %6.2f%%", percent);
9613 }
9614 printf ("\n");
9615 }
9616 }
This page took 0.25233 seconds and 4 git commands to generate.