Automatic date update in version.in
[deliverable/binutils-gdb.git] / libctf / ctf-lookup.c
1 /* Symbol, variable and name lookup.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <elf.h>
22 #include <string.h>
23 #include <assert.h>
24
25 /* Grow the pptrtab so that it is at least NEW_LEN long. */
26 static int
27 grow_pptrtab (ctf_dict_t *fp, size_t new_len)
28 {
29 uint32_t *new_pptrtab;
30
31 if ((new_pptrtab = realloc (fp->ctf_pptrtab, sizeof (uint32_t)
32 * new_len)) == NULL)
33 return (ctf_set_errno (fp, ENOMEM));
34
35 fp->ctf_pptrtab = new_pptrtab;
36
37 memset (fp->ctf_pptrtab + fp->ctf_pptrtab_len, 0,
38 sizeof (uint32_t) * (new_len - fp->ctf_pptrtab_len));
39
40 fp->ctf_pptrtab_len = new_len;
41 return 0;
42 }
43
44 /* Update entries in the pptrtab that relate to types newly added in the
45 child. */
46 static int
47 refresh_pptrtab (ctf_dict_t *fp, ctf_dict_t *pfp)
48 {
49 uint32_t i;
50 for (i = fp->ctf_pptrtab_typemax; i <= fp->ctf_typemax; i++)
51 {
52 ctf_id_t type = LCTF_INDEX_TO_TYPE (fp, i, 1);
53 ctf_id_t reffed_type;
54
55 if (ctf_type_kind (fp, type) != CTF_K_POINTER)
56 continue;
57
58 reffed_type = ctf_type_reference (fp, type);
59
60 if (LCTF_TYPE_ISPARENT (fp, reffed_type))
61 {
62 uint32_t idx = LCTF_TYPE_TO_INDEX (fp, reffed_type);
63
64 /* Guard against references to invalid types. No need to consider
65 the CTF dict corrupt in this case: this pointer just can't be a
66 pointer to any type we know about. */
67 if (idx <= pfp->ctf_typemax)
68 {
69 if (idx >= fp->ctf_pptrtab_len
70 && grow_pptrtab (fp, pfp->ctf_ptrtab_len) < 0)
71 return -1; /* errno is set for us. */
72
73 fp->ctf_pptrtab[idx] = i;
74 }
75 }
76 }
77
78 fp->ctf_pptrtab_typemax = fp->ctf_typemax;
79
80 return 0;
81 }
82
83 /* Compare the given input string and length against a table of known C storage
84 qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
85 do this quickly, we use a pre-computed Perfect Hash Function similar to the
86 technique originally described in the classic paper:
87
88 R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
89 Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
90
91 For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
92 for the current set of qualifiers yields a unique H in the range [0 .. 20].
93 The hash can be modified when the keyword set changes as necessary. We also
94 store the length of each keyword and check it prior to the final strcmp().
95
96 TODO: just use gperf. */
97
98 static int
99 isqualifier (const char *s, size_t len)
100 {
101 static const struct qual
102 {
103 const char *q_name;
104 size_t q_len;
105 } qhash[] = {
106 {"static", 6}, {"", 0}, {"", 0}, {"", 0},
107 {"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
108 {"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
109 {"", 0}, {"", 0}, {"const", 5}, {"register", 8},
110 {"", 0}, {"restrict", 8}, {"_Restrict", 9}
111 };
112
113 int h = s[len - 1] + (int) len - 105;
114 const struct qual *qp;
115
116 if (h < 0 || (size_t) h >= sizeof (qhash) / sizeof (qhash[0]))
117 return 0;
118
119 qp = &qhash[h];
120
121 return ((size_t) len == qp->q_len &&
122 strncmp (qp->q_name, s, qp->q_len) == 0);
123 }
124
125 /* Attempt to convert the given C type name into the corresponding CTF type ID.
126 It is not possible to do complete and proper conversion of type names
127 without implementing a more full-fledged parser, which is necessary to
128 handle things like types that are function pointers to functions that
129 have arguments that are function pointers, and fun stuff like that.
130 Instead, this function implements a very simple conversion algorithm that
131 finds the things that we actually care about: structs, unions, enums,
132 integers, floats, typedefs, and pointers to any of these named types. */
133
134 static ctf_id_t
135 ctf_lookup_by_name_internal (ctf_dict_t *fp, ctf_dict_t *child,
136 const char *name)
137 {
138 static const char delimiters[] = " \t\n\r\v\f*";
139
140 const ctf_lookup_t *lp;
141 const char *p, *q, *end;
142 ctf_id_t type = 0;
143 ctf_id_t ntype, ptype;
144
145 if (name == NULL)
146 return (ctf_set_errno (fp, EINVAL));
147
148 for (p = name, end = name + strlen (name); *p != '\0'; p = q)
149 {
150 while (isspace ((int) *p))
151 p++; /* Skip leading whitespace. */
152
153 if (p == end)
154 break;
155
156 if ((q = strpbrk (p + 1, delimiters)) == NULL)
157 q = end; /* Compare until end. */
158
159 if (*p == '*')
160 {
161 /* Find a pointer to type by looking in child->ctf_pptrtab (if child
162 is set) and fp->ctf_ptrtab. If we can't find a pointer to the
163 given type, see if we can compute a pointer to the type resulting
164 from resolving the type down to its base type and use that instead.
165 This helps with cases where the CTF data includes "struct foo *"
166 but not "foo_t *" and the user tries to access "foo_t *" in the
167 debugger.
168
169 There is extra complexity here because uninitialized elements in
170 the pptrtab and ptrtab are set to zero, but zero (as the type ID
171 meaning the unimplemented type) is a valid return type from
172 ctf_lookup_by_name. (Pointers to types are never of type 0, so
173 this is unambiguous, just fiddly to deal with.) */
174
175 uint32_t idx = LCTF_TYPE_TO_INDEX (fp, type);
176 int in_child = 0;
177
178 ntype = CTF_ERR;
179 if (child && idx <= child->ctf_pptrtab_len)
180 {
181 ntype = child->ctf_pptrtab[idx];
182 if (ntype)
183 in_child = 1;
184 else
185 ntype = CTF_ERR;
186 }
187
188 if (ntype == CTF_ERR)
189 {
190 ntype = fp->ctf_ptrtab[idx];
191 if (ntype == 0)
192 ntype = CTF_ERR;
193 }
194
195 /* Try resolving to its base type and check again. */
196 if (ntype == CTF_ERR)
197 {
198 if (child)
199 ntype = ctf_type_resolve_unsliced (child, type);
200 else
201 ntype = ctf_type_resolve_unsliced (fp, type);
202
203 if (ntype == CTF_ERR)
204 goto notype;
205
206 idx = LCTF_TYPE_TO_INDEX (fp, ntype);
207
208 ntype = CTF_ERR;
209 if (child && idx <= child->ctf_pptrtab_len)
210 {
211 ntype = child->ctf_pptrtab[idx];
212 if (ntype)
213 in_child = 1;
214 else
215 ntype = CTF_ERR;
216 }
217
218 if (ntype == CTF_ERR)
219 {
220 ntype = fp->ctf_ptrtab[idx];
221 if (ntype == 0)
222 ntype = CTF_ERR;
223 }
224 if (ntype == CTF_ERR)
225 goto notype;
226 }
227
228 type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)
229 || in_child);
230
231 /* We are looking up a type in the parent, but the pointed-to type is
232 in the child. Switch to looking in the child: if we need to go
233 back into the parent, we can recurse again. */
234 if (in_child)
235 {
236 fp = child;
237 child = NULL;
238 }
239
240 q = p + 1;
241 continue;
242 }
243
244 if (isqualifier (p, (size_t) (q - p)))
245 continue; /* Skip qualifier keyword. */
246
247 for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
248 {
249 /* TODO: This is not MT-safe. */
250 if ((lp->ctl_prefix[0] == '\0' ||
251 strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
252 (size_t) (q - p) >= lp->ctl_len)
253 {
254 for (p += lp->ctl_len; isspace ((int) *p); p++)
255 continue; /* Skip prefix and next whitespace. */
256
257 if ((q = strchr (p, '*')) == NULL)
258 q = end; /* Compare until end. */
259
260 while (isspace ((int) q[-1]))
261 q--; /* Exclude trailing whitespace. */
262
263 /* Expand and/or allocate storage for a slice of the name, then
264 copy it in. */
265
266 if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
267 {
268 memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
269 fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
270 }
271 else
272 {
273 free (fp->ctf_tmp_typeslice);
274 fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
275 if (fp->ctf_tmp_typeslice == NULL)
276 {
277 ctf_set_errno (fp, ENOMEM);
278 return CTF_ERR;
279 }
280 }
281
282 if ((type = ctf_lookup_by_rawhash (fp, lp->ctl_hash,
283 fp->ctf_tmp_typeslice)) == 0)
284 goto notype;
285
286 break;
287 }
288 }
289
290 if (lp->ctl_prefix == NULL)
291 goto notype;
292 }
293
294 if (*p != '\0' || type == 0)
295 return (ctf_set_errno (fp, ECTF_SYNTAX));
296
297 return type;
298
299 notype:
300 ctf_set_errno (fp, ECTF_NOTYPE);
301 if (fp->ctf_parent != NULL)
302 {
303 /* Need to look up in the parent, from the child's perspective.
304 Make sure the pptrtab is up to date. */
305
306 if (fp->ctf_pptrtab_typemax < fp->ctf_typemax)
307 {
308 if (refresh_pptrtab (fp, fp->ctf_parent) < 0)
309 return -1; /* errno is set for us. */
310 }
311
312 if ((ptype = ctf_lookup_by_name_internal (fp->ctf_parent, fp,
313 name)) != CTF_ERR)
314 return ptype;
315 return (ctf_set_errno (fp, ctf_errno (fp->ctf_parent)));
316 }
317
318 return CTF_ERR;
319 }
320
321 ctf_id_t
322 ctf_lookup_by_name (ctf_dict_t *fp, const char *name)
323 {
324 return ctf_lookup_by_name_internal (fp, NULL, name);
325 }
326
327 /* Return the pointer to the internal CTF type data corresponding to the
328 given type ID. If the ID is invalid, the function returns NULL.
329 This function is not exported outside of the library. */
330
331 const ctf_type_t *
332 ctf_lookup_by_id (ctf_dict_t **fpp, ctf_id_t type)
333 {
334 ctf_dict_t *fp = *fpp; /* Caller passes in starting CTF dict. */
335 ctf_id_t idx;
336
337 if ((fp = ctf_get_dict (fp, type)) == NULL)
338 {
339 (void) ctf_set_errno (*fpp, ECTF_NOPARENT);
340 return NULL;
341 }
342
343 /* If this dict is writable, check for a dynamic type. */
344
345 if (fp->ctf_flags & LCTF_RDWR)
346 {
347 ctf_dtdef_t *dtd;
348
349 if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
350 {
351 *fpp = fp;
352 return &dtd->dtd_data;
353 }
354 (void) ctf_set_errno (*fpp, ECTF_BADID);
355 return NULL;
356 }
357
358 /* Check for a type in the static portion. */
359
360 idx = LCTF_TYPE_TO_INDEX (fp, type);
361 if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
362 {
363 *fpp = fp; /* Function returns ending CTF dict. */
364 return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
365 }
366
367 (void) ctf_set_errno (*fpp, ECTF_BADID);
368 return NULL;
369 }
370
371 typedef struct ctf_lookup_idx_key
372 {
373 ctf_dict_t *clik_fp;
374 const char *clik_name;
375 uint32_t *clik_names;
376 } ctf_lookup_idx_key_t;
377
378 /* A bsearch function for variable names. */
379
380 static int
381 ctf_lookup_var (const void *key_, const void *lookup_)
382 {
383 const ctf_lookup_idx_key_t *key = key_;
384 const ctf_varent_t *lookup = lookup_;
385
386 return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, lookup->ctv_name)));
387 }
388
389 /* Given a variable name, return the type of the variable with that name. */
390
391 ctf_id_t
392 ctf_lookup_variable (ctf_dict_t *fp, const char *name)
393 {
394 ctf_varent_t *ent;
395 ctf_lookup_idx_key_t key = { fp, name, NULL };
396
397 /* This array is sorted, so we can bsearch for it. */
398
399 ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
400 ctf_lookup_var);
401
402 if (ent == NULL)
403 {
404 if (fp->ctf_parent != NULL)
405 return ctf_lookup_variable (fp->ctf_parent, name);
406
407 return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
408 }
409
410 return ent->ctv_type;
411 }
412
413 typedef struct ctf_symidx_sort_arg_cb
414 {
415 ctf_dict_t *fp;
416 uint32_t *names;
417 } ctf_symidx_sort_arg_cb_t;
418
419 static int
420 sort_symidx_by_name (const void *one_, const void *two_, void *arg_)
421 {
422 const uint32_t *one = one_;
423 const uint32_t *two = two_;
424 ctf_symidx_sort_arg_cb_t *arg = arg_;
425
426 return (strcmp (ctf_strptr (arg->fp, arg->names[*one]),
427 ctf_strptr (arg->fp, arg->names[*two])));
428 }
429
430 /* Sort a symbol index section by name. Takes a 1:1 mapping of names to the
431 corresponding symbol table. Returns a lexicographically sorted array of idx
432 indexes (and thus, of indexes into the corresponding func info / data object
433 section). */
434
435 static uint32_t *
436 ctf_symidx_sort (ctf_dict_t *fp, uint32_t *idx, size_t *nidx,
437 size_t len)
438 {
439 uint32_t *sorted;
440 size_t i;
441
442 if ((sorted = malloc (len)) == NULL)
443 {
444 ctf_set_errno (fp, ENOMEM);
445 return NULL;
446 }
447
448 *nidx = len / sizeof (uint32_t);
449 for (i = 0; i < *nidx; i++)
450 sorted[i] = i;
451
452 if (!(fp->ctf_header->cth_flags & CTF_F_IDXSORTED))
453 {
454 ctf_symidx_sort_arg_cb_t arg = { fp, idx };
455 ctf_dprintf ("Index section unsorted: sorting.");
456 ctf_qsort_r (sorted, *nidx, sizeof (uint32_t), sort_symidx_by_name, &arg);
457 fp->ctf_header->cth_flags |= CTF_F_IDXSORTED;
458 }
459
460 return sorted;
461 }
462
463 /* Given a symbol index, return the name of that symbol from the table provided
464 by ctf_link_shuffle_syms, or failing that from the secondary string table, or
465 the null string. */
466 static const char *
467 ctf_lookup_symbol_name (ctf_dict_t *fp, unsigned long symidx)
468 {
469 const ctf_sect_t *sp = &fp->ctf_symtab;
470 ctf_link_sym_t sym;
471 int err;
472
473 if (fp->ctf_dynsymidx)
474 {
475 err = EINVAL;
476 if (symidx > fp->ctf_dynsymmax)
477 goto try_parent;
478
479 ctf_link_sym_t *symp = fp->ctf_dynsymidx[symidx];
480
481 if (!symp)
482 goto try_parent;
483
484 return symp->st_name;
485 }
486
487 err = ECTF_NOSYMTAB;
488 if (sp->cts_data == NULL)
489 goto try_parent;
490
491 if (symidx >= fp->ctf_nsyms)
492 goto try_parent;
493
494 switch (sp->cts_entsize)
495 {
496 case sizeof (Elf64_Sym):
497 {
498 const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
499 ctf_elf64_to_link_sym (fp, &sym, symp, symidx);
500 }
501 break;
502 case sizeof (Elf32_Sym):
503 {
504 const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
505 ctf_elf32_to_link_sym (fp, &sym, symp, symidx);
506 }
507 break;
508 default:
509 ctf_set_errno (fp, ECTF_SYMTAB);
510 return _CTF_NULLSTR;
511 }
512
513 assert (!sym.st_nameidx_set);
514
515 return sym.st_name;
516
517 try_parent:
518 if (fp->ctf_parent)
519 {
520 const char *ret;
521 ret = ctf_lookup_symbol_name (fp->ctf_parent, symidx);
522 if (ret == NULL)
523 ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
524 return ret;
525 }
526 else
527 {
528 ctf_set_errno (fp, err);
529 return _CTF_NULLSTR;
530 }
531 }
532
533 /* Given a symbol name, return the index of that symbol, or -1 on error or if
534 not found. */
535 static unsigned long
536 ctf_lookup_symbol_idx (ctf_dict_t *fp, const char *symname)
537 {
538 const ctf_sect_t *sp = &fp->ctf_symtab;
539 ctf_link_sym_t sym;
540 void *known_idx;
541 int err;
542 ctf_dict_t *cache = fp;
543
544 if (fp->ctf_dynsyms)
545 {
546 err = EINVAL;
547
548 ctf_link_sym_t *symp;
549
550 if ((symp = ctf_dynhash_lookup (fp->ctf_dynsyms, symname)) == NULL)
551 goto try_parent;
552
553 return symp->st_symidx;
554 }
555
556 err = ECTF_NOSYMTAB;
557 if (sp->cts_data == NULL)
558 goto try_parent;
559
560 /* First, try a hash lookup to see if we have already spotted this symbol
561 during a past iteration: create the hash first if need be. The lifespan
562 of the strings is equal to the lifespan of the cts_data, so we don't
563 need to strdup them. If this dict was opened as part of an archive,
564 and this archive has designed a crossdict_cache to cache results that
565 are the same across all dicts in an archive, use it. */
566
567 if (fp->ctf_archive && fp->ctf_archive->ctfi_crossdict_cache)
568 cache = fp->ctf_archive->ctfi_crossdict_cache;
569
570 if (!cache->ctf_symhash)
571 if ((cache->ctf_symhash = ctf_dynhash_create (ctf_hash_string,
572 ctf_hash_eq_string,
573 NULL, NULL)) == NULL)
574 goto oom;
575
576 if (ctf_dynhash_lookup_kv (cache->ctf_symhash, symname, NULL, &known_idx))
577 return (unsigned long) (uintptr_t) known_idx;
578
579 /* Hash lookup unsuccessful: linear search, populating the hashtab for later
580 lookups as we go. */
581
582 for (; cache->ctf_symhash_latest < sp->cts_size / sp->cts_entsize;
583 cache->ctf_symhash_latest++)
584 {
585 switch (sp->cts_entsize)
586 {
587 case sizeof (Elf64_Sym):
588 {
589 Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data;
590 ctf_elf64_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
591 cache->ctf_symhash_latest);
592 if (!ctf_dynhash_lookup_kv (cache->ctf_symhash, sym.st_name,
593 NULL, NULL))
594 if (ctf_dynhash_cinsert (cache->ctf_symhash, sym.st_name,
595 (const void *) (uintptr_t)
596 cache->ctf_symhash_latest) < 0)
597 goto oom;
598 if (strcmp (sym.st_name, symname) == 0)
599 return cache->ctf_symhash_latest++;
600 }
601 break;
602 case sizeof (Elf32_Sym):
603 {
604 Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data;
605 ctf_elf32_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
606 cache->ctf_symhash_latest);
607 if (!ctf_dynhash_lookup_kv (cache->ctf_symhash, sym.st_name,
608 NULL, NULL))
609 if (ctf_dynhash_cinsert (cache->ctf_symhash, sym.st_name,
610 (const void *) (uintptr_t)
611 cache->ctf_symhash_latest) < 0)
612 goto oom;
613 if (strcmp (sym.st_name, symname) == 0)
614 return cache->ctf_symhash_latest++;
615 }
616 break;
617 default:
618 ctf_set_errno (fp, ECTF_SYMTAB);
619 return (unsigned long) -1;
620 }
621 }
622
623 /* Searched everything, still not found. */
624
625 return (unsigned long) -1;
626
627 try_parent:
628 if (fp->ctf_parent)
629 return ctf_lookup_symbol_idx (fp->ctf_parent, symname);
630 else
631 {
632 ctf_set_errno (fp, err);
633 return (unsigned long) -1;
634 }
635 oom:
636 ctf_set_errno (fp, ENOMEM);
637 ctf_err_warn (fp, 0, ENOMEM, _("cannot allocate memory for symbol "
638 "lookup hashtab"));
639 return (unsigned long) -1;
640
641 }
642
643 /* Iterate over all symbols with types: if FUNC, function symbols, otherwise,
644 data symbols. The name argument is not optional. The return order is
645 arbitrary, though is likely to be in symbol index or name order. You can
646 change the value of 'functions' in the middle of iteration over non-dynamic
647 dicts, but doing so on dynamic dicts will fail. (This is probably not very
648 useful, but there is no reason to prohibit it.) */
649
650 ctf_id_t
651 ctf_symbol_next (ctf_dict_t *fp, ctf_next_t **it, const char **name,
652 int functions)
653 {
654 ctf_id_t sym;
655 ctf_next_t *i = *it;
656 int err;
657
658 if (!i)
659 {
660 if ((i = ctf_next_create ()) == NULL)
661 return ctf_set_errno (fp, ENOMEM);
662
663 i->cu.ctn_fp = fp;
664 i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
665 i->ctn_n = 0;
666 *it = i;
667 }
668
669 if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
670 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
671
672 if (fp != i->cu.ctn_fp)
673 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
674
675 /* We intentionally use raw access, not ctf_lookup_by_symbol, to avoid
676 incurring additional sorting cost for unsorted symtypetabs coming from the
677 compiler, to allow ctf_symbol_next to work in the absence of a symtab, and
678 finally because it's easier to work out what the name of each symbol is if
679 we do that. */
680
681 if (fp->ctf_flags & LCTF_RDWR)
682 {
683 ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
684 void *dyn_name = NULL, *dyn_value = NULL;
685
686 if (!dynh)
687 {
688 ctf_next_destroy (i);
689 return (ctf_set_errno (fp, ECTF_NEXT_END));
690 }
691
692 err = ctf_dynhash_next (dynh, &i->ctn_next, &dyn_name, &dyn_value);
693 /* This covers errors and also end-of-iteration. */
694 if (err != 0)
695 {
696 ctf_next_destroy (i);
697 *it = NULL;
698 return ctf_set_errno (fp, err);
699 }
700
701 *name = dyn_name;
702 sym = (ctf_id_t) (uintptr_t) dyn_value;
703 }
704 else if ((!functions && fp->ctf_objtidx_names) ||
705 (functions && fp->ctf_funcidx_names))
706 {
707 ctf_header_t *hp = fp->ctf_header;
708 uint32_t *idx = functions ? fp->ctf_funcidx_names : fp->ctf_objtidx_names;
709 uint32_t *tab;
710 size_t len;
711
712 if (functions)
713 {
714 len = (hp->cth_varoff - hp->cth_funcidxoff) / sizeof (uint32_t);
715 tab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
716 }
717 else
718 {
719 len = (hp->cth_funcidxoff - hp->cth_objtidxoff) / sizeof (uint32_t);
720 tab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
721 }
722
723 do
724 {
725 if (i->ctn_n >= len)
726 goto end;
727
728 *name = ctf_strptr (fp, idx[i->ctn_n]);
729 sym = tab[i->ctn_n++];
730 }
731 while (sym == -1u || sym == 0);
732 }
733 else
734 {
735 /* Skip over pads in ctf_xslate, padding for typeless symbols in the
736 symtypetab itself, and symbols in the wrong table. */
737 for (; i->ctn_n < fp->ctf_nsyms; i->ctn_n++)
738 {
739 ctf_header_t *hp = fp->ctf_header;
740
741 if (fp->ctf_sxlate[i->ctn_n] == -1u)
742 continue;
743
744 sym = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[i->ctn_n]);
745
746 if (sym == 0)
747 continue;
748
749 if (functions)
750 {
751 if (fp->ctf_sxlate[i->ctn_n] >= hp->cth_funcoff
752 && fp->ctf_sxlate[i->ctn_n] < hp->cth_objtidxoff)
753 break;
754 }
755 else
756 {
757 if (fp->ctf_sxlate[i->ctn_n] >= hp->cth_objtoff
758 && fp->ctf_sxlate[i->ctn_n] < hp->cth_funcoff)
759 break;
760 }
761 }
762
763 if (i->ctn_n >= fp->ctf_nsyms)
764 goto end;
765
766 *name = ctf_lookup_symbol_name (fp, i->ctn_n++);
767 }
768
769 return sym;
770
771 end:
772 ctf_next_destroy (i);
773 *it = NULL;
774 return (ctf_set_errno (fp, ECTF_NEXT_END));
775 }
776
777 /* A bsearch function for function and object index names. */
778
779 static int
780 ctf_lookup_idx_name (const void *key_, const void *idx_)
781 {
782 const ctf_lookup_idx_key_t *key = key_;
783 const uint32_t *idx = idx_;
784
785 return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, key->clik_names[*idx])));
786 }
787
788 /* Given a symbol name or (failing that) number, look up that symbol in the
789 function or object index table (which must exist). Return 0 if not found
790 there (or pad). */
791
792 static ctf_id_t
793 ctf_try_lookup_indexed (ctf_dict_t *fp, unsigned long symidx,
794 const char *symname, int is_function)
795 {
796 struct ctf_header *hp = fp->ctf_header;
797 uint32_t *symtypetab;
798 uint32_t *names;
799 uint32_t *sxlate;
800 size_t nidx;
801
802 if (symname == NULL)
803 symname = ctf_lookup_symbol_name (fp, symidx);
804
805 ctf_dprintf ("Looking up type of object with symtab idx %lx or name %s in "
806 "indexed symtypetab\n", symidx, symname);
807
808 if (symname[0] == '\0')
809 return -1; /* errno is set for us. */
810
811 if (is_function)
812 {
813 if (!fp->ctf_funcidx_sxlate)
814 {
815 if ((fp->ctf_funcidx_sxlate
816 = ctf_symidx_sort (fp, (uint32_t *)
817 (fp->ctf_buf + hp->cth_funcidxoff),
818 &fp->ctf_nfuncidx,
819 hp->cth_varoff - hp->cth_funcidxoff))
820 == NULL)
821 {
822 ctf_err_warn (fp, 0, 0, _("cannot sort function symidx"));
823 return -1; /* errno is set for us. */
824 }
825 }
826 symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
827 sxlate = fp->ctf_funcidx_sxlate;
828 names = fp->ctf_funcidx_names;
829 nidx = fp->ctf_nfuncidx;
830 }
831 else
832 {
833 if (!fp->ctf_objtidx_sxlate)
834 {
835 if ((fp->ctf_objtidx_sxlate
836 = ctf_symidx_sort (fp, (uint32_t *)
837 (fp->ctf_buf + hp->cth_objtidxoff),
838 &fp->ctf_nobjtidx,
839 hp->cth_funcidxoff - hp->cth_objtidxoff))
840 == NULL)
841 {
842 ctf_err_warn (fp, 0, 0, _("cannot sort object symidx"));
843 return -1; /* errno is set for us. */
844 }
845 }
846
847 symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
848 sxlate = fp->ctf_objtidx_sxlate;
849 names = fp->ctf_objtidx_names;
850 nidx = fp->ctf_nobjtidx;
851 }
852
853 ctf_lookup_idx_key_t key = { fp, symname, names };
854 uint32_t *idx;
855
856 idx = bsearch (&key, sxlate, nidx, sizeof (uint32_t), ctf_lookup_idx_name);
857
858 if (!idx)
859 {
860 ctf_dprintf ("%s not found in idx\n", symname);
861 return 0;
862 }
863
864 /* Should be impossible, but be paranoid. */
865 if ((idx - sxlate) > (ptrdiff_t) nidx)
866 return (ctf_set_errno (fp, ECTF_CORRUPT));
867
868 ctf_dprintf ("Symbol %lx (%s) is of type %x\n", symidx, symname,
869 symtypetab[*idx]);
870 return symtypetab[*idx];
871 }
872
873 /* Given a symbol name or (if NULL) symbol index, return the type of the
874 function or data object described by the corresponding entry in the symbol
875 table. We can only return symbols in read-only dicts and in dicts for which
876 ctf_link_shuffle_syms has been called to assign symbol indexes to symbol
877 names. */
878
879 static ctf_id_t
880 ctf_lookup_by_sym_or_name (ctf_dict_t *fp, unsigned long symidx,
881 const char *symname)
882 {
883 const ctf_sect_t *sp = &fp->ctf_symtab;
884 ctf_id_t type = 0;
885 int err = 0;
886
887 /* Shuffled dynsymidx present? Use that. */
888 if (fp->ctf_dynsymidx)
889 {
890 const ctf_link_sym_t *sym;
891
892 if (symname)
893 ctf_dprintf ("Looking up type of object with symname %s in "
894 "writable dict symtypetab\n", symname);
895 else
896 ctf_dprintf ("Looking up type of object with symtab idx %lx in "
897 "writable dict symtypetab\n", symidx);
898
899 /* The dict must be dynamic. */
900 if (!ctf_assert (fp, fp->ctf_flags & LCTF_RDWR))
901 return CTF_ERR;
902
903 /* No name? Need to look it up. */
904 if (!symname)
905 {
906 err = EINVAL;
907 if (symidx > fp->ctf_dynsymmax)
908 goto try_parent;
909
910 sym = fp->ctf_dynsymidx[symidx];
911 err = ECTF_NOTYPEDAT;
912 if (!sym || (sym->st_shndx != STT_OBJECT && sym->st_shndx != STT_FUNC))
913 goto try_parent;
914
915 if (!ctf_assert (fp, !sym->st_nameidx_set))
916 return CTF_ERR;
917 symname = sym->st_name;
918 }
919
920 if (fp->ctf_objthash == NULL
921 || ((type = (ctf_id_t) (uintptr_t)
922 ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0))
923 {
924 if (fp->ctf_funchash == NULL
925 || ((type = (ctf_id_t) (uintptr_t)
926 ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0))
927 goto try_parent;
928 }
929
930 return type;
931 }
932
933 /* Lookup by name in a dynamic dict: just do it directly. */
934 if (symname && fp->ctf_flags & LCTF_RDWR)
935 {
936 if (fp->ctf_objthash == NULL
937 || ((type = (ctf_id_t) (uintptr_t)
938 ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0))
939 {
940 if (fp->ctf_funchash == NULL
941 || ((type = (ctf_id_t) (uintptr_t)
942 ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0))
943 goto try_parent;
944 }
945 return type;
946 }
947
948 err = ECTF_NOSYMTAB;
949 if (sp->cts_data == NULL)
950 goto try_parent;
951
952 /* This covers both out-of-range lookups and a dynamic dict which hasn't been
953 shuffled yet. */
954 err = EINVAL;
955 if (symname == NULL && symidx >= fp->ctf_nsyms)
956 goto try_parent;
957
958 if (fp->ctf_objtidx_names)
959 {
960 if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 0)) == CTF_ERR)
961 return CTF_ERR; /* errno is set for us. */
962 }
963 if (type == 0 && fp->ctf_funcidx_names)
964 {
965 if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 1)) == CTF_ERR)
966 return CTF_ERR; /* errno is set for us. */
967 }
968 if (type != 0)
969 return type;
970
971 err = ECTF_NOTYPEDAT;
972 if (fp->ctf_objtidx_names && fp->ctf_funcidx_names)
973 goto try_parent;
974
975 /* Table must be nonindexed. */
976
977 ctf_dprintf ("Looking up object type %lx in 1:1 dict symtypetab\n", symidx);
978
979 if (symname != NULL)
980 if ((symidx = ctf_lookup_symbol_idx (fp, symname)) == (unsigned long) -1)
981 goto try_parent;
982
983 if (fp->ctf_sxlate[symidx] == -1u)
984 goto try_parent;
985
986 type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
987
988 if (type == 0)
989 goto try_parent;
990
991 return type;
992 try_parent:
993 if (fp->ctf_parent)
994 {
995 ctf_id_t ret = ctf_lookup_by_sym_or_name (fp->ctf_parent, symidx,
996 symname);
997 if (ret == CTF_ERR)
998 ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
999 return ret;
1000 }
1001 else
1002 return (ctf_set_errno (fp, err));
1003 }
1004
1005 /* Given a symbol table index, return the type of the function or data object
1006 described by the corresponding entry in the symbol table. */
1007 ctf_id_t
1008 ctf_lookup_by_symbol (ctf_dict_t *fp, unsigned long symidx)
1009 {
1010 return ctf_lookup_by_sym_or_name (fp, symidx, NULL);
1011 }
1012
1013 /* Given a symbol name, return the type of the function or data object described
1014 by the corresponding entry in the symbol table. */
1015 ctf_id_t
1016 ctf_lookup_by_symbol_name (ctf_dict_t *fp, const char *symname)
1017 {
1018 return ctf_lookup_by_sym_or_name (fp, 0, symname);
1019 }
1020
1021 /* Given a symbol table index, return the info for the function described
1022 by the corresponding entry in the symbol table, which may be a function
1023 symbol or may be a data symbol that happens to be a function pointer. */
1024
1025 int
1026 ctf_func_info (ctf_dict_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
1027 {
1028 ctf_id_t type;
1029
1030 if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
1031 return -1; /* errno is set for us. */
1032
1033 if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
1034 return (ctf_set_errno (fp, ECTF_NOTFUNC));
1035
1036 return ctf_func_type_info (fp, type, fip);
1037 }
1038
1039 /* Given a symbol table index, return the arguments for the function described
1040 by the corresponding entry in the symbol table. */
1041
1042 int
1043 ctf_func_args (ctf_dict_t *fp, unsigned long symidx, uint32_t argc,
1044 ctf_id_t *argv)
1045 {
1046 ctf_id_t type;
1047
1048 if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
1049 return -1; /* errno is set for us. */
1050
1051 if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
1052 return (ctf_set_errno (fp, ECTF_NOTFUNC));
1053
1054 return ctf_func_type_args (fp, type, argc, argv);
1055 }
This page took 0.051662 seconds and 4 git commands to generate.