libctf, link: add CTF_LINK_OMIT_VARIABLES_SECTION
[deliverable/binutils-gdb.git] / libctf / ctf-hash.c
1 /* Interface to hashtable implementations.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include "libiberty.h"
23 #include "hashtab.h"
24
25 /* We have three hashtable implementations:
26
27 - ctf_hash_* is an interface to a fixed-size hash from const char * ->
28 ctf_id_t with number of elements specified at creation time, that should
29 support addition of items but need not support removal.
30
31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with
32 unknown size that should support addition of large numbers of items, and
33 removal as well, and is used only at type-insertion time and during
34 linking.
35
36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
37 only keys: no values.
38
39 These can be implemented by the same underlying hashmap if you wish. */
40
41 /* The helem is used for general key/value mappings in both the ctf_hash and
42 ctf_dynhash: the owner may not have space allocated for it, and will be
43 garbage (not NULL!) in that case. */
44
45 typedef struct ctf_helem
46 {
47 void *key; /* Either a pointer, or a coerced ctf_id_t. */
48 void *value; /* The value (possibly a coerced int). */
49 ctf_dynhash_t *owner; /* The hash that owns us. */
50 } ctf_helem_t;
51
52 /* Equally, the key_free and value_free may not exist. */
53
54 struct ctf_dynhash
55 {
56 struct htab *htab;
57 ctf_hash_free_fun key_free;
58 ctf_hash_free_fun value_free;
59 };
60
61 /* Hash and eq functions for the dynhash and hash. */
62
63 unsigned int
64 ctf_hash_integer (const void *ptr)
65 {
66 ctf_helem_t *hep = (ctf_helem_t *) ptr;
67
68 return htab_hash_pointer (hep->key);
69 }
70
71 int
72 ctf_hash_eq_integer (const void *a, const void *b)
73 {
74 ctf_helem_t *hep_a = (ctf_helem_t *) a;
75 ctf_helem_t *hep_b = (ctf_helem_t *) b;
76
77 return htab_eq_pointer (hep_a->key, hep_b->key);
78 }
79
80 unsigned int
81 ctf_hash_string (const void *ptr)
82 {
83 ctf_helem_t *hep = (ctf_helem_t *) ptr;
84
85 return htab_hash_string (hep->key);
86 }
87
88 int
89 ctf_hash_eq_string (const void *a, const void *b)
90 {
91 ctf_helem_t *hep_a = (ctf_helem_t *) a;
92 ctf_helem_t *hep_b = (ctf_helem_t *) b;
93
94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
95 }
96
97 /* Hash a type_key. */
98 unsigned int
99 ctf_hash_type_key (const void *ptr)
100 {
101 ctf_helem_t *hep = (ctf_helem_t *) ptr;
102 ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
103
104 return htab_hash_pointer (k->cltk_fp) + 59
105 * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
106 }
107
108 int
109 ctf_hash_eq_type_key (const void *a, const void *b)
110 {
111 ctf_helem_t *hep_a = (ctf_helem_t *) a;
112 ctf_helem_t *hep_b = (ctf_helem_t *) b;
113 ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
114 ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
115
116 return (key_a->cltk_fp == key_b->cltk_fp)
117 && (key_a->cltk_idx == key_b->cltk_idx);
118 }
119
120 /* Hash a type_id_key. */
121 unsigned int
122 ctf_hash_type_id_key (const void *ptr)
123 {
124 ctf_helem_t *hep = (ctf_helem_t *) ptr;
125 ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
126
127 return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
129 }
130
131 int
132 ctf_hash_eq_type_id_key (const void *a, const void *b)
133 {
134 ctf_helem_t *hep_a = (ctf_helem_t *) a;
135 ctf_helem_t *hep_b = (ctf_helem_t *) b;
136 ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
137 ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
138
139 return (key_a->ctii_input_num == key_b->ctii_input_num)
140 && (key_a->ctii_type == key_b->ctii_type);
141 }
142
143 /* Hash and eq functions for the dynset. Most of these can just use the
144 underlying hashtab functions directly. */
145
146 int
147 ctf_dynset_eq_string (const void *a, const void *b)
148 {
149 return !strcmp((const char *) a, (const char *) b);
150 }
151
152 /* The dynhash, used for hashes whose size is not known at creation time. */
153
154 /* Free a single ctf_helem with arbitrary key/value functions. */
155
156 static void
157 ctf_dynhash_item_free (void *item)
158 {
159 ctf_helem_t *helem = item;
160
161 if (helem->owner->key_free && helem->key)
162 helem->owner->key_free (helem->key);
163 if (helem->owner->value_free && helem->value)
164 helem->owner->value_free (helem->value);
165 free (helem);
166 }
167
168 ctf_dynhash_t *
169 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
170 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
171 {
172 ctf_dynhash_t *dynhash;
173 htab_del del = ctf_dynhash_item_free;
174
175 if (key_free || value_free)
176 dynhash = malloc (sizeof (ctf_dynhash_t));
177 else
178 dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
179 if (!dynhash)
180 return NULL;
181
182 if (key_free == NULL && value_free == NULL)
183 del = free;
184
185 /* 7 is arbitrary and untested for now. */
186 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
187 del, xcalloc, free)) == NULL)
188 {
189 free (dynhash);
190 return NULL;
191 }
192
193 if (key_free || value_free)
194 {
195 dynhash->key_free = key_free;
196 dynhash->value_free = value_free;
197 }
198
199 return dynhash;
200 }
201
202 static ctf_helem_t **
203 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
204 {
205 ctf_helem_t tmp = { .key = (void *) key };
206 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
207 }
208
209 static ctf_helem_t *
210 ctf_hashtab_insert (struct htab *htab, void *key, void *value,
211 ctf_hash_free_fun key_free,
212 ctf_hash_free_fun value_free)
213 {
214 ctf_helem_t **slot;
215
216 slot = ctf_hashtab_lookup (htab, key, INSERT);
217
218 if (!slot)
219 {
220 errno = ENOMEM;
221 return NULL;
222 }
223
224 if (!*slot)
225 {
226 /* Only spend space on the owner if we're going to use it: if there is a
227 key or value freeing function. */
228 if (key_free || value_free)
229 *slot = malloc (sizeof (ctf_helem_t));
230 else
231 *slot = malloc (offsetof (ctf_helem_t, owner));
232 if (!*slot)
233 return NULL;
234 (*slot)->key = key;
235 }
236 else
237 {
238 if (key_free)
239 key_free (key);
240 if (value_free)
241 value_free ((*slot)->value);
242 }
243 (*slot)->value = value;
244 return *slot;
245 }
246
247 int
248 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
249 {
250 ctf_helem_t *slot;
251 ctf_hash_free_fun key_free = NULL, value_free = NULL;
252
253 if (hp->htab->del_f == ctf_dynhash_item_free)
254 {
255 key_free = hp->key_free;
256 value_free = hp->value_free;
257 }
258 slot = ctf_hashtab_insert (hp->htab, key, value,
259 key_free, value_free);
260
261 if (!slot)
262 return errno;
263
264 /* Keep track of the owner, so that the del function can get at the key_free
265 and value_free functions. Only do this if one of those functions is set:
266 if not, the owner is not even present in the helem. */
267
268 if (key_free || value_free)
269 slot->owner = hp;
270
271 return 0;
272 }
273
274 void
275 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
276 {
277 ctf_helem_t hep = { (void *) key, NULL, NULL };
278 htab_remove_elt (hp->htab, &hep);
279 }
280
281 void
282 ctf_dynhash_empty (ctf_dynhash_t *hp)
283 {
284 htab_empty (hp->htab);
285 }
286
287 size_t
288 ctf_dynhash_elements (ctf_dynhash_t *hp)
289 {
290 return htab_elements (hp->htab);
291 }
292
293 void *
294 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
295 {
296 ctf_helem_t **slot;
297
298 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
299
300 if (slot)
301 return (*slot)->value;
302
303 return NULL;
304 }
305
306 /* TRUE/FALSE return. */
307 int
308 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
309 const void **orig_key, void **value)
310 {
311 ctf_helem_t **slot;
312
313 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
314
315 if (slot)
316 {
317 if (orig_key)
318 *orig_key = (*slot)->key;
319 if (value)
320 *value = (*slot)->value;
321 return 1;
322 }
323 return 0;
324 }
325
326 typedef struct ctf_traverse_cb_arg
327 {
328 ctf_hash_iter_f fun;
329 void *arg;
330 } ctf_traverse_cb_arg_t;
331
332 static int
333 ctf_hashtab_traverse (void **slot, void *arg_)
334 {
335 ctf_helem_t *helem = *((ctf_helem_t **) slot);
336 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
337
338 arg->fun (helem->key, helem->value, arg->arg);
339 return 1;
340 }
341
342 void
343 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
344 {
345 ctf_traverse_cb_arg_t arg = { fun, arg_ };
346 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
347 }
348
349 typedef struct ctf_traverse_find_cb_arg
350 {
351 ctf_hash_iter_find_f fun;
352 void *arg;
353 void *found_key;
354 } ctf_traverse_find_cb_arg_t;
355
356 static int
357 ctf_hashtab_traverse_find (void **slot, void *arg_)
358 {
359 ctf_helem_t *helem = *((ctf_helem_t **) slot);
360 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
361
362 if (arg->fun (helem->key, helem->value, arg->arg))
363 {
364 arg->found_key = helem->key;
365 return 0;
366 }
367 return 1;
368 }
369
370 void *
371 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
372 {
373 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
374 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
375 return arg.found_key;
376 }
377
378 typedef struct ctf_traverse_remove_cb_arg
379 {
380 struct htab *htab;
381 ctf_hash_iter_remove_f fun;
382 void *arg;
383 } ctf_traverse_remove_cb_arg_t;
384
385 static int
386 ctf_hashtab_traverse_remove (void **slot, void *arg_)
387 {
388 ctf_helem_t *helem = *((ctf_helem_t **) slot);
389 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
390
391 if (arg->fun (helem->key, helem->value, arg->arg))
392 htab_clear_slot (arg->htab, slot);
393 return 1;
394 }
395
396 void
397 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
398 void *arg_)
399 {
400 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
401 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
402 }
403
404 /* Traverse a dynhash in arbitrary order, in _next iterator form.
405
406 Mutating the dynhash while iterating is not supported (just as it isn't for
407 htab_traverse).
408
409 Note: unusually, this returns zero on success and a *positive* value on
410 error, because it does not take an fp, taking an error pointer would be
411 incredibly clunky, and nearly all error-handling ends up stuffing the result
412 of this into some sort of errno or ctf_errno, which is invariably
413 positive. So doing this simplifies essentially all callers. */
414 int
415 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
416 {
417 ctf_next_t *i = *it;
418 ctf_helem_t *slot;
419
420 if (!i)
421 {
422 size_t size = htab_size (h->htab);
423
424 /* If the table has too many entries to fit in an ssize_t, just give up.
425 This might be spurious, but if any type-related hashtable has ever been
426 nearly as large as that then something very odd is going on. */
427 if (((ssize_t) size) < 0)
428 return EDOM;
429
430 if ((i = ctf_next_create ()) == NULL)
431 return ENOMEM;
432
433 i->u.ctn_hash_slot = h->htab->entries;
434 i->cu.ctn_h = h;
435 i->ctn_n = 0;
436 i->ctn_size = (ssize_t) size;
437 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
438 *it = i;
439 }
440
441 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
442 return ECTF_NEXT_WRONGFUN;
443
444 if (h != i->cu.ctn_h)
445 return ECTF_NEXT_WRONGFP;
446
447 if ((ssize_t) i->ctn_n == i->ctn_size)
448 goto hash_end;
449
450 while ((ssize_t) i->ctn_n < i->ctn_size
451 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
452 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
453 {
454 i->u.ctn_hash_slot++;
455 i->ctn_n++;
456 }
457
458 if ((ssize_t) i->ctn_n == i->ctn_size)
459 goto hash_end;
460
461 slot = *i->u.ctn_hash_slot;
462
463 if (key)
464 *key = slot->key;
465 if (value)
466 *value = slot->value;
467
468 i->u.ctn_hash_slot++;
469 i->ctn_n++;
470
471 return 0;
472
473 hash_end:
474 ctf_next_destroy (i);
475 *it = NULL;
476 return ECTF_NEXT_END;
477 }
478
479 /* Traverse a sorted dynhash, in _next iterator form.
480
481 See ctf_dynhash_next for notes on error returns, etc.
482
483 Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
484
485 If SORT_FUN is null, thunks to ctf_dynhash_next. */
486 int
487 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
488 void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
489 {
490 ctf_next_t *i = *it;
491
492 if (sort_fun == NULL)
493 return ctf_dynhash_next (h, it, key, value);
494
495 if (!i)
496 {
497 size_t els = ctf_dynhash_elements (h);
498 ctf_next_t *accum_i = NULL;
499 void *key, *value;
500 int err;
501 ctf_next_hkv_t *walk;
502
503 if (((ssize_t) els) < 0)
504 return EDOM;
505
506 if ((i = ctf_next_create ()) == NULL)
507 return ENOMEM;
508
509 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
510 {
511 ctf_next_destroy (i);
512 return ENOMEM;
513 }
514 walk = i->u.ctn_sorted_hkv;
515
516 i->cu.ctn_h = h;
517
518 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
519 {
520 walk->hkv_key = key;
521 walk->hkv_value = value;
522 walk++;
523 }
524 if (err != ECTF_NEXT_END)
525 {
526 ctf_next_destroy (i);
527 return err;
528 }
529
530 if (sort_fun)
531 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
532 (int (*) (const void *, const void *, void *)) sort_fun,
533 sort_arg);
534 i->ctn_n = 0;
535 i->ctn_size = (ssize_t) els;
536 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
537 *it = i;
538 }
539
540 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
541 return ECTF_NEXT_WRONGFUN;
542
543 if (h != i->cu.ctn_h)
544 return ECTF_NEXT_WRONGFP;
545
546 if ((ssize_t) i->ctn_n == i->ctn_size)
547 {
548 ctf_next_destroy (i);
549 *it = NULL;
550 return ECTF_NEXT_END;
551 }
552
553 if (key)
554 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
555 if (value)
556 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
557 i->ctn_n++;
558 return 0;
559 }
560
561 void
562 ctf_dynhash_destroy (ctf_dynhash_t *hp)
563 {
564 if (hp != NULL)
565 htab_delete (hp->htab);
566 free (hp);
567 }
568
569 /* The dynset, used for sets of keys with no value. The implementation of this
570 can be much simpler, because without a value the slot can simply be the
571 stored key, which means we don't need to store the freeing functions and the
572 dynset itself is just a htab. */
573
574 ctf_dynset_t *
575 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
576 ctf_hash_free_fun key_free)
577 {
578 /* 7 is arbitrary and untested for now. */
579 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
580 key_free, xcalloc, free);
581 }
582
583 /* The dynset has one complexity: the underlying implementation reserves two
584 values for internal hash table implementation details (empty versus deleted
585 entries). These values are otherwise very useful for pointers cast to ints,
586 so transform the ctf_dynset_inserted value to allow for it. (This
587 introduces an ambiguity in that one can no longer store these two values in
588 the dynset, but if we pick high enough values this is very unlikely to be a
589 problem.)
590
591 We leak this implementation detail to the freeing functions on the grounds
592 that any use of these functions is overwhelmingly likely to be in sets using
593 real pointers, which will be unaffected. */
594
595 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
596 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
597
598 static void *
599 key_to_internal (const void *key)
600 {
601 if (key == HTAB_EMPTY_ENTRY)
602 return DYNSET_EMPTY_ENTRY_REPLACEMENT;
603 else if (key == HTAB_DELETED_ENTRY)
604 return DYNSET_DELETED_ENTRY_REPLACEMENT;
605
606 return (void *) key;
607 }
608
609 static void *
610 internal_to_key (const void *internal)
611 {
612 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
613 return HTAB_EMPTY_ENTRY;
614 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
615 return HTAB_DELETED_ENTRY;
616 return (void *) internal;
617 }
618
619 int
620 ctf_dynset_insert (ctf_dynset_t *hp, void *key)
621 {
622 struct htab *htab = (struct htab *) hp;
623 void **slot;
624
625 slot = htab_find_slot (htab, key, INSERT);
626
627 if (!slot)
628 {
629 errno = ENOMEM;
630 return -errno;
631 }
632
633 if (*slot)
634 {
635 if (htab->del_f)
636 (*htab->del_f) (*slot);
637 }
638
639 *slot = key_to_internal (key);
640
641 return 0;
642 }
643
644 void
645 ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
646 {
647 htab_remove_elt ((struct htab *) hp, key_to_internal (key));
648 }
649
650 void
651 ctf_dynset_destroy (ctf_dynset_t *hp)
652 {
653 if (hp != NULL)
654 htab_delete ((struct htab *) hp);
655 }
656
657 void *
658 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
659 {
660 void **slot = htab_find_slot ((struct htab *) hp,
661 key_to_internal (key), NO_INSERT);
662
663 if (slot)
664 return internal_to_key (*slot);
665 return NULL;
666 }
667
668 /* TRUE/FALSE return. */
669 int
670 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
671 {
672 void **slot = htab_find_slot ((struct htab *) hp,
673 key_to_internal (key), NO_INSERT);
674
675 if (orig_key && slot)
676 *orig_key = internal_to_key (*slot);
677 return (slot != NULL);
678 }
679
680 /* Look up a completely random value from the set, if any exist.
681 Keys with value zero cannot be distinguished from a nonexistent key. */
682 void *
683 ctf_dynset_lookup_any (ctf_dynset_t *hp)
684 {
685 struct htab *htab = (struct htab *) hp;
686 void **slot = htab->entries;
687 void **limit = slot + htab_size (htab);
688
689 while (slot < limit
690 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
691 slot++;
692
693 if (slot < limit)
694 return internal_to_key (*slot);
695 return NULL;
696 }
697
698 /* Traverse a dynset in arbitrary order, in _next iterator form.
699
700 Otherwise, just like ctf_dynhash_next. */
701 int
702 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
703 {
704 struct htab *htab = (struct htab *) hp;
705 ctf_next_t *i = *it;
706 void *slot;
707
708 if (!i)
709 {
710 size_t size = htab_size (htab);
711
712 /* If the table has too many entries to fit in an ssize_t, just give up.
713 This might be spurious, but if any type-related hashtable has ever been
714 nearly as large as that then somthing very odd is going on. */
715
716 if (((ssize_t) size) < 0)
717 return EDOM;
718
719 if ((i = ctf_next_create ()) == NULL)
720 return ENOMEM;
721
722 i->u.ctn_hash_slot = htab->entries;
723 i->cu.ctn_s = hp;
724 i->ctn_n = 0;
725 i->ctn_size = (ssize_t) size;
726 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
727 *it = i;
728 }
729
730 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
731 return ECTF_NEXT_WRONGFUN;
732
733 if (hp != i->cu.ctn_s)
734 return ECTF_NEXT_WRONGFP;
735
736 if ((ssize_t) i->ctn_n == i->ctn_size)
737 goto set_end;
738
739 while ((ssize_t) i->ctn_n < i->ctn_size
740 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
741 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
742 {
743 i->u.ctn_hash_slot++;
744 i->ctn_n++;
745 }
746
747 if ((ssize_t) i->ctn_n == i->ctn_size)
748 goto set_end;
749
750 slot = *i->u.ctn_hash_slot;
751
752 if (key)
753 *key = internal_to_key (slot);
754
755 i->u.ctn_hash_slot++;
756 i->ctn_n++;
757
758 return 0;
759
760 set_end:
761 ctf_next_destroy (i);
762 *it = NULL;
763 return ECTF_NEXT_END;
764 }
765
766 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
767 removal. This is a straight cast of a hashtab. */
768
769 ctf_hash_t *
770 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
771 ctf_hash_eq_fun eq_fun)
772 {
773 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
774 eq_fun, free, xcalloc, free);
775 }
776
777 uint32_t
778 ctf_hash_size (const ctf_hash_t *hp)
779 {
780 return htab_elements ((struct htab *) hp);
781 }
782
783 int
784 ctf_hash_insert_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
785 uint32_t name)
786 {
787 const char *str = ctf_strraw (fp, name);
788
789 if (type == 0)
790 return EINVAL;
791
792 if (str == NULL
793 && CTF_NAME_STID (name) == CTF_STRTAB_1
794 && fp->ctf_syn_ext_strtab == NULL
795 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
796 return ECTF_STRTAB;
797
798 if (str == NULL)
799 return ECTF_BADNAME;
800
801 if (str[0] == '\0')
802 return 0; /* Just ignore empty strings on behalf of caller. */
803
804 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
805 (void *) (ptrdiff_t) type, NULL, NULL) != NULL)
806 return 0;
807 return errno;
808 }
809
810 /* if the key is already in the hash, override the previous definition with
811 this new official definition. If the key is not present, then call
812 ctf_hash_insert_type and hash it in. */
813 int
814 ctf_hash_define_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
815 uint32_t name)
816 {
817 /* This matches the semantics of ctf_hash_insert_type in this
818 implementation anyway. */
819
820 return ctf_hash_insert_type (hp, fp, type, name);
821 }
822
823 ctf_id_t
824 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_file_t *fp __attribute__ ((__unused__)),
825 const char *key)
826 {
827 ctf_helem_t **slot;
828
829 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
830
831 if (slot)
832 return (ctf_id_t) ((*slot)->value);
833
834 return 0;
835 }
836
837 void
838 ctf_hash_destroy (ctf_hash_t *hp)
839 {
840 if (hp != NULL)
841 htab_delete ((struct htab *) hp);
842 }
This page took 0.047642 seconds and 4 git commands to generate.