sparc: Use GFP_ATOMIC in ldc_alloc_exp_dring() as it can be called in softirq context
[deliverable/linux.git] / lib / genalloc.c
1 /*
2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface. Uses for this includes on-device special
5 * memory, uncached memory etc.
6 *
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks. This
9 * is implemented by using atomic operations and retries on any
10 * conflicts. The disadvantage is that there may be livelocks in
11 * extreme cases. For better scalability, one allocator can be used
12 * for each CPU.
13 *
14 * The lockless operation only works if there is enough memory
15 * available. If new memory is added to the pool a lock has to be
16 * still taken. So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
18 *
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler. So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24 *
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26 *
27 * This source code is licensed under the GNU General Public License,
28 * Version 2. See the file COPYING for more details.
29 */
30
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38
39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
40 {
41 return chunk->end_addr - chunk->start_addr + 1;
42 }
43
44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
45 {
46 unsigned long val, nval;
47
48 nval = *addr;
49 do {
50 val = nval;
51 if (val & mask_to_set)
52 return -EBUSY;
53 cpu_relax();
54 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
55
56 return 0;
57 }
58
59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
60 {
61 unsigned long val, nval;
62
63 nval = *addr;
64 do {
65 val = nval;
66 if ((val & mask_to_clear) != mask_to_clear)
67 return -EBUSY;
68 cpu_relax();
69 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
70
71 return 0;
72 }
73
74 /*
75 * bitmap_set_ll - set the specified number of bits at the specified position
76 * @map: pointer to a bitmap
77 * @start: a bit position in @map
78 * @nr: number of bits to set
79 *
80 * Set @nr bits start from @start in @map lock-lessly. Several users
81 * can set/clear the same bitmap simultaneously without lock. If two
82 * users set the same bit, one user will return remain bits, otherwise
83 * return 0.
84 */
85 static int bitmap_set_ll(unsigned long *map, int start, int nr)
86 {
87 unsigned long *p = map + BIT_WORD(start);
88 const int size = start + nr;
89 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91
92 while (nr - bits_to_set >= 0) {
93 if (set_bits_ll(p, mask_to_set))
94 return nr;
95 nr -= bits_to_set;
96 bits_to_set = BITS_PER_LONG;
97 mask_to_set = ~0UL;
98 p++;
99 }
100 if (nr) {
101 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 if (set_bits_ll(p, mask_to_set))
103 return nr;
104 }
105
106 return 0;
107 }
108
109 /*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
120 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
121 {
122 unsigned long *p = map + BIT_WORD(start);
123 const int size = start + nr;
124 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126
127 while (nr - bits_to_clear >= 0) {
128 if (clear_bits_ll(p, mask_to_clear))
129 return nr;
130 nr -= bits_to_clear;
131 bits_to_clear = BITS_PER_LONG;
132 mask_to_clear = ~0UL;
133 p++;
134 }
135 if (nr) {
136 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137 if (clear_bits_ll(p, mask_to_clear))
138 return nr;
139 }
140
141 return 0;
142 }
143
144 /**
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
148 *
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
151 */
152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153 {
154 struct gen_pool *pool;
155
156 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157 if (pool != NULL) {
158 spin_lock_init(&pool->lock);
159 INIT_LIST_HEAD(&pool->chunks);
160 pool->min_alloc_order = min_alloc_order;
161 pool->algo = gen_pool_first_fit;
162 pool->data = NULL;
163 }
164 return pool;
165 }
166 EXPORT_SYMBOL(gen_pool_create);
167
168 /**
169 * gen_pool_add_virt - add a new chunk of special memory to the pool
170 * @pool: pool to add new memory chunk to
171 * @virt: virtual starting address of memory chunk to add to pool
172 * @phys: physical starting address of memory chunk to add to pool
173 * @size: size in bytes of the memory chunk to add to pool
174 * @nid: node id of the node the chunk structure and bitmap should be
175 * allocated on, or -1
176 *
177 * Add a new chunk of special memory to the specified pool.
178 *
179 * Returns 0 on success or a -ve errno on failure.
180 */
181 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
182 size_t size, int nid)
183 {
184 struct gen_pool_chunk *chunk;
185 int nbits = size >> pool->min_alloc_order;
186 int nbytes = sizeof(struct gen_pool_chunk) +
187 BITS_TO_LONGS(nbits) * sizeof(long);
188
189 chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
190 if (unlikely(chunk == NULL))
191 return -ENOMEM;
192
193 chunk->phys_addr = phys;
194 chunk->start_addr = virt;
195 chunk->end_addr = virt + size - 1;
196 atomic_set(&chunk->avail, size);
197
198 spin_lock(&pool->lock);
199 list_add_rcu(&chunk->next_chunk, &pool->chunks);
200 spin_unlock(&pool->lock);
201
202 return 0;
203 }
204 EXPORT_SYMBOL(gen_pool_add_virt);
205
206 /**
207 * gen_pool_virt_to_phys - return the physical address of memory
208 * @pool: pool to allocate from
209 * @addr: starting address of memory
210 *
211 * Returns the physical address on success, or -1 on error.
212 */
213 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
214 {
215 struct gen_pool_chunk *chunk;
216 phys_addr_t paddr = -1;
217
218 rcu_read_lock();
219 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
220 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
221 paddr = chunk->phys_addr + (addr - chunk->start_addr);
222 break;
223 }
224 }
225 rcu_read_unlock();
226
227 return paddr;
228 }
229 EXPORT_SYMBOL(gen_pool_virt_to_phys);
230
231 /**
232 * gen_pool_destroy - destroy a special memory pool
233 * @pool: pool to destroy
234 *
235 * Destroy the specified special memory pool. Verifies that there are no
236 * outstanding allocations.
237 */
238 void gen_pool_destroy(struct gen_pool *pool)
239 {
240 struct list_head *_chunk, *_next_chunk;
241 struct gen_pool_chunk *chunk;
242 int order = pool->min_alloc_order;
243 int bit, end_bit;
244
245 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
246 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
247 list_del(&chunk->next_chunk);
248
249 end_bit = chunk_size(chunk) >> order;
250 bit = find_next_bit(chunk->bits, end_bit, 0);
251 BUG_ON(bit < end_bit);
252
253 kfree(chunk);
254 }
255 kfree(pool);
256 return;
257 }
258 EXPORT_SYMBOL(gen_pool_destroy);
259
260 /**
261 * gen_pool_alloc - allocate special memory from the pool
262 * @pool: pool to allocate from
263 * @size: number of bytes to allocate from the pool
264 *
265 * Allocate the requested number of bytes from the specified pool.
266 * Uses the pool allocation function (with first-fit algorithm by default).
267 * Can not be used in NMI handler on architectures without
268 * NMI-safe cmpxchg implementation.
269 */
270 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
271 {
272 struct gen_pool_chunk *chunk;
273 unsigned long addr = 0;
274 int order = pool->min_alloc_order;
275 int nbits, start_bit = 0, end_bit, remain;
276
277 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
278 BUG_ON(in_nmi());
279 #endif
280
281 if (size == 0)
282 return 0;
283
284 nbits = (size + (1UL << order) - 1) >> order;
285 rcu_read_lock();
286 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
287 if (size > atomic_read(&chunk->avail))
288 continue;
289
290 end_bit = chunk_size(chunk) >> order;
291 retry:
292 start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
293 pool->data);
294 if (start_bit >= end_bit)
295 continue;
296 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
297 if (remain) {
298 remain = bitmap_clear_ll(chunk->bits, start_bit,
299 nbits - remain);
300 BUG_ON(remain);
301 goto retry;
302 }
303
304 addr = chunk->start_addr + ((unsigned long)start_bit << order);
305 size = nbits << order;
306 atomic_sub(size, &chunk->avail);
307 break;
308 }
309 rcu_read_unlock();
310 return addr;
311 }
312 EXPORT_SYMBOL(gen_pool_alloc);
313
314 /**
315 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
316 * @pool: pool to allocate from
317 * @size: number of bytes to allocate from the pool
318 * @dma: dma-view physical address return value. Use NULL if unneeded.
319 *
320 * Allocate the requested number of bytes from the specified pool.
321 * Uses the pool allocation function (with first-fit algorithm by default).
322 * Can not be used in NMI handler on architectures without
323 * NMI-safe cmpxchg implementation.
324 */
325 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
326 {
327 unsigned long vaddr;
328
329 if (!pool)
330 return NULL;
331
332 vaddr = gen_pool_alloc(pool, size);
333 if (!vaddr)
334 return NULL;
335
336 if (dma)
337 *dma = gen_pool_virt_to_phys(pool, vaddr);
338
339 return (void *)vaddr;
340 }
341 EXPORT_SYMBOL(gen_pool_dma_alloc);
342
343 /**
344 * gen_pool_free - free allocated special memory back to the pool
345 * @pool: pool to free to
346 * @addr: starting address of memory to free back to pool
347 * @size: size in bytes of memory to free
348 *
349 * Free previously allocated special memory back to the specified
350 * pool. Can not be used in NMI handler on architectures without
351 * NMI-safe cmpxchg implementation.
352 */
353 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
354 {
355 struct gen_pool_chunk *chunk;
356 int order = pool->min_alloc_order;
357 int start_bit, nbits, remain;
358
359 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
360 BUG_ON(in_nmi());
361 #endif
362
363 nbits = (size + (1UL << order) - 1) >> order;
364 rcu_read_lock();
365 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
366 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
367 BUG_ON(addr + size - 1 > chunk->end_addr);
368 start_bit = (addr - chunk->start_addr) >> order;
369 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
370 BUG_ON(remain);
371 size = nbits << order;
372 atomic_add(size, &chunk->avail);
373 rcu_read_unlock();
374 return;
375 }
376 }
377 rcu_read_unlock();
378 BUG();
379 }
380 EXPORT_SYMBOL(gen_pool_free);
381
382 /**
383 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
384 * @pool: the generic memory pool
385 * @func: func to call
386 * @data: additional data used by @func
387 *
388 * Call @func for every chunk of generic memory pool. The @func is
389 * called with rcu_read_lock held.
390 */
391 void gen_pool_for_each_chunk(struct gen_pool *pool,
392 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
393 void *data)
394 {
395 struct gen_pool_chunk *chunk;
396
397 rcu_read_lock();
398 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
399 func(pool, chunk, data);
400 rcu_read_unlock();
401 }
402 EXPORT_SYMBOL(gen_pool_for_each_chunk);
403
404 /**
405 * addr_in_gen_pool - checks if an address falls within the range of a pool
406 * @pool: the generic memory pool
407 * @start: start address
408 * @size: size of the region
409 *
410 * Check if the range of addresses falls within the specified pool. Returns
411 * true if the entire range is contained in the pool and false otherwise.
412 */
413 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
414 size_t size)
415 {
416 bool found = false;
417 unsigned long end = start + size - 1;
418 struct gen_pool_chunk *chunk;
419
420 rcu_read_lock();
421 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
422 if (start >= chunk->start_addr && start <= chunk->end_addr) {
423 if (end <= chunk->end_addr) {
424 found = true;
425 break;
426 }
427 }
428 }
429 rcu_read_unlock();
430 return found;
431 }
432
433 /**
434 * gen_pool_avail - get available free space of the pool
435 * @pool: pool to get available free space
436 *
437 * Return available free space of the specified pool.
438 */
439 size_t gen_pool_avail(struct gen_pool *pool)
440 {
441 struct gen_pool_chunk *chunk;
442 size_t avail = 0;
443
444 rcu_read_lock();
445 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
446 avail += atomic_read(&chunk->avail);
447 rcu_read_unlock();
448 return avail;
449 }
450 EXPORT_SYMBOL_GPL(gen_pool_avail);
451
452 /**
453 * gen_pool_size - get size in bytes of memory managed by the pool
454 * @pool: pool to get size
455 *
456 * Return size in bytes of memory managed by the pool.
457 */
458 size_t gen_pool_size(struct gen_pool *pool)
459 {
460 struct gen_pool_chunk *chunk;
461 size_t size = 0;
462
463 rcu_read_lock();
464 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
465 size += chunk_size(chunk);
466 rcu_read_unlock();
467 return size;
468 }
469 EXPORT_SYMBOL_GPL(gen_pool_size);
470
471 /**
472 * gen_pool_set_algo - set the allocation algorithm
473 * @pool: pool to change allocation algorithm
474 * @algo: custom algorithm function
475 * @data: additional data used by @algo
476 *
477 * Call @algo for each memory allocation in the pool.
478 * If @algo is NULL use gen_pool_first_fit as default
479 * memory allocation function.
480 */
481 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
482 {
483 rcu_read_lock();
484
485 pool->algo = algo;
486 if (!pool->algo)
487 pool->algo = gen_pool_first_fit;
488
489 pool->data = data;
490
491 rcu_read_unlock();
492 }
493 EXPORT_SYMBOL(gen_pool_set_algo);
494
495 /**
496 * gen_pool_first_fit - find the first available region
497 * of memory matching the size requirement (no alignment constraint)
498 * @map: The address to base the search on
499 * @size: The bitmap size in bits
500 * @start: The bitnumber to start searching at
501 * @nr: The number of zeroed bits we're looking for
502 * @data: additional data - unused
503 */
504 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
505 unsigned long start, unsigned int nr, void *data)
506 {
507 return bitmap_find_next_zero_area(map, size, start, nr, 0);
508 }
509 EXPORT_SYMBOL(gen_pool_first_fit);
510
511 /**
512 * gen_pool_first_fit_order_align - find the first available region
513 * of memory matching the size requirement. The region will be aligned
514 * to the order of the size specified.
515 * @map: The address to base the search on
516 * @size: The bitmap size in bits
517 * @start: The bitnumber to start searching at
518 * @nr: The number of zeroed bits we're looking for
519 * @data: additional data - unused
520 */
521 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
522 unsigned long size, unsigned long start,
523 unsigned int nr, void *data)
524 {
525 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
526
527 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
528 }
529 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
530
531 /**
532 * gen_pool_best_fit - find the best fitting region of memory
533 * macthing the size requirement (no alignment constraint)
534 * @map: The address to base the search on
535 * @size: The bitmap size in bits
536 * @start: The bitnumber to start searching at
537 * @nr: The number of zeroed bits we're looking for
538 * @data: additional data - unused
539 *
540 * Iterate over the bitmap to find the smallest free region
541 * which we can allocate the memory.
542 */
543 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
544 unsigned long start, unsigned int nr, void *data)
545 {
546 unsigned long start_bit = size;
547 unsigned long len = size + 1;
548 unsigned long index;
549
550 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
551
552 while (index < size) {
553 int next_bit = find_next_bit(map, size, index + nr);
554 if ((next_bit - index) < len) {
555 len = next_bit - index;
556 start_bit = index;
557 if (len == nr)
558 return start_bit;
559 }
560 index = bitmap_find_next_zero_area(map, size,
561 next_bit + 1, nr, 0);
562 }
563
564 return start_bit;
565 }
566 EXPORT_SYMBOL(gen_pool_best_fit);
567
568 static void devm_gen_pool_release(struct device *dev, void *res)
569 {
570 gen_pool_destroy(*(struct gen_pool **)res);
571 }
572
573 /**
574 * devm_gen_pool_create - managed gen_pool_create
575 * @dev: device that provides the gen_pool
576 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
577 * @nid: node id of the node the pool structure should be allocated on, or -1
578 *
579 * Create a new special memory pool that can be used to manage special purpose
580 * memory not managed by the regular kmalloc/kfree interface. The pool will be
581 * automatically destroyed by the device management code.
582 */
583 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
584 int nid)
585 {
586 struct gen_pool **ptr, *pool;
587
588 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
589 if (!ptr)
590 return NULL;
591
592 pool = gen_pool_create(min_alloc_order, nid);
593 if (pool) {
594 *ptr = pool;
595 devres_add(dev, ptr);
596 } else {
597 devres_free(ptr);
598 }
599
600 return pool;
601 }
602 EXPORT_SYMBOL(devm_gen_pool_create);
603
604 /**
605 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
606 * @dev: device to retrieve the gen_pool from
607 *
608 * Returns the gen_pool for the device if one is present, or NULL.
609 */
610 struct gen_pool *dev_get_gen_pool(struct device *dev)
611 {
612 struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
613 NULL);
614
615 if (!p)
616 return NULL;
617 return *p;
618 }
619 EXPORT_SYMBOL_GPL(dev_get_gen_pool);
620
621 #ifdef CONFIG_OF
622 /**
623 * of_get_named_gen_pool - find a pool by phandle property
624 * @np: device node
625 * @propname: property name containing phandle(s)
626 * @index: index into the phandle array
627 *
628 * Returns the pool that contains the chunk starting at the physical
629 * address of the device tree node pointed at by the phandle property,
630 * or NULL if not found.
631 */
632 struct gen_pool *of_get_named_gen_pool(struct device_node *np,
633 const char *propname, int index)
634 {
635 struct platform_device *pdev;
636 struct device_node *np_pool;
637
638 np_pool = of_parse_phandle(np, propname, index);
639 if (!np_pool)
640 return NULL;
641 pdev = of_find_device_by_node(np_pool);
642 of_node_put(np_pool);
643 if (!pdev)
644 return NULL;
645 return dev_get_gen_pool(&pdev->dev);
646 }
647 EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
648 #endif /* CONFIG_OF */
This page took 0.052481 seconds and 5 git commands to generate.