gdb/riscv: Improve support for matching against target descriptions
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2020 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (void);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean undef_from_cmdline;
127 bfd_boolean lang_has_input_file = FALSE;
128 bfd_boolean had_output_filename = FALSE;
129 bfd_boolean lang_float_flag = FALSE;
130 bfd_boolean delete_output_file_on_failure = FALSE;
131 struct lang_phdr *lang_phdr_list;
132 struct lang_nocrossrefs *nocrossref_list;
133 struct asneeded_minfo **asneeded_list_tail;
134 static ctf_file_t *ctf_output;
135
136 /* Functions that traverse the linker script and might evaluate
137 DEFINED() need to increment this at the start of the traversal. */
138 int lang_statement_iteration = 0;
139
140 /* Count times through one_lang_size_sections_pass after mark phase. */
141 static int lang_sizing_iteration = 0;
142
143 /* Return TRUE if the PATTERN argument is a wildcard pattern.
144 Although backslashes are treated specially if a pattern contains
145 wildcards, we do not consider the mere presence of a backslash to
146 be enough to cause the pattern to be treated as a wildcard.
147 That lets us handle DOS filenames more naturally. */
148 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
149
150 #define new_stat(x, y) \
151 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
152
153 #define outside_section_address(q) \
154 ((q)->output_offset + (q)->output_section->vma)
155
156 #define outside_symbol_address(q) \
157 ((q)->value + outside_section_address (q->section))
158
159 /* CTF sections smaller than this are not compressed: compression of
160 dictionaries this small doesn't gain much, and this lets consumers mmap the
161 sections directly out of the ELF file and use them with no decompression
162 overhead if they want to. */
163 #define CTF_COMPRESSION_THRESHOLD 4096
164
165 void *
166 stat_alloc (size_t size)
167 {
168 return obstack_alloc (&stat_obstack, size);
169 }
170
171 static int
172 name_match (const char *pattern, const char *name)
173 {
174 if (wildcardp (pattern))
175 return fnmatch (pattern, name, 0);
176 return strcmp (pattern, name);
177 }
178
179 static char *
180 ldirname (const char *name)
181 {
182 const char *base = lbasename (name);
183 char *dirname;
184
185 while (base > name && IS_DIR_SEPARATOR (base[-1]))
186 --base;
187 if (base == name)
188 return strdup (".");
189 dirname = strdup (name);
190 dirname[base - name] = '\0';
191 return dirname;
192 }
193
194 /* If PATTERN is of the form archive:file, return a pointer to the
195 separator. If not, return NULL. */
196
197 static char *
198 archive_path (const char *pattern)
199 {
200 char *p = NULL;
201
202 if (link_info.path_separator == 0)
203 return p;
204
205 p = strchr (pattern, link_info.path_separator);
206 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
207 if (p == NULL || link_info.path_separator != ':')
208 return p;
209
210 /* Assume a match on the second char is part of drive specifier,
211 as in "c:\silly.dos". */
212 if (p == pattern + 1 && ISALPHA (*pattern))
213 p = strchr (p + 1, link_info.path_separator);
214 #endif
215 return p;
216 }
217
218 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
219 return whether F matches FILE_SPEC. */
220
221 static bfd_boolean
222 input_statement_is_archive_path (const char *file_spec, char *sep,
223 lang_input_statement_type *f)
224 {
225 bfd_boolean match = FALSE;
226
227 if ((*(sep + 1) == 0
228 || name_match (sep + 1, f->filename) == 0)
229 && ((sep != file_spec)
230 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
231 {
232 match = TRUE;
233
234 if (sep != file_spec)
235 {
236 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
237 *sep = 0;
238 match = name_match (file_spec, aname) == 0;
239 *sep = link_info.path_separator;
240 }
241 }
242 return match;
243 }
244
245 static bfd_boolean
246 unique_section_p (const asection *sec,
247 const lang_output_section_statement_type *os)
248 {
249 struct unique_sections *unam;
250 const char *secnam;
251
252 if (!link_info.resolve_section_groups
253 && sec->owner != NULL
254 && bfd_is_group_section (sec->owner, sec))
255 return !(os != NULL
256 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
257
258 secnam = sec->name;
259 for (unam = unique_section_list; unam; unam = unam->next)
260 if (name_match (unam->name, secnam) == 0)
261 return TRUE;
262
263 return FALSE;
264 }
265
266 /* Generic traversal routines for finding matching sections. */
267
268 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
269 false. */
270
271 static bfd_boolean
272 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
273 lang_input_statement_type *file)
274 {
275 struct name_list *list_tmp;
276
277 for (list_tmp = exclude_list;
278 list_tmp;
279 list_tmp = list_tmp->next)
280 {
281 char *p = archive_path (list_tmp->name);
282
283 if (p != NULL)
284 {
285 if (input_statement_is_archive_path (list_tmp->name, p, file))
286 return TRUE;
287 }
288
289 else if (name_match (list_tmp->name, file->filename) == 0)
290 return TRUE;
291
292 /* FIXME: Perhaps remove the following at some stage? Matching
293 unadorned archives like this was never documented and has
294 been superceded by the archive:path syntax. */
295 else if (file->the_bfd != NULL
296 && file->the_bfd->my_archive != NULL
297 && name_match (list_tmp->name,
298 bfd_get_filename (file->the_bfd->my_archive)) == 0)
299 return TRUE;
300 }
301
302 return FALSE;
303 }
304
305 /* Try processing a section against a wildcard. This just calls
306 the callback unless the filename exclusion list is present
307 and excludes the file. It's hardly ever present so this
308 function is very fast. */
309
310 static void
311 walk_wild_consider_section (lang_wild_statement_type *ptr,
312 lang_input_statement_type *file,
313 asection *s,
314 struct wildcard_list *sec,
315 callback_t callback,
316 void *data)
317 {
318 /* Don't process sections from files which were excluded. */
319 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
320 return;
321
322 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
323 }
324
325 /* Lowest common denominator routine that can handle everything correctly,
326 but slowly. */
327
328 static void
329 walk_wild_section_general (lang_wild_statement_type *ptr,
330 lang_input_statement_type *file,
331 callback_t callback,
332 void *data)
333 {
334 asection *s;
335 struct wildcard_list *sec;
336
337 for (s = file->the_bfd->sections; s != NULL; s = s->next)
338 {
339 sec = ptr->section_list;
340 if (sec == NULL)
341 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
342
343 while (sec != NULL)
344 {
345 bfd_boolean skip = FALSE;
346
347 if (sec->spec.name != NULL)
348 {
349 const char *sname = bfd_section_name (s);
350
351 skip = name_match (sec->spec.name, sname) != 0;
352 }
353
354 if (!skip)
355 walk_wild_consider_section (ptr, file, s, sec, callback, data);
356
357 sec = sec->next;
358 }
359 }
360 }
361
362 /* Routines to find a single section given its name. If there's more
363 than one section with that name, we report that. */
364
365 typedef struct
366 {
367 asection *found_section;
368 bfd_boolean multiple_sections_found;
369 } section_iterator_callback_data;
370
371 static bfd_boolean
372 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
373 {
374 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
375
376 if (d->found_section != NULL)
377 {
378 d->multiple_sections_found = TRUE;
379 return TRUE;
380 }
381
382 d->found_section = s;
383 return FALSE;
384 }
385
386 static asection *
387 find_section (lang_input_statement_type *file,
388 struct wildcard_list *sec,
389 bfd_boolean *multiple_sections_found)
390 {
391 section_iterator_callback_data cb_data = { NULL, FALSE };
392
393 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
394 section_iterator_callback, &cb_data);
395 *multiple_sections_found = cb_data.multiple_sections_found;
396 return cb_data.found_section;
397 }
398
399 /* Code for handling simple wildcards without going through fnmatch,
400 which can be expensive because of charset translations etc. */
401
402 /* A simple wild is a literal string followed by a single '*',
403 where the literal part is at least 4 characters long. */
404
405 static bfd_boolean
406 is_simple_wild (const char *name)
407 {
408 size_t len = strcspn (name, "*?[");
409 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
410 }
411
412 static bfd_boolean
413 match_simple_wild (const char *pattern, const char *name)
414 {
415 /* The first four characters of the pattern are guaranteed valid
416 non-wildcard characters. So we can go faster. */
417 if (pattern[0] != name[0] || pattern[1] != name[1]
418 || pattern[2] != name[2] || pattern[3] != name[3])
419 return FALSE;
420
421 pattern += 4;
422 name += 4;
423 while (*pattern != '*')
424 if (*name++ != *pattern++)
425 return FALSE;
426
427 return TRUE;
428 }
429
430 /* Return the numerical value of the init_priority attribute from
431 section name NAME. */
432
433 static int
434 get_init_priority (const asection *sec)
435 {
436 const char *name = bfd_section_name (sec);
437 const char *dot;
438
439 /* GCC uses the following section names for the init_priority
440 attribute with numerical values 101 to 65535 inclusive. A
441 lower value means a higher priority.
442
443 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
444 decimal numerical value of the init_priority attribute.
445 The order of execution in .init_array is forward and
446 .fini_array is backward.
447 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
448 decimal numerical value of the init_priority attribute.
449 The order of execution in .ctors is backward and .dtors
450 is forward.
451
452 .init_array.NNNNN sections would normally be placed in an output
453 .init_array section, .fini_array.NNNNN in .fini_array,
454 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
455 we should sort by increasing number (and could just use
456 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
457 being placed in .init_array (which may also contain
458 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
459 placed in .fini_array then we need to extract the init_priority
460 attribute and sort on that. */
461 dot = strrchr (name, '.');
462 if (dot != NULL && ISDIGIT (dot[1]))
463 {
464 char *end;
465 unsigned long init_priority = strtoul (dot + 1, &end, 10);
466 if (*end == 0)
467 {
468 if (dot == name + 6
469 && (strncmp (name, ".ctors", 6) == 0
470 || strncmp (name, ".dtors", 6) == 0))
471 init_priority = 65535 - init_priority;
472 if (init_priority <= INT_MAX)
473 return init_priority;
474 }
475 }
476 return -1;
477 }
478
479 /* Compare sections ASEC and BSEC according to SORT. */
480
481 static int
482 compare_section (sort_type sort, asection *asec, asection *bsec)
483 {
484 int ret;
485 int a_priority, b_priority;
486
487 switch (sort)
488 {
489 default:
490 abort ();
491
492 case by_init_priority:
493 a_priority = get_init_priority (asec);
494 b_priority = get_init_priority (bsec);
495 if (a_priority < 0 || b_priority < 0)
496 goto sort_by_name;
497 ret = a_priority - b_priority;
498 if (ret)
499 break;
500 else
501 goto sort_by_name;
502
503 case by_alignment_name:
504 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
505 if (ret)
506 break;
507 /* Fall through. */
508
509 case by_name:
510 sort_by_name:
511 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
512 break;
513
514 case by_name_alignment:
515 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
516 if (ret)
517 break;
518 /* Fall through. */
519
520 case by_alignment:
521 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
522 break;
523 }
524
525 return ret;
526 }
527
528 /* Build a Binary Search Tree to sort sections, unlike insertion sort
529 used in wild_sort(). BST is considerably faster if the number of
530 of sections are large. */
531
532 static lang_section_bst_type **
533 wild_sort_fast (lang_wild_statement_type *wild,
534 struct wildcard_list *sec,
535 lang_input_statement_type *file ATTRIBUTE_UNUSED,
536 asection *section)
537 {
538 lang_section_bst_type **tree;
539
540 tree = &wild->tree;
541 if (!wild->filenames_sorted
542 && (sec == NULL || sec->spec.sorted == none))
543 {
544 /* Append at the right end of tree. */
545 while (*tree)
546 tree = &((*tree)->right);
547 return tree;
548 }
549
550 while (*tree)
551 {
552 /* Find the correct node to append this section. */
553 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
554 tree = &((*tree)->left);
555 else
556 tree = &((*tree)->right);
557 }
558
559 return tree;
560 }
561
562 /* Use wild_sort_fast to build a BST to sort sections. */
563
564 static void
565 output_section_callback_fast (lang_wild_statement_type *ptr,
566 struct wildcard_list *sec,
567 asection *section,
568 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
569 lang_input_statement_type *file,
570 void *output)
571 {
572 lang_section_bst_type *node;
573 lang_section_bst_type **tree;
574 lang_output_section_statement_type *os;
575
576 os = (lang_output_section_statement_type *) output;
577
578 if (unique_section_p (section, os))
579 return;
580
581 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
582 node->left = 0;
583 node->right = 0;
584 node->section = section;
585
586 tree = wild_sort_fast (ptr, sec, file, section);
587 if (tree != NULL)
588 *tree = node;
589 }
590
591 /* Convert a sorted sections' BST back to list form. */
592
593 static void
594 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
595 lang_section_bst_type *tree,
596 void *output)
597 {
598 if (tree->left)
599 output_section_callback_tree_to_list (ptr, tree->left, output);
600
601 lang_add_section (&ptr->children, tree->section, NULL,
602 (lang_output_section_statement_type *) output);
603
604 if (tree->right)
605 output_section_callback_tree_to_list (ptr, tree->right, output);
606
607 free (tree);
608 }
609
610 /* Specialized, optimized routines for handling different kinds of
611 wildcards */
612
613 static void
614 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
615 lang_input_statement_type *file,
616 callback_t callback,
617 void *data)
618 {
619 /* We can just do a hash lookup for the section with the right name.
620 But if that lookup discovers more than one section with the name
621 (should be rare), we fall back to the general algorithm because
622 we would otherwise have to sort the sections to make sure they
623 get processed in the bfd's order. */
624 bfd_boolean multiple_sections_found;
625 struct wildcard_list *sec0 = ptr->handler_data[0];
626 asection *s0 = find_section (file, sec0, &multiple_sections_found);
627
628 if (multiple_sections_found)
629 walk_wild_section_general (ptr, file, callback, data);
630 else if (s0)
631 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
632 }
633
634 static void
635 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
636 lang_input_statement_type *file,
637 callback_t callback,
638 void *data)
639 {
640 asection *s;
641 struct wildcard_list *wildsec0 = ptr->handler_data[0];
642
643 for (s = file->the_bfd->sections; s != NULL; s = s->next)
644 {
645 const char *sname = bfd_section_name (s);
646 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
647
648 if (!skip)
649 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
650 }
651 }
652
653 static void
654 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
655 lang_input_statement_type *file,
656 callback_t callback,
657 void *data)
658 {
659 asection *s;
660 struct wildcard_list *sec0 = ptr->handler_data[0];
661 struct wildcard_list *wildsec1 = ptr->handler_data[1];
662 bfd_boolean multiple_sections_found;
663 asection *s0 = find_section (file, sec0, &multiple_sections_found);
664
665 if (multiple_sections_found)
666 {
667 walk_wild_section_general (ptr, file, callback, data);
668 return;
669 }
670
671 /* Note that if the section was not found, s0 is NULL and
672 we'll simply never succeed the s == s0 test below. */
673 for (s = file->the_bfd->sections; s != NULL; s = s->next)
674 {
675 /* Recall that in this code path, a section cannot satisfy more
676 than one spec, so if s == s0 then it cannot match
677 wildspec1. */
678 if (s == s0)
679 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
680 else
681 {
682 const char *sname = bfd_section_name (s);
683 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
684
685 if (!skip)
686 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
687 data);
688 }
689 }
690 }
691
692 static void
693 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
694 lang_input_statement_type *file,
695 callback_t callback,
696 void *data)
697 {
698 asection *s;
699 struct wildcard_list *sec0 = ptr->handler_data[0];
700 struct wildcard_list *wildsec1 = ptr->handler_data[1];
701 struct wildcard_list *wildsec2 = ptr->handler_data[2];
702 bfd_boolean multiple_sections_found;
703 asection *s0 = find_section (file, sec0, &multiple_sections_found);
704
705 if (multiple_sections_found)
706 {
707 walk_wild_section_general (ptr, file, callback, data);
708 return;
709 }
710
711 for (s = file->the_bfd->sections; s != NULL; s = s->next)
712 {
713 if (s == s0)
714 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
715 else
716 {
717 const char *sname = bfd_section_name (s);
718 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
719
720 if (!skip)
721 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
722 else
723 {
724 skip = !match_simple_wild (wildsec2->spec.name, sname);
725 if (!skip)
726 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
727 data);
728 }
729 }
730 }
731 }
732
733 static void
734 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
735 lang_input_statement_type *file,
736 callback_t callback,
737 void *data)
738 {
739 asection *s;
740 struct wildcard_list *sec0 = ptr->handler_data[0];
741 struct wildcard_list *sec1 = ptr->handler_data[1];
742 struct wildcard_list *wildsec2 = ptr->handler_data[2];
743 struct wildcard_list *wildsec3 = ptr->handler_data[3];
744 bfd_boolean multiple_sections_found;
745 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
746
747 if (multiple_sections_found)
748 {
749 walk_wild_section_general (ptr, file, callback, data);
750 return;
751 }
752
753 s1 = find_section (file, sec1, &multiple_sections_found);
754 if (multiple_sections_found)
755 {
756 walk_wild_section_general (ptr, file, callback, data);
757 return;
758 }
759
760 for (s = file->the_bfd->sections; s != NULL; s = s->next)
761 {
762 if (s == s0)
763 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
764 else
765 if (s == s1)
766 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
767 else
768 {
769 const char *sname = bfd_section_name (s);
770 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
771 sname);
772
773 if (!skip)
774 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
775 data);
776 else
777 {
778 skip = !match_simple_wild (wildsec3->spec.name, sname);
779 if (!skip)
780 walk_wild_consider_section (ptr, file, s, wildsec3,
781 callback, data);
782 }
783 }
784 }
785 }
786
787 static void
788 walk_wild_section (lang_wild_statement_type *ptr,
789 lang_input_statement_type *file,
790 callback_t callback,
791 void *data)
792 {
793 if (file->flags.just_syms)
794 return;
795
796 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
797 }
798
799 /* Returns TRUE when name1 is a wildcard spec that might match
800 something name2 can match. We're conservative: we return FALSE
801 only if the prefixes of name1 and name2 are different up to the
802 first wildcard character. */
803
804 static bfd_boolean
805 wild_spec_can_overlap (const char *name1, const char *name2)
806 {
807 size_t prefix1_len = strcspn (name1, "?*[");
808 size_t prefix2_len = strcspn (name2, "?*[");
809 size_t min_prefix_len;
810
811 /* Note that if there is no wildcard character, then we treat the
812 terminating 0 as part of the prefix. Thus ".text" won't match
813 ".text." or ".text.*", for example. */
814 if (name1[prefix1_len] == '\0')
815 prefix1_len++;
816 if (name2[prefix2_len] == '\0')
817 prefix2_len++;
818
819 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
820
821 return memcmp (name1, name2, min_prefix_len) == 0;
822 }
823
824 /* Select specialized code to handle various kinds of wildcard
825 statements. */
826
827 static void
828 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
829 {
830 int sec_count = 0;
831 int wild_name_count = 0;
832 struct wildcard_list *sec;
833 int signature;
834 int data_counter;
835
836 ptr->walk_wild_section_handler = walk_wild_section_general;
837 ptr->handler_data[0] = NULL;
838 ptr->handler_data[1] = NULL;
839 ptr->handler_data[2] = NULL;
840 ptr->handler_data[3] = NULL;
841 ptr->tree = NULL;
842
843 /* Count how many wildcard_specs there are, and how many of those
844 actually use wildcards in the name. Also, bail out if any of the
845 wildcard names are NULL. (Can this actually happen?
846 walk_wild_section used to test for it.) And bail out if any
847 of the wildcards are more complex than a simple string
848 ending in a single '*'. */
849 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
850 {
851 ++sec_count;
852 if (sec->spec.name == NULL)
853 return;
854 if (wildcardp (sec->spec.name))
855 {
856 ++wild_name_count;
857 if (!is_simple_wild (sec->spec.name))
858 return;
859 }
860 }
861
862 /* The zero-spec case would be easy to optimize but it doesn't
863 happen in practice. Likewise, more than 4 specs doesn't
864 happen in practice. */
865 if (sec_count == 0 || sec_count > 4)
866 return;
867
868 /* Check that no two specs can match the same section. */
869 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
870 {
871 struct wildcard_list *sec2;
872 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
873 {
874 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
875 return;
876 }
877 }
878
879 signature = (sec_count << 8) + wild_name_count;
880 switch (signature)
881 {
882 case 0x0100:
883 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
884 break;
885 case 0x0101:
886 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
887 break;
888 case 0x0201:
889 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
890 break;
891 case 0x0302:
892 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
893 break;
894 case 0x0402:
895 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
896 break;
897 default:
898 return;
899 }
900
901 /* Now fill the data array with pointers to the specs, first the
902 specs with non-wildcard names, then the specs with wildcard
903 names. It's OK to process the specs in different order from the
904 given order, because we've already determined that no section
905 will match more than one spec. */
906 data_counter = 0;
907 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
908 if (!wildcardp (sec->spec.name))
909 ptr->handler_data[data_counter++] = sec;
910 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
911 if (wildcardp (sec->spec.name))
912 ptr->handler_data[data_counter++] = sec;
913 }
914
915 /* Handle a wild statement for a single file F. */
916
917 static void
918 walk_wild_file (lang_wild_statement_type *s,
919 lang_input_statement_type *f,
920 callback_t callback,
921 void *data)
922 {
923 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
924 return;
925
926 if (f->the_bfd == NULL
927 || !bfd_check_format (f->the_bfd, bfd_archive))
928 walk_wild_section (s, f, callback, data);
929 else
930 {
931 bfd *member;
932
933 /* This is an archive file. We must map each member of the
934 archive separately. */
935 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
936 while (member != NULL)
937 {
938 /* When lookup_name is called, it will call the add_symbols
939 entry point for the archive. For each element of the
940 archive which is included, BFD will call ldlang_add_file,
941 which will set the usrdata field of the member to the
942 lang_input_statement. */
943 if (bfd_usrdata (member) != NULL)
944 walk_wild_section (s, bfd_usrdata (member), callback, data);
945
946 member = bfd_openr_next_archived_file (f->the_bfd, member);
947 }
948 }
949 }
950
951 static void
952 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
953 {
954 const char *file_spec = s->filename;
955 char *p;
956
957 if (file_spec == NULL)
958 {
959 /* Perform the iteration over all files in the list. */
960 LANG_FOR_EACH_INPUT_STATEMENT (f)
961 {
962 walk_wild_file (s, f, callback, data);
963 }
964 }
965 else if ((p = archive_path (file_spec)) != NULL)
966 {
967 LANG_FOR_EACH_INPUT_STATEMENT (f)
968 {
969 if (input_statement_is_archive_path (file_spec, p, f))
970 walk_wild_file (s, f, callback, data);
971 }
972 }
973 else if (wildcardp (file_spec))
974 {
975 LANG_FOR_EACH_INPUT_STATEMENT (f)
976 {
977 if (fnmatch (file_spec, f->filename, 0) == 0)
978 walk_wild_file (s, f, callback, data);
979 }
980 }
981 else
982 {
983 lang_input_statement_type *f;
984
985 /* Perform the iteration over a single file. */
986 f = lookup_name (file_spec);
987 if (f)
988 walk_wild_file (s, f, callback, data);
989 }
990 }
991
992 /* lang_for_each_statement walks the parse tree and calls the provided
993 function for each node, except those inside output section statements
994 with constraint set to -1. */
995
996 void
997 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
998 lang_statement_union_type *s)
999 {
1000 for (; s != NULL; s = s->header.next)
1001 {
1002 func (s);
1003
1004 switch (s->header.type)
1005 {
1006 case lang_constructors_statement_enum:
1007 lang_for_each_statement_worker (func, constructor_list.head);
1008 break;
1009 case lang_output_section_statement_enum:
1010 if (s->output_section_statement.constraint != -1)
1011 lang_for_each_statement_worker
1012 (func, s->output_section_statement.children.head);
1013 break;
1014 case lang_wild_statement_enum:
1015 lang_for_each_statement_worker (func,
1016 s->wild_statement.children.head);
1017 break;
1018 case lang_group_statement_enum:
1019 lang_for_each_statement_worker (func,
1020 s->group_statement.children.head);
1021 break;
1022 case lang_data_statement_enum:
1023 case lang_reloc_statement_enum:
1024 case lang_object_symbols_statement_enum:
1025 case lang_output_statement_enum:
1026 case lang_target_statement_enum:
1027 case lang_input_section_enum:
1028 case lang_input_statement_enum:
1029 case lang_assignment_statement_enum:
1030 case lang_padding_statement_enum:
1031 case lang_address_statement_enum:
1032 case lang_fill_statement_enum:
1033 case lang_insert_statement_enum:
1034 break;
1035 default:
1036 FAIL ();
1037 break;
1038 }
1039 }
1040 }
1041
1042 void
1043 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1044 {
1045 lang_for_each_statement_worker (func, statement_list.head);
1046 }
1047
1048 /*----------------------------------------------------------------------*/
1049
1050 void
1051 lang_list_init (lang_statement_list_type *list)
1052 {
1053 list->head = NULL;
1054 list->tail = &list->head;
1055 }
1056
1057 static void
1058 lang_statement_append (lang_statement_list_type *list,
1059 void *element,
1060 void *field)
1061 {
1062 *(list->tail) = element;
1063 list->tail = field;
1064 }
1065
1066 void
1067 push_stat_ptr (lang_statement_list_type *new_ptr)
1068 {
1069 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1070 abort ();
1071 *stat_save_ptr++ = stat_ptr;
1072 stat_ptr = new_ptr;
1073 }
1074
1075 void
1076 pop_stat_ptr (void)
1077 {
1078 if (stat_save_ptr <= stat_save)
1079 abort ();
1080 stat_ptr = *--stat_save_ptr;
1081 }
1082
1083 /* Build a new statement node for the parse tree. */
1084
1085 static lang_statement_union_type *
1086 new_statement (enum statement_enum type,
1087 size_t size,
1088 lang_statement_list_type *list)
1089 {
1090 lang_statement_union_type *new_stmt;
1091
1092 new_stmt = stat_alloc (size);
1093 new_stmt->header.type = type;
1094 new_stmt->header.next = NULL;
1095 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1096 return new_stmt;
1097 }
1098
1099 /* Build a new input file node for the language. There are several
1100 ways in which we treat an input file, eg, we only look at symbols,
1101 or prefix it with a -l etc.
1102
1103 We can be supplied with requests for input files more than once;
1104 they may, for example be split over several lines like foo.o(.text)
1105 foo.o(.data) etc, so when asked for a file we check that we haven't
1106 got it already so we don't duplicate the bfd. */
1107
1108 static lang_input_statement_type *
1109 new_afile (const char *name,
1110 lang_input_file_enum_type file_type,
1111 const char *target,
1112 const char *from_filename)
1113 {
1114 lang_input_statement_type *p;
1115
1116 lang_has_input_file = TRUE;
1117
1118 p = new_stat (lang_input_statement, stat_ptr);
1119 memset (&p->the_bfd, 0,
1120 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1121 p->extra_search_path = NULL;
1122 p->target = target;
1123 p->flags.dynamic = input_flags.dynamic;
1124 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1125 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1126 p->flags.whole_archive = input_flags.whole_archive;
1127 p->flags.sysrooted = input_flags.sysrooted;
1128
1129 switch (file_type)
1130 {
1131 case lang_input_file_is_symbols_only_enum:
1132 p->filename = name;
1133 p->local_sym_name = name;
1134 p->flags.real = TRUE;
1135 p->flags.just_syms = TRUE;
1136 break;
1137 case lang_input_file_is_fake_enum:
1138 p->filename = name;
1139 p->local_sym_name = name;
1140 break;
1141 case lang_input_file_is_l_enum:
1142 if (name[0] == ':' && name[1] != '\0')
1143 {
1144 p->filename = name + 1;
1145 p->flags.full_name_provided = TRUE;
1146 }
1147 else
1148 p->filename = name;
1149 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1150 p->flags.maybe_archive = TRUE;
1151 p->flags.real = TRUE;
1152 p->flags.search_dirs = TRUE;
1153 break;
1154 case lang_input_file_is_marker_enum:
1155 p->filename = name;
1156 p->local_sym_name = name;
1157 p->flags.search_dirs = TRUE;
1158 break;
1159 case lang_input_file_is_search_file_enum:
1160 p->filename = name;
1161 p->local_sym_name = name;
1162 /* If name is a relative path, search the directory of the current linker
1163 script first. */
1164 if (from_filename && !IS_ABSOLUTE_PATH (name))
1165 p->extra_search_path = ldirname (from_filename);
1166 p->flags.real = TRUE;
1167 p->flags.search_dirs = TRUE;
1168 break;
1169 case lang_input_file_is_file_enum:
1170 p->filename = name;
1171 p->local_sym_name = name;
1172 p->flags.real = TRUE;
1173 break;
1174 default:
1175 FAIL ();
1176 }
1177
1178 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1179 return p;
1180 }
1181
1182 lang_input_statement_type *
1183 lang_add_input_file (const char *name,
1184 lang_input_file_enum_type file_type,
1185 const char *target)
1186 {
1187 if (name != NULL
1188 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1189 {
1190 lang_input_statement_type *ret;
1191 char *sysrooted_name
1192 = concat (ld_sysroot,
1193 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1194 (const char *) NULL);
1195
1196 /* We've now forcibly prepended the sysroot, making the input
1197 file independent of the context. Therefore, temporarily
1198 force a non-sysrooted context for this statement, so it won't
1199 get the sysroot prepended again when opened. (N.B. if it's a
1200 script, any child nodes with input files starting with "/"
1201 will be handled as "sysrooted" as they'll be found to be
1202 within the sysroot subdirectory.) */
1203 unsigned int outer_sysrooted = input_flags.sysrooted;
1204 input_flags.sysrooted = 0;
1205 ret = new_afile (sysrooted_name, file_type, target, NULL);
1206 input_flags.sysrooted = outer_sysrooted;
1207 return ret;
1208 }
1209
1210 return new_afile (name, file_type, target, current_input_file);
1211 }
1212
1213 struct out_section_hash_entry
1214 {
1215 struct bfd_hash_entry root;
1216 lang_statement_union_type s;
1217 };
1218
1219 /* The hash table. */
1220
1221 static struct bfd_hash_table output_section_statement_table;
1222
1223 /* Support routines for the hash table used by lang_output_section_find,
1224 initialize the table, fill in an entry and remove the table. */
1225
1226 static struct bfd_hash_entry *
1227 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1228 struct bfd_hash_table *table,
1229 const char *string)
1230 {
1231 lang_output_section_statement_type **nextp;
1232 struct out_section_hash_entry *ret;
1233
1234 if (entry == NULL)
1235 {
1236 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1237 sizeof (*ret));
1238 if (entry == NULL)
1239 return entry;
1240 }
1241
1242 entry = bfd_hash_newfunc (entry, table, string);
1243 if (entry == NULL)
1244 return entry;
1245
1246 ret = (struct out_section_hash_entry *) entry;
1247 memset (&ret->s, 0, sizeof (ret->s));
1248 ret->s.header.type = lang_output_section_statement_enum;
1249 ret->s.output_section_statement.subsection_alignment = NULL;
1250 ret->s.output_section_statement.section_alignment = NULL;
1251 ret->s.output_section_statement.block_value = 1;
1252 lang_list_init (&ret->s.output_section_statement.children);
1253 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1254
1255 /* For every output section statement added to the list, except the
1256 first one, lang_os_list.tail points to the "next"
1257 field of the last element of the list. */
1258 if (lang_os_list.head != NULL)
1259 ret->s.output_section_statement.prev
1260 = ((lang_output_section_statement_type *)
1261 ((char *) lang_os_list.tail
1262 - offsetof (lang_output_section_statement_type, next)));
1263
1264 /* GCC's strict aliasing rules prevent us from just casting the
1265 address, so we store the pointer in a variable and cast that
1266 instead. */
1267 nextp = &ret->s.output_section_statement.next;
1268 lang_statement_append (&lang_os_list, &ret->s, nextp);
1269 return &ret->root;
1270 }
1271
1272 static void
1273 output_section_statement_table_init (void)
1274 {
1275 if (!bfd_hash_table_init_n (&output_section_statement_table,
1276 output_section_statement_newfunc,
1277 sizeof (struct out_section_hash_entry),
1278 61))
1279 einfo (_("%F%P: can not create hash table: %E\n"));
1280 }
1281
1282 static void
1283 output_section_statement_table_free (void)
1284 {
1285 bfd_hash_table_free (&output_section_statement_table);
1286 }
1287
1288 /* Build enough state so that the parser can build its tree. */
1289
1290 void
1291 lang_init (void)
1292 {
1293 obstack_begin (&stat_obstack, 1000);
1294
1295 stat_ptr = &statement_list;
1296
1297 output_section_statement_table_init ();
1298
1299 lang_list_init (stat_ptr);
1300
1301 lang_list_init (&input_file_chain);
1302 lang_list_init (&lang_os_list);
1303 lang_list_init (&file_chain);
1304 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1305 NULL);
1306 abs_output_section =
1307 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1308
1309 abs_output_section->bfd_section = bfd_abs_section_ptr;
1310
1311 asneeded_list_head = NULL;
1312 asneeded_list_tail = &asneeded_list_head;
1313 }
1314
1315 void
1316 lang_finish (void)
1317 {
1318 output_section_statement_table_free ();
1319 }
1320
1321 /*----------------------------------------------------------------------
1322 A region is an area of memory declared with the
1323 MEMORY { name:org=exp, len=exp ... }
1324 syntax.
1325
1326 We maintain a list of all the regions here.
1327
1328 If no regions are specified in the script, then the default is used
1329 which is created when looked up to be the entire data space.
1330
1331 If create is true we are creating a region inside a MEMORY block.
1332 In this case it is probably an error to create a region that has
1333 already been created. If we are not inside a MEMORY block it is
1334 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1335 and so we issue a warning.
1336
1337 Each region has at least one name. The first name is either
1338 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1339 alias names to an existing region within a script with
1340 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1341 region. */
1342
1343 static lang_memory_region_type *lang_memory_region_list;
1344 static lang_memory_region_type **lang_memory_region_list_tail
1345 = &lang_memory_region_list;
1346
1347 lang_memory_region_type *
1348 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *new_region;
1353
1354 /* NAME is NULL for LMA memspecs if no region was specified. */
1355 if (name == NULL)
1356 return NULL;
1357
1358 for (r = lang_memory_region_list; r != NULL; r = r->next)
1359 for (n = &r->name_list; n != NULL; n = n->next)
1360 if (strcmp (n->name, name) == 0)
1361 {
1362 if (create)
1363 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1364 NULL, name);
1365 return r;
1366 }
1367
1368 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1369 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1370 NULL, name);
1371
1372 new_region = stat_alloc (sizeof (lang_memory_region_type));
1373
1374 new_region->name_list.name = xstrdup (name);
1375 new_region->name_list.next = NULL;
1376 new_region->next = NULL;
1377 new_region->origin_exp = NULL;
1378 new_region->origin = 0;
1379 new_region->length_exp = NULL;
1380 new_region->length = ~(bfd_size_type) 0;
1381 new_region->current = 0;
1382 new_region->last_os = NULL;
1383 new_region->flags = 0;
1384 new_region->not_flags = 0;
1385 new_region->had_full_message = FALSE;
1386
1387 *lang_memory_region_list_tail = new_region;
1388 lang_memory_region_list_tail = &new_region->next;
1389
1390 return new_region;
1391 }
1392
1393 void
1394 lang_memory_region_alias (const char *alias, const char *region_name)
1395 {
1396 lang_memory_region_name *n;
1397 lang_memory_region_type *r;
1398 lang_memory_region_type *region;
1399
1400 /* The default region must be unique. This ensures that it is not necessary
1401 to iterate through the name list if someone wants the check if a region is
1402 the default memory region. */
1403 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1404 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1405 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1406
1407 /* Look for the target region and check if the alias is not already
1408 in use. */
1409 region = NULL;
1410 for (r = lang_memory_region_list; r != NULL; r = r->next)
1411 for (n = &r->name_list; n != NULL; n = n->next)
1412 {
1413 if (region == NULL && strcmp (n->name, region_name) == 0)
1414 region = r;
1415 if (strcmp (n->name, alias) == 0)
1416 einfo (_("%F%P:%pS: error: redefinition of memory region "
1417 "alias `%s'\n"),
1418 NULL, alias);
1419 }
1420
1421 /* Check if the target region exists. */
1422 if (region == NULL)
1423 einfo (_("%F%P:%pS: error: memory region `%s' "
1424 "for alias `%s' does not exist\n"),
1425 NULL, region_name, alias);
1426
1427 /* Add alias to region name list. */
1428 n = stat_alloc (sizeof (lang_memory_region_name));
1429 n->name = xstrdup (alias);
1430 n->next = region->name_list.next;
1431 region->name_list.next = n;
1432 }
1433
1434 static lang_memory_region_type *
1435 lang_memory_default (asection *section)
1436 {
1437 lang_memory_region_type *p;
1438
1439 flagword sec_flags = section->flags;
1440
1441 /* Override SEC_DATA to mean a writable section. */
1442 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1443 sec_flags |= SEC_DATA;
1444
1445 for (p = lang_memory_region_list; p != NULL; p = p->next)
1446 {
1447 if ((p->flags & sec_flags) != 0
1448 && (p->not_flags & sec_flags) == 0)
1449 {
1450 return p;
1451 }
1452 }
1453 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1454 }
1455
1456 /* Get the output section statement directly from the userdata. */
1457
1458 lang_output_section_statement_type *
1459 lang_output_section_get (const asection *output_section)
1460 {
1461 return bfd_section_userdata (output_section);
1462 }
1463
1464 /* Find or create an output_section_statement with the given NAME.
1465 If CONSTRAINT is non-zero match one with that constraint, otherwise
1466 match any non-negative constraint. If CREATE, always make a
1467 new output_section_statement for SPECIAL CONSTRAINT. */
1468
1469 lang_output_section_statement_type *
1470 lang_output_section_statement_lookup (const char *name,
1471 int constraint,
1472 bfd_boolean create)
1473 {
1474 struct out_section_hash_entry *entry;
1475
1476 entry = ((struct out_section_hash_entry *)
1477 bfd_hash_lookup (&output_section_statement_table, name,
1478 create, FALSE));
1479 if (entry == NULL)
1480 {
1481 if (create)
1482 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1483 return NULL;
1484 }
1485
1486 if (entry->s.output_section_statement.name != NULL)
1487 {
1488 /* We have a section of this name, but it might not have the correct
1489 constraint. */
1490 struct out_section_hash_entry *last_ent;
1491
1492 name = entry->s.output_section_statement.name;
1493 if (create && constraint == SPECIAL)
1494 /* Not traversing to the end reverses the order of the second
1495 and subsequent SPECIAL sections in the hash table chain,
1496 but that shouldn't matter. */
1497 last_ent = entry;
1498 else
1499 do
1500 {
1501 if (constraint == entry->s.output_section_statement.constraint
1502 || (constraint == 0
1503 && entry->s.output_section_statement.constraint >= 0))
1504 return &entry->s.output_section_statement;
1505 last_ent = entry;
1506 entry = (struct out_section_hash_entry *) entry->root.next;
1507 }
1508 while (entry != NULL
1509 && name == entry->s.output_section_statement.name);
1510
1511 if (!create)
1512 return NULL;
1513
1514 entry
1515 = ((struct out_section_hash_entry *)
1516 output_section_statement_newfunc (NULL,
1517 &output_section_statement_table,
1518 name));
1519 if (entry == NULL)
1520 {
1521 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1522 return NULL;
1523 }
1524 entry->root = last_ent->root;
1525 last_ent->root.next = &entry->root;
1526 }
1527
1528 entry->s.output_section_statement.name = name;
1529 entry->s.output_section_statement.constraint = constraint;
1530 return &entry->s.output_section_statement;
1531 }
1532
1533 /* Find the next output_section_statement with the same name as OS.
1534 If CONSTRAINT is non-zero, find one with that constraint otherwise
1535 match any non-negative constraint. */
1536
1537 lang_output_section_statement_type *
1538 next_matching_output_section_statement (lang_output_section_statement_type *os,
1539 int constraint)
1540 {
1541 /* All output_section_statements are actually part of a
1542 struct out_section_hash_entry. */
1543 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1544 ((char *) os
1545 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1546 const char *name = os->name;
1547
1548 ASSERT (name == entry->root.string);
1549 do
1550 {
1551 entry = (struct out_section_hash_entry *) entry->root.next;
1552 if (entry == NULL
1553 || name != entry->s.output_section_statement.name)
1554 return NULL;
1555 }
1556 while (constraint != entry->s.output_section_statement.constraint
1557 && (constraint != 0
1558 || entry->s.output_section_statement.constraint < 0));
1559
1560 return &entry->s.output_section_statement;
1561 }
1562
1563 /* A variant of lang_output_section_find used by place_orphan.
1564 Returns the output statement that should precede a new output
1565 statement for SEC. If an exact match is found on certain flags,
1566 sets *EXACT too. */
1567
1568 lang_output_section_statement_type *
1569 lang_output_section_find_by_flags (const asection *sec,
1570 flagword sec_flags,
1571 lang_output_section_statement_type **exact,
1572 lang_match_sec_type_func match_type)
1573 {
1574 lang_output_section_statement_type *first, *look, *found;
1575 flagword look_flags, differ;
1576
1577 /* We know the first statement on this list is *ABS*. May as well
1578 skip it. */
1579 first = (void *) lang_os_list.head;
1580 first = first->next;
1581
1582 /* First try for an exact match. */
1583 found = NULL;
1584 for (look = first; look; look = look->next)
1585 {
1586 look_flags = look->flags;
1587 if (look->bfd_section != NULL)
1588 {
1589 look_flags = look->bfd_section->flags;
1590 if (match_type && !match_type (link_info.output_bfd,
1591 look->bfd_section,
1592 sec->owner, sec))
1593 continue;
1594 }
1595 differ = look_flags ^ sec_flags;
1596 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1597 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1598 found = look;
1599 }
1600 if (found != NULL)
1601 {
1602 if (exact != NULL)
1603 *exact = found;
1604 return found;
1605 }
1606
1607 if ((sec_flags & SEC_CODE) != 0
1608 && (sec_flags & SEC_ALLOC) != 0)
1609 {
1610 /* Try for a rw code section. */
1611 for (look = first; look; look = look->next)
1612 {
1613 look_flags = look->flags;
1614 if (look->bfd_section != NULL)
1615 {
1616 look_flags = look->bfd_section->flags;
1617 if (match_type && !match_type (link_info.output_bfd,
1618 look->bfd_section,
1619 sec->owner, sec))
1620 continue;
1621 }
1622 differ = look_flags ^ sec_flags;
1623 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1624 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1625 found = look;
1626 }
1627 }
1628 else if ((sec_flags & SEC_READONLY) != 0
1629 && (sec_flags & SEC_ALLOC) != 0)
1630 {
1631 /* .rodata can go after .text, .sdata2 after .rodata. */
1632 for (look = first; look; look = look->next)
1633 {
1634 look_flags = look->flags;
1635 if (look->bfd_section != NULL)
1636 {
1637 look_flags = look->bfd_section->flags;
1638 if (match_type && !match_type (link_info.output_bfd,
1639 look->bfd_section,
1640 sec->owner, sec))
1641 continue;
1642 }
1643 differ = look_flags ^ sec_flags;
1644 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1645 | SEC_READONLY | SEC_SMALL_DATA))
1646 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1647 | SEC_READONLY))
1648 && !(look_flags & SEC_SMALL_DATA)))
1649 found = look;
1650 }
1651 }
1652 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1653 && (sec_flags & SEC_ALLOC) != 0)
1654 {
1655 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1656 as if it were a loaded section, and don't use match_type. */
1657 bfd_boolean seen_thread_local = FALSE;
1658
1659 match_type = NULL;
1660 for (look = first; look; look = look->next)
1661 {
1662 look_flags = look->flags;
1663 if (look->bfd_section != NULL)
1664 look_flags = look->bfd_section->flags;
1665
1666 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1667 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1668 {
1669 /* .tdata and .tbss must be adjacent and in that order. */
1670 if (!(look_flags & SEC_LOAD)
1671 && (sec_flags & SEC_LOAD))
1672 /* ..so if we're at a .tbss section and we're placing
1673 a .tdata section stop looking and return the
1674 previous section. */
1675 break;
1676 found = look;
1677 seen_thread_local = TRUE;
1678 }
1679 else if (seen_thread_local)
1680 break;
1681 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_SMALL_DATA) != 0
1686 && (sec_flags & SEC_ALLOC) != 0)
1687 {
1688 /* .sdata goes after .data, .sbss after .sdata. */
1689 for (look = first; look; look = look->next)
1690 {
1691 look_flags = look->flags;
1692 if (look->bfd_section != NULL)
1693 {
1694 look_flags = look->bfd_section->flags;
1695 if (match_type && !match_type (link_info.output_bfd,
1696 look->bfd_section,
1697 sec->owner, sec))
1698 continue;
1699 }
1700 differ = look_flags ^ sec_flags;
1701 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1702 | SEC_THREAD_LOCAL))
1703 || ((look_flags & SEC_SMALL_DATA)
1704 && !(sec_flags & SEC_HAS_CONTENTS)))
1705 found = look;
1706 }
1707 }
1708 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1709 && (sec_flags & SEC_ALLOC) != 0)
1710 {
1711 /* .data goes after .rodata. */
1712 for (look = first; look; look = look->next)
1713 {
1714 look_flags = look->flags;
1715 if (look->bfd_section != NULL)
1716 {
1717 look_flags = look->bfd_section->flags;
1718 if (match_type && !match_type (link_info.output_bfd,
1719 look->bfd_section,
1720 sec->owner, sec))
1721 continue;
1722 }
1723 differ = look_flags ^ sec_flags;
1724 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1725 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1726 found = look;
1727 }
1728 }
1729 else if ((sec_flags & SEC_ALLOC) != 0)
1730 {
1731 /* .bss goes after any other alloc section. */
1732 for (look = first; look; look = look->next)
1733 {
1734 look_flags = look->flags;
1735 if (look->bfd_section != NULL)
1736 {
1737 look_flags = look->bfd_section->flags;
1738 if (match_type && !match_type (link_info.output_bfd,
1739 look->bfd_section,
1740 sec->owner, sec))
1741 continue;
1742 }
1743 differ = look_flags ^ sec_flags;
1744 if (!(differ & SEC_ALLOC))
1745 found = look;
1746 }
1747 }
1748 else
1749 {
1750 /* non-alloc go last. */
1751 for (look = first; look; look = look->next)
1752 {
1753 look_flags = look->flags;
1754 if (look->bfd_section != NULL)
1755 look_flags = look->bfd_section->flags;
1756 differ = look_flags ^ sec_flags;
1757 if (!(differ & SEC_DEBUGGING))
1758 found = look;
1759 }
1760 return found;
1761 }
1762
1763 if (found || !match_type)
1764 return found;
1765
1766 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1767 }
1768
1769 /* Find the last output section before given output statement.
1770 Used by place_orphan. */
1771
1772 static asection *
1773 output_prev_sec_find (lang_output_section_statement_type *os)
1774 {
1775 lang_output_section_statement_type *lookup;
1776
1777 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1778 {
1779 if (lookup->constraint < 0)
1780 continue;
1781
1782 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1783 return lookup->bfd_section;
1784 }
1785
1786 return NULL;
1787 }
1788
1789 /* Look for a suitable place for a new output section statement. The
1790 idea is to skip over anything that might be inside a SECTIONS {}
1791 statement in a script, before we find another output section
1792 statement. Assignments to "dot" before an output section statement
1793 are assumed to belong to it, except in two cases; The first
1794 assignment to dot, and assignments before non-alloc sections.
1795 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1796 similar assignments that set the initial address, or we might
1797 insert non-alloc note sections among assignments setting end of
1798 image symbols. */
1799
1800 static lang_statement_union_type **
1801 insert_os_after (lang_output_section_statement_type *after)
1802 {
1803 lang_statement_union_type **where;
1804 lang_statement_union_type **assign = NULL;
1805 bfd_boolean ignore_first;
1806
1807 ignore_first = after == (void *) lang_os_list.head;
1808
1809 for (where = &after->header.next;
1810 *where != NULL;
1811 where = &(*where)->header.next)
1812 {
1813 switch ((*where)->header.type)
1814 {
1815 case lang_assignment_statement_enum:
1816 if (assign == NULL)
1817 {
1818 lang_assignment_statement_type *ass;
1819
1820 ass = &(*where)->assignment_statement;
1821 if (ass->exp->type.node_class != etree_assert
1822 && ass->exp->assign.dst[0] == '.'
1823 && ass->exp->assign.dst[1] == 0)
1824 {
1825 if (!ignore_first)
1826 assign = where;
1827 ignore_first = FALSE;
1828 }
1829 }
1830 continue;
1831 case lang_wild_statement_enum:
1832 case lang_input_section_enum:
1833 case lang_object_symbols_statement_enum:
1834 case lang_fill_statement_enum:
1835 case lang_data_statement_enum:
1836 case lang_reloc_statement_enum:
1837 case lang_padding_statement_enum:
1838 case lang_constructors_statement_enum:
1839 assign = NULL;
1840 ignore_first = FALSE;
1841 continue;
1842 case lang_output_section_statement_enum:
1843 if (assign != NULL)
1844 {
1845 asection *s = (*where)->output_section_statement.bfd_section;
1846
1847 if (s == NULL
1848 || s->map_head.s == NULL
1849 || (s->flags & SEC_ALLOC) != 0)
1850 where = assign;
1851 }
1852 break;
1853 case lang_input_statement_enum:
1854 case lang_address_statement_enum:
1855 case lang_target_statement_enum:
1856 case lang_output_statement_enum:
1857 case lang_group_statement_enum:
1858 case lang_insert_statement_enum:
1859 continue;
1860 }
1861 break;
1862 }
1863
1864 return where;
1865 }
1866
1867 lang_output_section_statement_type *
1868 lang_insert_orphan (asection *s,
1869 const char *secname,
1870 int constraint,
1871 lang_output_section_statement_type *after,
1872 struct orphan_save *place,
1873 etree_type *address,
1874 lang_statement_list_type *add_child)
1875 {
1876 lang_statement_list_type add;
1877 lang_output_section_statement_type *os;
1878 lang_output_section_statement_type **os_tail;
1879
1880 /* If we have found an appropriate place for the output section
1881 statements for this orphan, add them to our own private list,
1882 inserting them later into the global statement list. */
1883 if (after != NULL)
1884 {
1885 lang_list_init (&add);
1886 push_stat_ptr (&add);
1887 }
1888
1889 if (bfd_link_relocatable (&link_info)
1890 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1891 address = exp_intop (0);
1892
1893 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1894 os = lang_enter_output_section_statement (secname, address, normal_section,
1895 NULL, NULL, NULL, constraint, 0);
1896
1897 if (add_child == NULL)
1898 add_child = &os->children;
1899 lang_add_section (add_child, s, NULL, os);
1900
1901 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1902 {
1903 const char *region = (after->region
1904 ? after->region->name_list.name
1905 : DEFAULT_MEMORY_REGION);
1906 const char *lma_region = (after->lma_region
1907 ? after->lma_region->name_list.name
1908 : NULL);
1909 lang_leave_output_section_statement (NULL, region, after->phdrs,
1910 lma_region);
1911 }
1912 else
1913 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1914 NULL);
1915
1916 /* Restore the global list pointer. */
1917 if (after != NULL)
1918 pop_stat_ptr ();
1919
1920 if (after != NULL && os->bfd_section != NULL)
1921 {
1922 asection *snew, *as;
1923 bfd_boolean place_after = place->stmt == NULL;
1924 bfd_boolean insert_after = TRUE;
1925
1926 snew = os->bfd_section;
1927
1928 /* Shuffle the bfd section list to make the output file look
1929 neater. This is really only cosmetic. */
1930 if (place->section == NULL
1931 && after != (void *) lang_os_list.head)
1932 {
1933 asection *bfd_section = after->bfd_section;
1934
1935 /* If the output statement hasn't been used to place any input
1936 sections (and thus doesn't have an output bfd_section),
1937 look for the closest prior output statement having an
1938 output section. */
1939 if (bfd_section == NULL)
1940 bfd_section = output_prev_sec_find (after);
1941
1942 if (bfd_section != NULL && bfd_section != snew)
1943 place->section = &bfd_section->next;
1944 }
1945
1946 if (place->section == NULL)
1947 place->section = &link_info.output_bfd->sections;
1948
1949 as = *place->section;
1950
1951 if (!as)
1952 {
1953 /* Put the section at the end of the list. */
1954
1955 /* Unlink the section. */
1956 bfd_section_list_remove (link_info.output_bfd, snew);
1957
1958 /* Now tack it back on in the right place. */
1959 bfd_section_list_append (link_info.output_bfd, snew);
1960 }
1961 else if ((bfd_get_flavour (link_info.output_bfd)
1962 == bfd_target_elf_flavour)
1963 && (bfd_get_flavour (s->owner)
1964 == bfd_target_elf_flavour)
1965 && ((elf_section_type (s) == SHT_NOTE
1966 && (s->flags & SEC_LOAD) != 0)
1967 || (elf_section_type (as) == SHT_NOTE
1968 && (as->flags & SEC_LOAD) != 0)))
1969 {
1970 /* Make sure that output note sections are grouped and sorted
1971 by alignments when inserting a note section or insert a
1972 section after a note section, */
1973 asection *sec;
1974 /* A specific section after which the output note section
1975 should be placed. */
1976 asection *after_sec;
1977 /* True if we need to insert the orphan section after a
1978 specific section to maintain output note section order. */
1979 bfd_boolean after_sec_note = FALSE;
1980
1981 static asection *first_orphan_note = NULL;
1982
1983 /* Group and sort output note section by alignments in
1984 ascending order. */
1985 after_sec = NULL;
1986 if (elf_section_type (s) == SHT_NOTE
1987 && (s->flags & SEC_LOAD) != 0)
1988 {
1989 /* Search from the beginning for the last output note
1990 section with equal or larger alignments. NB: Don't
1991 place orphan note section after non-note sections. */
1992
1993 first_orphan_note = NULL;
1994 for (sec = link_info.output_bfd->sections;
1995 (sec != NULL
1996 && !bfd_is_abs_section (sec));
1997 sec = sec->next)
1998 if (sec != snew
1999 && elf_section_type (sec) == SHT_NOTE
2000 && (sec->flags & SEC_LOAD) != 0)
2001 {
2002 if (!first_orphan_note)
2003 first_orphan_note = sec;
2004 if (sec->alignment_power >= s->alignment_power)
2005 after_sec = sec;
2006 }
2007 else if (first_orphan_note)
2008 {
2009 /* Stop if there is non-note section after the first
2010 orphan note section. */
2011 break;
2012 }
2013
2014 /* If this will be the first orphan note section, it can
2015 be placed at the default location. */
2016 after_sec_note = first_orphan_note != NULL;
2017 if (after_sec == NULL && after_sec_note)
2018 {
2019 /* If all output note sections have smaller
2020 alignments, place the section before all
2021 output orphan note sections. */
2022 after_sec = first_orphan_note;
2023 insert_after = FALSE;
2024 }
2025 }
2026 else if (first_orphan_note)
2027 {
2028 /* Don't place non-note sections in the middle of orphan
2029 note sections. */
2030 after_sec_note = TRUE;
2031 after_sec = as;
2032 for (sec = as->next;
2033 (sec != NULL
2034 && !bfd_is_abs_section (sec));
2035 sec = sec->next)
2036 if (elf_section_type (sec) == SHT_NOTE
2037 && (sec->flags & SEC_LOAD) != 0)
2038 after_sec = sec;
2039 }
2040
2041 if (after_sec_note)
2042 {
2043 if (after_sec)
2044 {
2045 /* Search forward to insert OS after AFTER_SEC output
2046 statement. */
2047 lang_output_section_statement_type *stmt, *next;
2048 bfd_boolean found = FALSE;
2049 for (stmt = after; stmt != NULL; stmt = next)
2050 {
2051 next = stmt->next;
2052 if (insert_after)
2053 {
2054 if (stmt->bfd_section == after_sec)
2055 {
2056 place_after = TRUE;
2057 found = TRUE;
2058 after = stmt;
2059 break;
2060 }
2061 }
2062 else
2063 {
2064 /* If INSERT_AFTER is FALSE, place OS before
2065 AFTER_SEC output statement. */
2066 if (next && next->bfd_section == after_sec)
2067 {
2068 place_after = TRUE;
2069 found = TRUE;
2070 after = stmt;
2071 break;
2072 }
2073 }
2074 }
2075
2076 /* Search backward to insert OS after AFTER_SEC output
2077 statement. */
2078 if (!found)
2079 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2080 {
2081 if (insert_after)
2082 {
2083 if (stmt->bfd_section == after_sec)
2084 {
2085 place_after = TRUE;
2086 after = stmt;
2087 break;
2088 }
2089 }
2090 else
2091 {
2092 /* If INSERT_AFTER is FALSE, place OS before
2093 AFTER_SEC output statement. */
2094 if (stmt->next->bfd_section == after_sec)
2095 {
2096 place_after = TRUE;
2097 after = stmt;
2098 break;
2099 }
2100 }
2101 }
2102 }
2103
2104 if (after_sec == NULL
2105 || (insert_after && after_sec->next != snew)
2106 || (!insert_after && after_sec->prev != snew))
2107 {
2108 /* Unlink the section. */
2109 bfd_section_list_remove (link_info.output_bfd, snew);
2110
2111 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2112 prepend SNEW. */
2113 if (after_sec)
2114 {
2115 if (insert_after)
2116 bfd_section_list_insert_after (link_info.output_bfd,
2117 after_sec, snew);
2118 else
2119 bfd_section_list_insert_before (link_info.output_bfd,
2120 after_sec, snew);
2121 }
2122 else
2123 bfd_section_list_prepend (link_info.output_bfd, snew);
2124 }
2125 }
2126 else if (as != snew && as->prev != snew)
2127 {
2128 /* Unlink the section. */
2129 bfd_section_list_remove (link_info.output_bfd, snew);
2130
2131 /* Now tack it back on in the right place. */
2132 bfd_section_list_insert_before (link_info.output_bfd,
2133 as, snew);
2134 }
2135 }
2136 else if (as != snew && as->prev != snew)
2137 {
2138 /* Unlink the section. */
2139 bfd_section_list_remove (link_info.output_bfd, snew);
2140
2141 /* Now tack it back on in the right place. */
2142 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2143 }
2144
2145 /* Save the end of this list. Further ophans of this type will
2146 follow the one we've just added. */
2147 place->section = &snew->next;
2148
2149 /* The following is non-cosmetic. We try to put the output
2150 statements in some sort of reasonable order here, because they
2151 determine the final load addresses of the orphan sections.
2152 In addition, placing output statements in the wrong order may
2153 require extra segments. For instance, given a typical
2154 situation of all read-only sections placed in one segment and
2155 following that a segment containing all the read-write
2156 sections, we wouldn't want to place an orphan read/write
2157 section before or amongst the read-only ones. */
2158 if (add.head != NULL)
2159 {
2160 lang_output_section_statement_type *newly_added_os;
2161
2162 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2163 if (place_after)
2164 {
2165 lang_statement_union_type **where = insert_os_after (after);
2166
2167 *add.tail = *where;
2168 *where = add.head;
2169
2170 place->os_tail = &after->next;
2171 }
2172 else
2173 {
2174 /* Put it after the last orphan statement we added. */
2175 *add.tail = *place->stmt;
2176 *place->stmt = add.head;
2177 }
2178
2179 /* Fix the global list pointer if we happened to tack our
2180 new list at the tail. */
2181 if (*stat_ptr->tail == add.head)
2182 stat_ptr->tail = add.tail;
2183
2184 /* Save the end of this list. */
2185 place->stmt = add.tail;
2186
2187 /* Do the same for the list of output section statements. */
2188 newly_added_os = *os_tail;
2189 *os_tail = NULL;
2190 newly_added_os->prev = (lang_output_section_statement_type *)
2191 ((char *) place->os_tail
2192 - offsetof (lang_output_section_statement_type, next));
2193 newly_added_os->next = *place->os_tail;
2194 if (newly_added_os->next != NULL)
2195 newly_added_os->next->prev = newly_added_os;
2196 *place->os_tail = newly_added_os;
2197 place->os_tail = &newly_added_os->next;
2198
2199 /* Fixing the global list pointer here is a little different.
2200 We added to the list in lang_enter_output_section_statement,
2201 trimmed off the new output_section_statment above when
2202 assigning *os_tail = NULL, but possibly added it back in
2203 the same place when assigning *place->os_tail. */
2204 if (*os_tail == NULL)
2205 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2206 }
2207 }
2208 return os;
2209 }
2210
2211 static void
2212 lang_print_asneeded (void)
2213 {
2214 struct asneeded_minfo *m;
2215
2216 if (asneeded_list_head == NULL)
2217 return;
2218
2219 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2220
2221 for (m = asneeded_list_head; m != NULL; m = m->next)
2222 {
2223 size_t len;
2224
2225 minfo ("%s", m->soname);
2226 len = strlen (m->soname);
2227
2228 if (len >= 29)
2229 {
2230 print_nl ();
2231 len = 0;
2232 }
2233 while (len < 30)
2234 {
2235 print_space ();
2236 ++len;
2237 }
2238
2239 if (m->ref != NULL)
2240 minfo ("%pB ", m->ref);
2241 minfo ("(%pT)\n", m->name);
2242 }
2243 }
2244
2245 static void
2246 lang_map_flags (flagword flag)
2247 {
2248 if (flag & SEC_ALLOC)
2249 minfo ("a");
2250
2251 if (flag & SEC_CODE)
2252 minfo ("x");
2253
2254 if (flag & SEC_READONLY)
2255 minfo ("r");
2256
2257 if (flag & SEC_DATA)
2258 minfo ("w");
2259
2260 if (flag & SEC_LOAD)
2261 minfo ("l");
2262 }
2263
2264 void
2265 lang_map (void)
2266 {
2267 lang_memory_region_type *m;
2268 bfd_boolean dis_header_printed = FALSE;
2269
2270 LANG_FOR_EACH_INPUT_STATEMENT (file)
2271 {
2272 asection *s;
2273
2274 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2275 || file->flags.just_syms)
2276 continue;
2277
2278 if (config.print_map_discarded)
2279 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2280 if ((s->output_section == NULL
2281 || s->output_section->owner != link_info.output_bfd)
2282 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2283 {
2284 if (! dis_header_printed)
2285 {
2286 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2287 dis_header_printed = TRUE;
2288 }
2289
2290 print_input_section (s, TRUE);
2291 }
2292 }
2293
2294 minfo (_("\nMemory Configuration\n\n"));
2295 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2296 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2297
2298 for (m = lang_memory_region_list; m != NULL; m = m->next)
2299 {
2300 char buf[100];
2301 int len;
2302
2303 fprintf (config.map_file, "%-16s ", m->name_list.name);
2304
2305 sprintf_vma (buf, m->origin);
2306 minfo ("0x%s ", buf);
2307 len = strlen (buf);
2308 while (len < 16)
2309 {
2310 print_space ();
2311 ++len;
2312 }
2313
2314 minfo ("0x%V", m->length);
2315 if (m->flags || m->not_flags)
2316 {
2317 #ifndef BFD64
2318 minfo (" ");
2319 #endif
2320 if (m->flags)
2321 {
2322 print_space ();
2323 lang_map_flags (m->flags);
2324 }
2325
2326 if (m->not_flags)
2327 {
2328 minfo (" !");
2329 lang_map_flags (m->not_flags);
2330 }
2331 }
2332
2333 print_nl ();
2334 }
2335
2336 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2337
2338 if (!link_info.reduce_memory_overheads)
2339 {
2340 obstack_begin (&map_obstack, 1000);
2341 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2342 }
2343 expld.phase = lang_fixed_phase_enum;
2344 lang_statement_iteration++;
2345 print_statements ();
2346
2347 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2348 config.map_file);
2349 }
2350
2351 static bfd_boolean
2352 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2353 void *info ATTRIBUTE_UNUSED)
2354 {
2355 if ((hash_entry->type == bfd_link_hash_defined
2356 || hash_entry->type == bfd_link_hash_defweak)
2357 && hash_entry->u.def.section->owner != link_info.output_bfd
2358 && hash_entry->u.def.section->owner != NULL)
2359 {
2360 input_section_userdata_type *ud;
2361 struct map_symbol_def *def;
2362
2363 ud = bfd_section_userdata (hash_entry->u.def.section);
2364 if (!ud)
2365 {
2366 ud = stat_alloc (sizeof (*ud));
2367 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2368 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2369 ud->map_symbol_def_count = 0;
2370 }
2371 else if (!ud->map_symbol_def_tail)
2372 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2373
2374 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2375 def->entry = hash_entry;
2376 *(ud->map_symbol_def_tail) = def;
2377 ud->map_symbol_def_tail = &def->next;
2378 ud->map_symbol_def_count++;
2379 }
2380 return TRUE;
2381 }
2382
2383 /* Initialize an output section. */
2384
2385 static void
2386 init_os (lang_output_section_statement_type *s, flagword flags)
2387 {
2388 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2389 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2390
2391 if (s->constraint != SPECIAL)
2392 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2393 if (s->bfd_section == NULL)
2394 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2395 s->name, flags);
2396 if (s->bfd_section == NULL)
2397 {
2398 einfo (_("%F%P: output format %s cannot represent section"
2399 " called %s: %E\n"),
2400 link_info.output_bfd->xvec->name, s->name);
2401 }
2402 s->bfd_section->output_section = s->bfd_section;
2403 s->bfd_section->output_offset = 0;
2404
2405 /* Set the userdata of the output section to the output section
2406 statement to avoid lookup. */
2407 bfd_set_section_userdata (s->bfd_section, s);
2408
2409 /* If there is a base address, make sure that any sections it might
2410 mention are initialized. */
2411 if (s->addr_tree != NULL)
2412 exp_init_os (s->addr_tree);
2413
2414 if (s->load_base != NULL)
2415 exp_init_os (s->load_base);
2416
2417 /* If supplied an alignment, set it. */
2418 if (s->section_alignment != NULL)
2419 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2420 "section alignment");
2421 }
2422
2423 /* Make sure that all output sections mentioned in an expression are
2424 initialized. */
2425
2426 static void
2427 exp_init_os (etree_type *exp)
2428 {
2429 switch (exp->type.node_class)
2430 {
2431 case etree_assign:
2432 case etree_provide:
2433 case etree_provided:
2434 exp_init_os (exp->assign.src);
2435 break;
2436
2437 case etree_binary:
2438 exp_init_os (exp->binary.lhs);
2439 exp_init_os (exp->binary.rhs);
2440 break;
2441
2442 case etree_trinary:
2443 exp_init_os (exp->trinary.cond);
2444 exp_init_os (exp->trinary.lhs);
2445 exp_init_os (exp->trinary.rhs);
2446 break;
2447
2448 case etree_assert:
2449 exp_init_os (exp->assert_s.child);
2450 break;
2451
2452 case etree_unary:
2453 exp_init_os (exp->unary.child);
2454 break;
2455
2456 case etree_name:
2457 switch (exp->type.node_code)
2458 {
2459 case ADDR:
2460 case LOADADDR:
2461 case SIZEOF:
2462 {
2463 lang_output_section_statement_type *os;
2464
2465 os = lang_output_section_find (exp->name.name);
2466 if (os != NULL && os->bfd_section == NULL)
2467 init_os (os, 0);
2468 }
2469 }
2470 break;
2471
2472 default:
2473 break;
2474 }
2475 }
2476 \f
2477 static void
2478 section_already_linked (bfd *abfd, asection *sec, void *data)
2479 {
2480 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2481
2482 /* If we are only reading symbols from this object, then we want to
2483 discard all sections. */
2484 if (entry->flags.just_syms)
2485 {
2486 bfd_link_just_syms (abfd, sec, &link_info);
2487 return;
2488 }
2489
2490 /* Deal with SHF_EXCLUDE ELF sections. */
2491 if (!bfd_link_relocatable (&link_info)
2492 && (abfd->flags & BFD_PLUGIN) == 0
2493 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2494 sec->output_section = bfd_abs_section_ptr;
2495
2496 if (!(abfd->flags & DYNAMIC))
2497 bfd_section_already_linked (abfd, sec, &link_info);
2498 }
2499 \f
2500
2501 /* Returns true if SECTION is one we know will be discarded based on its
2502 section flags, otherwise returns false. */
2503
2504 static bfd_boolean
2505 lang_discard_section_p (asection *section)
2506 {
2507 bfd_boolean discard;
2508 flagword flags = section->flags;
2509
2510 /* Discard sections marked with SEC_EXCLUDE. */
2511 discard = (flags & SEC_EXCLUDE) != 0;
2512
2513 /* Discard the group descriptor sections when we're finally placing the
2514 sections from within the group. */
2515 if ((flags & SEC_GROUP) != 0
2516 && link_info.resolve_section_groups)
2517 discard = TRUE;
2518
2519 /* Discard debugging sections if we are stripping debugging
2520 information. */
2521 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2522 && (flags & SEC_DEBUGGING) != 0)
2523 discard = TRUE;
2524
2525 return discard;
2526 }
2527
2528 /* The wild routines.
2529
2530 These expand statements like *(.text) and foo.o to a list of
2531 explicit actions, like foo.o(.text), bar.o(.text) and
2532 foo.o(.text, .data). */
2533
2534 /* Add SECTION to the output section OUTPUT. Do this by creating a
2535 lang_input_section statement which is placed at PTR. */
2536
2537 void
2538 lang_add_section (lang_statement_list_type *ptr,
2539 asection *section,
2540 struct flag_info *sflag_info,
2541 lang_output_section_statement_type *output)
2542 {
2543 flagword flags = section->flags;
2544
2545 bfd_boolean discard;
2546 lang_input_section_type *new_section;
2547 bfd *abfd = link_info.output_bfd;
2548
2549 /* Is this section one we know should be discarded? */
2550 discard = lang_discard_section_p (section);
2551
2552 /* Discard input sections which are assigned to a section named
2553 DISCARD_SECTION_NAME. */
2554 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2555 discard = TRUE;
2556
2557 if (discard)
2558 {
2559 if (section->output_section == NULL)
2560 {
2561 /* This prevents future calls from assigning this section. */
2562 section->output_section = bfd_abs_section_ptr;
2563 }
2564 else if (link_info.non_contiguous_regions_warnings)
2565 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2566 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2567 NULL, section, section->owner);
2568
2569 return;
2570 }
2571
2572 if (sflag_info)
2573 {
2574 bfd_boolean keep;
2575
2576 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2577 if (!keep)
2578 return;
2579 }
2580
2581 if (section->output_section != NULL)
2582 {
2583 if (!link_info.non_contiguous_regions)
2584 return;
2585
2586 /* SECTION has already been handled in a special way
2587 (eg. LINK_ONCE): skip it. */
2588 if (bfd_is_abs_section (section->output_section))
2589 return;
2590
2591 /* Already assigned to the same output section, do not process
2592 it again, to avoid creating loops between duplicate sections
2593 later. */
2594 if (section->output_section == output->bfd_section)
2595 return;
2596
2597 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2598 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2599 "change behaviour for section `%pA' from '%pB' (assigned to "
2600 "%pA, but additional match: %pA)\n"),
2601 NULL, section, section->owner, section->output_section,
2602 output->bfd_section);
2603
2604 /* SECTION has already been assigned to an output section, but
2605 the user allows it to be mapped to another one in case it
2606 overflows. We'll later update the actual output section in
2607 size_input_section as appropriate. */
2608 }
2609
2610 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2611 to an output section, because we want to be able to include a
2612 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2613 section (I don't know why we want to do this, but we do).
2614 build_link_order in ldwrite.c handles this case by turning
2615 the embedded SEC_NEVER_LOAD section into a fill. */
2616 flags &= ~ SEC_NEVER_LOAD;
2617
2618 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2619 already been processed. One reason to do this is that on pe
2620 format targets, .text$foo sections go into .text and it's odd
2621 to see .text with SEC_LINK_ONCE set. */
2622 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2623 {
2624 if (link_info.resolve_section_groups)
2625 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2626 else
2627 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2628 }
2629 else if (!bfd_link_relocatable (&link_info))
2630 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2631
2632 switch (output->sectype)
2633 {
2634 case normal_section:
2635 case overlay_section:
2636 case first_overlay_section:
2637 break;
2638 case noalloc_section:
2639 flags &= ~SEC_ALLOC;
2640 break;
2641 case noload_section:
2642 flags &= ~SEC_LOAD;
2643 flags |= SEC_NEVER_LOAD;
2644 /* Unfortunately GNU ld has managed to evolve two different
2645 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2646 alloc, no contents section. All others get a noload, noalloc
2647 section. */
2648 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2649 flags &= ~SEC_HAS_CONTENTS;
2650 else
2651 flags &= ~SEC_ALLOC;
2652 break;
2653 }
2654
2655 if (output->bfd_section == NULL)
2656 init_os (output, flags);
2657
2658 /* If SEC_READONLY is not set in the input section, then clear
2659 it from the output section. */
2660 output->bfd_section->flags &= flags | ~SEC_READONLY;
2661
2662 if (output->bfd_section->linker_has_input)
2663 {
2664 /* Only set SEC_READONLY flag on the first input section. */
2665 flags &= ~ SEC_READONLY;
2666
2667 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2668 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2669 != (flags & (SEC_MERGE | SEC_STRINGS))
2670 || ((flags & SEC_MERGE) != 0
2671 && output->bfd_section->entsize != section->entsize))
2672 {
2673 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2674 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 }
2676 }
2677 output->bfd_section->flags |= flags;
2678
2679 if (!output->bfd_section->linker_has_input)
2680 {
2681 output->bfd_section->linker_has_input = 1;
2682 /* This must happen after flags have been updated. The output
2683 section may have been created before we saw its first input
2684 section, eg. for a data statement. */
2685 bfd_init_private_section_data (section->owner, section,
2686 link_info.output_bfd,
2687 output->bfd_section,
2688 &link_info);
2689 if ((flags & SEC_MERGE) != 0)
2690 output->bfd_section->entsize = section->entsize;
2691 }
2692
2693 if ((flags & SEC_TIC54X_BLOCK) != 0
2694 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2695 {
2696 /* FIXME: This value should really be obtained from the bfd... */
2697 output->block_value = 128;
2698 }
2699
2700 if (section->alignment_power > output->bfd_section->alignment_power)
2701 output->bfd_section->alignment_power = section->alignment_power;
2702
2703 section->output_section = output->bfd_section;
2704
2705 if (!map_head_is_link_order)
2706 {
2707 asection *s = output->bfd_section->map_tail.s;
2708 output->bfd_section->map_tail.s = section;
2709 section->map_head.s = NULL;
2710 section->map_tail.s = s;
2711 if (s != NULL)
2712 s->map_head.s = section;
2713 else
2714 output->bfd_section->map_head.s = section;
2715 }
2716
2717 /* Add a section reference to the list. */
2718 new_section = new_stat (lang_input_section, ptr);
2719 new_section->section = section;
2720 }
2721
2722 /* Handle wildcard sorting. This returns the lang_input_section which
2723 should follow the one we are going to create for SECTION and FILE,
2724 based on the sorting requirements of WILD. It returns NULL if the
2725 new section should just go at the end of the current list. */
2726
2727 static lang_statement_union_type *
2728 wild_sort (lang_wild_statement_type *wild,
2729 struct wildcard_list *sec,
2730 lang_input_statement_type *file,
2731 asection *section)
2732 {
2733 lang_statement_union_type *l;
2734
2735 if (!wild->filenames_sorted
2736 && (sec == NULL || sec->spec.sorted == none))
2737 return NULL;
2738
2739 for (l = wild->children.head; l != NULL; l = l->header.next)
2740 {
2741 lang_input_section_type *ls;
2742
2743 if (l->header.type != lang_input_section_enum)
2744 continue;
2745 ls = &l->input_section;
2746
2747 /* Sorting by filename takes precedence over sorting by section
2748 name. */
2749
2750 if (wild->filenames_sorted)
2751 {
2752 const char *fn, *ln;
2753 bfd_boolean fa, la;
2754 int i;
2755
2756 /* The PE support for the .idata section as generated by
2757 dlltool assumes that files will be sorted by the name of
2758 the archive and then the name of the file within the
2759 archive. */
2760
2761 if (file->the_bfd != NULL
2762 && file->the_bfd->my_archive != NULL)
2763 {
2764 fn = bfd_get_filename (file->the_bfd->my_archive);
2765 fa = TRUE;
2766 }
2767 else
2768 {
2769 fn = file->filename;
2770 fa = FALSE;
2771 }
2772
2773 if (ls->section->owner->my_archive != NULL)
2774 {
2775 ln = bfd_get_filename (ls->section->owner->my_archive);
2776 la = TRUE;
2777 }
2778 else
2779 {
2780 ln = bfd_get_filename (ls->section->owner);
2781 la = FALSE;
2782 }
2783
2784 i = filename_cmp (fn, ln);
2785 if (i > 0)
2786 continue;
2787 else if (i < 0)
2788 break;
2789
2790 if (fa || la)
2791 {
2792 if (fa)
2793 fn = file->filename;
2794 if (la)
2795 ln = bfd_get_filename (ls->section->owner);
2796
2797 i = filename_cmp (fn, ln);
2798 if (i > 0)
2799 continue;
2800 else if (i < 0)
2801 break;
2802 }
2803 }
2804
2805 /* Here either the files are not sorted by name, or we are
2806 looking at the sections for this file. */
2807
2808 if (sec != NULL
2809 && sec->spec.sorted != none
2810 && sec->spec.sorted != by_none)
2811 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2812 break;
2813 }
2814
2815 return l;
2816 }
2817
2818 /* Expand a wild statement for a particular FILE. SECTION may be
2819 NULL, in which case it is a wild card. */
2820
2821 static void
2822 output_section_callback (lang_wild_statement_type *ptr,
2823 struct wildcard_list *sec,
2824 asection *section,
2825 struct flag_info *sflag_info,
2826 lang_input_statement_type *file,
2827 void *output)
2828 {
2829 lang_statement_union_type *before;
2830 lang_output_section_statement_type *os;
2831
2832 os = (lang_output_section_statement_type *) output;
2833
2834 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2835 if (unique_section_p (section, os))
2836 return;
2837
2838 before = wild_sort (ptr, sec, file, section);
2839
2840 /* Here BEFORE points to the lang_input_section which
2841 should follow the one we are about to add. If BEFORE
2842 is NULL, then the section should just go at the end
2843 of the current list. */
2844
2845 if (before == NULL)
2846 lang_add_section (&ptr->children, section, sflag_info, os);
2847 else
2848 {
2849 lang_statement_list_type list;
2850 lang_statement_union_type **pp;
2851
2852 lang_list_init (&list);
2853 lang_add_section (&list, section, sflag_info, os);
2854
2855 /* If we are discarding the section, LIST.HEAD will
2856 be NULL. */
2857 if (list.head != NULL)
2858 {
2859 ASSERT (list.head->header.next == NULL);
2860
2861 for (pp = &ptr->children.head;
2862 *pp != before;
2863 pp = &(*pp)->header.next)
2864 ASSERT (*pp != NULL);
2865
2866 list.head->header.next = *pp;
2867 *pp = list.head;
2868 }
2869 }
2870 }
2871
2872 /* Check if all sections in a wild statement for a particular FILE
2873 are readonly. */
2874
2875 static void
2876 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2877 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2878 asection *section,
2879 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2880 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2881 void *output)
2882 {
2883 lang_output_section_statement_type *os;
2884
2885 os = (lang_output_section_statement_type *) output;
2886
2887 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2888 if (unique_section_p (section, os))
2889 return;
2890
2891 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2892 os->all_input_readonly = FALSE;
2893 }
2894
2895 /* This is passed a file name which must have been seen already and
2896 added to the statement tree. We will see if it has been opened
2897 already and had its symbols read. If not then we'll read it. */
2898
2899 static lang_input_statement_type *
2900 lookup_name (const char *name)
2901 {
2902 lang_input_statement_type *search;
2903
2904 for (search = (void *) input_file_chain.head;
2905 search != NULL;
2906 search = search->next_real_file)
2907 {
2908 /* Use the local_sym_name as the name of the file that has
2909 already been loaded as filename might have been transformed
2910 via the search directory lookup mechanism. */
2911 const char *filename = search->local_sym_name;
2912
2913 if (filename != NULL
2914 && filename_cmp (filename, name) == 0)
2915 break;
2916 }
2917
2918 if (search == NULL)
2919 {
2920 /* Arrange to splice the input statement added by new_afile into
2921 statement_list after the current input_file_chain tail.
2922 We know input_file_chain is not an empty list, and that
2923 lookup_name was called via open_input_bfds. Later calls to
2924 lookup_name should always match an existing input_statement. */
2925 lang_statement_union_type **tail = stat_ptr->tail;
2926 lang_statement_union_type **after
2927 = (void *) ((char *) input_file_chain.tail
2928 - offsetof (lang_input_statement_type, next_real_file)
2929 + offsetof (lang_input_statement_type, header.next));
2930 lang_statement_union_type *rest = *after;
2931 stat_ptr->tail = after;
2932 search = new_afile (name, lang_input_file_is_search_file_enum,
2933 default_target, NULL);
2934 *stat_ptr->tail = rest;
2935 if (*tail == NULL)
2936 stat_ptr->tail = tail;
2937 }
2938
2939 /* If we have already added this file, or this file is not real
2940 don't add this file. */
2941 if (search->flags.loaded || !search->flags.real)
2942 return search;
2943
2944 if (!load_symbols (search, NULL))
2945 return NULL;
2946
2947 return search;
2948 }
2949
2950 /* Save LIST as a list of libraries whose symbols should not be exported. */
2951
2952 struct excluded_lib
2953 {
2954 char *name;
2955 struct excluded_lib *next;
2956 };
2957 static struct excluded_lib *excluded_libs;
2958
2959 void
2960 add_excluded_libs (const char *list)
2961 {
2962 const char *p = list, *end;
2963
2964 while (*p != '\0')
2965 {
2966 struct excluded_lib *entry;
2967 end = strpbrk (p, ",:");
2968 if (end == NULL)
2969 end = p + strlen (p);
2970 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2971 entry->next = excluded_libs;
2972 entry->name = (char *) xmalloc (end - p + 1);
2973 memcpy (entry->name, p, end - p);
2974 entry->name[end - p] = '\0';
2975 excluded_libs = entry;
2976 if (*end == '\0')
2977 break;
2978 p = end + 1;
2979 }
2980 }
2981
2982 static void
2983 check_excluded_libs (bfd *abfd)
2984 {
2985 struct excluded_lib *lib = excluded_libs;
2986
2987 while (lib)
2988 {
2989 int len = strlen (lib->name);
2990 const char *filename = lbasename (bfd_get_filename (abfd));
2991
2992 if (strcmp (lib->name, "ALL") == 0)
2993 {
2994 abfd->no_export = TRUE;
2995 return;
2996 }
2997
2998 if (filename_ncmp (lib->name, filename, len) == 0
2999 && (filename[len] == '\0'
3000 || (filename[len] == '.' && filename[len + 1] == 'a'
3001 && filename[len + 2] == '\0')))
3002 {
3003 abfd->no_export = TRUE;
3004 return;
3005 }
3006
3007 lib = lib->next;
3008 }
3009 }
3010
3011 /* Get the symbols for an input file. */
3012
3013 bfd_boolean
3014 load_symbols (lang_input_statement_type *entry,
3015 lang_statement_list_type *place)
3016 {
3017 char **matching;
3018
3019 if (entry->flags.loaded)
3020 return TRUE;
3021
3022 ldfile_open_file (entry);
3023
3024 /* Do not process further if the file was missing. */
3025 if (entry->flags.missing_file)
3026 return TRUE;
3027
3028 if (trace_files || verbose)
3029 info_msg ("%pI\n", entry);
3030
3031 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3032 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3033 {
3034 bfd_error_type err;
3035 struct lang_input_statement_flags save_flags;
3036 extern FILE *yyin;
3037
3038 err = bfd_get_error ();
3039
3040 /* See if the emulation has some special knowledge. */
3041 if (ldemul_unrecognized_file (entry))
3042 return TRUE;
3043
3044 if (err == bfd_error_file_ambiguously_recognized)
3045 {
3046 char **p;
3047
3048 einfo (_("%P: %pB: file not recognized: %E;"
3049 " matching formats:"), entry->the_bfd);
3050 for (p = matching; *p != NULL; p++)
3051 einfo (" %s", *p);
3052 einfo ("%F\n");
3053 }
3054 else if (err != bfd_error_file_not_recognized
3055 || place == NULL)
3056 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3057
3058 bfd_close (entry->the_bfd);
3059 entry->the_bfd = NULL;
3060
3061 /* Try to interpret the file as a linker script. */
3062 save_flags = input_flags;
3063 ldfile_open_command_file (entry->filename);
3064
3065 push_stat_ptr (place);
3066 input_flags.add_DT_NEEDED_for_regular
3067 = entry->flags.add_DT_NEEDED_for_regular;
3068 input_flags.add_DT_NEEDED_for_dynamic
3069 = entry->flags.add_DT_NEEDED_for_dynamic;
3070 input_flags.whole_archive = entry->flags.whole_archive;
3071 input_flags.dynamic = entry->flags.dynamic;
3072
3073 ldfile_assumed_script = TRUE;
3074 parser_input = input_script;
3075 current_input_file = entry->filename;
3076 yyparse ();
3077 current_input_file = NULL;
3078 ldfile_assumed_script = FALSE;
3079
3080 /* missing_file is sticky. sysrooted will already have been
3081 restored when seeing EOF in yyparse, but no harm to restore
3082 again. */
3083 save_flags.missing_file |= input_flags.missing_file;
3084 input_flags = save_flags;
3085 pop_stat_ptr ();
3086 fclose (yyin);
3087 yyin = NULL;
3088 entry->flags.loaded = TRUE;
3089
3090 return TRUE;
3091 }
3092
3093 if (ldemul_recognized_file (entry))
3094 return TRUE;
3095
3096 /* We don't call ldlang_add_file for an archive. Instead, the
3097 add_symbols entry point will call ldlang_add_file, via the
3098 add_archive_element callback, for each element of the archive
3099 which is used. */
3100 switch (bfd_get_format (entry->the_bfd))
3101 {
3102 default:
3103 break;
3104
3105 case bfd_object:
3106 if (!entry->flags.reload)
3107 ldlang_add_file (entry);
3108 break;
3109
3110 case bfd_archive:
3111 check_excluded_libs (entry->the_bfd);
3112
3113 bfd_set_usrdata (entry->the_bfd, entry);
3114 if (entry->flags.whole_archive)
3115 {
3116 bfd *member = NULL;
3117 bfd_boolean loaded = TRUE;
3118
3119 for (;;)
3120 {
3121 bfd *subsbfd;
3122 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3123
3124 if (member == NULL)
3125 break;
3126
3127 if (!bfd_check_format (member, bfd_object))
3128 {
3129 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3130 entry->the_bfd, member);
3131 loaded = FALSE;
3132 }
3133
3134 subsbfd = member;
3135 if (!(*link_info.callbacks
3136 ->add_archive_element) (&link_info, member,
3137 "--whole-archive", &subsbfd))
3138 abort ();
3139
3140 /* Potentially, the add_archive_element hook may have set a
3141 substitute BFD for us. */
3142 if (!bfd_link_add_symbols (subsbfd, &link_info))
3143 {
3144 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3145 loaded = FALSE;
3146 }
3147 }
3148
3149 entry->flags.loaded = loaded;
3150 return loaded;
3151 }
3152 break;
3153 }
3154
3155 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3156 entry->flags.loaded = TRUE;
3157 else
3158 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3159
3160 return entry->flags.loaded;
3161 }
3162
3163 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3164 may be NULL, indicating that it is a wildcard. Separate
3165 lang_input_section statements are created for each part of the
3166 expansion; they are added after the wild statement S. OUTPUT is
3167 the output section. */
3168
3169 static void
3170 wild (lang_wild_statement_type *s,
3171 const char *target ATTRIBUTE_UNUSED,
3172 lang_output_section_statement_type *output)
3173 {
3174 struct wildcard_list *sec;
3175
3176 if (s->handler_data[0]
3177 && s->handler_data[0]->spec.sorted == by_name
3178 && !s->filenames_sorted)
3179 {
3180 lang_section_bst_type *tree;
3181
3182 walk_wild (s, output_section_callback_fast, output);
3183
3184 tree = s->tree;
3185 if (tree)
3186 {
3187 output_section_callback_tree_to_list (s, tree, output);
3188 s->tree = NULL;
3189 }
3190 }
3191 else
3192 walk_wild (s, output_section_callback, output);
3193
3194 if (default_common_section == NULL)
3195 for (sec = s->section_list; sec != NULL; sec = sec->next)
3196 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3197 {
3198 /* Remember the section that common is going to in case we
3199 later get something which doesn't know where to put it. */
3200 default_common_section = output;
3201 break;
3202 }
3203 }
3204
3205 /* Return TRUE iff target is the sought target. */
3206
3207 static int
3208 get_target (const bfd_target *target, void *data)
3209 {
3210 const char *sought = (const char *) data;
3211
3212 return strcmp (target->name, sought) == 0;
3213 }
3214
3215 /* Like strcpy() but convert to lower case as well. */
3216
3217 static void
3218 stricpy (char *dest, const char *src)
3219 {
3220 char c;
3221
3222 while ((c = *src++) != 0)
3223 *dest++ = TOLOWER (c);
3224
3225 *dest = 0;
3226 }
3227
3228 /* Remove the first occurrence of needle (if any) in haystack
3229 from haystack. */
3230
3231 static void
3232 strcut (char *haystack, const char *needle)
3233 {
3234 haystack = strstr (haystack, needle);
3235
3236 if (haystack)
3237 {
3238 char *src;
3239
3240 for (src = haystack + strlen (needle); *src;)
3241 *haystack++ = *src++;
3242
3243 *haystack = 0;
3244 }
3245 }
3246
3247 /* Compare two target format name strings.
3248 Return a value indicating how "similar" they are. */
3249
3250 static int
3251 name_compare (const char *first, const char *second)
3252 {
3253 char *copy1;
3254 char *copy2;
3255 int result;
3256
3257 copy1 = (char *) xmalloc (strlen (first) + 1);
3258 copy2 = (char *) xmalloc (strlen (second) + 1);
3259
3260 /* Convert the names to lower case. */
3261 stricpy (copy1, first);
3262 stricpy (copy2, second);
3263
3264 /* Remove size and endian strings from the name. */
3265 strcut (copy1, "big");
3266 strcut (copy1, "little");
3267 strcut (copy2, "big");
3268 strcut (copy2, "little");
3269
3270 /* Return a value based on how many characters match,
3271 starting from the beginning. If both strings are
3272 the same then return 10 * their length. */
3273 for (result = 0; copy1[result] == copy2[result]; result++)
3274 if (copy1[result] == 0)
3275 {
3276 result *= 10;
3277 break;
3278 }
3279
3280 free (copy1);
3281 free (copy2);
3282
3283 return result;
3284 }
3285
3286 /* Set by closest_target_match() below. */
3287 static const bfd_target *winner;
3288
3289 /* Scan all the valid bfd targets looking for one that has the endianness
3290 requirement that was specified on the command line, and is the nearest
3291 match to the original output target. */
3292
3293 static int
3294 closest_target_match (const bfd_target *target, void *data)
3295 {
3296 const bfd_target *original = (const bfd_target *) data;
3297
3298 if (command_line.endian == ENDIAN_BIG
3299 && target->byteorder != BFD_ENDIAN_BIG)
3300 return 0;
3301
3302 if (command_line.endian == ENDIAN_LITTLE
3303 && target->byteorder != BFD_ENDIAN_LITTLE)
3304 return 0;
3305
3306 /* Must be the same flavour. */
3307 if (target->flavour != original->flavour)
3308 return 0;
3309
3310 /* Ignore generic big and little endian elf vectors. */
3311 if (strcmp (target->name, "elf32-big") == 0
3312 || strcmp (target->name, "elf64-big") == 0
3313 || strcmp (target->name, "elf32-little") == 0
3314 || strcmp (target->name, "elf64-little") == 0)
3315 return 0;
3316
3317 /* If we have not found a potential winner yet, then record this one. */
3318 if (winner == NULL)
3319 {
3320 winner = target;
3321 return 0;
3322 }
3323
3324 /* Oh dear, we now have two potential candidates for a successful match.
3325 Compare their names and choose the better one. */
3326 if (name_compare (target->name, original->name)
3327 > name_compare (winner->name, original->name))
3328 winner = target;
3329
3330 /* Keep on searching until wqe have checked them all. */
3331 return 0;
3332 }
3333
3334 /* Return the BFD target format of the first input file. */
3335
3336 static const char *
3337 get_first_input_target (void)
3338 {
3339 const char *target = NULL;
3340
3341 LANG_FOR_EACH_INPUT_STATEMENT (s)
3342 {
3343 if (s->header.type == lang_input_statement_enum
3344 && s->flags.real)
3345 {
3346 ldfile_open_file (s);
3347
3348 if (s->the_bfd != NULL
3349 && bfd_check_format (s->the_bfd, bfd_object))
3350 {
3351 target = bfd_get_target (s->the_bfd);
3352
3353 if (target != NULL)
3354 break;
3355 }
3356 }
3357 }
3358
3359 return target;
3360 }
3361
3362 const char *
3363 lang_get_output_target (void)
3364 {
3365 const char *target;
3366
3367 /* Has the user told us which output format to use? */
3368 if (output_target != NULL)
3369 return output_target;
3370
3371 /* No - has the current target been set to something other than
3372 the default? */
3373 if (current_target != default_target && current_target != NULL)
3374 return current_target;
3375
3376 /* No - can we determine the format of the first input file? */
3377 target = get_first_input_target ();
3378 if (target != NULL)
3379 return target;
3380
3381 /* Failed - use the default output target. */
3382 return default_target;
3383 }
3384
3385 /* Open the output file. */
3386
3387 static void
3388 open_output (const char *name)
3389 {
3390 output_target = lang_get_output_target ();
3391
3392 /* Has the user requested a particular endianness on the command
3393 line? */
3394 if (command_line.endian != ENDIAN_UNSET)
3395 {
3396 /* Get the chosen target. */
3397 const bfd_target *target
3398 = bfd_iterate_over_targets (get_target, (void *) output_target);
3399
3400 /* If the target is not supported, we cannot do anything. */
3401 if (target != NULL)
3402 {
3403 enum bfd_endian desired_endian;
3404
3405 if (command_line.endian == ENDIAN_BIG)
3406 desired_endian = BFD_ENDIAN_BIG;
3407 else
3408 desired_endian = BFD_ENDIAN_LITTLE;
3409
3410 /* See if the target has the wrong endianness. This should
3411 not happen if the linker script has provided big and
3412 little endian alternatives, but some scrips don't do
3413 this. */
3414 if (target->byteorder != desired_endian)
3415 {
3416 /* If it does, then see if the target provides
3417 an alternative with the correct endianness. */
3418 if (target->alternative_target != NULL
3419 && (target->alternative_target->byteorder == desired_endian))
3420 output_target = target->alternative_target->name;
3421 else
3422 {
3423 /* Try to find a target as similar as possible to
3424 the default target, but which has the desired
3425 endian characteristic. */
3426 bfd_iterate_over_targets (closest_target_match,
3427 (void *) target);
3428
3429 /* Oh dear - we could not find any targets that
3430 satisfy our requirements. */
3431 if (winner == NULL)
3432 einfo (_("%P: warning: could not find any targets"
3433 " that match endianness requirement\n"));
3434 else
3435 output_target = winner->name;
3436 }
3437 }
3438 }
3439 }
3440
3441 link_info.output_bfd = bfd_openw (name, output_target);
3442
3443 if (link_info.output_bfd == NULL)
3444 {
3445 if (bfd_get_error () == bfd_error_invalid_target)
3446 einfo (_("%F%P: target %s not found\n"), output_target);
3447
3448 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3449 }
3450
3451 delete_output_file_on_failure = TRUE;
3452
3453 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3454 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3455 if (!bfd_set_arch_mach (link_info.output_bfd,
3456 ldfile_output_architecture,
3457 ldfile_output_machine))
3458 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3459
3460 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3461 if (link_info.hash == NULL)
3462 einfo (_("%F%P: can not create hash table: %E\n"));
3463
3464 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3465 }
3466
3467 static void
3468 ldlang_open_output (lang_statement_union_type *statement)
3469 {
3470 switch (statement->header.type)
3471 {
3472 case lang_output_statement_enum:
3473 ASSERT (link_info.output_bfd == NULL);
3474 open_output (statement->output_statement.name);
3475 ldemul_set_output_arch ();
3476 if (config.magic_demand_paged
3477 && !bfd_link_relocatable (&link_info))
3478 link_info.output_bfd->flags |= D_PAGED;
3479 else
3480 link_info.output_bfd->flags &= ~D_PAGED;
3481 if (config.text_read_only)
3482 link_info.output_bfd->flags |= WP_TEXT;
3483 else
3484 link_info.output_bfd->flags &= ~WP_TEXT;
3485 if (link_info.traditional_format)
3486 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3487 else
3488 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3489 break;
3490
3491 case lang_target_statement_enum:
3492 current_target = statement->target_statement.target;
3493 break;
3494 default:
3495 break;
3496 }
3497 }
3498
3499 static void
3500 init_opb (asection *s)
3501 {
3502 unsigned int x;
3503
3504 opb_shift = 0;
3505 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3506 && s != NULL
3507 && (s->flags & SEC_ELF_OCTETS) != 0)
3508 return;
3509
3510 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3511 ldfile_output_machine);
3512 if (x > 1)
3513 while ((x & 1) == 0)
3514 {
3515 x >>= 1;
3516 ++opb_shift;
3517 }
3518 ASSERT (x == 1);
3519 }
3520
3521 /* Open all the input files. */
3522
3523 enum open_bfd_mode
3524 {
3525 OPEN_BFD_NORMAL = 0,
3526 OPEN_BFD_FORCE = 1,
3527 OPEN_BFD_RESCAN = 2
3528 };
3529 #if BFD_SUPPORTS_PLUGINS
3530 static lang_input_statement_type *plugin_insert = NULL;
3531 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3532 #endif
3533
3534 static void
3535 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3536 {
3537 for (; s != NULL; s = s->header.next)
3538 {
3539 switch (s->header.type)
3540 {
3541 case lang_constructors_statement_enum:
3542 open_input_bfds (constructor_list.head, mode);
3543 break;
3544 case lang_output_section_statement_enum:
3545 open_input_bfds (s->output_section_statement.children.head, mode);
3546 break;
3547 case lang_wild_statement_enum:
3548 /* Maybe we should load the file's symbols. */
3549 if ((mode & OPEN_BFD_RESCAN) == 0
3550 && s->wild_statement.filename
3551 && !wildcardp (s->wild_statement.filename)
3552 && !archive_path (s->wild_statement.filename))
3553 lookup_name (s->wild_statement.filename);
3554 open_input_bfds (s->wild_statement.children.head, mode);
3555 break;
3556 case lang_group_statement_enum:
3557 {
3558 struct bfd_link_hash_entry *undefs;
3559 #if BFD_SUPPORTS_PLUGINS
3560 lang_input_statement_type *plugin_insert_save;
3561 #endif
3562
3563 /* We must continually search the entries in the group
3564 until no new symbols are added to the list of undefined
3565 symbols. */
3566
3567 do
3568 {
3569 #if BFD_SUPPORTS_PLUGINS
3570 plugin_insert_save = plugin_insert;
3571 #endif
3572 undefs = link_info.hash->undefs_tail;
3573 open_input_bfds (s->group_statement.children.head,
3574 mode | OPEN_BFD_FORCE);
3575 }
3576 while (undefs != link_info.hash->undefs_tail
3577 #if BFD_SUPPORTS_PLUGINS
3578 /* Objects inserted by a plugin, which are loaded
3579 before we hit this loop, may have added new
3580 undefs. */
3581 || (plugin_insert != plugin_insert_save && plugin_undefs)
3582 #endif
3583 );
3584 }
3585 break;
3586 case lang_target_statement_enum:
3587 current_target = s->target_statement.target;
3588 break;
3589 case lang_input_statement_enum:
3590 if (s->input_statement.flags.real)
3591 {
3592 lang_statement_union_type **os_tail;
3593 lang_statement_list_type add;
3594 bfd *abfd;
3595
3596 s->input_statement.target = current_target;
3597
3598 /* If we are being called from within a group, and this
3599 is an archive which has already been searched, then
3600 force it to be researched unless the whole archive
3601 has been loaded already. Do the same for a rescan.
3602 Likewise reload --as-needed shared libs. */
3603 if (mode != OPEN_BFD_NORMAL
3604 #if BFD_SUPPORTS_PLUGINS
3605 && ((mode & OPEN_BFD_RESCAN) == 0
3606 || plugin_insert == NULL)
3607 #endif
3608 && s->input_statement.flags.loaded
3609 && (abfd = s->input_statement.the_bfd) != NULL
3610 && ((bfd_get_format (abfd) == bfd_archive
3611 && !s->input_statement.flags.whole_archive)
3612 || (bfd_get_format (abfd) == bfd_object
3613 && ((abfd->flags) & DYNAMIC) != 0
3614 && s->input_statement.flags.add_DT_NEEDED_for_regular
3615 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3616 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3617 {
3618 s->input_statement.flags.loaded = FALSE;
3619 s->input_statement.flags.reload = TRUE;
3620 }
3621
3622 os_tail = lang_os_list.tail;
3623 lang_list_init (&add);
3624
3625 if (!load_symbols (&s->input_statement, &add))
3626 config.make_executable = FALSE;
3627
3628 if (add.head != NULL)
3629 {
3630 /* If this was a script with output sections then
3631 tack any added statements on to the end of the
3632 list. This avoids having to reorder the output
3633 section statement list. Very likely the user
3634 forgot -T, and whatever we do here will not meet
3635 naive user expectations. */
3636 if (os_tail != lang_os_list.tail)
3637 {
3638 einfo (_("%P: warning: %s contains output sections;"
3639 " did you forget -T?\n"),
3640 s->input_statement.filename);
3641 *stat_ptr->tail = add.head;
3642 stat_ptr->tail = add.tail;
3643 }
3644 else
3645 {
3646 *add.tail = s->header.next;
3647 s->header.next = add.head;
3648 }
3649 }
3650 }
3651 #if BFD_SUPPORTS_PLUGINS
3652 /* If we have found the point at which a plugin added new
3653 files, clear plugin_insert to enable archive rescan. */
3654 if (&s->input_statement == plugin_insert)
3655 plugin_insert = NULL;
3656 #endif
3657 break;
3658 case lang_assignment_statement_enum:
3659 if (s->assignment_statement.exp->type.node_class != etree_assert)
3660 exp_fold_tree_no_dot (s->assignment_statement.exp);
3661 break;
3662 default:
3663 break;
3664 }
3665 }
3666
3667 /* Exit if any of the files were missing. */
3668 if (input_flags.missing_file)
3669 einfo ("%F");
3670 }
3671
3672 /* Open the CTF sections in the input files with libctf: if any were opened,
3673 create a fake input file that we'll write the merged CTF data to later
3674 on. */
3675
3676 static void
3677 ldlang_open_ctf (void)
3678 {
3679 int any_ctf = 0;
3680 int err;
3681
3682 LANG_FOR_EACH_INPUT_STATEMENT (file)
3683 {
3684 asection *sect;
3685
3686 /* Incoming files from the compiler have a single ctf_file_t in them
3687 (which is presented to us by the libctf API in a ctf_archive_t
3688 wrapper): files derived from a previous relocatable link have a CTF
3689 archive containing possibly many CTF files. */
3690
3691 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3692 {
3693 if (err != ECTF_NOCTFDATA)
3694 einfo (_("%P: warning: CTF section in `%pI' not loaded: "
3695 "its types will be discarded: `%s'\n"), file,
3696 ctf_errmsg (err));
3697 continue;
3698 }
3699
3700 /* Prevent the contents of this section from being written, while
3701 requiring the section itself to be duplicated in the output. */
3702 /* This section must exist if ctf_bfdopen() succeeded. */
3703 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3704 sect->size = 0;
3705 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3706
3707 any_ctf = 1;
3708 }
3709
3710 if (!any_ctf)
3711 {
3712 ctf_output = NULL;
3713 return;
3714 }
3715
3716 if ((ctf_output = ctf_create (&err)) != NULL)
3717 return;
3718
3719 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3720 ctf_errmsg (err));
3721
3722 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3723 ctf_close (errfile->the_ctf);
3724 }
3725
3726 /* Merge together CTF sections. After this, only the symtab-dependent
3727 function and data object sections need adjustment. */
3728
3729 static void
3730 lang_merge_ctf (void)
3731 {
3732 asection *output_sect;
3733
3734 if (!ctf_output)
3735 return;
3736
3737 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3738
3739 /* If the section was discarded, don't waste time merging. */
3740 if (output_sect == NULL)
3741 {
3742 ctf_file_close (ctf_output);
3743 ctf_output = NULL;
3744
3745 LANG_FOR_EACH_INPUT_STATEMENT (file)
3746 {
3747 ctf_close (file->the_ctf);
3748 file->the_ctf = NULL;
3749 }
3750 return;
3751 }
3752
3753 LANG_FOR_EACH_INPUT_STATEMENT (file)
3754 {
3755 if (!file->the_ctf)
3756 continue;
3757
3758 /* Takes ownership of file->u.the_ctfa. */
3759 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3760 {
3761 einfo (_("%F%P: cannot link with CTF in %pB: %s\n"), file->the_bfd,
3762 ctf_errmsg (ctf_errno (ctf_output)));
3763 ctf_close (file->the_ctf);
3764 file->the_ctf = NULL;
3765 continue;
3766 }
3767 }
3768
3769 if (ctf_link (ctf_output, CTF_LINK_SHARE_UNCONFLICTED) < 0)
3770 {
3771 einfo (_("%F%P: CTF linking failed; output will have no CTF section: %s\n"),
3772 ctf_errmsg (ctf_errno (ctf_output)));
3773 if (output_sect)
3774 {
3775 output_sect->size = 0;
3776 output_sect->flags |= SEC_EXCLUDE;
3777 }
3778 }
3779 }
3780
3781 /* Let the emulation examine the symbol table and strtab to help it optimize the
3782 CTF, if supported. */
3783
3784 void
3785 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms, bfd_size_type symcount,
3786 struct elf_strtab_hash *symstrtab)
3787 {
3788 ldemul_examine_strtab_for_ctf (ctf_output, syms, symcount, symstrtab);
3789 }
3790
3791 /* Write out the CTF section. Called early, if the emulation isn't going to
3792 need to dedup against the strtab and symtab, then possibly called from the
3793 target linker code if the dedup has happened. */
3794 static void
3795 lang_write_ctf (int late)
3796 {
3797 size_t output_size;
3798 asection *output_sect;
3799
3800 if (!ctf_output)
3801 return;
3802
3803 if (late)
3804 {
3805 /* Emit CTF late if this emulation says it can do so. */
3806 if (ldemul_emit_ctf_early ())
3807 return;
3808 }
3809 else
3810 {
3811 if (!ldemul_emit_ctf_early ())
3812 return;
3813 }
3814
3815 /* Emit CTF. */
3816
3817 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3818 if (output_sect)
3819 {
3820 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3821 CTF_COMPRESSION_THRESHOLD);
3822 output_sect->size = output_size;
3823 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3824
3825 if (!output_sect->contents)
3826 {
3827 einfo (_("%F%P: CTF section emission failed; output will have no "
3828 "CTF section: %s\n"), ctf_errmsg (ctf_errno (ctf_output)));
3829 output_sect->size = 0;
3830 output_sect->flags |= SEC_EXCLUDE;
3831 }
3832 }
3833
3834 /* This also closes every CTF input file used in the link. */
3835 ctf_file_close (ctf_output);
3836 ctf_output = NULL;
3837
3838 LANG_FOR_EACH_INPUT_STATEMENT (file)
3839 file->the_ctf = NULL;
3840 }
3841
3842 /* Write out the CTF section late, if the emulation needs that. */
3843
3844 void
3845 ldlang_write_ctf_late (void)
3846 {
3847 /* Trigger a "late call", if the emulation needs one. */
3848
3849 lang_write_ctf (1);
3850 }
3851
3852 /* Add the supplied name to the symbol table as an undefined reference.
3853 This is a two step process as the symbol table doesn't even exist at
3854 the time the ld command line is processed. First we put the name
3855 on a list, then, once the output file has been opened, transfer the
3856 name to the symbol table. */
3857
3858 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3859
3860 #define ldlang_undef_chain_list_head entry_symbol.next
3861
3862 void
3863 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3864 {
3865 ldlang_undef_chain_list_type *new_undef;
3866
3867 undef_from_cmdline = undef_from_cmdline || cmdline;
3868 new_undef = stat_alloc (sizeof (*new_undef));
3869 new_undef->next = ldlang_undef_chain_list_head;
3870 ldlang_undef_chain_list_head = new_undef;
3871
3872 new_undef->name = xstrdup (name);
3873
3874 if (link_info.output_bfd != NULL)
3875 insert_undefined (new_undef->name);
3876 }
3877
3878 /* Insert NAME as undefined in the symbol table. */
3879
3880 static void
3881 insert_undefined (const char *name)
3882 {
3883 struct bfd_link_hash_entry *h;
3884
3885 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3886 if (h == NULL)
3887 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3888 if (h->type == bfd_link_hash_new)
3889 {
3890 h->type = bfd_link_hash_undefined;
3891 h->u.undef.abfd = NULL;
3892 h->non_ir_ref_regular = TRUE;
3893 if (is_elf_hash_table (link_info.hash))
3894 ((struct elf_link_hash_entry *) h)->mark = 1;
3895 bfd_link_add_undef (link_info.hash, h);
3896 }
3897 }
3898
3899 /* Run through the list of undefineds created above and place them
3900 into the linker hash table as undefined symbols belonging to the
3901 script file. */
3902
3903 static void
3904 lang_place_undefineds (void)
3905 {
3906 ldlang_undef_chain_list_type *ptr;
3907
3908 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3909 insert_undefined (ptr->name);
3910 }
3911
3912 /* Structure used to build the list of symbols that the user has required
3913 be defined. */
3914
3915 struct require_defined_symbol
3916 {
3917 const char *name;
3918 struct require_defined_symbol *next;
3919 };
3920
3921 /* The list of symbols that the user has required be defined. */
3922
3923 static struct require_defined_symbol *require_defined_symbol_list;
3924
3925 /* Add a new symbol NAME to the list of symbols that are required to be
3926 defined. */
3927
3928 void
3929 ldlang_add_require_defined (const char *const name)
3930 {
3931 struct require_defined_symbol *ptr;
3932
3933 ldlang_add_undef (name, TRUE);
3934 ptr = stat_alloc (sizeof (*ptr));
3935 ptr->next = require_defined_symbol_list;
3936 ptr->name = strdup (name);
3937 require_defined_symbol_list = ptr;
3938 }
3939
3940 /* Check that all symbols the user required to be defined, are defined,
3941 raise an error if we find a symbol that is not defined. */
3942
3943 static void
3944 ldlang_check_require_defined_symbols (void)
3945 {
3946 struct require_defined_symbol *ptr;
3947
3948 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3949 {
3950 struct bfd_link_hash_entry *h;
3951
3952 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3953 FALSE, FALSE, TRUE);
3954 if (h == NULL
3955 || (h->type != bfd_link_hash_defined
3956 && h->type != bfd_link_hash_defweak))
3957 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3958 }
3959 }
3960
3961 /* Check for all readonly or some readwrite sections. */
3962
3963 static void
3964 check_input_sections
3965 (lang_statement_union_type *s,
3966 lang_output_section_statement_type *output_section_statement)
3967 {
3968 for (; s != NULL; s = s->header.next)
3969 {
3970 switch (s->header.type)
3971 {
3972 case lang_wild_statement_enum:
3973 walk_wild (&s->wild_statement, check_section_callback,
3974 output_section_statement);
3975 if (!output_section_statement->all_input_readonly)
3976 return;
3977 break;
3978 case lang_constructors_statement_enum:
3979 check_input_sections (constructor_list.head,
3980 output_section_statement);
3981 if (!output_section_statement->all_input_readonly)
3982 return;
3983 break;
3984 case lang_group_statement_enum:
3985 check_input_sections (s->group_statement.children.head,
3986 output_section_statement);
3987 if (!output_section_statement->all_input_readonly)
3988 return;
3989 break;
3990 default:
3991 break;
3992 }
3993 }
3994 }
3995
3996 /* Update wildcard statements if needed. */
3997
3998 static void
3999 update_wild_statements (lang_statement_union_type *s)
4000 {
4001 struct wildcard_list *sec;
4002
4003 switch (sort_section)
4004 {
4005 default:
4006 FAIL ();
4007
4008 case none:
4009 break;
4010
4011 case by_name:
4012 case by_alignment:
4013 for (; s != NULL; s = s->header.next)
4014 {
4015 switch (s->header.type)
4016 {
4017 default:
4018 break;
4019
4020 case lang_wild_statement_enum:
4021 for (sec = s->wild_statement.section_list; sec != NULL;
4022 sec = sec->next)
4023 /* Don't sort .init/.fini sections. */
4024 if (strcmp (sec->spec.name, ".init") != 0
4025 && strcmp (sec->spec.name, ".fini") != 0)
4026 switch (sec->spec.sorted)
4027 {
4028 case none:
4029 sec->spec.sorted = sort_section;
4030 break;
4031 case by_name:
4032 if (sort_section == by_alignment)
4033 sec->spec.sorted = by_name_alignment;
4034 break;
4035 case by_alignment:
4036 if (sort_section == by_name)
4037 sec->spec.sorted = by_alignment_name;
4038 break;
4039 default:
4040 break;
4041 }
4042 break;
4043
4044 case lang_constructors_statement_enum:
4045 update_wild_statements (constructor_list.head);
4046 break;
4047
4048 case lang_output_section_statement_enum:
4049 update_wild_statements
4050 (s->output_section_statement.children.head);
4051 break;
4052
4053 case lang_group_statement_enum:
4054 update_wild_statements (s->group_statement.children.head);
4055 break;
4056 }
4057 }
4058 break;
4059 }
4060 }
4061
4062 /* Open input files and attach to output sections. */
4063
4064 static void
4065 map_input_to_output_sections
4066 (lang_statement_union_type *s, const char *target,
4067 lang_output_section_statement_type *os)
4068 {
4069 for (; s != NULL; s = s->header.next)
4070 {
4071 lang_output_section_statement_type *tos;
4072 flagword flags;
4073
4074 switch (s->header.type)
4075 {
4076 case lang_wild_statement_enum:
4077 wild (&s->wild_statement, target, os);
4078 break;
4079 case lang_constructors_statement_enum:
4080 map_input_to_output_sections (constructor_list.head,
4081 target,
4082 os);
4083 break;
4084 case lang_output_section_statement_enum:
4085 tos = &s->output_section_statement;
4086 if (tos->constraint != 0)
4087 {
4088 if (tos->constraint != ONLY_IF_RW
4089 && tos->constraint != ONLY_IF_RO)
4090 break;
4091 tos->all_input_readonly = TRUE;
4092 check_input_sections (tos->children.head, tos);
4093 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4094 {
4095 tos->constraint = -1;
4096 break;
4097 }
4098 }
4099 map_input_to_output_sections (tos->children.head,
4100 target,
4101 tos);
4102 break;
4103 case lang_output_statement_enum:
4104 break;
4105 case lang_target_statement_enum:
4106 target = s->target_statement.target;
4107 break;
4108 case lang_group_statement_enum:
4109 map_input_to_output_sections (s->group_statement.children.head,
4110 target,
4111 os);
4112 break;
4113 case lang_data_statement_enum:
4114 /* Make sure that any sections mentioned in the expression
4115 are initialized. */
4116 exp_init_os (s->data_statement.exp);
4117 /* The output section gets CONTENTS, ALLOC and LOAD, but
4118 these may be overridden by the script. */
4119 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4120 switch (os->sectype)
4121 {
4122 case normal_section:
4123 case overlay_section:
4124 case first_overlay_section:
4125 break;
4126 case noalloc_section:
4127 flags = SEC_HAS_CONTENTS;
4128 break;
4129 case noload_section:
4130 if (bfd_get_flavour (link_info.output_bfd)
4131 == bfd_target_elf_flavour)
4132 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4133 else
4134 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4135 break;
4136 }
4137 if (os->bfd_section == NULL)
4138 init_os (os, flags);
4139 else
4140 os->bfd_section->flags |= flags;
4141 break;
4142 case lang_input_section_enum:
4143 break;
4144 case lang_fill_statement_enum:
4145 case lang_object_symbols_statement_enum:
4146 case lang_reloc_statement_enum:
4147 case lang_padding_statement_enum:
4148 case lang_input_statement_enum:
4149 if (os != NULL && os->bfd_section == NULL)
4150 init_os (os, 0);
4151 break;
4152 case lang_assignment_statement_enum:
4153 if (os != NULL && os->bfd_section == NULL)
4154 init_os (os, 0);
4155
4156 /* Make sure that any sections mentioned in the assignment
4157 are initialized. */
4158 exp_init_os (s->assignment_statement.exp);
4159 break;
4160 case lang_address_statement_enum:
4161 /* Mark the specified section with the supplied address.
4162 If this section was actually a segment marker, then the
4163 directive is ignored if the linker script explicitly
4164 processed the segment marker. Originally, the linker
4165 treated segment directives (like -Ttext on the
4166 command-line) as section directives. We honor the
4167 section directive semantics for backwards compatibility;
4168 linker scripts that do not specifically check for
4169 SEGMENT_START automatically get the old semantics. */
4170 if (!s->address_statement.segment
4171 || !s->address_statement.segment->used)
4172 {
4173 const char *name = s->address_statement.section_name;
4174
4175 /* Create the output section statement here so that
4176 orphans with a set address will be placed after other
4177 script sections. If we let the orphan placement code
4178 place them in amongst other sections then the address
4179 will affect following script sections, which is
4180 likely to surprise naive users. */
4181 tos = lang_output_section_statement_lookup (name, 0, TRUE);
4182 tos->addr_tree = s->address_statement.address;
4183 if (tos->bfd_section == NULL)
4184 init_os (tos, 0);
4185 }
4186 break;
4187 case lang_insert_statement_enum:
4188 break;
4189 }
4190 }
4191 }
4192
4193 /* An insert statement snips out all the linker statements from the
4194 start of the list and places them after the output section
4195 statement specified by the insert. This operation is complicated
4196 by the fact that we keep a doubly linked list of output section
4197 statements as well as the singly linked list of all statements.
4198 FIXME someday: Twiddling with the list not only moves statements
4199 from the user's script but also input and group statements that are
4200 built from command line object files and --start-group. We only
4201 get away with this because the list pointers used by file_chain
4202 and input_file_chain are not reordered, and processing via
4203 statement_list after this point mostly ignores input statements.
4204 One exception is the map file, where LOAD and START GROUP/END GROUP
4205 can end up looking odd. */
4206
4207 static void
4208 process_insert_statements (lang_statement_union_type **start)
4209 {
4210 lang_statement_union_type **s;
4211 lang_output_section_statement_type *first_os = NULL;
4212 lang_output_section_statement_type *last_os = NULL;
4213 lang_output_section_statement_type *os;
4214
4215 s = start;
4216 while (*s != NULL)
4217 {
4218 if ((*s)->header.type == lang_output_section_statement_enum)
4219 {
4220 /* Keep pointers to the first and last output section
4221 statement in the sequence we may be about to move. */
4222 os = &(*s)->output_section_statement;
4223
4224 ASSERT (last_os == NULL || last_os->next == os);
4225 last_os = os;
4226
4227 /* Set constraint negative so that lang_output_section_find
4228 won't match this output section statement. At this
4229 stage in linking constraint has values in the range
4230 [-1, ONLY_IN_RW]. */
4231 last_os->constraint = -2 - last_os->constraint;
4232 if (first_os == NULL)
4233 first_os = last_os;
4234 }
4235 else if ((*s)->header.type == lang_group_statement_enum)
4236 {
4237 /* A user might put -T between --start-group and
4238 --end-group. One way this odd construct might arise is
4239 from a wrapper around ld to change library search
4240 behaviour. For example:
4241 #! /bin/sh
4242 exec real_ld --start-group "$@" --end-group
4243 This isn't completely unreasonable so go looking inside a
4244 group statement for insert statements. */
4245 process_insert_statements (&(*s)->group_statement.children.head);
4246 }
4247 else if ((*s)->header.type == lang_insert_statement_enum)
4248 {
4249 lang_insert_statement_type *i = &(*s)->insert_statement;
4250 lang_output_section_statement_type *where;
4251 lang_statement_union_type **ptr;
4252 lang_statement_union_type *first;
4253
4254 if (link_info.non_contiguous_regions)
4255 {
4256 einfo (_("warning: INSERT statement in linker script is "
4257 "incompatible with --enable-non-contiguous-regions.\n"));
4258 }
4259
4260 where = lang_output_section_find (i->where);
4261 if (where != NULL && i->is_before)
4262 {
4263 do
4264 where = where->prev;
4265 while (where != NULL && where->constraint < 0);
4266 }
4267 if (where == NULL)
4268 {
4269 einfo (_("%F%P: %s not found for insert\n"), i->where);
4270 return;
4271 }
4272
4273 /* Deal with reordering the output section statement list. */
4274 if (last_os != NULL)
4275 {
4276 asection *first_sec, *last_sec;
4277 struct lang_output_section_statement_struct **next;
4278
4279 /* Snip out the output sections we are moving. */
4280 first_os->prev->next = last_os->next;
4281 if (last_os->next == NULL)
4282 {
4283 next = &first_os->prev->next;
4284 lang_os_list.tail = (lang_statement_union_type **) next;
4285 }
4286 else
4287 last_os->next->prev = first_os->prev;
4288 /* Add them in at the new position. */
4289 last_os->next = where->next;
4290 if (where->next == NULL)
4291 {
4292 next = &last_os->next;
4293 lang_os_list.tail = (lang_statement_union_type **) next;
4294 }
4295 else
4296 where->next->prev = last_os;
4297 first_os->prev = where;
4298 where->next = first_os;
4299
4300 /* Move the bfd sections in the same way. */
4301 first_sec = NULL;
4302 last_sec = NULL;
4303 for (os = first_os; os != NULL; os = os->next)
4304 {
4305 os->constraint = -2 - os->constraint;
4306 if (os->bfd_section != NULL
4307 && os->bfd_section->owner != NULL)
4308 {
4309 last_sec = os->bfd_section;
4310 if (first_sec == NULL)
4311 first_sec = last_sec;
4312 }
4313 if (os == last_os)
4314 break;
4315 }
4316 if (last_sec != NULL)
4317 {
4318 asection *sec = where->bfd_section;
4319 if (sec == NULL)
4320 sec = output_prev_sec_find (where);
4321
4322 /* The place we want to insert must come after the
4323 sections we are moving. So if we find no
4324 section or if the section is the same as our
4325 last section, then no move is needed. */
4326 if (sec != NULL && sec != last_sec)
4327 {
4328 /* Trim them off. */
4329 if (first_sec->prev != NULL)
4330 first_sec->prev->next = last_sec->next;
4331 else
4332 link_info.output_bfd->sections = last_sec->next;
4333 if (last_sec->next != NULL)
4334 last_sec->next->prev = first_sec->prev;
4335 else
4336 link_info.output_bfd->section_last = first_sec->prev;
4337 /* Add back. */
4338 last_sec->next = sec->next;
4339 if (sec->next != NULL)
4340 sec->next->prev = last_sec;
4341 else
4342 link_info.output_bfd->section_last = last_sec;
4343 first_sec->prev = sec;
4344 sec->next = first_sec;
4345 }
4346 }
4347
4348 first_os = NULL;
4349 last_os = NULL;
4350 }
4351
4352 ptr = insert_os_after (where);
4353 /* Snip everything from the start of the list, up to and
4354 including the insert statement we are currently processing. */
4355 first = *start;
4356 *start = (*s)->header.next;
4357 /* Add them back where they belong, minus the insert. */
4358 *s = *ptr;
4359 if (*s == NULL)
4360 statement_list.tail = s;
4361 *ptr = first;
4362 s = start;
4363 continue;
4364 }
4365 s = &(*s)->header.next;
4366 }
4367
4368 /* Undo constraint twiddling. */
4369 for (os = first_os; os != NULL; os = os->next)
4370 {
4371 os->constraint = -2 - os->constraint;
4372 if (os == last_os)
4373 break;
4374 }
4375 }
4376
4377 /* An output section might have been removed after its statement was
4378 added. For example, ldemul_before_allocation can remove dynamic
4379 sections if they turn out to be not needed. Clean them up here. */
4380
4381 void
4382 strip_excluded_output_sections (void)
4383 {
4384 lang_output_section_statement_type *os;
4385
4386 /* Run lang_size_sections (if not already done). */
4387 if (expld.phase != lang_mark_phase_enum)
4388 {
4389 expld.phase = lang_mark_phase_enum;
4390 expld.dataseg.phase = exp_seg_none;
4391 one_lang_size_sections_pass (NULL, FALSE);
4392 lang_reset_memory_regions ();
4393 }
4394
4395 for (os = (void *) lang_os_list.head;
4396 os != NULL;
4397 os = os->next)
4398 {
4399 asection *output_section;
4400 bfd_boolean exclude;
4401
4402 if (os->constraint < 0)
4403 continue;
4404
4405 output_section = os->bfd_section;
4406 if (output_section == NULL)
4407 continue;
4408
4409 exclude = (output_section->rawsize == 0
4410 && (output_section->flags & SEC_KEEP) == 0
4411 && !bfd_section_removed_from_list (link_info.output_bfd,
4412 output_section));
4413
4414 /* Some sections have not yet been sized, notably .gnu.version,
4415 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4416 input sections, so don't drop output sections that have such
4417 input sections unless they are also marked SEC_EXCLUDE. */
4418 if (exclude && output_section->map_head.s != NULL)
4419 {
4420 asection *s;
4421
4422 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4423 if ((s->flags & SEC_EXCLUDE) == 0
4424 && ((s->flags & SEC_LINKER_CREATED) != 0
4425 || link_info.emitrelocations))
4426 {
4427 exclude = FALSE;
4428 break;
4429 }
4430 }
4431
4432 if (exclude)
4433 {
4434 /* We don't set bfd_section to NULL since bfd_section of the
4435 removed output section statement may still be used. */
4436 if (!os->update_dot)
4437 os->ignored = TRUE;
4438 output_section->flags |= SEC_EXCLUDE;
4439 bfd_section_list_remove (link_info.output_bfd, output_section);
4440 link_info.output_bfd->section_count--;
4441 }
4442 }
4443 }
4444
4445 /* Called from ldwrite to clear out asection.map_head and
4446 asection.map_tail for use as link_orders in ldwrite. */
4447
4448 void
4449 lang_clear_os_map (void)
4450 {
4451 lang_output_section_statement_type *os;
4452
4453 if (map_head_is_link_order)
4454 return;
4455
4456 for (os = (void *) lang_os_list.head;
4457 os != NULL;
4458 os = os->next)
4459 {
4460 asection *output_section;
4461
4462 if (os->constraint < 0)
4463 continue;
4464
4465 output_section = os->bfd_section;
4466 if (output_section == NULL)
4467 continue;
4468
4469 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4470 output_section->map_head.link_order = NULL;
4471 output_section->map_tail.link_order = NULL;
4472 }
4473
4474 /* Stop future calls to lang_add_section from messing with map_head
4475 and map_tail link_order fields. */
4476 map_head_is_link_order = TRUE;
4477 }
4478
4479 static void
4480 print_output_section_statement
4481 (lang_output_section_statement_type *output_section_statement)
4482 {
4483 asection *section = output_section_statement->bfd_section;
4484 int len;
4485
4486 if (output_section_statement != abs_output_section)
4487 {
4488 minfo ("\n%s", output_section_statement->name);
4489
4490 if (section != NULL)
4491 {
4492 print_dot = section->vma;
4493
4494 len = strlen (output_section_statement->name);
4495 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4496 {
4497 print_nl ();
4498 len = 0;
4499 }
4500 while (len < SECTION_NAME_MAP_LENGTH)
4501 {
4502 print_space ();
4503 ++len;
4504 }
4505
4506 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4507
4508 if (section->vma != section->lma)
4509 minfo (_(" load address 0x%V"), section->lma);
4510
4511 if (output_section_statement->update_dot_tree != NULL)
4512 exp_fold_tree (output_section_statement->update_dot_tree,
4513 bfd_abs_section_ptr, &print_dot);
4514 }
4515
4516 print_nl ();
4517 }
4518
4519 print_statement_list (output_section_statement->children.head,
4520 output_section_statement);
4521 }
4522
4523 static void
4524 print_assignment (lang_assignment_statement_type *assignment,
4525 lang_output_section_statement_type *output_section)
4526 {
4527 unsigned int i;
4528 bfd_boolean is_dot;
4529 etree_type *tree;
4530 asection *osec;
4531
4532 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4533 print_space ();
4534
4535 if (assignment->exp->type.node_class == etree_assert)
4536 {
4537 is_dot = FALSE;
4538 tree = assignment->exp->assert_s.child;
4539 }
4540 else
4541 {
4542 const char *dst = assignment->exp->assign.dst;
4543
4544 is_dot = (dst[0] == '.' && dst[1] == 0);
4545 tree = assignment->exp;
4546 }
4547
4548 osec = output_section->bfd_section;
4549 if (osec == NULL)
4550 osec = bfd_abs_section_ptr;
4551
4552 if (assignment->exp->type.node_class != etree_provide)
4553 exp_fold_tree (tree, osec, &print_dot);
4554 else
4555 expld.result.valid_p = FALSE;
4556
4557 if (expld.result.valid_p)
4558 {
4559 bfd_vma value;
4560
4561 if (assignment->exp->type.node_class == etree_assert
4562 || is_dot
4563 || expld.assign_name != NULL)
4564 {
4565 value = expld.result.value;
4566
4567 if (expld.result.section != NULL)
4568 value += expld.result.section->vma;
4569
4570 minfo ("0x%V", value);
4571 if (is_dot)
4572 print_dot = value;
4573 }
4574 else
4575 {
4576 struct bfd_link_hash_entry *h;
4577
4578 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4579 FALSE, FALSE, TRUE);
4580 if (h != NULL
4581 && (h->type == bfd_link_hash_defined
4582 || h->type == bfd_link_hash_defweak))
4583 {
4584 value = h->u.def.value;
4585 value += h->u.def.section->output_section->vma;
4586 value += h->u.def.section->output_offset;
4587
4588 minfo ("[0x%V]", value);
4589 }
4590 else
4591 minfo ("[unresolved]");
4592 }
4593 }
4594 else
4595 {
4596 if (assignment->exp->type.node_class == etree_provide)
4597 minfo ("[!provide]");
4598 else
4599 minfo ("*undef* ");
4600 #ifdef BFD64
4601 minfo (" ");
4602 #endif
4603 }
4604 expld.assign_name = NULL;
4605
4606 minfo (" ");
4607 exp_print_tree (assignment->exp);
4608 print_nl ();
4609 }
4610
4611 static void
4612 print_input_statement (lang_input_statement_type *statm)
4613 {
4614 if (statm->filename != NULL)
4615 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4616 }
4617
4618 /* Print all symbols defined in a particular section. This is called
4619 via bfd_link_hash_traverse, or by print_all_symbols. */
4620
4621 bfd_boolean
4622 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4623 {
4624 asection *sec = (asection *) ptr;
4625
4626 if ((hash_entry->type == bfd_link_hash_defined
4627 || hash_entry->type == bfd_link_hash_defweak)
4628 && sec == hash_entry->u.def.section)
4629 {
4630 int i;
4631
4632 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4633 print_space ();
4634 minfo ("0x%V ",
4635 (hash_entry->u.def.value
4636 + hash_entry->u.def.section->output_offset
4637 + hash_entry->u.def.section->output_section->vma));
4638
4639 minfo (" %pT\n", hash_entry->root.string);
4640 }
4641
4642 return TRUE;
4643 }
4644
4645 static int
4646 hash_entry_addr_cmp (const void *a, const void *b)
4647 {
4648 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4649 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4650
4651 if (l->u.def.value < r->u.def.value)
4652 return -1;
4653 else if (l->u.def.value > r->u.def.value)
4654 return 1;
4655 else
4656 return 0;
4657 }
4658
4659 static void
4660 print_all_symbols (asection *sec)
4661 {
4662 input_section_userdata_type *ud = bfd_section_userdata (sec);
4663 struct map_symbol_def *def;
4664 struct bfd_link_hash_entry **entries;
4665 unsigned int i;
4666
4667 if (!ud)
4668 return;
4669
4670 *ud->map_symbol_def_tail = 0;
4671
4672 /* Sort the symbols by address. */
4673 entries = (struct bfd_link_hash_entry **)
4674 obstack_alloc (&map_obstack,
4675 ud->map_symbol_def_count * sizeof (*entries));
4676
4677 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4678 entries[i] = def->entry;
4679
4680 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4681 hash_entry_addr_cmp);
4682
4683 /* Print the symbols. */
4684 for (i = 0; i < ud->map_symbol_def_count; i++)
4685 ldemul_print_symbol (entries[i], sec);
4686
4687 obstack_free (&map_obstack, entries);
4688 }
4689
4690 /* Print information about an input section to the map file. */
4691
4692 static void
4693 print_input_section (asection *i, bfd_boolean is_discarded)
4694 {
4695 bfd_size_type size = i->size;
4696 int len;
4697 bfd_vma addr;
4698
4699 init_opb (i);
4700
4701 print_space ();
4702 minfo ("%s", i->name);
4703
4704 len = 1 + strlen (i->name);
4705 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4706 {
4707 print_nl ();
4708 len = 0;
4709 }
4710 while (len < SECTION_NAME_MAP_LENGTH)
4711 {
4712 print_space ();
4713 ++len;
4714 }
4715
4716 if (i->output_section != NULL
4717 && i->output_section->owner == link_info.output_bfd)
4718 addr = i->output_section->vma + i->output_offset;
4719 else
4720 {
4721 addr = print_dot;
4722 if (!is_discarded)
4723 size = 0;
4724 }
4725
4726 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4727
4728 if (size != i->rawsize && i->rawsize != 0)
4729 {
4730 len = SECTION_NAME_MAP_LENGTH + 3;
4731 #ifdef BFD64
4732 len += 16;
4733 #else
4734 len += 8;
4735 #endif
4736 while (len > 0)
4737 {
4738 print_space ();
4739 --len;
4740 }
4741
4742 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4743 }
4744
4745 if (i->output_section != NULL
4746 && i->output_section->owner == link_info.output_bfd)
4747 {
4748 if (link_info.reduce_memory_overheads)
4749 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4750 else
4751 print_all_symbols (i);
4752
4753 /* Update print_dot, but make sure that we do not move it
4754 backwards - this could happen if we have overlays and a
4755 later overlay is shorter than an earier one. */
4756 if (addr + TO_ADDR (size) > print_dot)
4757 print_dot = addr + TO_ADDR (size);
4758 }
4759 }
4760
4761 static void
4762 print_fill_statement (lang_fill_statement_type *fill)
4763 {
4764 size_t size;
4765 unsigned char *p;
4766 fputs (" FILL mask 0x", config.map_file);
4767 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4768 fprintf (config.map_file, "%02x", *p);
4769 fputs ("\n", config.map_file);
4770 }
4771
4772 static void
4773 print_data_statement (lang_data_statement_type *data)
4774 {
4775 int i;
4776 bfd_vma addr;
4777 bfd_size_type size;
4778 const char *name;
4779
4780 init_opb (data->output_section);
4781 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4782 print_space ();
4783
4784 addr = data->output_offset;
4785 if (data->output_section != NULL)
4786 addr += data->output_section->vma;
4787
4788 switch (data->type)
4789 {
4790 default:
4791 abort ();
4792 case BYTE:
4793 size = BYTE_SIZE;
4794 name = "BYTE";
4795 break;
4796 case SHORT:
4797 size = SHORT_SIZE;
4798 name = "SHORT";
4799 break;
4800 case LONG:
4801 size = LONG_SIZE;
4802 name = "LONG";
4803 break;
4804 case QUAD:
4805 size = QUAD_SIZE;
4806 name = "QUAD";
4807 break;
4808 case SQUAD:
4809 size = QUAD_SIZE;
4810 name = "SQUAD";
4811 break;
4812 }
4813
4814 if (size < TO_SIZE ((unsigned) 1))
4815 size = TO_SIZE ((unsigned) 1);
4816 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4817
4818 if (data->exp->type.node_class != etree_value)
4819 {
4820 print_space ();
4821 exp_print_tree (data->exp);
4822 }
4823
4824 print_nl ();
4825
4826 print_dot = addr + TO_ADDR (size);
4827 }
4828
4829 /* Print an address statement. These are generated by options like
4830 -Ttext. */
4831
4832 static void
4833 print_address_statement (lang_address_statement_type *address)
4834 {
4835 minfo (_("Address of section %s set to "), address->section_name);
4836 exp_print_tree (address->address);
4837 print_nl ();
4838 }
4839
4840 /* Print a reloc statement. */
4841
4842 static void
4843 print_reloc_statement (lang_reloc_statement_type *reloc)
4844 {
4845 int i;
4846 bfd_vma addr;
4847 bfd_size_type size;
4848
4849 init_opb (reloc->output_section);
4850 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4851 print_space ();
4852
4853 addr = reloc->output_offset;
4854 if (reloc->output_section != NULL)
4855 addr += reloc->output_section->vma;
4856
4857 size = bfd_get_reloc_size (reloc->howto);
4858
4859 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4860
4861 if (reloc->name != NULL)
4862 minfo ("%s+", reloc->name);
4863 else
4864 minfo ("%s+", reloc->section->name);
4865
4866 exp_print_tree (reloc->addend_exp);
4867
4868 print_nl ();
4869
4870 print_dot = addr + TO_ADDR (size);
4871 }
4872
4873 static void
4874 print_padding_statement (lang_padding_statement_type *s)
4875 {
4876 int len;
4877 bfd_vma addr;
4878
4879 init_opb (s->output_section);
4880 minfo (" *fill*");
4881
4882 len = sizeof " *fill*" - 1;
4883 while (len < SECTION_NAME_MAP_LENGTH)
4884 {
4885 print_space ();
4886 ++len;
4887 }
4888
4889 addr = s->output_offset;
4890 if (s->output_section != NULL)
4891 addr += s->output_section->vma;
4892 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4893
4894 if (s->fill->size != 0)
4895 {
4896 size_t size;
4897 unsigned char *p;
4898 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4899 fprintf (config.map_file, "%02x", *p);
4900 }
4901
4902 print_nl ();
4903
4904 print_dot = addr + TO_ADDR (s->size);
4905 }
4906
4907 static void
4908 print_wild_statement (lang_wild_statement_type *w,
4909 lang_output_section_statement_type *os)
4910 {
4911 struct wildcard_list *sec;
4912
4913 print_space ();
4914
4915 if (w->exclude_name_list)
4916 {
4917 name_list *tmp;
4918 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4919 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4920 minfo (" %s", tmp->name);
4921 minfo (") ");
4922 }
4923
4924 if (w->filenames_sorted)
4925 minfo ("SORT_BY_NAME(");
4926 if (w->filename != NULL)
4927 minfo ("%s", w->filename);
4928 else
4929 minfo ("*");
4930 if (w->filenames_sorted)
4931 minfo (")");
4932
4933 minfo ("(");
4934 for (sec = w->section_list; sec; sec = sec->next)
4935 {
4936 int closing_paren = 0;
4937
4938 switch (sec->spec.sorted)
4939 {
4940 case none:
4941 break;
4942
4943 case by_name:
4944 minfo ("SORT_BY_NAME(");
4945 closing_paren = 1;
4946 break;
4947
4948 case by_alignment:
4949 minfo ("SORT_BY_ALIGNMENT(");
4950 closing_paren = 1;
4951 break;
4952
4953 case by_name_alignment:
4954 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4955 closing_paren = 2;
4956 break;
4957
4958 case by_alignment_name:
4959 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4960 closing_paren = 2;
4961 break;
4962
4963 case by_none:
4964 minfo ("SORT_NONE(");
4965 closing_paren = 1;
4966 break;
4967
4968 case by_init_priority:
4969 minfo ("SORT_BY_INIT_PRIORITY(");
4970 closing_paren = 1;
4971 break;
4972 }
4973
4974 if (sec->spec.exclude_name_list != NULL)
4975 {
4976 name_list *tmp;
4977 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4978 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4979 minfo (" %s", tmp->name);
4980 minfo (") ");
4981 }
4982 if (sec->spec.name != NULL)
4983 minfo ("%s", sec->spec.name);
4984 else
4985 minfo ("*");
4986 for (;closing_paren > 0; closing_paren--)
4987 minfo (")");
4988 if (sec->next)
4989 minfo (" ");
4990 }
4991 minfo (")");
4992
4993 print_nl ();
4994
4995 print_statement_list (w->children.head, os);
4996 }
4997
4998 /* Print a group statement. */
4999
5000 static void
5001 print_group (lang_group_statement_type *s,
5002 lang_output_section_statement_type *os)
5003 {
5004 fprintf (config.map_file, "START GROUP\n");
5005 print_statement_list (s->children.head, os);
5006 fprintf (config.map_file, "END GROUP\n");
5007 }
5008
5009 /* Print the list of statements in S.
5010 This can be called for any statement type. */
5011
5012 static void
5013 print_statement_list (lang_statement_union_type *s,
5014 lang_output_section_statement_type *os)
5015 {
5016 while (s != NULL)
5017 {
5018 print_statement (s, os);
5019 s = s->header.next;
5020 }
5021 }
5022
5023 /* Print the first statement in statement list S.
5024 This can be called for any statement type. */
5025
5026 static void
5027 print_statement (lang_statement_union_type *s,
5028 lang_output_section_statement_type *os)
5029 {
5030 switch (s->header.type)
5031 {
5032 default:
5033 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5034 FAIL ();
5035 break;
5036 case lang_constructors_statement_enum:
5037 if (constructor_list.head != NULL)
5038 {
5039 if (constructors_sorted)
5040 minfo (" SORT (CONSTRUCTORS)\n");
5041 else
5042 minfo (" CONSTRUCTORS\n");
5043 print_statement_list (constructor_list.head, os);
5044 }
5045 break;
5046 case lang_wild_statement_enum:
5047 print_wild_statement (&s->wild_statement, os);
5048 break;
5049 case lang_address_statement_enum:
5050 print_address_statement (&s->address_statement);
5051 break;
5052 case lang_object_symbols_statement_enum:
5053 minfo (" CREATE_OBJECT_SYMBOLS\n");
5054 break;
5055 case lang_fill_statement_enum:
5056 print_fill_statement (&s->fill_statement);
5057 break;
5058 case lang_data_statement_enum:
5059 print_data_statement (&s->data_statement);
5060 break;
5061 case lang_reloc_statement_enum:
5062 print_reloc_statement (&s->reloc_statement);
5063 break;
5064 case lang_input_section_enum:
5065 print_input_section (s->input_section.section, FALSE);
5066 break;
5067 case lang_padding_statement_enum:
5068 print_padding_statement (&s->padding_statement);
5069 break;
5070 case lang_output_section_statement_enum:
5071 print_output_section_statement (&s->output_section_statement);
5072 break;
5073 case lang_assignment_statement_enum:
5074 print_assignment (&s->assignment_statement, os);
5075 break;
5076 case lang_target_statement_enum:
5077 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5078 break;
5079 case lang_output_statement_enum:
5080 minfo ("OUTPUT(%s", s->output_statement.name);
5081 if (output_target != NULL)
5082 minfo (" %s", output_target);
5083 minfo (")\n");
5084 break;
5085 case lang_input_statement_enum:
5086 print_input_statement (&s->input_statement);
5087 break;
5088 case lang_group_statement_enum:
5089 print_group (&s->group_statement, os);
5090 break;
5091 case lang_insert_statement_enum:
5092 minfo ("INSERT %s %s\n",
5093 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5094 s->insert_statement.where);
5095 break;
5096 }
5097 }
5098
5099 static void
5100 print_statements (void)
5101 {
5102 print_statement_list (statement_list.head, abs_output_section);
5103 }
5104
5105 /* Print the first N statements in statement list S to STDERR.
5106 If N == 0, nothing is printed.
5107 If N < 0, the entire list is printed.
5108 Intended to be called from GDB. */
5109
5110 void
5111 dprint_statement (lang_statement_union_type *s, int n)
5112 {
5113 FILE *map_save = config.map_file;
5114
5115 config.map_file = stderr;
5116
5117 if (n < 0)
5118 print_statement_list (s, abs_output_section);
5119 else
5120 {
5121 while (s && --n >= 0)
5122 {
5123 print_statement (s, abs_output_section);
5124 s = s->header.next;
5125 }
5126 }
5127
5128 config.map_file = map_save;
5129 }
5130
5131 static void
5132 insert_pad (lang_statement_union_type **ptr,
5133 fill_type *fill,
5134 bfd_size_type alignment_needed,
5135 asection *output_section,
5136 bfd_vma dot)
5137 {
5138 static fill_type zero_fill;
5139 lang_statement_union_type *pad = NULL;
5140
5141 if (ptr != &statement_list.head)
5142 pad = ((lang_statement_union_type *)
5143 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5144 if (pad != NULL
5145 && pad->header.type == lang_padding_statement_enum
5146 && pad->padding_statement.output_section == output_section)
5147 {
5148 /* Use the existing pad statement. */
5149 }
5150 else if ((pad = *ptr) != NULL
5151 && pad->header.type == lang_padding_statement_enum
5152 && pad->padding_statement.output_section == output_section)
5153 {
5154 /* Use the existing pad statement. */
5155 }
5156 else
5157 {
5158 /* Make a new padding statement, linked into existing chain. */
5159 pad = stat_alloc (sizeof (lang_padding_statement_type));
5160 pad->header.next = *ptr;
5161 *ptr = pad;
5162 pad->header.type = lang_padding_statement_enum;
5163 pad->padding_statement.output_section = output_section;
5164 if (fill == NULL)
5165 fill = &zero_fill;
5166 pad->padding_statement.fill = fill;
5167 }
5168 pad->padding_statement.output_offset = dot - output_section->vma;
5169 pad->padding_statement.size = alignment_needed;
5170 if (!(output_section->flags & SEC_FIXED_SIZE))
5171 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5172 - output_section->vma);
5173 }
5174
5175 /* Work out how much this section will move the dot point. */
5176
5177 static bfd_vma
5178 size_input_section
5179 (lang_statement_union_type **this_ptr,
5180 lang_output_section_statement_type *output_section_statement,
5181 fill_type *fill,
5182 bfd_boolean *removed,
5183 bfd_vma dot)
5184 {
5185 lang_input_section_type *is = &((*this_ptr)->input_section);
5186 asection *i = is->section;
5187 asection *o = output_section_statement->bfd_section;
5188 *removed = 0;
5189
5190 if (link_info.non_contiguous_regions)
5191 {
5192 /* If the input section I has already been successfully assigned
5193 to an output section other than O, don't bother with it and
5194 let the caller remove it from the list. Keep processing in
5195 case we have already handled O, because the repeated passes
5196 have reinitialized its size. */
5197 if (i->already_assigned && i->already_assigned != o)
5198 {
5199 *removed = 1;
5200 return dot;
5201 }
5202 }
5203
5204 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5205 i->output_offset = i->vma - o->vma;
5206 else if (((i->flags & SEC_EXCLUDE) != 0)
5207 || output_section_statement->ignored)
5208 i->output_offset = dot - o->vma;
5209 else
5210 {
5211 bfd_size_type alignment_needed;
5212
5213 /* Align this section first to the input sections requirement,
5214 then to the output section's requirement. If this alignment
5215 is greater than any seen before, then record it too. Perform
5216 the alignment by inserting a magic 'padding' statement. */
5217
5218 if (output_section_statement->subsection_alignment != NULL)
5219 i->alignment_power
5220 = exp_get_power (output_section_statement->subsection_alignment,
5221 "subsection alignment");
5222
5223 if (o->alignment_power < i->alignment_power)
5224 o->alignment_power = i->alignment_power;
5225
5226 alignment_needed = align_power (dot, i->alignment_power) - dot;
5227
5228 if (alignment_needed != 0)
5229 {
5230 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5231 dot += alignment_needed;
5232 }
5233
5234 if (link_info.non_contiguous_regions)
5235 {
5236 /* If I would overflow O, let the caller remove I from the
5237 list. */
5238 if (output_section_statement->region)
5239 {
5240 bfd_vma end = output_section_statement->region->origin
5241 + output_section_statement->region->length;
5242
5243 if (dot + TO_ADDR (i->size) > end)
5244 {
5245 if (i->flags & SEC_LINKER_CREATED)
5246 einfo (_("%F%P: Output section '%s' not large enough for the "
5247 "linker-created stubs section '%s'.\n"),
5248 i->output_section->name, i->name);
5249
5250 if (i->rawsize && i->rawsize != i->size)
5251 einfo (_("%F%P: Relaxation not supported with "
5252 "--enable-non-contiguous-regions (section '%s' "
5253 "would overflow '%s' after it changed size).\n"),
5254 i->name, i->output_section->name);
5255
5256 *removed = 1;
5257 dot = end;
5258 i->output_section = NULL;
5259 return dot;
5260 }
5261 }
5262 }
5263
5264 /* Remember where in the output section this input section goes. */
5265 i->output_offset = dot - o->vma;
5266
5267 /* Mark how big the output section must be to contain this now. */
5268 dot += TO_ADDR (i->size);
5269 if (!(o->flags & SEC_FIXED_SIZE))
5270 o->size = TO_SIZE (dot - o->vma);
5271
5272 if (link_info.non_contiguous_regions)
5273 {
5274 /* Record that I was successfully assigned to O, and update
5275 its actual output section too. */
5276 i->already_assigned = o;
5277 i->output_section = o;
5278 }
5279 }
5280
5281 return dot;
5282 }
5283
5284 struct check_sec
5285 {
5286 asection *sec;
5287 bfd_boolean warned;
5288 };
5289
5290 static int
5291 sort_sections_by_lma (const void *arg1, const void *arg2)
5292 {
5293 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5294 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5295
5296 if (sec1->lma < sec2->lma)
5297 return -1;
5298 else if (sec1->lma > sec2->lma)
5299 return 1;
5300 else if (sec1->id < sec2->id)
5301 return -1;
5302 else if (sec1->id > sec2->id)
5303 return 1;
5304
5305 return 0;
5306 }
5307
5308 static int
5309 sort_sections_by_vma (const void *arg1, const void *arg2)
5310 {
5311 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5312 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5313
5314 if (sec1->vma < sec2->vma)
5315 return -1;
5316 else if (sec1->vma > sec2->vma)
5317 return 1;
5318 else if (sec1->id < sec2->id)
5319 return -1;
5320 else if (sec1->id > sec2->id)
5321 return 1;
5322
5323 return 0;
5324 }
5325
5326 #define IS_TBSS(s) \
5327 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5328
5329 #define IGNORE_SECTION(s) \
5330 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5331
5332 /* Check to see if any allocated sections overlap with other allocated
5333 sections. This can happen if a linker script specifies the output
5334 section addresses of the two sections. Also check whether any memory
5335 region has overflowed. */
5336
5337 static void
5338 lang_check_section_addresses (void)
5339 {
5340 asection *s, *p;
5341 struct check_sec *sections;
5342 size_t i, count;
5343 bfd_vma addr_mask;
5344 bfd_vma s_start;
5345 bfd_vma s_end;
5346 bfd_vma p_start = 0;
5347 bfd_vma p_end = 0;
5348 lang_memory_region_type *m;
5349 bfd_boolean overlays;
5350
5351 /* Detect address space overflow on allocated sections. */
5352 addr_mask = ((bfd_vma) 1 <<
5353 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5354 addr_mask = (addr_mask << 1) + 1;
5355 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5356 if ((s->flags & SEC_ALLOC) != 0)
5357 {
5358 s_end = (s->vma + s->size) & addr_mask;
5359 if (s_end != 0 && s_end < (s->vma & addr_mask))
5360 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5361 s->name);
5362 else
5363 {
5364 s_end = (s->lma + s->size) & addr_mask;
5365 if (s_end != 0 && s_end < (s->lma & addr_mask))
5366 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5367 s->name);
5368 }
5369 }
5370
5371 if (bfd_count_sections (link_info.output_bfd) <= 1)
5372 return;
5373
5374 count = bfd_count_sections (link_info.output_bfd);
5375 sections = XNEWVEC (struct check_sec, count);
5376
5377 /* Scan all sections in the output list. */
5378 count = 0;
5379 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5380 {
5381 if (IGNORE_SECTION (s)
5382 || s->size == 0)
5383 continue;
5384
5385 sections[count].sec = s;
5386 sections[count].warned = FALSE;
5387 count++;
5388 }
5389
5390 if (count <= 1)
5391 {
5392 free (sections);
5393 return;
5394 }
5395
5396 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5397
5398 /* First check section LMAs. There should be no overlap of LMAs on
5399 loadable sections, even with overlays. */
5400 for (p = NULL, i = 0; i < count; i++)
5401 {
5402 s = sections[i].sec;
5403 init_opb (s);
5404 if ((s->flags & SEC_LOAD) != 0)
5405 {
5406 s_start = s->lma;
5407 s_end = s_start + TO_ADDR (s->size) - 1;
5408
5409 /* Look for an overlap. We have sorted sections by lma, so
5410 we know that s_start >= p_start. Besides the obvious
5411 case of overlap when the current section starts before
5412 the previous one ends, we also must have overlap if the
5413 previous section wraps around the address space. */
5414 if (p != NULL
5415 && (s_start <= p_end
5416 || p_end < p_start))
5417 {
5418 einfo (_("%X%P: section %s LMA [%V,%V]"
5419 " overlaps section %s LMA [%V,%V]\n"),
5420 s->name, s_start, s_end, p->name, p_start, p_end);
5421 sections[i].warned = TRUE;
5422 }
5423 p = s;
5424 p_start = s_start;
5425 p_end = s_end;
5426 }
5427 }
5428
5429 /* If any non-zero size allocated section (excluding tbss) starts at
5430 exactly the same VMA as another such section, then we have
5431 overlays. Overlays generated by the OVERLAY keyword will have
5432 this property. It is possible to intentionally generate overlays
5433 that fail this test, but it would be unusual. */
5434 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5435 overlays = FALSE;
5436 p_start = sections[0].sec->vma;
5437 for (i = 1; i < count; i++)
5438 {
5439 s_start = sections[i].sec->vma;
5440 if (p_start == s_start)
5441 {
5442 overlays = TRUE;
5443 break;
5444 }
5445 p_start = s_start;
5446 }
5447
5448 /* Now check section VMAs if no overlays were detected. */
5449 if (!overlays)
5450 {
5451 for (p = NULL, i = 0; i < count; i++)
5452 {
5453 s = sections[i].sec;
5454 init_opb (s);
5455 s_start = s->vma;
5456 s_end = s_start + TO_ADDR (s->size) - 1;
5457
5458 if (p != NULL
5459 && !sections[i].warned
5460 && (s_start <= p_end
5461 || p_end < p_start))
5462 einfo (_("%X%P: section %s VMA [%V,%V]"
5463 " overlaps section %s VMA [%V,%V]\n"),
5464 s->name, s_start, s_end, p->name, p_start, p_end);
5465 p = s;
5466 p_start = s_start;
5467 p_end = s_end;
5468 }
5469 }
5470
5471 free (sections);
5472
5473 /* If any memory region has overflowed, report by how much.
5474 We do not issue this diagnostic for regions that had sections
5475 explicitly placed outside their bounds; os_region_check's
5476 diagnostics are adequate for that case.
5477
5478 FIXME: It is conceivable that m->current - (m->origin + m->length)
5479 might overflow a 32-bit integer. There is, alas, no way to print
5480 a bfd_vma quantity in decimal. */
5481 for (m = lang_memory_region_list; m; m = m->next)
5482 if (m->had_full_message)
5483 {
5484 unsigned long over = m->current - (m->origin + m->length);
5485 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5486 "%X%P: region `%s' overflowed by %lu bytes\n",
5487 over),
5488 m->name_list.name, over);
5489 }
5490 }
5491
5492 /* Make sure the new address is within the region. We explicitly permit the
5493 current address to be at the exact end of the region when the address is
5494 non-zero, in case the region is at the end of addressable memory and the
5495 calculation wraps around. */
5496
5497 static void
5498 os_region_check (lang_output_section_statement_type *os,
5499 lang_memory_region_type *region,
5500 etree_type *tree,
5501 bfd_vma rbase)
5502 {
5503 if ((region->current < region->origin
5504 || (region->current - region->origin > region->length))
5505 && ((region->current != region->origin + region->length)
5506 || rbase == 0))
5507 {
5508 if (tree != NULL)
5509 {
5510 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5511 " is not within region `%s'\n"),
5512 region->current,
5513 os->bfd_section->owner,
5514 os->bfd_section->name,
5515 region->name_list.name);
5516 }
5517 else if (!region->had_full_message)
5518 {
5519 region->had_full_message = TRUE;
5520
5521 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5522 os->bfd_section->owner,
5523 os->bfd_section->name,
5524 region->name_list.name);
5525 }
5526 }
5527 }
5528
5529 static void
5530 ldlang_check_relro_region (lang_statement_union_type *s,
5531 seg_align_type *seg)
5532 {
5533 if (seg->relro == exp_seg_relro_start)
5534 {
5535 if (!seg->relro_start_stat)
5536 seg->relro_start_stat = s;
5537 else
5538 {
5539 ASSERT (seg->relro_start_stat == s);
5540 }
5541 }
5542 else if (seg->relro == exp_seg_relro_end)
5543 {
5544 if (!seg->relro_end_stat)
5545 seg->relro_end_stat = s;
5546 else
5547 {
5548 ASSERT (seg->relro_end_stat == s);
5549 }
5550 }
5551 }
5552
5553 /* Set the sizes for all the output sections. */
5554
5555 static bfd_vma
5556 lang_size_sections_1
5557 (lang_statement_union_type **prev,
5558 lang_output_section_statement_type *output_section_statement,
5559 fill_type *fill,
5560 bfd_vma dot,
5561 bfd_boolean *relax,
5562 bfd_boolean check_regions)
5563 {
5564 lang_statement_union_type *s;
5565 lang_statement_union_type *prev_s = NULL;
5566 bfd_boolean removed_prev_s = FALSE;
5567
5568 /* Size up the sections from their constituent parts. */
5569 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5570 {
5571 bfd_boolean removed=FALSE;
5572
5573 switch (s->header.type)
5574 {
5575 case lang_output_section_statement_enum:
5576 {
5577 bfd_vma newdot, after, dotdelta;
5578 lang_output_section_statement_type *os;
5579 lang_memory_region_type *r;
5580 int section_alignment = 0;
5581
5582 os = &s->output_section_statement;
5583 init_opb (os->bfd_section);
5584 if (os->constraint == -1)
5585 break;
5586
5587 /* FIXME: We shouldn't need to zero section vmas for ld -r
5588 here, in lang_insert_orphan, or in the default linker scripts.
5589 This is covering for coff backend linker bugs. See PR6945. */
5590 if (os->addr_tree == NULL
5591 && bfd_link_relocatable (&link_info)
5592 && (bfd_get_flavour (link_info.output_bfd)
5593 == bfd_target_coff_flavour))
5594 os->addr_tree = exp_intop (0);
5595 if (os->addr_tree != NULL)
5596 {
5597 os->processed_vma = FALSE;
5598 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5599
5600 if (expld.result.valid_p)
5601 {
5602 dot = expld.result.value;
5603 if (expld.result.section != NULL)
5604 dot += expld.result.section->vma;
5605 }
5606 else if (expld.phase != lang_mark_phase_enum)
5607 einfo (_("%F%P:%pS: non constant or forward reference"
5608 " address expression for section %s\n"),
5609 os->addr_tree, os->name);
5610 }
5611
5612 if (os->bfd_section == NULL)
5613 /* This section was removed or never actually created. */
5614 break;
5615
5616 /* If this is a COFF shared library section, use the size and
5617 address from the input section. FIXME: This is COFF
5618 specific; it would be cleaner if there were some other way
5619 to do this, but nothing simple comes to mind. */
5620 if (((bfd_get_flavour (link_info.output_bfd)
5621 == bfd_target_ecoff_flavour)
5622 || (bfd_get_flavour (link_info.output_bfd)
5623 == bfd_target_coff_flavour))
5624 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5625 {
5626 asection *input;
5627
5628 if (os->children.head == NULL
5629 || os->children.head->header.next != NULL
5630 || (os->children.head->header.type
5631 != lang_input_section_enum))
5632 einfo (_("%X%P: internal error on COFF shared library"
5633 " section %s\n"), os->name);
5634
5635 input = os->children.head->input_section.section;
5636 bfd_set_section_vma (os->bfd_section,
5637 bfd_section_vma (input));
5638 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5639 os->bfd_section->size = input->size;
5640 break;
5641 }
5642
5643 newdot = dot;
5644 dotdelta = 0;
5645 if (bfd_is_abs_section (os->bfd_section))
5646 {
5647 /* No matter what happens, an abs section starts at zero. */
5648 ASSERT (os->bfd_section->vma == 0);
5649 }
5650 else
5651 {
5652 if (os->addr_tree == NULL)
5653 {
5654 /* No address specified for this section, get one
5655 from the region specification. */
5656 if (os->region == NULL
5657 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5658 && os->region->name_list.name[0] == '*'
5659 && strcmp (os->region->name_list.name,
5660 DEFAULT_MEMORY_REGION) == 0))
5661 {
5662 os->region = lang_memory_default (os->bfd_section);
5663 }
5664
5665 /* If a loadable section is using the default memory
5666 region, and some non default memory regions were
5667 defined, issue an error message. */
5668 if (!os->ignored
5669 && !IGNORE_SECTION (os->bfd_section)
5670 && !bfd_link_relocatable (&link_info)
5671 && check_regions
5672 && strcmp (os->region->name_list.name,
5673 DEFAULT_MEMORY_REGION) == 0
5674 && lang_memory_region_list != NULL
5675 && (strcmp (lang_memory_region_list->name_list.name,
5676 DEFAULT_MEMORY_REGION) != 0
5677 || lang_memory_region_list->next != NULL)
5678 && lang_sizing_iteration == 1)
5679 {
5680 /* By default this is an error rather than just a
5681 warning because if we allocate the section to the
5682 default memory region we can end up creating an
5683 excessively large binary, or even seg faulting when
5684 attempting to perform a negative seek. See
5685 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5686 for an example of this. This behaviour can be
5687 overridden by the using the --no-check-sections
5688 switch. */
5689 if (command_line.check_section_addresses)
5690 einfo (_("%F%P: error: no memory region specified"
5691 " for loadable section `%s'\n"),
5692 bfd_section_name (os->bfd_section));
5693 else
5694 einfo (_("%P: warning: no memory region specified"
5695 " for loadable section `%s'\n"),
5696 bfd_section_name (os->bfd_section));
5697 }
5698
5699 newdot = os->region->current;
5700 section_alignment = os->bfd_section->alignment_power;
5701 }
5702 else
5703 section_alignment = exp_get_power (os->section_alignment,
5704 "section alignment");
5705
5706 /* Align to what the section needs. */
5707 if (section_alignment > 0)
5708 {
5709 bfd_vma savedot = newdot;
5710 bfd_vma diff = 0;
5711
5712 newdot = align_power (newdot, section_alignment);
5713 dotdelta = newdot - savedot;
5714
5715 if (lang_sizing_iteration == 1)
5716 diff = dotdelta;
5717 else if (lang_sizing_iteration > 1)
5718 {
5719 /* Only report adjustments that would change
5720 alignment from what we have already reported. */
5721 diff = newdot - os->bfd_section->vma;
5722 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5723 diff = 0;
5724 }
5725 if (diff != 0
5726 && (config.warn_section_align
5727 || os->addr_tree != NULL))
5728 einfo (_("%P: warning: "
5729 "start of section %s changed by %ld\n"),
5730 os->name, (long) diff);
5731 }
5732
5733 bfd_set_section_vma (os->bfd_section, newdot);
5734
5735 os->bfd_section->output_offset = 0;
5736 }
5737
5738 lang_size_sections_1 (&os->children.head, os,
5739 os->fill, newdot, relax, check_regions);
5740
5741 os->processed_vma = TRUE;
5742
5743 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5744 /* Except for some special linker created sections,
5745 no output section should change from zero size
5746 after strip_excluded_output_sections. A non-zero
5747 size on an ignored section indicates that some
5748 input section was not sized early enough. */
5749 ASSERT (os->bfd_section->size == 0);
5750 else
5751 {
5752 dot = os->bfd_section->vma;
5753
5754 /* Put the section within the requested block size, or
5755 align at the block boundary. */
5756 after = ((dot
5757 + TO_ADDR (os->bfd_section->size)
5758 + os->block_value - 1)
5759 & - (bfd_vma) os->block_value);
5760
5761 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5762 os->bfd_section->size = TO_SIZE (after
5763 - os->bfd_section->vma);
5764 }
5765
5766 /* Set section lma. */
5767 r = os->region;
5768 if (r == NULL)
5769 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5770
5771 if (os->load_base)
5772 {
5773 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5774 os->bfd_section->lma = lma;
5775 }
5776 else if (os->lma_region != NULL)
5777 {
5778 bfd_vma lma = os->lma_region->current;
5779
5780 if (os->align_lma_with_input)
5781 lma += dotdelta;
5782 else
5783 {
5784 /* When LMA_REGION is the same as REGION, align the LMA
5785 as we did for the VMA, possibly including alignment
5786 from the bfd section. If a different region, then
5787 only align according to the value in the output
5788 statement. */
5789 if (os->lma_region != os->region)
5790 section_alignment = exp_get_power (os->section_alignment,
5791 "section alignment");
5792 if (section_alignment > 0)
5793 lma = align_power (lma, section_alignment);
5794 }
5795 os->bfd_section->lma = lma;
5796 }
5797 else if (r->last_os != NULL
5798 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5799 {
5800 bfd_vma lma;
5801 asection *last;
5802
5803 last = r->last_os->output_section_statement.bfd_section;
5804
5805 /* A backwards move of dot should be accompanied by
5806 an explicit assignment to the section LMA (ie.
5807 os->load_base set) because backwards moves can
5808 create overlapping LMAs. */
5809 if (dot < last->vma
5810 && os->bfd_section->size != 0
5811 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5812 {
5813 /* If dot moved backwards then leave lma equal to
5814 vma. This is the old default lma, which might
5815 just happen to work when the backwards move is
5816 sufficiently large. Nag if this changes anything,
5817 so people can fix their linker scripts. */
5818
5819 if (last->vma != last->lma)
5820 einfo (_("%P: warning: dot moved backwards "
5821 "before `%s'\n"), os->name);
5822 }
5823 else
5824 {
5825 /* If this is an overlay, set the current lma to that
5826 at the end of the previous section. */
5827 if (os->sectype == overlay_section)
5828 lma = last->lma + TO_ADDR (last->size);
5829
5830 /* Otherwise, keep the same lma to vma relationship
5831 as the previous section. */
5832 else
5833 lma = os->bfd_section->vma + last->lma - last->vma;
5834
5835 if (section_alignment > 0)
5836 lma = align_power (lma, section_alignment);
5837 os->bfd_section->lma = lma;
5838 }
5839 }
5840 os->processed_lma = TRUE;
5841
5842 /* Keep track of normal sections using the default
5843 lma region. We use this to set the lma for
5844 following sections. Overlays or other linker
5845 script assignment to lma might mean that the
5846 default lma == vma is incorrect.
5847 To avoid warnings about dot moving backwards when using
5848 -Ttext, don't start tracking sections until we find one
5849 of non-zero size or with lma set differently to vma.
5850 Do this tracking before we short-cut the loop so that we
5851 track changes for the case where the section size is zero,
5852 but the lma is set differently to the vma. This is
5853 important, if an orphan section is placed after an
5854 otherwise empty output section that has an explicit lma
5855 set, we want that lma reflected in the orphans lma. */
5856 if (((!IGNORE_SECTION (os->bfd_section)
5857 && (os->bfd_section->size != 0
5858 || (r->last_os == NULL
5859 && os->bfd_section->vma != os->bfd_section->lma)
5860 || (r->last_os != NULL
5861 && dot >= (r->last_os->output_section_statement
5862 .bfd_section->vma))))
5863 || os->sectype == first_overlay_section)
5864 && os->lma_region == NULL
5865 && !bfd_link_relocatable (&link_info))
5866 r->last_os = s;
5867
5868 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5869 break;
5870
5871 /* .tbss sections effectively have zero size. */
5872 if (!IS_TBSS (os->bfd_section)
5873 || bfd_link_relocatable (&link_info))
5874 dotdelta = TO_ADDR (os->bfd_section->size);
5875 else
5876 dotdelta = 0;
5877 dot += dotdelta;
5878
5879 if (os->update_dot_tree != 0)
5880 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5881
5882 /* Update dot in the region ?
5883 We only do this if the section is going to be allocated,
5884 since unallocated sections do not contribute to the region's
5885 overall size in memory. */
5886 if (os->region != NULL
5887 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5888 {
5889 os->region->current = dot;
5890
5891 if (check_regions)
5892 /* Make sure the new address is within the region. */
5893 os_region_check (os, os->region, os->addr_tree,
5894 os->bfd_section->vma);
5895
5896 if (os->lma_region != NULL && os->lma_region != os->region
5897 && ((os->bfd_section->flags & SEC_LOAD)
5898 || os->align_lma_with_input))
5899 {
5900 os->lma_region->current = os->bfd_section->lma + dotdelta;
5901
5902 if (check_regions)
5903 os_region_check (os, os->lma_region, NULL,
5904 os->bfd_section->lma);
5905 }
5906 }
5907 }
5908 break;
5909
5910 case lang_constructors_statement_enum:
5911 dot = lang_size_sections_1 (&constructor_list.head,
5912 output_section_statement,
5913 fill, dot, relax, check_regions);
5914 break;
5915
5916 case lang_data_statement_enum:
5917 {
5918 unsigned int size = 0;
5919
5920 s->data_statement.output_offset =
5921 dot - output_section_statement->bfd_section->vma;
5922 s->data_statement.output_section =
5923 output_section_statement->bfd_section;
5924
5925 /* We might refer to provided symbols in the expression, and
5926 need to mark them as needed. */
5927 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5928
5929 switch (s->data_statement.type)
5930 {
5931 default:
5932 abort ();
5933 case QUAD:
5934 case SQUAD:
5935 size = QUAD_SIZE;
5936 break;
5937 case LONG:
5938 size = LONG_SIZE;
5939 break;
5940 case SHORT:
5941 size = SHORT_SIZE;
5942 break;
5943 case BYTE:
5944 size = BYTE_SIZE;
5945 break;
5946 }
5947 if (size < TO_SIZE ((unsigned) 1))
5948 size = TO_SIZE ((unsigned) 1);
5949 dot += TO_ADDR (size);
5950 if (!(output_section_statement->bfd_section->flags
5951 & SEC_FIXED_SIZE))
5952 output_section_statement->bfd_section->size
5953 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5954
5955 }
5956 break;
5957
5958 case lang_reloc_statement_enum:
5959 {
5960 int size;
5961
5962 s->reloc_statement.output_offset =
5963 dot - output_section_statement->bfd_section->vma;
5964 s->reloc_statement.output_section =
5965 output_section_statement->bfd_section;
5966 size = bfd_get_reloc_size (s->reloc_statement.howto);
5967 dot += TO_ADDR (size);
5968 if (!(output_section_statement->bfd_section->flags
5969 & SEC_FIXED_SIZE))
5970 output_section_statement->bfd_section->size
5971 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5972 }
5973 break;
5974
5975 case lang_wild_statement_enum:
5976 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5977 output_section_statement,
5978 fill, dot, relax, check_regions);
5979 break;
5980
5981 case lang_object_symbols_statement_enum:
5982 link_info.create_object_symbols_section
5983 = output_section_statement->bfd_section;
5984 output_section_statement->bfd_section->flags |= SEC_KEEP;
5985 break;
5986
5987 case lang_output_statement_enum:
5988 case lang_target_statement_enum:
5989 break;
5990
5991 case lang_input_section_enum:
5992 {
5993 asection *i;
5994
5995 i = s->input_section.section;
5996 if (relax)
5997 {
5998 bfd_boolean again;
5999
6000 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6001 einfo (_("%F%P: can't relax section: %E\n"));
6002 if (again)
6003 *relax = TRUE;
6004 }
6005 dot = size_input_section (prev, output_section_statement,
6006 fill, &removed, dot);
6007 }
6008 break;
6009
6010 case lang_input_statement_enum:
6011 break;
6012
6013 case lang_fill_statement_enum:
6014 s->fill_statement.output_section =
6015 output_section_statement->bfd_section;
6016
6017 fill = s->fill_statement.fill;
6018 break;
6019
6020 case lang_assignment_statement_enum:
6021 {
6022 bfd_vma newdot = dot;
6023 etree_type *tree = s->assignment_statement.exp;
6024
6025 expld.dataseg.relro = exp_seg_relro_none;
6026
6027 exp_fold_tree (tree,
6028 output_section_statement->bfd_section,
6029 &newdot);
6030
6031 ldlang_check_relro_region (s, &expld.dataseg);
6032
6033 expld.dataseg.relro = exp_seg_relro_none;
6034
6035 /* This symbol may be relative to this section. */
6036 if ((tree->type.node_class == etree_provided
6037 || tree->type.node_class == etree_assign)
6038 && (tree->assign.dst [0] != '.'
6039 || tree->assign.dst [1] != '\0'))
6040 output_section_statement->update_dot = 1;
6041
6042 if (!output_section_statement->ignored)
6043 {
6044 if (output_section_statement == abs_output_section)
6045 {
6046 /* If we don't have an output section, then just adjust
6047 the default memory address. */
6048 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6049 FALSE)->current = newdot;
6050 }
6051 else if (newdot != dot)
6052 {
6053 /* Insert a pad after this statement. We can't
6054 put the pad before when relaxing, in case the
6055 assignment references dot. */
6056 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6057 output_section_statement->bfd_section, dot);
6058
6059 /* Don't neuter the pad below when relaxing. */
6060 s = s->header.next;
6061
6062 /* If dot is advanced, this implies that the section
6063 should have space allocated to it, unless the
6064 user has explicitly stated that the section
6065 should not be allocated. */
6066 if (output_section_statement->sectype != noalloc_section
6067 && (output_section_statement->sectype != noload_section
6068 || (bfd_get_flavour (link_info.output_bfd)
6069 == bfd_target_elf_flavour)))
6070 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6071 }
6072 dot = newdot;
6073 }
6074 }
6075 break;
6076
6077 case lang_padding_statement_enum:
6078 /* If this is the first time lang_size_sections is called,
6079 we won't have any padding statements. If this is the
6080 second or later passes when relaxing, we should allow
6081 padding to shrink. If padding is needed on this pass, it
6082 will be added back in. */
6083 s->padding_statement.size = 0;
6084
6085 /* Make sure output_offset is valid. If relaxation shrinks
6086 the section and this pad isn't needed, it's possible to
6087 have output_offset larger than the final size of the
6088 section. bfd_set_section_contents will complain even for
6089 a pad size of zero. */
6090 s->padding_statement.output_offset
6091 = dot - output_section_statement->bfd_section->vma;
6092 break;
6093
6094 case lang_group_statement_enum:
6095 dot = lang_size_sections_1 (&s->group_statement.children.head,
6096 output_section_statement,
6097 fill, dot, relax, check_regions);
6098 break;
6099
6100 case lang_insert_statement_enum:
6101 break;
6102
6103 /* We can only get here when relaxing is turned on. */
6104 case lang_address_statement_enum:
6105 break;
6106
6107 default:
6108 FAIL ();
6109 break;
6110 }
6111
6112 /* If an input section doesn't fit in the current output
6113 section, remove it from the list. Handle the case where we
6114 have to remove an input_section statement here: there is a
6115 special case to remove the first element of the list. */
6116 if (link_info.non_contiguous_regions && removed)
6117 {
6118 /* If we removed the first element during the previous
6119 iteration, override the loop assignment of prev_s. */
6120 if (removed_prev_s)
6121 prev_s = NULL;
6122
6123 if (prev_s)
6124 {
6125 /* If there was a real previous input section, just skip
6126 the current one. */
6127 prev_s->header.next=s->header.next;
6128 s = prev_s;
6129 removed_prev_s = FALSE;
6130 }
6131 else
6132 {
6133 /* Remove the first input section of the list. */
6134 *prev = s->header.next;
6135 removed_prev_s = TRUE;
6136 }
6137
6138 /* Move to next element, unless we removed the head of the
6139 list. */
6140 if (!removed_prev_s)
6141 prev = &s->header.next;
6142 }
6143 else
6144 {
6145 prev = &s->header.next;
6146 removed_prev_s = FALSE;
6147 }
6148 }
6149 return dot;
6150 }
6151
6152 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6153 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6154 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6155 segments. We are allowed an opportunity to override this decision. */
6156
6157 bfd_boolean
6158 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6159 bfd *abfd ATTRIBUTE_UNUSED,
6160 asection *current_section,
6161 asection *previous_section,
6162 bfd_boolean new_segment)
6163 {
6164 lang_output_section_statement_type *cur;
6165 lang_output_section_statement_type *prev;
6166
6167 /* The checks below are only necessary when the BFD library has decided
6168 that the two sections ought to be placed into the same segment. */
6169 if (new_segment)
6170 return TRUE;
6171
6172 /* Paranoia checks. */
6173 if (current_section == NULL || previous_section == NULL)
6174 return new_segment;
6175
6176 /* If this flag is set, the target never wants code and non-code
6177 sections comingled in the same segment. */
6178 if (config.separate_code
6179 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6180 return TRUE;
6181
6182 /* Find the memory regions associated with the two sections.
6183 We call lang_output_section_find() here rather than scanning the list
6184 of output sections looking for a matching section pointer because if
6185 we have a large number of sections then a hash lookup is faster. */
6186 cur = lang_output_section_find (current_section->name);
6187 prev = lang_output_section_find (previous_section->name);
6188
6189 /* More paranoia. */
6190 if (cur == NULL || prev == NULL)
6191 return new_segment;
6192
6193 /* If the regions are different then force the sections to live in
6194 different segments. See the email thread starting at the following
6195 URL for the reasons why this is necessary:
6196 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6197 return cur->region != prev->region;
6198 }
6199
6200 void
6201 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6202 {
6203 lang_statement_iteration++;
6204 if (expld.phase != lang_mark_phase_enum)
6205 lang_sizing_iteration++;
6206 lang_size_sections_1 (&statement_list.head, abs_output_section,
6207 0, 0, relax, check_regions);
6208 }
6209
6210 static bfd_boolean
6211 lang_size_segment (seg_align_type *seg)
6212 {
6213 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6214 a page could be saved in the data segment. */
6215 bfd_vma first, last;
6216
6217 first = -seg->base & (seg->pagesize - 1);
6218 last = seg->end & (seg->pagesize - 1);
6219 if (first && last
6220 && ((seg->base & ~(seg->pagesize - 1))
6221 != (seg->end & ~(seg->pagesize - 1)))
6222 && first + last <= seg->pagesize)
6223 {
6224 seg->phase = exp_seg_adjust;
6225 return TRUE;
6226 }
6227
6228 seg->phase = exp_seg_done;
6229 return FALSE;
6230 }
6231
6232 static bfd_vma
6233 lang_size_relro_segment_1 (seg_align_type *seg)
6234 {
6235 bfd_vma relro_end, desired_end;
6236 asection *sec;
6237
6238 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6239 relro_end = ((seg->relro_end + seg->pagesize - 1)
6240 & ~(seg->pagesize - 1));
6241
6242 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6243 desired_end = relro_end - seg->relro_offset;
6244
6245 /* For sections in the relro segment.. */
6246 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6247 if ((sec->flags & SEC_ALLOC) != 0
6248 && sec->vma >= seg->base
6249 && sec->vma < seg->relro_end - seg->relro_offset)
6250 {
6251 /* Where do we want to put this section so that it ends as
6252 desired? */
6253 bfd_vma start, end, bump;
6254
6255 end = start = sec->vma;
6256 if (!IS_TBSS (sec))
6257 end += TO_ADDR (sec->size);
6258 bump = desired_end - end;
6259 /* We'd like to increase START by BUMP, but we must heed
6260 alignment so the increase might be less than optimum. */
6261 start += bump;
6262 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6263 /* This is now the desired end for the previous section. */
6264 desired_end = start;
6265 }
6266
6267 seg->phase = exp_seg_relro_adjust;
6268 ASSERT (desired_end >= seg->base);
6269 seg->base = desired_end;
6270 return relro_end;
6271 }
6272
6273 static bfd_boolean
6274 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6275 {
6276 bfd_boolean do_reset = FALSE;
6277 bfd_boolean do_data_relro;
6278 bfd_vma data_initial_base, data_relro_end;
6279
6280 if (link_info.relro && expld.dataseg.relro_end)
6281 {
6282 do_data_relro = TRUE;
6283 data_initial_base = expld.dataseg.base;
6284 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6285 }
6286 else
6287 {
6288 do_data_relro = FALSE;
6289 data_initial_base = data_relro_end = 0;
6290 }
6291
6292 if (do_data_relro)
6293 {
6294 lang_reset_memory_regions ();
6295 one_lang_size_sections_pass (relax, check_regions);
6296
6297 /* Assignments to dot, or to output section address in a user
6298 script have increased padding over the original. Revert. */
6299 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6300 {
6301 expld.dataseg.base = data_initial_base;;
6302 do_reset = TRUE;
6303 }
6304 }
6305
6306 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6307 do_reset = TRUE;
6308
6309 return do_reset;
6310 }
6311
6312 void
6313 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6314 {
6315 expld.phase = lang_allocating_phase_enum;
6316 expld.dataseg.phase = exp_seg_none;
6317
6318 one_lang_size_sections_pass (relax, check_regions);
6319
6320 if (expld.dataseg.phase != exp_seg_end_seen)
6321 expld.dataseg.phase = exp_seg_done;
6322
6323 if (expld.dataseg.phase == exp_seg_end_seen)
6324 {
6325 bfd_boolean do_reset
6326 = lang_size_relro_segment (relax, check_regions);
6327
6328 if (do_reset)
6329 {
6330 lang_reset_memory_regions ();
6331 one_lang_size_sections_pass (relax, check_regions);
6332 }
6333
6334 if (link_info.relro && expld.dataseg.relro_end)
6335 {
6336 link_info.relro_start = expld.dataseg.base;
6337 link_info.relro_end = expld.dataseg.relro_end;
6338 }
6339 }
6340 }
6341
6342 static lang_output_section_statement_type *current_section;
6343 static lang_assignment_statement_type *current_assign;
6344 static bfd_boolean prefer_next_section;
6345
6346 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6347
6348 static bfd_vma
6349 lang_do_assignments_1 (lang_statement_union_type *s,
6350 lang_output_section_statement_type *current_os,
6351 fill_type *fill,
6352 bfd_vma dot,
6353 bfd_boolean *found_end)
6354 {
6355 for (; s != NULL; s = s->header.next)
6356 {
6357 switch (s->header.type)
6358 {
6359 case lang_constructors_statement_enum:
6360 dot = lang_do_assignments_1 (constructor_list.head,
6361 current_os, fill, dot, found_end);
6362 break;
6363
6364 case lang_output_section_statement_enum:
6365 {
6366 lang_output_section_statement_type *os;
6367 bfd_vma newdot;
6368
6369 os = &(s->output_section_statement);
6370 os->after_end = *found_end;
6371 init_opb (os->bfd_section);
6372 if (os->bfd_section != NULL && !os->ignored)
6373 {
6374 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6375 {
6376 current_section = os;
6377 prefer_next_section = FALSE;
6378 }
6379 dot = os->bfd_section->vma;
6380 }
6381 newdot = lang_do_assignments_1 (os->children.head,
6382 os, os->fill, dot, found_end);
6383 if (!os->ignored)
6384 {
6385 if (os->bfd_section != NULL)
6386 {
6387 /* .tbss sections effectively have zero size. */
6388 if (!IS_TBSS (os->bfd_section)
6389 || bfd_link_relocatable (&link_info))
6390 dot += TO_ADDR (os->bfd_section->size);
6391
6392 if (os->update_dot_tree != NULL)
6393 exp_fold_tree (os->update_dot_tree,
6394 bfd_abs_section_ptr, &dot);
6395 }
6396 else
6397 dot = newdot;
6398 }
6399 }
6400 break;
6401
6402 case lang_wild_statement_enum:
6403
6404 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6405 current_os, fill, dot, found_end);
6406 break;
6407
6408 case lang_object_symbols_statement_enum:
6409 case lang_output_statement_enum:
6410 case lang_target_statement_enum:
6411 break;
6412
6413 case lang_data_statement_enum:
6414 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6415 if (expld.result.valid_p)
6416 {
6417 s->data_statement.value = expld.result.value;
6418 if (expld.result.section != NULL)
6419 s->data_statement.value += expld.result.section->vma;
6420 }
6421 else if (expld.phase == lang_final_phase_enum)
6422 einfo (_("%F%P: invalid data statement\n"));
6423 {
6424 unsigned int size;
6425 switch (s->data_statement.type)
6426 {
6427 default:
6428 abort ();
6429 case QUAD:
6430 case SQUAD:
6431 size = QUAD_SIZE;
6432 break;
6433 case LONG:
6434 size = LONG_SIZE;
6435 break;
6436 case SHORT:
6437 size = SHORT_SIZE;
6438 break;
6439 case BYTE:
6440 size = BYTE_SIZE;
6441 break;
6442 }
6443 if (size < TO_SIZE ((unsigned) 1))
6444 size = TO_SIZE ((unsigned) 1);
6445 dot += TO_ADDR (size);
6446 }
6447 break;
6448
6449 case lang_reloc_statement_enum:
6450 exp_fold_tree (s->reloc_statement.addend_exp,
6451 bfd_abs_section_ptr, &dot);
6452 if (expld.result.valid_p)
6453 s->reloc_statement.addend_value = expld.result.value;
6454 else if (expld.phase == lang_final_phase_enum)
6455 einfo (_("%F%P: invalid reloc statement\n"));
6456 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6457 break;
6458
6459 case lang_input_section_enum:
6460 {
6461 asection *in = s->input_section.section;
6462
6463 if ((in->flags & SEC_EXCLUDE) == 0)
6464 dot += TO_ADDR (in->size);
6465 }
6466 break;
6467
6468 case lang_input_statement_enum:
6469 break;
6470
6471 case lang_fill_statement_enum:
6472 fill = s->fill_statement.fill;
6473 break;
6474
6475 case lang_assignment_statement_enum:
6476 current_assign = &s->assignment_statement;
6477 if (current_assign->exp->type.node_class != etree_assert)
6478 {
6479 const char *p = current_assign->exp->assign.dst;
6480
6481 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6482 prefer_next_section = TRUE;
6483
6484 while (*p == '_')
6485 ++p;
6486 if (strcmp (p, "end") == 0)
6487 *found_end = TRUE;
6488 }
6489 exp_fold_tree (s->assignment_statement.exp,
6490 (current_os->bfd_section != NULL
6491 ? current_os->bfd_section : bfd_und_section_ptr),
6492 &dot);
6493 break;
6494
6495 case lang_padding_statement_enum:
6496 dot += TO_ADDR (s->padding_statement.size);
6497 break;
6498
6499 case lang_group_statement_enum:
6500 dot = lang_do_assignments_1 (s->group_statement.children.head,
6501 current_os, fill, dot, found_end);
6502 break;
6503
6504 case lang_insert_statement_enum:
6505 break;
6506
6507 case lang_address_statement_enum:
6508 break;
6509
6510 default:
6511 FAIL ();
6512 break;
6513 }
6514 }
6515 return dot;
6516 }
6517
6518 void
6519 lang_do_assignments (lang_phase_type phase)
6520 {
6521 bfd_boolean found_end = FALSE;
6522
6523 current_section = NULL;
6524 prefer_next_section = FALSE;
6525 expld.phase = phase;
6526 lang_statement_iteration++;
6527 lang_do_assignments_1 (statement_list.head,
6528 abs_output_section, NULL, 0, &found_end);
6529 }
6530
6531 /* For an assignment statement outside of an output section statement,
6532 choose the best of neighbouring output sections to use for values
6533 of "dot". */
6534
6535 asection *
6536 section_for_dot (void)
6537 {
6538 asection *s;
6539
6540 /* Assignments belong to the previous output section, unless there
6541 has been an assignment to "dot", in which case following
6542 assignments belong to the next output section. (The assumption
6543 is that an assignment to "dot" is setting up the address for the
6544 next output section.) Except that past the assignment to "_end"
6545 we always associate with the previous section. This exception is
6546 for targets like SH that define an alloc .stack or other
6547 weirdness after non-alloc sections. */
6548 if (current_section == NULL || prefer_next_section)
6549 {
6550 lang_statement_union_type *stmt;
6551 lang_output_section_statement_type *os;
6552
6553 for (stmt = (lang_statement_union_type *) current_assign;
6554 stmt != NULL;
6555 stmt = stmt->header.next)
6556 if (stmt->header.type == lang_output_section_statement_enum)
6557 break;
6558
6559 os = &stmt->output_section_statement;
6560 while (os != NULL
6561 && !os->after_end
6562 && (os->bfd_section == NULL
6563 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6564 || bfd_section_removed_from_list (link_info.output_bfd,
6565 os->bfd_section)))
6566 os = os->next;
6567
6568 if (current_section == NULL || os == NULL || !os->after_end)
6569 {
6570 if (os != NULL)
6571 s = os->bfd_section;
6572 else
6573 s = link_info.output_bfd->section_last;
6574 while (s != NULL
6575 && ((s->flags & SEC_ALLOC) == 0
6576 || (s->flags & SEC_THREAD_LOCAL) != 0))
6577 s = s->prev;
6578 if (s != NULL)
6579 return s;
6580
6581 return bfd_abs_section_ptr;
6582 }
6583 }
6584
6585 s = current_section->bfd_section;
6586
6587 /* The section may have been stripped. */
6588 while (s != NULL
6589 && ((s->flags & SEC_EXCLUDE) != 0
6590 || (s->flags & SEC_ALLOC) == 0
6591 || (s->flags & SEC_THREAD_LOCAL) != 0
6592 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6593 s = s->prev;
6594 if (s == NULL)
6595 s = link_info.output_bfd->sections;
6596 while (s != NULL
6597 && ((s->flags & SEC_ALLOC) == 0
6598 || (s->flags & SEC_THREAD_LOCAL) != 0))
6599 s = s->next;
6600 if (s != NULL)
6601 return s;
6602
6603 return bfd_abs_section_ptr;
6604 }
6605
6606 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6607
6608 static struct bfd_link_hash_entry **start_stop_syms;
6609 static size_t start_stop_count = 0;
6610 static size_t start_stop_alloc = 0;
6611
6612 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6613 to start_stop_syms. */
6614
6615 static void
6616 lang_define_start_stop (const char *symbol, asection *sec)
6617 {
6618 struct bfd_link_hash_entry *h;
6619
6620 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6621 if (h != NULL)
6622 {
6623 if (start_stop_count == start_stop_alloc)
6624 {
6625 start_stop_alloc = 2 * start_stop_alloc + 10;
6626 start_stop_syms
6627 = xrealloc (start_stop_syms,
6628 start_stop_alloc * sizeof (*start_stop_syms));
6629 }
6630 start_stop_syms[start_stop_count++] = h;
6631 }
6632 }
6633
6634 /* Check for input sections whose names match references to
6635 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6636 preliminary definitions. */
6637
6638 static void
6639 lang_init_start_stop (void)
6640 {
6641 bfd *abfd;
6642 asection *s;
6643 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6644
6645 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6646 for (s = abfd->sections; s != NULL; s = s->next)
6647 {
6648 const char *ps;
6649 const char *secname = s->name;
6650
6651 for (ps = secname; *ps != '\0'; ps++)
6652 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6653 break;
6654 if (*ps == '\0')
6655 {
6656 char *symbol = (char *) xmalloc (10 + strlen (secname));
6657
6658 symbol[0] = leading_char;
6659 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6660 lang_define_start_stop (symbol, s);
6661
6662 symbol[1] = leading_char;
6663 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6664 lang_define_start_stop (symbol + 1, s);
6665
6666 free (symbol);
6667 }
6668 }
6669 }
6670
6671 /* Iterate over start_stop_syms. */
6672
6673 static void
6674 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6675 {
6676 size_t i;
6677
6678 for (i = 0; i < start_stop_count; ++i)
6679 func (start_stop_syms[i]);
6680 }
6681
6682 /* __start and __stop symbols are only supposed to be defined by the
6683 linker for orphan sections, but we now extend that to sections that
6684 map to an output section of the same name. The symbols were
6685 defined early for --gc-sections, before we mapped input to output
6686 sections, so undo those that don't satisfy this rule. */
6687
6688 static void
6689 undef_start_stop (struct bfd_link_hash_entry *h)
6690 {
6691 if (h->ldscript_def)
6692 return;
6693
6694 if (h->u.def.section->output_section == NULL
6695 || h->u.def.section->output_section->owner != link_info.output_bfd
6696 || strcmp (h->u.def.section->name,
6697 h->u.def.section->output_section->name) != 0)
6698 {
6699 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6700 h->u.def.section->name);
6701 if (sec != NULL)
6702 {
6703 /* When there are more than one input sections with the same
6704 section name, SECNAME, linker picks the first one to define
6705 __start_SECNAME and __stop_SECNAME symbols. When the first
6706 input section is removed by comdat group, we need to check
6707 if there is still an output section with section name
6708 SECNAME. */
6709 asection *i;
6710 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6711 if (strcmp (h->u.def.section->name, i->name) == 0)
6712 {
6713 h->u.def.section = i;
6714 return;
6715 }
6716 }
6717 h->type = bfd_link_hash_undefined;
6718 h->u.undef.abfd = NULL;
6719 }
6720 }
6721
6722 static void
6723 lang_undef_start_stop (void)
6724 {
6725 foreach_start_stop (undef_start_stop);
6726 }
6727
6728 /* Check for output sections whose names match references to
6729 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6730 preliminary definitions. */
6731
6732 static void
6733 lang_init_startof_sizeof (void)
6734 {
6735 asection *s;
6736
6737 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6738 {
6739 const char *secname = s->name;
6740 char *symbol = (char *) xmalloc (10 + strlen (secname));
6741
6742 sprintf (symbol, ".startof.%s", secname);
6743 lang_define_start_stop (symbol, s);
6744
6745 memcpy (symbol + 1, ".size", 5);
6746 lang_define_start_stop (symbol + 1, s);
6747 free (symbol);
6748 }
6749 }
6750
6751 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6752
6753 static void
6754 set_start_stop (struct bfd_link_hash_entry *h)
6755 {
6756 if (h->ldscript_def
6757 || h->type != bfd_link_hash_defined)
6758 return;
6759
6760 if (h->root.string[0] == '.')
6761 {
6762 /* .startof. or .sizeof. symbol.
6763 .startof. already has final value. */
6764 if (h->root.string[2] == 'i')
6765 {
6766 /* .sizeof. */
6767 h->u.def.value = TO_ADDR (h->u.def.section->size);
6768 h->u.def.section = bfd_abs_section_ptr;
6769 }
6770 }
6771 else
6772 {
6773 /* __start or __stop symbol. */
6774 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6775
6776 h->u.def.section = h->u.def.section->output_section;
6777 if (h->root.string[4 + has_lead] == 'o')
6778 {
6779 /* __stop_ */
6780 h->u.def.value = TO_ADDR (h->u.def.section->size);
6781 }
6782 }
6783 }
6784
6785 static void
6786 lang_finalize_start_stop (void)
6787 {
6788 foreach_start_stop (set_start_stop);
6789 }
6790
6791 static void
6792 lang_end (void)
6793 {
6794 struct bfd_link_hash_entry *h;
6795 bfd_boolean warn;
6796
6797 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6798 || bfd_link_dll (&link_info))
6799 warn = entry_from_cmdline;
6800 else
6801 warn = TRUE;
6802
6803 /* Force the user to specify a root when generating a relocatable with
6804 --gc-sections, unless --gc-keep-exported was also given. */
6805 if (bfd_link_relocatable (&link_info)
6806 && link_info.gc_sections
6807 && !link_info.gc_keep_exported
6808 && !(entry_from_cmdline || undef_from_cmdline))
6809 einfo (_("%F%P: gc-sections requires either an entry or "
6810 "an undefined symbol\n"));
6811
6812 if (entry_symbol.name == NULL)
6813 {
6814 /* No entry has been specified. Look for the default entry, but
6815 don't warn if we don't find it. */
6816 entry_symbol.name = entry_symbol_default;
6817 warn = FALSE;
6818 }
6819
6820 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6821 FALSE, FALSE, TRUE);
6822 if (h != NULL
6823 && (h->type == bfd_link_hash_defined
6824 || h->type == bfd_link_hash_defweak)
6825 && h->u.def.section->output_section != NULL)
6826 {
6827 bfd_vma val;
6828
6829 val = (h->u.def.value
6830 + bfd_section_vma (h->u.def.section->output_section)
6831 + h->u.def.section->output_offset);
6832 if (!bfd_set_start_address (link_info.output_bfd, val))
6833 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6834 }
6835 else
6836 {
6837 bfd_vma val;
6838 const char *send;
6839
6840 /* We couldn't find the entry symbol. Try parsing it as a
6841 number. */
6842 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6843 if (*send == '\0')
6844 {
6845 if (!bfd_set_start_address (link_info.output_bfd, val))
6846 einfo (_("%F%P: can't set start address\n"));
6847 }
6848 else
6849 {
6850 asection *ts;
6851
6852 /* Can't find the entry symbol, and it's not a number. Use
6853 the first address in the text section. */
6854 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6855 if (ts != NULL)
6856 {
6857 if (warn)
6858 einfo (_("%P: warning: cannot find entry symbol %s;"
6859 " defaulting to %V\n"),
6860 entry_symbol.name,
6861 bfd_section_vma (ts));
6862 if (!bfd_set_start_address (link_info.output_bfd,
6863 bfd_section_vma (ts)))
6864 einfo (_("%F%P: can't set start address\n"));
6865 }
6866 else
6867 {
6868 if (warn)
6869 einfo (_("%P: warning: cannot find entry symbol %s;"
6870 " not setting start address\n"),
6871 entry_symbol.name);
6872 }
6873 }
6874 }
6875 }
6876
6877 /* This is a small function used when we want to ignore errors from
6878 BFD. */
6879
6880 static void
6881 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6882 va_list ap ATTRIBUTE_UNUSED)
6883 {
6884 /* Don't do anything. */
6885 }
6886
6887 /* Check that the architecture of all the input files is compatible
6888 with the output file. Also call the backend to let it do any
6889 other checking that is needed. */
6890
6891 static void
6892 lang_check (void)
6893 {
6894 lang_input_statement_type *file;
6895 bfd *input_bfd;
6896 const bfd_arch_info_type *compatible;
6897
6898 for (file = (void *) file_chain.head;
6899 file != NULL;
6900 file = file->next)
6901 {
6902 #if BFD_SUPPORTS_PLUGINS
6903 /* Don't check format of files claimed by plugin. */
6904 if (file->flags.claimed)
6905 continue;
6906 #endif /* BFD_SUPPORTS_PLUGINS */
6907 input_bfd = file->the_bfd;
6908 compatible
6909 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6910 command_line.accept_unknown_input_arch);
6911
6912 /* In general it is not possible to perform a relocatable
6913 link between differing object formats when the input
6914 file has relocations, because the relocations in the
6915 input format may not have equivalent representations in
6916 the output format (and besides BFD does not translate
6917 relocs for other link purposes than a final link). */
6918 if ((bfd_link_relocatable (&link_info)
6919 || link_info.emitrelocations)
6920 && (compatible == NULL
6921 || (bfd_get_flavour (input_bfd)
6922 != bfd_get_flavour (link_info.output_bfd)))
6923 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6924 {
6925 einfo (_("%F%P: relocatable linking with relocations from"
6926 " format %s (%pB) to format %s (%pB) is not supported\n"),
6927 bfd_get_target (input_bfd), input_bfd,
6928 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6929 /* einfo with %F exits. */
6930 }
6931
6932 if (compatible == NULL)
6933 {
6934 if (command_line.warn_mismatch)
6935 einfo (_("%X%P: %s architecture of input file `%pB'"
6936 " is incompatible with %s output\n"),
6937 bfd_printable_name (input_bfd), input_bfd,
6938 bfd_printable_name (link_info.output_bfd));
6939 }
6940
6941 /* If the input bfd has no contents, it shouldn't set the
6942 private data of the output bfd. */
6943 else if ((input_bfd->flags & DYNAMIC) != 0
6944 || bfd_count_sections (input_bfd) != 0)
6945 {
6946 bfd_error_handler_type pfn = NULL;
6947
6948 /* If we aren't supposed to warn about mismatched input
6949 files, temporarily set the BFD error handler to a
6950 function which will do nothing. We still want to call
6951 bfd_merge_private_bfd_data, since it may set up
6952 information which is needed in the output file. */
6953 if (!command_line.warn_mismatch)
6954 pfn = bfd_set_error_handler (ignore_bfd_errors);
6955 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6956 {
6957 if (command_line.warn_mismatch)
6958 einfo (_("%X%P: failed to merge target specific data"
6959 " of file %pB\n"), input_bfd);
6960 }
6961 if (!command_line.warn_mismatch)
6962 bfd_set_error_handler (pfn);
6963 }
6964 }
6965 }
6966
6967 /* Look through all the global common symbols and attach them to the
6968 correct section. The -sort-common command line switch may be used
6969 to roughly sort the entries by alignment. */
6970
6971 static void
6972 lang_common (void)
6973 {
6974 if (link_info.inhibit_common_definition)
6975 return;
6976 if (bfd_link_relocatable (&link_info)
6977 && !command_line.force_common_definition)
6978 return;
6979
6980 if (!config.sort_common)
6981 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6982 else
6983 {
6984 unsigned int power;
6985
6986 if (config.sort_common == sort_descending)
6987 {
6988 for (power = 4; power > 0; power--)
6989 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6990
6991 power = 0;
6992 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6993 }
6994 else
6995 {
6996 for (power = 0; power <= 4; power++)
6997 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6998
6999 power = (unsigned int) -1;
7000 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7001 }
7002 }
7003 }
7004
7005 /* Place one common symbol in the correct section. */
7006
7007 static bfd_boolean
7008 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7009 {
7010 unsigned int power_of_two;
7011 bfd_vma size;
7012 asection *section;
7013
7014 if (h->type != bfd_link_hash_common)
7015 return TRUE;
7016
7017 size = h->u.c.size;
7018 power_of_two = h->u.c.p->alignment_power;
7019
7020 if (config.sort_common == sort_descending
7021 && power_of_two < *(unsigned int *) info)
7022 return TRUE;
7023 else if (config.sort_common == sort_ascending
7024 && power_of_two > *(unsigned int *) info)
7025 return TRUE;
7026
7027 section = h->u.c.p->section;
7028 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7029 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7030 h->root.string);
7031
7032 if (config.map_file != NULL)
7033 {
7034 static bfd_boolean header_printed;
7035 int len;
7036 char *name;
7037 char buf[50];
7038
7039 if (!header_printed)
7040 {
7041 minfo (_("\nAllocating common symbols\n"));
7042 minfo (_("Common symbol size file\n\n"));
7043 header_printed = TRUE;
7044 }
7045
7046 name = bfd_demangle (link_info.output_bfd, h->root.string,
7047 DMGL_ANSI | DMGL_PARAMS);
7048 if (name == NULL)
7049 {
7050 minfo ("%s", h->root.string);
7051 len = strlen (h->root.string);
7052 }
7053 else
7054 {
7055 minfo ("%s", name);
7056 len = strlen (name);
7057 free (name);
7058 }
7059
7060 if (len >= 19)
7061 {
7062 print_nl ();
7063 len = 0;
7064 }
7065 while (len < 20)
7066 {
7067 print_space ();
7068 ++len;
7069 }
7070
7071 minfo ("0x");
7072 if (size <= 0xffffffff)
7073 sprintf (buf, "%lx", (unsigned long) size);
7074 else
7075 sprintf_vma (buf, size);
7076 minfo ("%s", buf);
7077 len = strlen (buf);
7078
7079 while (len < 16)
7080 {
7081 print_space ();
7082 ++len;
7083 }
7084
7085 minfo ("%pB\n", section->owner);
7086 }
7087
7088 return TRUE;
7089 }
7090
7091 /* Handle a single orphan section S, placing the orphan into an appropriate
7092 output section. The effects of the --orphan-handling command line
7093 option are handled here. */
7094
7095 static void
7096 ldlang_place_orphan (asection *s)
7097 {
7098 if (config.orphan_handling == orphan_handling_discard)
7099 {
7100 lang_output_section_statement_type *os;
7101 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
7102 TRUE);
7103 if (os->addr_tree == NULL
7104 && (bfd_link_relocatable (&link_info)
7105 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7106 os->addr_tree = exp_intop (0);
7107 lang_add_section (&os->children, s, NULL, os);
7108 }
7109 else
7110 {
7111 lang_output_section_statement_type *os;
7112 const char *name = s->name;
7113 int constraint = 0;
7114
7115 if (config.orphan_handling == orphan_handling_error)
7116 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7117 s, s->owner);
7118
7119 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7120 constraint = SPECIAL;
7121
7122 os = ldemul_place_orphan (s, name, constraint);
7123 if (os == NULL)
7124 {
7125 os = lang_output_section_statement_lookup (name, constraint, TRUE);
7126 if (os->addr_tree == NULL
7127 && (bfd_link_relocatable (&link_info)
7128 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7129 os->addr_tree = exp_intop (0);
7130 lang_add_section (&os->children, s, NULL, os);
7131 }
7132
7133 if (config.orphan_handling == orphan_handling_warn)
7134 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7135 "placed in section `%s'\n"),
7136 s, s->owner, os->name);
7137 }
7138 }
7139
7140 /* Run through the input files and ensure that every input section has
7141 somewhere to go. If one is found without a destination then create
7142 an input request and place it into the statement tree. */
7143
7144 static void
7145 lang_place_orphans (void)
7146 {
7147 LANG_FOR_EACH_INPUT_STATEMENT (file)
7148 {
7149 asection *s;
7150
7151 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7152 {
7153 if (s->output_section == NULL)
7154 {
7155 /* This section of the file is not attached, root
7156 around for a sensible place for it to go. */
7157
7158 if (file->flags.just_syms)
7159 bfd_link_just_syms (file->the_bfd, s, &link_info);
7160 else if (lang_discard_section_p (s))
7161 s->output_section = bfd_abs_section_ptr;
7162 else if (strcmp (s->name, "COMMON") == 0)
7163 {
7164 /* This is a lonely common section which must have
7165 come from an archive. We attach to the section
7166 with the wildcard. */
7167 if (!bfd_link_relocatable (&link_info)
7168 || command_line.force_common_definition)
7169 {
7170 if (default_common_section == NULL)
7171 default_common_section
7172 = lang_output_section_statement_lookup (".bss", 0,
7173 TRUE);
7174 lang_add_section (&default_common_section->children, s,
7175 NULL, default_common_section);
7176 }
7177 }
7178 else
7179 ldlang_place_orphan (s);
7180 }
7181 }
7182 }
7183 }
7184
7185 void
7186 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7187 {
7188 flagword *ptr_flags;
7189
7190 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7191
7192 while (*flags)
7193 {
7194 switch (*flags)
7195 {
7196 /* PR 17900: An exclamation mark in the attributes reverses
7197 the sense of any of the attributes that follow. */
7198 case '!':
7199 invert = !invert;
7200 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7201 break;
7202
7203 case 'A': case 'a':
7204 *ptr_flags |= SEC_ALLOC;
7205 break;
7206
7207 case 'R': case 'r':
7208 *ptr_flags |= SEC_READONLY;
7209 break;
7210
7211 case 'W': case 'w':
7212 *ptr_flags |= SEC_DATA;
7213 break;
7214
7215 case 'X': case 'x':
7216 *ptr_flags |= SEC_CODE;
7217 break;
7218
7219 case 'L': case 'l':
7220 case 'I': case 'i':
7221 *ptr_flags |= SEC_LOAD;
7222 break;
7223
7224 default:
7225 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7226 *flags, *flags);
7227 break;
7228 }
7229 flags++;
7230 }
7231 }
7232
7233 /* Call a function on each real input file. This function will be
7234 called on an archive, but not on the elements. */
7235
7236 void
7237 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7238 {
7239 lang_input_statement_type *f;
7240
7241 for (f = (void *) input_file_chain.head;
7242 f != NULL;
7243 f = f->next_real_file)
7244 if (f->flags.real)
7245 func (f);
7246 }
7247
7248 /* Call a function on each real file. The function will be called on
7249 all the elements of an archive which are included in the link, but
7250 will not be called on the archive file itself. */
7251
7252 void
7253 lang_for_each_file (void (*func) (lang_input_statement_type *))
7254 {
7255 LANG_FOR_EACH_INPUT_STATEMENT (f)
7256 {
7257 if (f->flags.real)
7258 func (f);
7259 }
7260 }
7261
7262 void
7263 ldlang_add_file (lang_input_statement_type *entry)
7264 {
7265 lang_statement_append (&file_chain, entry, &entry->next);
7266
7267 /* The BFD linker needs to have a list of all input BFDs involved in
7268 a link. */
7269 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7270 && entry->the_bfd->link.next == NULL);
7271 ASSERT (entry->the_bfd != link_info.output_bfd);
7272
7273 *link_info.input_bfds_tail = entry->the_bfd;
7274 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7275 bfd_set_usrdata (entry->the_bfd, entry);
7276 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7277
7278 /* Look through the sections and check for any which should not be
7279 included in the link. We need to do this now, so that we can
7280 notice when the backend linker tries to report multiple
7281 definition errors for symbols which are in sections we aren't
7282 going to link. FIXME: It might be better to entirely ignore
7283 symbols which are defined in sections which are going to be
7284 discarded. This would require modifying the backend linker for
7285 each backend which might set the SEC_LINK_ONCE flag. If we do
7286 this, we should probably handle SEC_EXCLUDE in the same way. */
7287
7288 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7289 }
7290
7291 void
7292 lang_add_output (const char *name, int from_script)
7293 {
7294 /* Make -o on command line override OUTPUT in script. */
7295 if (!had_output_filename || !from_script)
7296 {
7297 output_filename = name;
7298 had_output_filename = TRUE;
7299 }
7300 }
7301
7302 lang_output_section_statement_type *
7303 lang_enter_output_section_statement (const char *output_section_statement_name,
7304 etree_type *address_exp,
7305 enum section_type sectype,
7306 etree_type *align,
7307 etree_type *subalign,
7308 etree_type *ebase,
7309 int constraint,
7310 int align_with_input)
7311 {
7312 lang_output_section_statement_type *os;
7313
7314 os = lang_output_section_statement_lookup (output_section_statement_name,
7315 constraint, TRUE);
7316 current_section = os;
7317
7318 if (os->addr_tree == NULL)
7319 {
7320 os->addr_tree = address_exp;
7321 }
7322 os->sectype = sectype;
7323 if (sectype != noload_section)
7324 os->flags = SEC_NO_FLAGS;
7325 else
7326 os->flags = SEC_NEVER_LOAD;
7327 os->block_value = 1;
7328
7329 /* Make next things chain into subchain of this. */
7330 push_stat_ptr (&os->children);
7331
7332 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7333 if (os->align_lma_with_input && align != NULL)
7334 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7335 NULL);
7336
7337 os->subsection_alignment = subalign;
7338 os->section_alignment = align;
7339
7340 os->load_base = ebase;
7341 return os;
7342 }
7343
7344 void
7345 lang_final (void)
7346 {
7347 lang_output_statement_type *new_stmt;
7348
7349 new_stmt = new_stat (lang_output_statement, stat_ptr);
7350 new_stmt->name = output_filename;
7351 }
7352
7353 /* Reset the current counters in the regions. */
7354
7355 void
7356 lang_reset_memory_regions (void)
7357 {
7358 lang_memory_region_type *p = lang_memory_region_list;
7359 asection *o;
7360 lang_output_section_statement_type *os;
7361
7362 for (p = lang_memory_region_list; p != NULL; p = p->next)
7363 {
7364 p->current = p->origin;
7365 p->last_os = NULL;
7366 }
7367
7368 for (os = (void *) lang_os_list.head;
7369 os != NULL;
7370 os = os->next)
7371 {
7372 os->processed_vma = FALSE;
7373 os->processed_lma = FALSE;
7374 }
7375
7376 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7377 {
7378 /* Save the last size for possible use by bfd_relax_section. */
7379 o->rawsize = o->size;
7380 if (!(o->flags & SEC_FIXED_SIZE))
7381 o->size = 0;
7382 }
7383 }
7384
7385 /* Worker for lang_gc_sections_1. */
7386
7387 static void
7388 gc_section_callback (lang_wild_statement_type *ptr,
7389 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7390 asection *section,
7391 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7392 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7393 void *data ATTRIBUTE_UNUSED)
7394 {
7395 /* If the wild pattern was marked KEEP, the member sections
7396 should be as well. */
7397 if (ptr->keep_sections)
7398 section->flags |= SEC_KEEP;
7399 }
7400
7401 /* Iterate over sections marking them against GC. */
7402
7403 static void
7404 lang_gc_sections_1 (lang_statement_union_type *s)
7405 {
7406 for (; s != NULL; s = s->header.next)
7407 {
7408 switch (s->header.type)
7409 {
7410 case lang_wild_statement_enum:
7411 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7412 break;
7413 case lang_constructors_statement_enum:
7414 lang_gc_sections_1 (constructor_list.head);
7415 break;
7416 case lang_output_section_statement_enum:
7417 lang_gc_sections_1 (s->output_section_statement.children.head);
7418 break;
7419 case lang_group_statement_enum:
7420 lang_gc_sections_1 (s->group_statement.children.head);
7421 break;
7422 default:
7423 break;
7424 }
7425 }
7426 }
7427
7428 static void
7429 lang_gc_sections (void)
7430 {
7431 /* Keep all sections so marked in the link script. */
7432 lang_gc_sections_1 (statement_list.head);
7433
7434 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7435 the special case of debug info. (See bfd/stabs.c)
7436 Twiddle the flag here, to simplify later linker code. */
7437 if (bfd_link_relocatable (&link_info))
7438 {
7439 LANG_FOR_EACH_INPUT_STATEMENT (f)
7440 {
7441 asection *sec;
7442 #if BFD_SUPPORTS_PLUGINS
7443 if (f->flags.claimed)
7444 continue;
7445 #endif
7446 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7447 if ((sec->flags & SEC_DEBUGGING) == 0)
7448 sec->flags &= ~SEC_EXCLUDE;
7449 }
7450 }
7451
7452 if (link_info.gc_sections)
7453 bfd_gc_sections (link_info.output_bfd, &link_info);
7454 }
7455
7456 /* Worker for lang_find_relro_sections_1. */
7457
7458 static void
7459 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7460 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7461 asection *section,
7462 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7463 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7464 void *data)
7465 {
7466 /* Discarded, excluded and ignored sections effectively have zero
7467 size. */
7468 if (section->output_section != NULL
7469 && section->output_section->owner == link_info.output_bfd
7470 && (section->output_section->flags & SEC_EXCLUDE) == 0
7471 && !IGNORE_SECTION (section)
7472 && section->size != 0)
7473 {
7474 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7475 *has_relro_section = TRUE;
7476 }
7477 }
7478
7479 /* Iterate over sections for relro sections. */
7480
7481 static void
7482 lang_find_relro_sections_1 (lang_statement_union_type *s,
7483 seg_align_type *seg,
7484 bfd_boolean *has_relro_section)
7485 {
7486 if (*has_relro_section)
7487 return;
7488
7489 for (; s != NULL; s = s->header.next)
7490 {
7491 if (s == seg->relro_end_stat)
7492 break;
7493
7494 switch (s->header.type)
7495 {
7496 case lang_wild_statement_enum:
7497 walk_wild (&s->wild_statement,
7498 find_relro_section_callback,
7499 has_relro_section);
7500 break;
7501 case lang_constructors_statement_enum:
7502 lang_find_relro_sections_1 (constructor_list.head,
7503 seg, has_relro_section);
7504 break;
7505 case lang_output_section_statement_enum:
7506 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7507 seg, has_relro_section);
7508 break;
7509 case lang_group_statement_enum:
7510 lang_find_relro_sections_1 (s->group_statement.children.head,
7511 seg, has_relro_section);
7512 break;
7513 default:
7514 break;
7515 }
7516 }
7517 }
7518
7519 static void
7520 lang_find_relro_sections (void)
7521 {
7522 bfd_boolean has_relro_section = FALSE;
7523
7524 /* Check all sections in the link script. */
7525
7526 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7527 &expld.dataseg, &has_relro_section);
7528
7529 if (!has_relro_section)
7530 link_info.relro = FALSE;
7531 }
7532
7533 /* Relax all sections until bfd_relax_section gives up. */
7534
7535 void
7536 lang_relax_sections (bfd_boolean need_layout)
7537 {
7538 if (RELAXATION_ENABLED)
7539 {
7540 /* We may need more than one relaxation pass. */
7541 int i = link_info.relax_pass;
7542
7543 /* The backend can use it to determine the current pass. */
7544 link_info.relax_pass = 0;
7545
7546 while (i--)
7547 {
7548 /* Keep relaxing until bfd_relax_section gives up. */
7549 bfd_boolean relax_again;
7550
7551 link_info.relax_trip = -1;
7552 do
7553 {
7554 link_info.relax_trip++;
7555
7556 /* Note: pe-dll.c does something like this also. If you find
7557 you need to change this code, you probably need to change
7558 pe-dll.c also. DJ */
7559
7560 /* Do all the assignments with our current guesses as to
7561 section sizes. */
7562 lang_do_assignments (lang_assigning_phase_enum);
7563
7564 /* We must do this after lang_do_assignments, because it uses
7565 size. */
7566 lang_reset_memory_regions ();
7567
7568 /* Perform another relax pass - this time we know where the
7569 globals are, so can make a better guess. */
7570 relax_again = FALSE;
7571 lang_size_sections (&relax_again, FALSE);
7572 }
7573 while (relax_again);
7574
7575 link_info.relax_pass++;
7576 }
7577 need_layout = TRUE;
7578 }
7579
7580 if (need_layout)
7581 {
7582 /* Final extra sizing to report errors. */
7583 lang_do_assignments (lang_assigning_phase_enum);
7584 lang_reset_memory_regions ();
7585 lang_size_sections (NULL, TRUE);
7586 }
7587 }
7588
7589 #if BFD_SUPPORTS_PLUGINS
7590 /* Find the insert point for the plugin's replacement files. We
7591 place them after the first claimed real object file, or if the
7592 first claimed object is an archive member, after the last real
7593 object file immediately preceding the archive. In the event
7594 no objects have been claimed at all, we return the first dummy
7595 object file on the list as the insert point; that works, but
7596 the callee must be careful when relinking the file_chain as it
7597 is not actually on that chain, only the statement_list and the
7598 input_file list; in that case, the replacement files must be
7599 inserted at the head of the file_chain. */
7600
7601 static lang_input_statement_type *
7602 find_replacements_insert_point (bfd_boolean *before)
7603 {
7604 lang_input_statement_type *claim1, *lastobject;
7605 lastobject = (void *) input_file_chain.head;
7606 for (claim1 = (void *) file_chain.head;
7607 claim1 != NULL;
7608 claim1 = claim1->next)
7609 {
7610 if (claim1->flags.claimed)
7611 {
7612 *before = claim1->flags.claim_archive;
7613 return claim1->flags.claim_archive ? lastobject : claim1;
7614 }
7615 /* Update lastobject if this is a real object file. */
7616 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7617 lastobject = claim1;
7618 }
7619 /* No files were claimed by the plugin. Choose the last object
7620 file found on the list (maybe the first, dummy entry) as the
7621 insert point. */
7622 *before = FALSE;
7623 return lastobject;
7624 }
7625
7626 /* Find where to insert ADD, an archive element or shared library
7627 added during a rescan. */
7628
7629 static lang_input_statement_type **
7630 find_rescan_insertion (lang_input_statement_type *add)
7631 {
7632 bfd *add_bfd = add->the_bfd;
7633 lang_input_statement_type *f;
7634 lang_input_statement_type *last_loaded = NULL;
7635 lang_input_statement_type *before = NULL;
7636 lang_input_statement_type **iter = NULL;
7637
7638 if (add_bfd->my_archive != NULL)
7639 add_bfd = add_bfd->my_archive;
7640
7641 /* First look through the input file chain, to find an object file
7642 before the one we've rescanned. Normal object files always
7643 appear on both the input file chain and the file chain, so this
7644 lets us get quickly to somewhere near the correct place on the
7645 file chain if it is full of archive elements. Archives don't
7646 appear on the file chain, but if an element has been extracted
7647 then their input_statement->next points at it. */
7648 for (f = (void *) input_file_chain.head;
7649 f != NULL;
7650 f = f->next_real_file)
7651 {
7652 if (f->the_bfd == add_bfd)
7653 {
7654 before = last_loaded;
7655 if (f->next != NULL)
7656 return &f->next->next;
7657 }
7658 if (f->the_bfd != NULL && f->next != NULL)
7659 last_loaded = f;
7660 }
7661
7662 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7663 *iter != NULL;
7664 iter = &(*iter)->next)
7665 if (!(*iter)->flags.claim_archive
7666 && (*iter)->the_bfd->my_archive == NULL)
7667 break;
7668
7669 return iter;
7670 }
7671
7672 /* Insert SRCLIST into DESTLIST after given element by chaining
7673 on FIELD as the next-pointer. (Counterintuitively does not need
7674 a pointer to the actual after-node itself, just its chain field.) */
7675
7676 static void
7677 lang_list_insert_after (lang_statement_list_type *destlist,
7678 lang_statement_list_type *srclist,
7679 lang_statement_union_type **field)
7680 {
7681 *(srclist->tail) = *field;
7682 *field = srclist->head;
7683 if (destlist->tail == field)
7684 destlist->tail = srclist->tail;
7685 }
7686
7687 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7688 was taken as a copy of it and leave them in ORIGLIST. */
7689
7690 static void
7691 lang_list_remove_tail (lang_statement_list_type *destlist,
7692 lang_statement_list_type *origlist)
7693 {
7694 union lang_statement_union **savetail;
7695 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7696 ASSERT (origlist->head == destlist->head);
7697 savetail = origlist->tail;
7698 origlist->head = *(savetail);
7699 origlist->tail = destlist->tail;
7700 destlist->tail = savetail;
7701 *savetail = NULL;
7702 }
7703
7704 static lang_statement_union_type **
7705 find_next_input_statement (lang_statement_union_type **s)
7706 {
7707 for ( ; *s; s = &(*s)->header.next)
7708 {
7709 lang_statement_union_type **t;
7710 switch ((*s)->header.type)
7711 {
7712 case lang_input_statement_enum:
7713 return s;
7714 case lang_wild_statement_enum:
7715 t = &(*s)->wild_statement.children.head;
7716 break;
7717 case lang_group_statement_enum:
7718 t = &(*s)->group_statement.children.head;
7719 break;
7720 case lang_output_section_statement_enum:
7721 t = &(*s)->output_section_statement.children.head;
7722 break;
7723 default:
7724 continue;
7725 }
7726 t = find_next_input_statement (t);
7727 if (*t)
7728 return t;
7729 }
7730 return s;
7731 }
7732 #endif /* BFD_SUPPORTS_PLUGINS */
7733
7734 /* Add NAME to the list of garbage collection entry points. */
7735
7736 void
7737 lang_add_gc_name (const char *name)
7738 {
7739 struct bfd_sym_chain *sym;
7740
7741 if (name == NULL)
7742 return;
7743
7744 sym = stat_alloc (sizeof (*sym));
7745
7746 sym->next = link_info.gc_sym_list;
7747 sym->name = name;
7748 link_info.gc_sym_list = sym;
7749 }
7750
7751 /* Check relocations. */
7752
7753 static void
7754 lang_check_relocs (void)
7755 {
7756 if (link_info.check_relocs_after_open_input)
7757 {
7758 bfd *abfd;
7759
7760 for (abfd = link_info.input_bfds;
7761 abfd != (bfd *) NULL; abfd = abfd->link.next)
7762 if (!bfd_link_check_relocs (abfd, &link_info))
7763 {
7764 /* No object output, fail return. */
7765 config.make_executable = FALSE;
7766 /* Note: we do not abort the loop, but rather
7767 continue the scan in case there are other
7768 bad relocations to report. */
7769 }
7770 }
7771 }
7772
7773 /* Look through all output sections looking for places where we can
7774 propagate forward the lma region. */
7775
7776 static void
7777 lang_propagate_lma_regions (void)
7778 {
7779 lang_output_section_statement_type *os;
7780
7781 for (os = (void *) lang_os_list.head;
7782 os != NULL;
7783 os = os->next)
7784 {
7785 if (os->prev != NULL
7786 && os->lma_region == NULL
7787 && os->load_base == NULL
7788 && os->addr_tree == NULL
7789 && os->region == os->prev->region)
7790 os->lma_region = os->prev->lma_region;
7791 }
7792 }
7793
7794 void
7795 lang_process (void)
7796 {
7797 /* Finalize dynamic list. */
7798 if (link_info.dynamic_list)
7799 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7800
7801 current_target = default_target;
7802
7803 /* Open the output file. */
7804 lang_for_each_statement (ldlang_open_output);
7805 init_opb (NULL);
7806
7807 ldemul_create_output_section_statements ();
7808
7809 /* Add to the hash table all undefineds on the command line. */
7810 lang_place_undefineds ();
7811
7812 if (!bfd_section_already_linked_table_init ())
7813 einfo (_("%F%P: can not create hash table: %E\n"));
7814
7815 /* Create a bfd for each input file. */
7816 current_target = default_target;
7817 lang_statement_iteration++;
7818 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7819 /* open_input_bfds also handles assignments, so we can give values
7820 to symbolic origin/length now. */
7821 lang_do_memory_regions ();
7822
7823 #if BFD_SUPPORTS_PLUGINS
7824 if (link_info.lto_plugin_active)
7825 {
7826 lang_statement_list_type added;
7827 lang_statement_list_type files, inputfiles;
7828
7829 /* Now all files are read, let the plugin(s) decide if there
7830 are any more to be added to the link before we call the
7831 emulation's after_open hook. We create a private list of
7832 input statements for this purpose, which we will eventually
7833 insert into the global statement list after the first claimed
7834 file. */
7835 added = *stat_ptr;
7836 /* We need to manipulate all three chains in synchrony. */
7837 files = file_chain;
7838 inputfiles = input_file_chain;
7839 if (plugin_call_all_symbols_read ())
7840 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7841 plugin_error_plugin ());
7842 /* Open any newly added files, updating the file chains. */
7843 plugin_undefs = link_info.hash->undefs_tail;
7844 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7845 if (plugin_undefs == link_info.hash->undefs_tail)
7846 plugin_undefs = NULL;
7847 /* Restore the global list pointer now they have all been added. */
7848 lang_list_remove_tail (stat_ptr, &added);
7849 /* And detach the fresh ends of the file lists. */
7850 lang_list_remove_tail (&file_chain, &files);
7851 lang_list_remove_tail (&input_file_chain, &inputfiles);
7852 /* Were any new files added? */
7853 if (added.head != NULL)
7854 {
7855 /* If so, we will insert them into the statement list immediately
7856 after the first input file that was claimed by the plugin,
7857 unless that file was an archive in which case it is inserted
7858 immediately before. */
7859 bfd_boolean before;
7860 lang_statement_union_type **prev;
7861 plugin_insert = find_replacements_insert_point (&before);
7862 /* If a plugin adds input files without having claimed any, we
7863 don't really have a good idea where to place them. Just putting
7864 them at the start or end of the list is liable to leave them
7865 outside the crtbegin...crtend range. */
7866 ASSERT (plugin_insert != NULL);
7867 /* Splice the new statement list into the old one. */
7868 prev = &plugin_insert->header.next;
7869 if (before)
7870 {
7871 prev = find_next_input_statement (prev);
7872 if (*prev != (void *) plugin_insert->next_real_file)
7873 {
7874 /* We didn't find the expected input statement.
7875 Fall back to adding after plugin_insert. */
7876 prev = &plugin_insert->header.next;
7877 }
7878 }
7879 lang_list_insert_after (stat_ptr, &added, prev);
7880 /* Likewise for the file chains. */
7881 lang_list_insert_after (&input_file_chain, &inputfiles,
7882 (void *) &plugin_insert->next_real_file);
7883 /* We must be careful when relinking file_chain; we may need to
7884 insert the new files at the head of the list if the insert
7885 point chosen is the dummy first input file. */
7886 if (plugin_insert->filename)
7887 lang_list_insert_after (&file_chain, &files,
7888 (void *) &plugin_insert->next);
7889 else
7890 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7891
7892 /* Rescan archives in case new undefined symbols have appeared. */
7893 files = file_chain;
7894 lang_statement_iteration++;
7895 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7896 lang_list_remove_tail (&file_chain, &files);
7897 while (files.head != NULL)
7898 {
7899 lang_input_statement_type **insert;
7900 lang_input_statement_type **iter, *temp;
7901 bfd *my_arch;
7902
7903 insert = find_rescan_insertion (&files.head->input_statement);
7904 /* All elements from an archive can be added at once. */
7905 iter = &files.head->input_statement.next;
7906 my_arch = files.head->input_statement.the_bfd->my_archive;
7907 if (my_arch != NULL)
7908 for (; *iter != NULL; iter = &(*iter)->next)
7909 if ((*iter)->the_bfd->my_archive != my_arch)
7910 break;
7911 temp = *insert;
7912 *insert = &files.head->input_statement;
7913 files.head = (lang_statement_union_type *) *iter;
7914 *iter = temp;
7915 if (my_arch != NULL)
7916 {
7917 lang_input_statement_type *parent = bfd_usrdata (my_arch);
7918 if (parent != NULL)
7919 parent->next = (lang_input_statement_type *)
7920 ((char *) iter
7921 - offsetof (lang_input_statement_type, next));
7922 }
7923 }
7924 }
7925 }
7926 #endif /* BFD_SUPPORTS_PLUGINS */
7927
7928 /* Make sure that nobody has tried to add a symbol to this list
7929 before now. */
7930 ASSERT (link_info.gc_sym_list == NULL);
7931
7932 link_info.gc_sym_list = &entry_symbol;
7933
7934 if (entry_symbol.name == NULL)
7935 {
7936 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7937
7938 /* entry_symbol is normally initialied by a ENTRY definition in the
7939 linker script or the -e command line option. But if neither of
7940 these have been used, the target specific backend may still have
7941 provided an entry symbol via a call to lang_default_entry().
7942 Unfortunately this value will not be processed until lang_end()
7943 is called, long after this function has finished. So detect this
7944 case here and add the target's entry symbol to the list of starting
7945 points for garbage collection resolution. */
7946 lang_add_gc_name (entry_symbol_default);
7947 }
7948
7949 lang_add_gc_name (link_info.init_function);
7950 lang_add_gc_name (link_info.fini_function);
7951
7952 ldemul_after_open ();
7953 if (config.map_file != NULL)
7954 lang_print_asneeded ();
7955
7956 ldlang_open_ctf ();
7957
7958 bfd_section_already_linked_table_free ();
7959
7960 /* Make sure that we're not mixing architectures. We call this
7961 after all the input files have been opened, but before we do any
7962 other processing, so that any operations merge_private_bfd_data
7963 does on the output file will be known during the rest of the
7964 link. */
7965 lang_check ();
7966
7967 /* Handle .exports instead of a version script if we're told to do so. */
7968 if (command_line.version_exports_section)
7969 lang_do_version_exports_section ();
7970
7971 /* Build all sets based on the information gathered from the input
7972 files. */
7973 ldctor_build_sets ();
7974
7975 /* Give initial values for __start and __stop symbols, so that ELF
7976 gc_sections will keep sections referenced by these symbols. Must
7977 be done before lang_do_assignments below. */
7978 if (config.build_constructors)
7979 lang_init_start_stop ();
7980
7981 /* PR 13683: We must rerun the assignments prior to running garbage
7982 collection in order to make sure that all symbol aliases are resolved. */
7983 lang_do_assignments (lang_mark_phase_enum);
7984 expld.phase = lang_first_phase_enum;
7985
7986 /* Size up the common data. */
7987 lang_common ();
7988
7989 /* Remove unreferenced sections if asked to. */
7990 lang_gc_sections ();
7991
7992 /* Check relocations. */
7993 lang_check_relocs ();
7994
7995 ldemul_after_check_relocs ();
7996
7997 /* Update wild statements. */
7998 update_wild_statements (statement_list.head);
7999
8000 /* Run through the contours of the script and attach input sections
8001 to the correct output sections. */
8002 lang_statement_iteration++;
8003 map_input_to_output_sections (statement_list.head, NULL, NULL);
8004
8005 /* Start at the statement immediately after the special abs_section
8006 output statement, so that it isn't reordered. */
8007 process_insert_statements (&lang_os_list.head->header.next);
8008
8009 ldemul_before_place_orphans ();
8010
8011 /* Find any sections not attached explicitly and handle them. */
8012 lang_place_orphans ();
8013
8014 if (!bfd_link_relocatable (&link_info))
8015 {
8016 asection *found;
8017
8018 /* Merge SEC_MERGE sections. This has to be done after GC of
8019 sections, so that GCed sections are not merged, but before
8020 assigning dynamic symbols, since removing whole input sections
8021 is hard then. */
8022 bfd_merge_sections (link_info.output_bfd, &link_info);
8023
8024 /* Look for a text section and set the readonly attribute in it. */
8025 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8026
8027 if (found != NULL)
8028 {
8029 if (config.text_read_only)
8030 found->flags |= SEC_READONLY;
8031 else
8032 found->flags &= ~SEC_READONLY;
8033 }
8034 }
8035
8036 /* Merge together CTF sections. After this, only the symtab-dependent
8037 function and data object sections need adjustment. */
8038 lang_merge_ctf ();
8039
8040 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8041 examining things laid out late, like the strtab. */
8042 lang_write_ctf (0);
8043
8044 /* Copy forward lma regions for output sections in same lma region. */
8045 lang_propagate_lma_regions ();
8046
8047 /* Defining __start/__stop symbols early for --gc-sections to work
8048 around a glibc build problem can result in these symbols being
8049 defined when they should not be. Fix them now. */
8050 if (config.build_constructors)
8051 lang_undef_start_stop ();
8052
8053 /* Define .startof./.sizeof. symbols with preliminary values before
8054 dynamic symbols are created. */
8055 if (!bfd_link_relocatable (&link_info))
8056 lang_init_startof_sizeof ();
8057
8058 /* Do anything special before sizing sections. This is where ELF
8059 and other back-ends size dynamic sections. */
8060 ldemul_before_allocation ();
8061
8062 /* We must record the program headers before we try to fix the
8063 section positions, since they will affect SIZEOF_HEADERS. */
8064 lang_record_phdrs ();
8065
8066 /* Check relro sections. */
8067 if (link_info.relro && !bfd_link_relocatable (&link_info))
8068 lang_find_relro_sections ();
8069
8070 /* Size up the sections. */
8071 lang_size_sections (NULL, !RELAXATION_ENABLED);
8072
8073 /* See if anything special should be done now we know how big
8074 everything is. This is where relaxation is done. */
8075 ldemul_after_allocation ();
8076
8077 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8078 lang_finalize_start_stop ();
8079
8080 /* Do all the assignments again, to report errors. Assignment
8081 statements are processed multiple times, updating symbols; In
8082 open_input_bfds, lang_do_assignments, and lang_size_sections.
8083 Since lang_relax_sections calls lang_do_assignments, symbols are
8084 also updated in ldemul_after_allocation. */
8085 lang_do_assignments (lang_final_phase_enum);
8086
8087 ldemul_finish ();
8088
8089 /* Convert absolute symbols to section relative. */
8090 ldexp_finalize_syms ();
8091
8092 /* Make sure that the section addresses make sense. */
8093 if (command_line.check_section_addresses)
8094 lang_check_section_addresses ();
8095
8096 /* Check any required symbols are known. */
8097 ldlang_check_require_defined_symbols ();
8098
8099 lang_end ();
8100 }
8101
8102 /* EXPORTED TO YACC */
8103
8104 void
8105 lang_add_wild (struct wildcard_spec *filespec,
8106 struct wildcard_list *section_list,
8107 bfd_boolean keep_sections)
8108 {
8109 struct wildcard_list *curr, *next;
8110 lang_wild_statement_type *new_stmt;
8111
8112 /* Reverse the list as the parser puts it back to front. */
8113 for (curr = section_list, section_list = NULL;
8114 curr != NULL;
8115 section_list = curr, curr = next)
8116 {
8117 next = curr->next;
8118 curr->next = section_list;
8119 }
8120
8121 if (filespec != NULL && filespec->name != NULL)
8122 {
8123 if (strcmp (filespec->name, "*") == 0)
8124 filespec->name = NULL;
8125 else if (!wildcardp (filespec->name))
8126 lang_has_input_file = TRUE;
8127 }
8128
8129 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8130 new_stmt->filename = NULL;
8131 new_stmt->filenames_sorted = FALSE;
8132 new_stmt->section_flag_list = NULL;
8133 new_stmt->exclude_name_list = NULL;
8134 if (filespec != NULL)
8135 {
8136 new_stmt->filename = filespec->name;
8137 new_stmt->filenames_sorted = filespec->sorted == by_name;
8138 new_stmt->section_flag_list = filespec->section_flag_list;
8139 new_stmt->exclude_name_list = filespec->exclude_name_list;
8140 }
8141 new_stmt->section_list = section_list;
8142 new_stmt->keep_sections = keep_sections;
8143 lang_list_init (&new_stmt->children);
8144 analyze_walk_wild_section_handler (new_stmt);
8145 }
8146
8147 void
8148 lang_section_start (const char *name, etree_type *address,
8149 const segment_type *segment)
8150 {
8151 lang_address_statement_type *ad;
8152
8153 ad = new_stat (lang_address_statement, stat_ptr);
8154 ad->section_name = name;
8155 ad->address = address;
8156 ad->segment = segment;
8157 }
8158
8159 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8160 because of a -e argument on the command line, or zero if this is
8161 called by ENTRY in a linker script. Command line arguments take
8162 precedence. */
8163
8164 void
8165 lang_add_entry (const char *name, bfd_boolean cmdline)
8166 {
8167 if (entry_symbol.name == NULL
8168 || cmdline
8169 || !entry_from_cmdline)
8170 {
8171 entry_symbol.name = name;
8172 entry_from_cmdline = cmdline;
8173 }
8174 }
8175
8176 /* Set the default start symbol to NAME. .em files should use this,
8177 not lang_add_entry, to override the use of "start" if neither the
8178 linker script nor the command line specifies an entry point. NAME
8179 must be permanently allocated. */
8180 void
8181 lang_default_entry (const char *name)
8182 {
8183 entry_symbol_default = name;
8184 }
8185
8186 void
8187 lang_add_target (const char *name)
8188 {
8189 lang_target_statement_type *new_stmt;
8190
8191 new_stmt = new_stat (lang_target_statement, stat_ptr);
8192 new_stmt->target = name;
8193 }
8194
8195 void
8196 lang_add_map (const char *name)
8197 {
8198 while (*name)
8199 {
8200 switch (*name)
8201 {
8202 case 'F':
8203 map_option_f = TRUE;
8204 break;
8205 }
8206 name++;
8207 }
8208 }
8209
8210 void
8211 lang_add_fill (fill_type *fill)
8212 {
8213 lang_fill_statement_type *new_stmt;
8214
8215 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8216 new_stmt->fill = fill;
8217 }
8218
8219 void
8220 lang_add_data (int type, union etree_union *exp)
8221 {
8222 lang_data_statement_type *new_stmt;
8223
8224 new_stmt = new_stat (lang_data_statement, stat_ptr);
8225 new_stmt->exp = exp;
8226 new_stmt->type = type;
8227 }
8228
8229 /* Create a new reloc statement. RELOC is the BFD relocation type to
8230 generate. HOWTO is the corresponding howto structure (we could
8231 look this up, but the caller has already done so). SECTION is the
8232 section to generate a reloc against, or NAME is the name of the
8233 symbol to generate a reloc against. Exactly one of SECTION and
8234 NAME must be NULL. ADDEND is an expression for the addend. */
8235
8236 void
8237 lang_add_reloc (bfd_reloc_code_real_type reloc,
8238 reloc_howto_type *howto,
8239 asection *section,
8240 const char *name,
8241 union etree_union *addend)
8242 {
8243 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8244
8245 p->reloc = reloc;
8246 p->howto = howto;
8247 p->section = section;
8248 p->name = name;
8249 p->addend_exp = addend;
8250
8251 p->addend_value = 0;
8252 p->output_section = NULL;
8253 p->output_offset = 0;
8254 }
8255
8256 lang_assignment_statement_type *
8257 lang_add_assignment (etree_type *exp)
8258 {
8259 lang_assignment_statement_type *new_stmt;
8260
8261 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8262 new_stmt->exp = exp;
8263 return new_stmt;
8264 }
8265
8266 void
8267 lang_add_attribute (enum statement_enum attribute)
8268 {
8269 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8270 }
8271
8272 void
8273 lang_startup (const char *name)
8274 {
8275 if (first_file->filename != NULL)
8276 {
8277 einfo (_("%F%P: multiple STARTUP files\n"));
8278 }
8279 first_file->filename = name;
8280 first_file->local_sym_name = name;
8281 first_file->flags.real = TRUE;
8282 }
8283
8284 void
8285 lang_float (bfd_boolean maybe)
8286 {
8287 lang_float_flag = maybe;
8288 }
8289
8290
8291 /* Work out the load- and run-time regions from a script statement, and
8292 store them in *LMA_REGION and *REGION respectively.
8293
8294 MEMSPEC is the name of the run-time region, or the value of
8295 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8296 LMA_MEMSPEC is the name of the load-time region, or null if the
8297 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8298 had an explicit load address.
8299
8300 It is an error to specify both a load region and a load address. */
8301
8302 static void
8303 lang_get_regions (lang_memory_region_type **region,
8304 lang_memory_region_type **lma_region,
8305 const char *memspec,
8306 const char *lma_memspec,
8307 bfd_boolean have_lma,
8308 bfd_boolean have_vma)
8309 {
8310 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8311
8312 /* If no runtime region or VMA has been specified, but the load region
8313 has been specified, then use the load region for the runtime region
8314 as well. */
8315 if (lma_memspec != NULL
8316 && !have_vma
8317 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8318 *region = *lma_region;
8319 else
8320 *region = lang_memory_region_lookup (memspec, FALSE);
8321
8322 if (have_lma && lma_memspec != 0)
8323 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8324 NULL);
8325 }
8326
8327 void
8328 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8329 lang_output_section_phdr_list *phdrs,
8330 const char *lma_memspec)
8331 {
8332 lang_get_regions (&current_section->region,
8333 &current_section->lma_region,
8334 memspec, lma_memspec,
8335 current_section->load_base != NULL,
8336 current_section->addr_tree != NULL);
8337
8338 current_section->fill = fill;
8339 current_section->phdrs = phdrs;
8340 pop_stat_ptr ();
8341 }
8342
8343 /* Set the output format type. -oformat overrides scripts. */
8344
8345 void
8346 lang_add_output_format (const char *format,
8347 const char *big,
8348 const char *little,
8349 int from_script)
8350 {
8351 if (output_target == NULL || !from_script)
8352 {
8353 if (command_line.endian == ENDIAN_BIG
8354 && big != NULL)
8355 format = big;
8356 else if (command_line.endian == ENDIAN_LITTLE
8357 && little != NULL)
8358 format = little;
8359
8360 output_target = format;
8361 }
8362 }
8363
8364 void
8365 lang_add_insert (const char *where, int is_before)
8366 {
8367 lang_insert_statement_type *new_stmt;
8368
8369 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8370 new_stmt->where = where;
8371 new_stmt->is_before = is_before;
8372 saved_script_handle = previous_script_handle;
8373 }
8374
8375 /* Enter a group. This creates a new lang_group_statement, and sets
8376 stat_ptr to build new statements within the group. */
8377
8378 void
8379 lang_enter_group (void)
8380 {
8381 lang_group_statement_type *g;
8382
8383 g = new_stat (lang_group_statement, stat_ptr);
8384 lang_list_init (&g->children);
8385 push_stat_ptr (&g->children);
8386 }
8387
8388 /* Leave a group. This just resets stat_ptr to start writing to the
8389 regular list of statements again. Note that this will not work if
8390 groups can occur inside anything else which can adjust stat_ptr,
8391 but currently they can't. */
8392
8393 void
8394 lang_leave_group (void)
8395 {
8396 pop_stat_ptr ();
8397 }
8398
8399 /* Add a new program header. This is called for each entry in a PHDRS
8400 command in a linker script. */
8401
8402 void
8403 lang_new_phdr (const char *name,
8404 etree_type *type,
8405 bfd_boolean filehdr,
8406 bfd_boolean phdrs,
8407 etree_type *at,
8408 etree_type *flags)
8409 {
8410 struct lang_phdr *n, **pp;
8411 bfd_boolean hdrs;
8412
8413 n = stat_alloc (sizeof (struct lang_phdr));
8414 n->next = NULL;
8415 n->name = name;
8416 n->type = exp_get_vma (type, 0, "program header type");
8417 n->filehdr = filehdr;
8418 n->phdrs = phdrs;
8419 n->at = at;
8420 n->flags = flags;
8421
8422 hdrs = n->type == 1 && (phdrs || filehdr);
8423
8424 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8425 if (hdrs
8426 && (*pp)->type == 1
8427 && !((*pp)->filehdr || (*pp)->phdrs))
8428 {
8429 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8430 " when prior PT_LOAD headers lack them\n"), NULL);
8431 hdrs = FALSE;
8432 }
8433
8434 *pp = n;
8435 }
8436
8437 /* Record the program header information in the output BFD. FIXME: We
8438 should not be calling an ELF specific function here. */
8439
8440 static void
8441 lang_record_phdrs (void)
8442 {
8443 unsigned int alc;
8444 asection **secs;
8445 lang_output_section_phdr_list *last;
8446 struct lang_phdr *l;
8447 lang_output_section_statement_type *os;
8448
8449 alc = 10;
8450 secs = (asection **) xmalloc (alc * sizeof (asection *));
8451 last = NULL;
8452
8453 for (l = lang_phdr_list; l != NULL; l = l->next)
8454 {
8455 unsigned int c;
8456 flagword flags;
8457 bfd_vma at;
8458
8459 c = 0;
8460 for (os = (void *) lang_os_list.head;
8461 os != NULL;
8462 os = os->next)
8463 {
8464 lang_output_section_phdr_list *pl;
8465
8466 if (os->constraint < 0)
8467 continue;
8468
8469 pl = os->phdrs;
8470 if (pl != NULL)
8471 last = pl;
8472 else
8473 {
8474 if (os->sectype == noload_section
8475 || os->bfd_section == NULL
8476 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8477 continue;
8478
8479 /* Don't add orphans to PT_INTERP header. */
8480 if (l->type == 3)
8481 continue;
8482
8483 if (last == NULL)
8484 {
8485 lang_output_section_statement_type *tmp_os;
8486
8487 /* If we have not run across a section with a program
8488 header assigned to it yet, then scan forwards to find
8489 one. This prevents inconsistencies in the linker's
8490 behaviour when a script has specified just a single
8491 header and there are sections in that script which are
8492 not assigned to it, and which occur before the first
8493 use of that header. See here for more details:
8494 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8495 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8496 if (tmp_os->phdrs)
8497 {
8498 last = tmp_os->phdrs;
8499 break;
8500 }
8501 if (last == NULL)
8502 einfo (_("%F%P: no sections assigned to phdrs\n"));
8503 }
8504 pl = last;
8505 }
8506
8507 if (os->bfd_section == NULL)
8508 continue;
8509
8510 for (; pl != NULL; pl = pl->next)
8511 {
8512 if (strcmp (pl->name, l->name) == 0)
8513 {
8514 if (c >= alc)
8515 {
8516 alc *= 2;
8517 secs = (asection **) xrealloc (secs,
8518 alc * sizeof (asection *));
8519 }
8520 secs[c] = os->bfd_section;
8521 ++c;
8522 pl->used = TRUE;
8523 }
8524 }
8525 }
8526
8527 if (l->flags == NULL)
8528 flags = 0;
8529 else
8530 flags = exp_get_vma (l->flags, 0, "phdr flags");
8531
8532 if (l->at == NULL)
8533 at = 0;
8534 else
8535 at = exp_get_vma (l->at, 0, "phdr load address");
8536
8537 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8538 l->flags != NULL, flags, l->at != NULL,
8539 at, l->filehdr, l->phdrs, c, secs))
8540 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8541 }
8542
8543 free (secs);
8544
8545 /* Make sure all the phdr assignments succeeded. */
8546 for (os = (void *) lang_os_list.head;
8547 os != NULL;
8548 os = os->next)
8549 {
8550 lang_output_section_phdr_list *pl;
8551
8552 if (os->constraint < 0
8553 || os->bfd_section == NULL)
8554 continue;
8555
8556 for (pl = os->phdrs;
8557 pl != NULL;
8558 pl = pl->next)
8559 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8560 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8561 os->name, pl->name);
8562 }
8563 }
8564
8565 /* Record a list of sections which may not be cross referenced. */
8566
8567 void
8568 lang_add_nocrossref (lang_nocrossref_type *l)
8569 {
8570 struct lang_nocrossrefs *n;
8571
8572 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8573 n->next = nocrossref_list;
8574 n->list = l;
8575 n->onlyfirst = FALSE;
8576 nocrossref_list = n;
8577
8578 /* Set notice_all so that we get informed about all symbols. */
8579 link_info.notice_all = TRUE;
8580 }
8581
8582 /* Record a section that cannot be referenced from a list of sections. */
8583
8584 void
8585 lang_add_nocrossref_to (lang_nocrossref_type *l)
8586 {
8587 lang_add_nocrossref (l);
8588 nocrossref_list->onlyfirst = TRUE;
8589 }
8590 \f
8591 /* Overlay handling. We handle overlays with some static variables. */
8592
8593 /* The overlay virtual address. */
8594 static etree_type *overlay_vma;
8595 /* And subsection alignment. */
8596 static etree_type *overlay_subalign;
8597
8598 /* An expression for the maximum section size seen so far. */
8599 static etree_type *overlay_max;
8600
8601 /* A list of all the sections in this overlay. */
8602
8603 struct overlay_list {
8604 struct overlay_list *next;
8605 lang_output_section_statement_type *os;
8606 };
8607
8608 static struct overlay_list *overlay_list;
8609
8610 /* Start handling an overlay. */
8611
8612 void
8613 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8614 {
8615 /* The grammar should prevent nested overlays from occurring. */
8616 ASSERT (overlay_vma == NULL
8617 && overlay_subalign == NULL
8618 && overlay_max == NULL);
8619
8620 overlay_vma = vma_expr;
8621 overlay_subalign = subalign;
8622 }
8623
8624 /* Start a section in an overlay. We handle this by calling
8625 lang_enter_output_section_statement with the correct VMA.
8626 lang_leave_overlay sets up the LMA and memory regions. */
8627
8628 void
8629 lang_enter_overlay_section (const char *name)
8630 {
8631 struct overlay_list *n;
8632 etree_type *size;
8633
8634 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8635 0, overlay_subalign, 0, 0, 0);
8636
8637 /* If this is the first section, then base the VMA of future
8638 sections on this one. This will work correctly even if `.' is
8639 used in the addresses. */
8640 if (overlay_list == NULL)
8641 overlay_vma = exp_nameop (ADDR, name);
8642
8643 /* Remember the section. */
8644 n = (struct overlay_list *) xmalloc (sizeof *n);
8645 n->os = current_section;
8646 n->next = overlay_list;
8647 overlay_list = n;
8648
8649 size = exp_nameop (SIZEOF, name);
8650
8651 /* Arrange to work out the maximum section end address. */
8652 if (overlay_max == NULL)
8653 overlay_max = size;
8654 else
8655 overlay_max = exp_binop (MAX_K, overlay_max, size);
8656 }
8657
8658 /* Finish a section in an overlay. There isn't any special to do
8659 here. */
8660
8661 void
8662 lang_leave_overlay_section (fill_type *fill,
8663 lang_output_section_phdr_list *phdrs)
8664 {
8665 const char *name;
8666 char *clean, *s2;
8667 const char *s1;
8668 char *buf;
8669
8670 name = current_section->name;
8671
8672 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8673 region and that no load-time region has been specified. It doesn't
8674 really matter what we say here, since lang_leave_overlay will
8675 override it. */
8676 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8677
8678 /* Define the magic symbols. */
8679
8680 clean = (char *) xmalloc (strlen (name) + 1);
8681 s2 = clean;
8682 for (s1 = name; *s1 != '\0'; s1++)
8683 if (ISALNUM (*s1) || *s1 == '_')
8684 *s2++ = *s1;
8685 *s2 = '\0';
8686
8687 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8688 sprintf (buf, "__load_start_%s", clean);
8689 lang_add_assignment (exp_provide (buf,
8690 exp_nameop (LOADADDR, name),
8691 FALSE));
8692
8693 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8694 sprintf (buf, "__load_stop_%s", clean);
8695 lang_add_assignment (exp_provide (buf,
8696 exp_binop ('+',
8697 exp_nameop (LOADADDR, name),
8698 exp_nameop (SIZEOF, name)),
8699 FALSE));
8700
8701 free (clean);
8702 }
8703
8704 /* Finish an overlay. If there are any overlay wide settings, this
8705 looks through all the sections in the overlay and sets them. */
8706
8707 void
8708 lang_leave_overlay (etree_type *lma_expr,
8709 int nocrossrefs,
8710 fill_type *fill,
8711 const char *memspec,
8712 lang_output_section_phdr_list *phdrs,
8713 const char *lma_memspec)
8714 {
8715 lang_memory_region_type *region;
8716 lang_memory_region_type *lma_region;
8717 struct overlay_list *l;
8718 lang_nocrossref_type *nocrossref;
8719
8720 lang_get_regions (&region, &lma_region,
8721 memspec, lma_memspec,
8722 lma_expr != NULL, FALSE);
8723
8724 nocrossref = NULL;
8725
8726 /* After setting the size of the last section, set '.' to end of the
8727 overlay region. */
8728 if (overlay_list != NULL)
8729 {
8730 overlay_list->os->update_dot = 1;
8731 overlay_list->os->update_dot_tree
8732 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8733 }
8734
8735 l = overlay_list;
8736 while (l != NULL)
8737 {
8738 struct overlay_list *next;
8739
8740 if (fill != NULL && l->os->fill == NULL)
8741 l->os->fill = fill;
8742
8743 l->os->region = region;
8744 l->os->lma_region = lma_region;
8745
8746 /* The first section has the load address specified in the
8747 OVERLAY statement. The rest are worked out from that.
8748 The base address is not needed (and should be null) if
8749 an LMA region was specified. */
8750 if (l->next == 0)
8751 {
8752 l->os->load_base = lma_expr;
8753 l->os->sectype = first_overlay_section;
8754 }
8755 if (phdrs != NULL && l->os->phdrs == NULL)
8756 l->os->phdrs = phdrs;
8757
8758 if (nocrossrefs)
8759 {
8760 lang_nocrossref_type *nc;
8761
8762 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8763 nc->name = l->os->name;
8764 nc->next = nocrossref;
8765 nocrossref = nc;
8766 }
8767
8768 next = l->next;
8769 free (l);
8770 l = next;
8771 }
8772
8773 if (nocrossref != NULL)
8774 lang_add_nocrossref (nocrossref);
8775
8776 overlay_vma = NULL;
8777 overlay_list = NULL;
8778 overlay_max = NULL;
8779 overlay_subalign = NULL;
8780 }
8781 \f
8782 /* Version handling. This is only useful for ELF. */
8783
8784 /* If PREV is NULL, return first version pattern matching particular symbol.
8785 If PREV is non-NULL, return first version pattern matching particular
8786 symbol after PREV (previously returned by lang_vers_match). */
8787
8788 static struct bfd_elf_version_expr *
8789 lang_vers_match (struct bfd_elf_version_expr_head *head,
8790 struct bfd_elf_version_expr *prev,
8791 const char *sym)
8792 {
8793 const char *c_sym;
8794 const char *cxx_sym = sym;
8795 const char *java_sym = sym;
8796 struct bfd_elf_version_expr *expr = NULL;
8797 enum demangling_styles curr_style;
8798
8799 curr_style = CURRENT_DEMANGLING_STYLE;
8800 cplus_demangle_set_style (no_demangling);
8801 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8802 if (!c_sym)
8803 c_sym = sym;
8804 cplus_demangle_set_style (curr_style);
8805
8806 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8807 {
8808 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8809 DMGL_PARAMS | DMGL_ANSI);
8810 if (!cxx_sym)
8811 cxx_sym = sym;
8812 }
8813 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8814 {
8815 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8816 if (!java_sym)
8817 java_sym = sym;
8818 }
8819
8820 if (head->htab && (prev == NULL || prev->literal))
8821 {
8822 struct bfd_elf_version_expr e;
8823
8824 switch (prev ? prev->mask : 0)
8825 {
8826 case 0:
8827 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8828 {
8829 e.pattern = c_sym;
8830 expr = (struct bfd_elf_version_expr *)
8831 htab_find ((htab_t) head->htab, &e);
8832 while (expr && strcmp (expr->pattern, c_sym) == 0)
8833 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8834 goto out_ret;
8835 else
8836 expr = expr->next;
8837 }
8838 /* Fallthrough */
8839 case BFD_ELF_VERSION_C_TYPE:
8840 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8841 {
8842 e.pattern = cxx_sym;
8843 expr = (struct bfd_elf_version_expr *)
8844 htab_find ((htab_t) head->htab, &e);
8845 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8846 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8847 goto out_ret;
8848 else
8849 expr = expr->next;
8850 }
8851 /* Fallthrough */
8852 case BFD_ELF_VERSION_CXX_TYPE:
8853 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8854 {
8855 e.pattern = java_sym;
8856 expr = (struct bfd_elf_version_expr *)
8857 htab_find ((htab_t) head->htab, &e);
8858 while (expr && strcmp (expr->pattern, java_sym) == 0)
8859 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8860 goto out_ret;
8861 else
8862 expr = expr->next;
8863 }
8864 /* Fallthrough */
8865 default:
8866 break;
8867 }
8868 }
8869
8870 /* Finally, try the wildcards. */
8871 if (prev == NULL || prev->literal)
8872 expr = head->remaining;
8873 else
8874 expr = prev->next;
8875 for (; expr; expr = expr->next)
8876 {
8877 const char *s;
8878
8879 if (!expr->pattern)
8880 continue;
8881
8882 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8883 break;
8884
8885 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8886 s = java_sym;
8887 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8888 s = cxx_sym;
8889 else
8890 s = c_sym;
8891 if (fnmatch (expr->pattern, s, 0) == 0)
8892 break;
8893 }
8894
8895 out_ret:
8896 if (c_sym != sym)
8897 free ((char *) c_sym);
8898 if (cxx_sym != sym)
8899 free ((char *) cxx_sym);
8900 if (java_sym != sym)
8901 free ((char *) java_sym);
8902 return expr;
8903 }
8904
8905 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8906 return a pointer to the symbol name with any backslash quotes removed. */
8907
8908 static const char *
8909 realsymbol (const char *pattern)
8910 {
8911 const char *p;
8912 bfd_boolean changed = FALSE, backslash = FALSE;
8913 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8914
8915 for (p = pattern, s = symbol; *p != '\0'; ++p)
8916 {
8917 /* It is a glob pattern only if there is no preceding
8918 backslash. */
8919 if (backslash)
8920 {
8921 /* Remove the preceding backslash. */
8922 *(s - 1) = *p;
8923 backslash = FALSE;
8924 changed = TRUE;
8925 }
8926 else
8927 {
8928 if (*p == '?' || *p == '*' || *p == '[')
8929 {
8930 free (symbol);
8931 return NULL;
8932 }
8933
8934 *s++ = *p;
8935 backslash = *p == '\\';
8936 }
8937 }
8938
8939 if (changed)
8940 {
8941 *s = '\0';
8942 return symbol;
8943 }
8944 else
8945 {
8946 free (symbol);
8947 return pattern;
8948 }
8949 }
8950
8951 /* This is called for each variable name or match expression. NEW_NAME is
8952 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8953 pattern to be matched against symbol names. */
8954
8955 struct bfd_elf_version_expr *
8956 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8957 const char *new_name,
8958 const char *lang,
8959 bfd_boolean literal_p)
8960 {
8961 struct bfd_elf_version_expr *ret;
8962
8963 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8964 ret->next = orig;
8965 ret->symver = 0;
8966 ret->script = 0;
8967 ret->literal = TRUE;
8968 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8969 if (ret->pattern == NULL)
8970 {
8971 ret->pattern = new_name;
8972 ret->literal = FALSE;
8973 }
8974
8975 if (lang == NULL || strcasecmp (lang, "C") == 0)
8976 ret->mask = BFD_ELF_VERSION_C_TYPE;
8977 else if (strcasecmp (lang, "C++") == 0)
8978 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8979 else if (strcasecmp (lang, "Java") == 0)
8980 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8981 else
8982 {
8983 einfo (_("%X%P: unknown language `%s' in version information\n"),
8984 lang);
8985 ret->mask = BFD_ELF_VERSION_C_TYPE;
8986 }
8987
8988 return ldemul_new_vers_pattern (ret);
8989 }
8990
8991 /* This is called for each set of variable names and match
8992 expressions. */
8993
8994 struct bfd_elf_version_tree *
8995 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8996 struct bfd_elf_version_expr *locals)
8997 {
8998 struct bfd_elf_version_tree *ret;
8999
9000 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9001 ret->globals.list = globals;
9002 ret->locals.list = locals;
9003 ret->match = lang_vers_match;
9004 ret->name_indx = (unsigned int) -1;
9005 return ret;
9006 }
9007
9008 /* This static variable keeps track of version indices. */
9009
9010 static int version_index;
9011
9012 static hashval_t
9013 version_expr_head_hash (const void *p)
9014 {
9015 const struct bfd_elf_version_expr *e =
9016 (const struct bfd_elf_version_expr *) p;
9017
9018 return htab_hash_string (e->pattern);
9019 }
9020
9021 static int
9022 version_expr_head_eq (const void *p1, const void *p2)
9023 {
9024 const struct bfd_elf_version_expr *e1 =
9025 (const struct bfd_elf_version_expr *) p1;
9026 const struct bfd_elf_version_expr *e2 =
9027 (const struct bfd_elf_version_expr *) p2;
9028
9029 return strcmp (e1->pattern, e2->pattern) == 0;
9030 }
9031
9032 static void
9033 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9034 {
9035 size_t count = 0;
9036 struct bfd_elf_version_expr *e, *next;
9037 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9038
9039 for (e = head->list; e; e = e->next)
9040 {
9041 if (e->literal)
9042 count++;
9043 head->mask |= e->mask;
9044 }
9045
9046 if (count)
9047 {
9048 head->htab = htab_create (count * 2, version_expr_head_hash,
9049 version_expr_head_eq, NULL);
9050 list_loc = &head->list;
9051 remaining_loc = &head->remaining;
9052 for (e = head->list; e; e = next)
9053 {
9054 next = e->next;
9055 if (!e->literal)
9056 {
9057 *remaining_loc = e;
9058 remaining_loc = &e->next;
9059 }
9060 else
9061 {
9062 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9063
9064 if (*loc)
9065 {
9066 struct bfd_elf_version_expr *e1, *last;
9067
9068 e1 = (struct bfd_elf_version_expr *) *loc;
9069 last = NULL;
9070 do
9071 {
9072 if (e1->mask == e->mask)
9073 {
9074 last = NULL;
9075 break;
9076 }
9077 last = e1;
9078 e1 = e1->next;
9079 }
9080 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9081
9082 if (last == NULL)
9083 {
9084 /* This is a duplicate. */
9085 /* FIXME: Memory leak. Sometimes pattern is not
9086 xmalloced alone, but in larger chunk of memory. */
9087 /* free (e->pattern); */
9088 free (e);
9089 }
9090 else
9091 {
9092 e->next = last->next;
9093 last->next = e;
9094 }
9095 }
9096 else
9097 {
9098 *loc = e;
9099 *list_loc = e;
9100 list_loc = &e->next;
9101 }
9102 }
9103 }
9104 *remaining_loc = NULL;
9105 *list_loc = head->remaining;
9106 }
9107 else
9108 head->remaining = head->list;
9109 }
9110
9111 /* This is called when we know the name and dependencies of the
9112 version. */
9113
9114 void
9115 lang_register_vers_node (const char *name,
9116 struct bfd_elf_version_tree *version,
9117 struct bfd_elf_version_deps *deps)
9118 {
9119 struct bfd_elf_version_tree *t, **pp;
9120 struct bfd_elf_version_expr *e1;
9121
9122 if (name == NULL)
9123 name = "";
9124
9125 if (link_info.version_info != NULL
9126 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9127 {
9128 einfo (_("%X%P: anonymous version tag cannot be combined"
9129 " with other version tags\n"));
9130 free (version);
9131 return;
9132 }
9133
9134 /* Make sure this node has a unique name. */
9135 for (t = link_info.version_info; t != NULL; t = t->next)
9136 if (strcmp (t->name, name) == 0)
9137 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9138
9139 lang_finalize_version_expr_head (&version->globals);
9140 lang_finalize_version_expr_head (&version->locals);
9141
9142 /* Check the global and local match names, and make sure there
9143 aren't any duplicates. */
9144
9145 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9146 {
9147 for (t = link_info.version_info; t != NULL; t = t->next)
9148 {
9149 struct bfd_elf_version_expr *e2;
9150
9151 if (t->locals.htab && e1->literal)
9152 {
9153 e2 = (struct bfd_elf_version_expr *)
9154 htab_find ((htab_t) t->locals.htab, e1);
9155 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9156 {
9157 if (e1->mask == e2->mask)
9158 einfo (_("%X%P: duplicate expression `%s'"
9159 " in version information\n"), e1->pattern);
9160 e2 = e2->next;
9161 }
9162 }
9163 else if (!e1->literal)
9164 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9165 if (strcmp (e1->pattern, e2->pattern) == 0
9166 && e1->mask == e2->mask)
9167 einfo (_("%X%P: duplicate expression `%s'"
9168 " in version information\n"), e1->pattern);
9169 }
9170 }
9171
9172 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9173 {
9174 for (t = link_info.version_info; t != NULL; t = t->next)
9175 {
9176 struct bfd_elf_version_expr *e2;
9177
9178 if (t->globals.htab && e1->literal)
9179 {
9180 e2 = (struct bfd_elf_version_expr *)
9181 htab_find ((htab_t) t->globals.htab, e1);
9182 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9183 {
9184 if (e1->mask == e2->mask)
9185 einfo (_("%X%P: duplicate expression `%s'"
9186 " in version information\n"),
9187 e1->pattern);
9188 e2 = e2->next;
9189 }
9190 }
9191 else if (!e1->literal)
9192 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9193 if (strcmp (e1->pattern, e2->pattern) == 0
9194 && e1->mask == e2->mask)
9195 einfo (_("%X%P: duplicate expression `%s'"
9196 " in version information\n"), e1->pattern);
9197 }
9198 }
9199
9200 version->deps = deps;
9201 version->name = name;
9202 if (name[0] != '\0')
9203 {
9204 ++version_index;
9205 version->vernum = version_index;
9206 }
9207 else
9208 version->vernum = 0;
9209
9210 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9211 ;
9212 *pp = version;
9213 }
9214
9215 /* This is called when we see a version dependency. */
9216
9217 struct bfd_elf_version_deps *
9218 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9219 {
9220 struct bfd_elf_version_deps *ret;
9221 struct bfd_elf_version_tree *t;
9222
9223 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9224 ret->next = list;
9225
9226 for (t = link_info.version_info; t != NULL; t = t->next)
9227 {
9228 if (strcmp (t->name, name) == 0)
9229 {
9230 ret->version_needed = t;
9231 return ret;
9232 }
9233 }
9234
9235 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9236
9237 ret->version_needed = NULL;
9238 return ret;
9239 }
9240
9241 static void
9242 lang_do_version_exports_section (void)
9243 {
9244 struct bfd_elf_version_expr *greg = NULL, *lreg;
9245
9246 LANG_FOR_EACH_INPUT_STATEMENT (is)
9247 {
9248 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9249 char *contents, *p;
9250 bfd_size_type len;
9251
9252 if (sec == NULL)
9253 continue;
9254
9255 len = sec->size;
9256 contents = (char *) xmalloc (len);
9257 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9258 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9259
9260 p = contents;
9261 while (p < contents + len)
9262 {
9263 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9264 p = strchr (p, '\0') + 1;
9265 }
9266
9267 /* Do not free the contents, as we used them creating the regex. */
9268
9269 /* Do not include this section in the link. */
9270 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9271 }
9272
9273 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9274 lang_register_vers_node (command_line.version_exports_section,
9275 lang_new_vers_node (greg, lreg), NULL);
9276 }
9277
9278 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
9279
9280 static void
9281 lang_do_memory_regions (void)
9282 {
9283 lang_memory_region_type *r = lang_memory_region_list;
9284
9285 for (; r != NULL; r = r->next)
9286 {
9287 if (r->origin_exp)
9288 {
9289 exp_fold_tree_no_dot (r->origin_exp);
9290 if (expld.result.valid_p)
9291 {
9292 r->origin = expld.result.value;
9293 r->current = r->origin;
9294 }
9295 else
9296 einfo (_("%F%P: invalid origin for memory region %s\n"),
9297 r->name_list.name);
9298 }
9299 if (r->length_exp)
9300 {
9301 exp_fold_tree_no_dot (r->length_exp);
9302 if (expld.result.valid_p)
9303 r->length = expld.result.value;
9304 else
9305 einfo (_("%F%P: invalid length for memory region %s\n"),
9306 r->name_list.name);
9307 }
9308 }
9309 }
9310
9311 void
9312 lang_add_unique (const char *name)
9313 {
9314 struct unique_sections *ent;
9315
9316 for (ent = unique_section_list; ent; ent = ent->next)
9317 if (strcmp (ent->name, name) == 0)
9318 return;
9319
9320 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9321 ent->name = xstrdup (name);
9322 ent->next = unique_section_list;
9323 unique_section_list = ent;
9324 }
9325
9326 /* Append the list of dynamic symbols to the existing one. */
9327
9328 void
9329 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9330 struct bfd_elf_version_expr *dynamic)
9331 {
9332 if (*list_p)
9333 {
9334 struct bfd_elf_version_expr *tail;
9335 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9336 ;
9337 tail->next = (*list_p)->head.list;
9338 (*list_p)->head.list = dynamic;
9339 }
9340 else
9341 {
9342 struct bfd_elf_dynamic_list *d;
9343
9344 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9345 d->head.list = dynamic;
9346 d->match = lang_vers_match;
9347 *list_p = d;
9348 }
9349 }
9350
9351 /* Append the list of C++ typeinfo dynamic symbols to the existing
9352 one. */
9353
9354 void
9355 lang_append_dynamic_list_cpp_typeinfo (void)
9356 {
9357 const char *symbols[] =
9358 {
9359 "typeinfo name for*",
9360 "typeinfo for*"
9361 };
9362 struct bfd_elf_version_expr *dynamic = NULL;
9363 unsigned int i;
9364
9365 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9366 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9367 FALSE);
9368
9369 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9370 }
9371
9372 /* Append the list of C++ operator new and delete dynamic symbols to the
9373 existing one. */
9374
9375 void
9376 lang_append_dynamic_list_cpp_new (void)
9377 {
9378 const char *symbols[] =
9379 {
9380 "operator new*",
9381 "operator delete*"
9382 };
9383 struct bfd_elf_version_expr *dynamic = NULL;
9384 unsigned int i;
9385
9386 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9387 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9388 FALSE);
9389
9390 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9391 }
9392
9393 /* Scan a space and/or comma separated string of features. */
9394
9395 void
9396 lang_ld_feature (char *str)
9397 {
9398 char *p, *q;
9399
9400 p = str;
9401 while (*p)
9402 {
9403 char sep;
9404 while (*p == ',' || ISSPACE (*p))
9405 ++p;
9406 if (!*p)
9407 break;
9408 q = p + 1;
9409 while (*q && *q != ',' && !ISSPACE (*q))
9410 ++q;
9411 sep = *q;
9412 *q = 0;
9413 if (strcasecmp (p, "SANE_EXPR") == 0)
9414 config.sane_expr = TRUE;
9415 else
9416 einfo (_("%X%P: unknown feature `%s'\n"), p);
9417 *q = sep;
9418 p = q;
9419 }
9420 }
9421
9422 /* Pretty print memory amount. */
9423
9424 static void
9425 lang_print_memory_size (bfd_vma sz)
9426 {
9427 if ((sz & 0x3fffffff) == 0)
9428 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9429 else if ((sz & 0xfffff) == 0)
9430 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9431 else if ((sz & 0x3ff) == 0)
9432 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9433 else
9434 printf (" %10" BFD_VMA_FMT "u B", sz);
9435 }
9436
9437 /* Implement --print-memory-usage: disply per region memory usage. */
9438
9439 void
9440 lang_print_memory_usage (void)
9441 {
9442 lang_memory_region_type *r;
9443
9444 printf ("Memory region Used Size Region Size %%age Used\n");
9445 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9446 {
9447 bfd_vma used_length = r->current - r->origin;
9448
9449 printf ("%16s: ",r->name_list.name);
9450 lang_print_memory_size (used_length);
9451 lang_print_memory_size ((bfd_vma) r->length);
9452
9453 if (r->length != 0)
9454 {
9455 double percent = used_length * 100.0 / r->length;
9456 printf (" %6.2f%%", percent);
9457 }
9458 printf ("\n");
9459 }
9460 }
This page took 0.318837 seconds and 4 git commands to generate.