Have the linker's help text include the default setting of the --hash-style option...
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2020 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #ifdef ENABLE_PLUGINS
46 #include "plugin.h"
47 #endif /* ENABLE_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (void);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_sym_chain entry_symbol = { NULL, NULL };
122 const char *entry_section = ".text";
123 struct lang_input_statement_flags input_flags;
124 bfd_boolean entry_from_cmdline;
125 bfd_boolean undef_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 static ctf_file_t *ctf_output;
134
135 /* Functions that traverse the linker script and might evaluate
136 DEFINED() need to increment this at the start of the traversal. */
137 int lang_statement_iteration = 0;
138
139 /* Count times through one_lang_size_sections_pass after mark phase. */
140 static int lang_sizing_iteration = 0;
141
142 /* Return TRUE if the PATTERN argument is a wildcard pattern.
143 Although backslashes are treated specially if a pattern contains
144 wildcards, we do not consider the mere presence of a backslash to
145 be enough to cause the pattern to be treated as a wildcard.
146 That lets us handle DOS filenames more naturally. */
147 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
148
149 #define new_stat(x, y) \
150 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
151
152 #define outside_section_address(q) \
153 ((q)->output_offset + (q)->output_section->vma)
154
155 #define outside_symbol_address(q) \
156 ((q)->value + outside_section_address (q->section))
157
158 #define SECTION_NAME_MAP_LENGTH (16)
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = f->the_bfd->my_archive->filename;
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 file->the_bfd->my_archive->filename) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
570 lang_input_statement_type *file,
571 void *output)
572 {
573 lang_section_bst_type *node;
574 lang_section_bst_type **tree;
575 lang_output_section_statement_type *os;
576
577 os = (lang_output_section_statement_type *) output;
578
579 if (unique_section_p (section, os))
580 return;
581
582 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
583 node->left = 0;
584 node->right = 0;
585 node->section = section;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE, always make a
1468 new output_section_statement for SPECIAL CONSTRAINT. */
1469
1470 lang_output_section_statement_type *
1471 lang_output_section_statement_lookup (const char *name,
1472 int constraint,
1473 bfd_boolean create)
1474 {
1475 struct out_section_hash_entry *entry;
1476
1477 entry = ((struct out_section_hash_entry *)
1478 bfd_hash_lookup (&output_section_statement_table, name,
1479 create, FALSE));
1480 if (entry == NULL)
1481 {
1482 if (create)
1483 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1484 return NULL;
1485 }
1486
1487 if (entry->s.output_section_statement.name != NULL)
1488 {
1489 /* We have a section of this name, but it might not have the correct
1490 constraint. */
1491 struct out_section_hash_entry *last_ent;
1492
1493 name = entry->s.output_section_statement.name;
1494 if (create && constraint == SPECIAL)
1495 /* Not traversing to the end reverses the order of the second
1496 and subsequent SPECIAL sections in the hash table chain,
1497 but that shouldn't matter. */
1498 last_ent = entry;
1499 else
1500 do
1501 {
1502 if (constraint == entry->s.output_section_statement.constraint
1503 || (constraint == 0
1504 && entry->s.output_section_statement.constraint >= 0))
1505 return &entry->s.output_section_statement;
1506 last_ent = entry;
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 }
1509 while (entry != NULL
1510 && name == entry->s.output_section_statement.name);
1511
1512 if (!create)
1513 return NULL;
1514
1515 entry
1516 = ((struct out_section_hash_entry *)
1517 output_section_statement_newfunc (NULL,
1518 &output_section_statement_table,
1519 name));
1520 if (entry == NULL)
1521 {
1522 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1523 return NULL;
1524 }
1525 entry->root = last_ent->root;
1526 last_ent->root.next = &entry->root;
1527 }
1528
1529 entry->s.output_section_statement.name = name;
1530 entry->s.output_section_statement.constraint = constraint;
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (s->constraint != SPECIAL)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bfd_boolean discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = TRUE;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bfd_boolean keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 }
2722
2723 /* Handle wildcard sorting. This returns the lang_input_section which
2724 should follow the one we are going to create for SECTION and FILE,
2725 based on the sorting requirements of WILD. It returns NULL if the
2726 new section should just go at the end of the current list. */
2727
2728 static lang_statement_union_type *
2729 wild_sort (lang_wild_statement_type *wild,
2730 struct wildcard_list *sec,
2731 lang_input_statement_type *file,
2732 asection *section)
2733 {
2734 lang_statement_union_type *l;
2735
2736 if (!wild->filenames_sorted
2737 && (sec == NULL || sec->spec.sorted == none))
2738 return NULL;
2739
2740 for (l = wild->children.head; l != NULL; l = l->header.next)
2741 {
2742 lang_input_section_type *ls;
2743
2744 if (l->header.type != lang_input_section_enum)
2745 continue;
2746 ls = &l->input_section;
2747
2748 /* Sorting by filename takes precedence over sorting by section
2749 name. */
2750
2751 if (wild->filenames_sorted)
2752 {
2753 const char *fn, *ln;
2754 bfd_boolean fa, la;
2755 int i;
2756
2757 /* The PE support for the .idata section as generated by
2758 dlltool assumes that files will be sorted by the name of
2759 the archive and then the name of the file within the
2760 archive. */
2761
2762 if (file->the_bfd != NULL
2763 && file->the_bfd->my_archive != NULL)
2764 {
2765 fn = bfd_get_filename (file->the_bfd->my_archive);
2766 fa = TRUE;
2767 }
2768 else
2769 {
2770 fn = file->filename;
2771 fa = FALSE;
2772 }
2773
2774 if (ls->section->owner->my_archive != NULL)
2775 {
2776 ln = bfd_get_filename (ls->section->owner->my_archive);
2777 la = TRUE;
2778 }
2779 else
2780 {
2781 ln = ls->section->owner->filename;
2782 la = FALSE;
2783 }
2784
2785 i = filename_cmp (fn, ln);
2786 if (i > 0)
2787 continue;
2788 else if (i < 0)
2789 break;
2790
2791 if (fa || la)
2792 {
2793 if (fa)
2794 fn = file->filename;
2795 if (la)
2796 ln = ls->section->owner->filename;
2797
2798 i = filename_cmp (fn, ln);
2799 if (i > 0)
2800 continue;
2801 else if (i < 0)
2802 break;
2803 }
2804 }
2805
2806 /* Here either the files are not sorted by name, or we are
2807 looking at the sections for this file. */
2808
2809 if (sec != NULL
2810 && sec->spec.sorted != none
2811 && sec->spec.sorted != by_none)
2812 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2813 break;
2814 }
2815
2816 return l;
2817 }
2818
2819 /* Expand a wild statement for a particular FILE. SECTION may be
2820 NULL, in which case it is a wild card. */
2821
2822 static void
2823 output_section_callback (lang_wild_statement_type *ptr,
2824 struct wildcard_list *sec,
2825 asection *section,
2826 struct flag_info *sflag_info,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, sflag_info, os);
2848 else
2849 {
2850 lang_statement_list_type list;
2851 lang_statement_union_type **pp;
2852
2853 lang_list_init (&list);
2854 lang_add_section (&list, section, sflag_info, os);
2855
2856 /* If we are discarding the section, LIST.HEAD will
2857 be NULL. */
2858 if (list.head != NULL)
2859 {
2860 ASSERT (list.head->header.next == NULL);
2861
2862 for (pp = &ptr->children.head;
2863 *pp != before;
2864 pp = &(*pp)->header.next)
2865 ASSERT (*pp != NULL);
2866
2867 list.head->header.next = *pp;
2868 *pp = list.head;
2869 }
2870 }
2871 }
2872
2873 /* Check if all sections in a wild statement for a particular FILE
2874 are readonly. */
2875
2876 static void
2877 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2878 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2879 asection *section,
2880 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2881 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2882 void *output)
2883 {
2884 lang_output_section_statement_type *os;
2885
2886 os = (lang_output_section_statement_type *) output;
2887
2888 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2889 if (unique_section_p (section, os))
2890 return;
2891
2892 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2893 os->all_input_readonly = FALSE;
2894 }
2895
2896 /* This is passed a file name which must have been seen already and
2897 added to the statement tree. We will see if it has been opened
2898 already and had its symbols read. If not then we'll read it. */
2899
2900 static lang_input_statement_type *
2901 lookup_name (const char *name)
2902 {
2903 lang_input_statement_type *search;
2904
2905 for (search = (void *) input_file_chain.head;
2906 search != NULL;
2907 search = search->next_real_file)
2908 {
2909 /* Use the local_sym_name as the name of the file that has
2910 already been loaded as filename might have been transformed
2911 via the search directory lookup mechanism. */
2912 const char *filename = search->local_sym_name;
2913
2914 if (filename != NULL
2915 && filename_cmp (filename, name) == 0)
2916 break;
2917 }
2918
2919 if (search == NULL)
2920 {
2921 /* Arrange to splice the input statement added by new_afile into
2922 statement_list after the current input_file_chain tail.
2923 We know input_file_chain is not an empty list, and that
2924 lookup_name was called via open_input_bfds. Later calls to
2925 lookup_name should always match an existing input_statement. */
2926 lang_statement_union_type **tail = stat_ptr->tail;
2927 lang_statement_union_type **after
2928 = (void *) ((char *) input_file_chain.tail
2929 - offsetof (lang_input_statement_type, next_real_file)
2930 + offsetof (lang_input_statement_type, header.next));
2931 lang_statement_union_type *rest = *after;
2932 stat_ptr->tail = after;
2933 search = new_afile (name, lang_input_file_is_search_file_enum,
2934 default_target, NULL);
2935 *stat_ptr->tail = rest;
2936 if (*tail == NULL)
2937 stat_ptr->tail = tail;
2938 }
2939
2940 /* If we have already added this file, or this file is not real
2941 don't add this file. */
2942 if (search->flags.loaded || !search->flags.real)
2943 return search;
2944
2945 if (!load_symbols (search, NULL))
2946 return NULL;
2947
2948 return search;
2949 }
2950
2951 /* Save LIST as a list of libraries whose symbols should not be exported. */
2952
2953 struct excluded_lib
2954 {
2955 char *name;
2956 struct excluded_lib *next;
2957 };
2958 static struct excluded_lib *excluded_libs;
2959
2960 void
2961 add_excluded_libs (const char *list)
2962 {
2963 const char *p = list, *end;
2964
2965 while (*p != '\0')
2966 {
2967 struct excluded_lib *entry;
2968 end = strpbrk (p, ",:");
2969 if (end == NULL)
2970 end = p + strlen (p);
2971 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2972 entry->next = excluded_libs;
2973 entry->name = (char *) xmalloc (end - p + 1);
2974 memcpy (entry->name, p, end - p);
2975 entry->name[end - p] = '\0';
2976 excluded_libs = entry;
2977 if (*end == '\0')
2978 break;
2979 p = end + 1;
2980 }
2981 }
2982
2983 static void
2984 check_excluded_libs (bfd *abfd)
2985 {
2986 struct excluded_lib *lib = excluded_libs;
2987
2988 while (lib)
2989 {
2990 int len = strlen (lib->name);
2991 const char *filename = lbasename (abfd->filename);
2992
2993 if (strcmp (lib->name, "ALL") == 0)
2994 {
2995 abfd->no_export = TRUE;
2996 return;
2997 }
2998
2999 if (filename_ncmp (lib->name, filename, len) == 0
3000 && (filename[len] == '\0'
3001 || (filename[len] == '.' && filename[len + 1] == 'a'
3002 && filename[len + 2] == '\0')))
3003 {
3004 abfd->no_export = TRUE;
3005 return;
3006 }
3007
3008 lib = lib->next;
3009 }
3010 }
3011
3012 /* Get the symbols for an input file. */
3013
3014 bfd_boolean
3015 load_symbols (lang_input_statement_type *entry,
3016 lang_statement_list_type *place)
3017 {
3018 char **matching;
3019
3020 if (entry->flags.loaded)
3021 return TRUE;
3022
3023 ldfile_open_file (entry);
3024
3025 /* Do not process further if the file was missing. */
3026 if (entry->flags.missing_file)
3027 return TRUE;
3028
3029 if (trace_files || verbose)
3030 info_msg ("%pI\n", entry);
3031
3032 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3033 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3034 {
3035 bfd_error_type err;
3036 struct lang_input_statement_flags save_flags;
3037 extern FILE *yyin;
3038
3039 err = bfd_get_error ();
3040
3041 /* See if the emulation has some special knowledge. */
3042 if (ldemul_unrecognized_file (entry))
3043 return TRUE;
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 einfo ("%F\n");
3054 }
3055 else if (err != bfd_error_file_not_recognized
3056 || place == NULL)
3057 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3058
3059 bfd_close (entry->the_bfd);
3060 entry->the_bfd = NULL;
3061
3062 /* Try to interpret the file as a linker script. */
3063 save_flags = input_flags;
3064 ldfile_open_command_file (entry->filename);
3065
3066 push_stat_ptr (place);
3067 input_flags.add_DT_NEEDED_for_regular
3068 = entry->flags.add_DT_NEEDED_for_regular;
3069 input_flags.add_DT_NEEDED_for_dynamic
3070 = entry->flags.add_DT_NEEDED_for_dynamic;
3071 input_flags.whole_archive = entry->flags.whole_archive;
3072 input_flags.dynamic = entry->flags.dynamic;
3073
3074 ldfile_assumed_script = TRUE;
3075 parser_input = input_script;
3076 current_input_file = entry->filename;
3077 yyparse ();
3078 current_input_file = NULL;
3079 ldfile_assumed_script = FALSE;
3080
3081 /* missing_file is sticky. sysrooted will already have been
3082 restored when seeing EOF in yyparse, but no harm to restore
3083 again. */
3084 save_flags.missing_file |= input_flags.missing_file;
3085 input_flags = save_flags;
3086 pop_stat_ptr ();
3087 fclose (yyin);
3088 yyin = NULL;
3089 entry->flags.loaded = TRUE;
3090
3091 return TRUE;
3092 }
3093
3094 if (ldemul_recognized_file (entry))
3095 return TRUE;
3096
3097 /* We don't call ldlang_add_file for an archive. Instead, the
3098 add_symbols entry point will call ldlang_add_file, via the
3099 add_archive_element callback, for each element of the archive
3100 which is used. */
3101 switch (bfd_get_format (entry->the_bfd))
3102 {
3103 default:
3104 break;
3105
3106 case bfd_object:
3107 if (!entry->flags.reload)
3108 ldlang_add_file (entry);
3109 break;
3110
3111 case bfd_archive:
3112 check_excluded_libs (entry->the_bfd);
3113
3114 bfd_set_usrdata (entry->the_bfd, entry);
3115 if (entry->flags.whole_archive)
3116 {
3117 bfd *member = NULL;
3118 bfd_boolean loaded = TRUE;
3119
3120 for (;;)
3121 {
3122 bfd *subsbfd;
3123 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3124
3125 if (member == NULL)
3126 break;
3127
3128 if (!bfd_check_format (member, bfd_object))
3129 {
3130 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3131 entry->the_bfd, member);
3132 loaded = FALSE;
3133 }
3134
3135 subsbfd = member;
3136 if (!(*link_info.callbacks
3137 ->add_archive_element) (&link_info, member,
3138 "--whole-archive", &subsbfd))
3139 abort ();
3140
3141 /* Potentially, the add_archive_element hook may have set a
3142 substitute BFD for us. */
3143 if (!bfd_link_add_symbols (subsbfd, &link_info))
3144 {
3145 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3146 loaded = FALSE;
3147 }
3148 }
3149
3150 entry->flags.loaded = loaded;
3151 return loaded;
3152 }
3153 break;
3154 }
3155
3156 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3157 entry->flags.loaded = TRUE;
3158 else
3159 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3160
3161 return entry->flags.loaded;
3162 }
3163
3164 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3165 may be NULL, indicating that it is a wildcard. Separate
3166 lang_input_section statements are created for each part of the
3167 expansion; they are added after the wild statement S. OUTPUT is
3168 the output section. */
3169
3170 static void
3171 wild (lang_wild_statement_type *s,
3172 const char *target ATTRIBUTE_UNUSED,
3173 lang_output_section_statement_type *output)
3174 {
3175 struct wildcard_list *sec;
3176
3177 if (s->handler_data[0]
3178 && s->handler_data[0]->spec.sorted == by_name
3179 && !s->filenames_sorted)
3180 {
3181 lang_section_bst_type *tree;
3182
3183 walk_wild (s, output_section_callback_fast, output);
3184
3185 tree = s->tree;
3186 if (tree)
3187 {
3188 output_section_callback_tree_to_list (s, tree, output);
3189 s->tree = NULL;
3190 }
3191 }
3192 else
3193 walk_wild (s, output_section_callback, output);
3194
3195 if (default_common_section == NULL)
3196 for (sec = s->section_list; sec != NULL; sec = sec->next)
3197 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3198 {
3199 /* Remember the section that common is going to in case we
3200 later get something which doesn't know where to put it. */
3201 default_common_section = output;
3202 break;
3203 }
3204 }
3205
3206 /* Return TRUE iff target is the sought target. */
3207
3208 static int
3209 get_target (const bfd_target *target, void *data)
3210 {
3211 const char *sought = (const char *) data;
3212
3213 return strcmp (target->name, sought) == 0;
3214 }
3215
3216 /* Like strcpy() but convert to lower case as well. */
3217
3218 static void
3219 stricpy (char *dest, const char *src)
3220 {
3221 char c;
3222
3223 while ((c = *src++) != 0)
3224 *dest++ = TOLOWER (c);
3225
3226 *dest = 0;
3227 }
3228
3229 /* Remove the first occurrence of needle (if any) in haystack
3230 from haystack. */
3231
3232 static void
3233 strcut (char *haystack, const char *needle)
3234 {
3235 haystack = strstr (haystack, needle);
3236
3237 if (haystack)
3238 {
3239 char *src;
3240
3241 for (src = haystack + strlen (needle); *src;)
3242 *haystack++ = *src++;
3243
3244 *haystack = 0;
3245 }
3246 }
3247
3248 /* Compare two target format name strings.
3249 Return a value indicating how "similar" they are. */
3250
3251 static int
3252 name_compare (const char *first, const char *second)
3253 {
3254 char *copy1;
3255 char *copy2;
3256 int result;
3257
3258 copy1 = (char *) xmalloc (strlen (first) + 1);
3259 copy2 = (char *) xmalloc (strlen (second) + 1);
3260
3261 /* Convert the names to lower case. */
3262 stricpy (copy1, first);
3263 stricpy (copy2, second);
3264
3265 /* Remove size and endian strings from the name. */
3266 strcut (copy1, "big");
3267 strcut (copy1, "little");
3268 strcut (copy2, "big");
3269 strcut (copy2, "little");
3270
3271 /* Return a value based on how many characters match,
3272 starting from the beginning. If both strings are
3273 the same then return 10 * their length. */
3274 for (result = 0; copy1[result] == copy2[result]; result++)
3275 if (copy1[result] == 0)
3276 {
3277 result *= 10;
3278 break;
3279 }
3280
3281 free (copy1);
3282 free (copy2);
3283
3284 return result;
3285 }
3286
3287 /* Set by closest_target_match() below. */
3288 static const bfd_target *winner;
3289
3290 /* Scan all the valid bfd targets looking for one that has the endianness
3291 requirement that was specified on the command line, and is the nearest
3292 match to the original output target. */
3293
3294 static int
3295 closest_target_match (const bfd_target *target, void *data)
3296 {
3297 const bfd_target *original = (const bfd_target *) data;
3298
3299 if (command_line.endian == ENDIAN_BIG
3300 && target->byteorder != BFD_ENDIAN_BIG)
3301 return 0;
3302
3303 if (command_line.endian == ENDIAN_LITTLE
3304 && target->byteorder != BFD_ENDIAN_LITTLE)
3305 return 0;
3306
3307 /* Must be the same flavour. */
3308 if (target->flavour != original->flavour)
3309 return 0;
3310
3311 /* Ignore generic big and little endian elf vectors. */
3312 if (strcmp (target->name, "elf32-big") == 0
3313 || strcmp (target->name, "elf64-big") == 0
3314 || strcmp (target->name, "elf32-little") == 0
3315 || strcmp (target->name, "elf64-little") == 0)
3316 return 0;
3317
3318 /* If we have not found a potential winner yet, then record this one. */
3319 if (winner == NULL)
3320 {
3321 winner = target;
3322 return 0;
3323 }
3324
3325 /* Oh dear, we now have two potential candidates for a successful match.
3326 Compare their names and choose the better one. */
3327 if (name_compare (target->name, original->name)
3328 > name_compare (winner->name, original->name))
3329 winner = target;
3330
3331 /* Keep on searching until wqe have checked them all. */
3332 return 0;
3333 }
3334
3335 /* Return the BFD target format of the first input file. */
3336
3337 static const char *
3338 get_first_input_target (void)
3339 {
3340 const char *target = NULL;
3341
3342 LANG_FOR_EACH_INPUT_STATEMENT (s)
3343 {
3344 if (s->header.type == lang_input_statement_enum
3345 && s->flags.real)
3346 {
3347 ldfile_open_file (s);
3348
3349 if (s->the_bfd != NULL
3350 && bfd_check_format (s->the_bfd, bfd_object))
3351 {
3352 target = bfd_get_target (s->the_bfd);
3353
3354 if (target != NULL)
3355 break;
3356 }
3357 }
3358 }
3359
3360 return target;
3361 }
3362
3363 const char *
3364 lang_get_output_target (void)
3365 {
3366 const char *target;
3367
3368 /* Has the user told us which output format to use? */
3369 if (output_target != NULL)
3370 return output_target;
3371
3372 /* No - has the current target been set to something other than
3373 the default? */
3374 if (current_target != default_target && current_target != NULL)
3375 return current_target;
3376
3377 /* No - can we determine the format of the first input file? */
3378 target = get_first_input_target ();
3379 if (target != NULL)
3380 return target;
3381
3382 /* Failed - use the default output target. */
3383 return default_target;
3384 }
3385
3386 /* Open the output file. */
3387
3388 static void
3389 open_output (const char *name)
3390 {
3391 output_target = lang_get_output_target ();
3392
3393 /* Has the user requested a particular endianness on the command
3394 line? */
3395 if (command_line.endian != ENDIAN_UNSET)
3396 {
3397 /* Get the chosen target. */
3398 const bfd_target *target
3399 = bfd_iterate_over_targets (get_target, (void *) output_target);
3400
3401 /* If the target is not supported, we cannot do anything. */
3402 if (target != NULL)
3403 {
3404 enum bfd_endian desired_endian;
3405
3406 if (command_line.endian == ENDIAN_BIG)
3407 desired_endian = BFD_ENDIAN_BIG;
3408 else
3409 desired_endian = BFD_ENDIAN_LITTLE;
3410
3411 /* See if the target has the wrong endianness. This should
3412 not happen if the linker script has provided big and
3413 little endian alternatives, but some scrips don't do
3414 this. */
3415 if (target->byteorder != desired_endian)
3416 {
3417 /* If it does, then see if the target provides
3418 an alternative with the correct endianness. */
3419 if (target->alternative_target != NULL
3420 && (target->alternative_target->byteorder == desired_endian))
3421 output_target = target->alternative_target->name;
3422 else
3423 {
3424 /* Try to find a target as similar as possible to
3425 the default target, but which has the desired
3426 endian characteristic. */
3427 bfd_iterate_over_targets (closest_target_match,
3428 (void *) target);
3429
3430 /* Oh dear - we could not find any targets that
3431 satisfy our requirements. */
3432 if (winner == NULL)
3433 einfo (_("%P: warning: could not find any targets"
3434 " that match endianness requirement\n"));
3435 else
3436 output_target = winner->name;
3437 }
3438 }
3439 }
3440 }
3441
3442 link_info.output_bfd = bfd_openw (name, output_target);
3443
3444 if (link_info.output_bfd == NULL)
3445 {
3446 if (bfd_get_error () == bfd_error_invalid_target)
3447 einfo (_("%F%P: target %s not found\n"), output_target);
3448
3449 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3450 }
3451
3452 delete_output_file_on_failure = TRUE;
3453
3454 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3455 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3456 if (!bfd_set_arch_mach (link_info.output_bfd,
3457 ldfile_output_architecture,
3458 ldfile_output_machine))
3459 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3460
3461 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3462 if (link_info.hash == NULL)
3463 einfo (_("%F%P: can not create hash table: %E\n"));
3464
3465 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3466 }
3467
3468 static void
3469 ldlang_open_output (lang_statement_union_type *statement)
3470 {
3471 switch (statement->header.type)
3472 {
3473 case lang_output_statement_enum:
3474 ASSERT (link_info.output_bfd == NULL);
3475 open_output (statement->output_statement.name);
3476 ldemul_set_output_arch ();
3477 if (config.magic_demand_paged
3478 && !bfd_link_relocatable (&link_info))
3479 link_info.output_bfd->flags |= D_PAGED;
3480 else
3481 link_info.output_bfd->flags &= ~D_PAGED;
3482 if (config.text_read_only)
3483 link_info.output_bfd->flags |= WP_TEXT;
3484 else
3485 link_info.output_bfd->flags &= ~WP_TEXT;
3486 if (link_info.traditional_format)
3487 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3488 else
3489 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3490 break;
3491
3492 case lang_target_statement_enum:
3493 current_target = statement->target_statement.target;
3494 break;
3495 default:
3496 break;
3497 }
3498 }
3499
3500 static void
3501 init_opb (asection *s)
3502 {
3503 unsigned int x;
3504
3505 opb_shift = 0;
3506 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3507 && s != NULL
3508 && (s->flags & SEC_ELF_OCTETS) != 0)
3509 return;
3510
3511 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3512 ldfile_output_machine);
3513 if (x > 1)
3514 while ((x & 1) == 0)
3515 {
3516 x >>= 1;
3517 ++opb_shift;
3518 }
3519 ASSERT (x == 1);
3520 }
3521
3522 /* Open all the input files. */
3523
3524 enum open_bfd_mode
3525 {
3526 OPEN_BFD_NORMAL = 0,
3527 OPEN_BFD_FORCE = 1,
3528 OPEN_BFD_RESCAN = 2
3529 };
3530 #ifdef ENABLE_PLUGINS
3531 static lang_input_statement_type *plugin_insert = NULL;
3532 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3533 #endif
3534
3535 static void
3536 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3537 {
3538 for (; s != NULL; s = s->header.next)
3539 {
3540 switch (s->header.type)
3541 {
3542 case lang_constructors_statement_enum:
3543 open_input_bfds (constructor_list.head, mode);
3544 break;
3545 case lang_output_section_statement_enum:
3546 open_input_bfds (s->output_section_statement.children.head, mode);
3547 break;
3548 case lang_wild_statement_enum:
3549 /* Maybe we should load the file's symbols. */
3550 if ((mode & OPEN_BFD_RESCAN) == 0
3551 && s->wild_statement.filename
3552 && !wildcardp (s->wild_statement.filename)
3553 && !archive_path (s->wild_statement.filename))
3554 lookup_name (s->wild_statement.filename);
3555 open_input_bfds (s->wild_statement.children.head, mode);
3556 break;
3557 case lang_group_statement_enum:
3558 {
3559 struct bfd_link_hash_entry *undefs;
3560 #ifdef ENABLE_PLUGINS
3561 lang_input_statement_type *plugin_insert_save;
3562 #endif
3563
3564 /* We must continually search the entries in the group
3565 until no new symbols are added to the list of undefined
3566 symbols. */
3567
3568 do
3569 {
3570 #ifdef ENABLE_PLUGINS
3571 plugin_insert_save = plugin_insert;
3572 #endif
3573 undefs = link_info.hash->undefs_tail;
3574 open_input_bfds (s->group_statement.children.head,
3575 mode | OPEN_BFD_FORCE);
3576 }
3577 while (undefs != link_info.hash->undefs_tail
3578 #ifdef ENABLE_PLUGINS
3579 /* Objects inserted by a plugin, which are loaded
3580 before we hit this loop, may have added new
3581 undefs. */
3582 || (plugin_insert != plugin_insert_save && plugin_undefs)
3583 #endif
3584 );
3585 }
3586 break;
3587 case lang_target_statement_enum:
3588 current_target = s->target_statement.target;
3589 break;
3590 case lang_input_statement_enum:
3591 if (s->input_statement.flags.real)
3592 {
3593 lang_statement_union_type **os_tail;
3594 lang_statement_list_type add;
3595 bfd *abfd;
3596
3597 s->input_statement.target = current_target;
3598
3599 /* If we are being called from within a group, and this
3600 is an archive which has already been searched, then
3601 force it to be researched unless the whole archive
3602 has been loaded already. Do the same for a rescan.
3603 Likewise reload --as-needed shared libs. */
3604 if (mode != OPEN_BFD_NORMAL
3605 #ifdef ENABLE_PLUGINS
3606 && ((mode & OPEN_BFD_RESCAN) == 0
3607 || plugin_insert == NULL)
3608 #endif
3609 && s->input_statement.flags.loaded
3610 && (abfd = s->input_statement.the_bfd) != NULL
3611 && ((bfd_get_format (abfd) == bfd_archive
3612 && !s->input_statement.flags.whole_archive)
3613 || (bfd_get_format (abfd) == bfd_object
3614 && ((abfd->flags) & DYNAMIC) != 0
3615 && s->input_statement.flags.add_DT_NEEDED_for_regular
3616 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3617 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3618 {
3619 s->input_statement.flags.loaded = FALSE;
3620 s->input_statement.flags.reload = TRUE;
3621 }
3622
3623 os_tail = lang_os_list.tail;
3624 lang_list_init (&add);
3625
3626 if (!load_symbols (&s->input_statement, &add))
3627 config.make_executable = FALSE;
3628
3629 if (add.head != NULL)
3630 {
3631 /* If this was a script with output sections then
3632 tack any added statements on to the end of the
3633 list. This avoids having to reorder the output
3634 section statement list. Very likely the user
3635 forgot -T, and whatever we do here will not meet
3636 naive user expectations. */
3637 if (os_tail != lang_os_list.tail)
3638 {
3639 einfo (_("%P: warning: %s contains output sections;"
3640 " did you forget -T?\n"),
3641 s->input_statement.filename);
3642 *stat_ptr->tail = add.head;
3643 stat_ptr->tail = add.tail;
3644 }
3645 else
3646 {
3647 *add.tail = s->header.next;
3648 s->header.next = add.head;
3649 }
3650 }
3651 }
3652 #ifdef ENABLE_PLUGINS
3653 /* If we have found the point at which a plugin added new
3654 files, clear plugin_insert to enable archive rescan. */
3655 if (&s->input_statement == plugin_insert)
3656 plugin_insert = NULL;
3657 #endif
3658 break;
3659 case lang_assignment_statement_enum:
3660 if (s->assignment_statement.exp->type.node_class != etree_assert)
3661 exp_fold_tree_no_dot (s->assignment_statement.exp);
3662 break;
3663 default:
3664 break;
3665 }
3666 }
3667
3668 /* Exit if any of the files were missing. */
3669 if (input_flags.missing_file)
3670 einfo ("%F");
3671 }
3672
3673 /* Open the CTF sections in the input files with libctf: if any were opened,
3674 create a fake input file that we'll write the merged CTF data to later
3675 on. */
3676
3677 static void
3678 ldlang_open_ctf (void)
3679 {
3680 int any_ctf = 0;
3681 int err;
3682
3683 LANG_FOR_EACH_INPUT_STATEMENT (file)
3684 {
3685 asection *sect;
3686
3687 /* Incoming files from the compiler have a single ctf_file_t in them
3688 (which is presented to us by the libctf API in a ctf_archive_t
3689 wrapper): files derived from a previous relocatable link have a CTF
3690 archive containing possibly many CTF files. */
3691
3692 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3693 {
3694 if (err != ECTF_NOCTFDATA)
3695 einfo (_("%P: warning: CTF section in `%pI' not loaded: "
3696 "its types will be discarded: `%s'\n"), file,
3697 ctf_errmsg (err));
3698 continue;
3699 }
3700
3701 /* Prevent the contents of this section from being written, while
3702 requiring the section itself to be duplicated in the output. */
3703 /* This section must exist if ctf_bfdopen() succeeded. */
3704 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3705 sect->size = 0;
3706 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3707
3708 any_ctf = 1;
3709 }
3710
3711 if (!any_ctf)
3712 {
3713 ctf_output = NULL;
3714 return;
3715 }
3716
3717 if ((ctf_output = ctf_create (&err)) != NULL)
3718 return;
3719
3720 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3721 ctf_errmsg (err));
3722
3723 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3724 ctf_close (errfile->the_ctf);
3725 }
3726
3727 /* Merge together CTF sections. After this, only the symtab-dependent
3728 function and data object sections need adjustment. */
3729
3730 static void
3731 lang_merge_ctf (void)
3732 {
3733 asection *output_sect;
3734
3735 if (!ctf_output)
3736 return;
3737
3738 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3739
3740 /* If the section was discarded, don't waste time merging. */
3741 if (output_sect == NULL)
3742 {
3743 ctf_file_close (ctf_output);
3744 ctf_output = NULL;
3745
3746 LANG_FOR_EACH_INPUT_STATEMENT (file)
3747 {
3748 ctf_close (file->the_ctf);
3749 file->the_ctf = NULL;
3750 }
3751 return;
3752 }
3753
3754 LANG_FOR_EACH_INPUT_STATEMENT (file)
3755 {
3756 if (!file->the_ctf)
3757 continue;
3758
3759 /* Takes ownership of file->u.the_ctfa. */
3760 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3761 {
3762 einfo (_("%F%P: cannot link with CTF in %pB: %s\n"), file->the_bfd,
3763 ctf_errmsg (ctf_errno (ctf_output)));
3764 ctf_close (file->the_ctf);
3765 file->the_ctf = NULL;
3766 continue;
3767 }
3768 }
3769
3770 if (ctf_link (ctf_output, CTF_LINK_SHARE_UNCONFLICTED) < 0)
3771 {
3772 einfo (_("%F%P: CTF linking failed; output will have no CTF section: %s\n"),
3773 ctf_errmsg (ctf_errno (ctf_output)));
3774 if (output_sect)
3775 {
3776 output_sect->size = 0;
3777 output_sect->flags |= SEC_EXCLUDE;
3778 }
3779 }
3780 }
3781
3782 /* Let the emulation examine the symbol table and strtab to help it optimize the
3783 CTF, if supported. */
3784
3785 void
3786 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms, bfd_size_type symcount,
3787 struct elf_strtab_hash *symstrtab)
3788 {
3789 ldemul_examine_strtab_for_ctf (ctf_output, syms, symcount, symstrtab);
3790 }
3791
3792 /* Write out the CTF section. Called early, if the emulation isn't going to
3793 need to dedup against the strtab and symtab, then possibly called from the
3794 target linker code if the dedup has happened. */
3795 static void
3796 lang_write_ctf (int late)
3797 {
3798 size_t output_size;
3799 asection *output_sect;
3800
3801 if (!ctf_output)
3802 return;
3803
3804 if (late)
3805 {
3806 /* Emit CTF late if this emulation says it can do so. */
3807 if (ldemul_emit_ctf_early ())
3808 return;
3809 }
3810 else
3811 {
3812 if (!ldemul_emit_ctf_early ())
3813 return;
3814 }
3815
3816 /* Emit CTF. */
3817
3818 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3819 if (output_sect)
3820 {
3821 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3822 CTF_COMPRESSION_THRESHOLD);
3823 output_sect->size = output_size;
3824 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3825
3826 if (!output_sect->contents)
3827 {
3828 einfo (_("%F%P: CTF section emission failed; output will have no "
3829 "CTF section: %s\n"), ctf_errmsg (ctf_errno (ctf_output)));
3830 output_sect->size = 0;
3831 output_sect->flags |= SEC_EXCLUDE;
3832 }
3833 }
3834
3835 /* This also closes every CTF input file used in the link. */
3836 ctf_file_close (ctf_output);
3837 ctf_output = NULL;
3838
3839 LANG_FOR_EACH_INPUT_STATEMENT (file)
3840 file->the_ctf = NULL;
3841 }
3842
3843 /* Write out the CTF section late, if the emulation needs that. */
3844
3845 void
3846 ldlang_write_ctf_late (void)
3847 {
3848 /* Trigger a "late call", if the emulation needs one. */
3849
3850 lang_write_ctf (1);
3851 }
3852
3853 /* Add the supplied name to the symbol table as an undefined reference.
3854 This is a two step process as the symbol table doesn't even exist at
3855 the time the ld command line is processed. First we put the name
3856 on a list, then, once the output file has been opened, transfer the
3857 name to the symbol table. */
3858
3859 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3860
3861 #define ldlang_undef_chain_list_head entry_symbol.next
3862
3863 void
3864 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3865 {
3866 ldlang_undef_chain_list_type *new_undef;
3867
3868 undef_from_cmdline = undef_from_cmdline || cmdline;
3869 new_undef = stat_alloc (sizeof (*new_undef));
3870 new_undef->next = ldlang_undef_chain_list_head;
3871 ldlang_undef_chain_list_head = new_undef;
3872
3873 new_undef->name = xstrdup (name);
3874
3875 if (link_info.output_bfd != NULL)
3876 insert_undefined (new_undef->name);
3877 }
3878
3879 /* Insert NAME as undefined in the symbol table. */
3880
3881 static void
3882 insert_undefined (const char *name)
3883 {
3884 struct bfd_link_hash_entry *h;
3885
3886 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3887 if (h == NULL)
3888 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3889 if (h->type == bfd_link_hash_new)
3890 {
3891 h->type = bfd_link_hash_undefined;
3892 h->u.undef.abfd = NULL;
3893 h->non_ir_ref_regular = TRUE;
3894 if (is_elf_hash_table (link_info.hash))
3895 ((struct elf_link_hash_entry *) h)->mark = 1;
3896 bfd_link_add_undef (link_info.hash, h);
3897 }
3898 }
3899
3900 /* Run through the list of undefineds created above and place them
3901 into the linker hash table as undefined symbols belonging to the
3902 script file. */
3903
3904 static void
3905 lang_place_undefineds (void)
3906 {
3907 ldlang_undef_chain_list_type *ptr;
3908
3909 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3910 insert_undefined (ptr->name);
3911 }
3912
3913 /* Structure used to build the list of symbols that the user has required
3914 be defined. */
3915
3916 struct require_defined_symbol
3917 {
3918 const char *name;
3919 struct require_defined_symbol *next;
3920 };
3921
3922 /* The list of symbols that the user has required be defined. */
3923
3924 static struct require_defined_symbol *require_defined_symbol_list;
3925
3926 /* Add a new symbol NAME to the list of symbols that are required to be
3927 defined. */
3928
3929 void
3930 ldlang_add_require_defined (const char *const name)
3931 {
3932 struct require_defined_symbol *ptr;
3933
3934 ldlang_add_undef (name, TRUE);
3935 ptr = stat_alloc (sizeof (*ptr));
3936 ptr->next = require_defined_symbol_list;
3937 ptr->name = strdup (name);
3938 require_defined_symbol_list = ptr;
3939 }
3940
3941 /* Check that all symbols the user required to be defined, are defined,
3942 raise an error if we find a symbol that is not defined. */
3943
3944 static void
3945 ldlang_check_require_defined_symbols (void)
3946 {
3947 struct require_defined_symbol *ptr;
3948
3949 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3950 {
3951 struct bfd_link_hash_entry *h;
3952
3953 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3954 FALSE, FALSE, TRUE);
3955 if (h == NULL
3956 || (h->type != bfd_link_hash_defined
3957 && h->type != bfd_link_hash_defweak))
3958 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3959 }
3960 }
3961
3962 /* Check for all readonly or some readwrite sections. */
3963
3964 static void
3965 check_input_sections
3966 (lang_statement_union_type *s,
3967 lang_output_section_statement_type *output_section_statement)
3968 {
3969 for (; s != NULL; s = s->header.next)
3970 {
3971 switch (s->header.type)
3972 {
3973 case lang_wild_statement_enum:
3974 walk_wild (&s->wild_statement, check_section_callback,
3975 output_section_statement);
3976 if (!output_section_statement->all_input_readonly)
3977 return;
3978 break;
3979 case lang_constructors_statement_enum:
3980 check_input_sections (constructor_list.head,
3981 output_section_statement);
3982 if (!output_section_statement->all_input_readonly)
3983 return;
3984 break;
3985 case lang_group_statement_enum:
3986 check_input_sections (s->group_statement.children.head,
3987 output_section_statement);
3988 if (!output_section_statement->all_input_readonly)
3989 return;
3990 break;
3991 default:
3992 break;
3993 }
3994 }
3995 }
3996
3997 /* Update wildcard statements if needed. */
3998
3999 static void
4000 update_wild_statements (lang_statement_union_type *s)
4001 {
4002 struct wildcard_list *sec;
4003
4004 switch (sort_section)
4005 {
4006 default:
4007 FAIL ();
4008
4009 case none:
4010 break;
4011
4012 case by_name:
4013 case by_alignment:
4014 for (; s != NULL; s = s->header.next)
4015 {
4016 switch (s->header.type)
4017 {
4018 default:
4019 break;
4020
4021 case lang_wild_statement_enum:
4022 for (sec = s->wild_statement.section_list; sec != NULL;
4023 sec = sec->next)
4024 /* Don't sort .init/.fini sections. */
4025 if (strcmp (sec->spec.name, ".init") != 0
4026 && strcmp (sec->spec.name, ".fini") != 0)
4027 switch (sec->spec.sorted)
4028 {
4029 case none:
4030 sec->spec.sorted = sort_section;
4031 break;
4032 case by_name:
4033 if (sort_section == by_alignment)
4034 sec->spec.sorted = by_name_alignment;
4035 break;
4036 case by_alignment:
4037 if (sort_section == by_name)
4038 sec->spec.sorted = by_alignment_name;
4039 break;
4040 default:
4041 break;
4042 }
4043 break;
4044
4045 case lang_constructors_statement_enum:
4046 update_wild_statements (constructor_list.head);
4047 break;
4048
4049 case lang_output_section_statement_enum:
4050 update_wild_statements
4051 (s->output_section_statement.children.head);
4052 break;
4053
4054 case lang_group_statement_enum:
4055 update_wild_statements (s->group_statement.children.head);
4056 break;
4057 }
4058 }
4059 break;
4060 }
4061 }
4062
4063 /* Open input files and attach to output sections. */
4064
4065 static void
4066 map_input_to_output_sections
4067 (lang_statement_union_type *s, const char *target,
4068 lang_output_section_statement_type *os)
4069 {
4070 for (; s != NULL; s = s->header.next)
4071 {
4072 lang_output_section_statement_type *tos;
4073 flagword flags;
4074
4075 switch (s->header.type)
4076 {
4077 case lang_wild_statement_enum:
4078 wild (&s->wild_statement, target, os);
4079 break;
4080 case lang_constructors_statement_enum:
4081 map_input_to_output_sections (constructor_list.head,
4082 target,
4083 os);
4084 break;
4085 case lang_output_section_statement_enum:
4086 tos = &s->output_section_statement;
4087 if (tos->constraint != 0)
4088 {
4089 if (tos->constraint != ONLY_IF_RW
4090 && tos->constraint != ONLY_IF_RO)
4091 break;
4092 tos->all_input_readonly = TRUE;
4093 check_input_sections (tos->children.head, tos);
4094 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4095 {
4096 tos->constraint = -1;
4097 break;
4098 }
4099 }
4100 map_input_to_output_sections (tos->children.head,
4101 target,
4102 tos);
4103 break;
4104 case lang_output_statement_enum:
4105 break;
4106 case lang_target_statement_enum:
4107 target = s->target_statement.target;
4108 break;
4109 case lang_group_statement_enum:
4110 map_input_to_output_sections (s->group_statement.children.head,
4111 target,
4112 os);
4113 break;
4114 case lang_data_statement_enum:
4115 /* Make sure that any sections mentioned in the expression
4116 are initialized. */
4117 exp_init_os (s->data_statement.exp);
4118 /* The output section gets CONTENTS, ALLOC and LOAD, but
4119 these may be overridden by the script. */
4120 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4121 switch (os->sectype)
4122 {
4123 case normal_section:
4124 case overlay_section:
4125 case first_overlay_section:
4126 break;
4127 case noalloc_section:
4128 flags = SEC_HAS_CONTENTS;
4129 break;
4130 case noload_section:
4131 if (bfd_get_flavour (link_info.output_bfd)
4132 == bfd_target_elf_flavour)
4133 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4134 else
4135 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4136 break;
4137 }
4138 if (os->bfd_section == NULL)
4139 init_os (os, flags);
4140 else
4141 os->bfd_section->flags |= flags;
4142 break;
4143 case lang_input_section_enum:
4144 break;
4145 case lang_fill_statement_enum:
4146 case lang_object_symbols_statement_enum:
4147 case lang_reloc_statement_enum:
4148 case lang_padding_statement_enum:
4149 case lang_input_statement_enum:
4150 if (os != NULL && os->bfd_section == NULL)
4151 init_os (os, 0);
4152 break;
4153 case lang_assignment_statement_enum:
4154 if (os != NULL && os->bfd_section == NULL)
4155 init_os (os, 0);
4156
4157 /* Make sure that any sections mentioned in the assignment
4158 are initialized. */
4159 exp_init_os (s->assignment_statement.exp);
4160 break;
4161 case lang_address_statement_enum:
4162 /* Mark the specified section with the supplied address.
4163 If this section was actually a segment marker, then the
4164 directive is ignored if the linker script explicitly
4165 processed the segment marker. Originally, the linker
4166 treated segment directives (like -Ttext on the
4167 command-line) as section directives. We honor the
4168 section directive semantics for backwards compatibility;
4169 linker scripts that do not specifically check for
4170 SEGMENT_START automatically get the old semantics. */
4171 if (!s->address_statement.segment
4172 || !s->address_statement.segment->used)
4173 {
4174 const char *name = s->address_statement.section_name;
4175
4176 /* Create the output section statement here so that
4177 orphans with a set address will be placed after other
4178 script sections. If we let the orphan placement code
4179 place them in amongst other sections then the address
4180 will affect following script sections, which is
4181 likely to surprise naive users. */
4182 tos = lang_output_section_statement_lookup (name, 0, TRUE);
4183 tos->addr_tree = s->address_statement.address;
4184 if (tos->bfd_section == NULL)
4185 init_os (tos, 0);
4186 }
4187 break;
4188 case lang_insert_statement_enum:
4189 break;
4190 }
4191 }
4192 }
4193
4194 /* An insert statement snips out all the linker statements from the
4195 start of the list and places them after the output section
4196 statement specified by the insert. This operation is complicated
4197 by the fact that we keep a doubly linked list of output section
4198 statements as well as the singly linked list of all statements.
4199 FIXME someday: Twiddling with the list not only moves statements
4200 from the user's script but also input and group statements that are
4201 built from command line object files and --start-group. We only
4202 get away with this because the list pointers used by file_chain
4203 and input_file_chain are not reordered, and processing via
4204 statement_list after this point mostly ignores input statements.
4205 One exception is the map file, where LOAD and START GROUP/END GROUP
4206 can end up looking odd. */
4207
4208 static void
4209 process_insert_statements (lang_statement_union_type **start)
4210 {
4211 lang_statement_union_type **s;
4212 lang_output_section_statement_type *first_os = NULL;
4213 lang_output_section_statement_type *last_os = NULL;
4214 lang_output_section_statement_type *os;
4215
4216 s = start;
4217 while (*s != NULL)
4218 {
4219 if ((*s)->header.type == lang_output_section_statement_enum)
4220 {
4221 /* Keep pointers to the first and last output section
4222 statement in the sequence we may be about to move. */
4223 os = &(*s)->output_section_statement;
4224
4225 ASSERT (last_os == NULL || last_os->next == os);
4226 last_os = os;
4227
4228 /* Set constraint negative so that lang_output_section_find
4229 won't match this output section statement. At this
4230 stage in linking constraint has values in the range
4231 [-1, ONLY_IN_RW]. */
4232 last_os->constraint = -2 - last_os->constraint;
4233 if (first_os == NULL)
4234 first_os = last_os;
4235 }
4236 else if ((*s)->header.type == lang_group_statement_enum)
4237 {
4238 /* A user might put -T between --start-group and
4239 --end-group. One way this odd construct might arise is
4240 from a wrapper around ld to change library search
4241 behaviour. For example:
4242 #! /bin/sh
4243 exec real_ld --start-group "$@" --end-group
4244 This isn't completely unreasonable so go looking inside a
4245 group statement for insert statements. */
4246 process_insert_statements (&(*s)->group_statement.children.head);
4247 }
4248 else if ((*s)->header.type == lang_insert_statement_enum)
4249 {
4250 lang_insert_statement_type *i = &(*s)->insert_statement;
4251 lang_output_section_statement_type *where;
4252 lang_statement_union_type **ptr;
4253 lang_statement_union_type *first;
4254
4255 if (link_info.non_contiguous_regions)
4256 {
4257 einfo (_("warning: INSERT statement in linker script is "
4258 "incompatible with --enable-non-contiguous-regions.\n"));
4259 }
4260
4261 where = lang_output_section_find (i->where);
4262 if (where != NULL && i->is_before)
4263 {
4264 do
4265 where = where->prev;
4266 while (where != NULL && where->constraint < 0);
4267 }
4268 if (where == NULL)
4269 {
4270 einfo (_("%F%P: %s not found for insert\n"), i->where);
4271 return;
4272 }
4273
4274 /* Deal with reordering the output section statement list. */
4275 if (last_os != NULL)
4276 {
4277 asection *first_sec, *last_sec;
4278 struct lang_output_section_statement_struct **next;
4279
4280 /* Snip out the output sections we are moving. */
4281 first_os->prev->next = last_os->next;
4282 if (last_os->next == NULL)
4283 {
4284 next = &first_os->prev->next;
4285 lang_os_list.tail = (lang_statement_union_type **) next;
4286 }
4287 else
4288 last_os->next->prev = first_os->prev;
4289 /* Add them in at the new position. */
4290 last_os->next = where->next;
4291 if (where->next == NULL)
4292 {
4293 next = &last_os->next;
4294 lang_os_list.tail = (lang_statement_union_type **) next;
4295 }
4296 else
4297 where->next->prev = last_os;
4298 first_os->prev = where;
4299 where->next = first_os;
4300
4301 /* Move the bfd sections in the same way. */
4302 first_sec = NULL;
4303 last_sec = NULL;
4304 for (os = first_os; os != NULL; os = os->next)
4305 {
4306 os->constraint = -2 - os->constraint;
4307 if (os->bfd_section != NULL
4308 && os->bfd_section->owner != NULL)
4309 {
4310 last_sec = os->bfd_section;
4311 if (first_sec == NULL)
4312 first_sec = last_sec;
4313 }
4314 if (os == last_os)
4315 break;
4316 }
4317 if (last_sec != NULL)
4318 {
4319 asection *sec = where->bfd_section;
4320 if (sec == NULL)
4321 sec = output_prev_sec_find (where);
4322
4323 /* The place we want to insert must come after the
4324 sections we are moving. So if we find no
4325 section or if the section is the same as our
4326 last section, then no move is needed. */
4327 if (sec != NULL && sec != last_sec)
4328 {
4329 /* Trim them off. */
4330 if (first_sec->prev != NULL)
4331 first_sec->prev->next = last_sec->next;
4332 else
4333 link_info.output_bfd->sections = last_sec->next;
4334 if (last_sec->next != NULL)
4335 last_sec->next->prev = first_sec->prev;
4336 else
4337 link_info.output_bfd->section_last = first_sec->prev;
4338 /* Add back. */
4339 last_sec->next = sec->next;
4340 if (sec->next != NULL)
4341 sec->next->prev = last_sec;
4342 else
4343 link_info.output_bfd->section_last = last_sec;
4344 first_sec->prev = sec;
4345 sec->next = first_sec;
4346 }
4347 }
4348
4349 first_os = NULL;
4350 last_os = NULL;
4351 }
4352
4353 ptr = insert_os_after (where);
4354 /* Snip everything from the start of the list, up to and
4355 including the insert statement we are currently processing. */
4356 first = *start;
4357 *start = (*s)->header.next;
4358 /* Add them back where they belong, minus the insert. */
4359 *s = *ptr;
4360 if (*s == NULL)
4361 statement_list.tail = s;
4362 *ptr = first;
4363 s = start;
4364 continue;
4365 }
4366 s = &(*s)->header.next;
4367 }
4368
4369 /* Undo constraint twiddling. */
4370 for (os = first_os; os != NULL; os = os->next)
4371 {
4372 os->constraint = -2 - os->constraint;
4373 if (os == last_os)
4374 break;
4375 }
4376 }
4377
4378 /* An output section might have been removed after its statement was
4379 added. For example, ldemul_before_allocation can remove dynamic
4380 sections if they turn out to be not needed. Clean them up here. */
4381
4382 void
4383 strip_excluded_output_sections (void)
4384 {
4385 lang_output_section_statement_type *os;
4386
4387 /* Run lang_size_sections (if not already done). */
4388 if (expld.phase != lang_mark_phase_enum)
4389 {
4390 expld.phase = lang_mark_phase_enum;
4391 expld.dataseg.phase = exp_seg_none;
4392 one_lang_size_sections_pass (NULL, FALSE);
4393 lang_reset_memory_regions ();
4394 }
4395
4396 for (os = (void *) lang_os_list.head;
4397 os != NULL;
4398 os = os->next)
4399 {
4400 asection *output_section;
4401 bfd_boolean exclude;
4402
4403 if (os->constraint < 0)
4404 continue;
4405
4406 output_section = os->bfd_section;
4407 if (output_section == NULL)
4408 continue;
4409
4410 exclude = (output_section->rawsize == 0
4411 && (output_section->flags & SEC_KEEP) == 0
4412 && !bfd_section_removed_from_list (link_info.output_bfd,
4413 output_section));
4414
4415 /* Some sections have not yet been sized, notably .gnu.version,
4416 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4417 input sections, so don't drop output sections that have such
4418 input sections unless they are also marked SEC_EXCLUDE. */
4419 if (exclude && output_section->map_head.s != NULL)
4420 {
4421 asection *s;
4422
4423 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4424 if ((s->flags & SEC_EXCLUDE) == 0
4425 && ((s->flags & SEC_LINKER_CREATED) != 0
4426 || link_info.emitrelocations))
4427 {
4428 exclude = FALSE;
4429 break;
4430 }
4431 }
4432
4433 if (exclude)
4434 {
4435 /* We don't set bfd_section to NULL since bfd_section of the
4436 removed output section statement may still be used. */
4437 if (!os->update_dot)
4438 os->ignored = TRUE;
4439 output_section->flags |= SEC_EXCLUDE;
4440 bfd_section_list_remove (link_info.output_bfd, output_section);
4441 link_info.output_bfd->section_count--;
4442 }
4443 }
4444 }
4445
4446 /* Called from ldwrite to clear out asection.map_head and
4447 asection.map_tail for use as link_orders in ldwrite. */
4448
4449 void
4450 lang_clear_os_map (void)
4451 {
4452 lang_output_section_statement_type *os;
4453
4454 if (map_head_is_link_order)
4455 return;
4456
4457 for (os = (void *) lang_os_list.head;
4458 os != NULL;
4459 os = os->next)
4460 {
4461 asection *output_section;
4462
4463 if (os->constraint < 0)
4464 continue;
4465
4466 output_section = os->bfd_section;
4467 if (output_section == NULL)
4468 continue;
4469
4470 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4471 output_section->map_head.link_order = NULL;
4472 output_section->map_tail.link_order = NULL;
4473 }
4474
4475 /* Stop future calls to lang_add_section from messing with map_head
4476 and map_tail link_order fields. */
4477 map_head_is_link_order = TRUE;
4478 }
4479
4480 static void
4481 print_output_section_statement
4482 (lang_output_section_statement_type *output_section_statement)
4483 {
4484 asection *section = output_section_statement->bfd_section;
4485 int len;
4486
4487 if (output_section_statement != abs_output_section)
4488 {
4489 minfo ("\n%s", output_section_statement->name);
4490
4491 if (section != NULL)
4492 {
4493 print_dot = section->vma;
4494
4495 len = strlen (output_section_statement->name);
4496 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4497 {
4498 print_nl ();
4499 len = 0;
4500 }
4501 while (len < SECTION_NAME_MAP_LENGTH)
4502 {
4503 print_space ();
4504 ++len;
4505 }
4506
4507 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4508
4509 if (section->vma != section->lma)
4510 minfo (_(" load address 0x%V"), section->lma);
4511
4512 if (output_section_statement->update_dot_tree != NULL)
4513 exp_fold_tree (output_section_statement->update_dot_tree,
4514 bfd_abs_section_ptr, &print_dot);
4515 }
4516
4517 print_nl ();
4518 }
4519
4520 print_statement_list (output_section_statement->children.head,
4521 output_section_statement);
4522 }
4523
4524 static void
4525 print_assignment (lang_assignment_statement_type *assignment,
4526 lang_output_section_statement_type *output_section)
4527 {
4528 unsigned int i;
4529 bfd_boolean is_dot;
4530 etree_type *tree;
4531 asection *osec;
4532
4533 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4534 print_space ();
4535
4536 if (assignment->exp->type.node_class == etree_assert)
4537 {
4538 is_dot = FALSE;
4539 tree = assignment->exp->assert_s.child;
4540 }
4541 else
4542 {
4543 const char *dst = assignment->exp->assign.dst;
4544
4545 is_dot = (dst[0] == '.' && dst[1] == 0);
4546 tree = assignment->exp;
4547 }
4548
4549 osec = output_section->bfd_section;
4550 if (osec == NULL)
4551 osec = bfd_abs_section_ptr;
4552
4553 if (assignment->exp->type.node_class != etree_provide)
4554 exp_fold_tree (tree, osec, &print_dot);
4555 else
4556 expld.result.valid_p = FALSE;
4557
4558 if (expld.result.valid_p)
4559 {
4560 bfd_vma value;
4561
4562 if (assignment->exp->type.node_class == etree_assert
4563 || is_dot
4564 || expld.assign_name != NULL)
4565 {
4566 value = expld.result.value;
4567
4568 if (expld.result.section != NULL)
4569 value += expld.result.section->vma;
4570
4571 minfo ("0x%V", value);
4572 if (is_dot)
4573 print_dot = value;
4574 }
4575 else
4576 {
4577 struct bfd_link_hash_entry *h;
4578
4579 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4580 FALSE, FALSE, TRUE);
4581 if (h != NULL
4582 && (h->type == bfd_link_hash_defined
4583 || h->type == bfd_link_hash_defweak))
4584 {
4585 value = h->u.def.value;
4586 value += h->u.def.section->output_section->vma;
4587 value += h->u.def.section->output_offset;
4588
4589 minfo ("[0x%V]", value);
4590 }
4591 else
4592 minfo ("[unresolved]");
4593 }
4594 }
4595 else
4596 {
4597 if (assignment->exp->type.node_class == etree_provide)
4598 minfo ("[!provide]");
4599 else
4600 minfo ("*undef* ");
4601 #ifdef BFD64
4602 minfo (" ");
4603 #endif
4604 }
4605 expld.assign_name = NULL;
4606
4607 minfo (" ");
4608 exp_print_tree (assignment->exp);
4609 print_nl ();
4610 }
4611
4612 static void
4613 print_input_statement (lang_input_statement_type *statm)
4614 {
4615 if (statm->filename != NULL)
4616 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4617 }
4618
4619 /* Print all symbols defined in a particular section. This is called
4620 via bfd_link_hash_traverse, or by print_all_symbols. */
4621
4622 static bfd_boolean
4623 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4624 {
4625 asection *sec = (asection *) ptr;
4626
4627 if ((hash_entry->type == bfd_link_hash_defined
4628 || hash_entry->type == bfd_link_hash_defweak)
4629 && sec == hash_entry->u.def.section)
4630 {
4631 int i;
4632
4633 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4634 print_space ();
4635 minfo ("0x%V ",
4636 (hash_entry->u.def.value
4637 + hash_entry->u.def.section->output_offset
4638 + hash_entry->u.def.section->output_section->vma));
4639
4640 minfo (" %pT\n", hash_entry->root.string);
4641 }
4642
4643 return TRUE;
4644 }
4645
4646 static int
4647 hash_entry_addr_cmp (const void *a, const void *b)
4648 {
4649 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4650 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4651
4652 if (l->u.def.value < r->u.def.value)
4653 return -1;
4654 else if (l->u.def.value > r->u.def.value)
4655 return 1;
4656 else
4657 return 0;
4658 }
4659
4660 static void
4661 print_all_symbols (asection *sec)
4662 {
4663 input_section_userdata_type *ud = bfd_section_userdata (sec);
4664 struct map_symbol_def *def;
4665 struct bfd_link_hash_entry **entries;
4666 unsigned int i;
4667
4668 if (!ud)
4669 return;
4670
4671 *ud->map_symbol_def_tail = 0;
4672
4673 /* Sort the symbols by address. */
4674 entries = (struct bfd_link_hash_entry **)
4675 obstack_alloc (&map_obstack,
4676 ud->map_symbol_def_count * sizeof (*entries));
4677
4678 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4679 entries[i] = def->entry;
4680
4681 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4682 hash_entry_addr_cmp);
4683
4684 /* Print the symbols. */
4685 for (i = 0; i < ud->map_symbol_def_count; i++)
4686 print_one_symbol (entries[i], sec);
4687
4688 obstack_free (&map_obstack, entries);
4689 }
4690
4691 /* Print information about an input section to the map file. */
4692
4693 static void
4694 print_input_section (asection *i, bfd_boolean is_discarded)
4695 {
4696 bfd_size_type size = i->size;
4697 int len;
4698 bfd_vma addr;
4699
4700 init_opb (i);
4701
4702 print_space ();
4703 minfo ("%s", i->name);
4704
4705 len = 1 + strlen (i->name);
4706 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4707 {
4708 print_nl ();
4709 len = 0;
4710 }
4711 while (len < SECTION_NAME_MAP_LENGTH)
4712 {
4713 print_space ();
4714 ++len;
4715 }
4716
4717 if (i->output_section != NULL
4718 && i->output_section->owner == link_info.output_bfd)
4719 addr = i->output_section->vma + i->output_offset;
4720 else
4721 {
4722 addr = print_dot;
4723 if (!is_discarded)
4724 size = 0;
4725 }
4726
4727 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4728
4729 if (size != i->rawsize && i->rawsize != 0)
4730 {
4731 len = SECTION_NAME_MAP_LENGTH + 3;
4732 #ifdef BFD64
4733 len += 16;
4734 #else
4735 len += 8;
4736 #endif
4737 while (len > 0)
4738 {
4739 print_space ();
4740 --len;
4741 }
4742
4743 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4744 }
4745
4746 if (i->output_section != NULL
4747 && i->output_section->owner == link_info.output_bfd)
4748 {
4749 if (link_info.reduce_memory_overheads)
4750 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4751 else
4752 print_all_symbols (i);
4753
4754 /* Update print_dot, but make sure that we do not move it
4755 backwards - this could happen if we have overlays and a
4756 later overlay is shorter than an earier one. */
4757 if (addr + TO_ADDR (size) > print_dot)
4758 print_dot = addr + TO_ADDR (size);
4759 }
4760 }
4761
4762 static void
4763 print_fill_statement (lang_fill_statement_type *fill)
4764 {
4765 size_t size;
4766 unsigned char *p;
4767 fputs (" FILL mask 0x", config.map_file);
4768 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4769 fprintf (config.map_file, "%02x", *p);
4770 fputs ("\n", config.map_file);
4771 }
4772
4773 static void
4774 print_data_statement (lang_data_statement_type *data)
4775 {
4776 int i;
4777 bfd_vma addr;
4778 bfd_size_type size;
4779 const char *name;
4780
4781 init_opb (data->output_section);
4782 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4783 print_space ();
4784
4785 addr = data->output_offset;
4786 if (data->output_section != NULL)
4787 addr += data->output_section->vma;
4788
4789 switch (data->type)
4790 {
4791 default:
4792 abort ();
4793 case BYTE:
4794 size = BYTE_SIZE;
4795 name = "BYTE";
4796 break;
4797 case SHORT:
4798 size = SHORT_SIZE;
4799 name = "SHORT";
4800 break;
4801 case LONG:
4802 size = LONG_SIZE;
4803 name = "LONG";
4804 break;
4805 case QUAD:
4806 size = QUAD_SIZE;
4807 name = "QUAD";
4808 break;
4809 case SQUAD:
4810 size = QUAD_SIZE;
4811 name = "SQUAD";
4812 break;
4813 }
4814
4815 if (size < TO_SIZE ((unsigned) 1))
4816 size = TO_SIZE ((unsigned) 1);
4817 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4818
4819 if (data->exp->type.node_class != etree_value)
4820 {
4821 print_space ();
4822 exp_print_tree (data->exp);
4823 }
4824
4825 print_nl ();
4826
4827 print_dot = addr + TO_ADDR (size);
4828 }
4829
4830 /* Print an address statement. These are generated by options like
4831 -Ttext. */
4832
4833 static void
4834 print_address_statement (lang_address_statement_type *address)
4835 {
4836 minfo (_("Address of section %s set to "), address->section_name);
4837 exp_print_tree (address->address);
4838 print_nl ();
4839 }
4840
4841 /* Print a reloc statement. */
4842
4843 static void
4844 print_reloc_statement (lang_reloc_statement_type *reloc)
4845 {
4846 int i;
4847 bfd_vma addr;
4848 bfd_size_type size;
4849
4850 init_opb (reloc->output_section);
4851 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4852 print_space ();
4853
4854 addr = reloc->output_offset;
4855 if (reloc->output_section != NULL)
4856 addr += reloc->output_section->vma;
4857
4858 size = bfd_get_reloc_size (reloc->howto);
4859
4860 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4861
4862 if (reloc->name != NULL)
4863 minfo ("%s+", reloc->name);
4864 else
4865 minfo ("%s+", reloc->section->name);
4866
4867 exp_print_tree (reloc->addend_exp);
4868
4869 print_nl ();
4870
4871 print_dot = addr + TO_ADDR (size);
4872 }
4873
4874 static void
4875 print_padding_statement (lang_padding_statement_type *s)
4876 {
4877 int len;
4878 bfd_vma addr;
4879
4880 init_opb (s->output_section);
4881 minfo (" *fill*");
4882
4883 len = sizeof " *fill*" - 1;
4884 while (len < SECTION_NAME_MAP_LENGTH)
4885 {
4886 print_space ();
4887 ++len;
4888 }
4889
4890 addr = s->output_offset;
4891 if (s->output_section != NULL)
4892 addr += s->output_section->vma;
4893 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4894
4895 if (s->fill->size != 0)
4896 {
4897 size_t size;
4898 unsigned char *p;
4899 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4900 fprintf (config.map_file, "%02x", *p);
4901 }
4902
4903 print_nl ();
4904
4905 print_dot = addr + TO_ADDR (s->size);
4906 }
4907
4908 static void
4909 print_wild_statement (lang_wild_statement_type *w,
4910 lang_output_section_statement_type *os)
4911 {
4912 struct wildcard_list *sec;
4913
4914 print_space ();
4915
4916 if (w->exclude_name_list)
4917 {
4918 name_list *tmp;
4919 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4920 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4921 minfo (" %s", tmp->name);
4922 minfo (") ");
4923 }
4924
4925 if (w->filenames_sorted)
4926 minfo ("SORT_BY_NAME(");
4927 if (w->filename != NULL)
4928 minfo ("%s", w->filename);
4929 else
4930 minfo ("*");
4931 if (w->filenames_sorted)
4932 minfo (")");
4933
4934 minfo ("(");
4935 for (sec = w->section_list; sec; sec = sec->next)
4936 {
4937 int closing_paren = 0;
4938
4939 switch (sec->spec.sorted)
4940 {
4941 case none:
4942 break;
4943
4944 case by_name:
4945 minfo ("SORT_BY_NAME(");
4946 closing_paren = 1;
4947 break;
4948
4949 case by_alignment:
4950 minfo ("SORT_BY_ALIGNMENT(");
4951 closing_paren = 1;
4952 break;
4953
4954 case by_name_alignment:
4955 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4956 closing_paren = 2;
4957 break;
4958
4959 case by_alignment_name:
4960 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4961 closing_paren = 2;
4962 break;
4963
4964 case by_none:
4965 minfo ("SORT_NONE(");
4966 closing_paren = 1;
4967 break;
4968
4969 case by_init_priority:
4970 minfo ("SORT_BY_INIT_PRIORITY(");
4971 closing_paren = 1;
4972 break;
4973 }
4974
4975 if (sec->spec.exclude_name_list != NULL)
4976 {
4977 name_list *tmp;
4978 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4979 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4980 minfo (" %s", tmp->name);
4981 minfo (") ");
4982 }
4983 if (sec->spec.name != NULL)
4984 minfo ("%s", sec->spec.name);
4985 else
4986 minfo ("*");
4987 for (;closing_paren > 0; closing_paren--)
4988 minfo (")");
4989 if (sec->next)
4990 minfo (" ");
4991 }
4992 minfo (")");
4993
4994 print_nl ();
4995
4996 print_statement_list (w->children.head, os);
4997 }
4998
4999 /* Print a group statement. */
5000
5001 static void
5002 print_group (lang_group_statement_type *s,
5003 lang_output_section_statement_type *os)
5004 {
5005 fprintf (config.map_file, "START GROUP\n");
5006 print_statement_list (s->children.head, os);
5007 fprintf (config.map_file, "END GROUP\n");
5008 }
5009
5010 /* Print the list of statements in S.
5011 This can be called for any statement type. */
5012
5013 static void
5014 print_statement_list (lang_statement_union_type *s,
5015 lang_output_section_statement_type *os)
5016 {
5017 while (s != NULL)
5018 {
5019 print_statement (s, os);
5020 s = s->header.next;
5021 }
5022 }
5023
5024 /* Print the first statement in statement list S.
5025 This can be called for any statement type. */
5026
5027 static void
5028 print_statement (lang_statement_union_type *s,
5029 lang_output_section_statement_type *os)
5030 {
5031 switch (s->header.type)
5032 {
5033 default:
5034 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5035 FAIL ();
5036 break;
5037 case lang_constructors_statement_enum:
5038 if (constructor_list.head != NULL)
5039 {
5040 if (constructors_sorted)
5041 minfo (" SORT (CONSTRUCTORS)\n");
5042 else
5043 minfo (" CONSTRUCTORS\n");
5044 print_statement_list (constructor_list.head, os);
5045 }
5046 break;
5047 case lang_wild_statement_enum:
5048 print_wild_statement (&s->wild_statement, os);
5049 break;
5050 case lang_address_statement_enum:
5051 print_address_statement (&s->address_statement);
5052 break;
5053 case lang_object_symbols_statement_enum:
5054 minfo (" CREATE_OBJECT_SYMBOLS\n");
5055 break;
5056 case lang_fill_statement_enum:
5057 print_fill_statement (&s->fill_statement);
5058 break;
5059 case lang_data_statement_enum:
5060 print_data_statement (&s->data_statement);
5061 break;
5062 case lang_reloc_statement_enum:
5063 print_reloc_statement (&s->reloc_statement);
5064 break;
5065 case lang_input_section_enum:
5066 print_input_section (s->input_section.section, FALSE);
5067 break;
5068 case lang_padding_statement_enum:
5069 print_padding_statement (&s->padding_statement);
5070 break;
5071 case lang_output_section_statement_enum:
5072 print_output_section_statement (&s->output_section_statement);
5073 break;
5074 case lang_assignment_statement_enum:
5075 print_assignment (&s->assignment_statement, os);
5076 break;
5077 case lang_target_statement_enum:
5078 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5079 break;
5080 case lang_output_statement_enum:
5081 minfo ("OUTPUT(%s", s->output_statement.name);
5082 if (output_target != NULL)
5083 minfo (" %s", output_target);
5084 minfo (")\n");
5085 break;
5086 case lang_input_statement_enum:
5087 print_input_statement (&s->input_statement);
5088 break;
5089 case lang_group_statement_enum:
5090 print_group (&s->group_statement, os);
5091 break;
5092 case lang_insert_statement_enum:
5093 minfo ("INSERT %s %s\n",
5094 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5095 s->insert_statement.where);
5096 break;
5097 }
5098 }
5099
5100 static void
5101 print_statements (void)
5102 {
5103 print_statement_list (statement_list.head, abs_output_section);
5104 }
5105
5106 /* Print the first N statements in statement list S to STDERR.
5107 If N == 0, nothing is printed.
5108 If N < 0, the entire list is printed.
5109 Intended to be called from GDB. */
5110
5111 void
5112 dprint_statement (lang_statement_union_type *s, int n)
5113 {
5114 FILE *map_save = config.map_file;
5115
5116 config.map_file = stderr;
5117
5118 if (n < 0)
5119 print_statement_list (s, abs_output_section);
5120 else
5121 {
5122 while (s && --n >= 0)
5123 {
5124 print_statement (s, abs_output_section);
5125 s = s->header.next;
5126 }
5127 }
5128
5129 config.map_file = map_save;
5130 }
5131
5132 static void
5133 insert_pad (lang_statement_union_type **ptr,
5134 fill_type *fill,
5135 bfd_size_type alignment_needed,
5136 asection *output_section,
5137 bfd_vma dot)
5138 {
5139 static fill_type zero_fill;
5140 lang_statement_union_type *pad = NULL;
5141
5142 if (ptr != &statement_list.head)
5143 pad = ((lang_statement_union_type *)
5144 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5145 if (pad != NULL
5146 && pad->header.type == lang_padding_statement_enum
5147 && pad->padding_statement.output_section == output_section)
5148 {
5149 /* Use the existing pad statement. */
5150 }
5151 else if ((pad = *ptr) != NULL
5152 && pad->header.type == lang_padding_statement_enum
5153 && pad->padding_statement.output_section == output_section)
5154 {
5155 /* Use the existing pad statement. */
5156 }
5157 else
5158 {
5159 /* Make a new padding statement, linked into existing chain. */
5160 pad = stat_alloc (sizeof (lang_padding_statement_type));
5161 pad->header.next = *ptr;
5162 *ptr = pad;
5163 pad->header.type = lang_padding_statement_enum;
5164 pad->padding_statement.output_section = output_section;
5165 if (fill == NULL)
5166 fill = &zero_fill;
5167 pad->padding_statement.fill = fill;
5168 }
5169 pad->padding_statement.output_offset = dot - output_section->vma;
5170 pad->padding_statement.size = alignment_needed;
5171 if (!(output_section->flags & SEC_FIXED_SIZE))
5172 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5173 - output_section->vma);
5174 }
5175
5176 /* Work out how much this section will move the dot point. */
5177
5178 static bfd_vma
5179 size_input_section
5180 (lang_statement_union_type **this_ptr,
5181 lang_output_section_statement_type *output_section_statement,
5182 fill_type *fill,
5183 bfd_boolean *removed,
5184 bfd_vma dot)
5185 {
5186 lang_input_section_type *is = &((*this_ptr)->input_section);
5187 asection *i = is->section;
5188 asection *o = output_section_statement->bfd_section;
5189 *removed = 0;
5190
5191 if (link_info.non_contiguous_regions)
5192 {
5193 /* If the input section I has already been successfully assigned
5194 to an output section other than O, don't bother with it and
5195 let the caller remove it from the list. Keep processing in
5196 case we have already handled O, because the repeated passes
5197 have reinitialized its size. */
5198 if (i->already_assigned && i->already_assigned != o)
5199 {
5200 *removed = 1;
5201 return dot;
5202 }
5203 }
5204
5205 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5206 i->output_offset = i->vma - o->vma;
5207 else if (((i->flags & SEC_EXCLUDE) != 0)
5208 || output_section_statement->ignored)
5209 i->output_offset = dot - o->vma;
5210 else
5211 {
5212 bfd_size_type alignment_needed;
5213
5214 /* Align this section first to the input sections requirement,
5215 then to the output section's requirement. If this alignment
5216 is greater than any seen before, then record it too. Perform
5217 the alignment by inserting a magic 'padding' statement. */
5218
5219 if (output_section_statement->subsection_alignment != NULL)
5220 i->alignment_power
5221 = exp_get_power (output_section_statement->subsection_alignment,
5222 "subsection alignment");
5223
5224 if (o->alignment_power < i->alignment_power)
5225 o->alignment_power = i->alignment_power;
5226
5227 alignment_needed = align_power (dot, i->alignment_power) - dot;
5228
5229 if (alignment_needed != 0)
5230 {
5231 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5232 dot += alignment_needed;
5233 }
5234
5235 if (link_info.non_contiguous_regions)
5236 {
5237 /* If I would overflow O, let the caller remove I from the
5238 list. */
5239 if (output_section_statement->region)
5240 {
5241 bfd_vma end = output_section_statement->region->origin
5242 + output_section_statement->region->length;
5243
5244 if (dot + TO_ADDR (i->size) > end)
5245 {
5246 if (i->flags & SEC_LINKER_CREATED)
5247 einfo (_("%F%P: Output section '%s' not large enough for the "
5248 "linker-created stubs section '%s'.\n"),
5249 i->output_section->name, i->name);
5250
5251 if (i->rawsize && i->rawsize != i->size)
5252 einfo (_("%F%P: Relaxation not supported with "
5253 "--enable-non-contiguous-regions (section '%s' "
5254 "would overflow '%s' after it changed size).\n"),
5255 i->name, i->output_section->name);
5256
5257 *removed = 1;
5258 dot = end;
5259 i->output_section = NULL;
5260 return dot;
5261 }
5262 }
5263 }
5264
5265 /* Remember where in the output section this input section goes. */
5266 i->output_offset = dot - o->vma;
5267
5268 /* Mark how big the output section must be to contain this now. */
5269 dot += TO_ADDR (i->size);
5270 if (!(o->flags & SEC_FIXED_SIZE))
5271 o->size = TO_SIZE (dot - o->vma);
5272
5273 if (link_info.non_contiguous_regions)
5274 {
5275 /* Record that I was successfully assigned to O, and update
5276 its actual output section too. */
5277 i->already_assigned = o;
5278 i->output_section = o;
5279 }
5280 }
5281
5282 return dot;
5283 }
5284
5285 struct check_sec
5286 {
5287 asection *sec;
5288 bfd_boolean warned;
5289 };
5290
5291 static int
5292 sort_sections_by_lma (const void *arg1, const void *arg2)
5293 {
5294 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5295 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5296
5297 if (sec1->lma < sec2->lma)
5298 return -1;
5299 else if (sec1->lma > sec2->lma)
5300 return 1;
5301 else if (sec1->id < sec2->id)
5302 return -1;
5303 else if (sec1->id > sec2->id)
5304 return 1;
5305
5306 return 0;
5307 }
5308
5309 static int
5310 sort_sections_by_vma (const void *arg1, const void *arg2)
5311 {
5312 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5313 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5314
5315 if (sec1->vma < sec2->vma)
5316 return -1;
5317 else if (sec1->vma > sec2->vma)
5318 return 1;
5319 else if (sec1->id < sec2->id)
5320 return -1;
5321 else if (sec1->id > sec2->id)
5322 return 1;
5323
5324 return 0;
5325 }
5326
5327 #define IS_TBSS(s) \
5328 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5329
5330 #define IGNORE_SECTION(s) \
5331 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5332
5333 /* Check to see if any allocated sections overlap with other allocated
5334 sections. This can happen if a linker script specifies the output
5335 section addresses of the two sections. Also check whether any memory
5336 region has overflowed. */
5337
5338 static void
5339 lang_check_section_addresses (void)
5340 {
5341 asection *s, *p;
5342 struct check_sec *sections;
5343 size_t i, count;
5344 bfd_vma addr_mask;
5345 bfd_vma s_start;
5346 bfd_vma s_end;
5347 bfd_vma p_start = 0;
5348 bfd_vma p_end = 0;
5349 lang_memory_region_type *m;
5350 bfd_boolean overlays;
5351
5352 /* Detect address space overflow on allocated sections. */
5353 addr_mask = ((bfd_vma) 1 <<
5354 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5355 addr_mask = (addr_mask << 1) + 1;
5356 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5357 if ((s->flags & SEC_ALLOC) != 0)
5358 {
5359 s_end = (s->vma + s->size) & addr_mask;
5360 if (s_end != 0 && s_end < (s->vma & addr_mask))
5361 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5362 s->name);
5363 else
5364 {
5365 s_end = (s->lma + s->size) & addr_mask;
5366 if (s_end != 0 && s_end < (s->lma & addr_mask))
5367 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5368 s->name);
5369 }
5370 }
5371
5372 if (bfd_count_sections (link_info.output_bfd) <= 1)
5373 return;
5374
5375 count = bfd_count_sections (link_info.output_bfd);
5376 sections = XNEWVEC (struct check_sec, count);
5377
5378 /* Scan all sections in the output list. */
5379 count = 0;
5380 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5381 {
5382 if (IGNORE_SECTION (s)
5383 || s->size == 0)
5384 continue;
5385
5386 sections[count].sec = s;
5387 sections[count].warned = FALSE;
5388 count++;
5389 }
5390
5391 if (count <= 1)
5392 {
5393 free (sections);
5394 return;
5395 }
5396
5397 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5398
5399 /* First check section LMAs. There should be no overlap of LMAs on
5400 loadable sections, even with overlays. */
5401 for (p = NULL, i = 0; i < count; i++)
5402 {
5403 s = sections[i].sec;
5404 init_opb (s);
5405 if ((s->flags & SEC_LOAD) != 0)
5406 {
5407 s_start = s->lma;
5408 s_end = s_start + TO_ADDR (s->size) - 1;
5409
5410 /* Look for an overlap. We have sorted sections by lma, so
5411 we know that s_start >= p_start. Besides the obvious
5412 case of overlap when the current section starts before
5413 the previous one ends, we also must have overlap if the
5414 previous section wraps around the address space. */
5415 if (p != NULL
5416 && (s_start <= p_end
5417 || p_end < p_start))
5418 {
5419 einfo (_("%X%P: section %s LMA [%V,%V]"
5420 " overlaps section %s LMA [%V,%V]\n"),
5421 s->name, s_start, s_end, p->name, p_start, p_end);
5422 sections[i].warned = TRUE;
5423 }
5424 p = s;
5425 p_start = s_start;
5426 p_end = s_end;
5427 }
5428 }
5429
5430 /* If any non-zero size allocated section (excluding tbss) starts at
5431 exactly the same VMA as another such section, then we have
5432 overlays. Overlays generated by the OVERLAY keyword will have
5433 this property. It is possible to intentionally generate overlays
5434 that fail this test, but it would be unusual. */
5435 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5436 overlays = FALSE;
5437 p_start = sections[0].sec->vma;
5438 for (i = 1; i < count; i++)
5439 {
5440 s_start = sections[i].sec->vma;
5441 if (p_start == s_start)
5442 {
5443 overlays = TRUE;
5444 break;
5445 }
5446 p_start = s_start;
5447 }
5448
5449 /* Now check section VMAs if no overlays were detected. */
5450 if (!overlays)
5451 {
5452 for (p = NULL, i = 0; i < count; i++)
5453 {
5454 s = sections[i].sec;
5455 init_opb (s);
5456 s_start = s->vma;
5457 s_end = s_start + TO_ADDR (s->size) - 1;
5458
5459 if (p != NULL
5460 && !sections[i].warned
5461 && (s_start <= p_end
5462 || p_end < p_start))
5463 einfo (_("%X%P: section %s VMA [%V,%V]"
5464 " overlaps section %s VMA [%V,%V]\n"),
5465 s->name, s_start, s_end, p->name, p_start, p_end);
5466 p = s;
5467 p_start = s_start;
5468 p_end = s_end;
5469 }
5470 }
5471
5472 free (sections);
5473
5474 /* If any memory region has overflowed, report by how much.
5475 We do not issue this diagnostic for regions that had sections
5476 explicitly placed outside their bounds; os_region_check's
5477 diagnostics are adequate for that case.
5478
5479 FIXME: It is conceivable that m->current - (m->origin + m->length)
5480 might overflow a 32-bit integer. There is, alas, no way to print
5481 a bfd_vma quantity in decimal. */
5482 for (m = lang_memory_region_list; m; m = m->next)
5483 if (m->had_full_message)
5484 {
5485 unsigned long over = m->current - (m->origin + m->length);
5486 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5487 "%X%P: region `%s' overflowed by %lu bytes\n",
5488 over),
5489 m->name_list.name, over);
5490 }
5491 }
5492
5493 /* Make sure the new address is within the region. We explicitly permit the
5494 current address to be at the exact end of the region when the address is
5495 non-zero, in case the region is at the end of addressable memory and the
5496 calculation wraps around. */
5497
5498 static void
5499 os_region_check (lang_output_section_statement_type *os,
5500 lang_memory_region_type *region,
5501 etree_type *tree,
5502 bfd_vma rbase)
5503 {
5504 if ((region->current < region->origin
5505 || (region->current - region->origin > region->length))
5506 && ((region->current != region->origin + region->length)
5507 || rbase == 0))
5508 {
5509 if (tree != NULL)
5510 {
5511 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5512 " is not within region `%s'\n"),
5513 region->current,
5514 os->bfd_section->owner,
5515 os->bfd_section->name,
5516 region->name_list.name);
5517 }
5518 else if (!region->had_full_message)
5519 {
5520 region->had_full_message = TRUE;
5521
5522 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5523 os->bfd_section->owner,
5524 os->bfd_section->name,
5525 region->name_list.name);
5526 }
5527 }
5528 }
5529
5530 static void
5531 ldlang_check_relro_region (lang_statement_union_type *s,
5532 seg_align_type *seg)
5533 {
5534 if (seg->relro == exp_seg_relro_start)
5535 {
5536 if (!seg->relro_start_stat)
5537 seg->relro_start_stat = s;
5538 else
5539 {
5540 ASSERT (seg->relro_start_stat == s);
5541 }
5542 }
5543 else if (seg->relro == exp_seg_relro_end)
5544 {
5545 if (!seg->relro_end_stat)
5546 seg->relro_end_stat = s;
5547 else
5548 {
5549 ASSERT (seg->relro_end_stat == s);
5550 }
5551 }
5552 }
5553
5554 /* Set the sizes for all the output sections. */
5555
5556 static bfd_vma
5557 lang_size_sections_1
5558 (lang_statement_union_type **prev,
5559 lang_output_section_statement_type *output_section_statement,
5560 fill_type *fill,
5561 bfd_vma dot,
5562 bfd_boolean *relax,
5563 bfd_boolean check_regions)
5564 {
5565 lang_statement_union_type *s;
5566 lang_statement_union_type *prev_s = NULL;
5567 bfd_boolean removed_prev_s = FALSE;
5568
5569 /* Size up the sections from their constituent parts. */
5570 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5571 {
5572 bfd_boolean removed=FALSE;
5573
5574 switch (s->header.type)
5575 {
5576 case lang_output_section_statement_enum:
5577 {
5578 bfd_vma newdot, after, dotdelta;
5579 lang_output_section_statement_type *os;
5580 lang_memory_region_type *r;
5581 int section_alignment = 0;
5582
5583 os = &s->output_section_statement;
5584 init_opb (os->bfd_section);
5585 if (os->constraint == -1)
5586 break;
5587
5588 /* FIXME: We shouldn't need to zero section vmas for ld -r
5589 here, in lang_insert_orphan, or in the default linker scripts.
5590 This is covering for coff backend linker bugs. See PR6945. */
5591 if (os->addr_tree == NULL
5592 && bfd_link_relocatable (&link_info)
5593 && (bfd_get_flavour (link_info.output_bfd)
5594 == bfd_target_coff_flavour))
5595 os->addr_tree = exp_intop (0);
5596 if (os->addr_tree != NULL)
5597 {
5598 os->processed_vma = FALSE;
5599 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5600
5601 if (expld.result.valid_p)
5602 {
5603 dot = expld.result.value;
5604 if (expld.result.section != NULL)
5605 dot += expld.result.section->vma;
5606 }
5607 else if (expld.phase != lang_mark_phase_enum)
5608 einfo (_("%F%P:%pS: non constant or forward reference"
5609 " address expression for section %s\n"),
5610 os->addr_tree, os->name);
5611 }
5612
5613 if (os->bfd_section == NULL)
5614 /* This section was removed or never actually created. */
5615 break;
5616
5617 /* If this is a COFF shared library section, use the size and
5618 address from the input section. FIXME: This is COFF
5619 specific; it would be cleaner if there were some other way
5620 to do this, but nothing simple comes to mind. */
5621 if (((bfd_get_flavour (link_info.output_bfd)
5622 == bfd_target_ecoff_flavour)
5623 || (bfd_get_flavour (link_info.output_bfd)
5624 == bfd_target_coff_flavour))
5625 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5626 {
5627 asection *input;
5628
5629 if (os->children.head == NULL
5630 || os->children.head->header.next != NULL
5631 || (os->children.head->header.type
5632 != lang_input_section_enum))
5633 einfo (_("%X%P: internal error on COFF shared library"
5634 " section %s\n"), os->name);
5635
5636 input = os->children.head->input_section.section;
5637 bfd_set_section_vma (os->bfd_section,
5638 bfd_section_vma (input));
5639 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5640 os->bfd_section->size = input->size;
5641 break;
5642 }
5643
5644 newdot = dot;
5645 dotdelta = 0;
5646 if (bfd_is_abs_section (os->bfd_section))
5647 {
5648 /* No matter what happens, an abs section starts at zero. */
5649 ASSERT (os->bfd_section->vma == 0);
5650 }
5651 else
5652 {
5653 if (os->addr_tree == NULL)
5654 {
5655 /* No address specified for this section, get one
5656 from the region specification. */
5657 if (os->region == NULL
5658 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5659 && os->region->name_list.name[0] == '*'
5660 && strcmp (os->region->name_list.name,
5661 DEFAULT_MEMORY_REGION) == 0))
5662 {
5663 os->region = lang_memory_default (os->bfd_section);
5664 }
5665
5666 /* If a loadable section is using the default memory
5667 region, and some non default memory regions were
5668 defined, issue an error message. */
5669 if (!os->ignored
5670 && !IGNORE_SECTION (os->bfd_section)
5671 && !bfd_link_relocatable (&link_info)
5672 && check_regions
5673 && strcmp (os->region->name_list.name,
5674 DEFAULT_MEMORY_REGION) == 0
5675 && lang_memory_region_list != NULL
5676 && (strcmp (lang_memory_region_list->name_list.name,
5677 DEFAULT_MEMORY_REGION) != 0
5678 || lang_memory_region_list->next != NULL)
5679 && lang_sizing_iteration == 1)
5680 {
5681 /* By default this is an error rather than just a
5682 warning because if we allocate the section to the
5683 default memory region we can end up creating an
5684 excessively large binary, or even seg faulting when
5685 attempting to perform a negative seek. See
5686 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5687 for an example of this. This behaviour can be
5688 overridden by the using the --no-check-sections
5689 switch. */
5690 if (command_line.check_section_addresses)
5691 einfo (_("%F%P: error: no memory region specified"
5692 " for loadable section `%s'\n"),
5693 bfd_section_name (os->bfd_section));
5694 else
5695 einfo (_("%P: warning: no memory region specified"
5696 " for loadable section `%s'\n"),
5697 bfd_section_name (os->bfd_section));
5698 }
5699
5700 newdot = os->region->current;
5701 section_alignment = os->bfd_section->alignment_power;
5702 }
5703 else
5704 section_alignment = exp_get_power (os->section_alignment,
5705 "section alignment");
5706
5707 /* Align to what the section needs. */
5708 if (section_alignment > 0)
5709 {
5710 bfd_vma savedot = newdot;
5711 bfd_vma diff = 0;
5712
5713 newdot = align_power (newdot, section_alignment);
5714 dotdelta = newdot - savedot;
5715
5716 if (lang_sizing_iteration == 1)
5717 diff = dotdelta;
5718 else if (lang_sizing_iteration > 1)
5719 {
5720 /* Only report adjustments that would change
5721 alignment from what we have already reported. */
5722 diff = newdot - os->bfd_section->vma;
5723 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5724 diff = 0;
5725 }
5726 if (diff != 0
5727 && (config.warn_section_align
5728 || os->addr_tree != NULL))
5729 einfo (_("%P: warning: "
5730 "start of section %s changed by %ld\n"),
5731 os->name, (long) diff);
5732 }
5733
5734 bfd_set_section_vma (os->bfd_section, newdot);
5735
5736 os->bfd_section->output_offset = 0;
5737 }
5738
5739 lang_size_sections_1 (&os->children.head, os,
5740 os->fill, newdot, relax, check_regions);
5741
5742 os->processed_vma = TRUE;
5743
5744 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5745 /* Except for some special linker created sections,
5746 no output section should change from zero size
5747 after strip_excluded_output_sections. A non-zero
5748 size on an ignored section indicates that some
5749 input section was not sized early enough. */
5750 ASSERT (os->bfd_section->size == 0);
5751 else
5752 {
5753 dot = os->bfd_section->vma;
5754
5755 /* Put the section within the requested block size, or
5756 align at the block boundary. */
5757 after = ((dot
5758 + TO_ADDR (os->bfd_section->size)
5759 + os->block_value - 1)
5760 & - (bfd_vma) os->block_value);
5761
5762 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5763 os->bfd_section->size = TO_SIZE (after
5764 - os->bfd_section->vma);
5765 }
5766
5767 /* Set section lma. */
5768 r = os->region;
5769 if (r == NULL)
5770 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5771
5772 if (os->load_base)
5773 {
5774 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5775 os->bfd_section->lma = lma;
5776 }
5777 else if (os->lma_region != NULL)
5778 {
5779 bfd_vma lma = os->lma_region->current;
5780
5781 if (os->align_lma_with_input)
5782 lma += dotdelta;
5783 else
5784 {
5785 /* When LMA_REGION is the same as REGION, align the LMA
5786 as we did for the VMA, possibly including alignment
5787 from the bfd section. If a different region, then
5788 only align according to the value in the output
5789 statement. */
5790 if (os->lma_region != os->region)
5791 section_alignment = exp_get_power (os->section_alignment,
5792 "section alignment");
5793 if (section_alignment > 0)
5794 lma = align_power (lma, section_alignment);
5795 }
5796 os->bfd_section->lma = lma;
5797 }
5798 else if (r->last_os != NULL
5799 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5800 {
5801 bfd_vma lma;
5802 asection *last;
5803
5804 last = r->last_os->output_section_statement.bfd_section;
5805
5806 /* A backwards move of dot should be accompanied by
5807 an explicit assignment to the section LMA (ie.
5808 os->load_base set) because backwards moves can
5809 create overlapping LMAs. */
5810 if (dot < last->vma
5811 && os->bfd_section->size != 0
5812 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5813 {
5814 /* If dot moved backwards then leave lma equal to
5815 vma. This is the old default lma, which might
5816 just happen to work when the backwards move is
5817 sufficiently large. Nag if this changes anything,
5818 so people can fix their linker scripts. */
5819
5820 if (last->vma != last->lma)
5821 einfo (_("%P: warning: dot moved backwards "
5822 "before `%s'\n"), os->name);
5823 }
5824 else
5825 {
5826 /* If this is an overlay, set the current lma to that
5827 at the end of the previous section. */
5828 if (os->sectype == overlay_section)
5829 lma = last->lma + TO_ADDR (last->size);
5830
5831 /* Otherwise, keep the same lma to vma relationship
5832 as the previous section. */
5833 else
5834 lma = os->bfd_section->vma + last->lma - last->vma;
5835
5836 if (section_alignment > 0)
5837 lma = align_power (lma, section_alignment);
5838 os->bfd_section->lma = lma;
5839 }
5840 }
5841 os->processed_lma = TRUE;
5842
5843 /* Keep track of normal sections using the default
5844 lma region. We use this to set the lma for
5845 following sections. Overlays or other linker
5846 script assignment to lma might mean that the
5847 default lma == vma is incorrect.
5848 To avoid warnings about dot moving backwards when using
5849 -Ttext, don't start tracking sections until we find one
5850 of non-zero size or with lma set differently to vma.
5851 Do this tracking before we short-cut the loop so that we
5852 track changes for the case where the section size is zero,
5853 but the lma is set differently to the vma. This is
5854 important, if an orphan section is placed after an
5855 otherwise empty output section that has an explicit lma
5856 set, we want that lma reflected in the orphans lma. */
5857 if (((!IGNORE_SECTION (os->bfd_section)
5858 && (os->bfd_section->size != 0
5859 || (r->last_os == NULL
5860 && os->bfd_section->vma != os->bfd_section->lma)
5861 || (r->last_os != NULL
5862 && dot >= (r->last_os->output_section_statement
5863 .bfd_section->vma))))
5864 || os->sectype == first_overlay_section)
5865 && os->lma_region == NULL
5866 && !bfd_link_relocatable (&link_info))
5867 r->last_os = s;
5868
5869 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5870 break;
5871
5872 /* .tbss sections effectively have zero size. */
5873 if (!IS_TBSS (os->bfd_section)
5874 || bfd_link_relocatable (&link_info))
5875 dotdelta = TO_ADDR (os->bfd_section->size);
5876 else
5877 dotdelta = 0;
5878 dot += dotdelta;
5879
5880 if (os->update_dot_tree != 0)
5881 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5882
5883 /* Update dot in the region ?
5884 We only do this if the section is going to be allocated,
5885 since unallocated sections do not contribute to the region's
5886 overall size in memory. */
5887 if (os->region != NULL
5888 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5889 {
5890 os->region->current = dot;
5891
5892 if (check_regions)
5893 /* Make sure the new address is within the region. */
5894 os_region_check (os, os->region, os->addr_tree,
5895 os->bfd_section->vma);
5896
5897 if (os->lma_region != NULL && os->lma_region != os->region
5898 && ((os->bfd_section->flags & SEC_LOAD)
5899 || os->align_lma_with_input))
5900 {
5901 os->lma_region->current = os->bfd_section->lma + dotdelta;
5902
5903 if (check_regions)
5904 os_region_check (os, os->lma_region, NULL,
5905 os->bfd_section->lma);
5906 }
5907 }
5908 }
5909 break;
5910
5911 case lang_constructors_statement_enum:
5912 dot = lang_size_sections_1 (&constructor_list.head,
5913 output_section_statement,
5914 fill, dot, relax, check_regions);
5915 break;
5916
5917 case lang_data_statement_enum:
5918 {
5919 unsigned int size = 0;
5920
5921 s->data_statement.output_offset =
5922 dot - output_section_statement->bfd_section->vma;
5923 s->data_statement.output_section =
5924 output_section_statement->bfd_section;
5925
5926 /* We might refer to provided symbols in the expression, and
5927 need to mark them as needed. */
5928 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5929
5930 switch (s->data_statement.type)
5931 {
5932 default:
5933 abort ();
5934 case QUAD:
5935 case SQUAD:
5936 size = QUAD_SIZE;
5937 break;
5938 case LONG:
5939 size = LONG_SIZE;
5940 break;
5941 case SHORT:
5942 size = SHORT_SIZE;
5943 break;
5944 case BYTE:
5945 size = BYTE_SIZE;
5946 break;
5947 }
5948 if (size < TO_SIZE ((unsigned) 1))
5949 size = TO_SIZE ((unsigned) 1);
5950 dot += TO_ADDR (size);
5951 if (!(output_section_statement->bfd_section->flags
5952 & SEC_FIXED_SIZE))
5953 output_section_statement->bfd_section->size
5954 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5955
5956 }
5957 break;
5958
5959 case lang_reloc_statement_enum:
5960 {
5961 int size;
5962
5963 s->reloc_statement.output_offset =
5964 dot - output_section_statement->bfd_section->vma;
5965 s->reloc_statement.output_section =
5966 output_section_statement->bfd_section;
5967 size = bfd_get_reloc_size (s->reloc_statement.howto);
5968 dot += TO_ADDR (size);
5969 if (!(output_section_statement->bfd_section->flags
5970 & SEC_FIXED_SIZE))
5971 output_section_statement->bfd_section->size
5972 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5973 }
5974 break;
5975
5976 case lang_wild_statement_enum:
5977 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5978 output_section_statement,
5979 fill, dot, relax, check_regions);
5980 break;
5981
5982 case lang_object_symbols_statement_enum:
5983 link_info.create_object_symbols_section
5984 = output_section_statement->bfd_section;
5985 output_section_statement->bfd_section->flags |= SEC_KEEP;
5986 break;
5987
5988 case lang_output_statement_enum:
5989 case lang_target_statement_enum:
5990 break;
5991
5992 case lang_input_section_enum:
5993 {
5994 asection *i;
5995
5996 i = s->input_section.section;
5997 if (relax)
5998 {
5999 bfd_boolean again;
6000
6001 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6002 einfo (_("%F%P: can't relax section: %E\n"));
6003 if (again)
6004 *relax = TRUE;
6005 }
6006 dot = size_input_section (prev, output_section_statement,
6007 fill, &removed, dot);
6008 }
6009 break;
6010
6011 case lang_input_statement_enum:
6012 break;
6013
6014 case lang_fill_statement_enum:
6015 s->fill_statement.output_section =
6016 output_section_statement->bfd_section;
6017
6018 fill = s->fill_statement.fill;
6019 break;
6020
6021 case lang_assignment_statement_enum:
6022 {
6023 bfd_vma newdot = dot;
6024 etree_type *tree = s->assignment_statement.exp;
6025
6026 expld.dataseg.relro = exp_seg_relro_none;
6027
6028 exp_fold_tree (tree,
6029 output_section_statement->bfd_section,
6030 &newdot);
6031
6032 ldlang_check_relro_region (s, &expld.dataseg);
6033
6034 expld.dataseg.relro = exp_seg_relro_none;
6035
6036 /* This symbol may be relative to this section. */
6037 if ((tree->type.node_class == etree_provided
6038 || tree->type.node_class == etree_assign)
6039 && (tree->assign.dst [0] != '.'
6040 || tree->assign.dst [1] != '\0'))
6041 output_section_statement->update_dot = 1;
6042
6043 if (!output_section_statement->ignored)
6044 {
6045 if (output_section_statement == abs_output_section)
6046 {
6047 /* If we don't have an output section, then just adjust
6048 the default memory address. */
6049 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6050 FALSE)->current = newdot;
6051 }
6052 else if (newdot != dot)
6053 {
6054 /* Insert a pad after this statement. We can't
6055 put the pad before when relaxing, in case the
6056 assignment references dot. */
6057 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6058 output_section_statement->bfd_section, dot);
6059
6060 /* Don't neuter the pad below when relaxing. */
6061 s = s->header.next;
6062
6063 /* If dot is advanced, this implies that the section
6064 should have space allocated to it, unless the
6065 user has explicitly stated that the section
6066 should not be allocated. */
6067 if (output_section_statement->sectype != noalloc_section
6068 && (output_section_statement->sectype != noload_section
6069 || (bfd_get_flavour (link_info.output_bfd)
6070 == bfd_target_elf_flavour)))
6071 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6072 }
6073 dot = newdot;
6074 }
6075 }
6076 break;
6077
6078 case lang_padding_statement_enum:
6079 /* If this is the first time lang_size_sections is called,
6080 we won't have any padding statements. If this is the
6081 second or later passes when relaxing, we should allow
6082 padding to shrink. If padding is needed on this pass, it
6083 will be added back in. */
6084 s->padding_statement.size = 0;
6085
6086 /* Make sure output_offset is valid. If relaxation shrinks
6087 the section and this pad isn't needed, it's possible to
6088 have output_offset larger than the final size of the
6089 section. bfd_set_section_contents will complain even for
6090 a pad size of zero. */
6091 s->padding_statement.output_offset
6092 = dot - output_section_statement->bfd_section->vma;
6093 break;
6094
6095 case lang_group_statement_enum:
6096 dot = lang_size_sections_1 (&s->group_statement.children.head,
6097 output_section_statement,
6098 fill, dot, relax, check_regions);
6099 break;
6100
6101 case lang_insert_statement_enum:
6102 break;
6103
6104 /* We can only get here when relaxing is turned on. */
6105 case lang_address_statement_enum:
6106 break;
6107
6108 default:
6109 FAIL ();
6110 break;
6111 }
6112
6113 /* If an input section doesn't fit in the current output
6114 section, remove it from the list. Handle the case where we
6115 have to remove an input_section statement here: there is a
6116 special case to remove the first element of the list. */
6117 if (link_info.non_contiguous_regions && removed)
6118 {
6119 /* If we removed the first element during the previous
6120 iteration, override the loop assignment of prev_s. */
6121 if (removed_prev_s)
6122 prev_s = NULL;
6123
6124 if (prev_s)
6125 {
6126 /* If there was a real previous input section, just skip
6127 the current one. */
6128 prev_s->header.next=s->header.next;
6129 s = prev_s;
6130 removed_prev_s = FALSE;
6131 }
6132 else
6133 {
6134 /* Remove the first input section of the list. */
6135 *prev = s->header.next;
6136 removed_prev_s = TRUE;
6137 }
6138
6139 /* Move to next element, unless we removed the head of the
6140 list. */
6141 if (!removed_prev_s)
6142 prev = &s->header.next;
6143 }
6144 else
6145 {
6146 prev = &s->header.next;
6147 removed_prev_s = FALSE;
6148 }
6149 }
6150 return dot;
6151 }
6152
6153 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6154 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6155 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6156 segments. We are allowed an opportunity to override this decision. */
6157
6158 bfd_boolean
6159 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6160 bfd *abfd ATTRIBUTE_UNUSED,
6161 asection *current_section,
6162 asection *previous_section,
6163 bfd_boolean new_segment)
6164 {
6165 lang_output_section_statement_type *cur;
6166 lang_output_section_statement_type *prev;
6167
6168 /* The checks below are only necessary when the BFD library has decided
6169 that the two sections ought to be placed into the same segment. */
6170 if (new_segment)
6171 return TRUE;
6172
6173 /* Paranoia checks. */
6174 if (current_section == NULL || previous_section == NULL)
6175 return new_segment;
6176
6177 /* If this flag is set, the target never wants code and non-code
6178 sections comingled in the same segment. */
6179 if (config.separate_code
6180 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6181 return TRUE;
6182
6183 /* Find the memory regions associated with the two sections.
6184 We call lang_output_section_find() here rather than scanning the list
6185 of output sections looking for a matching section pointer because if
6186 we have a large number of sections then a hash lookup is faster. */
6187 cur = lang_output_section_find (current_section->name);
6188 prev = lang_output_section_find (previous_section->name);
6189
6190 /* More paranoia. */
6191 if (cur == NULL || prev == NULL)
6192 return new_segment;
6193
6194 /* If the regions are different then force the sections to live in
6195 different segments. See the email thread starting at the following
6196 URL for the reasons why this is necessary:
6197 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6198 return cur->region != prev->region;
6199 }
6200
6201 void
6202 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6203 {
6204 lang_statement_iteration++;
6205 if (expld.phase != lang_mark_phase_enum)
6206 lang_sizing_iteration++;
6207 lang_size_sections_1 (&statement_list.head, abs_output_section,
6208 0, 0, relax, check_regions);
6209 }
6210
6211 static bfd_boolean
6212 lang_size_segment (seg_align_type *seg)
6213 {
6214 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6215 a page could be saved in the data segment. */
6216 bfd_vma first, last;
6217
6218 first = -seg->base & (seg->pagesize - 1);
6219 last = seg->end & (seg->pagesize - 1);
6220 if (first && last
6221 && ((seg->base & ~(seg->pagesize - 1))
6222 != (seg->end & ~(seg->pagesize - 1)))
6223 && first + last <= seg->pagesize)
6224 {
6225 seg->phase = exp_seg_adjust;
6226 return TRUE;
6227 }
6228
6229 seg->phase = exp_seg_done;
6230 return FALSE;
6231 }
6232
6233 static bfd_vma
6234 lang_size_relro_segment_1 (seg_align_type *seg)
6235 {
6236 bfd_vma relro_end, desired_end;
6237 asection *sec;
6238
6239 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6240 relro_end = ((seg->relro_end + seg->pagesize - 1)
6241 & ~(seg->pagesize - 1));
6242
6243 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6244 desired_end = relro_end - seg->relro_offset;
6245
6246 /* For sections in the relro segment.. */
6247 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6248 if ((sec->flags & SEC_ALLOC) != 0
6249 && sec->vma >= seg->base
6250 && sec->vma < seg->relro_end - seg->relro_offset)
6251 {
6252 /* Where do we want to put this section so that it ends as
6253 desired? */
6254 bfd_vma start, end, bump;
6255
6256 end = start = sec->vma;
6257 if (!IS_TBSS (sec))
6258 end += TO_ADDR (sec->size);
6259 bump = desired_end - end;
6260 /* We'd like to increase START by BUMP, but we must heed
6261 alignment so the increase might be less than optimum. */
6262 start += bump;
6263 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6264 /* This is now the desired end for the previous section. */
6265 desired_end = start;
6266 }
6267
6268 seg->phase = exp_seg_relro_adjust;
6269 ASSERT (desired_end >= seg->base);
6270 seg->base = desired_end;
6271 return relro_end;
6272 }
6273
6274 static bfd_boolean
6275 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6276 {
6277 bfd_boolean do_reset = FALSE;
6278 bfd_boolean do_data_relro;
6279 bfd_vma data_initial_base, data_relro_end;
6280
6281 if (link_info.relro && expld.dataseg.relro_end)
6282 {
6283 do_data_relro = TRUE;
6284 data_initial_base = expld.dataseg.base;
6285 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6286 }
6287 else
6288 {
6289 do_data_relro = FALSE;
6290 data_initial_base = data_relro_end = 0;
6291 }
6292
6293 if (do_data_relro)
6294 {
6295 lang_reset_memory_regions ();
6296 one_lang_size_sections_pass (relax, check_regions);
6297
6298 /* Assignments to dot, or to output section address in a user
6299 script have increased padding over the original. Revert. */
6300 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6301 {
6302 expld.dataseg.base = data_initial_base;;
6303 do_reset = TRUE;
6304 }
6305 }
6306
6307 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6308 do_reset = TRUE;
6309
6310 return do_reset;
6311 }
6312
6313 void
6314 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6315 {
6316 expld.phase = lang_allocating_phase_enum;
6317 expld.dataseg.phase = exp_seg_none;
6318
6319 one_lang_size_sections_pass (relax, check_regions);
6320
6321 if (expld.dataseg.phase != exp_seg_end_seen)
6322 expld.dataseg.phase = exp_seg_done;
6323
6324 if (expld.dataseg.phase == exp_seg_end_seen)
6325 {
6326 bfd_boolean do_reset
6327 = lang_size_relro_segment (relax, check_regions);
6328
6329 if (do_reset)
6330 {
6331 lang_reset_memory_regions ();
6332 one_lang_size_sections_pass (relax, check_regions);
6333 }
6334
6335 if (link_info.relro && expld.dataseg.relro_end)
6336 {
6337 link_info.relro_start = expld.dataseg.base;
6338 link_info.relro_end = expld.dataseg.relro_end;
6339 }
6340 }
6341 }
6342
6343 static lang_output_section_statement_type *current_section;
6344 static lang_assignment_statement_type *current_assign;
6345 static bfd_boolean prefer_next_section;
6346
6347 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6348
6349 static bfd_vma
6350 lang_do_assignments_1 (lang_statement_union_type *s,
6351 lang_output_section_statement_type *current_os,
6352 fill_type *fill,
6353 bfd_vma dot,
6354 bfd_boolean *found_end)
6355 {
6356 for (; s != NULL; s = s->header.next)
6357 {
6358 switch (s->header.type)
6359 {
6360 case lang_constructors_statement_enum:
6361 dot = lang_do_assignments_1 (constructor_list.head,
6362 current_os, fill, dot, found_end);
6363 break;
6364
6365 case lang_output_section_statement_enum:
6366 {
6367 lang_output_section_statement_type *os;
6368 bfd_vma newdot;
6369
6370 os = &(s->output_section_statement);
6371 os->after_end = *found_end;
6372 init_opb (os->bfd_section);
6373 if (os->bfd_section != NULL && !os->ignored)
6374 {
6375 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6376 {
6377 current_section = os;
6378 prefer_next_section = FALSE;
6379 }
6380 dot = os->bfd_section->vma;
6381 }
6382 newdot = lang_do_assignments_1 (os->children.head,
6383 os, os->fill, dot, found_end);
6384 if (!os->ignored)
6385 {
6386 if (os->bfd_section != NULL)
6387 {
6388 /* .tbss sections effectively have zero size. */
6389 if (!IS_TBSS (os->bfd_section)
6390 || bfd_link_relocatable (&link_info))
6391 dot += TO_ADDR (os->bfd_section->size);
6392
6393 if (os->update_dot_tree != NULL)
6394 exp_fold_tree (os->update_dot_tree,
6395 bfd_abs_section_ptr, &dot);
6396 }
6397 else
6398 dot = newdot;
6399 }
6400 }
6401 break;
6402
6403 case lang_wild_statement_enum:
6404
6405 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6406 current_os, fill, dot, found_end);
6407 break;
6408
6409 case lang_object_symbols_statement_enum:
6410 case lang_output_statement_enum:
6411 case lang_target_statement_enum:
6412 break;
6413
6414 case lang_data_statement_enum:
6415 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6416 if (expld.result.valid_p)
6417 {
6418 s->data_statement.value = expld.result.value;
6419 if (expld.result.section != NULL)
6420 s->data_statement.value += expld.result.section->vma;
6421 }
6422 else if (expld.phase == lang_final_phase_enum)
6423 einfo (_("%F%P: invalid data statement\n"));
6424 {
6425 unsigned int size;
6426 switch (s->data_statement.type)
6427 {
6428 default:
6429 abort ();
6430 case QUAD:
6431 case SQUAD:
6432 size = QUAD_SIZE;
6433 break;
6434 case LONG:
6435 size = LONG_SIZE;
6436 break;
6437 case SHORT:
6438 size = SHORT_SIZE;
6439 break;
6440 case BYTE:
6441 size = BYTE_SIZE;
6442 break;
6443 }
6444 if (size < TO_SIZE ((unsigned) 1))
6445 size = TO_SIZE ((unsigned) 1);
6446 dot += TO_ADDR (size);
6447 }
6448 break;
6449
6450 case lang_reloc_statement_enum:
6451 exp_fold_tree (s->reloc_statement.addend_exp,
6452 bfd_abs_section_ptr, &dot);
6453 if (expld.result.valid_p)
6454 s->reloc_statement.addend_value = expld.result.value;
6455 else if (expld.phase == lang_final_phase_enum)
6456 einfo (_("%F%P: invalid reloc statement\n"));
6457 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6458 break;
6459
6460 case lang_input_section_enum:
6461 {
6462 asection *in = s->input_section.section;
6463
6464 if ((in->flags & SEC_EXCLUDE) == 0)
6465 dot += TO_ADDR (in->size);
6466 }
6467 break;
6468
6469 case lang_input_statement_enum:
6470 break;
6471
6472 case lang_fill_statement_enum:
6473 fill = s->fill_statement.fill;
6474 break;
6475
6476 case lang_assignment_statement_enum:
6477 current_assign = &s->assignment_statement;
6478 if (current_assign->exp->type.node_class != etree_assert)
6479 {
6480 const char *p = current_assign->exp->assign.dst;
6481
6482 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6483 prefer_next_section = TRUE;
6484
6485 while (*p == '_')
6486 ++p;
6487 if (strcmp (p, "end") == 0)
6488 *found_end = TRUE;
6489 }
6490 exp_fold_tree (s->assignment_statement.exp,
6491 (current_os->bfd_section != NULL
6492 ? current_os->bfd_section : bfd_und_section_ptr),
6493 &dot);
6494 break;
6495
6496 case lang_padding_statement_enum:
6497 dot += TO_ADDR (s->padding_statement.size);
6498 break;
6499
6500 case lang_group_statement_enum:
6501 dot = lang_do_assignments_1 (s->group_statement.children.head,
6502 current_os, fill, dot, found_end);
6503 break;
6504
6505 case lang_insert_statement_enum:
6506 break;
6507
6508 case lang_address_statement_enum:
6509 break;
6510
6511 default:
6512 FAIL ();
6513 break;
6514 }
6515 }
6516 return dot;
6517 }
6518
6519 void
6520 lang_do_assignments (lang_phase_type phase)
6521 {
6522 bfd_boolean found_end = FALSE;
6523
6524 current_section = NULL;
6525 prefer_next_section = FALSE;
6526 expld.phase = phase;
6527 lang_statement_iteration++;
6528 lang_do_assignments_1 (statement_list.head,
6529 abs_output_section, NULL, 0, &found_end);
6530 }
6531
6532 /* For an assignment statement outside of an output section statement,
6533 choose the best of neighbouring output sections to use for values
6534 of "dot". */
6535
6536 asection *
6537 section_for_dot (void)
6538 {
6539 asection *s;
6540
6541 /* Assignments belong to the previous output section, unless there
6542 has been an assignment to "dot", in which case following
6543 assignments belong to the next output section. (The assumption
6544 is that an assignment to "dot" is setting up the address for the
6545 next output section.) Except that past the assignment to "_end"
6546 we always associate with the previous section. This exception is
6547 for targets like SH that define an alloc .stack or other
6548 weirdness after non-alloc sections. */
6549 if (current_section == NULL || prefer_next_section)
6550 {
6551 lang_statement_union_type *stmt;
6552 lang_output_section_statement_type *os;
6553
6554 for (stmt = (lang_statement_union_type *) current_assign;
6555 stmt != NULL;
6556 stmt = stmt->header.next)
6557 if (stmt->header.type == lang_output_section_statement_enum)
6558 break;
6559
6560 os = &stmt->output_section_statement;
6561 while (os != NULL
6562 && !os->after_end
6563 && (os->bfd_section == NULL
6564 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6565 || bfd_section_removed_from_list (link_info.output_bfd,
6566 os->bfd_section)))
6567 os = os->next;
6568
6569 if (current_section == NULL || os == NULL || !os->after_end)
6570 {
6571 if (os != NULL)
6572 s = os->bfd_section;
6573 else
6574 s = link_info.output_bfd->section_last;
6575 while (s != NULL
6576 && ((s->flags & SEC_ALLOC) == 0
6577 || (s->flags & SEC_THREAD_LOCAL) != 0))
6578 s = s->prev;
6579 if (s != NULL)
6580 return s;
6581
6582 return bfd_abs_section_ptr;
6583 }
6584 }
6585
6586 s = current_section->bfd_section;
6587
6588 /* The section may have been stripped. */
6589 while (s != NULL
6590 && ((s->flags & SEC_EXCLUDE) != 0
6591 || (s->flags & SEC_ALLOC) == 0
6592 || (s->flags & SEC_THREAD_LOCAL) != 0
6593 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6594 s = s->prev;
6595 if (s == NULL)
6596 s = link_info.output_bfd->sections;
6597 while (s != NULL
6598 && ((s->flags & SEC_ALLOC) == 0
6599 || (s->flags & SEC_THREAD_LOCAL) != 0))
6600 s = s->next;
6601 if (s != NULL)
6602 return s;
6603
6604 return bfd_abs_section_ptr;
6605 }
6606
6607 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6608
6609 static struct bfd_link_hash_entry **start_stop_syms;
6610 static size_t start_stop_count = 0;
6611 static size_t start_stop_alloc = 0;
6612
6613 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6614 to start_stop_syms. */
6615
6616 static void
6617 lang_define_start_stop (const char *symbol, asection *sec)
6618 {
6619 struct bfd_link_hash_entry *h;
6620
6621 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6622 if (h != NULL)
6623 {
6624 if (start_stop_count == start_stop_alloc)
6625 {
6626 start_stop_alloc = 2 * start_stop_alloc + 10;
6627 start_stop_syms
6628 = xrealloc (start_stop_syms,
6629 start_stop_alloc * sizeof (*start_stop_syms));
6630 }
6631 start_stop_syms[start_stop_count++] = h;
6632 }
6633 }
6634
6635 /* Check for input sections whose names match references to
6636 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6637 preliminary definitions. */
6638
6639 static void
6640 lang_init_start_stop (void)
6641 {
6642 bfd *abfd;
6643 asection *s;
6644 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6645
6646 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6647 for (s = abfd->sections; s != NULL; s = s->next)
6648 {
6649 const char *ps;
6650 const char *secname = s->name;
6651
6652 for (ps = secname; *ps != '\0'; ps++)
6653 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6654 break;
6655 if (*ps == '\0')
6656 {
6657 char *symbol = (char *) xmalloc (10 + strlen (secname));
6658
6659 symbol[0] = leading_char;
6660 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6661 lang_define_start_stop (symbol, s);
6662
6663 symbol[1] = leading_char;
6664 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6665 lang_define_start_stop (symbol + 1, s);
6666
6667 free (symbol);
6668 }
6669 }
6670 }
6671
6672 /* Iterate over start_stop_syms. */
6673
6674 static void
6675 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6676 {
6677 size_t i;
6678
6679 for (i = 0; i < start_stop_count; ++i)
6680 func (start_stop_syms[i]);
6681 }
6682
6683 /* __start and __stop symbols are only supposed to be defined by the
6684 linker for orphan sections, but we now extend that to sections that
6685 map to an output section of the same name. The symbols were
6686 defined early for --gc-sections, before we mapped input to output
6687 sections, so undo those that don't satisfy this rule. */
6688
6689 static void
6690 undef_start_stop (struct bfd_link_hash_entry *h)
6691 {
6692 if (h->ldscript_def)
6693 return;
6694
6695 if (h->u.def.section->output_section == NULL
6696 || h->u.def.section->output_section->owner != link_info.output_bfd
6697 || strcmp (h->u.def.section->name,
6698 h->u.def.section->output_section->name) != 0)
6699 {
6700 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6701 h->u.def.section->name);
6702 if (sec != NULL)
6703 {
6704 /* When there are more than one input sections with the same
6705 section name, SECNAME, linker picks the first one to define
6706 __start_SECNAME and __stop_SECNAME symbols. When the first
6707 input section is removed by comdat group, we need to check
6708 if there is still an output section with section name
6709 SECNAME. */
6710 asection *i;
6711 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6712 if (strcmp (h->u.def.section->name, i->name) == 0)
6713 {
6714 h->u.def.section = i;
6715 return;
6716 }
6717 }
6718 h->type = bfd_link_hash_undefined;
6719 h->u.undef.abfd = NULL;
6720 }
6721 }
6722
6723 static void
6724 lang_undef_start_stop (void)
6725 {
6726 foreach_start_stop (undef_start_stop);
6727 }
6728
6729 /* Check for output sections whose names match references to
6730 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6731 preliminary definitions. */
6732
6733 static void
6734 lang_init_startof_sizeof (void)
6735 {
6736 asection *s;
6737
6738 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6739 {
6740 const char *secname = s->name;
6741 char *symbol = (char *) xmalloc (10 + strlen (secname));
6742
6743 sprintf (symbol, ".startof.%s", secname);
6744 lang_define_start_stop (symbol, s);
6745
6746 memcpy (symbol + 1, ".size", 5);
6747 lang_define_start_stop (symbol + 1, s);
6748 free (symbol);
6749 }
6750 }
6751
6752 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6753
6754 static void
6755 set_start_stop (struct bfd_link_hash_entry *h)
6756 {
6757 if (h->ldscript_def
6758 || h->type != bfd_link_hash_defined)
6759 return;
6760
6761 if (h->root.string[0] == '.')
6762 {
6763 /* .startof. or .sizeof. symbol.
6764 .startof. already has final value. */
6765 if (h->root.string[2] == 'i')
6766 {
6767 /* .sizeof. */
6768 h->u.def.value = TO_ADDR (h->u.def.section->size);
6769 h->u.def.section = bfd_abs_section_ptr;
6770 }
6771 }
6772 else
6773 {
6774 /* __start or __stop symbol. */
6775 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6776
6777 h->u.def.section = h->u.def.section->output_section;
6778 if (h->root.string[4 + has_lead] == 'o')
6779 {
6780 /* __stop_ */
6781 h->u.def.value = TO_ADDR (h->u.def.section->size);
6782 }
6783 }
6784 }
6785
6786 static void
6787 lang_finalize_start_stop (void)
6788 {
6789 foreach_start_stop (set_start_stop);
6790 }
6791
6792 static void
6793 lang_end (void)
6794 {
6795 struct bfd_link_hash_entry *h;
6796 bfd_boolean warn;
6797
6798 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6799 || bfd_link_dll (&link_info))
6800 warn = entry_from_cmdline;
6801 else
6802 warn = TRUE;
6803
6804 /* Force the user to specify a root when generating a relocatable with
6805 --gc-sections, unless --gc-keep-exported was also given. */
6806 if (bfd_link_relocatable (&link_info)
6807 && link_info.gc_sections
6808 && !link_info.gc_keep_exported
6809 && !(entry_from_cmdline || undef_from_cmdline))
6810 einfo (_("%F%P: gc-sections requires either an entry or "
6811 "an undefined symbol\n"));
6812
6813 if (entry_symbol.name == NULL)
6814 {
6815 /* No entry has been specified. Look for the default entry, but
6816 don't warn if we don't find it. */
6817 entry_symbol.name = entry_symbol_default;
6818 warn = FALSE;
6819 }
6820
6821 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6822 FALSE, FALSE, TRUE);
6823 if (h != NULL
6824 && (h->type == bfd_link_hash_defined
6825 || h->type == bfd_link_hash_defweak)
6826 && h->u.def.section->output_section != NULL)
6827 {
6828 bfd_vma val;
6829
6830 val = (h->u.def.value
6831 + bfd_section_vma (h->u.def.section->output_section)
6832 + h->u.def.section->output_offset);
6833 if (!bfd_set_start_address (link_info.output_bfd, val))
6834 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6835 }
6836 else
6837 {
6838 bfd_vma val;
6839 const char *send;
6840
6841 /* We couldn't find the entry symbol. Try parsing it as a
6842 number. */
6843 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6844 if (*send == '\0')
6845 {
6846 if (!bfd_set_start_address (link_info.output_bfd, val))
6847 einfo (_("%F%P: can't set start address\n"));
6848 }
6849 else
6850 {
6851 asection *ts;
6852
6853 /* Can't find the entry symbol, and it's not a number. Use
6854 the first address in the text section. */
6855 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6856 if (ts != NULL)
6857 {
6858 if (warn)
6859 einfo (_("%P: warning: cannot find entry symbol %s;"
6860 " defaulting to %V\n"),
6861 entry_symbol.name,
6862 bfd_section_vma (ts));
6863 if (!bfd_set_start_address (link_info.output_bfd,
6864 bfd_section_vma (ts)))
6865 einfo (_("%F%P: can't set start address\n"));
6866 }
6867 else
6868 {
6869 if (warn)
6870 einfo (_("%P: warning: cannot find entry symbol %s;"
6871 " not setting start address\n"),
6872 entry_symbol.name);
6873 }
6874 }
6875 }
6876 }
6877
6878 /* This is a small function used when we want to ignore errors from
6879 BFD. */
6880
6881 static void
6882 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6883 va_list ap ATTRIBUTE_UNUSED)
6884 {
6885 /* Don't do anything. */
6886 }
6887
6888 /* Check that the architecture of all the input files is compatible
6889 with the output file. Also call the backend to let it do any
6890 other checking that is needed. */
6891
6892 static void
6893 lang_check (void)
6894 {
6895 lang_input_statement_type *file;
6896 bfd *input_bfd;
6897 const bfd_arch_info_type *compatible;
6898
6899 for (file = (void *) file_chain.head;
6900 file != NULL;
6901 file = file->next)
6902 {
6903 #ifdef ENABLE_PLUGINS
6904 /* Don't check format of files claimed by plugin. */
6905 if (file->flags.claimed)
6906 continue;
6907 #endif /* ENABLE_PLUGINS */
6908 input_bfd = file->the_bfd;
6909 compatible
6910 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6911 command_line.accept_unknown_input_arch);
6912
6913 /* In general it is not possible to perform a relocatable
6914 link between differing object formats when the input
6915 file has relocations, because the relocations in the
6916 input format may not have equivalent representations in
6917 the output format (and besides BFD does not translate
6918 relocs for other link purposes than a final link). */
6919 if ((bfd_link_relocatable (&link_info)
6920 || link_info.emitrelocations)
6921 && (compatible == NULL
6922 || (bfd_get_flavour (input_bfd)
6923 != bfd_get_flavour (link_info.output_bfd)))
6924 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6925 {
6926 einfo (_("%F%P: relocatable linking with relocations from"
6927 " format %s (%pB) to format %s (%pB) is not supported\n"),
6928 bfd_get_target (input_bfd), input_bfd,
6929 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6930 /* einfo with %F exits. */
6931 }
6932
6933 if (compatible == NULL)
6934 {
6935 if (command_line.warn_mismatch)
6936 einfo (_("%X%P: %s architecture of input file `%pB'"
6937 " is incompatible with %s output\n"),
6938 bfd_printable_name (input_bfd), input_bfd,
6939 bfd_printable_name (link_info.output_bfd));
6940 }
6941
6942 /* If the input bfd has no contents, it shouldn't set the
6943 private data of the output bfd. */
6944 else if ((input_bfd->flags & DYNAMIC) != 0
6945 || bfd_count_sections (input_bfd) != 0)
6946 {
6947 bfd_error_handler_type pfn = NULL;
6948
6949 /* If we aren't supposed to warn about mismatched input
6950 files, temporarily set the BFD error handler to a
6951 function which will do nothing. We still want to call
6952 bfd_merge_private_bfd_data, since it may set up
6953 information which is needed in the output file. */
6954 if (!command_line.warn_mismatch)
6955 pfn = bfd_set_error_handler (ignore_bfd_errors);
6956 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6957 {
6958 if (command_line.warn_mismatch)
6959 einfo (_("%X%P: failed to merge target specific data"
6960 " of file %pB\n"), input_bfd);
6961 }
6962 if (!command_line.warn_mismatch)
6963 bfd_set_error_handler (pfn);
6964 }
6965 }
6966 }
6967
6968 /* Look through all the global common symbols and attach them to the
6969 correct section. The -sort-common command line switch may be used
6970 to roughly sort the entries by alignment. */
6971
6972 static void
6973 lang_common (void)
6974 {
6975 if (link_info.inhibit_common_definition)
6976 return;
6977 if (bfd_link_relocatable (&link_info)
6978 && !command_line.force_common_definition)
6979 return;
6980
6981 if (!config.sort_common)
6982 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6983 else
6984 {
6985 unsigned int power;
6986
6987 if (config.sort_common == sort_descending)
6988 {
6989 for (power = 4; power > 0; power--)
6990 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6991
6992 power = 0;
6993 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6994 }
6995 else
6996 {
6997 for (power = 0; power <= 4; power++)
6998 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6999
7000 power = (unsigned int) -1;
7001 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7002 }
7003 }
7004 }
7005
7006 /* Place one common symbol in the correct section. */
7007
7008 static bfd_boolean
7009 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7010 {
7011 unsigned int power_of_two;
7012 bfd_vma size;
7013 asection *section;
7014
7015 if (h->type != bfd_link_hash_common)
7016 return TRUE;
7017
7018 size = h->u.c.size;
7019 power_of_two = h->u.c.p->alignment_power;
7020
7021 if (config.sort_common == sort_descending
7022 && power_of_two < *(unsigned int *) info)
7023 return TRUE;
7024 else if (config.sort_common == sort_ascending
7025 && power_of_two > *(unsigned int *) info)
7026 return TRUE;
7027
7028 section = h->u.c.p->section;
7029 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7030 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7031 h->root.string);
7032
7033 if (config.map_file != NULL)
7034 {
7035 static bfd_boolean header_printed;
7036 int len;
7037 char *name;
7038 char buf[50];
7039
7040 if (!header_printed)
7041 {
7042 minfo (_("\nAllocating common symbols\n"));
7043 minfo (_("Common symbol size file\n\n"));
7044 header_printed = TRUE;
7045 }
7046
7047 name = bfd_demangle (link_info.output_bfd, h->root.string,
7048 DMGL_ANSI | DMGL_PARAMS);
7049 if (name == NULL)
7050 {
7051 minfo ("%s", h->root.string);
7052 len = strlen (h->root.string);
7053 }
7054 else
7055 {
7056 minfo ("%s", name);
7057 len = strlen (name);
7058 free (name);
7059 }
7060
7061 if (len >= 19)
7062 {
7063 print_nl ();
7064 len = 0;
7065 }
7066 while (len < 20)
7067 {
7068 print_space ();
7069 ++len;
7070 }
7071
7072 minfo ("0x");
7073 if (size <= 0xffffffff)
7074 sprintf (buf, "%lx", (unsigned long) size);
7075 else
7076 sprintf_vma (buf, size);
7077 minfo ("%s", buf);
7078 len = strlen (buf);
7079
7080 while (len < 16)
7081 {
7082 print_space ();
7083 ++len;
7084 }
7085
7086 minfo ("%pB\n", section->owner);
7087 }
7088
7089 return TRUE;
7090 }
7091
7092 /* Handle a single orphan section S, placing the orphan into an appropriate
7093 output section. The effects of the --orphan-handling command line
7094 option are handled here. */
7095
7096 static void
7097 ldlang_place_orphan (asection *s)
7098 {
7099 if (config.orphan_handling == orphan_handling_discard)
7100 {
7101 lang_output_section_statement_type *os;
7102 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
7103 TRUE);
7104 if (os->addr_tree == NULL
7105 && (bfd_link_relocatable (&link_info)
7106 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7107 os->addr_tree = exp_intop (0);
7108 lang_add_section (&os->children, s, NULL, os);
7109 }
7110 else
7111 {
7112 lang_output_section_statement_type *os;
7113 const char *name = s->name;
7114 int constraint = 0;
7115
7116 if (config.orphan_handling == orphan_handling_error)
7117 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7118 s, s->owner);
7119
7120 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7121 constraint = SPECIAL;
7122
7123 os = ldemul_place_orphan (s, name, constraint);
7124 if (os == NULL)
7125 {
7126 os = lang_output_section_statement_lookup (name, constraint, TRUE);
7127 if (os->addr_tree == NULL
7128 && (bfd_link_relocatable (&link_info)
7129 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7130 os->addr_tree = exp_intop (0);
7131 lang_add_section (&os->children, s, NULL, os);
7132 }
7133
7134 if (config.orphan_handling == orphan_handling_warn)
7135 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7136 "placed in section `%s'\n"),
7137 s, s->owner, os->name);
7138 }
7139 }
7140
7141 /* Run through the input files and ensure that every input section has
7142 somewhere to go. If one is found without a destination then create
7143 an input request and place it into the statement tree. */
7144
7145 static void
7146 lang_place_orphans (void)
7147 {
7148 LANG_FOR_EACH_INPUT_STATEMENT (file)
7149 {
7150 asection *s;
7151
7152 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7153 {
7154 if (s->output_section == NULL)
7155 {
7156 /* This section of the file is not attached, root
7157 around for a sensible place for it to go. */
7158
7159 if (file->flags.just_syms)
7160 bfd_link_just_syms (file->the_bfd, s, &link_info);
7161 else if (lang_discard_section_p (s))
7162 s->output_section = bfd_abs_section_ptr;
7163 else if (strcmp (s->name, "COMMON") == 0)
7164 {
7165 /* This is a lonely common section which must have
7166 come from an archive. We attach to the section
7167 with the wildcard. */
7168 if (!bfd_link_relocatable (&link_info)
7169 || command_line.force_common_definition)
7170 {
7171 if (default_common_section == NULL)
7172 default_common_section
7173 = lang_output_section_statement_lookup (".bss", 0,
7174 TRUE);
7175 lang_add_section (&default_common_section->children, s,
7176 NULL, default_common_section);
7177 }
7178 }
7179 else
7180 ldlang_place_orphan (s);
7181 }
7182 }
7183 }
7184 }
7185
7186 void
7187 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7188 {
7189 flagword *ptr_flags;
7190
7191 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7192
7193 while (*flags)
7194 {
7195 switch (*flags)
7196 {
7197 /* PR 17900: An exclamation mark in the attributes reverses
7198 the sense of any of the attributes that follow. */
7199 case '!':
7200 invert = !invert;
7201 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7202 break;
7203
7204 case 'A': case 'a':
7205 *ptr_flags |= SEC_ALLOC;
7206 break;
7207
7208 case 'R': case 'r':
7209 *ptr_flags |= SEC_READONLY;
7210 break;
7211
7212 case 'W': case 'w':
7213 *ptr_flags |= SEC_DATA;
7214 break;
7215
7216 case 'X': case 'x':
7217 *ptr_flags |= SEC_CODE;
7218 break;
7219
7220 case 'L': case 'l':
7221 case 'I': case 'i':
7222 *ptr_flags |= SEC_LOAD;
7223 break;
7224
7225 default:
7226 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7227 *flags, *flags);
7228 break;
7229 }
7230 flags++;
7231 }
7232 }
7233
7234 /* Call a function on each real input file. This function will be
7235 called on an archive, but not on the elements. */
7236
7237 void
7238 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7239 {
7240 lang_input_statement_type *f;
7241
7242 for (f = (void *) input_file_chain.head;
7243 f != NULL;
7244 f = f->next_real_file)
7245 if (f->flags.real)
7246 func (f);
7247 }
7248
7249 /* Call a function on each real file. The function will be called on
7250 all the elements of an archive which are included in the link, but
7251 will not be called on the archive file itself. */
7252
7253 void
7254 lang_for_each_file (void (*func) (lang_input_statement_type *))
7255 {
7256 LANG_FOR_EACH_INPUT_STATEMENT (f)
7257 {
7258 if (f->flags.real)
7259 func (f);
7260 }
7261 }
7262
7263 void
7264 ldlang_add_file (lang_input_statement_type *entry)
7265 {
7266 lang_statement_append (&file_chain, entry, &entry->next);
7267
7268 /* The BFD linker needs to have a list of all input BFDs involved in
7269 a link. */
7270 ASSERT (entry->the_bfd->link.next == NULL);
7271 ASSERT (entry->the_bfd != link_info.output_bfd);
7272
7273 *link_info.input_bfds_tail = entry->the_bfd;
7274 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7275 bfd_set_usrdata (entry->the_bfd, entry);
7276 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7277
7278 /* Look through the sections and check for any which should not be
7279 included in the link. We need to do this now, so that we can
7280 notice when the backend linker tries to report multiple
7281 definition errors for symbols which are in sections we aren't
7282 going to link. FIXME: It might be better to entirely ignore
7283 symbols which are defined in sections which are going to be
7284 discarded. This would require modifying the backend linker for
7285 each backend which might set the SEC_LINK_ONCE flag. If we do
7286 this, we should probably handle SEC_EXCLUDE in the same way. */
7287
7288 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7289 }
7290
7291 void
7292 lang_add_output (const char *name, int from_script)
7293 {
7294 /* Make -o on command line override OUTPUT in script. */
7295 if (!had_output_filename || !from_script)
7296 {
7297 output_filename = name;
7298 had_output_filename = TRUE;
7299 }
7300 }
7301
7302 lang_output_section_statement_type *
7303 lang_enter_output_section_statement (const char *output_section_statement_name,
7304 etree_type *address_exp,
7305 enum section_type sectype,
7306 etree_type *align,
7307 etree_type *subalign,
7308 etree_type *ebase,
7309 int constraint,
7310 int align_with_input)
7311 {
7312 lang_output_section_statement_type *os;
7313
7314 os = lang_output_section_statement_lookup (output_section_statement_name,
7315 constraint, TRUE);
7316 current_section = os;
7317
7318 if (os->addr_tree == NULL)
7319 {
7320 os->addr_tree = address_exp;
7321 }
7322 os->sectype = sectype;
7323 if (sectype != noload_section)
7324 os->flags = SEC_NO_FLAGS;
7325 else
7326 os->flags = SEC_NEVER_LOAD;
7327 os->block_value = 1;
7328
7329 /* Make next things chain into subchain of this. */
7330 push_stat_ptr (&os->children);
7331
7332 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7333 if (os->align_lma_with_input && align != NULL)
7334 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7335 NULL);
7336
7337 os->subsection_alignment = subalign;
7338 os->section_alignment = align;
7339
7340 os->load_base = ebase;
7341 return os;
7342 }
7343
7344 void
7345 lang_final (void)
7346 {
7347 lang_output_statement_type *new_stmt;
7348
7349 new_stmt = new_stat (lang_output_statement, stat_ptr);
7350 new_stmt->name = output_filename;
7351 }
7352
7353 /* Reset the current counters in the regions. */
7354
7355 void
7356 lang_reset_memory_regions (void)
7357 {
7358 lang_memory_region_type *p = lang_memory_region_list;
7359 asection *o;
7360 lang_output_section_statement_type *os;
7361
7362 for (p = lang_memory_region_list; p != NULL; p = p->next)
7363 {
7364 p->current = p->origin;
7365 p->last_os = NULL;
7366 }
7367
7368 for (os = (void *) lang_os_list.head;
7369 os != NULL;
7370 os = os->next)
7371 {
7372 os->processed_vma = FALSE;
7373 os->processed_lma = FALSE;
7374 }
7375
7376 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7377 {
7378 /* Save the last size for possible use by bfd_relax_section. */
7379 o->rawsize = o->size;
7380 if (!(o->flags & SEC_FIXED_SIZE))
7381 o->size = 0;
7382 }
7383 }
7384
7385 /* Worker for lang_gc_sections_1. */
7386
7387 static void
7388 gc_section_callback (lang_wild_statement_type *ptr,
7389 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7390 asection *section,
7391 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7392 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7393 void *data ATTRIBUTE_UNUSED)
7394 {
7395 /* If the wild pattern was marked KEEP, the member sections
7396 should be as well. */
7397 if (ptr->keep_sections)
7398 section->flags |= SEC_KEEP;
7399 }
7400
7401 /* Iterate over sections marking them against GC. */
7402
7403 static void
7404 lang_gc_sections_1 (lang_statement_union_type *s)
7405 {
7406 for (; s != NULL; s = s->header.next)
7407 {
7408 switch (s->header.type)
7409 {
7410 case lang_wild_statement_enum:
7411 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7412 break;
7413 case lang_constructors_statement_enum:
7414 lang_gc_sections_1 (constructor_list.head);
7415 break;
7416 case lang_output_section_statement_enum:
7417 lang_gc_sections_1 (s->output_section_statement.children.head);
7418 break;
7419 case lang_group_statement_enum:
7420 lang_gc_sections_1 (s->group_statement.children.head);
7421 break;
7422 default:
7423 break;
7424 }
7425 }
7426 }
7427
7428 static void
7429 lang_gc_sections (void)
7430 {
7431 /* Keep all sections so marked in the link script. */
7432 lang_gc_sections_1 (statement_list.head);
7433
7434 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7435 the special case of debug info. (See bfd/stabs.c)
7436 Twiddle the flag here, to simplify later linker code. */
7437 if (bfd_link_relocatable (&link_info))
7438 {
7439 LANG_FOR_EACH_INPUT_STATEMENT (f)
7440 {
7441 asection *sec;
7442 #ifdef ENABLE_PLUGINS
7443 if (f->flags.claimed)
7444 continue;
7445 #endif
7446 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7447 if ((sec->flags & SEC_DEBUGGING) == 0)
7448 sec->flags &= ~SEC_EXCLUDE;
7449 }
7450 }
7451
7452 if (link_info.gc_sections)
7453 bfd_gc_sections (link_info.output_bfd, &link_info);
7454 }
7455
7456 /* Worker for lang_find_relro_sections_1. */
7457
7458 static void
7459 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7460 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7461 asection *section,
7462 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7463 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7464 void *data)
7465 {
7466 /* Discarded, excluded and ignored sections effectively have zero
7467 size. */
7468 if (section->output_section != NULL
7469 && section->output_section->owner == link_info.output_bfd
7470 && (section->output_section->flags & SEC_EXCLUDE) == 0
7471 && !IGNORE_SECTION (section)
7472 && section->size != 0)
7473 {
7474 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7475 *has_relro_section = TRUE;
7476 }
7477 }
7478
7479 /* Iterate over sections for relro sections. */
7480
7481 static void
7482 lang_find_relro_sections_1 (lang_statement_union_type *s,
7483 seg_align_type *seg,
7484 bfd_boolean *has_relro_section)
7485 {
7486 if (*has_relro_section)
7487 return;
7488
7489 for (; s != NULL; s = s->header.next)
7490 {
7491 if (s == seg->relro_end_stat)
7492 break;
7493
7494 switch (s->header.type)
7495 {
7496 case lang_wild_statement_enum:
7497 walk_wild (&s->wild_statement,
7498 find_relro_section_callback,
7499 has_relro_section);
7500 break;
7501 case lang_constructors_statement_enum:
7502 lang_find_relro_sections_1 (constructor_list.head,
7503 seg, has_relro_section);
7504 break;
7505 case lang_output_section_statement_enum:
7506 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7507 seg, has_relro_section);
7508 break;
7509 case lang_group_statement_enum:
7510 lang_find_relro_sections_1 (s->group_statement.children.head,
7511 seg, has_relro_section);
7512 break;
7513 default:
7514 break;
7515 }
7516 }
7517 }
7518
7519 static void
7520 lang_find_relro_sections (void)
7521 {
7522 bfd_boolean has_relro_section = FALSE;
7523
7524 /* Check all sections in the link script. */
7525
7526 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7527 &expld.dataseg, &has_relro_section);
7528
7529 if (!has_relro_section)
7530 link_info.relro = FALSE;
7531 }
7532
7533 /* Relax all sections until bfd_relax_section gives up. */
7534
7535 void
7536 lang_relax_sections (bfd_boolean need_layout)
7537 {
7538 if (RELAXATION_ENABLED)
7539 {
7540 /* We may need more than one relaxation pass. */
7541 int i = link_info.relax_pass;
7542
7543 /* The backend can use it to determine the current pass. */
7544 link_info.relax_pass = 0;
7545
7546 while (i--)
7547 {
7548 /* Keep relaxing until bfd_relax_section gives up. */
7549 bfd_boolean relax_again;
7550
7551 link_info.relax_trip = -1;
7552 do
7553 {
7554 link_info.relax_trip++;
7555
7556 /* Note: pe-dll.c does something like this also. If you find
7557 you need to change this code, you probably need to change
7558 pe-dll.c also. DJ */
7559
7560 /* Do all the assignments with our current guesses as to
7561 section sizes. */
7562 lang_do_assignments (lang_assigning_phase_enum);
7563
7564 /* We must do this after lang_do_assignments, because it uses
7565 size. */
7566 lang_reset_memory_regions ();
7567
7568 /* Perform another relax pass - this time we know where the
7569 globals are, so can make a better guess. */
7570 relax_again = FALSE;
7571 lang_size_sections (&relax_again, FALSE);
7572 }
7573 while (relax_again);
7574
7575 link_info.relax_pass++;
7576 }
7577 need_layout = TRUE;
7578 }
7579
7580 if (need_layout)
7581 {
7582 /* Final extra sizing to report errors. */
7583 lang_do_assignments (lang_assigning_phase_enum);
7584 lang_reset_memory_regions ();
7585 lang_size_sections (NULL, TRUE);
7586 }
7587 }
7588
7589 #ifdef ENABLE_PLUGINS
7590 /* Find the insert point for the plugin's replacement files. We
7591 place them after the first claimed real object file, or if the
7592 first claimed object is an archive member, after the last real
7593 object file immediately preceding the archive. In the event
7594 no objects have been claimed at all, we return the first dummy
7595 object file on the list as the insert point; that works, but
7596 the callee must be careful when relinking the file_chain as it
7597 is not actually on that chain, only the statement_list and the
7598 input_file list; in that case, the replacement files must be
7599 inserted at the head of the file_chain. */
7600
7601 static lang_input_statement_type *
7602 find_replacements_insert_point (bfd_boolean *before)
7603 {
7604 lang_input_statement_type *claim1, *lastobject;
7605 lastobject = (void *) input_file_chain.head;
7606 for (claim1 = (void *) file_chain.head;
7607 claim1 != NULL;
7608 claim1 = claim1->next)
7609 {
7610 if (claim1->flags.claimed)
7611 {
7612 *before = claim1->flags.claim_archive;
7613 return claim1->flags.claim_archive ? lastobject : claim1;
7614 }
7615 /* Update lastobject if this is a real object file. */
7616 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7617 lastobject = claim1;
7618 }
7619 /* No files were claimed by the plugin. Choose the last object
7620 file found on the list (maybe the first, dummy entry) as the
7621 insert point. */
7622 *before = FALSE;
7623 return lastobject;
7624 }
7625
7626 /* Find where to insert ADD, an archive element or shared library
7627 added during a rescan. */
7628
7629 static lang_input_statement_type **
7630 find_rescan_insertion (lang_input_statement_type *add)
7631 {
7632 bfd *add_bfd = add->the_bfd;
7633 lang_input_statement_type *f;
7634 lang_input_statement_type *last_loaded = NULL;
7635 lang_input_statement_type *before = NULL;
7636 lang_input_statement_type **iter = NULL;
7637
7638 if (add_bfd->my_archive != NULL)
7639 add_bfd = add_bfd->my_archive;
7640
7641 /* First look through the input file chain, to find an object file
7642 before the one we've rescanned. Normal object files always
7643 appear on both the input file chain and the file chain, so this
7644 lets us get quickly to somewhere near the correct place on the
7645 file chain if it is full of archive elements. Archives don't
7646 appear on the file chain, but if an element has been extracted
7647 then their input_statement->next points at it. */
7648 for (f = (void *) input_file_chain.head;
7649 f != NULL;
7650 f = f->next_real_file)
7651 {
7652 if (f->the_bfd == add_bfd)
7653 {
7654 before = last_loaded;
7655 if (f->next != NULL)
7656 return &f->next->next;
7657 }
7658 if (f->the_bfd != NULL && f->next != NULL)
7659 last_loaded = f;
7660 }
7661
7662 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7663 *iter != NULL;
7664 iter = &(*iter)->next)
7665 if (!(*iter)->flags.claim_archive
7666 && (*iter)->the_bfd->my_archive == NULL)
7667 break;
7668
7669 return iter;
7670 }
7671
7672 /* Insert SRCLIST into DESTLIST after given element by chaining
7673 on FIELD as the next-pointer. (Counterintuitively does not need
7674 a pointer to the actual after-node itself, just its chain field.) */
7675
7676 static void
7677 lang_list_insert_after (lang_statement_list_type *destlist,
7678 lang_statement_list_type *srclist,
7679 lang_statement_union_type **field)
7680 {
7681 *(srclist->tail) = *field;
7682 *field = srclist->head;
7683 if (destlist->tail == field)
7684 destlist->tail = srclist->tail;
7685 }
7686
7687 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7688 was taken as a copy of it and leave them in ORIGLIST. */
7689
7690 static void
7691 lang_list_remove_tail (lang_statement_list_type *destlist,
7692 lang_statement_list_type *origlist)
7693 {
7694 union lang_statement_union **savetail;
7695 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7696 ASSERT (origlist->head == destlist->head);
7697 savetail = origlist->tail;
7698 origlist->head = *(savetail);
7699 origlist->tail = destlist->tail;
7700 destlist->tail = savetail;
7701 *savetail = NULL;
7702 }
7703
7704 static lang_statement_union_type **
7705 find_next_input_statement (lang_statement_union_type **s)
7706 {
7707 for ( ; *s; s = &(*s)->header.next)
7708 {
7709 lang_statement_union_type **t;
7710 switch ((*s)->header.type)
7711 {
7712 case lang_input_statement_enum:
7713 return s;
7714 case lang_wild_statement_enum:
7715 t = &(*s)->wild_statement.children.head;
7716 break;
7717 case lang_group_statement_enum:
7718 t = &(*s)->group_statement.children.head;
7719 break;
7720 case lang_output_section_statement_enum:
7721 t = &(*s)->output_section_statement.children.head;
7722 break;
7723 default:
7724 continue;
7725 }
7726 t = find_next_input_statement (t);
7727 if (*t)
7728 return t;
7729 }
7730 return s;
7731 }
7732 #endif /* ENABLE_PLUGINS */
7733
7734 /* Add NAME to the list of garbage collection entry points. */
7735
7736 void
7737 lang_add_gc_name (const char *name)
7738 {
7739 struct bfd_sym_chain *sym;
7740
7741 if (name == NULL)
7742 return;
7743
7744 sym = stat_alloc (sizeof (*sym));
7745
7746 sym->next = link_info.gc_sym_list;
7747 sym->name = name;
7748 link_info.gc_sym_list = sym;
7749 }
7750
7751 /* Check relocations. */
7752
7753 static void
7754 lang_check_relocs (void)
7755 {
7756 if (link_info.check_relocs_after_open_input)
7757 {
7758 bfd *abfd;
7759
7760 for (abfd = link_info.input_bfds;
7761 abfd != (bfd *) NULL; abfd = abfd->link.next)
7762 if (!bfd_link_check_relocs (abfd, &link_info))
7763 {
7764 /* No object output, fail return. */
7765 config.make_executable = FALSE;
7766 /* Note: we do not abort the loop, but rather
7767 continue the scan in case there are other
7768 bad relocations to report. */
7769 }
7770 }
7771 }
7772
7773 /* Look through all output sections looking for places where we can
7774 propagate forward the lma region. */
7775
7776 static void
7777 lang_propagate_lma_regions (void)
7778 {
7779 lang_output_section_statement_type *os;
7780
7781 for (os = (void *) lang_os_list.head;
7782 os != NULL;
7783 os = os->next)
7784 {
7785 if (os->prev != NULL
7786 && os->lma_region == NULL
7787 && os->load_base == NULL
7788 && os->addr_tree == NULL
7789 && os->region == os->prev->region)
7790 os->lma_region = os->prev->lma_region;
7791 }
7792 }
7793
7794 void
7795 lang_process (void)
7796 {
7797 /* Finalize dynamic list. */
7798 if (link_info.dynamic_list)
7799 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7800
7801 current_target = default_target;
7802
7803 /* Open the output file. */
7804 lang_for_each_statement (ldlang_open_output);
7805 init_opb (NULL);
7806
7807 ldemul_create_output_section_statements ();
7808
7809 /* Add to the hash table all undefineds on the command line. */
7810 lang_place_undefineds ();
7811
7812 if (!bfd_section_already_linked_table_init ())
7813 einfo (_("%F%P: can not create hash table: %E\n"));
7814
7815 /* Create a bfd for each input file. */
7816 current_target = default_target;
7817 lang_statement_iteration++;
7818 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7819 /* open_input_bfds also handles assignments, so we can give values
7820 to symbolic origin/length now. */
7821 lang_do_memory_regions ();
7822
7823 #ifdef ENABLE_PLUGINS
7824 if (link_info.lto_plugin_active)
7825 {
7826 lang_statement_list_type added;
7827 lang_statement_list_type files, inputfiles;
7828
7829 /* Now all files are read, let the plugin(s) decide if there
7830 are any more to be added to the link before we call the
7831 emulation's after_open hook. We create a private list of
7832 input statements for this purpose, which we will eventually
7833 insert into the global statement list after the first claimed
7834 file. */
7835 added = *stat_ptr;
7836 /* We need to manipulate all three chains in synchrony. */
7837 files = file_chain;
7838 inputfiles = input_file_chain;
7839 if (plugin_call_all_symbols_read ())
7840 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7841 plugin_error_plugin ());
7842 /* Open any newly added files, updating the file chains. */
7843 plugin_undefs = link_info.hash->undefs_tail;
7844 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7845 if (plugin_undefs == link_info.hash->undefs_tail)
7846 plugin_undefs = NULL;
7847 /* Restore the global list pointer now they have all been added. */
7848 lang_list_remove_tail (stat_ptr, &added);
7849 /* And detach the fresh ends of the file lists. */
7850 lang_list_remove_tail (&file_chain, &files);
7851 lang_list_remove_tail (&input_file_chain, &inputfiles);
7852 /* Were any new files added? */
7853 if (added.head != NULL)
7854 {
7855 /* If so, we will insert them into the statement list immediately
7856 after the first input file that was claimed by the plugin,
7857 unless that file was an archive in which case it is inserted
7858 immediately before. */
7859 bfd_boolean before;
7860 lang_statement_union_type **prev;
7861 plugin_insert = find_replacements_insert_point (&before);
7862 /* If a plugin adds input files without having claimed any, we
7863 don't really have a good idea where to place them. Just putting
7864 them at the start or end of the list is liable to leave them
7865 outside the crtbegin...crtend range. */
7866 ASSERT (plugin_insert != NULL);
7867 /* Splice the new statement list into the old one. */
7868 prev = &plugin_insert->header.next;
7869 if (before)
7870 {
7871 prev = find_next_input_statement (prev);
7872 if (*prev != (void *) plugin_insert->next_real_file)
7873 {
7874 /* We didn't find the expected input statement.
7875 Fall back to adding after plugin_insert. */
7876 prev = &plugin_insert->header.next;
7877 }
7878 }
7879 lang_list_insert_after (stat_ptr, &added, prev);
7880 /* Likewise for the file chains. */
7881 lang_list_insert_after (&input_file_chain, &inputfiles,
7882 (void *) &plugin_insert->next_real_file);
7883 /* We must be careful when relinking file_chain; we may need to
7884 insert the new files at the head of the list if the insert
7885 point chosen is the dummy first input file. */
7886 if (plugin_insert->filename)
7887 lang_list_insert_after (&file_chain, &files,
7888 (void *) &plugin_insert->next);
7889 else
7890 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7891
7892 /* Rescan archives in case new undefined symbols have appeared. */
7893 files = file_chain;
7894 lang_statement_iteration++;
7895 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7896 lang_list_remove_tail (&file_chain, &files);
7897 while (files.head != NULL)
7898 {
7899 lang_input_statement_type **insert;
7900 lang_input_statement_type **iter, *temp;
7901 bfd *my_arch;
7902
7903 insert = find_rescan_insertion (&files.head->input_statement);
7904 /* All elements from an archive can be added at once. */
7905 iter = &files.head->input_statement.next;
7906 my_arch = files.head->input_statement.the_bfd->my_archive;
7907 if (my_arch != NULL)
7908 for (; *iter != NULL; iter = &(*iter)->next)
7909 if ((*iter)->the_bfd->my_archive != my_arch)
7910 break;
7911 temp = *insert;
7912 *insert = &files.head->input_statement;
7913 files.head = (lang_statement_union_type *) *iter;
7914 *iter = temp;
7915 if (my_arch != NULL)
7916 {
7917 lang_input_statement_type *parent = bfd_usrdata (my_arch);
7918 if (parent != NULL)
7919 parent->next = (lang_input_statement_type *)
7920 ((char *) iter
7921 - offsetof (lang_input_statement_type, next));
7922 }
7923 }
7924 }
7925 }
7926 #endif /* ENABLE_PLUGINS */
7927
7928 /* Make sure that nobody has tried to add a symbol to this list
7929 before now. */
7930 ASSERT (link_info.gc_sym_list == NULL);
7931
7932 link_info.gc_sym_list = &entry_symbol;
7933
7934 if (entry_symbol.name == NULL)
7935 {
7936 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7937
7938 /* entry_symbol is normally initialied by a ENTRY definition in the
7939 linker script or the -e command line option. But if neither of
7940 these have been used, the target specific backend may still have
7941 provided an entry symbol via a call to lang_default_entry().
7942 Unfortunately this value will not be processed until lang_end()
7943 is called, long after this function has finished. So detect this
7944 case here and add the target's entry symbol to the list of starting
7945 points for garbage collection resolution. */
7946 lang_add_gc_name (entry_symbol_default);
7947 }
7948
7949 lang_add_gc_name (link_info.init_function);
7950 lang_add_gc_name (link_info.fini_function);
7951
7952 ldemul_after_open ();
7953 if (config.map_file != NULL)
7954 lang_print_asneeded ();
7955
7956 ldlang_open_ctf ();
7957
7958 bfd_section_already_linked_table_free ();
7959
7960 /* Make sure that we're not mixing architectures. We call this
7961 after all the input files have been opened, but before we do any
7962 other processing, so that any operations merge_private_bfd_data
7963 does on the output file will be known during the rest of the
7964 link. */
7965 lang_check ();
7966
7967 /* Handle .exports instead of a version script if we're told to do so. */
7968 if (command_line.version_exports_section)
7969 lang_do_version_exports_section ();
7970
7971 /* Build all sets based on the information gathered from the input
7972 files. */
7973 ldctor_build_sets ();
7974
7975 /* Give initial values for __start and __stop symbols, so that ELF
7976 gc_sections will keep sections referenced by these symbols. Must
7977 be done before lang_do_assignments below. */
7978 if (config.build_constructors)
7979 lang_init_start_stop ();
7980
7981 /* PR 13683: We must rerun the assignments prior to running garbage
7982 collection in order to make sure that all symbol aliases are resolved. */
7983 lang_do_assignments (lang_mark_phase_enum);
7984 expld.phase = lang_first_phase_enum;
7985
7986 /* Size up the common data. */
7987 lang_common ();
7988
7989 /* Remove unreferenced sections if asked to. */
7990 lang_gc_sections ();
7991
7992 /* Check relocations. */
7993 lang_check_relocs ();
7994
7995 ldemul_after_check_relocs ();
7996
7997 /* Update wild statements. */
7998 update_wild_statements (statement_list.head);
7999
8000 /* Run through the contours of the script and attach input sections
8001 to the correct output sections. */
8002 lang_statement_iteration++;
8003 map_input_to_output_sections (statement_list.head, NULL, NULL);
8004
8005 /* Start at the statement immediately after the special abs_section
8006 output statement, so that it isn't reordered. */
8007 process_insert_statements (&lang_os_list.head->header.next);
8008
8009 ldemul_before_place_orphans ();
8010
8011 /* Find any sections not attached explicitly and handle them. */
8012 lang_place_orphans ();
8013
8014 if (!bfd_link_relocatable (&link_info))
8015 {
8016 asection *found;
8017
8018 /* Merge SEC_MERGE sections. This has to be done after GC of
8019 sections, so that GCed sections are not merged, but before
8020 assigning dynamic symbols, since removing whole input sections
8021 is hard then. */
8022 bfd_merge_sections (link_info.output_bfd, &link_info);
8023
8024 /* Look for a text section and set the readonly attribute in it. */
8025 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8026
8027 if (found != NULL)
8028 {
8029 if (config.text_read_only)
8030 found->flags |= SEC_READONLY;
8031 else
8032 found->flags &= ~SEC_READONLY;
8033 }
8034 }
8035
8036 /* Merge together CTF sections. After this, only the symtab-dependent
8037 function and data object sections need adjustment. */
8038 lang_merge_ctf ();
8039
8040 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8041 examining things laid out late, like the strtab. */
8042 lang_write_ctf (0);
8043
8044 /* Copy forward lma regions for output sections in same lma region. */
8045 lang_propagate_lma_regions ();
8046
8047 /* Defining __start/__stop symbols early for --gc-sections to work
8048 around a glibc build problem can result in these symbols being
8049 defined when they should not be. Fix them now. */
8050 if (config.build_constructors)
8051 lang_undef_start_stop ();
8052
8053 /* Define .startof./.sizeof. symbols with preliminary values before
8054 dynamic symbols are created. */
8055 if (!bfd_link_relocatable (&link_info))
8056 lang_init_startof_sizeof ();
8057
8058 /* Do anything special before sizing sections. This is where ELF
8059 and other back-ends size dynamic sections. */
8060 ldemul_before_allocation ();
8061
8062 /* We must record the program headers before we try to fix the
8063 section positions, since they will affect SIZEOF_HEADERS. */
8064 lang_record_phdrs ();
8065
8066 /* Check relro sections. */
8067 if (link_info.relro && !bfd_link_relocatable (&link_info))
8068 lang_find_relro_sections ();
8069
8070 /* Size up the sections. */
8071 lang_size_sections (NULL, !RELAXATION_ENABLED);
8072
8073 /* See if anything special should be done now we know how big
8074 everything is. This is where relaxation is done. */
8075 ldemul_after_allocation ();
8076
8077 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8078 lang_finalize_start_stop ();
8079
8080 /* Do all the assignments again, to report errors. Assignment
8081 statements are processed multiple times, updating symbols; In
8082 open_input_bfds, lang_do_assignments, and lang_size_sections.
8083 Since lang_relax_sections calls lang_do_assignments, symbols are
8084 also updated in ldemul_after_allocation. */
8085 lang_do_assignments (lang_final_phase_enum);
8086
8087 ldemul_finish ();
8088
8089 /* Convert absolute symbols to section relative. */
8090 ldexp_finalize_syms ();
8091
8092 /* Make sure that the section addresses make sense. */
8093 if (command_line.check_section_addresses)
8094 lang_check_section_addresses ();
8095
8096 /* Check any required symbols are known. */
8097 ldlang_check_require_defined_symbols ();
8098
8099 lang_end ();
8100 }
8101
8102 /* EXPORTED TO YACC */
8103
8104 void
8105 lang_add_wild (struct wildcard_spec *filespec,
8106 struct wildcard_list *section_list,
8107 bfd_boolean keep_sections)
8108 {
8109 struct wildcard_list *curr, *next;
8110 lang_wild_statement_type *new_stmt;
8111
8112 /* Reverse the list as the parser puts it back to front. */
8113 for (curr = section_list, section_list = NULL;
8114 curr != NULL;
8115 section_list = curr, curr = next)
8116 {
8117 next = curr->next;
8118 curr->next = section_list;
8119 }
8120
8121 if (filespec != NULL && filespec->name != NULL)
8122 {
8123 if (strcmp (filespec->name, "*") == 0)
8124 filespec->name = NULL;
8125 else if (!wildcardp (filespec->name))
8126 lang_has_input_file = TRUE;
8127 }
8128
8129 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8130 new_stmt->filename = NULL;
8131 new_stmt->filenames_sorted = FALSE;
8132 new_stmt->section_flag_list = NULL;
8133 new_stmt->exclude_name_list = NULL;
8134 if (filespec != NULL)
8135 {
8136 new_stmt->filename = filespec->name;
8137 new_stmt->filenames_sorted = filespec->sorted == by_name;
8138 new_stmt->section_flag_list = filespec->section_flag_list;
8139 new_stmt->exclude_name_list = filespec->exclude_name_list;
8140 }
8141 new_stmt->section_list = section_list;
8142 new_stmt->keep_sections = keep_sections;
8143 lang_list_init (&new_stmt->children);
8144 analyze_walk_wild_section_handler (new_stmt);
8145 }
8146
8147 void
8148 lang_section_start (const char *name, etree_type *address,
8149 const segment_type *segment)
8150 {
8151 lang_address_statement_type *ad;
8152
8153 ad = new_stat (lang_address_statement, stat_ptr);
8154 ad->section_name = name;
8155 ad->address = address;
8156 ad->segment = segment;
8157 }
8158
8159 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8160 because of a -e argument on the command line, or zero if this is
8161 called by ENTRY in a linker script. Command line arguments take
8162 precedence. */
8163
8164 void
8165 lang_add_entry (const char *name, bfd_boolean cmdline)
8166 {
8167 if (entry_symbol.name == NULL
8168 || cmdline
8169 || !entry_from_cmdline)
8170 {
8171 entry_symbol.name = name;
8172 entry_from_cmdline = cmdline;
8173 }
8174 }
8175
8176 /* Set the default start symbol to NAME. .em files should use this,
8177 not lang_add_entry, to override the use of "start" if neither the
8178 linker script nor the command line specifies an entry point. NAME
8179 must be permanently allocated. */
8180 void
8181 lang_default_entry (const char *name)
8182 {
8183 entry_symbol_default = name;
8184 }
8185
8186 void
8187 lang_add_target (const char *name)
8188 {
8189 lang_target_statement_type *new_stmt;
8190
8191 new_stmt = new_stat (lang_target_statement, stat_ptr);
8192 new_stmt->target = name;
8193 }
8194
8195 void
8196 lang_add_map (const char *name)
8197 {
8198 while (*name)
8199 {
8200 switch (*name)
8201 {
8202 case 'F':
8203 map_option_f = TRUE;
8204 break;
8205 }
8206 name++;
8207 }
8208 }
8209
8210 void
8211 lang_add_fill (fill_type *fill)
8212 {
8213 lang_fill_statement_type *new_stmt;
8214
8215 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8216 new_stmt->fill = fill;
8217 }
8218
8219 void
8220 lang_add_data (int type, union etree_union *exp)
8221 {
8222 lang_data_statement_type *new_stmt;
8223
8224 new_stmt = new_stat (lang_data_statement, stat_ptr);
8225 new_stmt->exp = exp;
8226 new_stmt->type = type;
8227 }
8228
8229 /* Create a new reloc statement. RELOC is the BFD relocation type to
8230 generate. HOWTO is the corresponding howto structure (we could
8231 look this up, but the caller has already done so). SECTION is the
8232 section to generate a reloc against, or NAME is the name of the
8233 symbol to generate a reloc against. Exactly one of SECTION and
8234 NAME must be NULL. ADDEND is an expression for the addend. */
8235
8236 void
8237 lang_add_reloc (bfd_reloc_code_real_type reloc,
8238 reloc_howto_type *howto,
8239 asection *section,
8240 const char *name,
8241 union etree_union *addend)
8242 {
8243 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8244
8245 p->reloc = reloc;
8246 p->howto = howto;
8247 p->section = section;
8248 p->name = name;
8249 p->addend_exp = addend;
8250
8251 p->addend_value = 0;
8252 p->output_section = NULL;
8253 p->output_offset = 0;
8254 }
8255
8256 lang_assignment_statement_type *
8257 lang_add_assignment (etree_type *exp)
8258 {
8259 lang_assignment_statement_type *new_stmt;
8260
8261 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8262 new_stmt->exp = exp;
8263 return new_stmt;
8264 }
8265
8266 void
8267 lang_add_attribute (enum statement_enum attribute)
8268 {
8269 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8270 }
8271
8272 void
8273 lang_startup (const char *name)
8274 {
8275 if (first_file->filename != NULL)
8276 {
8277 einfo (_("%F%P: multiple STARTUP files\n"));
8278 }
8279 first_file->filename = name;
8280 first_file->local_sym_name = name;
8281 first_file->flags.real = TRUE;
8282 }
8283
8284 void
8285 lang_float (bfd_boolean maybe)
8286 {
8287 lang_float_flag = maybe;
8288 }
8289
8290
8291 /* Work out the load- and run-time regions from a script statement, and
8292 store them in *LMA_REGION and *REGION respectively.
8293
8294 MEMSPEC is the name of the run-time region, or the value of
8295 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8296 LMA_MEMSPEC is the name of the load-time region, or null if the
8297 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8298 had an explicit load address.
8299
8300 It is an error to specify both a load region and a load address. */
8301
8302 static void
8303 lang_get_regions (lang_memory_region_type **region,
8304 lang_memory_region_type **lma_region,
8305 const char *memspec,
8306 const char *lma_memspec,
8307 bfd_boolean have_lma,
8308 bfd_boolean have_vma)
8309 {
8310 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8311
8312 /* If no runtime region or VMA has been specified, but the load region
8313 has been specified, then use the load region for the runtime region
8314 as well. */
8315 if (lma_memspec != NULL
8316 && !have_vma
8317 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8318 *region = *lma_region;
8319 else
8320 *region = lang_memory_region_lookup (memspec, FALSE);
8321
8322 if (have_lma && lma_memspec != 0)
8323 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8324 NULL);
8325 }
8326
8327 void
8328 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8329 lang_output_section_phdr_list *phdrs,
8330 const char *lma_memspec)
8331 {
8332 lang_get_regions (&current_section->region,
8333 &current_section->lma_region,
8334 memspec, lma_memspec,
8335 current_section->load_base != NULL,
8336 current_section->addr_tree != NULL);
8337
8338 current_section->fill = fill;
8339 current_section->phdrs = phdrs;
8340 pop_stat_ptr ();
8341 }
8342
8343 /* Set the output format type. -oformat overrides scripts. */
8344
8345 void
8346 lang_add_output_format (const char *format,
8347 const char *big,
8348 const char *little,
8349 int from_script)
8350 {
8351 if (output_target == NULL || !from_script)
8352 {
8353 if (command_line.endian == ENDIAN_BIG
8354 && big != NULL)
8355 format = big;
8356 else if (command_line.endian == ENDIAN_LITTLE
8357 && little != NULL)
8358 format = little;
8359
8360 output_target = format;
8361 }
8362 }
8363
8364 void
8365 lang_add_insert (const char *where, int is_before)
8366 {
8367 lang_insert_statement_type *new_stmt;
8368
8369 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8370 new_stmt->where = where;
8371 new_stmt->is_before = is_before;
8372 saved_script_handle = previous_script_handle;
8373 }
8374
8375 /* Enter a group. This creates a new lang_group_statement, and sets
8376 stat_ptr to build new statements within the group. */
8377
8378 void
8379 lang_enter_group (void)
8380 {
8381 lang_group_statement_type *g;
8382
8383 g = new_stat (lang_group_statement, stat_ptr);
8384 lang_list_init (&g->children);
8385 push_stat_ptr (&g->children);
8386 }
8387
8388 /* Leave a group. This just resets stat_ptr to start writing to the
8389 regular list of statements again. Note that this will not work if
8390 groups can occur inside anything else which can adjust stat_ptr,
8391 but currently they can't. */
8392
8393 void
8394 lang_leave_group (void)
8395 {
8396 pop_stat_ptr ();
8397 }
8398
8399 /* Add a new program header. This is called for each entry in a PHDRS
8400 command in a linker script. */
8401
8402 void
8403 lang_new_phdr (const char *name,
8404 etree_type *type,
8405 bfd_boolean filehdr,
8406 bfd_boolean phdrs,
8407 etree_type *at,
8408 etree_type *flags)
8409 {
8410 struct lang_phdr *n, **pp;
8411 bfd_boolean hdrs;
8412
8413 n = stat_alloc (sizeof (struct lang_phdr));
8414 n->next = NULL;
8415 n->name = name;
8416 n->type = exp_get_vma (type, 0, "program header type");
8417 n->filehdr = filehdr;
8418 n->phdrs = phdrs;
8419 n->at = at;
8420 n->flags = flags;
8421
8422 hdrs = n->type == 1 && (phdrs || filehdr);
8423
8424 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8425 if (hdrs
8426 && (*pp)->type == 1
8427 && !((*pp)->filehdr || (*pp)->phdrs))
8428 {
8429 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8430 " when prior PT_LOAD headers lack them\n"), NULL);
8431 hdrs = FALSE;
8432 }
8433
8434 *pp = n;
8435 }
8436
8437 /* Record the program header information in the output BFD. FIXME: We
8438 should not be calling an ELF specific function here. */
8439
8440 static void
8441 lang_record_phdrs (void)
8442 {
8443 unsigned int alc;
8444 asection **secs;
8445 lang_output_section_phdr_list *last;
8446 struct lang_phdr *l;
8447 lang_output_section_statement_type *os;
8448
8449 alc = 10;
8450 secs = (asection **) xmalloc (alc * sizeof (asection *));
8451 last = NULL;
8452
8453 for (l = lang_phdr_list; l != NULL; l = l->next)
8454 {
8455 unsigned int c;
8456 flagword flags;
8457 bfd_vma at;
8458
8459 c = 0;
8460 for (os = (void *) lang_os_list.head;
8461 os != NULL;
8462 os = os->next)
8463 {
8464 lang_output_section_phdr_list *pl;
8465
8466 if (os->constraint < 0)
8467 continue;
8468
8469 pl = os->phdrs;
8470 if (pl != NULL)
8471 last = pl;
8472 else
8473 {
8474 if (os->sectype == noload_section
8475 || os->bfd_section == NULL
8476 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8477 continue;
8478
8479 /* Don't add orphans to PT_INTERP header. */
8480 if (l->type == 3)
8481 continue;
8482
8483 if (last == NULL)
8484 {
8485 lang_output_section_statement_type *tmp_os;
8486
8487 /* If we have not run across a section with a program
8488 header assigned to it yet, then scan forwards to find
8489 one. This prevents inconsistencies in the linker's
8490 behaviour when a script has specified just a single
8491 header and there are sections in that script which are
8492 not assigned to it, and which occur before the first
8493 use of that header. See here for more details:
8494 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8495 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8496 if (tmp_os->phdrs)
8497 {
8498 last = tmp_os->phdrs;
8499 break;
8500 }
8501 if (last == NULL)
8502 einfo (_("%F%P: no sections assigned to phdrs\n"));
8503 }
8504 pl = last;
8505 }
8506
8507 if (os->bfd_section == NULL)
8508 continue;
8509
8510 for (; pl != NULL; pl = pl->next)
8511 {
8512 if (strcmp (pl->name, l->name) == 0)
8513 {
8514 if (c >= alc)
8515 {
8516 alc *= 2;
8517 secs = (asection **) xrealloc (secs,
8518 alc * sizeof (asection *));
8519 }
8520 secs[c] = os->bfd_section;
8521 ++c;
8522 pl->used = TRUE;
8523 }
8524 }
8525 }
8526
8527 if (l->flags == NULL)
8528 flags = 0;
8529 else
8530 flags = exp_get_vma (l->flags, 0, "phdr flags");
8531
8532 if (l->at == NULL)
8533 at = 0;
8534 else
8535 at = exp_get_vma (l->at, 0, "phdr load address");
8536
8537 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8538 l->flags != NULL, flags, l->at != NULL,
8539 at, l->filehdr, l->phdrs, c, secs))
8540 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8541 }
8542
8543 free (secs);
8544
8545 /* Make sure all the phdr assignments succeeded. */
8546 for (os = (void *) lang_os_list.head;
8547 os != NULL;
8548 os = os->next)
8549 {
8550 lang_output_section_phdr_list *pl;
8551
8552 if (os->constraint < 0
8553 || os->bfd_section == NULL)
8554 continue;
8555
8556 for (pl = os->phdrs;
8557 pl != NULL;
8558 pl = pl->next)
8559 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8560 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8561 os->name, pl->name);
8562 }
8563 }
8564
8565 /* Record a list of sections which may not be cross referenced. */
8566
8567 void
8568 lang_add_nocrossref (lang_nocrossref_type *l)
8569 {
8570 struct lang_nocrossrefs *n;
8571
8572 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8573 n->next = nocrossref_list;
8574 n->list = l;
8575 n->onlyfirst = FALSE;
8576 nocrossref_list = n;
8577
8578 /* Set notice_all so that we get informed about all symbols. */
8579 link_info.notice_all = TRUE;
8580 }
8581
8582 /* Record a section that cannot be referenced from a list of sections. */
8583
8584 void
8585 lang_add_nocrossref_to (lang_nocrossref_type *l)
8586 {
8587 lang_add_nocrossref (l);
8588 nocrossref_list->onlyfirst = TRUE;
8589 }
8590 \f
8591 /* Overlay handling. We handle overlays with some static variables. */
8592
8593 /* The overlay virtual address. */
8594 static etree_type *overlay_vma;
8595 /* And subsection alignment. */
8596 static etree_type *overlay_subalign;
8597
8598 /* An expression for the maximum section size seen so far. */
8599 static etree_type *overlay_max;
8600
8601 /* A list of all the sections in this overlay. */
8602
8603 struct overlay_list {
8604 struct overlay_list *next;
8605 lang_output_section_statement_type *os;
8606 };
8607
8608 static struct overlay_list *overlay_list;
8609
8610 /* Start handling an overlay. */
8611
8612 void
8613 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8614 {
8615 /* The grammar should prevent nested overlays from occurring. */
8616 ASSERT (overlay_vma == NULL
8617 && overlay_subalign == NULL
8618 && overlay_max == NULL);
8619
8620 overlay_vma = vma_expr;
8621 overlay_subalign = subalign;
8622 }
8623
8624 /* Start a section in an overlay. We handle this by calling
8625 lang_enter_output_section_statement with the correct VMA.
8626 lang_leave_overlay sets up the LMA and memory regions. */
8627
8628 void
8629 lang_enter_overlay_section (const char *name)
8630 {
8631 struct overlay_list *n;
8632 etree_type *size;
8633
8634 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8635 0, overlay_subalign, 0, 0, 0);
8636
8637 /* If this is the first section, then base the VMA of future
8638 sections on this one. This will work correctly even if `.' is
8639 used in the addresses. */
8640 if (overlay_list == NULL)
8641 overlay_vma = exp_nameop (ADDR, name);
8642
8643 /* Remember the section. */
8644 n = (struct overlay_list *) xmalloc (sizeof *n);
8645 n->os = current_section;
8646 n->next = overlay_list;
8647 overlay_list = n;
8648
8649 size = exp_nameop (SIZEOF, name);
8650
8651 /* Arrange to work out the maximum section end address. */
8652 if (overlay_max == NULL)
8653 overlay_max = size;
8654 else
8655 overlay_max = exp_binop (MAX_K, overlay_max, size);
8656 }
8657
8658 /* Finish a section in an overlay. There isn't any special to do
8659 here. */
8660
8661 void
8662 lang_leave_overlay_section (fill_type *fill,
8663 lang_output_section_phdr_list *phdrs)
8664 {
8665 const char *name;
8666 char *clean, *s2;
8667 const char *s1;
8668 char *buf;
8669
8670 name = current_section->name;
8671
8672 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8673 region and that no load-time region has been specified. It doesn't
8674 really matter what we say here, since lang_leave_overlay will
8675 override it. */
8676 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8677
8678 /* Define the magic symbols. */
8679
8680 clean = (char *) xmalloc (strlen (name) + 1);
8681 s2 = clean;
8682 for (s1 = name; *s1 != '\0'; s1++)
8683 if (ISALNUM (*s1) || *s1 == '_')
8684 *s2++ = *s1;
8685 *s2 = '\0';
8686
8687 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8688 sprintf (buf, "__load_start_%s", clean);
8689 lang_add_assignment (exp_provide (buf,
8690 exp_nameop (LOADADDR, name),
8691 FALSE));
8692
8693 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8694 sprintf (buf, "__load_stop_%s", clean);
8695 lang_add_assignment (exp_provide (buf,
8696 exp_binop ('+',
8697 exp_nameop (LOADADDR, name),
8698 exp_nameop (SIZEOF, name)),
8699 FALSE));
8700
8701 free (clean);
8702 }
8703
8704 /* Finish an overlay. If there are any overlay wide settings, this
8705 looks through all the sections in the overlay and sets them. */
8706
8707 void
8708 lang_leave_overlay (etree_type *lma_expr,
8709 int nocrossrefs,
8710 fill_type *fill,
8711 const char *memspec,
8712 lang_output_section_phdr_list *phdrs,
8713 const char *lma_memspec)
8714 {
8715 lang_memory_region_type *region;
8716 lang_memory_region_type *lma_region;
8717 struct overlay_list *l;
8718 lang_nocrossref_type *nocrossref;
8719
8720 lang_get_regions (&region, &lma_region,
8721 memspec, lma_memspec,
8722 lma_expr != NULL, FALSE);
8723
8724 nocrossref = NULL;
8725
8726 /* After setting the size of the last section, set '.' to end of the
8727 overlay region. */
8728 if (overlay_list != NULL)
8729 {
8730 overlay_list->os->update_dot = 1;
8731 overlay_list->os->update_dot_tree
8732 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8733 }
8734
8735 l = overlay_list;
8736 while (l != NULL)
8737 {
8738 struct overlay_list *next;
8739
8740 if (fill != NULL && l->os->fill == NULL)
8741 l->os->fill = fill;
8742
8743 l->os->region = region;
8744 l->os->lma_region = lma_region;
8745
8746 /* The first section has the load address specified in the
8747 OVERLAY statement. The rest are worked out from that.
8748 The base address is not needed (and should be null) if
8749 an LMA region was specified. */
8750 if (l->next == 0)
8751 {
8752 l->os->load_base = lma_expr;
8753 l->os->sectype = first_overlay_section;
8754 }
8755 if (phdrs != NULL && l->os->phdrs == NULL)
8756 l->os->phdrs = phdrs;
8757
8758 if (nocrossrefs)
8759 {
8760 lang_nocrossref_type *nc;
8761
8762 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8763 nc->name = l->os->name;
8764 nc->next = nocrossref;
8765 nocrossref = nc;
8766 }
8767
8768 next = l->next;
8769 free (l);
8770 l = next;
8771 }
8772
8773 if (nocrossref != NULL)
8774 lang_add_nocrossref (nocrossref);
8775
8776 overlay_vma = NULL;
8777 overlay_list = NULL;
8778 overlay_max = NULL;
8779 overlay_subalign = NULL;
8780 }
8781 \f
8782 /* Version handling. This is only useful for ELF. */
8783
8784 /* If PREV is NULL, return first version pattern matching particular symbol.
8785 If PREV is non-NULL, return first version pattern matching particular
8786 symbol after PREV (previously returned by lang_vers_match). */
8787
8788 static struct bfd_elf_version_expr *
8789 lang_vers_match (struct bfd_elf_version_expr_head *head,
8790 struct bfd_elf_version_expr *prev,
8791 const char *sym)
8792 {
8793 const char *c_sym;
8794 const char *cxx_sym = sym;
8795 const char *java_sym = sym;
8796 struct bfd_elf_version_expr *expr = NULL;
8797 enum demangling_styles curr_style;
8798
8799 curr_style = CURRENT_DEMANGLING_STYLE;
8800 cplus_demangle_set_style (no_demangling);
8801 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8802 if (!c_sym)
8803 c_sym = sym;
8804 cplus_demangle_set_style (curr_style);
8805
8806 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8807 {
8808 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8809 DMGL_PARAMS | DMGL_ANSI);
8810 if (!cxx_sym)
8811 cxx_sym = sym;
8812 }
8813 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8814 {
8815 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8816 if (!java_sym)
8817 java_sym = sym;
8818 }
8819
8820 if (head->htab && (prev == NULL || prev->literal))
8821 {
8822 struct bfd_elf_version_expr e;
8823
8824 switch (prev ? prev->mask : 0)
8825 {
8826 case 0:
8827 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8828 {
8829 e.pattern = c_sym;
8830 expr = (struct bfd_elf_version_expr *)
8831 htab_find ((htab_t) head->htab, &e);
8832 while (expr && strcmp (expr->pattern, c_sym) == 0)
8833 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8834 goto out_ret;
8835 else
8836 expr = expr->next;
8837 }
8838 /* Fallthrough */
8839 case BFD_ELF_VERSION_C_TYPE:
8840 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8841 {
8842 e.pattern = cxx_sym;
8843 expr = (struct bfd_elf_version_expr *)
8844 htab_find ((htab_t) head->htab, &e);
8845 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8846 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8847 goto out_ret;
8848 else
8849 expr = expr->next;
8850 }
8851 /* Fallthrough */
8852 case BFD_ELF_VERSION_CXX_TYPE:
8853 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8854 {
8855 e.pattern = java_sym;
8856 expr = (struct bfd_elf_version_expr *)
8857 htab_find ((htab_t) head->htab, &e);
8858 while (expr && strcmp (expr->pattern, java_sym) == 0)
8859 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8860 goto out_ret;
8861 else
8862 expr = expr->next;
8863 }
8864 /* Fallthrough */
8865 default:
8866 break;
8867 }
8868 }
8869
8870 /* Finally, try the wildcards. */
8871 if (prev == NULL || prev->literal)
8872 expr = head->remaining;
8873 else
8874 expr = prev->next;
8875 for (; expr; expr = expr->next)
8876 {
8877 const char *s;
8878
8879 if (!expr->pattern)
8880 continue;
8881
8882 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8883 break;
8884
8885 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8886 s = java_sym;
8887 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8888 s = cxx_sym;
8889 else
8890 s = c_sym;
8891 if (fnmatch (expr->pattern, s, 0) == 0)
8892 break;
8893 }
8894
8895 out_ret:
8896 if (c_sym != sym)
8897 free ((char *) c_sym);
8898 if (cxx_sym != sym)
8899 free ((char *) cxx_sym);
8900 if (java_sym != sym)
8901 free ((char *) java_sym);
8902 return expr;
8903 }
8904
8905 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8906 return a pointer to the symbol name with any backslash quotes removed. */
8907
8908 static const char *
8909 realsymbol (const char *pattern)
8910 {
8911 const char *p;
8912 bfd_boolean changed = FALSE, backslash = FALSE;
8913 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8914
8915 for (p = pattern, s = symbol; *p != '\0'; ++p)
8916 {
8917 /* It is a glob pattern only if there is no preceding
8918 backslash. */
8919 if (backslash)
8920 {
8921 /* Remove the preceding backslash. */
8922 *(s - 1) = *p;
8923 backslash = FALSE;
8924 changed = TRUE;
8925 }
8926 else
8927 {
8928 if (*p == '?' || *p == '*' || *p == '[')
8929 {
8930 free (symbol);
8931 return NULL;
8932 }
8933
8934 *s++ = *p;
8935 backslash = *p == '\\';
8936 }
8937 }
8938
8939 if (changed)
8940 {
8941 *s = '\0';
8942 return symbol;
8943 }
8944 else
8945 {
8946 free (symbol);
8947 return pattern;
8948 }
8949 }
8950
8951 /* This is called for each variable name or match expression. NEW_NAME is
8952 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8953 pattern to be matched against symbol names. */
8954
8955 struct bfd_elf_version_expr *
8956 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8957 const char *new_name,
8958 const char *lang,
8959 bfd_boolean literal_p)
8960 {
8961 struct bfd_elf_version_expr *ret;
8962
8963 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8964 ret->next = orig;
8965 ret->symver = 0;
8966 ret->script = 0;
8967 ret->literal = TRUE;
8968 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8969 if (ret->pattern == NULL)
8970 {
8971 ret->pattern = new_name;
8972 ret->literal = FALSE;
8973 }
8974
8975 if (lang == NULL || strcasecmp (lang, "C") == 0)
8976 ret->mask = BFD_ELF_VERSION_C_TYPE;
8977 else if (strcasecmp (lang, "C++") == 0)
8978 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8979 else if (strcasecmp (lang, "Java") == 0)
8980 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8981 else
8982 {
8983 einfo (_("%X%P: unknown language `%s' in version information\n"),
8984 lang);
8985 ret->mask = BFD_ELF_VERSION_C_TYPE;
8986 }
8987
8988 return ldemul_new_vers_pattern (ret);
8989 }
8990
8991 /* This is called for each set of variable names and match
8992 expressions. */
8993
8994 struct bfd_elf_version_tree *
8995 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8996 struct bfd_elf_version_expr *locals)
8997 {
8998 struct bfd_elf_version_tree *ret;
8999
9000 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9001 ret->globals.list = globals;
9002 ret->locals.list = locals;
9003 ret->match = lang_vers_match;
9004 ret->name_indx = (unsigned int) -1;
9005 return ret;
9006 }
9007
9008 /* This static variable keeps track of version indices. */
9009
9010 static int version_index;
9011
9012 static hashval_t
9013 version_expr_head_hash (const void *p)
9014 {
9015 const struct bfd_elf_version_expr *e =
9016 (const struct bfd_elf_version_expr *) p;
9017
9018 return htab_hash_string (e->pattern);
9019 }
9020
9021 static int
9022 version_expr_head_eq (const void *p1, const void *p2)
9023 {
9024 const struct bfd_elf_version_expr *e1 =
9025 (const struct bfd_elf_version_expr *) p1;
9026 const struct bfd_elf_version_expr *e2 =
9027 (const struct bfd_elf_version_expr *) p2;
9028
9029 return strcmp (e1->pattern, e2->pattern) == 0;
9030 }
9031
9032 static void
9033 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9034 {
9035 size_t count = 0;
9036 struct bfd_elf_version_expr *e, *next;
9037 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9038
9039 for (e = head->list; e; e = e->next)
9040 {
9041 if (e->literal)
9042 count++;
9043 head->mask |= e->mask;
9044 }
9045
9046 if (count)
9047 {
9048 head->htab = htab_create (count * 2, version_expr_head_hash,
9049 version_expr_head_eq, NULL);
9050 list_loc = &head->list;
9051 remaining_loc = &head->remaining;
9052 for (e = head->list; e; e = next)
9053 {
9054 next = e->next;
9055 if (!e->literal)
9056 {
9057 *remaining_loc = e;
9058 remaining_loc = &e->next;
9059 }
9060 else
9061 {
9062 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9063
9064 if (*loc)
9065 {
9066 struct bfd_elf_version_expr *e1, *last;
9067
9068 e1 = (struct bfd_elf_version_expr *) *loc;
9069 last = NULL;
9070 do
9071 {
9072 if (e1->mask == e->mask)
9073 {
9074 last = NULL;
9075 break;
9076 }
9077 last = e1;
9078 e1 = e1->next;
9079 }
9080 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9081
9082 if (last == NULL)
9083 {
9084 /* This is a duplicate. */
9085 /* FIXME: Memory leak. Sometimes pattern is not
9086 xmalloced alone, but in larger chunk of memory. */
9087 /* free (e->pattern); */
9088 free (e);
9089 }
9090 else
9091 {
9092 e->next = last->next;
9093 last->next = e;
9094 }
9095 }
9096 else
9097 {
9098 *loc = e;
9099 *list_loc = e;
9100 list_loc = &e->next;
9101 }
9102 }
9103 }
9104 *remaining_loc = NULL;
9105 *list_loc = head->remaining;
9106 }
9107 else
9108 head->remaining = head->list;
9109 }
9110
9111 /* This is called when we know the name and dependencies of the
9112 version. */
9113
9114 void
9115 lang_register_vers_node (const char *name,
9116 struct bfd_elf_version_tree *version,
9117 struct bfd_elf_version_deps *deps)
9118 {
9119 struct bfd_elf_version_tree *t, **pp;
9120 struct bfd_elf_version_expr *e1;
9121
9122 if (name == NULL)
9123 name = "";
9124
9125 if (link_info.version_info != NULL
9126 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9127 {
9128 einfo (_("%X%P: anonymous version tag cannot be combined"
9129 " with other version tags\n"));
9130 free (version);
9131 return;
9132 }
9133
9134 /* Make sure this node has a unique name. */
9135 for (t = link_info.version_info; t != NULL; t = t->next)
9136 if (strcmp (t->name, name) == 0)
9137 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9138
9139 lang_finalize_version_expr_head (&version->globals);
9140 lang_finalize_version_expr_head (&version->locals);
9141
9142 /* Check the global and local match names, and make sure there
9143 aren't any duplicates. */
9144
9145 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9146 {
9147 for (t = link_info.version_info; t != NULL; t = t->next)
9148 {
9149 struct bfd_elf_version_expr *e2;
9150
9151 if (t->locals.htab && e1->literal)
9152 {
9153 e2 = (struct bfd_elf_version_expr *)
9154 htab_find ((htab_t) t->locals.htab, e1);
9155 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9156 {
9157 if (e1->mask == e2->mask)
9158 einfo (_("%X%P: duplicate expression `%s'"
9159 " in version information\n"), e1->pattern);
9160 e2 = e2->next;
9161 }
9162 }
9163 else if (!e1->literal)
9164 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9165 if (strcmp (e1->pattern, e2->pattern) == 0
9166 && e1->mask == e2->mask)
9167 einfo (_("%X%P: duplicate expression `%s'"
9168 " in version information\n"), e1->pattern);
9169 }
9170 }
9171
9172 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9173 {
9174 for (t = link_info.version_info; t != NULL; t = t->next)
9175 {
9176 struct bfd_elf_version_expr *e2;
9177
9178 if (t->globals.htab && e1->literal)
9179 {
9180 e2 = (struct bfd_elf_version_expr *)
9181 htab_find ((htab_t) t->globals.htab, e1);
9182 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9183 {
9184 if (e1->mask == e2->mask)
9185 einfo (_("%X%P: duplicate expression `%s'"
9186 " in version information\n"),
9187 e1->pattern);
9188 e2 = e2->next;
9189 }
9190 }
9191 else if (!e1->literal)
9192 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9193 if (strcmp (e1->pattern, e2->pattern) == 0
9194 && e1->mask == e2->mask)
9195 einfo (_("%X%P: duplicate expression `%s'"
9196 " in version information\n"), e1->pattern);
9197 }
9198 }
9199
9200 version->deps = deps;
9201 version->name = name;
9202 if (name[0] != '\0')
9203 {
9204 ++version_index;
9205 version->vernum = version_index;
9206 }
9207 else
9208 version->vernum = 0;
9209
9210 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9211 ;
9212 *pp = version;
9213 }
9214
9215 /* This is called when we see a version dependency. */
9216
9217 struct bfd_elf_version_deps *
9218 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9219 {
9220 struct bfd_elf_version_deps *ret;
9221 struct bfd_elf_version_tree *t;
9222
9223 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9224 ret->next = list;
9225
9226 for (t = link_info.version_info; t != NULL; t = t->next)
9227 {
9228 if (strcmp (t->name, name) == 0)
9229 {
9230 ret->version_needed = t;
9231 return ret;
9232 }
9233 }
9234
9235 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9236
9237 ret->version_needed = NULL;
9238 return ret;
9239 }
9240
9241 static void
9242 lang_do_version_exports_section (void)
9243 {
9244 struct bfd_elf_version_expr *greg = NULL, *lreg;
9245
9246 LANG_FOR_EACH_INPUT_STATEMENT (is)
9247 {
9248 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9249 char *contents, *p;
9250 bfd_size_type len;
9251
9252 if (sec == NULL)
9253 continue;
9254
9255 len = sec->size;
9256 contents = (char *) xmalloc (len);
9257 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9258 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9259
9260 p = contents;
9261 while (p < contents + len)
9262 {
9263 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9264 p = strchr (p, '\0') + 1;
9265 }
9266
9267 /* Do not free the contents, as we used them creating the regex. */
9268
9269 /* Do not include this section in the link. */
9270 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9271 }
9272
9273 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9274 lang_register_vers_node (command_line.version_exports_section,
9275 lang_new_vers_node (greg, lreg), NULL);
9276 }
9277
9278 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
9279
9280 static void
9281 lang_do_memory_regions (void)
9282 {
9283 lang_memory_region_type *r = lang_memory_region_list;
9284
9285 for (; r != NULL; r = r->next)
9286 {
9287 if (r->origin_exp)
9288 {
9289 exp_fold_tree_no_dot (r->origin_exp);
9290 if (expld.result.valid_p)
9291 {
9292 r->origin = expld.result.value;
9293 r->current = r->origin;
9294 }
9295 else
9296 einfo (_("%F%P: invalid origin for memory region %s\n"),
9297 r->name_list.name);
9298 }
9299 if (r->length_exp)
9300 {
9301 exp_fold_tree_no_dot (r->length_exp);
9302 if (expld.result.valid_p)
9303 r->length = expld.result.value;
9304 else
9305 einfo (_("%F%P: invalid length for memory region %s\n"),
9306 r->name_list.name);
9307 }
9308 }
9309 }
9310
9311 void
9312 lang_add_unique (const char *name)
9313 {
9314 struct unique_sections *ent;
9315
9316 for (ent = unique_section_list; ent; ent = ent->next)
9317 if (strcmp (ent->name, name) == 0)
9318 return;
9319
9320 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9321 ent->name = xstrdup (name);
9322 ent->next = unique_section_list;
9323 unique_section_list = ent;
9324 }
9325
9326 /* Append the list of dynamic symbols to the existing one. */
9327
9328 void
9329 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
9330 {
9331 if (link_info.dynamic_list)
9332 {
9333 struct bfd_elf_version_expr *tail;
9334 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9335 ;
9336 tail->next = link_info.dynamic_list->head.list;
9337 link_info.dynamic_list->head.list = dynamic;
9338 }
9339 else
9340 {
9341 struct bfd_elf_dynamic_list *d;
9342
9343 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9344 d->head.list = dynamic;
9345 d->match = lang_vers_match;
9346 link_info.dynamic_list = d;
9347 }
9348 }
9349
9350 /* Append the list of C++ typeinfo dynamic symbols to the existing
9351 one. */
9352
9353 void
9354 lang_append_dynamic_list_cpp_typeinfo (void)
9355 {
9356 const char *symbols[] =
9357 {
9358 "typeinfo name for*",
9359 "typeinfo for*"
9360 };
9361 struct bfd_elf_version_expr *dynamic = NULL;
9362 unsigned int i;
9363
9364 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9365 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9366 FALSE);
9367
9368 lang_append_dynamic_list (dynamic);
9369 }
9370
9371 /* Append the list of C++ operator new and delete dynamic symbols to the
9372 existing one. */
9373
9374 void
9375 lang_append_dynamic_list_cpp_new (void)
9376 {
9377 const char *symbols[] =
9378 {
9379 "operator new*",
9380 "operator delete*"
9381 };
9382 struct bfd_elf_version_expr *dynamic = NULL;
9383 unsigned int i;
9384
9385 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9386 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9387 FALSE);
9388
9389 lang_append_dynamic_list (dynamic);
9390 }
9391
9392 /* Scan a space and/or comma separated string of features. */
9393
9394 void
9395 lang_ld_feature (char *str)
9396 {
9397 char *p, *q;
9398
9399 p = str;
9400 while (*p)
9401 {
9402 char sep;
9403 while (*p == ',' || ISSPACE (*p))
9404 ++p;
9405 if (!*p)
9406 break;
9407 q = p + 1;
9408 while (*q && *q != ',' && !ISSPACE (*q))
9409 ++q;
9410 sep = *q;
9411 *q = 0;
9412 if (strcasecmp (p, "SANE_EXPR") == 0)
9413 config.sane_expr = TRUE;
9414 else
9415 einfo (_("%X%P: unknown feature `%s'\n"), p);
9416 *q = sep;
9417 p = q;
9418 }
9419 }
9420
9421 /* Pretty print memory amount. */
9422
9423 static void
9424 lang_print_memory_size (bfd_vma sz)
9425 {
9426 if ((sz & 0x3fffffff) == 0)
9427 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9428 else if ((sz & 0xfffff) == 0)
9429 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9430 else if ((sz & 0x3ff) == 0)
9431 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9432 else
9433 printf (" %10" BFD_VMA_FMT "u B", sz);
9434 }
9435
9436 /* Implement --print-memory-usage: disply per region memory usage. */
9437
9438 void
9439 lang_print_memory_usage (void)
9440 {
9441 lang_memory_region_type *r;
9442
9443 printf ("Memory region Used Size Region Size %%age Used\n");
9444 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9445 {
9446 bfd_vma used_length = r->current - r->origin;
9447
9448 printf ("%16s: ",r->name_list.name);
9449 lang_print_memory_size (used_length);
9450 lang_print_memory_size ((bfd_vma) r->length);
9451
9452 if (r->length != 0)
9453 {
9454 double percent = used_length * 100.0 / r->length;
9455 printf (" %6.2f%%", percent);
9456 }
9457 printf ("\n");
9458 }
9459 }
This page took 0.229045 seconds and 4 git commands to generate.