bfd, ld, libctf: skip zero-refcount strings in CTF string reporting
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2021 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bfd_boolean);
89 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (bfd_boolean);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 /* Header for list of statements corresponding to any files involved in the
100 link, either specified from the command-line or added implicitely (eg.
101 archive member used to resolved undefined symbol, wildcard statement from
102 linker script, etc.). Next pointer is in next field of a
103 lang_statement_header_type (reached via header field in a
104 lang_statement_union). */
105 lang_statement_list_type statement_list;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_dict_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 lang_input_statement_type *file,
570 void *output)
571 {
572 lang_section_bst_type *node;
573 lang_section_bst_type **tree;
574 lang_output_section_statement_type *os;
575
576 os = (lang_output_section_statement_type *) output;
577
578 if (unique_section_p (section, os))
579 return;
580
581 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
582 node->left = 0;
583 node->right = 0;
584 node->section = section;
585 node->pattern = ptr->section_list;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, tree->pattern, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE is 0 return NULL when
1468 no match exists. If CREATE is 1, create an output_section_statement
1469 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1470 always make a new output_section_statement. */
1471
1472 lang_output_section_statement_type *
1473 lang_output_section_statement_lookup (const char *name,
1474 int constraint,
1475 int create)
1476 {
1477 struct out_section_hash_entry *entry;
1478
1479 entry = ((struct out_section_hash_entry *)
1480 bfd_hash_lookup (&output_section_statement_table, name,
1481 create != 0, FALSE));
1482 if (entry == NULL)
1483 {
1484 if (create)
1485 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1486 return NULL;
1487 }
1488
1489 if (entry->s.output_section_statement.name != NULL)
1490 {
1491 /* We have a section of this name, but it might not have the correct
1492 constraint. */
1493 struct out_section_hash_entry *last_ent;
1494
1495 name = entry->s.output_section_statement.name;
1496 do
1497 {
1498 if (create != 2
1499 && !(create && constraint == SPECIAL)
1500 && (constraint == entry->s.output_section_statement.constraint
1501 || (constraint == 0
1502 && entry->s.output_section_statement.constraint >= 0)))
1503 return &entry->s.output_section_statement;
1504 last_ent = entry;
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 }
1507 while (entry != NULL
1508 && name == entry->s.output_section_statement.name);
1509
1510 if (!create)
1511 return NULL;
1512
1513 entry
1514 = ((struct out_section_hash_entry *)
1515 output_section_statement_newfunc (NULL,
1516 &output_section_statement_table,
1517 name));
1518 if (entry == NULL)
1519 {
1520 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1521 return NULL;
1522 }
1523 entry->root = last_ent->root;
1524 last_ent->root.next = &entry->root;
1525 }
1526
1527 entry->s.output_section_statement.name = name;
1528 entry->s.output_section_statement.constraint = constraint;
1529 entry->s.output_section_statement.dup_output = (create == 2
1530 || constraint == SPECIAL);
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (!s->dup_output)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct wildcard_list *pattern,
2542 struct flag_info *sflag_info,
2543 lang_output_section_statement_type *output)
2544 {
2545 flagword flags = section->flags;
2546
2547 bfd_boolean discard;
2548 lang_input_section_type *new_section;
2549 bfd *abfd = link_info.output_bfd;
2550
2551 /* Is this section one we know should be discarded? */
2552 discard = lang_discard_section_p (section);
2553
2554 /* Discard input sections which are assigned to a section named
2555 DISCARD_SECTION_NAME. */
2556 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2557 discard = TRUE;
2558
2559 if (discard)
2560 {
2561 if (section->output_section == NULL)
2562 {
2563 /* This prevents future calls from assigning this section. */
2564 section->output_section = bfd_abs_section_ptr;
2565 }
2566 else if (link_info.non_contiguous_regions_warnings)
2567 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2568 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2569 NULL, section, section->owner);
2570
2571 return;
2572 }
2573
2574 if (sflag_info)
2575 {
2576 bfd_boolean keep;
2577
2578 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2579 if (!keep)
2580 return;
2581 }
2582
2583 if (section->output_section != NULL)
2584 {
2585 if (!link_info.non_contiguous_regions)
2586 return;
2587
2588 /* SECTION has already been handled in a special way
2589 (eg. LINK_ONCE): skip it. */
2590 if (bfd_is_abs_section (section->output_section))
2591 return;
2592
2593 /* Already assigned to the same output section, do not process
2594 it again, to avoid creating loops between duplicate sections
2595 later. */
2596 if (section->output_section == output->bfd_section)
2597 return;
2598
2599 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2600 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2601 "change behaviour for section `%pA' from '%pB' (assigned to "
2602 "%pA, but additional match: %pA)\n"),
2603 NULL, section, section->owner, section->output_section,
2604 output->bfd_section);
2605
2606 /* SECTION has already been assigned to an output section, but
2607 the user allows it to be mapped to another one in case it
2608 overflows. We'll later update the actual output section in
2609 size_input_section as appropriate. */
2610 }
2611
2612 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2613 to an output section, because we want to be able to include a
2614 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2615 section (I don't know why we want to do this, but we do).
2616 build_link_order in ldwrite.c handles this case by turning
2617 the embedded SEC_NEVER_LOAD section into a fill. */
2618 flags &= ~ SEC_NEVER_LOAD;
2619
2620 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2621 already been processed. One reason to do this is that on pe
2622 format targets, .text$foo sections go into .text and it's odd
2623 to see .text with SEC_LINK_ONCE set. */
2624 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2625 {
2626 if (link_info.resolve_section_groups)
2627 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2628 else
2629 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2630 }
2631 else if (!bfd_link_relocatable (&link_info))
2632 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2633
2634 switch (output->sectype)
2635 {
2636 case normal_section:
2637 case overlay_section:
2638 case first_overlay_section:
2639 break;
2640 case noalloc_section:
2641 flags &= ~SEC_ALLOC;
2642 break;
2643 case noload_section:
2644 flags &= ~SEC_LOAD;
2645 flags |= SEC_NEVER_LOAD;
2646 /* Unfortunately GNU ld has managed to evolve two different
2647 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2648 alloc, no contents section. All others get a noload, noalloc
2649 section. */
2650 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2651 flags &= ~SEC_HAS_CONTENTS;
2652 else
2653 flags &= ~SEC_ALLOC;
2654 break;
2655 }
2656
2657 if (output->bfd_section == NULL)
2658 init_os (output, flags);
2659
2660 /* If SEC_READONLY is not set in the input section, then clear
2661 it from the output section. */
2662 output->bfd_section->flags &= flags | ~SEC_READONLY;
2663
2664 if (output->bfd_section->linker_has_input)
2665 {
2666 /* Only set SEC_READONLY flag on the first input section. */
2667 flags &= ~ SEC_READONLY;
2668
2669 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2670 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2671 != (flags & (SEC_MERGE | SEC_STRINGS))
2672 || ((flags & SEC_MERGE) != 0
2673 && output->bfd_section->entsize != section->entsize))
2674 {
2675 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2677 }
2678 }
2679 output->bfd_section->flags |= flags;
2680
2681 if (!output->bfd_section->linker_has_input)
2682 {
2683 output->bfd_section->linker_has_input = 1;
2684 /* This must happen after flags have been updated. The output
2685 section may have been created before we saw its first input
2686 section, eg. for a data statement. */
2687 bfd_init_private_section_data (section->owner, section,
2688 link_info.output_bfd,
2689 output->bfd_section,
2690 &link_info);
2691 if ((flags & SEC_MERGE) != 0)
2692 output->bfd_section->entsize = section->entsize;
2693 }
2694
2695 if ((flags & SEC_TIC54X_BLOCK) != 0
2696 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2697 {
2698 /* FIXME: This value should really be obtained from the bfd... */
2699 output->block_value = 128;
2700 }
2701
2702 if (section->alignment_power > output->bfd_section->alignment_power)
2703 output->bfd_section->alignment_power = section->alignment_power;
2704
2705 section->output_section = output->bfd_section;
2706
2707 if (!map_head_is_link_order)
2708 {
2709 asection *s = output->bfd_section->map_tail.s;
2710 output->bfd_section->map_tail.s = section;
2711 section->map_head.s = NULL;
2712 section->map_tail.s = s;
2713 if (s != NULL)
2714 s->map_head.s = section;
2715 else
2716 output->bfd_section->map_head.s = section;
2717 }
2718
2719 /* Add a section reference to the list. */
2720 new_section = new_stat (lang_input_section, ptr);
2721 new_section->section = section;
2722 new_section->pattern = pattern;
2723 }
2724
2725 /* Handle wildcard sorting. This returns the lang_input_section which
2726 should follow the one we are going to create for SECTION and FILE,
2727 based on the sorting requirements of WILD. It returns NULL if the
2728 new section should just go at the end of the current list. */
2729
2730 static lang_statement_union_type *
2731 wild_sort (lang_wild_statement_type *wild,
2732 struct wildcard_list *sec,
2733 lang_input_statement_type *file,
2734 asection *section)
2735 {
2736 lang_statement_union_type *l;
2737
2738 if (!wild->filenames_sorted
2739 && (sec == NULL || sec->spec.sorted == none))
2740 return NULL;
2741
2742 for (l = wild->children.head; l != NULL; l = l->header.next)
2743 {
2744 lang_input_section_type *ls;
2745
2746 if (l->header.type != lang_input_section_enum)
2747 continue;
2748 ls = &l->input_section;
2749
2750 /* Sorting by filename takes precedence over sorting by section
2751 name. */
2752
2753 if (wild->filenames_sorted)
2754 {
2755 const char *fn, *ln;
2756 bfd_boolean fa, la;
2757 int i;
2758
2759 /* The PE support for the .idata section as generated by
2760 dlltool assumes that files will be sorted by the name of
2761 the archive and then the name of the file within the
2762 archive. */
2763
2764 if (file->the_bfd != NULL
2765 && file->the_bfd->my_archive != NULL)
2766 {
2767 fn = bfd_get_filename (file->the_bfd->my_archive);
2768 fa = TRUE;
2769 }
2770 else
2771 {
2772 fn = file->filename;
2773 fa = FALSE;
2774 }
2775
2776 if (ls->section->owner->my_archive != NULL)
2777 {
2778 ln = bfd_get_filename (ls->section->owner->my_archive);
2779 la = TRUE;
2780 }
2781 else
2782 {
2783 ln = bfd_get_filename (ls->section->owner);
2784 la = FALSE;
2785 }
2786
2787 i = filename_cmp (fn, ln);
2788 if (i > 0)
2789 continue;
2790 else if (i < 0)
2791 break;
2792
2793 if (fa || la)
2794 {
2795 if (fa)
2796 fn = file->filename;
2797 if (la)
2798 ln = bfd_get_filename (ls->section->owner);
2799
2800 i = filename_cmp (fn, ln);
2801 if (i > 0)
2802 continue;
2803 else if (i < 0)
2804 break;
2805 }
2806 }
2807
2808 /* Here either the files are not sorted by name, or we are
2809 looking at the sections for this file. */
2810
2811 if (sec != NULL
2812 && sec->spec.sorted != none
2813 && sec->spec.sorted != by_none)
2814 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2815 break;
2816 }
2817
2818 return l;
2819 }
2820
2821 /* Expand a wild statement for a particular FILE. SECTION may be
2822 NULL, in which case it is a wild card. */
2823
2824 static void
2825 output_section_callback (lang_wild_statement_type *ptr,
2826 struct wildcard_list *sec,
2827 asection *section,
2828 lang_input_statement_type *file,
2829 void *output)
2830 {
2831 lang_statement_union_type *before;
2832 lang_output_section_statement_type *os;
2833
2834 os = (lang_output_section_statement_type *) output;
2835
2836 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2837 if (unique_section_p (section, os))
2838 return;
2839
2840 before = wild_sort (ptr, sec, file, section);
2841
2842 /* Here BEFORE points to the lang_input_section which
2843 should follow the one we are about to add. If BEFORE
2844 is NULL, then the section should just go at the end
2845 of the current list. */
2846
2847 if (before == NULL)
2848 lang_add_section (&ptr->children, section, ptr->section_list,
2849 ptr->section_flag_list, os);
2850 else
2851 {
2852 lang_statement_list_type list;
2853 lang_statement_union_type **pp;
2854
2855 lang_list_init (&list);
2856 lang_add_section (&list, section, ptr->section_list,
2857 ptr->section_flag_list, os);
2858
2859 /* If we are discarding the section, LIST.HEAD will
2860 be NULL. */
2861 if (list.head != NULL)
2862 {
2863 ASSERT (list.head->header.next == NULL);
2864
2865 for (pp = &ptr->children.head;
2866 *pp != before;
2867 pp = &(*pp)->header.next)
2868 ASSERT (*pp != NULL);
2869
2870 list.head->header.next = *pp;
2871 *pp = list.head;
2872 }
2873 }
2874 }
2875
2876 /* Check if all sections in a wild statement for a particular FILE
2877 are readonly. */
2878
2879 static void
2880 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2881 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2882 asection *section,
2883 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2884 void *output)
2885 {
2886 lang_output_section_statement_type *os;
2887
2888 os = (lang_output_section_statement_type *) output;
2889
2890 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2891 if (unique_section_p (section, os))
2892 return;
2893
2894 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2895 os->all_input_readonly = FALSE;
2896 }
2897
2898 /* This is passed a file name which must have been seen already and
2899 added to the statement tree. We will see if it has been opened
2900 already and had its symbols read. If not then we'll read it. */
2901
2902 static lang_input_statement_type *
2903 lookup_name (const char *name)
2904 {
2905 lang_input_statement_type *search;
2906
2907 for (search = (void *) input_file_chain.head;
2908 search != NULL;
2909 search = search->next_real_file)
2910 {
2911 /* Use the local_sym_name as the name of the file that has
2912 already been loaded as filename might have been transformed
2913 via the search directory lookup mechanism. */
2914 const char *filename = search->local_sym_name;
2915
2916 if (filename != NULL
2917 && filename_cmp (filename, name) == 0)
2918 break;
2919 }
2920
2921 if (search == NULL)
2922 {
2923 /* Arrange to splice the input statement added by new_afile into
2924 statement_list after the current input_file_chain tail.
2925 We know input_file_chain is not an empty list, and that
2926 lookup_name was called via open_input_bfds. Later calls to
2927 lookup_name should always match an existing input_statement. */
2928 lang_statement_union_type **tail = stat_ptr->tail;
2929 lang_statement_union_type **after
2930 = (void *) ((char *) input_file_chain.tail
2931 - offsetof (lang_input_statement_type, next_real_file)
2932 + offsetof (lang_input_statement_type, header.next));
2933 lang_statement_union_type *rest = *after;
2934 stat_ptr->tail = after;
2935 search = new_afile (name, lang_input_file_is_search_file_enum,
2936 default_target, NULL);
2937 *stat_ptr->tail = rest;
2938 if (*tail == NULL)
2939 stat_ptr->tail = tail;
2940 }
2941
2942 /* If we have already added this file, or this file is not real
2943 don't add this file. */
2944 if (search->flags.loaded || !search->flags.real)
2945 return search;
2946
2947 if (!load_symbols (search, NULL))
2948 return NULL;
2949
2950 return search;
2951 }
2952
2953 /* Save LIST as a list of libraries whose symbols should not be exported. */
2954
2955 struct excluded_lib
2956 {
2957 char *name;
2958 struct excluded_lib *next;
2959 };
2960 static struct excluded_lib *excluded_libs;
2961
2962 void
2963 add_excluded_libs (const char *list)
2964 {
2965 const char *p = list, *end;
2966
2967 while (*p != '\0')
2968 {
2969 struct excluded_lib *entry;
2970 end = strpbrk (p, ",:");
2971 if (end == NULL)
2972 end = p + strlen (p);
2973 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2974 entry->next = excluded_libs;
2975 entry->name = (char *) xmalloc (end - p + 1);
2976 memcpy (entry->name, p, end - p);
2977 entry->name[end - p] = '\0';
2978 excluded_libs = entry;
2979 if (*end == '\0')
2980 break;
2981 p = end + 1;
2982 }
2983 }
2984
2985 static void
2986 check_excluded_libs (bfd *abfd)
2987 {
2988 struct excluded_lib *lib = excluded_libs;
2989
2990 while (lib)
2991 {
2992 int len = strlen (lib->name);
2993 const char *filename = lbasename (bfd_get_filename (abfd));
2994
2995 if (strcmp (lib->name, "ALL") == 0)
2996 {
2997 abfd->no_export = TRUE;
2998 return;
2999 }
3000
3001 if (filename_ncmp (lib->name, filename, len) == 0
3002 && (filename[len] == '\0'
3003 || (filename[len] == '.' && filename[len + 1] == 'a'
3004 && filename[len + 2] == '\0')))
3005 {
3006 abfd->no_export = TRUE;
3007 return;
3008 }
3009
3010 lib = lib->next;
3011 }
3012 }
3013
3014 /* Get the symbols for an input file. */
3015
3016 bfd_boolean
3017 load_symbols (lang_input_statement_type *entry,
3018 lang_statement_list_type *place)
3019 {
3020 char **matching;
3021
3022 if (entry->flags.loaded)
3023 return TRUE;
3024
3025 ldfile_open_file (entry);
3026
3027 /* Do not process further if the file was missing. */
3028 if (entry->flags.missing_file)
3029 return TRUE;
3030
3031 if (trace_files || verbose)
3032 info_msg ("%pI\n", entry);
3033
3034 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3035 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3036 {
3037 bfd_error_type err;
3038 struct lang_input_statement_flags save_flags;
3039 extern FILE *yyin;
3040
3041 err = bfd_get_error ();
3042
3043 /* See if the emulation has some special knowledge. */
3044 if (ldemul_unrecognized_file (entry))
3045 return TRUE;
3046
3047 if (err == bfd_error_file_ambiguously_recognized)
3048 {
3049 char **p;
3050
3051 einfo (_("%P: %pB: file not recognized: %E;"
3052 " matching formats:"), entry->the_bfd);
3053 for (p = matching; *p != NULL; p++)
3054 einfo (" %s", *p);
3055 einfo ("%F\n");
3056 }
3057 else if (err != bfd_error_file_not_recognized
3058 || place == NULL)
3059 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3060
3061 bfd_close (entry->the_bfd);
3062 entry->the_bfd = NULL;
3063
3064 /* Try to interpret the file as a linker script. */
3065 save_flags = input_flags;
3066 ldfile_open_command_file (entry->filename);
3067
3068 push_stat_ptr (place);
3069 input_flags.add_DT_NEEDED_for_regular
3070 = entry->flags.add_DT_NEEDED_for_regular;
3071 input_flags.add_DT_NEEDED_for_dynamic
3072 = entry->flags.add_DT_NEEDED_for_dynamic;
3073 input_flags.whole_archive = entry->flags.whole_archive;
3074 input_flags.dynamic = entry->flags.dynamic;
3075
3076 ldfile_assumed_script = TRUE;
3077 parser_input = input_script;
3078 current_input_file = entry->filename;
3079 yyparse ();
3080 current_input_file = NULL;
3081 ldfile_assumed_script = FALSE;
3082
3083 /* missing_file is sticky. sysrooted will already have been
3084 restored when seeing EOF in yyparse, but no harm to restore
3085 again. */
3086 save_flags.missing_file |= input_flags.missing_file;
3087 input_flags = save_flags;
3088 pop_stat_ptr ();
3089 fclose (yyin);
3090 yyin = NULL;
3091 entry->flags.loaded = TRUE;
3092
3093 return TRUE;
3094 }
3095
3096 if (ldemul_recognized_file (entry))
3097 return TRUE;
3098
3099 /* We don't call ldlang_add_file for an archive. Instead, the
3100 add_symbols entry point will call ldlang_add_file, via the
3101 add_archive_element callback, for each element of the archive
3102 which is used. */
3103 switch (bfd_get_format (entry->the_bfd))
3104 {
3105 default:
3106 break;
3107
3108 case bfd_object:
3109 if (!entry->flags.reload)
3110 ldlang_add_file (entry);
3111 break;
3112
3113 case bfd_archive:
3114 check_excluded_libs (entry->the_bfd);
3115
3116 bfd_set_usrdata (entry->the_bfd, entry);
3117 if (entry->flags.whole_archive)
3118 {
3119 bfd *member = NULL;
3120 bfd_boolean loaded = TRUE;
3121
3122 for (;;)
3123 {
3124 bfd *subsbfd;
3125 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3126
3127 if (member == NULL)
3128 break;
3129
3130 if (!bfd_check_format (member, bfd_object))
3131 {
3132 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3133 entry->the_bfd, member);
3134 loaded = FALSE;
3135 }
3136
3137 subsbfd = member;
3138 if (!(*link_info.callbacks
3139 ->add_archive_element) (&link_info, member,
3140 "--whole-archive", &subsbfd))
3141 abort ();
3142
3143 /* Potentially, the add_archive_element hook may have set a
3144 substitute BFD for us. */
3145 if (!bfd_link_add_symbols (subsbfd, &link_info))
3146 {
3147 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3148 loaded = FALSE;
3149 }
3150 }
3151
3152 entry->flags.loaded = loaded;
3153 return loaded;
3154 }
3155 break;
3156 }
3157
3158 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3159 entry->flags.loaded = TRUE;
3160 else
3161 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3162
3163 return entry->flags.loaded;
3164 }
3165
3166 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3167 may be NULL, indicating that it is a wildcard. Separate
3168 lang_input_section statements are created for each part of the
3169 expansion; they are added after the wild statement S. OUTPUT is
3170 the output section. */
3171
3172 static void
3173 wild (lang_wild_statement_type *s,
3174 const char *target ATTRIBUTE_UNUSED,
3175 lang_output_section_statement_type *output)
3176 {
3177 struct wildcard_list *sec;
3178
3179 if (s->handler_data[0]
3180 && s->handler_data[0]->spec.sorted == by_name
3181 && !s->filenames_sorted)
3182 {
3183 lang_section_bst_type *tree;
3184
3185 walk_wild (s, output_section_callback_fast, output);
3186
3187 tree = s->tree;
3188 if (tree)
3189 {
3190 output_section_callback_tree_to_list (s, tree, output);
3191 s->tree = NULL;
3192 }
3193 }
3194 else
3195 walk_wild (s, output_section_callback, output);
3196
3197 if (default_common_section == NULL)
3198 for (sec = s->section_list; sec != NULL; sec = sec->next)
3199 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3200 {
3201 /* Remember the section that common is going to in case we
3202 later get something which doesn't know where to put it. */
3203 default_common_section = output;
3204 break;
3205 }
3206 }
3207
3208 /* Return TRUE iff target is the sought target. */
3209
3210 static int
3211 get_target (const bfd_target *target, void *data)
3212 {
3213 const char *sought = (const char *) data;
3214
3215 return strcmp (target->name, sought) == 0;
3216 }
3217
3218 /* Like strcpy() but convert to lower case as well. */
3219
3220 static void
3221 stricpy (char *dest, const char *src)
3222 {
3223 char c;
3224
3225 while ((c = *src++) != 0)
3226 *dest++ = TOLOWER (c);
3227
3228 *dest = 0;
3229 }
3230
3231 /* Remove the first occurrence of needle (if any) in haystack
3232 from haystack. */
3233
3234 static void
3235 strcut (char *haystack, const char *needle)
3236 {
3237 haystack = strstr (haystack, needle);
3238
3239 if (haystack)
3240 {
3241 char *src;
3242
3243 for (src = haystack + strlen (needle); *src;)
3244 *haystack++ = *src++;
3245
3246 *haystack = 0;
3247 }
3248 }
3249
3250 /* Compare two target format name strings.
3251 Return a value indicating how "similar" they are. */
3252
3253 static int
3254 name_compare (const char *first, const char *second)
3255 {
3256 char *copy1;
3257 char *copy2;
3258 int result;
3259
3260 copy1 = (char *) xmalloc (strlen (first) + 1);
3261 copy2 = (char *) xmalloc (strlen (second) + 1);
3262
3263 /* Convert the names to lower case. */
3264 stricpy (copy1, first);
3265 stricpy (copy2, second);
3266
3267 /* Remove size and endian strings from the name. */
3268 strcut (copy1, "big");
3269 strcut (copy1, "little");
3270 strcut (copy2, "big");
3271 strcut (copy2, "little");
3272
3273 /* Return a value based on how many characters match,
3274 starting from the beginning. If both strings are
3275 the same then return 10 * their length. */
3276 for (result = 0; copy1[result] == copy2[result]; result++)
3277 if (copy1[result] == 0)
3278 {
3279 result *= 10;
3280 break;
3281 }
3282
3283 free (copy1);
3284 free (copy2);
3285
3286 return result;
3287 }
3288
3289 /* Set by closest_target_match() below. */
3290 static const bfd_target *winner;
3291
3292 /* Scan all the valid bfd targets looking for one that has the endianness
3293 requirement that was specified on the command line, and is the nearest
3294 match to the original output target. */
3295
3296 static int
3297 closest_target_match (const bfd_target *target, void *data)
3298 {
3299 const bfd_target *original = (const bfd_target *) data;
3300
3301 if (command_line.endian == ENDIAN_BIG
3302 && target->byteorder != BFD_ENDIAN_BIG)
3303 return 0;
3304
3305 if (command_line.endian == ENDIAN_LITTLE
3306 && target->byteorder != BFD_ENDIAN_LITTLE)
3307 return 0;
3308
3309 /* Must be the same flavour. */
3310 if (target->flavour != original->flavour)
3311 return 0;
3312
3313 /* Ignore generic big and little endian elf vectors. */
3314 if (strcmp (target->name, "elf32-big") == 0
3315 || strcmp (target->name, "elf64-big") == 0
3316 || strcmp (target->name, "elf32-little") == 0
3317 || strcmp (target->name, "elf64-little") == 0)
3318 return 0;
3319
3320 /* If we have not found a potential winner yet, then record this one. */
3321 if (winner == NULL)
3322 {
3323 winner = target;
3324 return 0;
3325 }
3326
3327 /* Oh dear, we now have two potential candidates for a successful match.
3328 Compare their names and choose the better one. */
3329 if (name_compare (target->name, original->name)
3330 > name_compare (winner->name, original->name))
3331 winner = target;
3332
3333 /* Keep on searching until wqe have checked them all. */
3334 return 0;
3335 }
3336
3337 /* Return the BFD target format of the first input file. */
3338
3339 static const char *
3340 get_first_input_target (void)
3341 {
3342 const char *target = NULL;
3343
3344 LANG_FOR_EACH_INPUT_STATEMENT (s)
3345 {
3346 if (s->header.type == lang_input_statement_enum
3347 && s->flags.real)
3348 {
3349 ldfile_open_file (s);
3350
3351 if (s->the_bfd != NULL
3352 && bfd_check_format (s->the_bfd, bfd_object))
3353 {
3354 target = bfd_get_target (s->the_bfd);
3355
3356 if (target != NULL)
3357 break;
3358 }
3359 }
3360 }
3361
3362 return target;
3363 }
3364
3365 const char *
3366 lang_get_output_target (void)
3367 {
3368 const char *target;
3369
3370 /* Has the user told us which output format to use? */
3371 if (output_target != NULL)
3372 return output_target;
3373
3374 /* No - has the current target been set to something other than
3375 the default? */
3376 if (current_target != default_target && current_target != NULL)
3377 return current_target;
3378
3379 /* No - can we determine the format of the first input file? */
3380 target = get_first_input_target ();
3381 if (target != NULL)
3382 return target;
3383
3384 /* Failed - use the default output target. */
3385 return default_target;
3386 }
3387
3388 /* Open the output file. */
3389
3390 static void
3391 open_output (const char *name)
3392 {
3393 output_target = lang_get_output_target ();
3394
3395 /* Has the user requested a particular endianness on the command
3396 line? */
3397 if (command_line.endian != ENDIAN_UNSET)
3398 {
3399 /* Get the chosen target. */
3400 const bfd_target *target
3401 = bfd_iterate_over_targets (get_target, (void *) output_target);
3402
3403 /* If the target is not supported, we cannot do anything. */
3404 if (target != NULL)
3405 {
3406 enum bfd_endian desired_endian;
3407
3408 if (command_line.endian == ENDIAN_BIG)
3409 desired_endian = BFD_ENDIAN_BIG;
3410 else
3411 desired_endian = BFD_ENDIAN_LITTLE;
3412
3413 /* See if the target has the wrong endianness. This should
3414 not happen if the linker script has provided big and
3415 little endian alternatives, but some scrips don't do
3416 this. */
3417 if (target->byteorder != desired_endian)
3418 {
3419 /* If it does, then see if the target provides
3420 an alternative with the correct endianness. */
3421 if (target->alternative_target != NULL
3422 && (target->alternative_target->byteorder == desired_endian))
3423 output_target = target->alternative_target->name;
3424 else
3425 {
3426 /* Try to find a target as similar as possible to
3427 the default target, but which has the desired
3428 endian characteristic. */
3429 bfd_iterate_over_targets (closest_target_match,
3430 (void *) target);
3431
3432 /* Oh dear - we could not find any targets that
3433 satisfy our requirements. */
3434 if (winner == NULL)
3435 einfo (_("%P: warning: could not find any targets"
3436 " that match endianness requirement\n"));
3437 else
3438 output_target = winner->name;
3439 }
3440 }
3441 }
3442 }
3443
3444 link_info.output_bfd = bfd_openw (name, output_target);
3445
3446 if (link_info.output_bfd == NULL)
3447 {
3448 if (bfd_get_error () == bfd_error_invalid_target)
3449 einfo (_("%F%P: target %s not found\n"), output_target);
3450
3451 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3452 }
3453
3454 delete_output_file_on_failure = TRUE;
3455
3456 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3457 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3458 if (!bfd_set_arch_mach (link_info.output_bfd,
3459 ldfile_output_architecture,
3460 ldfile_output_machine))
3461 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3462
3463 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3464 if (link_info.hash == NULL)
3465 einfo (_("%F%P: can not create hash table: %E\n"));
3466
3467 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3468 }
3469
3470 static void
3471 ldlang_open_output (lang_statement_union_type *statement)
3472 {
3473 switch (statement->header.type)
3474 {
3475 case lang_output_statement_enum:
3476 ASSERT (link_info.output_bfd == NULL);
3477 open_output (statement->output_statement.name);
3478 ldemul_set_output_arch ();
3479 if (config.magic_demand_paged
3480 && !bfd_link_relocatable (&link_info))
3481 link_info.output_bfd->flags |= D_PAGED;
3482 else
3483 link_info.output_bfd->flags &= ~D_PAGED;
3484 if (config.text_read_only)
3485 link_info.output_bfd->flags |= WP_TEXT;
3486 else
3487 link_info.output_bfd->flags &= ~WP_TEXT;
3488 if (link_info.traditional_format)
3489 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3490 else
3491 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3492 break;
3493
3494 case lang_target_statement_enum:
3495 current_target = statement->target_statement.target;
3496 break;
3497 default:
3498 break;
3499 }
3500 }
3501
3502 static void
3503 init_opb (asection *s)
3504 {
3505 unsigned int x;
3506
3507 opb_shift = 0;
3508 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3509 && s != NULL
3510 && (s->flags & SEC_ELF_OCTETS) != 0)
3511 return;
3512
3513 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3514 ldfile_output_machine);
3515 if (x > 1)
3516 while ((x & 1) == 0)
3517 {
3518 x >>= 1;
3519 ++opb_shift;
3520 }
3521 ASSERT (x == 1);
3522 }
3523
3524 /* Open all the input files. */
3525
3526 enum open_bfd_mode
3527 {
3528 OPEN_BFD_NORMAL = 0,
3529 OPEN_BFD_FORCE = 1,
3530 OPEN_BFD_RESCAN = 2
3531 };
3532 #if BFD_SUPPORTS_PLUGINS
3533 static lang_input_statement_type *plugin_insert = NULL;
3534 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3535 #endif
3536
3537 static void
3538 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3539 {
3540 for (; s != NULL; s = s->header.next)
3541 {
3542 switch (s->header.type)
3543 {
3544 case lang_constructors_statement_enum:
3545 open_input_bfds (constructor_list.head, mode);
3546 break;
3547 case lang_output_section_statement_enum:
3548 open_input_bfds (s->output_section_statement.children.head, mode);
3549 break;
3550 case lang_wild_statement_enum:
3551 /* Maybe we should load the file's symbols. */
3552 if ((mode & OPEN_BFD_RESCAN) == 0
3553 && s->wild_statement.filename
3554 && !wildcardp (s->wild_statement.filename)
3555 && !archive_path (s->wild_statement.filename))
3556 lookup_name (s->wild_statement.filename);
3557 open_input_bfds (s->wild_statement.children.head, mode);
3558 break;
3559 case lang_group_statement_enum:
3560 {
3561 struct bfd_link_hash_entry *undefs;
3562 #if BFD_SUPPORTS_PLUGINS
3563 lang_input_statement_type *plugin_insert_save;
3564 #endif
3565
3566 /* We must continually search the entries in the group
3567 until no new symbols are added to the list of undefined
3568 symbols. */
3569
3570 do
3571 {
3572 #if BFD_SUPPORTS_PLUGINS
3573 plugin_insert_save = plugin_insert;
3574 #endif
3575 undefs = link_info.hash->undefs_tail;
3576 open_input_bfds (s->group_statement.children.head,
3577 mode | OPEN_BFD_FORCE);
3578 }
3579 while (undefs != link_info.hash->undefs_tail
3580 #if BFD_SUPPORTS_PLUGINS
3581 /* Objects inserted by a plugin, which are loaded
3582 before we hit this loop, may have added new
3583 undefs. */
3584 || (plugin_insert != plugin_insert_save && plugin_undefs)
3585 #endif
3586 );
3587 }
3588 break;
3589 case lang_target_statement_enum:
3590 current_target = s->target_statement.target;
3591 break;
3592 case lang_input_statement_enum:
3593 if (s->input_statement.flags.real)
3594 {
3595 lang_statement_union_type **os_tail;
3596 lang_statement_list_type add;
3597 bfd *abfd;
3598
3599 s->input_statement.target = current_target;
3600
3601 /* If we are being called from within a group, and this
3602 is an archive which has already been searched, then
3603 force it to be researched unless the whole archive
3604 has been loaded already. Do the same for a rescan.
3605 Likewise reload --as-needed shared libs. */
3606 if (mode != OPEN_BFD_NORMAL
3607 #if BFD_SUPPORTS_PLUGINS
3608 && ((mode & OPEN_BFD_RESCAN) == 0
3609 || plugin_insert == NULL)
3610 #endif
3611 && s->input_statement.flags.loaded
3612 && (abfd = s->input_statement.the_bfd) != NULL
3613 && ((bfd_get_format (abfd) == bfd_archive
3614 && !s->input_statement.flags.whole_archive)
3615 || (bfd_get_format (abfd) == bfd_object
3616 && ((abfd->flags) & DYNAMIC) != 0
3617 && s->input_statement.flags.add_DT_NEEDED_for_regular
3618 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3619 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3620 {
3621 s->input_statement.flags.loaded = FALSE;
3622 s->input_statement.flags.reload = TRUE;
3623 }
3624
3625 os_tail = lang_os_list.tail;
3626 lang_list_init (&add);
3627
3628 if (!load_symbols (&s->input_statement, &add))
3629 config.make_executable = FALSE;
3630
3631 if (add.head != NULL)
3632 {
3633 /* If this was a script with output sections then
3634 tack any added statements on to the end of the
3635 list. This avoids having to reorder the output
3636 section statement list. Very likely the user
3637 forgot -T, and whatever we do here will not meet
3638 naive user expectations. */
3639 if (os_tail != lang_os_list.tail)
3640 {
3641 einfo (_("%P: warning: %s contains output sections;"
3642 " did you forget -T?\n"),
3643 s->input_statement.filename);
3644 *stat_ptr->tail = add.head;
3645 stat_ptr->tail = add.tail;
3646 }
3647 else
3648 {
3649 *add.tail = s->header.next;
3650 s->header.next = add.head;
3651 }
3652 }
3653 }
3654 #if BFD_SUPPORTS_PLUGINS
3655 /* If we have found the point at which a plugin added new
3656 files, clear plugin_insert to enable archive rescan. */
3657 if (&s->input_statement == plugin_insert)
3658 plugin_insert = NULL;
3659 #endif
3660 break;
3661 case lang_assignment_statement_enum:
3662 if (s->assignment_statement.exp->type.node_class != etree_assert)
3663 exp_fold_tree_no_dot (s->assignment_statement.exp);
3664 break;
3665 default:
3666 break;
3667 }
3668 }
3669
3670 /* Exit if any of the files were missing. */
3671 if (input_flags.missing_file)
3672 einfo ("%F");
3673 }
3674
3675 #ifdef ENABLE_LIBCTF
3676 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3677 that happened specifically at CTF open time. */
3678 static void
3679 lang_ctf_errs_warnings (ctf_dict_t *fp)
3680 {
3681 ctf_next_t *i = NULL;
3682 char *text;
3683 int is_warning;
3684 int err;
3685
3686 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3687 {
3688 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3689 text);
3690 free (text);
3691 }
3692 if (err != ECTF_NEXT_END)
3693 {
3694 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3695 ctf_errmsg (err));
3696 }
3697
3698 /* `err' returns errors from the error/warning iterator in particular.
3699 These never assert. But if we have an fp, that could have recorded
3700 an assertion failure: assert if it has done so. */
3701 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3702 }
3703
3704 /* Open the CTF sections in the input files with libctf: if any were opened,
3705 create a fake input file that we'll write the merged CTF data to later
3706 on. */
3707
3708 static void
3709 ldlang_open_ctf (void)
3710 {
3711 int any_ctf = 0;
3712 int err;
3713
3714 LANG_FOR_EACH_INPUT_STATEMENT (file)
3715 {
3716 asection *sect;
3717
3718 /* Incoming files from the compiler have a single ctf_dict_t in them
3719 (which is presented to us by the libctf API in a ctf_archive_t
3720 wrapper): files derived from a previous relocatable link have a CTF
3721 archive containing possibly many CTF files. */
3722
3723 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3724 {
3725 if (err != ECTF_NOCTFDATA)
3726 {
3727 lang_ctf_errs_warnings (NULL);
3728 einfo (_("%P: warning: CTF section in %pB not loaded; "
3729 "its types will be discarded: %s\n"), file->the_bfd,
3730 ctf_errmsg (err));
3731 }
3732 continue;
3733 }
3734
3735 /* Prevent the contents of this section from being written, while
3736 requiring the section itself to be duplicated in the output, but only
3737 once. */
3738 /* This section must exist if ctf_bfdopen() succeeded. */
3739 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3740 sect->size = 0;
3741 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3742
3743 if (any_ctf)
3744 sect->flags |= SEC_EXCLUDE;
3745 any_ctf = 1;
3746 }
3747
3748 if (!any_ctf)
3749 {
3750 ctf_output = NULL;
3751 return;
3752 }
3753
3754 if ((ctf_output = ctf_create (&err)) != NULL)
3755 return;
3756
3757 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3758 ctf_errmsg (err));
3759
3760 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3761 ctf_close (errfile->the_ctf);
3762 }
3763
3764 /* Merge together CTF sections. After this, only the symtab-dependent
3765 function and data object sections need adjustment. */
3766
3767 static void
3768 lang_merge_ctf (void)
3769 {
3770 asection *output_sect;
3771 int flags = 0;
3772
3773 if (!ctf_output)
3774 return;
3775
3776 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3777
3778 /* If the section was discarded, don't waste time merging. */
3779 if (output_sect == NULL)
3780 {
3781 ctf_dict_close (ctf_output);
3782 ctf_output = NULL;
3783
3784 LANG_FOR_EACH_INPUT_STATEMENT (file)
3785 {
3786 ctf_close (file->the_ctf);
3787 file->the_ctf = NULL;
3788 }
3789 return;
3790 }
3791
3792 LANG_FOR_EACH_INPUT_STATEMENT (file)
3793 {
3794 if (!file->the_ctf)
3795 continue;
3796
3797 /* Takes ownership of file->the_ctf. */
3798 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3799 {
3800 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3801 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3802 ctf_close (file->the_ctf);
3803 file->the_ctf = NULL;
3804 continue;
3805 }
3806 }
3807
3808 if (!config.ctf_share_duplicated)
3809 flags = CTF_LINK_SHARE_UNCONFLICTED;
3810 else
3811 flags = CTF_LINK_SHARE_DUPLICATED;
3812 if (!config.ctf_variables)
3813 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3814 if (bfd_link_relocatable (&link_info))
3815 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3816
3817 if (ctf_link (ctf_output, flags) < 0)
3818 {
3819 lang_ctf_errs_warnings (ctf_output);
3820 einfo (_("%P: warning: CTF linking failed; "
3821 "output will have no CTF section: %s\n"),
3822 ctf_errmsg (ctf_errno (ctf_output)));
3823 if (output_sect)
3824 {
3825 output_sect->size = 0;
3826 output_sect->flags |= SEC_EXCLUDE;
3827 }
3828 }
3829 /* Output any lingering errors that didn't come from ctf_link. */
3830 lang_ctf_errs_warnings (ctf_output);
3831 }
3832
3833 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3834 the CTF, if supported. */
3835
3836 void
3837 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3838 {
3839 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3840 }
3841
3842 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3843 internal format. */
3844 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3845 {
3846 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3847 }
3848
3849 /* Write out the CTF section. Called early, if the emulation isn't going to
3850 need to dedup against the strtab and symtab, then possibly called from the
3851 target linker code if the dedup has happened. */
3852 static void
3853 lang_write_ctf (int late)
3854 {
3855 size_t output_size;
3856 asection *output_sect;
3857
3858 if (!ctf_output)
3859 return;
3860
3861 if (late)
3862 {
3863 /* Emit CTF late if this emulation says it can do so. */
3864 if (ldemul_emit_ctf_early ())
3865 return;
3866 }
3867 else
3868 {
3869 if (!ldemul_emit_ctf_early ())
3870 return;
3871 }
3872
3873 /* Inform the emulation that all the symbols that will be received have
3874 been. */
3875
3876 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3877
3878 /* Emit CTF. */
3879
3880 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3881 if (output_sect)
3882 {
3883 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3884 CTF_COMPRESSION_THRESHOLD);
3885 output_sect->size = output_size;
3886 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3887
3888 lang_ctf_errs_warnings (ctf_output);
3889 if (!output_sect->contents)
3890 {
3891 einfo (_("%P: warning: CTF section emission failed; "
3892 "output will have no CTF section: %s\n"),
3893 ctf_errmsg (ctf_errno (ctf_output)));
3894 output_sect->size = 0;
3895 output_sect->flags |= SEC_EXCLUDE;
3896 }
3897 }
3898
3899 /* This also closes every CTF input file used in the link. */
3900 ctf_dict_close (ctf_output);
3901 ctf_output = NULL;
3902
3903 LANG_FOR_EACH_INPUT_STATEMENT (file)
3904 file->the_ctf = NULL;
3905 }
3906
3907 /* Write out the CTF section late, if the emulation needs that. */
3908
3909 void
3910 ldlang_write_ctf_late (void)
3911 {
3912 /* Trigger a "late call", if the emulation needs one. */
3913
3914 lang_write_ctf (1);
3915 }
3916 #else
3917 static void
3918 ldlang_open_ctf (void)
3919 {
3920 LANG_FOR_EACH_INPUT_STATEMENT (file)
3921 {
3922 asection *sect;
3923
3924 /* If built without CTF, warn and delete all CTF sections from the output.
3925 (The alternative would be to simply concatenate them, which does not
3926 yield a valid CTF section.) */
3927
3928 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3929 {
3930 einfo (_("%P: warning: CTF section in %pB not linkable: "
3931 "%P was built without support for CTF\n"), file->the_bfd);
3932 sect->size = 0;
3933 sect->flags |= SEC_EXCLUDE;
3934 }
3935 }
3936 }
3937
3938 static void lang_merge_ctf (void) {}
3939 void
3940 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3941 ATTRIBUTE_UNUSED) {}
3942 void
3943 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3944 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3945 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3946 void ldlang_write_ctf_late (void) {}
3947 #endif
3948
3949 /* Add the supplied name to the symbol table as an undefined reference.
3950 This is a two step process as the symbol table doesn't even exist at
3951 the time the ld command line is processed. First we put the name
3952 on a list, then, once the output file has been opened, transfer the
3953 name to the symbol table. */
3954
3955 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3956
3957 #define ldlang_undef_chain_list_head entry_symbol.next
3958
3959 void
3960 ldlang_add_undef (const char *const name, bfd_boolean cmdline ATTRIBUTE_UNUSED)
3961 {
3962 ldlang_undef_chain_list_type *new_undef;
3963
3964 new_undef = stat_alloc (sizeof (*new_undef));
3965 new_undef->next = ldlang_undef_chain_list_head;
3966 ldlang_undef_chain_list_head = new_undef;
3967
3968 new_undef->name = xstrdup (name);
3969
3970 if (link_info.output_bfd != NULL)
3971 insert_undefined (new_undef->name);
3972 }
3973
3974 /* Insert NAME as undefined in the symbol table. */
3975
3976 static void
3977 insert_undefined (const char *name)
3978 {
3979 struct bfd_link_hash_entry *h;
3980
3981 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3982 if (h == NULL)
3983 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3984 if (h->type == bfd_link_hash_new)
3985 {
3986 h->type = bfd_link_hash_undefined;
3987 h->u.undef.abfd = NULL;
3988 h->non_ir_ref_regular = TRUE;
3989 if (is_elf_hash_table (link_info.hash))
3990 ((struct elf_link_hash_entry *) h)->mark = 1;
3991 bfd_link_add_undef (link_info.hash, h);
3992 }
3993 }
3994
3995 /* Run through the list of undefineds created above and place them
3996 into the linker hash table as undefined symbols belonging to the
3997 script file. */
3998
3999 static void
4000 lang_place_undefineds (void)
4001 {
4002 ldlang_undef_chain_list_type *ptr;
4003
4004 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4005 insert_undefined (ptr->name);
4006 }
4007
4008 /* Structure used to build the list of symbols that the user has required
4009 be defined. */
4010
4011 struct require_defined_symbol
4012 {
4013 const char *name;
4014 struct require_defined_symbol *next;
4015 };
4016
4017 /* The list of symbols that the user has required be defined. */
4018
4019 static struct require_defined_symbol *require_defined_symbol_list;
4020
4021 /* Add a new symbol NAME to the list of symbols that are required to be
4022 defined. */
4023
4024 void
4025 ldlang_add_require_defined (const char *const name)
4026 {
4027 struct require_defined_symbol *ptr;
4028
4029 ldlang_add_undef (name, TRUE);
4030 ptr = stat_alloc (sizeof (*ptr));
4031 ptr->next = require_defined_symbol_list;
4032 ptr->name = strdup (name);
4033 require_defined_symbol_list = ptr;
4034 }
4035
4036 /* Check that all symbols the user required to be defined, are defined,
4037 raise an error if we find a symbol that is not defined. */
4038
4039 static void
4040 ldlang_check_require_defined_symbols (void)
4041 {
4042 struct require_defined_symbol *ptr;
4043
4044 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4045 {
4046 struct bfd_link_hash_entry *h;
4047
4048 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4049 FALSE, FALSE, TRUE);
4050 if (h == NULL
4051 || (h->type != bfd_link_hash_defined
4052 && h->type != bfd_link_hash_defweak))
4053 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4054 }
4055 }
4056
4057 /* Check for all readonly or some readwrite sections. */
4058
4059 static void
4060 check_input_sections
4061 (lang_statement_union_type *s,
4062 lang_output_section_statement_type *output_section_statement)
4063 {
4064 for (; s != NULL; s = s->header.next)
4065 {
4066 switch (s->header.type)
4067 {
4068 case lang_wild_statement_enum:
4069 walk_wild (&s->wild_statement, check_section_callback,
4070 output_section_statement);
4071 if (!output_section_statement->all_input_readonly)
4072 return;
4073 break;
4074 case lang_constructors_statement_enum:
4075 check_input_sections (constructor_list.head,
4076 output_section_statement);
4077 if (!output_section_statement->all_input_readonly)
4078 return;
4079 break;
4080 case lang_group_statement_enum:
4081 check_input_sections (s->group_statement.children.head,
4082 output_section_statement);
4083 if (!output_section_statement->all_input_readonly)
4084 return;
4085 break;
4086 default:
4087 break;
4088 }
4089 }
4090 }
4091
4092 /* Update wildcard statements if needed. */
4093
4094 static void
4095 update_wild_statements (lang_statement_union_type *s)
4096 {
4097 struct wildcard_list *sec;
4098
4099 switch (sort_section)
4100 {
4101 default:
4102 FAIL ();
4103
4104 case none:
4105 break;
4106
4107 case by_name:
4108 case by_alignment:
4109 for (; s != NULL; s = s->header.next)
4110 {
4111 switch (s->header.type)
4112 {
4113 default:
4114 break;
4115
4116 case lang_wild_statement_enum:
4117 for (sec = s->wild_statement.section_list; sec != NULL;
4118 sec = sec->next)
4119 /* Don't sort .init/.fini sections. */
4120 if (strcmp (sec->spec.name, ".init") != 0
4121 && strcmp (sec->spec.name, ".fini") != 0)
4122 switch (sec->spec.sorted)
4123 {
4124 case none:
4125 sec->spec.sorted = sort_section;
4126 break;
4127 case by_name:
4128 if (sort_section == by_alignment)
4129 sec->spec.sorted = by_name_alignment;
4130 break;
4131 case by_alignment:
4132 if (sort_section == by_name)
4133 sec->spec.sorted = by_alignment_name;
4134 break;
4135 default:
4136 break;
4137 }
4138 break;
4139
4140 case lang_constructors_statement_enum:
4141 update_wild_statements (constructor_list.head);
4142 break;
4143
4144 case lang_output_section_statement_enum:
4145 update_wild_statements
4146 (s->output_section_statement.children.head);
4147 break;
4148
4149 case lang_group_statement_enum:
4150 update_wild_statements (s->group_statement.children.head);
4151 break;
4152 }
4153 }
4154 break;
4155 }
4156 }
4157
4158 /* Open input files and attach to output sections. */
4159
4160 static void
4161 map_input_to_output_sections
4162 (lang_statement_union_type *s, const char *target,
4163 lang_output_section_statement_type *os)
4164 {
4165 for (; s != NULL; s = s->header.next)
4166 {
4167 lang_output_section_statement_type *tos;
4168 flagword flags;
4169
4170 switch (s->header.type)
4171 {
4172 case lang_wild_statement_enum:
4173 wild (&s->wild_statement, target, os);
4174 break;
4175 case lang_constructors_statement_enum:
4176 map_input_to_output_sections (constructor_list.head,
4177 target,
4178 os);
4179 break;
4180 case lang_output_section_statement_enum:
4181 tos = &s->output_section_statement;
4182 if (tos->constraint == ONLY_IF_RW
4183 || tos->constraint == ONLY_IF_RO)
4184 {
4185 tos->all_input_readonly = TRUE;
4186 check_input_sections (tos->children.head, tos);
4187 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4188 tos->constraint = -1;
4189 }
4190 if (tos->constraint >= 0)
4191 map_input_to_output_sections (tos->children.head,
4192 target,
4193 tos);
4194 break;
4195 case lang_output_statement_enum:
4196 break;
4197 case lang_target_statement_enum:
4198 target = s->target_statement.target;
4199 break;
4200 case lang_group_statement_enum:
4201 map_input_to_output_sections (s->group_statement.children.head,
4202 target,
4203 os);
4204 break;
4205 case lang_data_statement_enum:
4206 /* Make sure that any sections mentioned in the expression
4207 are initialized. */
4208 exp_init_os (s->data_statement.exp);
4209 /* The output section gets CONTENTS, ALLOC and LOAD, but
4210 these may be overridden by the script. */
4211 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4212 switch (os->sectype)
4213 {
4214 case normal_section:
4215 case overlay_section:
4216 case first_overlay_section:
4217 break;
4218 case noalloc_section:
4219 flags = SEC_HAS_CONTENTS;
4220 break;
4221 case noload_section:
4222 if (bfd_get_flavour (link_info.output_bfd)
4223 == bfd_target_elf_flavour)
4224 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4225 else
4226 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4227 break;
4228 }
4229 if (os->bfd_section == NULL)
4230 init_os (os, flags | SEC_READONLY);
4231 else
4232 os->bfd_section->flags |= flags;
4233 break;
4234 case lang_input_section_enum:
4235 break;
4236 case lang_fill_statement_enum:
4237 case lang_object_symbols_statement_enum:
4238 case lang_reloc_statement_enum:
4239 case lang_padding_statement_enum:
4240 case lang_input_statement_enum:
4241 if (os != NULL && os->bfd_section == NULL)
4242 init_os (os, 0);
4243 break;
4244 case lang_assignment_statement_enum:
4245 if (os != NULL && os->bfd_section == NULL)
4246 init_os (os, 0);
4247
4248 /* Make sure that any sections mentioned in the assignment
4249 are initialized. */
4250 exp_init_os (s->assignment_statement.exp);
4251 break;
4252 case lang_address_statement_enum:
4253 /* Mark the specified section with the supplied address.
4254 If this section was actually a segment marker, then the
4255 directive is ignored if the linker script explicitly
4256 processed the segment marker. Originally, the linker
4257 treated segment directives (like -Ttext on the
4258 command-line) as section directives. We honor the
4259 section directive semantics for backwards compatibility;
4260 linker scripts that do not specifically check for
4261 SEGMENT_START automatically get the old semantics. */
4262 if (!s->address_statement.segment
4263 || !s->address_statement.segment->used)
4264 {
4265 const char *name = s->address_statement.section_name;
4266
4267 /* Create the output section statement here so that
4268 orphans with a set address will be placed after other
4269 script sections. If we let the orphan placement code
4270 place them in amongst other sections then the address
4271 will affect following script sections, which is
4272 likely to surprise naive users. */
4273 tos = lang_output_section_statement_lookup (name, 0, 1);
4274 tos->addr_tree = s->address_statement.address;
4275 if (tos->bfd_section == NULL)
4276 init_os (tos, 0);
4277 }
4278 break;
4279 case lang_insert_statement_enum:
4280 break;
4281 }
4282 }
4283 }
4284
4285 /* An insert statement snips out all the linker statements from the
4286 start of the list and places them after the output section
4287 statement specified by the insert. This operation is complicated
4288 by the fact that we keep a doubly linked list of output section
4289 statements as well as the singly linked list of all statements.
4290 FIXME someday: Twiddling with the list not only moves statements
4291 from the user's script but also input and group statements that are
4292 built from command line object files and --start-group. We only
4293 get away with this because the list pointers used by file_chain
4294 and input_file_chain are not reordered, and processing via
4295 statement_list after this point mostly ignores input statements.
4296 One exception is the map file, where LOAD and START GROUP/END GROUP
4297 can end up looking odd. */
4298
4299 static void
4300 process_insert_statements (lang_statement_union_type **start)
4301 {
4302 lang_statement_union_type **s;
4303 lang_output_section_statement_type *first_os = NULL;
4304 lang_output_section_statement_type *last_os = NULL;
4305 lang_output_section_statement_type *os;
4306
4307 s = start;
4308 while (*s != NULL)
4309 {
4310 if ((*s)->header.type == lang_output_section_statement_enum)
4311 {
4312 /* Keep pointers to the first and last output section
4313 statement in the sequence we may be about to move. */
4314 os = &(*s)->output_section_statement;
4315
4316 ASSERT (last_os == NULL || last_os->next == os);
4317 last_os = os;
4318
4319 /* Set constraint negative so that lang_output_section_find
4320 won't match this output section statement. At this
4321 stage in linking constraint has values in the range
4322 [-1, ONLY_IN_RW]. */
4323 last_os->constraint = -2 - last_os->constraint;
4324 if (first_os == NULL)
4325 first_os = last_os;
4326 }
4327 else if ((*s)->header.type == lang_group_statement_enum)
4328 {
4329 /* A user might put -T between --start-group and
4330 --end-group. One way this odd construct might arise is
4331 from a wrapper around ld to change library search
4332 behaviour. For example:
4333 #! /bin/sh
4334 exec real_ld --start-group "$@" --end-group
4335 This isn't completely unreasonable so go looking inside a
4336 group statement for insert statements. */
4337 process_insert_statements (&(*s)->group_statement.children.head);
4338 }
4339 else if ((*s)->header.type == lang_insert_statement_enum)
4340 {
4341 lang_insert_statement_type *i = &(*s)->insert_statement;
4342 lang_output_section_statement_type *where;
4343 lang_statement_union_type **ptr;
4344 lang_statement_union_type *first;
4345
4346 if (link_info.non_contiguous_regions)
4347 {
4348 einfo (_("warning: INSERT statement in linker script is "
4349 "incompatible with --enable-non-contiguous-regions.\n"));
4350 }
4351
4352 where = lang_output_section_find (i->where);
4353 if (where != NULL && i->is_before)
4354 {
4355 do
4356 where = where->prev;
4357 while (where != NULL && where->constraint < 0);
4358 }
4359 if (where == NULL)
4360 {
4361 einfo (_("%F%P: %s not found for insert\n"), i->where);
4362 return;
4363 }
4364
4365 /* Deal with reordering the output section statement list. */
4366 if (last_os != NULL)
4367 {
4368 asection *first_sec, *last_sec;
4369 struct lang_output_section_statement_struct **next;
4370
4371 /* Snip out the output sections we are moving. */
4372 first_os->prev->next = last_os->next;
4373 if (last_os->next == NULL)
4374 {
4375 next = &first_os->prev->next;
4376 lang_os_list.tail = (lang_statement_union_type **) next;
4377 }
4378 else
4379 last_os->next->prev = first_os->prev;
4380 /* Add them in at the new position. */
4381 last_os->next = where->next;
4382 if (where->next == NULL)
4383 {
4384 next = &last_os->next;
4385 lang_os_list.tail = (lang_statement_union_type **) next;
4386 }
4387 else
4388 where->next->prev = last_os;
4389 first_os->prev = where;
4390 where->next = first_os;
4391
4392 /* Move the bfd sections in the same way. */
4393 first_sec = NULL;
4394 last_sec = NULL;
4395 for (os = first_os; os != NULL; os = os->next)
4396 {
4397 os->constraint = -2 - os->constraint;
4398 if (os->bfd_section != NULL
4399 && os->bfd_section->owner != NULL)
4400 {
4401 last_sec = os->bfd_section;
4402 if (first_sec == NULL)
4403 first_sec = last_sec;
4404 }
4405 if (os == last_os)
4406 break;
4407 }
4408 if (last_sec != NULL)
4409 {
4410 asection *sec = where->bfd_section;
4411 if (sec == NULL)
4412 sec = output_prev_sec_find (where);
4413
4414 /* The place we want to insert must come after the
4415 sections we are moving. So if we find no
4416 section or if the section is the same as our
4417 last section, then no move is needed. */
4418 if (sec != NULL && sec != last_sec)
4419 {
4420 /* Trim them off. */
4421 if (first_sec->prev != NULL)
4422 first_sec->prev->next = last_sec->next;
4423 else
4424 link_info.output_bfd->sections = last_sec->next;
4425 if (last_sec->next != NULL)
4426 last_sec->next->prev = first_sec->prev;
4427 else
4428 link_info.output_bfd->section_last = first_sec->prev;
4429 /* Add back. */
4430 last_sec->next = sec->next;
4431 if (sec->next != NULL)
4432 sec->next->prev = last_sec;
4433 else
4434 link_info.output_bfd->section_last = last_sec;
4435 first_sec->prev = sec;
4436 sec->next = first_sec;
4437 }
4438 }
4439
4440 first_os = NULL;
4441 last_os = NULL;
4442 }
4443
4444 ptr = insert_os_after (where);
4445 /* Snip everything from the start of the list, up to and
4446 including the insert statement we are currently processing. */
4447 first = *start;
4448 *start = (*s)->header.next;
4449 /* Add them back where they belong, minus the insert. */
4450 *s = *ptr;
4451 if (*s == NULL)
4452 statement_list.tail = s;
4453 *ptr = first;
4454 s = start;
4455 continue;
4456 }
4457 s = &(*s)->header.next;
4458 }
4459
4460 /* Undo constraint twiddling. */
4461 for (os = first_os; os != NULL; os = os->next)
4462 {
4463 os->constraint = -2 - os->constraint;
4464 if (os == last_os)
4465 break;
4466 }
4467 }
4468
4469 /* An output section might have been removed after its statement was
4470 added. For example, ldemul_before_allocation can remove dynamic
4471 sections if they turn out to be not needed. Clean them up here. */
4472
4473 void
4474 strip_excluded_output_sections (void)
4475 {
4476 lang_output_section_statement_type *os;
4477
4478 /* Run lang_size_sections (if not already done). */
4479 if (expld.phase != lang_mark_phase_enum)
4480 {
4481 expld.phase = lang_mark_phase_enum;
4482 expld.dataseg.phase = exp_seg_none;
4483 one_lang_size_sections_pass (NULL, FALSE);
4484 lang_reset_memory_regions ();
4485 }
4486
4487 for (os = (void *) lang_os_list.head;
4488 os != NULL;
4489 os = os->next)
4490 {
4491 asection *output_section;
4492 bfd_boolean exclude;
4493
4494 if (os->constraint < 0)
4495 continue;
4496
4497 output_section = os->bfd_section;
4498 if (output_section == NULL)
4499 continue;
4500
4501 exclude = (output_section->rawsize == 0
4502 && (output_section->flags & SEC_KEEP) == 0
4503 && !bfd_section_removed_from_list (link_info.output_bfd,
4504 output_section));
4505
4506 /* Some sections have not yet been sized, notably .gnu.version,
4507 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4508 input sections, so don't drop output sections that have such
4509 input sections unless they are also marked SEC_EXCLUDE. */
4510 if (exclude && output_section->map_head.s != NULL)
4511 {
4512 asection *s;
4513
4514 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4515 if ((s->flags & SEC_EXCLUDE) == 0
4516 && ((s->flags & SEC_LINKER_CREATED) != 0
4517 || link_info.emitrelocations))
4518 {
4519 exclude = FALSE;
4520 break;
4521 }
4522 }
4523
4524 if (exclude)
4525 {
4526 /* We don't set bfd_section to NULL since bfd_section of the
4527 removed output section statement may still be used. */
4528 if (!os->update_dot)
4529 os->ignored = TRUE;
4530 output_section->flags |= SEC_EXCLUDE;
4531 bfd_section_list_remove (link_info.output_bfd, output_section);
4532 link_info.output_bfd->section_count--;
4533 }
4534 }
4535 }
4536
4537 /* Called from ldwrite to clear out asection.map_head and
4538 asection.map_tail for use as link_orders in ldwrite. */
4539
4540 void
4541 lang_clear_os_map (void)
4542 {
4543 lang_output_section_statement_type *os;
4544
4545 if (map_head_is_link_order)
4546 return;
4547
4548 for (os = (void *) lang_os_list.head;
4549 os != NULL;
4550 os = os->next)
4551 {
4552 asection *output_section;
4553
4554 if (os->constraint < 0)
4555 continue;
4556
4557 output_section = os->bfd_section;
4558 if (output_section == NULL)
4559 continue;
4560
4561 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4562 output_section->map_head.link_order = NULL;
4563 output_section->map_tail.link_order = NULL;
4564 }
4565
4566 /* Stop future calls to lang_add_section from messing with map_head
4567 and map_tail link_order fields. */
4568 map_head_is_link_order = TRUE;
4569 }
4570
4571 static void
4572 print_output_section_statement
4573 (lang_output_section_statement_type *output_section_statement)
4574 {
4575 asection *section = output_section_statement->bfd_section;
4576 int len;
4577
4578 if (output_section_statement != abs_output_section)
4579 {
4580 minfo ("\n%s", output_section_statement->name);
4581
4582 if (section != NULL)
4583 {
4584 print_dot = section->vma;
4585
4586 len = strlen (output_section_statement->name);
4587 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4588 {
4589 print_nl ();
4590 len = 0;
4591 }
4592 while (len < SECTION_NAME_MAP_LENGTH)
4593 {
4594 print_space ();
4595 ++len;
4596 }
4597
4598 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4599
4600 if (section->vma != section->lma)
4601 minfo (_(" load address 0x%V"), section->lma);
4602
4603 if (output_section_statement->update_dot_tree != NULL)
4604 exp_fold_tree (output_section_statement->update_dot_tree,
4605 bfd_abs_section_ptr, &print_dot);
4606 }
4607
4608 print_nl ();
4609 }
4610
4611 print_statement_list (output_section_statement->children.head,
4612 output_section_statement);
4613 }
4614
4615 static void
4616 print_assignment (lang_assignment_statement_type *assignment,
4617 lang_output_section_statement_type *output_section)
4618 {
4619 unsigned int i;
4620 bfd_boolean is_dot;
4621 etree_type *tree;
4622 asection *osec;
4623
4624 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4625 print_space ();
4626
4627 if (assignment->exp->type.node_class == etree_assert)
4628 {
4629 is_dot = FALSE;
4630 tree = assignment->exp->assert_s.child;
4631 }
4632 else
4633 {
4634 const char *dst = assignment->exp->assign.dst;
4635
4636 is_dot = (dst[0] == '.' && dst[1] == 0);
4637 tree = assignment->exp;
4638 }
4639
4640 osec = output_section->bfd_section;
4641 if (osec == NULL)
4642 osec = bfd_abs_section_ptr;
4643
4644 if (assignment->exp->type.node_class != etree_provide)
4645 exp_fold_tree (tree, osec, &print_dot);
4646 else
4647 expld.result.valid_p = FALSE;
4648
4649 if (expld.result.valid_p)
4650 {
4651 bfd_vma value;
4652
4653 if (assignment->exp->type.node_class == etree_assert
4654 || is_dot
4655 || expld.assign_name != NULL)
4656 {
4657 value = expld.result.value;
4658
4659 if (expld.result.section != NULL)
4660 value += expld.result.section->vma;
4661
4662 minfo ("0x%V", value);
4663 if (is_dot)
4664 print_dot = value;
4665 }
4666 else
4667 {
4668 struct bfd_link_hash_entry *h;
4669
4670 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4671 FALSE, FALSE, TRUE);
4672 if (h != NULL
4673 && (h->type == bfd_link_hash_defined
4674 || h->type == bfd_link_hash_defweak))
4675 {
4676 value = h->u.def.value;
4677 value += h->u.def.section->output_section->vma;
4678 value += h->u.def.section->output_offset;
4679
4680 minfo ("[0x%V]", value);
4681 }
4682 else
4683 minfo ("[unresolved]");
4684 }
4685 }
4686 else
4687 {
4688 if (assignment->exp->type.node_class == etree_provide)
4689 minfo ("[!provide]");
4690 else
4691 minfo ("*undef* ");
4692 #ifdef BFD64
4693 minfo (" ");
4694 #endif
4695 }
4696 expld.assign_name = NULL;
4697
4698 minfo (" ");
4699 exp_print_tree (assignment->exp);
4700 print_nl ();
4701 }
4702
4703 static void
4704 print_input_statement (lang_input_statement_type *statm)
4705 {
4706 if (statm->filename != NULL)
4707 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4708 }
4709
4710 /* Print all symbols defined in a particular section. This is called
4711 via bfd_link_hash_traverse, or by print_all_symbols. */
4712
4713 bfd_boolean
4714 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4715 {
4716 asection *sec = (asection *) ptr;
4717
4718 if ((hash_entry->type == bfd_link_hash_defined
4719 || hash_entry->type == bfd_link_hash_defweak)
4720 && sec == hash_entry->u.def.section)
4721 {
4722 int i;
4723
4724 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4725 print_space ();
4726 minfo ("0x%V ",
4727 (hash_entry->u.def.value
4728 + hash_entry->u.def.section->output_offset
4729 + hash_entry->u.def.section->output_section->vma));
4730
4731 minfo (" %pT\n", hash_entry->root.string);
4732 }
4733
4734 return TRUE;
4735 }
4736
4737 static int
4738 hash_entry_addr_cmp (const void *a, const void *b)
4739 {
4740 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4741 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4742
4743 if (l->u.def.value < r->u.def.value)
4744 return -1;
4745 else if (l->u.def.value > r->u.def.value)
4746 return 1;
4747 else
4748 return 0;
4749 }
4750
4751 static void
4752 print_all_symbols (asection *sec)
4753 {
4754 input_section_userdata_type *ud = bfd_section_userdata (sec);
4755 struct map_symbol_def *def;
4756 struct bfd_link_hash_entry **entries;
4757 unsigned int i;
4758
4759 if (!ud)
4760 return;
4761
4762 *ud->map_symbol_def_tail = 0;
4763
4764 /* Sort the symbols by address. */
4765 entries = (struct bfd_link_hash_entry **)
4766 obstack_alloc (&map_obstack,
4767 ud->map_symbol_def_count * sizeof (*entries));
4768
4769 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4770 entries[i] = def->entry;
4771
4772 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4773 hash_entry_addr_cmp);
4774
4775 /* Print the symbols. */
4776 for (i = 0; i < ud->map_symbol_def_count; i++)
4777 ldemul_print_symbol (entries[i], sec);
4778
4779 obstack_free (&map_obstack, entries);
4780 }
4781
4782 /* Print information about an input section to the map file. */
4783
4784 static void
4785 print_input_section (asection *i, bfd_boolean is_discarded)
4786 {
4787 bfd_size_type size = i->size;
4788 int len;
4789 bfd_vma addr;
4790
4791 init_opb (i);
4792
4793 print_space ();
4794 minfo ("%s", i->name);
4795
4796 len = 1 + strlen (i->name);
4797 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4798 {
4799 print_nl ();
4800 len = 0;
4801 }
4802 while (len < SECTION_NAME_MAP_LENGTH)
4803 {
4804 print_space ();
4805 ++len;
4806 }
4807
4808 if (i->output_section != NULL
4809 && i->output_section->owner == link_info.output_bfd)
4810 addr = i->output_section->vma + i->output_offset;
4811 else
4812 {
4813 addr = print_dot;
4814 if (!is_discarded)
4815 size = 0;
4816 }
4817
4818 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4819
4820 if (size != i->rawsize && i->rawsize != 0)
4821 {
4822 len = SECTION_NAME_MAP_LENGTH + 3;
4823 #ifdef BFD64
4824 len += 16;
4825 #else
4826 len += 8;
4827 #endif
4828 while (len > 0)
4829 {
4830 print_space ();
4831 --len;
4832 }
4833
4834 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4835 }
4836
4837 if (i->output_section != NULL
4838 && i->output_section->owner == link_info.output_bfd)
4839 {
4840 if (link_info.reduce_memory_overheads)
4841 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4842 else
4843 print_all_symbols (i);
4844
4845 /* Update print_dot, but make sure that we do not move it
4846 backwards - this could happen if we have overlays and a
4847 later overlay is shorter than an earier one. */
4848 if (addr + TO_ADDR (size) > print_dot)
4849 print_dot = addr + TO_ADDR (size);
4850 }
4851 }
4852
4853 static void
4854 print_fill_statement (lang_fill_statement_type *fill)
4855 {
4856 size_t size;
4857 unsigned char *p;
4858 fputs (" FILL mask 0x", config.map_file);
4859 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4860 fprintf (config.map_file, "%02x", *p);
4861 fputs ("\n", config.map_file);
4862 }
4863
4864 static void
4865 print_data_statement (lang_data_statement_type *data)
4866 {
4867 int i;
4868 bfd_vma addr;
4869 bfd_size_type size;
4870 const char *name;
4871
4872 init_opb (data->output_section);
4873 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4874 print_space ();
4875
4876 addr = data->output_offset;
4877 if (data->output_section != NULL)
4878 addr += data->output_section->vma;
4879
4880 switch (data->type)
4881 {
4882 default:
4883 abort ();
4884 case BYTE:
4885 size = BYTE_SIZE;
4886 name = "BYTE";
4887 break;
4888 case SHORT:
4889 size = SHORT_SIZE;
4890 name = "SHORT";
4891 break;
4892 case LONG:
4893 size = LONG_SIZE;
4894 name = "LONG";
4895 break;
4896 case QUAD:
4897 size = QUAD_SIZE;
4898 name = "QUAD";
4899 break;
4900 case SQUAD:
4901 size = QUAD_SIZE;
4902 name = "SQUAD";
4903 break;
4904 }
4905
4906 if (size < TO_SIZE ((unsigned) 1))
4907 size = TO_SIZE ((unsigned) 1);
4908 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4909
4910 if (data->exp->type.node_class != etree_value)
4911 {
4912 print_space ();
4913 exp_print_tree (data->exp);
4914 }
4915
4916 print_nl ();
4917
4918 print_dot = addr + TO_ADDR (size);
4919 }
4920
4921 /* Print an address statement. These are generated by options like
4922 -Ttext. */
4923
4924 static void
4925 print_address_statement (lang_address_statement_type *address)
4926 {
4927 minfo (_("Address of section %s set to "), address->section_name);
4928 exp_print_tree (address->address);
4929 print_nl ();
4930 }
4931
4932 /* Print a reloc statement. */
4933
4934 static void
4935 print_reloc_statement (lang_reloc_statement_type *reloc)
4936 {
4937 int i;
4938 bfd_vma addr;
4939 bfd_size_type size;
4940
4941 init_opb (reloc->output_section);
4942 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4943 print_space ();
4944
4945 addr = reloc->output_offset;
4946 if (reloc->output_section != NULL)
4947 addr += reloc->output_section->vma;
4948
4949 size = bfd_get_reloc_size (reloc->howto);
4950
4951 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4952
4953 if (reloc->name != NULL)
4954 minfo ("%s+", reloc->name);
4955 else
4956 minfo ("%s+", reloc->section->name);
4957
4958 exp_print_tree (reloc->addend_exp);
4959
4960 print_nl ();
4961
4962 print_dot = addr + TO_ADDR (size);
4963 }
4964
4965 static void
4966 print_padding_statement (lang_padding_statement_type *s)
4967 {
4968 int len;
4969 bfd_vma addr;
4970
4971 init_opb (s->output_section);
4972 minfo (" *fill*");
4973
4974 len = sizeof " *fill*" - 1;
4975 while (len < SECTION_NAME_MAP_LENGTH)
4976 {
4977 print_space ();
4978 ++len;
4979 }
4980
4981 addr = s->output_offset;
4982 if (s->output_section != NULL)
4983 addr += s->output_section->vma;
4984 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4985
4986 if (s->fill->size != 0)
4987 {
4988 size_t size;
4989 unsigned char *p;
4990 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4991 fprintf (config.map_file, "%02x", *p);
4992 }
4993
4994 print_nl ();
4995
4996 print_dot = addr + TO_ADDR (s->size);
4997 }
4998
4999 static void
5000 print_wild_statement (lang_wild_statement_type *w,
5001 lang_output_section_statement_type *os)
5002 {
5003 struct wildcard_list *sec;
5004
5005 print_space ();
5006
5007 if (w->exclude_name_list)
5008 {
5009 name_list *tmp;
5010 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5011 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5012 minfo (" %s", tmp->name);
5013 minfo (") ");
5014 }
5015
5016 if (w->filenames_sorted)
5017 minfo ("SORT_BY_NAME(");
5018 if (w->filename != NULL)
5019 minfo ("%s", w->filename);
5020 else
5021 minfo ("*");
5022 if (w->filenames_sorted)
5023 minfo (")");
5024
5025 minfo ("(");
5026 for (sec = w->section_list; sec; sec = sec->next)
5027 {
5028 int closing_paren = 0;
5029
5030 switch (sec->spec.sorted)
5031 {
5032 case none:
5033 break;
5034
5035 case by_name:
5036 minfo ("SORT_BY_NAME(");
5037 closing_paren = 1;
5038 break;
5039
5040 case by_alignment:
5041 minfo ("SORT_BY_ALIGNMENT(");
5042 closing_paren = 1;
5043 break;
5044
5045 case by_name_alignment:
5046 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5047 closing_paren = 2;
5048 break;
5049
5050 case by_alignment_name:
5051 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5052 closing_paren = 2;
5053 break;
5054
5055 case by_none:
5056 minfo ("SORT_NONE(");
5057 closing_paren = 1;
5058 break;
5059
5060 case by_init_priority:
5061 minfo ("SORT_BY_INIT_PRIORITY(");
5062 closing_paren = 1;
5063 break;
5064 }
5065
5066 if (sec->spec.exclude_name_list != NULL)
5067 {
5068 name_list *tmp;
5069 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5070 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5071 minfo (" %s", tmp->name);
5072 minfo (") ");
5073 }
5074 if (sec->spec.name != NULL)
5075 minfo ("%s", sec->spec.name);
5076 else
5077 minfo ("*");
5078 for (;closing_paren > 0; closing_paren--)
5079 minfo (")");
5080 if (sec->next)
5081 minfo (" ");
5082 }
5083 minfo (")");
5084
5085 print_nl ();
5086
5087 print_statement_list (w->children.head, os);
5088 }
5089
5090 /* Print a group statement. */
5091
5092 static void
5093 print_group (lang_group_statement_type *s,
5094 lang_output_section_statement_type *os)
5095 {
5096 fprintf (config.map_file, "START GROUP\n");
5097 print_statement_list (s->children.head, os);
5098 fprintf (config.map_file, "END GROUP\n");
5099 }
5100
5101 /* Print the list of statements in S.
5102 This can be called for any statement type. */
5103
5104 static void
5105 print_statement_list (lang_statement_union_type *s,
5106 lang_output_section_statement_type *os)
5107 {
5108 while (s != NULL)
5109 {
5110 print_statement (s, os);
5111 s = s->header.next;
5112 }
5113 }
5114
5115 /* Print the first statement in statement list S.
5116 This can be called for any statement type. */
5117
5118 static void
5119 print_statement (lang_statement_union_type *s,
5120 lang_output_section_statement_type *os)
5121 {
5122 switch (s->header.type)
5123 {
5124 default:
5125 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5126 FAIL ();
5127 break;
5128 case lang_constructors_statement_enum:
5129 if (constructor_list.head != NULL)
5130 {
5131 if (constructors_sorted)
5132 minfo (" SORT (CONSTRUCTORS)\n");
5133 else
5134 minfo (" CONSTRUCTORS\n");
5135 print_statement_list (constructor_list.head, os);
5136 }
5137 break;
5138 case lang_wild_statement_enum:
5139 print_wild_statement (&s->wild_statement, os);
5140 break;
5141 case lang_address_statement_enum:
5142 print_address_statement (&s->address_statement);
5143 break;
5144 case lang_object_symbols_statement_enum:
5145 minfo (" CREATE_OBJECT_SYMBOLS\n");
5146 break;
5147 case lang_fill_statement_enum:
5148 print_fill_statement (&s->fill_statement);
5149 break;
5150 case lang_data_statement_enum:
5151 print_data_statement (&s->data_statement);
5152 break;
5153 case lang_reloc_statement_enum:
5154 print_reloc_statement (&s->reloc_statement);
5155 break;
5156 case lang_input_section_enum:
5157 print_input_section (s->input_section.section, FALSE);
5158 break;
5159 case lang_padding_statement_enum:
5160 print_padding_statement (&s->padding_statement);
5161 break;
5162 case lang_output_section_statement_enum:
5163 print_output_section_statement (&s->output_section_statement);
5164 break;
5165 case lang_assignment_statement_enum:
5166 print_assignment (&s->assignment_statement, os);
5167 break;
5168 case lang_target_statement_enum:
5169 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5170 break;
5171 case lang_output_statement_enum:
5172 minfo ("OUTPUT(%s", s->output_statement.name);
5173 if (output_target != NULL)
5174 minfo (" %s", output_target);
5175 minfo (")\n");
5176 break;
5177 case lang_input_statement_enum:
5178 print_input_statement (&s->input_statement);
5179 break;
5180 case lang_group_statement_enum:
5181 print_group (&s->group_statement, os);
5182 break;
5183 case lang_insert_statement_enum:
5184 minfo ("INSERT %s %s\n",
5185 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5186 s->insert_statement.where);
5187 break;
5188 }
5189 }
5190
5191 static void
5192 print_statements (void)
5193 {
5194 print_statement_list (statement_list.head, abs_output_section);
5195 }
5196
5197 /* Print the first N statements in statement list S to STDERR.
5198 If N == 0, nothing is printed.
5199 If N < 0, the entire list is printed.
5200 Intended to be called from GDB. */
5201
5202 void
5203 dprint_statement (lang_statement_union_type *s, int n)
5204 {
5205 FILE *map_save = config.map_file;
5206
5207 config.map_file = stderr;
5208
5209 if (n < 0)
5210 print_statement_list (s, abs_output_section);
5211 else
5212 {
5213 while (s && --n >= 0)
5214 {
5215 print_statement (s, abs_output_section);
5216 s = s->header.next;
5217 }
5218 }
5219
5220 config.map_file = map_save;
5221 }
5222
5223 static void
5224 insert_pad (lang_statement_union_type **ptr,
5225 fill_type *fill,
5226 bfd_size_type alignment_needed,
5227 asection *output_section,
5228 bfd_vma dot)
5229 {
5230 static fill_type zero_fill;
5231 lang_statement_union_type *pad = NULL;
5232
5233 if (ptr != &statement_list.head)
5234 pad = ((lang_statement_union_type *)
5235 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5236 if (pad != NULL
5237 && pad->header.type == lang_padding_statement_enum
5238 && pad->padding_statement.output_section == output_section)
5239 {
5240 /* Use the existing pad statement. */
5241 }
5242 else if ((pad = *ptr) != NULL
5243 && pad->header.type == lang_padding_statement_enum
5244 && pad->padding_statement.output_section == output_section)
5245 {
5246 /* Use the existing pad statement. */
5247 }
5248 else
5249 {
5250 /* Make a new padding statement, linked into existing chain. */
5251 pad = stat_alloc (sizeof (lang_padding_statement_type));
5252 pad->header.next = *ptr;
5253 *ptr = pad;
5254 pad->header.type = lang_padding_statement_enum;
5255 pad->padding_statement.output_section = output_section;
5256 if (fill == NULL)
5257 fill = &zero_fill;
5258 pad->padding_statement.fill = fill;
5259 }
5260 pad->padding_statement.output_offset = dot - output_section->vma;
5261 pad->padding_statement.size = alignment_needed;
5262 if (!(output_section->flags & SEC_FIXED_SIZE))
5263 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5264 - output_section->vma);
5265 }
5266
5267 /* Work out how much this section will move the dot point. */
5268
5269 static bfd_vma
5270 size_input_section
5271 (lang_statement_union_type **this_ptr,
5272 lang_output_section_statement_type *output_section_statement,
5273 fill_type *fill,
5274 bfd_boolean *removed,
5275 bfd_vma dot)
5276 {
5277 lang_input_section_type *is = &((*this_ptr)->input_section);
5278 asection *i = is->section;
5279 asection *o = output_section_statement->bfd_section;
5280 *removed = 0;
5281
5282 if (link_info.non_contiguous_regions)
5283 {
5284 /* If the input section I has already been successfully assigned
5285 to an output section other than O, don't bother with it and
5286 let the caller remove it from the list. Keep processing in
5287 case we have already handled O, because the repeated passes
5288 have reinitialized its size. */
5289 if (i->already_assigned && i->already_assigned != o)
5290 {
5291 *removed = 1;
5292 return dot;
5293 }
5294 }
5295
5296 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5297 i->output_offset = i->vma - o->vma;
5298 else if (((i->flags & SEC_EXCLUDE) != 0)
5299 || output_section_statement->ignored)
5300 i->output_offset = dot - o->vma;
5301 else
5302 {
5303 bfd_size_type alignment_needed;
5304
5305 /* Align this section first to the input sections requirement,
5306 then to the output section's requirement. If this alignment
5307 is greater than any seen before, then record it too. Perform
5308 the alignment by inserting a magic 'padding' statement. */
5309
5310 if (output_section_statement->subsection_alignment != NULL)
5311 i->alignment_power
5312 = exp_get_power (output_section_statement->subsection_alignment,
5313 "subsection alignment");
5314
5315 if (o->alignment_power < i->alignment_power)
5316 o->alignment_power = i->alignment_power;
5317
5318 alignment_needed = align_power (dot, i->alignment_power) - dot;
5319
5320 if (alignment_needed != 0)
5321 {
5322 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5323 dot += alignment_needed;
5324 }
5325
5326 if (link_info.non_contiguous_regions)
5327 {
5328 /* If I would overflow O, let the caller remove I from the
5329 list. */
5330 if (output_section_statement->region)
5331 {
5332 bfd_vma end = output_section_statement->region->origin
5333 + output_section_statement->region->length;
5334
5335 if (dot + TO_ADDR (i->size) > end)
5336 {
5337 if (i->flags & SEC_LINKER_CREATED)
5338 einfo (_("%F%P: Output section '%s' not large enough for the "
5339 "linker-created stubs section '%s'.\n"),
5340 i->output_section->name, i->name);
5341
5342 if (i->rawsize && i->rawsize != i->size)
5343 einfo (_("%F%P: Relaxation not supported with "
5344 "--enable-non-contiguous-regions (section '%s' "
5345 "would overflow '%s' after it changed size).\n"),
5346 i->name, i->output_section->name);
5347
5348 *removed = 1;
5349 dot = end;
5350 i->output_section = NULL;
5351 return dot;
5352 }
5353 }
5354 }
5355
5356 /* Remember where in the output section this input section goes. */
5357 i->output_offset = dot - o->vma;
5358
5359 /* Mark how big the output section must be to contain this now. */
5360 dot += TO_ADDR (i->size);
5361 if (!(o->flags & SEC_FIXED_SIZE))
5362 o->size = TO_SIZE (dot - o->vma);
5363
5364 if (link_info.non_contiguous_regions)
5365 {
5366 /* Record that I was successfully assigned to O, and update
5367 its actual output section too. */
5368 i->already_assigned = o;
5369 i->output_section = o;
5370 }
5371 }
5372
5373 return dot;
5374 }
5375
5376 struct check_sec
5377 {
5378 asection *sec;
5379 bfd_boolean warned;
5380 };
5381
5382 static int
5383 sort_sections_by_lma (const void *arg1, const void *arg2)
5384 {
5385 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5386 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5387
5388 if (sec1->lma < sec2->lma)
5389 return -1;
5390 else if (sec1->lma > sec2->lma)
5391 return 1;
5392 else if (sec1->id < sec2->id)
5393 return -1;
5394 else if (sec1->id > sec2->id)
5395 return 1;
5396
5397 return 0;
5398 }
5399
5400 static int
5401 sort_sections_by_vma (const void *arg1, const void *arg2)
5402 {
5403 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5404 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5405
5406 if (sec1->vma < sec2->vma)
5407 return -1;
5408 else if (sec1->vma > sec2->vma)
5409 return 1;
5410 else if (sec1->id < sec2->id)
5411 return -1;
5412 else if (sec1->id > sec2->id)
5413 return 1;
5414
5415 return 0;
5416 }
5417
5418 #define IS_TBSS(s) \
5419 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5420
5421 #define IGNORE_SECTION(s) \
5422 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5423
5424 /* Check to see if any allocated sections overlap with other allocated
5425 sections. This can happen if a linker script specifies the output
5426 section addresses of the two sections. Also check whether any memory
5427 region has overflowed. */
5428
5429 static void
5430 lang_check_section_addresses (void)
5431 {
5432 asection *s, *p;
5433 struct check_sec *sections;
5434 size_t i, count;
5435 bfd_vma addr_mask;
5436 bfd_vma s_start;
5437 bfd_vma s_end;
5438 bfd_vma p_start = 0;
5439 bfd_vma p_end = 0;
5440 lang_memory_region_type *m;
5441 bfd_boolean overlays;
5442
5443 /* Detect address space overflow on allocated sections. */
5444 addr_mask = ((bfd_vma) 1 <<
5445 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5446 addr_mask = (addr_mask << 1) + 1;
5447 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5448 if ((s->flags & SEC_ALLOC) != 0)
5449 {
5450 s_end = (s->vma + s->size) & addr_mask;
5451 if (s_end != 0 && s_end < (s->vma & addr_mask))
5452 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5453 s->name);
5454 else
5455 {
5456 s_end = (s->lma + s->size) & addr_mask;
5457 if (s_end != 0 && s_end < (s->lma & addr_mask))
5458 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5459 s->name);
5460 }
5461 }
5462
5463 if (bfd_count_sections (link_info.output_bfd) <= 1)
5464 return;
5465
5466 count = bfd_count_sections (link_info.output_bfd);
5467 sections = XNEWVEC (struct check_sec, count);
5468
5469 /* Scan all sections in the output list. */
5470 count = 0;
5471 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5472 {
5473 if (IGNORE_SECTION (s)
5474 || s->size == 0)
5475 continue;
5476
5477 sections[count].sec = s;
5478 sections[count].warned = FALSE;
5479 count++;
5480 }
5481
5482 if (count <= 1)
5483 {
5484 free (sections);
5485 return;
5486 }
5487
5488 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5489
5490 /* First check section LMAs. There should be no overlap of LMAs on
5491 loadable sections, even with overlays. */
5492 for (p = NULL, i = 0; i < count; i++)
5493 {
5494 s = sections[i].sec;
5495 init_opb (s);
5496 if ((s->flags & SEC_LOAD) != 0)
5497 {
5498 s_start = s->lma;
5499 s_end = s_start + TO_ADDR (s->size) - 1;
5500
5501 /* Look for an overlap. We have sorted sections by lma, so
5502 we know that s_start >= p_start. Besides the obvious
5503 case of overlap when the current section starts before
5504 the previous one ends, we also must have overlap if the
5505 previous section wraps around the address space. */
5506 if (p != NULL
5507 && (s_start <= p_end
5508 || p_end < p_start))
5509 {
5510 einfo (_("%X%P: section %s LMA [%V,%V]"
5511 " overlaps section %s LMA [%V,%V]\n"),
5512 s->name, s_start, s_end, p->name, p_start, p_end);
5513 sections[i].warned = TRUE;
5514 }
5515 p = s;
5516 p_start = s_start;
5517 p_end = s_end;
5518 }
5519 }
5520
5521 /* If any non-zero size allocated section (excluding tbss) starts at
5522 exactly the same VMA as another such section, then we have
5523 overlays. Overlays generated by the OVERLAY keyword will have
5524 this property. It is possible to intentionally generate overlays
5525 that fail this test, but it would be unusual. */
5526 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5527 overlays = FALSE;
5528 p_start = sections[0].sec->vma;
5529 for (i = 1; i < count; i++)
5530 {
5531 s_start = sections[i].sec->vma;
5532 if (p_start == s_start)
5533 {
5534 overlays = TRUE;
5535 break;
5536 }
5537 p_start = s_start;
5538 }
5539
5540 /* Now check section VMAs if no overlays were detected. */
5541 if (!overlays)
5542 {
5543 for (p = NULL, i = 0; i < count; i++)
5544 {
5545 s = sections[i].sec;
5546 init_opb (s);
5547 s_start = s->vma;
5548 s_end = s_start + TO_ADDR (s->size) - 1;
5549
5550 if (p != NULL
5551 && !sections[i].warned
5552 && (s_start <= p_end
5553 || p_end < p_start))
5554 einfo (_("%X%P: section %s VMA [%V,%V]"
5555 " overlaps section %s VMA [%V,%V]\n"),
5556 s->name, s_start, s_end, p->name, p_start, p_end);
5557 p = s;
5558 p_start = s_start;
5559 p_end = s_end;
5560 }
5561 }
5562
5563 free (sections);
5564
5565 /* If any memory region has overflowed, report by how much.
5566 We do not issue this diagnostic for regions that had sections
5567 explicitly placed outside their bounds; os_region_check's
5568 diagnostics are adequate for that case.
5569
5570 FIXME: It is conceivable that m->current - (m->origin + m->length)
5571 might overflow a 32-bit integer. There is, alas, no way to print
5572 a bfd_vma quantity in decimal. */
5573 for (m = lang_memory_region_list; m; m = m->next)
5574 if (m->had_full_message)
5575 {
5576 unsigned long over = m->current - (m->origin + m->length);
5577 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5578 "%X%P: region `%s' overflowed by %lu bytes\n",
5579 over),
5580 m->name_list.name, over);
5581 }
5582 }
5583
5584 /* Make sure the new address is within the region. We explicitly permit the
5585 current address to be at the exact end of the region when the address is
5586 non-zero, in case the region is at the end of addressable memory and the
5587 calculation wraps around. */
5588
5589 static void
5590 os_region_check (lang_output_section_statement_type *os,
5591 lang_memory_region_type *region,
5592 etree_type *tree,
5593 bfd_vma rbase)
5594 {
5595 if ((region->current < region->origin
5596 || (region->current - region->origin > region->length))
5597 && ((region->current != region->origin + region->length)
5598 || rbase == 0))
5599 {
5600 if (tree != NULL)
5601 {
5602 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5603 " is not within region `%s'\n"),
5604 region->current,
5605 os->bfd_section->owner,
5606 os->bfd_section->name,
5607 region->name_list.name);
5608 }
5609 else if (!region->had_full_message)
5610 {
5611 region->had_full_message = TRUE;
5612
5613 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5614 os->bfd_section->owner,
5615 os->bfd_section->name,
5616 region->name_list.name);
5617 }
5618 }
5619 }
5620
5621 static void
5622 ldlang_check_relro_region (lang_statement_union_type *s,
5623 seg_align_type *seg)
5624 {
5625 if (seg->relro == exp_seg_relro_start)
5626 {
5627 if (!seg->relro_start_stat)
5628 seg->relro_start_stat = s;
5629 else
5630 {
5631 ASSERT (seg->relro_start_stat == s);
5632 }
5633 }
5634 else if (seg->relro == exp_seg_relro_end)
5635 {
5636 if (!seg->relro_end_stat)
5637 seg->relro_end_stat = s;
5638 else
5639 {
5640 ASSERT (seg->relro_end_stat == s);
5641 }
5642 }
5643 }
5644
5645 /* Set the sizes for all the output sections. */
5646
5647 static bfd_vma
5648 lang_size_sections_1
5649 (lang_statement_union_type **prev,
5650 lang_output_section_statement_type *output_section_statement,
5651 fill_type *fill,
5652 bfd_vma dot,
5653 bfd_boolean *relax,
5654 bfd_boolean check_regions)
5655 {
5656 lang_statement_union_type *s;
5657 lang_statement_union_type *prev_s = NULL;
5658 bfd_boolean removed_prev_s = FALSE;
5659
5660 /* Size up the sections from their constituent parts. */
5661 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5662 {
5663 bfd_boolean removed=FALSE;
5664
5665 switch (s->header.type)
5666 {
5667 case lang_output_section_statement_enum:
5668 {
5669 bfd_vma newdot, after, dotdelta;
5670 lang_output_section_statement_type *os;
5671 lang_memory_region_type *r;
5672 int section_alignment = 0;
5673
5674 os = &s->output_section_statement;
5675 init_opb (os->bfd_section);
5676 if (os->constraint == -1)
5677 break;
5678
5679 /* FIXME: We shouldn't need to zero section vmas for ld -r
5680 here, in lang_insert_orphan, or in the default linker scripts.
5681 This is covering for coff backend linker bugs. See PR6945. */
5682 if (os->addr_tree == NULL
5683 && bfd_link_relocatable (&link_info)
5684 && (bfd_get_flavour (link_info.output_bfd)
5685 == bfd_target_coff_flavour))
5686 os->addr_tree = exp_intop (0);
5687 if (os->addr_tree != NULL)
5688 {
5689 os->processed_vma = FALSE;
5690 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5691
5692 if (expld.result.valid_p)
5693 {
5694 dot = expld.result.value;
5695 if (expld.result.section != NULL)
5696 dot += expld.result.section->vma;
5697 }
5698 else if (expld.phase != lang_mark_phase_enum)
5699 einfo (_("%F%P:%pS: non constant or forward reference"
5700 " address expression for section %s\n"),
5701 os->addr_tree, os->name);
5702 }
5703
5704 if (os->bfd_section == NULL)
5705 /* This section was removed or never actually created. */
5706 break;
5707
5708 /* If this is a COFF shared library section, use the size and
5709 address from the input section. FIXME: This is COFF
5710 specific; it would be cleaner if there were some other way
5711 to do this, but nothing simple comes to mind. */
5712 if (((bfd_get_flavour (link_info.output_bfd)
5713 == bfd_target_ecoff_flavour)
5714 || (bfd_get_flavour (link_info.output_bfd)
5715 == bfd_target_coff_flavour))
5716 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5717 {
5718 asection *input;
5719
5720 if (os->children.head == NULL
5721 || os->children.head->header.next != NULL
5722 || (os->children.head->header.type
5723 != lang_input_section_enum))
5724 einfo (_("%X%P: internal error on COFF shared library"
5725 " section %s\n"), os->name);
5726
5727 input = os->children.head->input_section.section;
5728 bfd_set_section_vma (os->bfd_section,
5729 bfd_section_vma (input));
5730 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5731 os->bfd_section->size = input->size;
5732 break;
5733 }
5734
5735 newdot = dot;
5736 dotdelta = 0;
5737 if (bfd_is_abs_section (os->bfd_section))
5738 {
5739 /* No matter what happens, an abs section starts at zero. */
5740 ASSERT (os->bfd_section->vma == 0);
5741 }
5742 else
5743 {
5744 if (os->addr_tree == NULL)
5745 {
5746 /* No address specified for this section, get one
5747 from the region specification. */
5748 if (os->region == NULL
5749 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5750 && os->region->name_list.name[0] == '*'
5751 && strcmp (os->region->name_list.name,
5752 DEFAULT_MEMORY_REGION) == 0))
5753 {
5754 os->region = lang_memory_default (os->bfd_section);
5755 }
5756
5757 /* If a loadable section is using the default memory
5758 region, and some non default memory regions were
5759 defined, issue an error message. */
5760 if (!os->ignored
5761 && !IGNORE_SECTION (os->bfd_section)
5762 && !bfd_link_relocatable (&link_info)
5763 && check_regions
5764 && strcmp (os->region->name_list.name,
5765 DEFAULT_MEMORY_REGION) == 0
5766 && lang_memory_region_list != NULL
5767 && (strcmp (lang_memory_region_list->name_list.name,
5768 DEFAULT_MEMORY_REGION) != 0
5769 || lang_memory_region_list->next != NULL)
5770 && lang_sizing_iteration == 1)
5771 {
5772 /* By default this is an error rather than just a
5773 warning because if we allocate the section to the
5774 default memory region we can end up creating an
5775 excessively large binary, or even seg faulting when
5776 attempting to perform a negative seek. See
5777 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5778 for an example of this. This behaviour can be
5779 overridden by the using the --no-check-sections
5780 switch. */
5781 if (command_line.check_section_addresses)
5782 einfo (_("%F%P: error: no memory region specified"
5783 " for loadable section `%s'\n"),
5784 bfd_section_name (os->bfd_section));
5785 else
5786 einfo (_("%P: warning: no memory region specified"
5787 " for loadable section `%s'\n"),
5788 bfd_section_name (os->bfd_section));
5789 }
5790
5791 newdot = os->region->current;
5792 section_alignment = os->bfd_section->alignment_power;
5793 }
5794 else
5795 section_alignment = exp_get_power (os->section_alignment,
5796 "section alignment");
5797
5798 /* Align to what the section needs. */
5799 if (section_alignment > 0)
5800 {
5801 bfd_vma savedot = newdot;
5802 bfd_vma diff = 0;
5803
5804 newdot = align_power (newdot, section_alignment);
5805 dotdelta = newdot - savedot;
5806
5807 if (lang_sizing_iteration == 1)
5808 diff = dotdelta;
5809 else if (lang_sizing_iteration > 1)
5810 {
5811 /* Only report adjustments that would change
5812 alignment from what we have already reported. */
5813 diff = newdot - os->bfd_section->vma;
5814 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5815 diff = 0;
5816 }
5817 if (diff != 0
5818 && (config.warn_section_align
5819 || os->addr_tree != NULL))
5820 einfo (_("%P: warning: "
5821 "start of section %s changed by %ld\n"),
5822 os->name, (long) diff);
5823 }
5824
5825 bfd_set_section_vma (os->bfd_section, newdot);
5826
5827 os->bfd_section->output_offset = 0;
5828 }
5829
5830 lang_size_sections_1 (&os->children.head, os,
5831 os->fill, newdot, relax, check_regions);
5832
5833 os->processed_vma = TRUE;
5834
5835 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5836 /* Except for some special linker created sections,
5837 no output section should change from zero size
5838 after strip_excluded_output_sections. A non-zero
5839 size on an ignored section indicates that some
5840 input section was not sized early enough. */
5841 ASSERT (os->bfd_section->size == 0);
5842 else
5843 {
5844 dot = os->bfd_section->vma;
5845
5846 /* Put the section within the requested block size, or
5847 align at the block boundary. */
5848 after = ((dot
5849 + TO_ADDR (os->bfd_section->size)
5850 + os->block_value - 1)
5851 & - (bfd_vma) os->block_value);
5852
5853 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5854 os->bfd_section->size = TO_SIZE (after
5855 - os->bfd_section->vma);
5856 }
5857
5858 /* Set section lma. */
5859 r = os->region;
5860 if (r == NULL)
5861 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5862
5863 if (os->load_base)
5864 {
5865 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5866 os->bfd_section->lma = lma;
5867 }
5868 else if (os->lma_region != NULL)
5869 {
5870 bfd_vma lma = os->lma_region->current;
5871
5872 if (os->align_lma_with_input)
5873 lma += dotdelta;
5874 else
5875 {
5876 /* When LMA_REGION is the same as REGION, align the LMA
5877 as we did for the VMA, possibly including alignment
5878 from the bfd section. If a different region, then
5879 only align according to the value in the output
5880 statement. */
5881 if (os->lma_region != os->region)
5882 section_alignment = exp_get_power (os->section_alignment,
5883 "section alignment");
5884 if (section_alignment > 0)
5885 lma = align_power (lma, section_alignment);
5886 }
5887 os->bfd_section->lma = lma;
5888 }
5889 else if (r->last_os != NULL
5890 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5891 {
5892 bfd_vma lma;
5893 asection *last;
5894
5895 last = r->last_os->output_section_statement.bfd_section;
5896
5897 /* A backwards move of dot should be accompanied by
5898 an explicit assignment to the section LMA (ie.
5899 os->load_base set) because backwards moves can
5900 create overlapping LMAs. */
5901 if (dot < last->vma
5902 && os->bfd_section->size != 0
5903 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5904 {
5905 /* If dot moved backwards then leave lma equal to
5906 vma. This is the old default lma, which might
5907 just happen to work when the backwards move is
5908 sufficiently large. Nag if this changes anything,
5909 so people can fix their linker scripts. */
5910
5911 if (last->vma != last->lma)
5912 einfo (_("%P: warning: dot moved backwards "
5913 "before `%s'\n"), os->name);
5914 }
5915 else
5916 {
5917 /* If this is an overlay, set the current lma to that
5918 at the end of the previous section. */
5919 if (os->sectype == overlay_section)
5920 lma = last->lma + TO_ADDR (last->size);
5921
5922 /* Otherwise, keep the same lma to vma relationship
5923 as the previous section. */
5924 else
5925 lma = os->bfd_section->vma + last->lma - last->vma;
5926
5927 if (section_alignment > 0)
5928 lma = align_power (lma, section_alignment);
5929 os->bfd_section->lma = lma;
5930 }
5931 }
5932 os->processed_lma = TRUE;
5933
5934 /* Keep track of normal sections using the default
5935 lma region. We use this to set the lma for
5936 following sections. Overlays or other linker
5937 script assignment to lma might mean that the
5938 default lma == vma is incorrect.
5939 To avoid warnings about dot moving backwards when using
5940 -Ttext, don't start tracking sections until we find one
5941 of non-zero size or with lma set differently to vma.
5942 Do this tracking before we short-cut the loop so that we
5943 track changes for the case where the section size is zero,
5944 but the lma is set differently to the vma. This is
5945 important, if an orphan section is placed after an
5946 otherwise empty output section that has an explicit lma
5947 set, we want that lma reflected in the orphans lma. */
5948 if (((!IGNORE_SECTION (os->bfd_section)
5949 && (os->bfd_section->size != 0
5950 || (r->last_os == NULL
5951 && os->bfd_section->vma != os->bfd_section->lma)
5952 || (r->last_os != NULL
5953 && dot >= (r->last_os->output_section_statement
5954 .bfd_section->vma))))
5955 || os->sectype == first_overlay_section)
5956 && os->lma_region == NULL
5957 && !bfd_link_relocatable (&link_info))
5958 r->last_os = s;
5959
5960 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5961 break;
5962
5963 /* .tbss sections effectively have zero size. */
5964 if (!IS_TBSS (os->bfd_section)
5965 || bfd_link_relocatable (&link_info))
5966 dotdelta = TO_ADDR (os->bfd_section->size);
5967 else
5968 dotdelta = 0;
5969 dot += dotdelta;
5970
5971 if (os->update_dot_tree != 0)
5972 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5973
5974 /* Update dot in the region ?
5975 We only do this if the section is going to be allocated,
5976 since unallocated sections do not contribute to the region's
5977 overall size in memory. */
5978 if (os->region != NULL
5979 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5980 {
5981 os->region->current = dot;
5982
5983 if (check_regions)
5984 /* Make sure the new address is within the region. */
5985 os_region_check (os, os->region, os->addr_tree,
5986 os->bfd_section->vma);
5987
5988 if (os->lma_region != NULL && os->lma_region != os->region
5989 && ((os->bfd_section->flags & SEC_LOAD)
5990 || os->align_lma_with_input))
5991 {
5992 os->lma_region->current = os->bfd_section->lma + dotdelta;
5993
5994 if (check_regions)
5995 os_region_check (os, os->lma_region, NULL,
5996 os->bfd_section->lma);
5997 }
5998 }
5999 }
6000 break;
6001
6002 case lang_constructors_statement_enum:
6003 dot = lang_size_sections_1 (&constructor_list.head,
6004 output_section_statement,
6005 fill, dot, relax, check_regions);
6006 break;
6007
6008 case lang_data_statement_enum:
6009 {
6010 unsigned int size = 0;
6011
6012 s->data_statement.output_offset =
6013 dot - output_section_statement->bfd_section->vma;
6014 s->data_statement.output_section =
6015 output_section_statement->bfd_section;
6016
6017 /* We might refer to provided symbols in the expression, and
6018 need to mark them as needed. */
6019 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6020
6021 switch (s->data_statement.type)
6022 {
6023 default:
6024 abort ();
6025 case QUAD:
6026 case SQUAD:
6027 size = QUAD_SIZE;
6028 break;
6029 case LONG:
6030 size = LONG_SIZE;
6031 break;
6032 case SHORT:
6033 size = SHORT_SIZE;
6034 break;
6035 case BYTE:
6036 size = BYTE_SIZE;
6037 break;
6038 }
6039 if (size < TO_SIZE ((unsigned) 1))
6040 size = TO_SIZE ((unsigned) 1);
6041 dot += TO_ADDR (size);
6042 if (!(output_section_statement->bfd_section->flags
6043 & SEC_FIXED_SIZE))
6044 output_section_statement->bfd_section->size
6045 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6046
6047 }
6048 break;
6049
6050 case lang_reloc_statement_enum:
6051 {
6052 int size;
6053
6054 s->reloc_statement.output_offset =
6055 dot - output_section_statement->bfd_section->vma;
6056 s->reloc_statement.output_section =
6057 output_section_statement->bfd_section;
6058 size = bfd_get_reloc_size (s->reloc_statement.howto);
6059 dot += TO_ADDR (size);
6060 if (!(output_section_statement->bfd_section->flags
6061 & SEC_FIXED_SIZE))
6062 output_section_statement->bfd_section->size
6063 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6064 }
6065 break;
6066
6067 case lang_wild_statement_enum:
6068 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6069 output_section_statement,
6070 fill, dot, relax, check_regions);
6071 break;
6072
6073 case lang_object_symbols_statement_enum:
6074 link_info.create_object_symbols_section
6075 = output_section_statement->bfd_section;
6076 output_section_statement->bfd_section->flags |= SEC_KEEP;
6077 break;
6078
6079 case lang_output_statement_enum:
6080 case lang_target_statement_enum:
6081 break;
6082
6083 case lang_input_section_enum:
6084 {
6085 asection *i;
6086
6087 i = s->input_section.section;
6088 if (relax)
6089 {
6090 bfd_boolean again;
6091
6092 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6093 einfo (_("%F%P: can't relax section: %E\n"));
6094 if (again)
6095 *relax = TRUE;
6096 }
6097 dot = size_input_section (prev, output_section_statement,
6098 fill, &removed, dot);
6099 }
6100 break;
6101
6102 case lang_input_statement_enum:
6103 break;
6104
6105 case lang_fill_statement_enum:
6106 s->fill_statement.output_section =
6107 output_section_statement->bfd_section;
6108
6109 fill = s->fill_statement.fill;
6110 break;
6111
6112 case lang_assignment_statement_enum:
6113 {
6114 bfd_vma newdot = dot;
6115 etree_type *tree = s->assignment_statement.exp;
6116
6117 expld.dataseg.relro = exp_seg_relro_none;
6118
6119 exp_fold_tree (tree,
6120 output_section_statement->bfd_section,
6121 &newdot);
6122
6123 ldlang_check_relro_region (s, &expld.dataseg);
6124
6125 expld.dataseg.relro = exp_seg_relro_none;
6126
6127 /* This symbol may be relative to this section. */
6128 if ((tree->type.node_class == etree_provided
6129 || tree->type.node_class == etree_assign)
6130 && (tree->assign.dst [0] != '.'
6131 || tree->assign.dst [1] != '\0'))
6132 output_section_statement->update_dot = 1;
6133
6134 if (!output_section_statement->ignored)
6135 {
6136 if (output_section_statement == abs_output_section)
6137 {
6138 /* If we don't have an output section, then just adjust
6139 the default memory address. */
6140 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6141 FALSE)->current = newdot;
6142 }
6143 else if (newdot != dot)
6144 {
6145 /* Insert a pad after this statement. We can't
6146 put the pad before when relaxing, in case the
6147 assignment references dot. */
6148 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6149 output_section_statement->bfd_section, dot);
6150
6151 /* Don't neuter the pad below when relaxing. */
6152 s = s->header.next;
6153
6154 /* If dot is advanced, this implies that the section
6155 should have space allocated to it, unless the
6156 user has explicitly stated that the section
6157 should not be allocated. */
6158 if (output_section_statement->sectype != noalloc_section
6159 && (output_section_statement->sectype != noload_section
6160 || (bfd_get_flavour (link_info.output_bfd)
6161 == bfd_target_elf_flavour)))
6162 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6163 }
6164 dot = newdot;
6165 }
6166 }
6167 break;
6168
6169 case lang_padding_statement_enum:
6170 /* If this is the first time lang_size_sections is called,
6171 we won't have any padding statements. If this is the
6172 second or later passes when relaxing, we should allow
6173 padding to shrink. If padding is needed on this pass, it
6174 will be added back in. */
6175 s->padding_statement.size = 0;
6176
6177 /* Make sure output_offset is valid. If relaxation shrinks
6178 the section and this pad isn't needed, it's possible to
6179 have output_offset larger than the final size of the
6180 section. bfd_set_section_contents will complain even for
6181 a pad size of zero. */
6182 s->padding_statement.output_offset
6183 = dot - output_section_statement->bfd_section->vma;
6184 break;
6185
6186 case lang_group_statement_enum:
6187 dot = lang_size_sections_1 (&s->group_statement.children.head,
6188 output_section_statement,
6189 fill, dot, relax, check_regions);
6190 break;
6191
6192 case lang_insert_statement_enum:
6193 break;
6194
6195 /* We can only get here when relaxing is turned on. */
6196 case lang_address_statement_enum:
6197 break;
6198
6199 default:
6200 FAIL ();
6201 break;
6202 }
6203
6204 /* If an input section doesn't fit in the current output
6205 section, remove it from the list. Handle the case where we
6206 have to remove an input_section statement here: there is a
6207 special case to remove the first element of the list. */
6208 if (link_info.non_contiguous_regions && removed)
6209 {
6210 /* If we removed the first element during the previous
6211 iteration, override the loop assignment of prev_s. */
6212 if (removed_prev_s)
6213 prev_s = NULL;
6214
6215 if (prev_s)
6216 {
6217 /* If there was a real previous input section, just skip
6218 the current one. */
6219 prev_s->header.next=s->header.next;
6220 s = prev_s;
6221 removed_prev_s = FALSE;
6222 }
6223 else
6224 {
6225 /* Remove the first input section of the list. */
6226 *prev = s->header.next;
6227 removed_prev_s = TRUE;
6228 }
6229
6230 /* Move to next element, unless we removed the head of the
6231 list. */
6232 if (!removed_prev_s)
6233 prev = &s->header.next;
6234 }
6235 else
6236 {
6237 prev = &s->header.next;
6238 removed_prev_s = FALSE;
6239 }
6240 }
6241 return dot;
6242 }
6243
6244 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6245 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6246 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6247 segments. We are allowed an opportunity to override this decision. */
6248
6249 bfd_boolean
6250 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6251 bfd *abfd ATTRIBUTE_UNUSED,
6252 asection *current_section,
6253 asection *previous_section,
6254 bfd_boolean new_segment)
6255 {
6256 lang_output_section_statement_type *cur;
6257 lang_output_section_statement_type *prev;
6258
6259 /* The checks below are only necessary when the BFD library has decided
6260 that the two sections ought to be placed into the same segment. */
6261 if (new_segment)
6262 return TRUE;
6263
6264 /* Paranoia checks. */
6265 if (current_section == NULL || previous_section == NULL)
6266 return new_segment;
6267
6268 /* If this flag is set, the target never wants code and non-code
6269 sections comingled in the same segment. */
6270 if (config.separate_code
6271 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6272 return TRUE;
6273
6274 /* Find the memory regions associated with the two sections.
6275 We call lang_output_section_find() here rather than scanning the list
6276 of output sections looking for a matching section pointer because if
6277 we have a large number of sections then a hash lookup is faster. */
6278 cur = lang_output_section_find (current_section->name);
6279 prev = lang_output_section_find (previous_section->name);
6280
6281 /* More paranoia. */
6282 if (cur == NULL || prev == NULL)
6283 return new_segment;
6284
6285 /* If the regions are different then force the sections to live in
6286 different segments. See the email thread starting at the following
6287 URL for the reasons why this is necessary:
6288 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6289 return cur->region != prev->region;
6290 }
6291
6292 void
6293 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6294 {
6295 lang_statement_iteration++;
6296 if (expld.phase != lang_mark_phase_enum)
6297 lang_sizing_iteration++;
6298 lang_size_sections_1 (&statement_list.head, abs_output_section,
6299 0, 0, relax, check_regions);
6300 }
6301
6302 static bfd_boolean
6303 lang_size_segment (seg_align_type *seg)
6304 {
6305 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6306 a page could be saved in the data segment. */
6307 bfd_vma first, last;
6308
6309 first = -seg->base & (seg->pagesize - 1);
6310 last = seg->end & (seg->pagesize - 1);
6311 if (first && last
6312 && ((seg->base & ~(seg->pagesize - 1))
6313 != (seg->end & ~(seg->pagesize - 1)))
6314 && first + last <= seg->pagesize)
6315 {
6316 seg->phase = exp_seg_adjust;
6317 return TRUE;
6318 }
6319
6320 seg->phase = exp_seg_done;
6321 return FALSE;
6322 }
6323
6324 static bfd_vma
6325 lang_size_relro_segment_1 (seg_align_type *seg)
6326 {
6327 bfd_vma relro_end, desired_end;
6328 asection *sec;
6329
6330 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6331 relro_end = ((seg->relro_end + seg->pagesize - 1)
6332 & ~(seg->pagesize - 1));
6333
6334 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6335 desired_end = relro_end - seg->relro_offset;
6336
6337 /* For sections in the relro segment.. */
6338 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6339 if ((sec->flags & SEC_ALLOC) != 0
6340 && sec->vma >= seg->base
6341 && sec->vma < seg->relro_end - seg->relro_offset)
6342 {
6343 /* Where do we want to put this section so that it ends as
6344 desired? */
6345 bfd_vma start, end, bump;
6346
6347 end = start = sec->vma;
6348 if (!IS_TBSS (sec))
6349 end += TO_ADDR (sec->size);
6350 bump = desired_end - end;
6351 /* We'd like to increase START by BUMP, but we must heed
6352 alignment so the increase might be less than optimum. */
6353 start += bump;
6354 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6355 /* This is now the desired end for the previous section. */
6356 desired_end = start;
6357 }
6358
6359 seg->phase = exp_seg_relro_adjust;
6360 ASSERT (desired_end >= seg->base);
6361 seg->base = desired_end;
6362 return relro_end;
6363 }
6364
6365 static bfd_boolean
6366 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6367 {
6368 bfd_boolean do_reset = FALSE;
6369 bfd_boolean do_data_relro;
6370 bfd_vma data_initial_base, data_relro_end;
6371
6372 if (link_info.relro && expld.dataseg.relro_end)
6373 {
6374 do_data_relro = TRUE;
6375 data_initial_base = expld.dataseg.base;
6376 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6377 }
6378 else
6379 {
6380 do_data_relro = FALSE;
6381 data_initial_base = data_relro_end = 0;
6382 }
6383
6384 if (do_data_relro)
6385 {
6386 lang_reset_memory_regions ();
6387 one_lang_size_sections_pass (relax, check_regions);
6388
6389 /* Assignments to dot, or to output section address in a user
6390 script have increased padding over the original. Revert. */
6391 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6392 {
6393 expld.dataseg.base = data_initial_base;;
6394 do_reset = TRUE;
6395 }
6396 }
6397
6398 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6399 do_reset = TRUE;
6400
6401 return do_reset;
6402 }
6403
6404 void
6405 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6406 {
6407 expld.phase = lang_allocating_phase_enum;
6408 expld.dataseg.phase = exp_seg_none;
6409
6410 one_lang_size_sections_pass (relax, check_regions);
6411
6412 if (expld.dataseg.phase != exp_seg_end_seen)
6413 expld.dataseg.phase = exp_seg_done;
6414
6415 if (expld.dataseg.phase == exp_seg_end_seen)
6416 {
6417 bfd_boolean do_reset
6418 = lang_size_relro_segment (relax, check_regions);
6419
6420 if (do_reset)
6421 {
6422 lang_reset_memory_regions ();
6423 one_lang_size_sections_pass (relax, check_regions);
6424 }
6425
6426 if (link_info.relro && expld.dataseg.relro_end)
6427 {
6428 link_info.relro_start = expld.dataseg.base;
6429 link_info.relro_end = expld.dataseg.relro_end;
6430 }
6431 }
6432 }
6433
6434 static lang_output_section_statement_type *current_section;
6435 static lang_assignment_statement_type *current_assign;
6436 static bfd_boolean prefer_next_section;
6437
6438 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6439
6440 static bfd_vma
6441 lang_do_assignments_1 (lang_statement_union_type *s,
6442 lang_output_section_statement_type *current_os,
6443 fill_type *fill,
6444 bfd_vma dot,
6445 bfd_boolean *found_end)
6446 {
6447 for (; s != NULL; s = s->header.next)
6448 {
6449 switch (s->header.type)
6450 {
6451 case lang_constructors_statement_enum:
6452 dot = lang_do_assignments_1 (constructor_list.head,
6453 current_os, fill, dot, found_end);
6454 break;
6455
6456 case lang_output_section_statement_enum:
6457 {
6458 lang_output_section_statement_type *os;
6459 bfd_vma newdot;
6460
6461 os = &(s->output_section_statement);
6462 os->after_end = *found_end;
6463 init_opb (os->bfd_section);
6464 if (os->bfd_section != NULL && !os->ignored)
6465 {
6466 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6467 {
6468 current_section = os;
6469 prefer_next_section = FALSE;
6470 }
6471 dot = os->bfd_section->vma;
6472 }
6473 newdot = lang_do_assignments_1 (os->children.head,
6474 os, os->fill, dot, found_end);
6475 if (!os->ignored)
6476 {
6477 if (os->bfd_section != NULL)
6478 {
6479 /* .tbss sections effectively have zero size. */
6480 if (!IS_TBSS (os->bfd_section)
6481 || bfd_link_relocatable (&link_info))
6482 dot += TO_ADDR (os->bfd_section->size);
6483
6484 if (os->update_dot_tree != NULL)
6485 exp_fold_tree (os->update_dot_tree,
6486 bfd_abs_section_ptr, &dot);
6487 }
6488 else
6489 dot = newdot;
6490 }
6491 }
6492 break;
6493
6494 case lang_wild_statement_enum:
6495
6496 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6497 current_os, fill, dot, found_end);
6498 break;
6499
6500 case lang_object_symbols_statement_enum:
6501 case lang_output_statement_enum:
6502 case lang_target_statement_enum:
6503 break;
6504
6505 case lang_data_statement_enum:
6506 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6507 if (expld.result.valid_p)
6508 {
6509 s->data_statement.value = expld.result.value;
6510 if (expld.result.section != NULL)
6511 s->data_statement.value += expld.result.section->vma;
6512 }
6513 else if (expld.phase == lang_final_phase_enum)
6514 einfo (_("%F%P: invalid data statement\n"));
6515 {
6516 unsigned int size;
6517 switch (s->data_statement.type)
6518 {
6519 default:
6520 abort ();
6521 case QUAD:
6522 case SQUAD:
6523 size = QUAD_SIZE;
6524 break;
6525 case LONG:
6526 size = LONG_SIZE;
6527 break;
6528 case SHORT:
6529 size = SHORT_SIZE;
6530 break;
6531 case BYTE:
6532 size = BYTE_SIZE;
6533 break;
6534 }
6535 if (size < TO_SIZE ((unsigned) 1))
6536 size = TO_SIZE ((unsigned) 1);
6537 dot += TO_ADDR (size);
6538 }
6539 break;
6540
6541 case lang_reloc_statement_enum:
6542 exp_fold_tree (s->reloc_statement.addend_exp,
6543 bfd_abs_section_ptr, &dot);
6544 if (expld.result.valid_p)
6545 s->reloc_statement.addend_value = expld.result.value;
6546 else if (expld.phase == lang_final_phase_enum)
6547 einfo (_("%F%P: invalid reloc statement\n"));
6548 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6549 break;
6550
6551 case lang_input_section_enum:
6552 {
6553 asection *in = s->input_section.section;
6554
6555 if ((in->flags & SEC_EXCLUDE) == 0)
6556 dot += TO_ADDR (in->size);
6557 }
6558 break;
6559
6560 case lang_input_statement_enum:
6561 break;
6562
6563 case lang_fill_statement_enum:
6564 fill = s->fill_statement.fill;
6565 break;
6566
6567 case lang_assignment_statement_enum:
6568 current_assign = &s->assignment_statement;
6569 if (current_assign->exp->type.node_class != etree_assert)
6570 {
6571 const char *p = current_assign->exp->assign.dst;
6572
6573 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6574 prefer_next_section = TRUE;
6575
6576 while (*p == '_')
6577 ++p;
6578 if (strcmp (p, "end") == 0)
6579 *found_end = TRUE;
6580 }
6581 exp_fold_tree (s->assignment_statement.exp,
6582 (current_os->bfd_section != NULL
6583 ? current_os->bfd_section : bfd_und_section_ptr),
6584 &dot);
6585 break;
6586
6587 case lang_padding_statement_enum:
6588 dot += TO_ADDR (s->padding_statement.size);
6589 break;
6590
6591 case lang_group_statement_enum:
6592 dot = lang_do_assignments_1 (s->group_statement.children.head,
6593 current_os, fill, dot, found_end);
6594 break;
6595
6596 case lang_insert_statement_enum:
6597 break;
6598
6599 case lang_address_statement_enum:
6600 break;
6601
6602 default:
6603 FAIL ();
6604 break;
6605 }
6606 }
6607 return dot;
6608 }
6609
6610 void
6611 lang_do_assignments (lang_phase_type phase)
6612 {
6613 bfd_boolean found_end = FALSE;
6614
6615 current_section = NULL;
6616 prefer_next_section = FALSE;
6617 expld.phase = phase;
6618 lang_statement_iteration++;
6619 lang_do_assignments_1 (statement_list.head,
6620 abs_output_section, NULL, 0, &found_end);
6621 }
6622
6623 /* For an assignment statement outside of an output section statement,
6624 choose the best of neighbouring output sections to use for values
6625 of "dot". */
6626
6627 asection *
6628 section_for_dot (void)
6629 {
6630 asection *s;
6631
6632 /* Assignments belong to the previous output section, unless there
6633 has been an assignment to "dot", in which case following
6634 assignments belong to the next output section. (The assumption
6635 is that an assignment to "dot" is setting up the address for the
6636 next output section.) Except that past the assignment to "_end"
6637 we always associate with the previous section. This exception is
6638 for targets like SH that define an alloc .stack or other
6639 weirdness after non-alloc sections. */
6640 if (current_section == NULL || prefer_next_section)
6641 {
6642 lang_statement_union_type *stmt;
6643 lang_output_section_statement_type *os;
6644
6645 for (stmt = (lang_statement_union_type *) current_assign;
6646 stmt != NULL;
6647 stmt = stmt->header.next)
6648 if (stmt->header.type == lang_output_section_statement_enum)
6649 break;
6650
6651 os = &stmt->output_section_statement;
6652 while (os != NULL
6653 && !os->after_end
6654 && (os->bfd_section == NULL
6655 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6656 || bfd_section_removed_from_list (link_info.output_bfd,
6657 os->bfd_section)))
6658 os = os->next;
6659
6660 if (current_section == NULL || os == NULL || !os->after_end)
6661 {
6662 if (os != NULL)
6663 s = os->bfd_section;
6664 else
6665 s = link_info.output_bfd->section_last;
6666 while (s != NULL
6667 && ((s->flags & SEC_ALLOC) == 0
6668 || (s->flags & SEC_THREAD_LOCAL) != 0))
6669 s = s->prev;
6670 if (s != NULL)
6671 return s;
6672
6673 return bfd_abs_section_ptr;
6674 }
6675 }
6676
6677 s = current_section->bfd_section;
6678
6679 /* The section may have been stripped. */
6680 while (s != NULL
6681 && ((s->flags & SEC_EXCLUDE) != 0
6682 || (s->flags & SEC_ALLOC) == 0
6683 || (s->flags & SEC_THREAD_LOCAL) != 0
6684 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6685 s = s->prev;
6686 if (s == NULL)
6687 s = link_info.output_bfd->sections;
6688 while (s != NULL
6689 && ((s->flags & SEC_ALLOC) == 0
6690 || (s->flags & SEC_THREAD_LOCAL) != 0))
6691 s = s->next;
6692 if (s != NULL)
6693 return s;
6694
6695 return bfd_abs_section_ptr;
6696 }
6697
6698 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6699
6700 static struct bfd_link_hash_entry **start_stop_syms;
6701 static size_t start_stop_count = 0;
6702 static size_t start_stop_alloc = 0;
6703
6704 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6705 to start_stop_syms. */
6706
6707 static void
6708 lang_define_start_stop (const char *symbol, asection *sec)
6709 {
6710 struct bfd_link_hash_entry *h;
6711
6712 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6713 if (h != NULL)
6714 {
6715 if (start_stop_count == start_stop_alloc)
6716 {
6717 start_stop_alloc = 2 * start_stop_alloc + 10;
6718 start_stop_syms
6719 = xrealloc (start_stop_syms,
6720 start_stop_alloc * sizeof (*start_stop_syms));
6721 }
6722 start_stop_syms[start_stop_count++] = h;
6723 }
6724 }
6725
6726 /* Check for input sections whose names match references to
6727 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6728 preliminary definitions. */
6729
6730 static void
6731 lang_init_start_stop (void)
6732 {
6733 bfd *abfd;
6734 asection *s;
6735 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6736
6737 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6738 for (s = abfd->sections; s != NULL; s = s->next)
6739 {
6740 const char *ps;
6741 const char *secname = s->name;
6742
6743 for (ps = secname; *ps != '\0'; ps++)
6744 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6745 break;
6746 if (*ps == '\0')
6747 {
6748 char *symbol = (char *) xmalloc (10 + strlen (secname));
6749
6750 symbol[0] = leading_char;
6751 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6752 lang_define_start_stop (symbol, s);
6753
6754 symbol[1] = leading_char;
6755 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6756 lang_define_start_stop (symbol + 1, s);
6757
6758 free (symbol);
6759 }
6760 }
6761 }
6762
6763 /* Iterate over start_stop_syms. */
6764
6765 static void
6766 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6767 {
6768 size_t i;
6769
6770 for (i = 0; i < start_stop_count; ++i)
6771 func (start_stop_syms[i]);
6772 }
6773
6774 /* __start and __stop symbols are only supposed to be defined by the
6775 linker for orphan sections, but we now extend that to sections that
6776 map to an output section of the same name. The symbols were
6777 defined early for --gc-sections, before we mapped input to output
6778 sections, so undo those that don't satisfy this rule. */
6779
6780 static void
6781 undef_start_stop (struct bfd_link_hash_entry *h)
6782 {
6783 if (h->ldscript_def)
6784 return;
6785
6786 if (h->u.def.section->output_section == NULL
6787 || h->u.def.section->output_section->owner != link_info.output_bfd
6788 || strcmp (h->u.def.section->name,
6789 h->u.def.section->output_section->name) != 0)
6790 {
6791 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6792 h->u.def.section->name);
6793 if (sec != NULL)
6794 {
6795 /* When there are more than one input sections with the same
6796 section name, SECNAME, linker picks the first one to define
6797 __start_SECNAME and __stop_SECNAME symbols. When the first
6798 input section is removed by comdat group, we need to check
6799 if there is still an output section with section name
6800 SECNAME. */
6801 asection *i;
6802 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6803 if (strcmp (h->u.def.section->name, i->name) == 0)
6804 {
6805 h->u.def.section = i;
6806 return;
6807 }
6808 }
6809 h->type = bfd_link_hash_undefined;
6810 h->u.undef.abfd = NULL;
6811 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
6812 {
6813 const struct elf_backend_data *bed;
6814 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6815 unsigned int was_forced = eh->forced_local;
6816
6817 bed = get_elf_backend_data (link_info.output_bfd);
6818 (*bed->elf_backend_hide_symbol) (&link_info, eh, TRUE);
6819 if (!eh->ref_regular_nonweak)
6820 h->type = bfd_link_hash_undefweak;
6821 eh->def_regular = 0;
6822 eh->forced_local = was_forced;
6823 }
6824 }
6825 }
6826
6827 static void
6828 lang_undef_start_stop (void)
6829 {
6830 foreach_start_stop (undef_start_stop);
6831 }
6832
6833 /* Check for output sections whose names match references to
6834 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6835 preliminary definitions. */
6836
6837 static void
6838 lang_init_startof_sizeof (void)
6839 {
6840 asection *s;
6841
6842 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6843 {
6844 const char *secname = s->name;
6845 char *symbol = (char *) xmalloc (10 + strlen (secname));
6846
6847 sprintf (symbol, ".startof.%s", secname);
6848 lang_define_start_stop (symbol, s);
6849
6850 memcpy (symbol + 1, ".size", 5);
6851 lang_define_start_stop (symbol + 1, s);
6852 free (symbol);
6853 }
6854 }
6855
6856 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6857
6858 static void
6859 set_start_stop (struct bfd_link_hash_entry *h)
6860 {
6861 if (h->ldscript_def
6862 || h->type != bfd_link_hash_defined)
6863 return;
6864
6865 if (h->root.string[0] == '.')
6866 {
6867 /* .startof. or .sizeof. symbol.
6868 .startof. already has final value. */
6869 if (h->root.string[2] == 'i')
6870 {
6871 /* .sizeof. */
6872 h->u.def.value = TO_ADDR (h->u.def.section->size);
6873 h->u.def.section = bfd_abs_section_ptr;
6874 }
6875 }
6876 else
6877 {
6878 /* __start or __stop symbol. */
6879 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6880
6881 h->u.def.section = h->u.def.section->output_section;
6882 if (h->root.string[4 + has_lead] == 'o')
6883 {
6884 /* __stop_ */
6885 h->u.def.value = TO_ADDR (h->u.def.section->size);
6886 }
6887 }
6888 }
6889
6890 static void
6891 lang_finalize_start_stop (void)
6892 {
6893 foreach_start_stop (set_start_stop);
6894 }
6895
6896 static void
6897 lang_end (void)
6898 {
6899 struct bfd_link_hash_entry *h;
6900 bfd_boolean warn;
6901
6902 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6903 || bfd_link_dll (&link_info))
6904 warn = entry_from_cmdline;
6905 else
6906 warn = TRUE;
6907
6908 /* Force the user to specify a root when generating a relocatable with
6909 --gc-sections, unless --gc-keep-exported was also given. */
6910 if (bfd_link_relocatable (&link_info)
6911 && link_info.gc_sections
6912 && !link_info.gc_keep_exported)
6913 {
6914 struct bfd_sym_chain *sym;
6915
6916 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6917 {
6918 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6919 FALSE, FALSE, FALSE);
6920 if (h != NULL
6921 && (h->type == bfd_link_hash_defined
6922 || h->type == bfd_link_hash_defweak)
6923 && !bfd_is_const_section (h->u.def.section))
6924 break;
6925 }
6926 if (!sym)
6927 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6928 "specified by -e or -u\n"));
6929 }
6930
6931 if (entry_symbol.name == NULL)
6932 {
6933 /* No entry has been specified. Look for the default entry, but
6934 don't warn if we don't find it. */
6935 entry_symbol.name = entry_symbol_default;
6936 warn = FALSE;
6937 }
6938
6939 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6940 FALSE, FALSE, TRUE);
6941 if (h != NULL
6942 && (h->type == bfd_link_hash_defined
6943 || h->type == bfd_link_hash_defweak)
6944 && h->u.def.section->output_section != NULL)
6945 {
6946 bfd_vma val;
6947
6948 val = (h->u.def.value
6949 + bfd_section_vma (h->u.def.section->output_section)
6950 + h->u.def.section->output_offset);
6951 if (!bfd_set_start_address (link_info.output_bfd, val))
6952 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6953 }
6954 else
6955 {
6956 bfd_vma val;
6957 const char *send;
6958
6959 /* We couldn't find the entry symbol. Try parsing it as a
6960 number. */
6961 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6962 if (*send == '\0')
6963 {
6964 if (!bfd_set_start_address (link_info.output_bfd, val))
6965 einfo (_("%F%P: can't set start address\n"));
6966 }
6967 else
6968 {
6969 asection *ts;
6970
6971 /* Can't find the entry symbol, and it's not a number. Use
6972 the first address in the text section. */
6973 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6974 if (ts != NULL)
6975 {
6976 if (warn)
6977 einfo (_("%P: warning: cannot find entry symbol %s;"
6978 " defaulting to %V\n"),
6979 entry_symbol.name,
6980 bfd_section_vma (ts));
6981 if (!bfd_set_start_address (link_info.output_bfd,
6982 bfd_section_vma (ts)))
6983 einfo (_("%F%P: can't set start address\n"));
6984 }
6985 else
6986 {
6987 if (warn)
6988 einfo (_("%P: warning: cannot find entry symbol %s;"
6989 " not setting start address\n"),
6990 entry_symbol.name);
6991 }
6992 }
6993 }
6994 }
6995
6996 /* This is a small function used when we want to ignore errors from
6997 BFD. */
6998
6999 static void
7000 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7001 va_list ap ATTRIBUTE_UNUSED)
7002 {
7003 /* Don't do anything. */
7004 }
7005
7006 /* Check that the architecture of all the input files is compatible
7007 with the output file. Also call the backend to let it do any
7008 other checking that is needed. */
7009
7010 static void
7011 lang_check (void)
7012 {
7013 lang_input_statement_type *file;
7014 bfd *input_bfd;
7015 const bfd_arch_info_type *compatible;
7016
7017 for (file = (void *) file_chain.head;
7018 file != NULL;
7019 file = file->next)
7020 {
7021 #if BFD_SUPPORTS_PLUGINS
7022 /* Don't check format of files claimed by plugin. */
7023 if (file->flags.claimed)
7024 continue;
7025 #endif /* BFD_SUPPORTS_PLUGINS */
7026 input_bfd = file->the_bfd;
7027 compatible
7028 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7029 command_line.accept_unknown_input_arch);
7030
7031 /* In general it is not possible to perform a relocatable
7032 link between differing object formats when the input
7033 file has relocations, because the relocations in the
7034 input format may not have equivalent representations in
7035 the output format (and besides BFD does not translate
7036 relocs for other link purposes than a final link). */
7037 if (!file->flags.just_syms
7038 && (bfd_link_relocatable (&link_info)
7039 || link_info.emitrelocations)
7040 && (compatible == NULL
7041 || (bfd_get_flavour (input_bfd)
7042 != bfd_get_flavour (link_info.output_bfd)))
7043 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7044 {
7045 einfo (_("%F%P: relocatable linking with relocations from"
7046 " format %s (%pB) to format %s (%pB) is not supported\n"),
7047 bfd_get_target (input_bfd), input_bfd,
7048 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7049 /* einfo with %F exits. */
7050 }
7051
7052 if (compatible == NULL)
7053 {
7054 if (command_line.warn_mismatch)
7055 einfo (_("%X%P: %s architecture of input file `%pB'"
7056 " is incompatible with %s output\n"),
7057 bfd_printable_name (input_bfd), input_bfd,
7058 bfd_printable_name (link_info.output_bfd));
7059 }
7060
7061 /* If the input bfd has no contents, it shouldn't set the
7062 private data of the output bfd. */
7063 else if (!file->flags.just_syms
7064 && ((input_bfd->flags & DYNAMIC) != 0
7065 || bfd_count_sections (input_bfd) != 0))
7066 {
7067 bfd_error_handler_type pfn = NULL;
7068
7069 /* If we aren't supposed to warn about mismatched input
7070 files, temporarily set the BFD error handler to a
7071 function which will do nothing. We still want to call
7072 bfd_merge_private_bfd_data, since it may set up
7073 information which is needed in the output file. */
7074 if (!command_line.warn_mismatch)
7075 pfn = bfd_set_error_handler (ignore_bfd_errors);
7076 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7077 {
7078 if (command_line.warn_mismatch)
7079 einfo (_("%X%P: failed to merge target specific data"
7080 " of file %pB\n"), input_bfd);
7081 }
7082 if (!command_line.warn_mismatch)
7083 bfd_set_error_handler (pfn);
7084 }
7085 }
7086 }
7087
7088 /* Look through all the global common symbols and attach them to the
7089 correct section. The -sort-common command line switch may be used
7090 to roughly sort the entries by alignment. */
7091
7092 static void
7093 lang_common (void)
7094 {
7095 if (link_info.inhibit_common_definition)
7096 return;
7097 if (bfd_link_relocatable (&link_info)
7098 && !command_line.force_common_definition)
7099 return;
7100
7101 if (!config.sort_common)
7102 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7103 else
7104 {
7105 unsigned int power;
7106
7107 if (config.sort_common == sort_descending)
7108 {
7109 for (power = 4; power > 0; power--)
7110 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7111
7112 power = 0;
7113 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7114 }
7115 else
7116 {
7117 for (power = 0; power <= 4; power++)
7118 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7119
7120 power = (unsigned int) -1;
7121 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7122 }
7123 }
7124 }
7125
7126 /* Place one common symbol in the correct section. */
7127
7128 static bfd_boolean
7129 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7130 {
7131 unsigned int power_of_two;
7132 bfd_vma size;
7133 asection *section;
7134
7135 if (h->type != bfd_link_hash_common)
7136 return TRUE;
7137
7138 size = h->u.c.size;
7139 power_of_two = h->u.c.p->alignment_power;
7140
7141 if (config.sort_common == sort_descending
7142 && power_of_two < *(unsigned int *) info)
7143 return TRUE;
7144 else if (config.sort_common == sort_ascending
7145 && power_of_two > *(unsigned int *) info)
7146 return TRUE;
7147
7148 section = h->u.c.p->section;
7149 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7150 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7151 h->root.string);
7152
7153 if (config.map_file != NULL)
7154 {
7155 static bfd_boolean header_printed;
7156 int len;
7157 char *name;
7158 char buf[50];
7159
7160 if (!header_printed)
7161 {
7162 minfo (_("\nAllocating common symbols\n"));
7163 minfo (_("Common symbol size file\n\n"));
7164 header_printed = TRUE;
7165 }
7166
7167 name = bfd_demangle (link_info.output_bfd, h->root.string,
7168 DMGL_ANSI | DMGL_PARAMS);
7169 if (name == NULL)
7170 {
7171 minfo ("%s", h->root.string);
7172 len = strlen (h->root.string);
7173 }
7174 else
7175 {
7176 minfo ("%s", name);
7177 len = strlen (name);
7178 free (name);
7179 }
7180
7181 if (len >= 19)
7182 {
7183 print_nl ();
7184 len = 0;
7185 }
7186 while (len < 20)
7187 {
7188 print_space ();
7189 ++len;
7190 }
7191
7192 minfo ("0x");
7193 if (size <= 0xffffffff)
7194 sprintf (buf, "%lx", (unsigned long) size);
7195 else
7196 sprintf_vma (buf, size);
7197 minfo ("%s", buf);
7198 len = strlen (buf);
7199
7200 while (len < 16)
7201 {
7202 print_space ();
7203 ++len;
7204 }
7205
7206 minfo ("%pB\n", section->owner);
7207 }
7208
7209 return TRUE;
7210 }
7211
7212 /* Handle a single orphan section S, placing the orphan into an appropriate
7213 output section. The effects of the --orphan-handling command line
7214 option are handled here. */
7215
7216 static void
7217 ldlang_place_orphan (asection *s)
7218 {
7219 if (config.orphan_handling == orphan_handling_discard)
7220 {
7221 lang_output_section_statement_type *os;
7222 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7223 if (os->addr_tree == NULL
7224 && (bfd_link_relocatable (&link_info)
7225 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7226 os->addr_tree = exp_intop (0);
7227 lang_add_section (&os->children, s, NULL, NULL, os);
7228 }
7229 else
7230 {
7231 lang_output_section_statement_type *os;
7232 const char *name = s->name;
7233 int constraint = 0;
7234
7235 if (config.orphan_handling == orphan_handling_error)
7236 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7237 s, s->owner);
7238
7239 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7240 constraint = SPECIAL;
7241
7242 os = ldemul_place_orphan (s, name, constraint);
7243 if (os == NULL)
7244 {
7245 os = lang_output_section_statement_lookup (name, constraint, 1);
7246 if (os->addr_tree == NULL
7247 && (bfd_link_relocatable (&link_info)
7248 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7249 os->addr_tree = exp_intop (0);
7250 lang_add_section (&os->children, s, NULL, NULL, os);
7251 }
7252
7253 if (config.orphan_handling == orphan_handling_warn)
7254 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7255 "placed in section `%s'\n"),
7256 s, s->owner, os->name);
7257 }
7258 }
7259
7260 /* Run through the input files and ensure that every input section has
7261 somewhere to go. If one is found without a destination then create
7262 an input request and place it into the statement tree. */
7263
7264 static void
7265 lang_place_orphans (void)
7266 {
7267 LANG_FOR_EACH_INPUT_STATEMENT (file)
7268 {
7269 asection *s;
7270
7271 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7272 {
7273 if (s->output_section == NULL)
7274 {
7275 /* This section of the file is not attached, root
7276 around for a sensible place for it to go. */
7277
7278 if (file->flags.just_syms)
7279 bfd_link_just_syms (file->the_bfd, s, &link_info);
7280 else if (lang_discard_section_p (s))
7281 s->output_section = bfd_abs_section_ptr;
7282 else if (strcmp (s->name, "COMMON") == 0)
7283 {
7284 /* This is a lonely common section which must have
7285 come from an archive. We attach to the section
7286 with the wildcard. */
7287 if (!bfd_link_relocatable (&link_info)
7288 || command_line.force_common_definition)
7289 {
7290 if (default_common_section == NULL)
7291 default_common_section
7292 = lang_output_section_statement_lookup (".bss", 0, 1);
7293 lang_add_section (&default_common_section->children, s,
7294 NULL, NULL, default_common_section);
7295 }
7296 }
7297 else
7298 ldlang_place_orphan (s);
7299 }
7300 }
7301 }
7302 }
7303
7304 void
7305 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7306 {
7307 flagword *ptr_flags;
7308
7309 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7310
7311 while (*flags)
7312 {
7313 switch (*flags)
7314 {
7315 /* PR 17900: An exclamation mark in the attributes reverses
7316 the sense of any of the attributes that follow. */
7317 case '!':
7318 invert = !invert;
7319 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7320 break;
7321
7322 case 'A': case 'a':
7323 *ptr_flags |= SEC_ALLOC;
7324 break;
7325
7326 case 'R': case 'r':
7327 *ptr_flags |= SEC_READONLY;
7328 break;
7329
7330 case 'W': case 'w':
7331 *ptr_flags |= SEC_DATA;
7332 break;
7333
7334 case 'X': case 'x':
7335 *ptr_flags |= SEC_CODE;
7336 break;
7337
7338 case 'L': case 'l':
7339 case 'I': case 'i':
7340 *ptr_flags |= SEC_LOAD;
7341 break;
7342
7343 default:
7344 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7345 *flags, *flags);
7346 break;
7347 }
7348 flags++;
7349 }
7350 }
7351
7352 /* Call a function on each real input file. This function will be
7353 called on an archive, but not on the elements. */
7354
7355 void
7356 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7357 {
7358 lang_input_statement_type *f;
7359
7360 for (f = (void *) input_file_chain.head;
7361 f != NULL;
7362 f = f->next_real_file)
7363 if (f->flags.real)
7364 func (f);
7365 }
7366
7367 /* Call a function on each real file. The function will be called on
7368 all the elements of an archive which are included in the link, but
7369 will not be called on the archive file itself. */
7370
7371 void
7372 lang_for_each_file (void (*func) (lang_input_statement_type *))
7373 {
7374 LANG_FOR_EACH_INPUT_STATEMENT (f)
7375 {
7376 if (f->flags.real)
7377 func (f);
7378 }
7379 }
7380
7381 void
7382 ldlang_add_file (lang_input_statement_type *entry)
7383 {
7384 lang_statement_append (&file_chain, entry, &entry->next);
7385
7386 /* The BFD linker needs to have a list of all input BFDs involved in
7387 a link. */
7388 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7389 && entry->the_bfd->link.next == NULL);
7390 ASSERT (entry->the_bfd != link_info.output_bfd);
7391
7392 *link_info.input_bfds_tail = entry->the_bfd;
7393 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7394 bfd_set_usrdata (entry->the_bfd, entry);
7395 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7396
7397 /* Look through the sections and check for any which should not be
7398 included in the link. We need to do this now, so that we can
7399 notice when the backend linker tries to report multiple
7400 definition errors for symbols which are in sections we aren't
7401 going to link. FIXME: It might be better to entirely ignore
7402 symbols which are defined in sections which are going to be
7403 discarded. This would require modifying the backend linker for
7404 each backend which might set the SEC_LINK_ONCE flag. If we do
7405 this, we should probably handle SEC_EXCLUDE in the same way. */
7406
7407 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7408 }
7409
7410 void
7411 lang_add_output (const char *name, int from_script)
7412 {
7413 /* Make -o on command line override OUTPUT in script. */
7414 if (!had_output_filename || !from_script)
7415 {
7416 output_filename = name;
7417 had_output_filename = TRUE;
7418 }
7419 }
7420
7421 lang_output_section_statement_type *
7422 lang_enter_output_section_statement (const char *output_section_statement_name,
7423 etree_type *address_exp,
7424 enum section_type sectype,
7425 etree_type *align,
7426 etree_type *subalign,
7427 etree_type *ebase,
7428 int constraint,
7429 int align_with_input)
7430 {
7431 lang_output_section_statement_type *os;
7432
7433 os = lang_output_section_statement_lookup (output_section_statement_name,
7434 constraint, 2);
7435 current_section = os;
7436
7437 if (os->addr_tree == NULL)
7438 {
7439 os->addr_tree = address_exp;
7440 }
7441 os->sectype = sectype;
7442 if (sectype != noload_section)
7443 os->flags = SEC_NO_FLAGS;
7444 else
7445 os->flags = SEC_NEVER_LOAD;
7446 os->block_value = 1;
7447
7448 /* Make next things chain into subchain of this. */
7449 push_stat_ptr (&os->children);
7450
7451 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7452 if (os->align_lma_with_input && align != NULL)
7453 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7454 NULL);
7455
7456 os->subsection_alignment = subalign;
7457 os->section_alignment = align;
7458
7459 os->load_base = ebase;
7460 return os;
7461 }
7462
7463 void
7464 lang_final (void)
7465 {
7466 lang_output_statement_type *new_stmt;
7467
7468 new_stmt = new_stat (lang_output_statement, stat_ptr);
7469 new_stmt->name = output_filename;
7470 }
7471
7472 /* Reset the current counters in the regions. */
7473
7474 void
7475 lang_reset_memory_regions (void)
7476 {
7477 lang_memory_region_type *p = lang_memory_region_list;
7478 asection *o;
7479 lang_output_section_statement_type *os;
7480
7481 for (p = lang_memory_region_list; p != NULL; p = p->next)
7482 {
7483 p->current = p->origin;
7484 p->last_os = NULL;
7485 }
7486
7487 for (os = (void *) lang_os_list.head;
7488 os != NULL;
7489 os = os->next)
7490 {
7491 os->processed_vma = FALSE;
7492 os->processed_lma = FALSE;
7493 }
7494
7495 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7496 {
7497 /* Save the last size for possible use by bfd_relax_section. */
7498 o->rawsize = o->size;
7499 if (!(o->flags & SEC_FIXED_SIZE))
7500 o->size = 0;
7501 }
7502 }
7503
7504 /* Worker for lang_gc_sections_1. */
7505
7506 static void
7507 gc_section_callback (lang_wild_statement_type *ptr,
7508 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7509 asection *section,
7510 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7511 void *data ATTRIBUTE_UNUSED)
7512 {
7513 /* If the wild pattern was marked KEEP, the member sections
7514 should be as well. */
7515 if (ptr->keep_sections)
7516 section->flags |= SEC_KEEP;
7517 }
7518
7519 /* Iterate over sections marking them against GC. */
7520
7521 static void
7522 lang_gc_sections_1 (lang_statement_union_type *s)
7523 {
7524 for (; s != NULL; s = s->header.next)
7525 {
7526 switch (s->header.type)
7527 {
7528 case lang_wild_statement_enum:
7529 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7530 break;
7531 case lang_constructors_statement_enum:
7532 lang_gc_sections_1 (constructor_list.head);
7533 break;
7534 case lang_output_section_statement_enum:
7535 lang_gc_sections_1 (s->output_section_statement.children.head);
7536 break;
7537 case lang_group_statement_enum:
7538 lang_gc_sections_1 (s->group_statement.children.head);
7539 break;
7540 default:
7541 break;
7542 }
7543 }
7544 }
7545
7546 static void
7547 lang_gc_sections (void)
7548 {
7549 /* Keep all sections so marked in the link script. */
7550 lang_gc_sections_1 (statement_list.head);
7551
7552 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7553 the special case of debug info. (See bfd/stabs.c)
7554 Twiddle the flag here, to simplify later linker code. */
7555 if (bfd_link_relocatable (&link_info))
7556 {
7557 LANG_FOR_EACH_INPUT_STATEMENT (f)
7558 {
7559 asection *sec;
7560 #if BFD_SUPPORTS_PLUGINS
7561 if (f->flags.claimed)
7562 continue;
7563 #endif
7564 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7565 if ((sec->flags & SEC_DEBUGGING) == 0)
7566 sec->flags &= ~SEC_EXCLUDE;
7567 }
7568 }
7569
7570 if (link_info.gc_sections)
7571 bfd_gc_sections (link_info.output_bfd, &link_info);
7572 }
7573
7574 /* Worker for lang_find_relro_sections_1. */
7575
7576 static void
7577 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7578 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7579 asection *section,
7580 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7581 void *data)
7582 {
7583 /* Discarded, excluded and ignored sections effectively have zero
7584 size. */
7585 if (section->output_section != NULL
7586 && section->output_section->owner == link_info.output_bfd
7587 && (section->output_section->flags & SEC_EXCLUDE) == 0
7588 && !IGNORE_SECTION (section)
7589 && section->size != 0)
7590 {
7591 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7592 *has_relro_section = TRUE;
7593 }
7594 }
7595
7596 /* Iterate over sections for relro sections. */
7597
7598 static void
7599 lang_find_relro_sections_1 (lang_statement_union_type *s,
7600 seg_align_type *seg,
7601 bfd_boolean *has_relro_section)
7602 {
7603 if (*has_relro_section)
7604 return;
7605
7606 for (; s != NULL; s = s->header.next)
7607 {
7608 if (s == seg->relro_end_stat)
7609 break;
7610
7611 switch (s->header.type)
7612 {
7613 case lang_wild_statement_enum:
7614 walk_wild (&s->wild_statement,
7615 find_relro_section_callback,
7616 has_relro_section);
7617 break;
7618 case lang_constructors_statement_enum:
7619 lang_find_relro_sections_1 (constructor_list.head,
7620 seg, has_relro_section);
7621 break;
7622 case lang_output_section_statement_enum:
7623 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7624 seg, has_relro_section);
7625 break;
7626 case lang_group_statement_enum:
7627 lang_find_relro_sections_1 (s->group_statement.children.head,
7628 seg, has_relro_section);
7629 break;
7630 default:
7631 break;
7632 }
7633 }
7634 }
7635
7636 static void
7637 lang_find_relro_sections (void)
7638 {
7639 bfd_boolean has_relro_section = FALSE;
7640
7641 /* Check all sections in the link script. */
7642
7643 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7644 &expld.dataseg, &has_relro_section);
7645
7646 if (!has_relro_section)
7647 link_info.relro = FALSE;
7648 }
7649
7650 /* Relax all sections until bfd_relax_section gives up. */
7651
7652 void
7653 lang_relax_sections (bfd_boolean need_layout)
7654 {
7655 if (RELAXATION_ENABLED)
7656 {
7657 /* We may need more than one relaxation pass. */
7658 int i = link_info.relax_pass;
7659
7660 /* The backend can use it to determine the current pass. */
7661 link_info.relax_pass = 0;
7662
7663 while (i--)
7664 {
7665 /* Keep relaxing until bfd_relax_section gives up. */
7666 bfd_boolean relax_again;
7667
7668 link_info.relax_trip = -1;
7669 do
7670 {
7671 link_info.relax_trip++;
7672
7673 /* Note: pe-dll.c does something like this also. If you find
7674 you need to change this code, you probably need to change
7675 pe-dll.c also. DJ */
7676
7677 /* Do all the assignments with our current guesses as to
7678 section sizes. */
7679 lang_do_assignments (lang_assigning_phase_enum);
7680
7681 /* We must do this after lang_do_assignments, because it uses
7682 size. */
7683 lang_reset_memory_regions ();
7684
7685 /* Perform another relax pass - this time we know where the
7686 globals are, so can make a better guess. */
7687 relax_again = FALSE;
7688 lang_size_sections (&relax_again, FALSE);
7689 }
7690 while (relax_again);
7691
7692 link_info.relax_pass++;
7693 }
7694 need_layout = TRUE;
7695 }
7696
7697 if (need_layout)
7698 {
7699 /* Final extra sizing to report errors. */
7700 lang_do_assignments (lang_assigning_phase_enum);
7701 lang_reset_memory_regions ();
7702 lang_size_sections (NULL, TRUE);
7703 }
7704 }
7705
7706 #if BFD_SUPPORTS_PLUGINS
7707 /* Find the insert point for the plugin's replacement files. We
7708 place them after the first claimed real object file, or if the
7709 first claimed object is an archive member, after the last real
7710 object file immediately preceding the archive. In the event
7711 no objects have been claimed at all, we return the first dummy
7712 object file on the list as the insert point; that works, but
7713 the callee must be careful when relinking the file_chain as it
7714 is not actually on that chain, only the statement_list and the
7715 input_file list; in that case, the replacement files must be
7716 inserted at the head of the file_chain. */
7717
7718 static lang_input_statement_type *
7719 find_replacements_insert_point (bfd_boolean *before)
7720 {
7721 lang_input_statement_type *claim1, *lastobject;
7722 lastobject = (void *) input_file_chain.head;
7723 for (claim1 = (void *) file_chain.head;
7724 claim1 != NULL;
7725 claim1 = claim1->next)
7726 {
7727 if (claim1->flags.claimed)
7728 {
7729 *before = claim1->flags.claim_archive;
7730 return claim1->flags.claim_archive ? lastobject : claim1;
7731 }
7732 /* Update lastobject if this is a real object file. */
7733 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7734 lastobject = claim1;
7735 }
7736 /* No files were claimed by the plugin. Choose the last object
7737 file found on the list (maybe the first, dummy entry) as the
7738 insert point. */
7739 *before = FALSE;
7740 return lastobject;
7741 }
7742
7743 /* Find where to insert ADD, an archive element or shared library
7744 added during a rescan. */
7745
7746 static lang_input_statement_type **
7747 find_rescan_insertion (lang_input_statement_type *add)
7748 {
7749 bfd *add_bfd = add->the_bfd;
7750 lang_input_statement_type *f;
7751 lang_input_statement_type *last_loaded = NULL;
7752 lang_input_statement_type *before = NULL;
7753 lang_input_statement_type **iter = NULL;
7754
7755 if (add_bfd->my_archive != NULL)
7756 add_bfd = add_bfd->my_archive;
7757
7758 /* First look through the input file chain, to find an object file
7759 before the one we've rescanned. Normal object files always
7760 appear on both the input file chain and the file chain, so this
7761 lets us get quickly to somewhere near the correct place on the
7762 file chain if it is full of archive elements. Archives don't
7763 appear on the file chain, but if an element has been extracted
7764 then their input_statement->next points at it. */
7765 for (f = (void *) input_file_chain.head;
7766 f != NULL;
7767 f = f->next_real_file)
7768 {
7769 if (f->the_bfd == add_bfd)
7770 {
7771 before = last_loaded;
7772 if (f->next != NULL)
7773 return &f->next->next;
7774 }
7775 if (f->the_bfd != NULL && f->next != NULL)
7776 last_loaded = f;
7777 }
7778
7779 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7780 *iter != NULL;
7781 iter = &(*iter)->next)
7782 if (!(*iter)->flags.claim_archive
7783 && (*iter)->the_bfd->my_archive == NULL)
7784 break;
7785
7786 return iter;
7787 }
7788
7789 /* Insert SRCLIST into DESTLIST after given element by chaining
7790 on FIELD as the next-pointer. (Counterintuitively does not need
7791 a pointer to the actual after-node itself, just its chain field.) */
7792
7793 static void
7794 lang_list_insert_after (lang_statement_list_type *destlist,
7795 lang_statement_list_type *srclist,
7796 lang_statement_union_type **field)
7797 {
7798 *(srclist->tail) = *field;
7799 *field = srclist->head;
7800 if (destlist->tail == field)
7801 destlist->tail = srclist->tail;
7802 }
7803
7804 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7805 was taken as a copy of it and leave them in ORIGLIST. */
7806
7807 static void
7808 lang_list_remove_tail (lang_statement_list_type *destlist,
7809 lang_statement_list_type *origlist)
7810 {
7811 union lang_statement_union **savetail;
7812 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7813 ASSERT (origlist->head == destlist->head);
7814 savetail = origlist->tail;
7815 origlist->head = *(savetail);
7816 origlist->tail = destlist->tail;
7817 destlist->tail = savetail;
7818 *savetail = NULL;
7819 }
7820
7821 static lang_statement_union_type **
7822 find_next_input_statement (lang_statement_union_type **s)
7823 {
7824 for ( ; *s; s = &(*s)->header.next)
7825 {
7826 lang_statement_union_type **t;
7827 switch ((*s)->header.type)
7828 {
7829 case lang_input_statement_enum:
7830 return s;
7831 case lang_wild_statement_enum:
7832 t = &(*s)->wild_statement.children.head;
7833 break;
7834 case lang_group_statement_enum:
7835 t = &(*s)->group_statement.children.head;
7836 break;
7837 case lang_output_section_statement_enum:
7838 t = &(*s)->output_section_statement.children.head;
7839 break;
7840 default:
7841 continue;
7842 }
7843 t = find_next_input_statement (t);
7844 if (*t)
7845 return t;
7846 }
7847 return s;
7848 }
7849 #endif /* BFD_SUPPORTS_PLUGINS */
7850
7851 /* Add NAME to the list of garbage collection entry points. */
7852
7853 void
7854 lang_add_gc_name (const char *name)
7855 {
7856 struct bfd_sym_chain *sym;
7857
7858 if (name == NULL)
7859 return;
7860
7861 sym = stat_alloc (sizeof (*sym));
7862
7863 sym->next = link_info.gc_sym_list;
7864 sym->name = name;
7865 link_info.gc_sym_list = sym;
7866 }
7867
7868 /* Check relocations. */
7869
7870 static void
7871 lang_check_relocs (void)
7872 {
7873 if (link_info.check_relocs_after_open_input)
7874 {
7875 bfd *abfd;
7876
7877 for (abfd = link_info.input_bfds;
7878 abfd != (bfd *) NULL; abfd = abfd->link.next)
7879 if (!bfd_link_check_relocs (abfd, &link_info))
7880 {
7881 /* No object output, fail return. */
7882 config.make_executable = FALSE;
7883 /* Note: we do not abort the loop, but rather
7884 continue the scan in case there are other
7885 bad relocations to report. */
7886 }
7887 }
7888 }
7889
7890 /* Look through all output sections looking for places where we can
7891 propagate forward the lma region. */
7892
7893 static void
7894 lang_propagate_lma_regions (void)
7895 {
7896 lang_output_section_statement_type *os;
7897
7898 for (os = (void *) lang_os_list.head;
7899 os != NULL;
7900 os = os->next)
7901 {
7902 if (os->prev != NULL
7903 && os->lma_region == NULL
7904 && os->load_base == NULL
7905 && os->addr_tree == NULL
7906 && os->region == os->prev->region)
7907 os->lma_region = os->prev->lma_region;
7908 }
7909 }
7910
7911 void
7912 lang_process (void)
7913 {
7914 /* Finalize dynamic list. */
7915 if (link_info.dynamic_list)
7916 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7917
7918 current_target = default_target;
7919
7920 /* Open the output file. */
7921 lang_for_each_statement (ldlang_open_output);
7922 init_opb (NULL);
7923
7924 ldemul_create_output_section_statements ();
7925
7926 /* Add to the hash table all undefineds on the command line. */
7927 lang_place_undefineds ();
7928
7929 if (!bfd_section_already_linked_table_init ())
7930 einfo (_("%F%P: can not create hash table: %E\n"));
7931
7932 /* A first pass through the memory regions ensures that if any region
7933 references a symbol for its origin or length then this symbol will be
7934 added to the symbol table. Having these symbols in the symbol table
7935 means that when we call open_input_bfds PROVIDE statements will
7936 trigger to provide any needed symbols. The regions origins and
7937 lengths are not assigned as a result of this call. */
7938 lang_do_memory_regions (FALSE);
7939
7940 /* Create a bfd for each input file. */
7941 current_target = default_target;
7942 lang_statement_iteration++;
7943 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7944
7945 /* Now that open_input_bfds has processed assignments and provide
7946 statements we can give values to symbolic origin/length now. */
7947 lang_do_memory_regions (TRUE);
7948
7949 #if BFD_SUPPORTS_PLUGINS
7950 if (link_info.lto_plugin_active)
7951 {
7952 lang_statement_list_type added;
7953 lang_statement_list_type files, inputfiles;
7954
7955 /* Now all files are read, let the plugin(s) decide if there
7956 are any more to be added to the link before we call the
7957 emulation's after_open hook. We create a private list of
7958 input statements for this purpose, which we will eventually
7959 insert into the global statement list after the first claimed
7960 file. */
7961 added = *stat_ptr;
7962 /* We need to manipulate all three chains in synchrony. */
7963 files = file_chain;
7964 inputfiles = input_file_chain;
7965 if (plugin_call_all_symbols_read ())
7966 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7967 plugin_error_plugin ());
7968 link_info.lto_all_symbols_read = TRUE;
7969 /* Open any newly added files, updating the file chains. */
7970 plugin_undefs = link_info.hash->undefs_tail;
7971 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7972 if (plugin_undefs == link_info.hash->undefs_tail)
7973 plugin_undefs = NULL;
7974 /* Restore the global list pointer now they have all been added. */
7975 lang_list_remove_tail (stat_ptr, &added);
7976 /* And detach the fresh ends of the file lists. */
7977 lang_list_remove_tail (&file_chain, &files);
7978 lang_list_remove_tail (&input_file_chain, &inputfiles);
7979 /* Were any new files added? */
7980 if (added.head != NULL)
7981 {
7982 /* If so, we will insert them into the statement list immediately
7983 after the first input file that was claimed by the plugin,
7984 unless that file was an archive in which case it is inserted
7985 immediately before. */
7986 bfd_boolean before;
7987 lang_statement_union_type **prev;
7988 plugin_insert = find_replacements_insert_point (&before);
7989 /* If a plugin adds input files without having claimed any, we
7990 don't really have a good idea where to place them. Just putting
7991 them at the start or end of the list is liable to leave them
7992 outside the crtbegin...crtend range. */
7993 ASSERT (plugin_insert != NULL);
7994 /* Splice the new statement list into the old one. */
7995 prev = &plugin_insert->header.next;
7996 if (before)
7997 {
7998 prev = find_next_input_statement (prev);
7999 if (*prev != (void *) plugin_insert->next_real_file)
8000 {
8001 /* We didn't find the expected input statement.
8002 Fall back to adding after plugin_insert. */
8003 prev = &plugin_insert->header.next;
8004 }
8005 }
8006 lang_list_insert_after (stat_ptr, &added, prev);
8007 /* Likewise for the file chains. */
8008 lang_list_insert_after (&input_file_chain, &inputfiles,
8009 (void *) &plugin_insert->next_real_file);
8010 /* We must be careful when relinking file_chain; we may need to
8011 insert the new files at the head of the list if the insert
8012 point chosen is the dummy first input file. */
8013 if (plugin_insert->filename)
8014 lang_list_insert_after (&file_chain, &files,
8015 (void *) &plugin_insert->next);
8016 else
8017 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8018
8019 /* Rescan archives in case new undefined symbols have appeared. */
8020 files = file_chain;
8021 lang_statement_iteration++;
8022 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8023 lang_list_remove_tail (&file_chain, &files);
8024 while (files.head != NULL)
8025 {
8026 lang_input_statement_type **insert;
8027 lang_input_statement_type **iter, *temp;
8028 bfd *my_arch;
8029
8030 insert = find_rescan_insertion (&files.head->input_statement);
8031 /* All elements from an archive can be added at once. */
8032 iter = &files.head->input_statement.next;
8033 my_arch = files.head->input_statement.the_bfd->my_archive;
8034 if (my_arch != NULL)
8035 for (; *iter != NULL; iter = &(*iter)->next)
8036 if ((*iter)->the_bfd->my_archive != my_arch)
8037 break;
8038 temp = *insert;
8039 *insert = &files.head->input_statement;
8040 files.head = (lang_statement_union_type *) *iter;
8041 *iter = temp;
8042 if (my_arch != NULL)
8043 {
8044 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8045 if (parent != NULL)
8046 parent->next = (lang_input_statement_type *)
8047 ((char *) iter
8048 - offsetof (lang_input_statement_type, next));
8049 }
8050 }
8051 }
8052 }
8053 #endif /* BFD_SUPPORTS_PLUGINS */
8054
8055 /* Make sure that nobody has tried to add a symbol to this list
8056 before now. */
8057 ASSERT (link_info.gc_sym_list == NULL);
8058
8059 link_info.gc_sym_list = &entry_symbol;
8060
8061 if (entry_symbol.name == NULL)
8062 {
8063 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8064
8065 /* entry_symbol is normally initialied by a ENTRY definition in the
8066 linker script or the -e command line option. But if neither of
8067 these have been used, the target specific backend may still have
8068 provided an entry symbol via a call to lang_default_entry().
8069 Unfortunately this value will not be processed until lang_end()
8070 is called, long after this function has finished. So detect this
8071 case here and add the target's entry symbol to the list of starting
8072 points for garbage collection resolution. */
8073 lang_add_gc_name (entry_symbol_default);
8074 }
8075
8076 lang_add_gc_name (link_info.init_function);
8077 lang_add_gc_name (link_info.fini_function);
8078
8079 ldemul_after_open ();
8080 if (config.map_file != NULL)
8081 lang_print_asneeded ();
8082
8083 ldlang_open_ctf ();
8084
8085 bfd_section_already_linked_table_free ();
8086
8087 /* Make sure that we're not mixing architectures. We call this
8088 after all the input files have been opened, but before we do any
8089 other processing, so that any operations merge_private_bfd_data
8090 does on the output file will be known during the rest of the
8091 link. */
8092 lang_check ();
8093
8094 /* Handle .exports instead of a version script if we're told to do so. */
8095 if (command_line.version_exports_section)
8096 lang_do_version_exports_section ();
8097
8098 /* Build all sets based on the information gathered from the input
8099 files. */
8100 ldctor_build_sets ();
8101
8102 /* Give initial values for __start and __stop symbols, so that ELF
8103 gc_sections will keep sections referenced by these symbols. Must
8104 be done before lang_do_assignments below. */
8105 if (config.build_constructors)
8106 lang_init_start_stop ();
8107
8108 /* PR 13683: We must rerun the assignments prior to running garbage
8109 collection in order to make sure that all symbol aliases are resolved. */
8110 lang_do_assignments (lang_mark_phase_enum);
8111 expld.phase = lang_first_phase_enum;
8112
8113 /* Size up the common data. */
8114 lang_common ();
8115
8116 /* Remove unreferenced sections if asked to. */
8117 lang_gc_sections ();
8118
8119 /* Check relocations. */
8120 lang_check_relocs ();
8121
8122 ldemul_after_check_relocs ();
8123
8124 /* Update wild statements. */
8125 update_wild_statements (statement_list.head);
8126
8127 /* Run through the contours of the script and attach input sections
8128 to the correct output sections. */
8129 lang_statement_iteration++;
8130 map_input_to_output_sections (statement_list.head, NULL, NULL);
8131
8132 /* Start at the statement immediately after the special abs_section
8133 output statement, so that it isn't reordered. */
8134 process_insert_statements (&lang_os_list.head->header.next);
8135
8136 ldemul_before_place_orphans ();
8137
8138 /* Find any sections not attached explicitly and handle them. */
8139 lang_place_orphans ();
8140
8141 if (!bfd_link_relocatable (&link_info))
8142 {
8143 asection *found;
8144
8145 /* Merge SEC_MERGE sections. This has to be done after GC of
8146 sections, so that GCed sections are not merged, but before
8147 assigning dynamic symbols, since removing whole input sections
8148 is hard then. */
8149 bfd_merge_sections (link_info.output_bfd, &link_info);
8150
8151 /* Look for a text section and set the readonly attribute in it. */
8152 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8153
8154 if (found != NULL)
8155 {
8156 if (config.text_read_only)
8157 found->flags |= SEC_READONLY;
8158 else
8159 found->flags &= ~SEC_READONLY;
8160 }
8161 }
8162
8163 /* Merge together CTF sections. After this, only the symtab-dependent
8164 function and data object sections need adjustment. */
8165 lang_merge_ctf ();
8166
8167 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8168 examining things laid out late, like the strtab. */
8169 lang_write_ctf (0);
8170
8171 /* Copy forward lma regions for output sections in same lma region. */
8172 lang_propagate_lma_regions ();
8173
8174 /* Defining __start/__stop symbols early for --gc-sections to work
8175 around a glibc build problem can result in these symbols being
8176 defined when they should not be. Fix them now. */
8177 if (config.build_constructors)
8178 lang_undef_start_stop ();
8179
8180 /* Define .startof./.sizeof. symbols with preliminary values before
8181 dynamic symbols are created. */
8182 if (!bfd_link_relocatable (&link_info))
8183 lang_init_startof_sizeof ();
8184
8185 /* Do anything special before sizing sections. This is where ELF
8186 and other back-ends size dynamic sections. */
8187 ldemul_before_allocation ();
8188
8189 /* We must record the program headers before we try to fix the
8190 section positions, since they will affect SIZEOF_HEADERS. */
8191 lang_record_phdrs ();
8192
8193 /* Check relro sections. */
8194 if (link_info.relro && !bfd_link_relocatable (&link_info))
8195 lang_find_relro_sections ();
8196
8197 /* Size up the sections. */
8198 lang_size_sections (NULL, !RELAXATION_ENABLED);
8199
8200 /* See if anything special should be done now we know how big
8201 everything is. This is where relaxation is done. */
8202 ldemul_after_allocation ();
8203
8204 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8205 lang_finalize_start_stop ();
8206
8207 /* Do all the assignments again, to report errors. Assignment
8208 statements are processed multiple times, updating symbols; In
8209 open_input_bfds, lang_do_assignments, and lang_size_sections.
8210 Since lang_relax_sections calls lang_do_assignments, symbols are
8211 also updated in ldemul_after_allocation. */
8212 lang_do_assignments (lang_final_phase_enum);
8213
8214 ldemul_finish ();
8215
8216 /* Convert absolute symbols to section relative. */
8217 ldexp_finalize_syms ();
8218
8219 /* Make sure that the section addresses make sense. */
8220 if (command_line.check_section_addresses)
8221 lang_check_section_addresses ();
8222
8223 /* Check any required symbols are known. */
8224 ldlang_check_require_defined_symbols ();
8225
8226 lang_end ();
8227 }
8228
8229 /* EXPORTED TO YACC */
8230
8231 void
8232 lang_add_wild (struct wildcard_spec *filespec,
8233 struct wildcard_list *section_list,
8234 bfd_boolean keep_sections)
8235 {
8236 struct wildcard_list *curr, *next;
8237 lang_wild_statement_type *new_stmt;
8238
8239 /* Reverse the list as the parser puts it back to front. */
8240 for (curr = section_list, section_list = NULL;
8241 curr != NULL;
8242 section_list = curr, curr = next)
8243 {
8244 next = curr->next;
8245 curr->next = section_list;
8246 }
8247
8248 if (filespec != NULL && filespec->name != NULL)
8249 {
8250 if (strcmp (filespec->name, "*") == 0)
8251 filespec->name = NULL;
8252 else if (!wildcardp (filespec->name))
8253 lang_has_input_file = TRUE;
8254 }
8255
8256 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8257 new_stmt->filename = NULL;
8258 new_stmt->filenames_sorted = FALSE;
8259 new_stmt->section_flag_list = NULL;
8260 new_stmt->exclude_name_list = NULL;
8261 if (filespec != NULL)
8262 {
8263 new_stmt->filename = filespec->name;
8264 new_stmt->filenames_sorted = filespec->sorted == by_name;
8265 new_stmt->section_flag_list = filespec->section_flag_list;
8266 new_stmt->exclude_name_list = filespec->exclude_name_list;
8267 }
8268 new_stmt->section_list = section_list;
8269 new_stmt->keep_sections = keep_sections;
8270 lang_list_init (&new_stmt->children);
8271 analyze_walk_wild_section_handler (new_stmt);
8272 }
8273
8274 void
8275 lang_section_start (const char *name, etree_type *address,
8276 const segment_type *segment)
8277 {
8278 lang_address_statement_type *ad;
8279
8280 ad = new_stat (lang_address_statement, stat_ptr);
8281 ad->section_name = name;
8282 ad->address = address;
8283 ad->segment = segment;
8284 }
8285
8286 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8287 because of a -e argument on the command line, or zero if this is
8288 called by ENTRY in a linker script. Command line arguments take
8289 precedence. */
8290
8291 void
8292 lang_add_entry (const char *name, bfd_boolean cmdline)
8293 {
8294 if (entry_symbol.name == NULL
8295 || cmdline
8296 || !entry_from_cmdline)
8297 {
8298 entry_symbol.name = name;
8299 entry_from_cmdline = cmdline;
8300 }
8301 }
8302
8303 /* Set the default start symbol to NAME. .em files should use this,
8304 not lang_add_entry, to override the use of "start" if neither the
8305 linker script nor the command line specifies an entry point. NAME
8306 must be permanently allocated. */
8307 void
8308 lang_default_entry (const char *name)
8309 {
8310 entry_symbol_default = name;
8311 }
8312
8313 void
8314 lang_add_target (const char *name)
8315 {
8316 lang_target_statement_type *new_stmt;
8317
8318 new_stmt = new_stat (lang_target_statement, stat_ptr);
8319 new_stmt->target = name;
8320 }
8321
8322 void
8323 lang_add_map (const char *name)
8324 {
8325 while (*name)
8326 {
8327 switch (*name)
8328 {
8329 case 'F':
8330 map_option_f = TRUE;
8331 break;
8332 }
8333 name++;
8334 }
8335 }
8336
8337 void
8338 lang_add_fill (fill_type *fill)
8339 {
8340 lang_fill_statement_type *new_stmt;
8341
8342 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8343 new_stmt->fill = fill;
8344 }
8345
8346 void
8347 lang_add_data (int type, union etree_union *exp)
8348 {
8349 lang_data_statement_type *new_stmt;
8350
8351 new_stmt = new_stat (lang_data_statement, stat_ptr);
8352 new_stmt->exp = exp;
8353 new_stmt->type = type;
8354 }
8355
8356 /* Create a new reloc statement. RELOC is the BFD relocation type to
8357 generate. HOWTO is the corresponding howto structure (we could
8358 look this up, but the caller has already done so). SECTION is the
8359 section to generate a reloc against, or NAME is the name of the
8360 symbol to generate a reloc against. Exactly one of SECTION and
8361 NAME must be NULL. ADDEND is an expression for the addend. */
8362
8363 void
8364 lang_add_reloc (bfd_reloc_code_real_type reloc,
8365 reloc_howto_type *howto,
8366 asection *section,
8367 const char *name,
8368 union etree_union *addend)
8369 {
8370 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8371
8372 p->reloc = reloc;
8373 p->howto = howto;
8374 p->section = section;
8375 p->name = name;
8376 p->addend_exp = addend;
8377
8378 p->addend_value = 0;
8379 p->output_section = NULL;
8380 p->output_offset = 0;
8381 }
8382
8383 lang_assignment_statement_type *
8384 lang_add_assignment (etree_type *exp)
8385 {
8386 lang_assignment_statement_type *new_stmt;
8387
8388 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8389 new_stmt->exp = exp;
8390 return new_stmt;
8391 }
8392
8393 void
8394 lang_add_attribute (enum statement_enum attribute)
8395 {
8396 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8397 }
8398
8399 void
8400 lang_startup (const char *name)
8401 {
8402 if (first_file->filename != NULL)
8403 {
8404 einfo (_("%F%P: multiple STARTUP files\n"));
8405 }
8406 first_file->filename = name;
8407 first_file->local_sym_name = name;
8408 first_file->flags.real = TRUE;
8409 }
8410
8411 void
8412 lang_float (bfd_boolean maybe)
8413 {
8414 lang_float_flag = maybe;
8415 }
8416
8417
8418 /* Work out the load- and run-time regions from a script statement, and
8419 store them in *LMA_REGION and *REGION respectively.
8420
8421 MEMSPEC is the name of the run-time region, or the value of
8422 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8423 LMA_MEMSPEC is the name of the load-time region, or null if the
8424 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8425 had an explicit load address.
8426
8427 It is an error to specify both a load region and a load address. */
8428
8429 static void
8430 lang_get_regions (lang_memory_region_type **region,
8431 lang_memory_region_type **lma_region,
8432 const char *memspec,
8433 const char *lma_memspec,
8434 bfd_boolean have_lma,
8435 bfd_boolean have_vma)
8436 {
8437 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8438
8439 /* If no runtime region or VMA has been specified, but the load region
8440 has been specified, then use the load region for the runtime region
8441 as well. */
8442 if (lma_memspec != NULL
8443 && !have_vma
8444 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8445 *region = *lma_region;
8446 else
8447 *region = lang_memory_region_lookup (memspec, FALSE);
8448
8449 if (have_lma && lma_memspec != 0)
8450 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8451 NULL);
8452 }
8453
8454 void
8455 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8456 lang_output_section_phdr_list *phdrs,
8457 const char *lma_memspec)
8458 {
8459 lang_get_regions (&current_section->region,
8460 &current_section->lma_region,
8461 memspec, lma_memspec,
8462 current_section->load_base != NULL,
8463 current_section->addr_tree != NULL);
8464
8465 current_section->fill = fill;
8466 current_section->phdrs = phdrs;
8467 pop_stat_ptr ();
8468 }
8469
8470 /* Set the output format type. -oformat overrides scripts. */
8471
8472 void
8473 lang_add_output_format (const char *format,
8474 const char *big,
8475 const char *little,
8476 int from_script)
8477 {
8478 if (output_target == NULL || !from_script)
8479 {
8480 if (command_line.endian == ENDIAN_BIG
8481 && big != NULL)
8482 format = big;
8483 else if (command_line.endian == ENDIAN_LITTLE
8484 && little != NULL)
8485 format = little;
8486
8487 output_target = format;
8488 }
8489 }
8490
8491 void
8492 lang_add_insert (const char *where, int is_before)
8493 {
8494 lang_insert_statement_type *new_stmt;
8495
8496 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8497 new_stmt->where = where;
8498 new_stmt->is_before = is_before;
8499 saved_script_handle = previous_script_handle;
8500 }
8501
8502 /* Enter a group. This creates a new lang_group_statement, and sets
8503 stat_ptr to build new statements within the group. */
8504
8505 void
8506 lang_enter_group (void)
8507 {
8508 lang_group_statement_type *g;
8509
8510 g = new_stat (lang_group_statement, stat_ptr);
8511 lang_list_init (&g->children);
8512 push_stat_ptr (&g->children);
8513 }
8514
8515 /* Leave a group. This just resets stat_ptr to start writing to the
8516 regular list of statements again. Note that this will not work if
8517 groups can occur inside anything else which can adjust stat_ptr,
8518 but currently they can't. */
8519
8520 void
8521 lang_leave_group (void)
8522 {
8523 pop_stat_ptr ();
8524 }
8525
8526 /* Add a new program header. This is called for each entry in a PHDRS
8527 command in a linker script. */
8528
8529 void
8530 lang_new_phdr (const char *name,
8531 etree_type *type,
8532 bfd_boolean filehdr,
8533 bfd_boolean phdrs,
8534 etree_type *at,
8535 etree_type *flags)
8536 {
8537 struct lang_phdr *n, **pp;
8538 bfd_boolean hdrs;
8539
8540 n = stat_alloc (sizeof (struct lang_phdr));
8541 n->next = NULL;
8542 n->name = name;
8543 n->type = exp_get_vma (type, 0, "program header type");
8544 n->filehdr = filehdr;
8545 n->phdrs = phdrs;
8546 n->at = at;
8547 n->flags = flags;
8548
8549 hdrs = n->type == 1 && (phdrs || filehdr);
8550
8551 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8552 if (hdrs
8553 && (*pp)->type == 1
8554 && !((*pp)->filehdr || (*pp)->phdrs))
8555 {
8556 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8557 " when prior PT_LOAD headers lack them\n"), NULL);
8558 hdrs = FALSE;
8559 }
8560
8561 *pp = n;
8562 }
8563
8564 /* Record the program header information in the output BFD. FIXME: We
8565 should not be calling an ELF specific function here. */
8566
8567 static void
8568 lang_record_phdrs (void)
8569 {
8570 unsigned int alc;
8571 asection **secs;
8572 lang_output_section_phdr_list *last;
8573 struct lang_phdr *l;
8574 lang_output_section_statement_type *os;
8575
8576 alc = 10;
8577 secs = (asection **) xmalloc (alc * sizeof (asection *));
8578 last = NULL;
8579
8580 for (l = lang_phdr_list; l != NULL; l = l->next)
8581 {
8582 unsigned int c;
8583 flagword flags;
8584 bfd_vma at;
8585
8586 c = 0;
8587 for (os = (void *) lang_os_list.head;
8588 os != NULL;
8589 os = os->next)
8590 {
8591 lang_output_section_phdr_list *pl;
8592
8593 if (os->constraint < 0)
8594 continue;
8595
8596 pl = os->phdrs;
8597 if (pl != NULL)
8598 last = pl;
8599 else
8600 {
8601 if (os->sectype == noload_section
8602 || os->bfd_section == NULL
8603 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8604 continue;
8605
8606 /* Don't add orphans to PT_INTERP header. */
8607 if (l->type == 3)
8608 continue;
8609
8610 if (last == NULL)
8611 {
8612 lang_output_section_statement_type *tmp_os;
8613
8614 /* If we have not run across a section with a program
8615 header assigned to it yet, then scan forwards to find
8616 one. This prevents inconsistencies in the linker's
8617 behaviour when a script has specified just a single
8618 header and there are sections in that script which are
8619 not assigned to it, and which occur before the first
8620 use of that header. See here for more details:
8621 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8622 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8623 if (tmp_os->phdrs)
8624 {
8625 last = tmp_os->phdrs;
8626 break;
8627 }
8628 if (last == NULL)
8629 einfo (_("%F%P: no sections assigned to phdrs\n"));
8630 }
8631 pl = last;
8632 }
8633
8634 if (os->bfd_section == NULL)
8635 continue;
8636
8637 for (; pl != NULL; pl = pl->next)
8638 {
8639 if (strcmp (pl->name, l->name) == 0)
8640 {
8641 if (c >= alc)
8642 {
8643 alc *= 2;
8644 secs = (asection **) xrealloc (secs,
8645 alc * sizeof (asection *));
8646 }
8647 secs[c] = os->bfd_section;
8648 ++c;
8649 pl->used = TRUE;
8650 }
8651 }
8652 }
8653
8654 if (l->flags == NULL)
8655 flags = 0;
8656 else
8657 flags = exp_get_vma (l->flags, 0, "phdr flags");
8658
8659 if (l->at == NULL)
8660 at = 0;
8661 else
8662 at = exp_get_vma (l->at, 0, "phdr load address");
8663
8664 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8665 l->flags != NULL, flags, l->at != NULL,
8666 at, l->filehdr, l->phdrs, c, secs))
8667 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8668 }
8669
8670 free (secs);
8671
8672 /* Make sure all the phdr assignments succeeded. */
8673 for (os = (void *) lang_os_list.head;
8674 os != NULL;
8675 os = os->next)
8676 {
8677 lang_output_section_phdr_list *pl;
8678
8679 if (os->constraint < 0
8680 || os->bfd_section == NULL)
8681 continue;
8682
8683 for (pl = os->phdrs;
8684 pl != NULL;
8685 pl = pl->next)
8686 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8687 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8688 os->name, pl->name);
8689 }
8690 }
8691
8692 /* Record a list of sections which may not be cross referenced. */
8693
8694 void
8695 lang_add_nocrossref (lang_nocrossref_type *l)
8696 {
8697 struct lang_nocrossrefs *n;
8698
8699 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8700 n->next = nocrossref_list;
8701 n->list = l;
8702 n->onlyfirst = FALSE;
8703 nocrossref_list = n;
8704
8705 /* Set notice_all so that we get informed about all symbols. */
8706 link_info.notice_all = TRUE;
8707 }
8708
8709 /* Record a section that cannot be referenced from a list of sections. */
8710
8711 void
8712 lang_add_nocrossref_to (lang_nocrossref_type *l)
8713 {
8714 lang_add_nocrossref (l);
8715 nocrossref_list->onlyfirst = TRUE;
8716 }
8717 \f
8718 /* Overlay handling. We handle overlays with some static variables. */
8719
8720 /* The overlay virtual address. */
8721 static etree_type *overlay_vma;
8722 /* And subsection alignment. */
8723 static etree_type *overlay_subalign;
8724
8725 /* An expression for the maximum section size seen so far. */
8726 static etree_type *overlay_max;
8727
8728 /* A list of all the sections in this overlay. */
8729
8730 struct overlay_list {
8731 struct overlay_list *next;
8732 lang_output_section_statement_type *os;
8733 };
8734
8735 static struct overlay_list *overlay_list;
8736
8737 /* Start handling an overlay. */
8738
8739 void
8740 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8741 {
8742 /* The grammar should prevent nested overlays from occurring. */
8743 ASSERT (overlay_vma == NULL
8744 && overlay_subalign == NULL
8745 && overlay_max == NULL);
8746
8747 overlay_vma = vma_expr;
8748 overlay_subalign = subalign;
8749 }
8750
8751 /* Start a section in an overlay. We handle this by calling
8752 lang_enter_output_section_statement with the correct VMA.
8753 lang_leave_overlay sets up the LMA and memory regions. */
8754
8755 void
8756 lang_enter_overlay_section (const char *name)
8757 {
8758 struct overlay_list *n;
8759 etree_type *size;
8760
8761 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8762 0, overlay_subalign, 0, 0, 0);
8763
8764 /* If this is the first section, then base the VMA of future
8765 sections on this one. This will work correctly even if `.' is
8766 used in the addresses. */
8767 if (overlay_list == NULL)
8768 overlay_vma = exp_nameop (ADDR, name);
8769
8770 /* Remember the section. */
8771 n = (struct overlay_list *) xmalloc (sizeof *n);
8772 n->os = current_section;
8773 n->next = overlay_list;
8774 overlay_list = n;
8775
8776 size = exp_nameop (SIZEOF, name);
8777
8778 /* Arrange to work out the maximum section end address. */
8779 if (overlay_max == NULL)
8780 overlay_max = size;
8781 else
8782 overlay_max = exp_binop (MAX_K, overlay_max, size);
8783 }
8784
8785 /* Finish a section in an overlay. There isn't any special to do
8786 here. */
8787
8788 void
8789 lang_leave_overlay_section (fill_type *fill,
8790 lang_output_section_phdr_list *phdrs)
8791 {
8792 const char *name;
8793 char *clean, *s2;
8794 const char *s1;
8795 char *buf;
8796
8797 name = current_section->name;
8798
8799 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8800 region and that no load-time region has been specified. It doesn't
8801 really matter what we say here, since lang_leave_overlay will
8802 override it. */
8803 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8804
8805 /* Define the magic symbols. */
8806
8807 clean = (char *) xmalloc (strlen (name) + 1);
8808 s2 = clean;
8809 for (s1 = name; *s1 != '\0'; s1++)
8810 if (ISALNUM (*s1) || *s1 == '_')
8811 *s2++ = *s1;
8812 *s2 = '\0';
8813
8814 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8815 sprintf (buf, "__load_start_%s", clean);
8816 lang_add_assignment (exp_provide (buf,
8817 exp_nameop (LOADADDR, name),
8818 FALSE));
8819
8820 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8821 sprintf (buf, "__load_stop_%s", clean);
8822 lang_add_assignment (exp_provide (buf,
8823 exp_binop ('+',
8824 exp_nameop (LOADADDR, name),
8825 exp_nameop (SIZEOF, name)),
8826 FALSE));
8827
8828 free (clean);
8829 }
8830
8831 /* Finish an overlay. If there are any overlay wide settings, this
8832 looks through all the sections in the overlay and sets them. */
8833
8834 void
8835 lang_leave_overlay (etree_type *lma_expr,
8836 int nocrossrefs,
8837 fill_type *fill,
8838 const char *memspec,
8839 lang_output_section_phdr_list *phdrs,
8840 const char *lma_memspec)
8841 {
8842 lang_memory_region_type *region;
8843 lang_memory_region_type *lma_region;
8844 struct overlay_list *l;
8845 lang_nocrossref_type *nocrossref;
8846
8847 lang_get_regions (&region, &lma_region,
8848 memspec, lma_memspec,
8849 lma_expr != NULL, FALSE);
8850
8851 nocrossref = NULL;
8852
8853 /* After setting the size of the last section, set '.' to end of the
8854 overlay region. */
8855 if (overlay_list != NULL)
8856 {
8857 overlay_list->os->update_dot = 1;
8858 overlay_list->os->update_dot_tree
8859 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8860 }
8861
8862 l = overlay_list;
8863 while (l != NULL)
8864 {
8865 struct overlay_list *next;
8866
8867 if (fill != NULL && l->os->fill == NULL)
8868 l->os->fill = fill;
8869
8870 l->os->region = region;
8871 l->os->lma_region = lma_region;
8872
8873 /* The first section has the load address specified in the
8874 OVERLAY statement. The rest are worked out from that.
8875 The base address is not needed (and should be null) if
8876 an LMA region was specified. */
8877 if (l->next == 0)
8878 {
8879 l->os->load_base = lma_expr;
8880 l->os->sectype = first_overlay_section;
8881 }
8882 if (phdrs != NULL && l->os->phdrs == NULL)
8883 l->os->phdrs = phdrs;
8884
8885 if (nocrossrefs)
8886 {
8887 lang_nocrossref_type *nc;
8888
8889 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8890 nc->name = l->os->name;
8891 nc->next = nocrossref;
8892 nocrossref = nc;
8893 }
8894
8895 next = l->next;
8896 free (l);
8897 l = next;
8898 }
8899
8900 if (nocrossref != NULL)
8901 lang_add_nocrossref (nocrossref);
8902
8903 overlay_vma = NULL;
8904 overlay_list = NULL;
8905 overlay_max = NULL;
8906 overlay_subalign = NULL;
8907 }
8908 \f
8909 /* Version handling. This is only useful for ELF. */
8910
8911 /* If PREV is NULL, return first version pattern matching particular symbol.
8912 If PREV is non-NULL, return first version pattern matching particular
8913 symbol after PREV (previously returned by lang_vers_match). */
8914
8915 static struct bfd_elf_version_expr *
8916 lang_vers_match (struct bfd_elf_version_expr_head *head,
8917 struct bfd_elf_version_expr *prev,
8918 const char *sym)
8919 {
8920 const char *c_sym;
8921 const char *cxx_sym = sym;
8922 const char *java_sym = sym;
8923 struct bfd_elf_version_expr *expr = NULL;
8924 enum demangling_styles curr_style;
8925
8926 curr_style = CURRENT_DEMANGLING_STYLE;
8927 cplus_demangle_set_style (no_demangling);
8928 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8929 if (!c_sym)
8930 c_sym = sym;
8931 cplus_demangle_set_style (curr_style);
8932
8933 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8934 {
8935 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8936 DMGL_PARAMS | DMGL_ANSI);
8937 if (!cxx_sym)
8938 cxx_sym = sym;
8939 }
8940 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8941 {
8942 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8943 if (!java_sym)
8944 java_sym = sym;
8945 }
8946
8947 if (head->htab && (prev == NULL || prev->literal))
8948 {
8949 struct bfd_elf_version_expr e;
8950
8951 switch (prev ? prev->mask : 0)
8952 {
8953 case 0:
8954 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8955 {
8956 e.pattern = c_sym;
8957 expr = (struct bfd_elf_version_expr *)
8958 htab_find ((htab_t) head->htab, &e);
8959 while (expr && strcmp (expr->pattern, c_sym) == 0)
8960 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8961 goto out_ret;
8962 else
8963 expr = expr->next;
8964 }
8965 /* Fallthrough */
8966 case BFD_ELF_VERSION_C_TYPE:
8967 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8968 {
8969 e.pattern = cxx_sym;
8970 expr = (struct bfd_elf_version_expr *)
8971 htab_find ((htab_t) head->htab, &e);
8972 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8973 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8974 goto out_ret;
8975 else
8976 expr = expr->next;
8977 }
8978 /* Fallthrough */
8979 case BFD_ELF_VERSION_CXX_TYPE:
8980 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8981 {
8982 e.pattern = java_sym;
8983 expr = (struct bfd_elf_version_expr *)
8984 htab_find ((htab_t) head->htab, &e);
8985 while (expr && strcmp (expr->pattern, java_sym) == 0)
8986 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8987 goto out_ret;
8988 else
8989 expr = expr->next;
8990 }
8991 /* Fallthrough */
8992 default:
8993 break;
8994 }
8995 }
8996
8997 /* Finally, try the wildcards. */
8998 if (prev == NULL || prev->literal)
8999 expr = head->remaining;
9000 else
9001 expr = prev->next;
9002 for (; expr; expr = expr->next)
9003 {
9004 const char *s;
9005
9006 if (!expr->pattern)
9007 continue;
9008
9009 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9010 break;
9011
9012 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9013 s = java_sym;
9014 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9015 s = cxx_sym;
9016 else
9017 s = c_sym;
9018 if (fnmatch (expr->pattern, s, 0) == 0)
9019 break;
9020 }
9021
9022 out_ret:
9023 if (c_sym != sym)
9024 free ((char *) c_sym);
9025 if (cxx_sym != sym)
9026 free ((char *) cxx_sym);
9027 if (java_sym != sym)
9028 free ((char *) java_sym);
9029 return expr;
9030 }
9031
9032 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9033 return a pointer to the symbol name with any backslash quotes removed. */
9034
9035 static const char *
9036 realsymbol (const char *pattern)
9037 {
9038 const char *p;
9039 bfd_boolean changed = FALSE, backslash = FALSE;
9040 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9041
9042 for (p = pattern, s = symbol; *p != '\0'; ++p)
9043 {
9044 /* It is a glob pattern only if there is no preceding
9045 backslash. */
9046 if (backslash)
9047 {
9048 /* Remove the preceding backslash. */
9049 *(s - 1) = *p;
9050 backslash = FALSE;
9051 changed = TRUE;
9052 }
9053 else
9054 {
9055 if (*p == '?' || *p == '*' || *p == '[')
9056 {
9057 free (symbol);
9058 return NULL;
9059 }
9060
9061 *s++ = *p;
9062 backslash = *p == '\\';
9063 }
9064 }
9065
9066 if (changed)
9067 {
9068 *s = '\0';
9069 return symbol;
9070 }
9071 else
9072 {
9073 free (symbol);
9074 return pattern;
9075 }
9076 }
9077
9078 /* This is called for each variable name or match expression. NEW_NAME is
9079 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9080 pattern to be matched against symbol names. */
9081
9082 struct bfd_elf_version_expr *
9083 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9084 const char *new_name,
9085 const char *lang,
9086 bfd_boolean literal_p)
9087 {
9088 struct bfd_elf_version_expr *ret;
9089
9090 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9091 ret->next = orig;
9092 ret->symver = 0;
9093 ret->script = 0;
9094 ret->literal = TRUE;
9095 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9096 if (ret->pattern == NULL)
9097 {
9098 ret->pattern = new_name;
9099 ret->literal = FALSE;
9100 }
9101
9102 if (lang == NULL || strcasecmp (lang, "C") == 0)
9103 ret->mask = BFD_ELF_VERSION_C_TYPE;
9104 else if (strcasecmp (lang, "C++") == 0)
9105 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9106 else if (strcasecmp (lang, "Java") == 0)
9107 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9108 else
9109 {
9110 einfo (_("%X%P: unknown language `%s' in version information\n"),
9111 lang);
9112 ret->mask = BFD_ELF_VERSION_C_TYPE;
9113 }
9114
9115 return ldemul_new_vers_pattern (ret);
9116 }
9117
9118 /* This is called for each set of variable names and match
9119 expressions. */
9120
9121 struct bfd_elf_version_tree *
9122 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9123 struct bfd_elf_version_expr *locals)
9124 {
9125 struct bfd_elf_version_tree *ret;
9126
9127 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9128 ret->globals.list = globals;
9129 ret->locals.list = locals;
9130 ret->match = lang_vers_match;
9131 ret->name_indx = (unsigned int) -1;
9132 return ret;
9133 }
9134
9135 /* This static variable keeps track of version indices. */
9136
9137 static int version_index;
9138
9139 static hashval_t
9140 version_expr_head_hash (const void *p)
9141 {
9142 const struct bfd_elf_version_expr *e =
9143 (const struct bfd_elf_version_expr *) p;
9144
9145 return htab_hash_string (e->pattern);
9146 }
9147
9148 static int
9149 version_expr_head_eq (const void *p1, const void *p2)
9150 {
9151 const struct bfd_elf_version_expr *e1 =
9152 (const struct bfd_elf_version_expr *) p1;
9153 const struct bfd_elf_version_expr *e2 =
9154 (const struct bfd_elf_version_expr *) p2;
9155
9156 return strcmp (e1->pattern, e2->pattern) == 0;
9157 }
9158
9159 static void
9160 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9161 {
9162 size_t count = 0;
9163 struct bfd_elf_version_expr *e, *next;
9164 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9165
9166 for (e = head->list; e; e = e->next)
9167 {
9168 if (e->literal)
9169 count++;
9170 head->mask |= e->mask;
9171 }
9172
9173 if (count)
9174 {
9175 head->htab = htab_create (count * 2, version_expr_head_hash,
9176 version_expr_head_eq, NULL);
9177 list_loc = &head->list;
9178 remaining_loc = &head->remaining;
9179 for (e = head->list; e; e = next)
9180 {
9181 next = e->next;
9182 if (!e->literal)
9183 {
9184 *remaining_loc = e;
9185 remaining_loc = &e->next;
9186 }
9187 else
9188 {
9189 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9190
9191 if (*loc)
9192 {
9193 struct bfd_elf_version_expr *e1, *last;
9194
9195 e1 = (struct bfd_elf_version_expr *) *loc;
9196 last = NULL;
9197 do
9198 {
9199 if (e1->mask == e->mask)
9200 {
9201 last = NULL;
9202 break;
9203 }
9204 last = e1;
9205 e1 = e1->next;
9206 }
9207 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9208
9209 if (last == NULL)
9210 {
9211 /* This is a duplicate. */
9212 /* FIXME: Memory leak. Sometimes pattern is not
9213 xmalloced alone, but in larger chunk of memory. */
9214 /* free (e->pattern); */
9215 free (e);
9216 }
9217 else
9218 {
9219 e->next = last->next;
9220 last->next = e;
9221 }
9222 }
9223 else
9224 {
9225 *loc = e;
9226 *list_loc = e;
9227 list_loc = &e->next;
9228 }
9229 }
9230 }
9231 *remaining_loc = NULL;
9232 *list_loc = head->remaining;
9233 }
9234 else
9235 head->remaining = head->list;
9236 }
9237
9238 /* This is called when we know the name and dependencies of the
9239 version. */
9240
9241 void
9242 lang_register_vers_node (const char *name,
9243 struct bfd_elf_version_tree *version,
9244 struct bfd_elf_version_deps *deps)
9245 {
9246 struct bfd_elf_version_tree *t, **pp;
9247 struct bfd_elf_version_expr *e1;
9248
9249 if (name == NULL)
9250 name = "";
9251
9252 if (link_info.version_info != NULL
9253 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9254 {
9255 einfo (_("%X%P: anonymous version tag cannot be combined"
9256 " with other version tags\n"));
9257 free (version);
9258 return;
9259 }
9260
9261 /* Make sure this node has a unique name. */
9262 for (t = link_info.version_info; t != NULL; t = t->next)
9263 if (strcmp (t->name, name) == 0)
9264 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9265
9266 lang_finalize_version_expr_head (&version->globals);
9267 lang_finalize_version_expr_head (&version->locals);
9268
9269 /* Check the global and local match names, and make sure there
9270 aren't any duplicates. */
9271
9272 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9273 {
9274 for (t = link_info.version_info; t != NULL; t = t->next)
9275 {
9276 struct bfd_elf_version_expr *e2;
9277
9278 if (t->locals.htab && e1->literal)
9279 {
9280 e2 = (struct bfd_elf_version_expr *)
9281 htab_find ((htab_t) t->locals.htab, e1);
9282 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9283 {
9284 if (e1->mask == e2->mask)
9285 einfo (_("%X%P: duplicate expression `%s'"
9286 " in version information\n"), e1->pattern);
9287 e2 = e2->next;
9288 }
9289 }
9290 else if (!e1->literal)
9291 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9292 if (strcmp (e1->pattern, e2->pattern) == 0
9293 && e1->mask == e2->mask)
9294 einfo (_("%X%P: duplicate expression `%s'"
9295 " in version information\n"), e1->pattern);
9296 }
9297 }
9298
9299 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9300 {
9301 for (t = link_info.version_info; t != NULL; t = t->next)
9302 {
9303 struct bfd_elf_version_expr *e2;
9304
9305 if (t->globals.htab && e1->literal)
9306 {
9307 e2 = (struct bfd_elf_version_expr *)
9308 htab_find ((htab_t) t->globals.htab, e1);
9309 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9310 {
9311 if (e1->mask == e2->mask)
9312 einfo (_("%X%P: duplicate expression `%s'"
9313 " in version information\n"),
9314 e1->pattern);
9315 e2 = e2->next;
9316 }
9317 }
9318 else if (!e1->literal)
9319 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9320 if (strcmp (e1->pattern, e2->pattern) == 0
9321 && e1->mask == e2->mask)
9322 einfo (_("%X%P: duplicate expression `%s'"
9323 " in version information\n"), e1->pattern);
9324 }
9325 }
9326
9327 version->deps = deps;
9328 version->name = name;
9329 if (name[0] != '\0')
9330 {
9331 ++version_index;
9332 version->vernum = version_index;
9333 }
9334 else
9335 version->vernum = 0;
9336
9337 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9338 ;
9339 *pp = version;
9340 }
9341
9342 /* This is called when we see a version dependency. */
9343
9344 struct bfd_elf_version_deps *
9345 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9346 {
9347 struct bfd_elf_version_deps *ret;
9348 struct bfd_elf_version_tree *t;
9349
9350 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9351 ret->next = list;
9352
9353 for (t = link_info.version_info; t != NULL; t = t->next)
9354 {
9355 if (strcmp (t->name, name) == 0)
9356 {
9357 ret->version_needed = t;
9358 return ret;
9359 }
9360 }
9361
9362 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9363
9364 ret->version_needed = NULL;
9365 return ret;
9366 }
9367
9368 static void
9369 lang_do_version_exports_section (void)
9370 {
9371 struct bfd_elf_version_expr *greg = NULL, *lreg;
9372
9373 LANG_FOR_EACH_INPUT_STATEMENT (is)
9374 {
9375 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9376 char *contents, *p;
9377 bfd_size_type len;
9378
9379 if (sec == NULL)
9380 continue;
9381
9382 len = sec->size;
9383 contents = (char *) xmalloc (len);
9384 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9385 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9386
9387 p = contents;
9388 while (p < contents + len)
9389 {
9390 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9391 p = strchr (p, '\0') + 1;
9392 }
9393
9394 /* Do not free the contents, as we used them creating the regex. */
9395
9396 /* Do not include this section in the link. */
9397 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9398 }
9399
9400 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9401 lang_register_vers_node (command_line.version_exports_section,
9402 lang_new_vers_node (greg, lreg), NULL);
9403 }
9404
9405 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9406 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9407 thrown, however, references to symbols in the origin and length fields
9408 will be pushed into the symbol table, this allows PROVIDE statements to
9409 then provide these symbols. This function is called a second time with
9410 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9411 data structures, and throw errors if missing symbols are encountered. */
9412
9413 static void
9414 lang_do_memory_regions (bfd_boolean update_regions_p)
9415 {
9416 lang_memory_region_type *r = lang_memory_region_list;
9417
9418 for (; r != NULL; r = r->next)
9419 {
9420 if (r->origin_exp)
9421 {
9422 exp_fold_tree_no_dot (r->origin_exp);
9423 if (update_regions_p)
9424 {
9425 if (expld.result.valid_p)
9426 {
9427 r->origin = expld.result.value;
9428 r->current = r->origin;
9429 }
9430 else
9431 einfo (_("%P: invalid origin for memory region %s\n"),
9432 r->name_list.name);
9433 }
9434 }
9435 if (r->length_exp)
9436 {
9437 exp_fold_tree_no_dot (r->length_exp);
9438 if (update_regions_p)
9439 {
9440 if (expld.result.valid_p)
9441 r->length = expld.result.value;
9442 else
9443 einfo (_("%P: invalid length for memory region %s\n"),
9444 r->name_list.name);
9445 }
9446 }
9447 }
9448 }
9449
9450 void
9451 lang_add_unique (const char *name)
9452 {
9453 struct unique_sections *ent;
9454
9455 for (ent = unique_section_list; ent; ent = ent->next)
9456 if (strcmp (ent->name, name) == 0)
9457 return;
9458
9459 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9460 ent->name = xstrdup (name);
9461 ent->next = unique_section_list;
9462 unique_section_list = ent;
9463 }
9464
9465 /* Append the list of dynamic symbols to the existing one. */
9466
9467 void
9468 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9469 struct bfd_elf_version_expr *dynamic)
9470 {
9471 if (*list_p)
9472 {
9473 struct bfd_elf_version_expr *tail;
9474 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9475 ;
9476 tail->next = (*list_p)->head.list;
9477 (*list_p)->head.list = dynamic;
9478 }
9479 else
9480 {
9481 struct bfd_elf_dynamic_list *d;
9482
9483 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9484 d->head.list = dynamic;
9485 d->match = lang_vers_match;
9486 *list_p = d;
9487 }
9488 }
9489
9490 /* Append the list of C++ typeinfo dynamic symbols to the existing
9491 one. */
9492
9493 void
9494 lang_append_dynamic_list_cpp_typeinfo (void)
9495 {
9496 const char *symbols[] =
9497 {
9498 "typeinfo name for*",
9499 "typeinfo for*"
9500 };
9501 struct bfd_elf_version_expr *dynamic = NULL;
9502 unsigned int i;
9503
9504 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9505 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9506 FALSE);
9507
9508 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9509 }
9510
9511 /* Append the list of C++ operator new and delete dynamic symbols to the
9512 existing one. */
9513
9514 void
9515 lang_append_dynamic_list_cpp_new (void)
9516 {
9517 const char *symbols[] =
9518 {
9519 "operator new*",
9520 "operator delete*"
9521 };
9522 struct bfd_elf_version_expr *dynamic = NULL;
9523 unsigned int i;
9524
9525 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9526 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9527 FALSE);
9528
9529 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9530 }
9531
9532 /* Scan a space and/or comma separated string of features. */
9533
9534 void
9535 lang_ld_feature (char *str)
9536 {
9537 char *p, *q;
9538
9539 p = str;
9540 while (*p)
9541 {
9542 char sep;
9543 while (*p == ',' || ISSPACE (*p))
9544 ++p;
9545 if (!*p)
9546 break;
9547 q = p + 1;
9548 while (*q && *q != ',' && !ISSPACE (*q))
9549 ++q;
9550 sep = *q;
9551 *q = 0;
9552 if (strcasecmp (p, "SANE_EXPR") == 0)
9553 config.sane_expr = TRUE;
9554 else
9555 einfo (_("%X%P: unknown feature `%s'\n"), p);
9556 *q = sep;
9557 p = q;
9558 }
9559 }
9560
9561 /* Pretty print memory amount. */
9562
9563 static void
9564 lang_print_memory_size (bfd_vma sz)
9565 {
9566 if ((sz & 0x3fffffff) == 0)
9567 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9568 else if ((sz & 0xfffff) == 0)
9569 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9570 else if ((sz & 0x3ff) == 0)
9571 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9572 else
9573 printf (" %10" BFD_VMA_FMT "u B", sz);
9574 }
9575
9576 /* Implement --print-memory-usage: disply per region memory usage. */
9577
9578 void
9579 lang_print_memory_usage (void)
9580 {
9581 lang_memory_region_type *r;
9582
9583 printf ("Memory region Used Size Region Size %%age Used\n");
9584 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9585 {
9586 bfd_vma used_length = r->current - r->origin;
9587
9588 printf ("%16s: ",r->name_list.name);
9589 lang_print_memory_size (used_length);
9590 lang_print_memory_size ((bfd_vma) r->length);
9591
9592 if (r->length != 0)
9593 {
9594 double percent = used_length * 100.0 / r->length;
9595 printf (" %6.2f%%", percent);
9596 }
9597 printf ("\n");
9598 }
9599 }
This page took 0.290691 seconds and 4 git commands to generate.